US20030102858A1 - Method and apparatus for determining properties of an electrophoretic display - Google Patents

Method and apparatus for determining properties of an electrophoretic display Download PDF

Info

Publication number
US20030102858A1
US20030102858A1 US10/277,527 US27752702A US2003102858A1 US 20030102858 A1 US20030102858 A1 US 20030102858A1 US 27752702 A US27752702 A US 27752702A US 2003102858 A1 US2003102858 A1 US 2003102858A1
Authority
US
United States
Prior art keywords
electrophoretic display
electrical characteristic
measuring
electrical
encapsulated electrophoretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/277,527
Inventor
Joseph Jacobson
Paul Drzaic
Steven O'Neil
Holly Gates
Justin Abramson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/349,808 external-priority patent/US6512354B2/en
Application filed by E Ink Corp filed Critical E Ink Corp
Priority to US10/277,527 priority Critical patent/US20030102858A1/en
Assigned to E INK CORPORATION reassignment E INK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABRAMSON, JUSTIN, GATES, HOLLY G., JACOBSON, JOSEPH M., O'NEIL, STEVEN J., DRZAIC, PAUL
Publication of US20030102858A1 publication Critical patent/US20030102858A1/en
Priority to US10/649,370 priority patent/US6995550B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4076Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material printing on rewritable, bistable "electronic paper" by a focused electric or magnetic field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • This present invention relates to electronic displays and, in particular, to methods and apparatus for determining properties of electrophoretic displays.
  • Electrophoretic display media generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, can be scaled to a large area, and consume very little power. Encapsulated electrophoretic displays also enable the display to be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible displays.
  • One particular application for displaying screens are input devices, such as touch screens or keypads, or writing tablets.
  • input devices such as touch screens or keypads, or writing tablets.
  • the electrical properties of encapsulated electrophoretic display media may vary in response to environmental factors, such as temperature and humidity.
  • environmental factors such as temperature and humidity.
  • Use of external display sensors may increase cost of the display and complicate the manufacturing process.
  • external sensors may not accurately measure the parameters inside the display.
  • An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time.
  • the display has two states, which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable.
  • bistable will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed.
  • the definition of a bistable state depends on the application for the display.
  • a slowly-decaying optical state can be effectively bistable if the optical state is substantially unchanged over the required viewing time. For example, in a display that is updated every few minutes, a display image that is stable for hours or days is effectively bistable for that application.
  • bistable also indicates a display with an optical state sufficiently long-lived as to be effectively bistable for the application in mind.
  • encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable).
  • an encapsulated electrophoretic display that is not bistable. Whether or not an encapsulated electrophoretic display is bistable, and its degree of bistability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials.
  • An encapsulated electrophoretic display may take many forms.
  • the display may comprise capsules dispersed in a binder.
  • the capsules may be of any size or shape.
  • the capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns.
  • the capsules may be formed by an encapsulation technique, as described below.
  • Particles may be encapsulated in the capsules.
  • the particles may be two or more different types of particles.
  • the particles may be colored, luminescent, light-absorbing or transparent, for example.
  • the particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example.
  • the display may further comprise a suspending fluid in which the particles are dispersed.
  • an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder.
  • the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed.
  • the binder or a precursor to the binder materials
  • an effective “polymer-dispersed electrophoretic display” constructed.
  • voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present.
  • the binder dispersed electrophoretic display may be of the emulsion or phase separation type.
  • printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques.
  • premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating
  • roll coating such as knife over roll coating, forward and reverse roll coating
  • gravure coating dip coating
  • spray coating meniscus coating
  • spin coating spin coating
  • brush coating air knife coating
  • silk screen printing processes electrostatic printing processes
  • thermal printing processes thermal printing processes
  • the primary optical effect in a microencapsulated electrophoretic display device is the controlled positioning of one or more types of colloidal particles within a microcapsule.
  • colloidal particles are suspended in a colored fluid within the microcapsule.
  • Application of an electrical signal will drive the particles to one side of the microcapsule or the other. If the colloidal particles are near the side of the microcapsule nearer the viewer, the viewer will see the color of the colloid. If the colloidal particles are nearer the opposite side of the microcapsule from the viewer, the viewer will see the colored fluid.
  • the contrast between the colors of the fluid and the colloid, based on the colloid position provides the means for a display device.
  • the position of the colloid can be controlled by application of electrical signals to electrodes built into the display. Additionally, it is possible to control the position of the colloid using an externally provided voltage signal (electrostatic writing).
  • the display can be devised to work primarily by application of a field to electrodes, by electrostatic writing, or with both.
  • the present invention provides novel methods and apparatus for sensing the position of the colloid, that is, for sensing the state of electrophoretic displays electrically.
  • the invention is also directed to novel methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
  • the present invention relates to a method for determining properties of encapsulated electrophoretic display media, that includes providing encapsulated electrophoretic display media that has a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
  • the method further includes providing two electrodes adjacent to said plurality of capsules; applying a first electrical signal to one of the electrodes, applying a second electrical signal to the other electrode; and measuring an electrical characteristic of the encapsulated electrophoretic display media that is generated in response to the applied first and second electrical signals.
  • the present invention relates to a method for determining properties of encapsulated electrophoretic display media that includes providing encapsulated electrophoretic display media that has a plurality of pixels, each pixel includes at least one capsule dispersed in a binder phase.
  • the capsules contain an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
  • the method further includes providing an electrode that is common and adjacent to each pixel of the plurality of pixels and providing at least one measurement pixel of the plurality of pixels that has a measurement electrode adjacent thereto.
  • the method further includes applying a first electrical signal to the common electrode, applying a second electrical signal to the measurement electrode; and measuring an electrical characteristic of the measuring pixel that is generated in response to the applied electrical signals.
  • the present invention relates to an apparatus for determining properties of encapsulated electrophoretic display media.
  • the encapsulated electrophoretic display media includes a plurality of capsules dispersed in a binder phase and two electrodes adjacent to the plurality of capsules. At least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
  • the apparatus includes a signal generator for applying electrical signals to the two electrodes; and a detection circuit for measuring an electrical characteristic of the encapsulated electrophoretic display media generated in response to the applied electrical signals.
  • the invention in yet another aspect, relates to an electrophoretic display that includes encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
  • the electrophoretic display of the invention capable of determining properties of individual pixels, includes a first electrode that is common and adjacent to each of the plurality of pixels and at least one measurement pixel of the plurality of pixels, having a measurement electrode adjacent thereto.
  • the display also includes a signal generator for applying electrical signals to these electrodes; and a detection circuit for measuring a first electrical characteristic of the measurement pixel that is generated in response to the applied electrical signals.
  • the invention features an input device that includes an encapsulated electrophoretic display media having a plurality of pixels.
  • Each pixel includes a pixel electrode adjacent thereto and at least one capsule dispersed in a binder phase.
  • Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
  • the input device further includes a first electrode that is common and adjacent to each pixel of the plurality of pixels, a signal generator for applying electrical signals to the common electrode and each of the pixel electrodes, and a detection circuit for measuring an electrical characteristic of each of the plurality of pixels that is generated in response to the applied electrical signals.
  • the input device also includes a discriminator circuit for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels; and a response generator for identifying the pixel with a change in the electrical characteristic and generating a response to the change.
  • FIG. 1A is a diagrammatic side view of an electrophoretic display element with optical particles near the sensing electrodes.
  • FIG. 1B is a diagrammatic side view of an electrophoretic display element with optical particles distant from the sensing electrodes.
  • FIG. 2 is a flow chart showing the steps to be taken to sense the state of an electrophoretic display element.
  • FIG. 3 shows a circuit diagram of an embodiment of the invention
  • FIG. 4A shows a circuit diagram of the embodiment of FIG. 3 in a measurement mode.
  • FIG. 4B is a graph showing exponential change of the voltage applied to the common electrode over the period of time in the embodiment of FIG. 3.
  • FIG. 5 shows a circuit diagram of an another embodiment of the invention
  • FIG. 6 shows a circuit diagram of yet another embodiment of the invention
  • FIG. 7 is a diagrammatic view of an input device according to the invention.
  • FIG. 8 is a flow chart of the operation of the input device according to the embodiment of FIG. 7
  • An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase.
  • the electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium.
  • the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases.
  • the coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase.
  • the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate.
  • An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process.
  • the optical quality of an electronic ink is quite distinct from other electronic display materials.
  • the most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks).
  • the light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image.
  • electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks.
  • Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
  • Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current.
  • the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity.
  • the ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays.
  • ITO indium tin oxide
  • the use of costly vacuum-sputtered indium tin oxide (ITO) conductors a standard material in liquid crystal devices, is not required.
  • the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability.
  • the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals).
  • conductive materials which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application.
  • These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide.
  • Organic conductors polymeric conductors and molecular organic conductors also may be used.
  • Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives.
  • Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene.
  • Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
  • electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
  • electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
  • Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del.
  • FIGS. 1A and 1B a highly diagrammatic view of an electrophoretic display element is shown.
  • An electronic ink typically comprises many such elements in a binder phase.
  • capsule 40 is provided and contains electrophoretic particles 50 suspended in a dispersing fluid 55 .
  • Dispersing fluid 55 may be clear or dyed.
  • the particles 50 typically possess optical properties of interest, such as color, luminescence, or reflectance. In some embodiments, multiple species of particles 50 may be provided in the same capsule.
  • Electrodes 10 , 20 , 30 are used to translate the particles 50 within the capsule 40 , thus changing the appearance of the capsule 40 to a viewer 5 .
  • Electrodes 10 , 20 may be used to apply a field 60 to the capsule 40 in order to sense its state.
  • the position of the particles 50 within the capsule 40 may be electrically determined by applying an electrical signal to electrodes 10 , 20 and measuring the electrical properties of the capsule 40 in response to the applied electrical signal.
  • a display element to be measured is provided (step 202 ).
  • the display element is already attached to measurement device, i.e., the display includes circuitry for sensing the state of individual display elements.
  • the state of a display is measured by a separate device or devices.
  • An electrical signal is applied to the provided display element (step 204 ). Typically this is done via electrodes 10 , 20 , 30 adjacent the element. These can be the same electrodes used to translate the electrophoretic particles within the capsule or they can be a separate set of electrodes adjacent the capsule.
  • the electrical signal applied to the capsule may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
  • the signal applied to the capsule is AC, DC, or hybrid AC/DC
  • the signal is typically selected to minimize disturbance of the particles within the capsule.
  • an AC signal may be selected having a frequency less than 100 KHz, preferably less than 70 KHz, most preferably less than 10 KHz.
  • the selected AC signal has a frequency greater than 1Hz.
  • voltages of such signals are selected to be less than I volt, preferably less than 500 millivolts, and most preferably less than 100 millivolts.
  • the applied signal has an amplitude greater than 1 millivolt.
  • An internal or external signal source may be used to generate the electrical signal.
  • a preselected signal can be stored digitally in ROM or PROM that is electrically coupled to a digital-to-analog convertor and a driver that drives the signal to the electrodes.
  • the display may be provided with an input jack, such as a BNA or similar jack, that allows a signal to be driven to the electrodes from an external signal generator.
  • the applied electrical signal will evoke a different electrical response from the display element depending on whether the particles 50 intersect the field 60 of the electrical signal applied to the electrodes or not.
  • the electrical response of the display element is measured (step 206 ).
  • the electrical response measured can be capacitave, resistive, or some combination of two such as an RC time constant.
  • the measurement circuit used can be a voltmeter, ammeter, ohmmeter, capacitance bridge, or some other circuit capable of measuring the desired electrical characteristic, such as a circuit capable of measuring frequency, time constant, or charge.
  • the state of the display element is deduced from the measured electrical response (step 208 ). For example, if the particles 50 have a much higher impedance than the dispersing fluid 55 , then a voltage applied to the capsule 40 will be more attenuated if the particles 50 are nearer the electrodes than if they are not.
  • the circuit which performs this function is a comparator. A measured electrical characteristic is compared to a predetermined threshold to determine if the particles 50 are near the electrodes or not.
  • AC current is passed through the display element at a particular frequency to determine a frequency response for the element.
  • the discriminator circuit may be analog or digital.
  • the discriminator circuit includes a processor that analyzes the measured electrical response of the display element.
  • both the discriminator circuit and the signal generator are controlled by a processor.
  • a microencapsulated electrophoretic display comprising rutile titania dispersed in a low dielectric constant hydrocarbon fluid was provided.
  • Two electrodes were positioned adjacent each other on the same substrate, adjacent also to a microcapsule, and on the back side of the display from the viewer.
  • An AC electrical signal was placed across the electrodes, and the current passed between the electrodes measured.
  • the frequency of the AC signal was set so that the capacitive characteristics of the microcapsules were measured. Typically, electrical frequencies in the range of 10 Hz to 10 KHz are useful in this regard.
  • the dielectric constant near the electrodes depended on whether the colloid was on the same side of the microcapsule as the electrodes, or on the opposite sides.
  • the spacing of the electrodes small compared to the microcapsule diameter.
  • a high dielectric constant indicated that the colloidal particles were near the electrodes, and the display is dark.
  • a low dielectric constant indicated that the colloidal particles were away from the electrodes and at the front of the microcapsule, and that the display is light.
  • Low amplitude voltages were used to make the measurement.
  • the applied voltage is less than the operating voltage of the display.
  • AC voltages in the range of 1 mV to 1 V, and particularly in the range of 10 mV to 100 mV, are useful.
  • a microencapsulated electrophoretic display was constructed with sensing electrodes on opposing sides of the display. These electrodes could be separate structures, or could be the same electrodes used to address the display.
  • the colloidal dispersion was constructed so that the colloid contains a net negative charge. A negative charge is placed on the front electrode, sufficient to address some or all of the pixel. If the colloid is near the front of the microcapsule, the colloid will be repelled from the front surface and attracted to the back. The movement of the colloid gives a characteristic current signal, which rises, peaks, and then diminishes as the colloid transits the cell. This peak has a characteristic time constant and amplitude, depending on the display characteristics. For example, in a display which requires 90 V to address and a cell gap of 100 microns, the colloid transits in the range of 100 ms to 2 seconds, depending on the formulation.
  • the discriminator circuit looks for the presence of absence of a peak with a constant in this range. If the colloid transits the cell, then the particles were near the front. If no peak is seen, the colloid was already near the back.
  • the detection circuit can be constructed to measure the total charged or current passed by the cell. The charge or current will be higher if the colloidal particles transit the cell, and be lower if they do not transit the cell.
  • the invention is directed to methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
  • Encapsulated electrophoretic display media is generally composed of polymeric materials, whose electrical properties, such as resistivity and capacitance, vary in response to environmental factors, such as temperature and humidity. In order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. By enabling a waveform compensation scheme or increasing its effectiveness, the display quality and period of operation could be enhanced.
  • the correction of the drive waveform for humidity using the resistivity measurement is essentially empirical.
  • Many encapsulated electrophoretic media because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed.
  • the resistivity of the encapsulated electrophoretic medium varies with its temperature. In a well-sealed medium, the water content of the display material is essentially unaffected by ambient humidity and the temperature dependence predominates.
  • the temperature is measured by a thermocouple or similar device embedded in the medium because measuring the internal temperature of the display is relatively simple using readily available industry-standard components, while the resistivity measurement is used to adjust the drive waveform for humidity, because measuring the humidity inside a display directly is complicated.
  • an encapsulated electrophoretic display 300 includes an encapsulated electrophoretic display media 310 having two electrodes, a common electrode 320 and a backplane electrode 330 .
  • the resistivity of the encapsulated electrophoretic display media 310 is determined using the common electrode 320 of the electrophoretic display 300 as a sensor. In this embodiment, the resistivity is averaged over the entire area of the encapsulated electrophoretic display media 310 .
  • the common electrode 320 is connected to a detection circuit and a capacitor 340 having a known capacitance C.
  • the detection circuit is a high-impedance voltage measurement circuit 350 .
  • Other circuits for detecting other electrical properties such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
  • the common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V 1 by a signal generator 305 .
  • the electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
  • the common electrode 320 is disconnected from the signal generator by a switch 312 and is connected to an auxiliary circuit, for example, an analog switch 315 .
  • the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to a voltage V 2 .
  • the potential difference (V 2 ⁇ V 1 ) is measured by the high-impedance voltage measurement circuit 350 .
  • the capacitor 340 had a voltage V 1 .
  • the voltage waveform V that appears at the common electrode 320 over a period of time would follow an exponential 410 with time constant RC, where R is the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310 , and C is a known capacitance of the capacitor 340 .
  • the corresponding formula that reflects a relationship between V and V 2 ⁇ V 1 as a function of time t is:
  • V ( V 2 ⁇ V 1 )(1 ⁇ e ( ⁇ t/RC) ) (1)
  • the common electrode 320 is connected to a detection circuit and a resistor 345 having a known resistance R 2 .
  • the detection circuit is a high-impedance voltage measurement circuit 350 .
  • the common electrode 320 in the measurement mode, is driven to the voltage V 1 through the resistor 345 , while the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to the voltage V 2 .
  • the formula that reflects a relationship between the voltage waveform V that appears at the common electrode 320 and the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310 is:
  • V ( V 2 ⁇ V 1 )* R 2 /( R+R 2 ) (2)
  • the equivalent resistivity R of the encapsulated electrophoretic display media 310 may be deduced using formula (2).
  • the amount of time necessary to take the measurement in this embodiment of the invention is relatively short, e.g. on the order of milliseconds, which could minimize the effect of undesirable transient voltages applied to the encapsulated electrophoretic display media 310 .
  • the resistivity of the encapsulated electrophoretic display media 310 is determined using one or more of individual encapsulated electrophoretic display media elements 312 as sensors.
  • the resistivity of different parts of the electrophoretic display media 310 can be measured.
  • the resistivity of the entire electrophoretic display media 310 may be approximated by calculating an average between the measurements taken from individual encapsulated electrophoretic display media elements 312 .
  • each sensor 312 is one of the active electrophoretic display pixels, which-is connected to the measurement circuit 350 when the electrophoretic display 300 is not in an update state.
  • designated individual encapsulated electrophoretic display media elements that lie outside the active pixel area could be used for the resistivity measurement, if transient currents or the size of an active pixel make use of the active pixel as a sensor undesirable.
  • the sensing individual encapsulated electrophoretic display media element 312 is connected to a detection circuit and a capacitor 340 having a known capacitance C.
  • the detection circuit is a high-impedance voltage measurement circuit 350 .
  • Other circuits for detecting other electrical properties such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
  • the common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V 3 by a signal generator 305 .
  • the electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
  • the sensor 312 is driven to a voltage V 4 .
  • the potential difference (V 4 ⁇ V 3 ) at the sensor 312 is measured by the high-impedance voltage measurement circuit 350 .
  • the formula that reflects a relationship between the sensor voltage and V 4 ⁇ V 3 as a function of time t is
  • V ( V 4 ⁇ V 3 )(1 ⁇ e ( ⁇ t/RC) ) (3)
  • the resistivity R of the sensor element 312 may be deduced using formula (3).
  • the sensing element 312 is connected to a detection circuit and a resistor 345 having a known resistance R 2 .
  • the detection circuit is a high-impedance voltage measurement circuit 350 .
  • the sensing element 312 in the measurement mode, is driven to the voltage V 4 through the resistor 345 , while the encapsulated electrophoretic display media 310 and the common electrode 320 are driven to the voltage V 3 .
  • the formula that reflects a relationship between the voltage waveform V that appears at the sensing element 312 and its resistivity is:
  • V ( V 4 ⁇ V 3 ) R 2 /( R+R 2 ) (4)
  • each sensing element 312 of the encapsulated electrophoretic display media 310 may be deduced using formula (4).
  • the resistivity of the encapsulated electrophoretic display media After the resistivity of the encapsulated electrophoretic display media has been measured, its ambient humidity can then be deduced based on the resisitivity value.
  • many encapsulated electrophoretic media because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed.
  • the correlation between the resistivity of the display and the ambient humidity therein is essentially empirical.
  • Other environmental factors of the encapsulated electrophoretic display media can be determined based on the resistivity value as well. Because the internal temperature of the display usually tracks the external temperature rather rapidly, with a lag time of a few minutes, in one embodiment of the invention, the ambient temperature is measured using an external sensor 395 , as shown in FIG. 3. In another embodiment, the internal temperature is measured using a thermocouple embedded in a display. Other environmental factors of the encapsulated electrophoretic display media, can be determined using an external sensors as well.
  • the encapsulated electrophoretic display 300 whose parameters can be determined using the encapsulated electrophoretic display media itself as a sensor is used as part of an input device 900 , for example, a touch-screen display or a keypad.
  • the input device 900 includes an encapsulated electrophoretic display media 310 and a common electrode 320 .
  • the common electrode 320 is formed from a conductive material capable of elastic deformation, such as indium tin oxide. Conductive polymers, such as polythiophene or polyaniline, can also be used.
  • the encapsulated electrophoretic display media 310 includes a plurality of pixels 905 , each of which includes at least one individual encapsulated electrophoretic display media element 312 . Each pixel has a pixel electrode 910 adjacent thereto.
  • the input device 900 also includes a signal generator 920 for applying electrical signals to the common electrode 320 and each of pixel electrodes 910 .
  • the electrical signal applied to the encapsulated electrophoretic display media 310 by the common electrode 320 and each of pixel electrodes 910 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
  • a detection circuit 930 such as one described above in connection with the embodiments illustrated in FIG. 6, is provided for periodically measuring an electrical characteristic of each of said plurality of pixels, generated in response to the applied electrical signal.
  • the input device 900 also includes a discriminator circuit 940 for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels.
  • the circuit which performs this function is a comparator. A measured electrical characteristic is compared to a previously measured value of this characteristic to detect a variation.
  • the input device 900 also includes a response generator 950 in electrical communication with the discriminator circuit that is capable of identifying the pixel, whose electrical characteristic has changed since the previous measurement, and generating a response to this change.
  • the discriminator circuit may be analog or digital.
  • the discriminator circuit includes a processor that analyzes the measured electrical response of the display element.
  • the detection circuit, discriminator circuit, the response generator, and the signal generator are controlled by a processor.
  • the detection circuit 930 periodically measures the electrical properties of each of the pixels of encapsulated electrophoretic display media 310 .
  • a user depresses a part of the common electrode 320 of the encapsulated electrophoretic display 300 (STEP 1020 )
  • certain electrical properties of the encapsulated electrophoretic display media 310 in the area adjacent to the depression in the common electrode 320 such as, for example, voltage, resistivity, or capacitance, change (STEP 1030 ).
  • the detection circuit 930 takes new measurements of the electrical properties (STEP 1040 ).
  • the discriminating circuit 940 compares the new measurements with previously obtained measurements and detects a change in electrical properties of the pixels adjacent to the depression in the common electrode 320 (STEP 1050 ).
  • the response generator 950 identifies one or more pixels whose electrical properties have changed and generates a response (STEP 1060 ). For example, the response generator may generate an output signal to be used by devices receiving input from the input device 900 .

Abstract

A method for sensing the state of an electrophoretic display includes the steps of applying an electrical signal to a display element, measuring an electrical response for the display element, and deducing the state of the display element from the measured electrical response. Also, the parameters of the display materials are determined using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of and claims priority to U.S. Ser. No. 09/349,808 filed Jul. 8, 1999, which claims priority to U.S. Serial No. 60/092,046 filed Jul. 8, 1998. The contents of both applications are incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • This present invention relates to electronic displays and, in particular, to methods and apparatus for determining properties of electrophoretic displays. [0002]
  • BACKGROUND OF THE INVENTION
  • Electrophoretic display media, generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, can be scaled to a large area, and consume very little power. Encapsulated electrophoretic displays also enable the display to be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible displays. [0003]
  • One particular application for displaying screens are input devices, such as touch screens or keypads, or writing tablets. In many cases, it is desirable to sense the state of the display in order to digitize the input. For example, measuring and analyzing certain properties of the display may enable detection of the location of the input. A responsive event or action may then be generated. [0004]
  • Also, the electrical properties of encapsulated electrophoretic display media may vary in response to environmental factors, such as temperature and humidity. In some circumstances, in order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. Thus, it is desirable to measure the display parameters that affect waveform compensation scheme. Use of external display sensors, however, may increase cost of the display and complicate the manufacturing process. In addition, external sensors may not accurately measure the parameters inside the display. [0005]
  • SUMMARY OF THE INVENTION
  • An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time. When the display has two states, which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable. For the purpose of this invention, the term bistable will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed. The definition of a bistable state depends on the application for the display. A slowly-decaying optical state can be effectively bistable if the optical state is substantially unchanged over the required viewing time. For example, in a display that is updated every few minutes, a display image that is stable for hours or days is effectively bistable for that application. In this invention, the term bistable also indicates a display with an optical state sufficiently long-lived as to be effectively bistable for the application in mind. Alternatively, it is possible to construct encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable). As will be described, in some applications it is advantageous to use an encapsulated electrophoretic display that is not bistable. Whether or not an encapsulated electrophoretic display is bistable, and its degree of bistability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials. [0006]
  • An encapsulated electrophoretic display may take many forms. The display may comprise capsules dispersed in a binder. The capsules may be of any size or shape. The capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns. The capsules may be formed by an encapsulation technique, as described below. Particles may be encapsulated in the capsules. The particles may be two or more different types of particles. The particles may be colored, luminescent, light-absorbing or transparent, for example. The particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example. The display may further comprise a suspending fluid in which the particles are dispersed. [0007]
  • The successful construction of an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder. [0008]
  • In some cases, the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed. In such displays, voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present. The binder dispersed electrophoretic display may be of the emulsion or phase separation type. [0009]
  • Throughout the specification, reference will be made to printing or printed. As used throughout the specification, printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques. A “printed element” refers to an element formed using any one of the above techniques. [0010]
  • The primary optical effect in a microencapsulated electrophoretic display device is the controlled positioning of one or more types of colloidal particles within a microcapsule. In one embodiment, colloidal particles are suspended in a colored fluid within the microcapsule. Application of an electrical signal will drive the particles to one side of the microcapsule or the other. If the colloidal particles are near the side of the microcapsule nearer the viewer, the viewer will see the color of the colloid. If the colloidal particles are nearer the opposite side of the microcapsule from the viewer, the viewer will see the colored fluid. The contrast between the colors of the fluid and the colloid, based on the colloid position, provides the means for a display device. [0011]
  • The position of the colloid can be controlled by application of electrical signals to electrodes built into the display. Additionally, it is possible to control the position of the colloid using an externally provided voltage signal (electrostatic writing). The display can be devised to work primarily by application of a field to electrodes, by electrostatic writing, or with both. [0012]
  • The present invention provides novel methods and apparatus for sensing the position of the colloid, that is, for sensing the state of electrophoretic displays electrically. The invention is also directed to novel methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors. [0013]
  • In one aspect, the present invention relates to a method for determining properties of encapsulated electrophoretic display media, that includes providing encapsulated electrophoretic display media that has a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The method further includes providing two electrodes adjacent to said plurality of capsules; applying a first electrical signal to one of the electrodes, applying a second electrical signal to the other electrode; and measuring an electrical characteristic of the encapsulated electrophoretic display media that is generated in response to the applied first and second electrical signals. [0014]
  • In another aspect, the present invention relates to a method for determining properties of encapsulated electrophoretic display media that includes providing encapsulated electrophoretic display media that has a plurality of pixels, each pixel includes at least one capsule dispersed in a binder phase. The capsules contain an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The method further includes providing an electrode that is common and adjacent to each pixel of the plurality of pixels and providing at least one measurement pixel of the plurality of pixels that has a measurement electrode adjacent thereto. The method further includes applying a first electrical signal to the common electrode, applying a second electrical signal to the measurement electrode; and measuring an electrical characteristic of the measuring pixel that is generated in response to the applied electrical signals. [0015]
  • In still another aspect, the present invention relates to an apparatus for determining properties of encapsulated electrophoretic display media. The encapsulated electrophoretic display media includes a plurality of capsules dispersed in a binder phase and two electrodes adjacent to the plurality of capsules. At least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The apparatus includes a signal generator for applying electrical signals to the two electrodes; and a detection circuit for measuring an electrical characteristic of the encapsulated electrophoretic display media generated in response to the applied electrical signals. [0016]
  • In yet another aspect, the invention relates to an electrophoretic display that includes encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The electrophoretic display of the invention, capable of determining properties of individual pixels, includes a first electrode that is common and adjacent to each of the plurality of pixels and at least one measurement pixel of the plurality of pixels, having a measurement electrode adjacent thereto. The display also includes a signal generator for applying electrical signals to these electrodes; and a detection circuit for measuring a first electrical characteristic of the measurement pixel that is generated in response to the applied electrical signals. [0017]
  • In still another aspect, the invention features an input device that includes an encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes a pixel electrode adjacent thereto and at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The input device further includes a first electrode that is common and adjacent to each pixel of the plurality of pixels, a signal generator for applying electrical signals to the common electrode and each of the pixel electrodes, and a detection circuit for measuring an electrical characteristic of each of the plurality of pixels that is generated in response to the applied electrical signals. The input device also includes a discriminator circuit for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels; and a response generator for identifying the pixel with a change in the electrical characteristic and generating a response to the change.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is pointed out with particularity in the appended claims. The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. [0019]
  • FIG. 1A is a diagrammatic side view of an electrophoretic display element with optical particles near the sensing electrodes. [0020]
  • FIG. 1B is a diagrammatic side view of an electrophoretic display element with optical particles distant from the sensing electrodes. [0021]
  • FIG. 2 is a flow chart showing the steps to be taken to sense the state of an electrophoretic display element. [0022]
  • FIG. 3 shows a circuit diagram of an embodiment of the invention [0023]
  • FIG. 4A shows a circuit diagram of the embodiment of FIG. 3 in a measurement mode. [0024]
  • FIG. 4B is a graph showing exponential change of the voltage applied to the common electrode over the period of time in the embodiment of FIG. 3. [0025]
  • FIG. 5 shows a circuit diagram of an another embodiment of the invention [0026]
  • FIG. 6 shows a circuit diagram of yet another embodiment of the invention [0027]
  • FIG. 7 is a diagrammatic view of an input device according to the invention. [0028]
  • FIG. 8 is a flow chart of the operation of the input device according to the embodiment of FIG. 7[0029]
  • DETAILED DESCRIPTION OF THE INVENTION
  • An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase. The electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium. In some embodiments the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases. The coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase. In this embodiment, the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate. An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process. [0030]
  • The optical quality of an electronic ink is quite distinct from other electronic display materials. The most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks). The light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image. Also, electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks. Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability. [0031]
  • Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current. As such, the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity. The ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays. In particular, the use of costly vacuum-sputtered indium tin oxide (ITO) conductors, a standard material in liquid crystal devices, is not required. Aside from cost savings, the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability. Additionally, the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals). This means that some conductive materials, which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application. These include opaque metallic inks for the rear electrode (e.g., silver and graphite inks), as well as conductive transparent inks for either substrate. These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide. Organic conductors (polymeric conductors and molecular organic conductors) also may be used. Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives. Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene. Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent. [0032]
  • As an example, there is a class of materials called electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays. One example is Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del. [0033]
  • Referring now to FIGS. 1A and 1B, a highly diagrammatic view of an electrophoretic display element is shown. An electronic ink typically comprises many such elements in a binder phase. In brief overview, [0034] capsule 40 is provided and contains electrophoretic particles 50 suspended in a dispersing fluid 55. Dispersing fluid 55 may be clear or dyed. The particles 50 typically possess optical properties of interest, such as color, luminescence, or reflectance. In some embodiments, multiple species of particles 50 may be provided in the same capsule. Electrodes 10, 20, 30 are used to translate the particles 50 within the capsule 40, thus changing the appearance of the capsule 40 to a viewer 5. Electrodes 10, 20 may be used to apply a field 60 to the capsule 40 in order to sense its state.
  • The position of the [0035] particles 50 within the capsule 40 may be electrically determined by applying an electrical signal to electrodes 10, 20 and measuring the electrical properties of the capsule 40 in response to the applied electrical signal.
  • In greater detail, the steps to be taken in sensing the state of an electrophoretic display are shown in FIG. 2. A display element to be measured is provided (step [0036] 202). In some embodiments, the display element is already attached to measurement device, i.e., the display includes circuitry for sensing the state of individual display elements. In other embodiments, the state of a display is measured by a separate device or devices.
  • An electrical signal is applied to the provided display element (step [0037] 204). Typically this is done via electrodes 10, 20, 30 adjacent the element. These can be the same electrodes used to translate the electrophoretic particles within the capsule or they can be a separate set of electrodes adjacent the capsule. The electrical signal applied to the capsule may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
  • Whether the signal applied to the capsule is AC, DC, or hybrid AC/DC, the signal is typically selected to minimize disturbance of the particles within the capsule. For example, an AC signal may be selected having a frequency less than 100 KHz, preferably less than 70 KHz, most preferably less than 10 KHz. In certain preferred embodiments, the selected AC signal has a frequency greater than 1Hz. Further, voltages of such signals are selected to be less than I volt, preferably less than 500 millivolts, and most preferably less than 100 millivolts. In some preferred embodiments, the applied signal has an amplitude greater than 1 millivolt. [0038]
  • An internal or external signal source may be used to generate the electrical signal. For example, a preselected signal can be stored digitally in ROM or PROM that is electrically coupled to a digital-to-analog convertor and a driver that drives the signal to the electrodes. Alternatively, the display may be provided with an input jack, such as a BNA or similar jack, that allows a signal to be driven to the electrodes from an external signal generator. [0039]
  • If the electrical characteristic of [0040] particles 50 and dispersing fluid 55 differ, then the applied electrical signal will evoke a different electrical response from the display element depending on whether the particles 50 intersect the field 60 of the electrical signal applied to the electrodes or not.
  • The electrical response of the display element is measured (step [0041] 206). The electrical response measured can be capacitave, resistive, or some combination of two such as an RC time constant. The measurement circuit used can be a voltmeter, ammeter, ohmmeter, capacitance bridge, or some other circuit capable of measuring the desired electrical characteristic, such as a circuit capable of measuring frequency, time constant, or charge.
  • The state of the display element is deduced from the measured electrical response (step [0042] 208). For example, if the particles 50 have a much higher impedance than the dispersing fluid 55, then a voltage applied to the capsule 40 will be more attenuated if the particles 50 are nearer the electrodes than if they are not. In its simplest form, the circuit which performs this function (the “discriminator circuit”) is a comparator. A measured electrical characteristic is compared to a predetermined threshold to determine if the particles 50 are near the electrodes or not. In another embodiment, AC current is passed through the display element at a particular frequency to determine a frequency response for the element.
  • The discriminator circuit may be analog or digital. In one embodiment, the discriminator circuit includes a processor that analyzes the measured electrical response of the display element. In a further embodiment, both the discriminator circuit and the signal generator are controlled by a processor. [0043]
  • EXAMPLE 1
  • A microencapsulated electrophoretic display comprising rutile titania dispersed in a low dielectric constant hydrocarbon fluid was provided. Two electrodes were positioned adjacent each other on the same substrate, adjacent also to a microcapsule, and on the back side of the display from the viewer. An AC electrical signal was placed across the electrodes, and the current passed between the electrodes measured. The frequency of the AC signal was set so that the capacitive characteristics of the microcapsules were measured. Typically, electrical frequencies in the range of 10 Hz to 10 KHz are useful in this regard. The dielectric constant near the electrodes depended on whether the colloid was on the same side of the microcapsule as the electrodes, or on the opposite sides. It is advantageous to have the spacing of the electrodes small compared to the microcapsule diameter. A high dielectric constant indicated that the colloidal particles were near the electrodes, and the display is dark. A low dielectric constant indicated that the colloidal particles were away from the electrodes and at the front of the microcapsule, and that the display is light. Low amplitude voltages were used to make the measurement. Preferably, the applied voltage is less than the operating voltage of the display. Typically, AC voltages in the range of 1 mV to 1 V, and particularly in the range of 10 mV to 100 mV, are useful. [0044]
  • EXAMPLE 2
  • A microencapsulated electrophoretic display was constructed with sensing electrodes on opposing sides of the display. These electrodes could be separate structures, or could be the same electrodes used to address the display. The colloidal dispersion was constructed so that the colloid contains a net negative charge. A negative charge is placed on the front electrode, sufficient to address some or all of the pixel. If the colloid is near the front of the microcapsule, the colloid will be repelled from the front surface and attracted to the back. The movement of the colloid gives a characteristic current signal, which rises, peaks, and then diminishes as the colloid transits the cell. This peak has a characteristic time constant and amplitude, depending on the display characteristics. For example, in a display which requires 90 V to address and a cell gap of 100 microns, the colloid transits in the range of 100 ms to 2 seconds, depending on the formulation. [0045]
  • Alternatively, if the colloid was already near the back, then application of this voltage will cause no change in the colloid position, and the electrical signal will be indicative of only background ions transiting the cell. [0046]
  • In this case, the discriminator circuit looks for the presence of absence of a peak with a constant in this range. If the colloid transits the cell, then the particles were near the front. If no peak is seen, the colloid was already near the back. [0047]
  • Alternatively, the detection circuit can be constructed to measure the total charged or current passed by the cell. The charge or current will be higher if the colloidal particles transit the cell, and be lower if they do not transit the cell. [0048]
  • EXAMPLE 3
  • The case of example 2, except the electrodes were adjacent as single side of the display, and spaced close together relative to the microcapsule size. Application of a voltage in the range of 1 V to 100 V causes some of the colloid to move from one electrode to the other if the colloid is near the surface of microcapsule adjacent the electrodes. If the colloid is on the other side of the microcapsule, no such transit will be seen. The discriminator circuit looks for the presence or absence of a current representing the colloidal particles, and thus determine if the colloid is on the face nearer or further from the electrodes. This method has the advantage of not disturbing the relative position of the colloid in the front or back of the display. [0049]
  • While the examples described here are listed using encapsulated electrophoretic displays, there are other particle-based display media which should also work as well, including encapsulated suspended particles and rotating ball displays. [0050]
  • In another embodiment, the invention is directed to methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors. [0051]
  • Encapsulated electrophoretic display media is generally composed of polymeric materials, whose electrical properties, such as resistivity and capacitance, vary in response to environmental factors, such as temperature and humidity. In order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. By enabling a waveform compensation scheme or increasing its effectiveness, the display quality and period of operation could be enhanced. [0052]
  • The correction of the drive waveform for humidity using the resistivity measurement is essentially empirical. Many encapsulated electrophoretic media, because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed. Also, as with most other materials, the resistivity of the encapsulated electrophoretic medium varies with its temperature. In a well-sealed medium, the water content of the display material is essentially unaffected by ambient humidity and the temperature dependence predominates. In one embodiment, the temperature is measured by a thermocouple or similar device embedded in the medium because measuring the internal temperature of the display is relatively simple using readily available industry-standard components, while the resistivity measurement is used to adjust the drive waveform for humidity, because measuring the humidity inside a display directly is complicated. [0053]
  • Referring to FIG. 3, an encapsulated [0054] electrophoretic display 300 includes an encapsulated electrophoretic display media 310 having two electrodes, a common electrode 320 and a backplane electrode 330. In one embodiment, the resistivity of the encapsulated electrophoretic display media 310 is determined using the common electrode 320 of the electrophoretic display 300 as a sensor. In this embodiment, the resistivity is averaged over the entire area of the encapsulated electrophoretic display media 310.
  • Referring to FIG. 3, the [0055] common electrode 320 is connected to a detection circuit and a capacitor 340 having a known capacitance C. In the embodiment shown in FIG. 3, the detection circuit is a high-impedance voltage measurement circuit 350. Other circuits for detecting other electrical properties, such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
  • Referring still to FIG. 3, the [0056] common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V1 by a signal generator 305. The electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. Then, the common electrode 320 is disconnected from the signal generator by a switch 312 and is connected to an auxiliary circuit, for example, an analog switch 315. Then, the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to a voltage V2. The potential difference (V2−V1) is measured by the high-impedance voltage measurement circuit 350.
  • Referring to FIGS. 3 and 4A-[0057] 4B, before the voltage V2 was applied, the capacitor 340 had a voltage V1. In the measurement mode, after the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to the voltage V2, the voltage waveform V that appears at the common electrode 320 over a period of time would follow an exponential 410 with time constant RC, where R is the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310, and C is a known capacitance of the capacitor 340. The corresponding formula that reflects a relationship between V and V2−V1 as a function of time t is:
  • V=(V 2V 1)(1−e (−t/RC))  (1)
  • where t is the lapsed time that the circuit voltage is changing, and e is the base of natural logarithms, which is a constant that equals about 2.7183. Thus, the equivalent resistivity R of the encapsulated [0058] electrophoretic display media 310 may be deduced using formula (1).
  • Referring to FIG. 5, in another embodiment, the [0059] common electrode 320 is connected to a detection circuit and a resistor 345 having a known resistance R2. In one embodiment, the detection circuit is a high-impedance voltage measurement circuit 350. In this embodiment, in the measurement mode, the common electrode 320 is driven to the voltage V1 through the resistor 345, while the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to the voltage V2. The formula that reflects a relationship between the voltage waveform V that appears at the common electrode 320 and the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310 is:
  • V=(V 2V 1)*R 2/(R+R 2)  (2)
  • Thus, the equivalent resistivity R of the encapsulated [0060] electrophoretic display media 310 may be deduced using formula (2). The amount of time necessary to take the measurement in this embodiment of the invention is relatively short, e.g. on the order of milliseconds, which could minimize the effect of undesirable transient voltages applied to the encapsulated electrophoretic display media 310.
  • Referring to FIG. 6, in another embodiment, the resistivity of the encapsulated [0061] electrophoretic display media 310 is determined using one or more of individual encapsulated electrophoretic display media elements 312 as sensors. In this embodiment, the resistivity of different parts of the electrophoretic display media 310 can be measured. Also, the resistivity of the entire electrophoretic display media 310 may be approximated by calculating an average between the measurements taken from individual encapsulated electrophoretic display media elements 312. In one version of this embodiment, each sensor 312 is one of the active electrophoretic display pixels, which-is connected to the measurement circuit 350 when the electrophoretic display 300 is not in an update state. Alternatively, in another version of this embodiment, designated individual encapsulated electrophoretic display media elements that lie outside the active pixel area could be used for the resistivity measurement, if transient currents or the size of an active pixel make use of the active pixel as a sensor undesirable.
  • Referring still to FIG. 6, the sensing individual encapsulated electrophoretic [0062] display media element 312 is connected to a detection circuit and a capacitor 340 having a known capacitance C. In one embodiment, the detection circuit is a high-impedance voltage measurement circuit 350. Other circuits for detecting other electrical properties, such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
  • The [0063] common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V3 by a signal generator 305. The electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. Then, the sensor 312 is driven to a voltage V4. The potential difference (V4−V3) at the sensor 312 is measured by the high-impedance voltage measurement circuit 350. As discussed above with respect to the embodiment of FIG. 3, the formula that reflects a relationship between the sensor voltage and V4−V3 as a function of time t is
  • V=(V 4V 3)(1−e (−t/RC))  (3)
  • where t is the lapsed time that the circuit voltage is changing, and e is the base of natural logarithms, which is a constant that equals about 2.7183. Thus, the resistivity R of the [0064] sensor element 312 may be deduced using formula (3).
  • Referring to FIG. 7, in another embodiment, the [0065] sensing element 312 is connected to a detection circuit and a resistor 345 having a known resistance R2. In one embodiment, the detection circuit is a high-impedance voltage measurement circuit 350. In this embodiment, in the measurement mode, the sensing element 312 is driven to the voltage V4 through the resistor 345, while the encapsulated electrophoretic display media 310 and the common electrode 320 are driven to the voltage V3. As discussed above, the formula that reflects a relationship between the voltage waveform V that appears at the sensing element 312 and its resistivity is:
  • V=(V 4V 3)R 2/(R+R 2)  (4)
  • Thus, the resistivity R of each [0066] sensing element 312 of the encapsulated electrophoretic display media 310 may be deduced using formula (4).
  • After the resistivity of the encapsulated electrophoretic display media has been measured, its ambient humidity can then be deduced based on the resisitivity value. As mentioned above, many encapsulated electrophoretic media, because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed. The correlation between the resistivity of the display and the ambient humidity therein is essentially empirical. [0067]
  • Other environmental factors of the encapsulated electrophoretic display media, such as, for example, an ambient temperature, can be determined based on the resistivity value as well. Because the internal temperature of the display usually tracks the external temperature rather rapidly, with a lag time of a few minutes, in one embodiment of the invention, the ambient temperature is measured using an [0068] external sensor 395, as shown in FIG. 3. In another embodiment, the internal temperature is measured using a thermocouple embedded in a display. Other environmental factors of the encapsulated electrophoretic display media, can be determined using an external sensors as well.
  • Referring to FIG. 8, in one embodiment, the encapsulated [0069] electrophoretic display 300, whose parameters can be determined using the encapsulated electrophoretic display media itself as a sensor is used as part of an input device 900, for example, a touch-screen display or a keypad. The input device 900 includes an encapsulated electrophoretic display media 310 and a common electrode 320. The common electrode 320 is formed from a conductive material capable of elastic deformation, such as indium tin oxide. Conductive polymers, such as polythiophene or polyaniline, can also be used. The encapsulated electrophoretic display media 310 includes a plurality of pixels 905, each of which includes at least one individual encapsulated electrophoretic display media element 312. Each pixel has a pixel electrode 910 adjacent thereto.
  • Referring still to FIG. 8, the [0070] input device 900 also includes a signal generator 920 for applying electrical signals to the common electrode 320 and each of pixel electrodes 910. The electrical signal applied to the encapsulated electrophoretic display media 310 by the common electrode 320 and each of pixel electrodes 910 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. A detection circuit 930, such as one described above in connection with the embodiments illustrated in FIG. 6, is provided for periodically measuring an electrical characteristic of each of said plurality of pixels, generated in response to the applied electrical signal.
  • Referring still to FIG. 8, the [0071] input device 900 also includes a discriminator circuit 940 for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels. In its simplest form, the circuit which performs this function (the “discriminator circuit”) is a comparator. A measured electrical characteristic is compared to a previously measured value of this characteristic to detect a variation. The input device 900 also includes a response generator 950 in electrical communication with the discriminator circuit that is capable of identifying the pixel, whose electrical characteristic has changed since the previous measurement, and generating a response to this change. The discriminator circuit may be analog or digital. In one embodiment, the discriminator circuit includes a processor that analyzes the measured electrical response of the display element. In a further embodiment, the detection circuit, discriminator circuit, the response generator, and the signal generator are controlled by a processor.
  • Referring to FIG. 9, in operation, the [0072] detection circuit 930 periodically measures the electrical properties of each of the pixels of encapsulated electrophoretic display media 310. When a user depresses a part of the common electrode 320 of the encapsulated electrophoretic display 300 (STEP 1020), certain electrical properties of the encapsulated electrophoretic display media 310 in the area adjacent to the depression in the common electrode 320, such as, for example, voltage, resistivity, or capacitance, change (STEP 1030). The detection circuit 930 takes new measurements of the electrical properties (STEP 1040). The discriminating circuit 940 compares the new measurements with previously obtained measurements and detects a change in electrical properties of the pixels adjacent to the depression in the common electrode 320 (STEP 1050). The response generator 950 identifies one or more pixels whose electrical properties have changed and generates a response (STEP 1060). For example, the response generator may generate an output signal to be used by devices receiving input from the input device 900.
  • While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. [0073]

Claims (47)

What is claimed is:
1. A method for determining properties of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode and a second electrode, said first and second electrodes adjacent to said plurality of capsules;
(c) applying a first electrical signal to said first electrode;
(d) applying a second electrical signal to said second electrode; and
(e) measuring a first electrical characteristic of said encapsulated electrophoretic display media, said first electrical characteristic generated in response to said applied first and second electrical signals.
2. The method of claim 1, wherein step (e) comprises measuring a first electrical characteristic represented by a time constant.
3. The method of claim 1, wherein step (e) comprises measuring a first electrical characteristic represented by a current.
4. The method of claim 1, wherein step (e) comprises measuring a first electrical characteristic represented by voltage.
5. The method of claim 1, wherein step (e) comprises measuring a first electrical characteristic represented by capacitance.
6. The method of claim 1 further comprising deducing a second electrical characteristic of said encapsulated electrophoretic display media based on said measured first electrical characteristic.
7. The method of claim 6 wherein said second electrical characteristic is resistivity of said encapsulated electrophoretic display media.
8. The method of claim 7 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
9. The method of claim 8 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
10. The method of claim 9 wherein one of said first and second environmental factors is temperature and the other is humidity.
11. A method for determining properties of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) providing at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(d) applying a first electrical signal to said first electrode;
(e) applying a second electrical signal to said measurement electrode; and
(f) measuring a first electrical characteristic of said at least one measuring pixel, said first electrical characteristic generated in response to said applied first and second electrical signals.
12. The method of claim 11, wherein step (f) comprises measuring a first electrical characteristic represented by a time constant.
13. The method of claim 11, wherein step (f) comprises measuring a first electrical characteristic represented by a current.
14. The method of claim 11, wherein step (f) comprises measuring a first electrical characteristic represented by voltage.
15. The method of claim 11, wherein step (f) comprises measuring a first electrical characteristic represented by capacitance.
16. The method of claim 11 further comprising calculating an aggregate first electrical characteristic of said encapsulated electrophoretic display media using measured first electrical characteristics of each of said at least one measurement pixel.
17. The method of claim 11 further comprising deducing a second electrical characteristic of said at least one measurement pixel based on said measured first electrical characteristic.
18. The method of claim 17, wherein said second electrical characteristic is resistivity of said at least one measurement pixel.
19. The method of claim 17 further comprising calculating an aggregate second electrical characteristic of said encapsulated electrophoretic display media using deduced second electrical characteristics of each of said at least one measurement pixel.
20. The method of claim 17 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
21. The method of claim 20 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
22. The method of claim 21 wherein on of said first and second environmental factors is temperature, and the other is humidity.
23. A method for detecting a change in an electrical characteristic of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) providing at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(d) applying a first electrical signal to said first electrode;
(e) applying a second electrical signal to said measurement electrode;
(f) measuring a first electrical characteristic of said at least one measuring pixel, thereby obtaining a first value of said electrical characteristic; said first electrical characteristic generated in response to said applied first and second electrical signals;
(g) repeating steps (d)-(f), thereby obtaining a second value of said electrical characteristic; and
(h) comparing said first and second values of said electrical characteristic thereby detecting a change therein.
24. An apparatus for determining properties of encapsulated electrophoretic display media, said encapsulated electrophoretic display media comprising a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, and two electrodes adjacent to said plurality of capsules; said apparatus comprising:
(a) a signal generator for applying electrical signals to said two electrodes; and
(b) a detection circuit for measuring a first electrical characteristic of said encapsulated electrophoretic display media generated in response to said electrical signals.
25. The apparatus of claim 24, further comprising a processor for deducing a second electrical characteristic of said encapsulated electrophoretic display media based on said measured first electrical characteristic.
26. The apparatus of claim 25 wherein said second electrical characteristic is resistivity of said encapsulated electrophoretic display media.
27. The apparatus of claim 26 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
28. The apparatus of claim 27 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
29. The apparatus of claim 28 wherein one of said first and second environmental factors is temperature, and other is humidity.
30. The apparatus of claim 24 wherein said detection circuit comprises a capacitance bridge.
31. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring time constants.
32. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring frequency.
33. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring voltage.
34. An electrophoretic display comprising encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, and capable of determining properties of individual pixels, said electrophoretic display comprising:
(a) a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(b) at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(c) a signal generator for applying electrical signals to said first electrode and said measurement electrode; and
(d) a detection circuit for measuring a first electrical characteristic of said at least one measurement pixel, said first electrical characteristic generated in response to said applied electrical signals.
35. The electrophoretic display of claim 34 further comprising a processor for deducing a second electrical characteristic of said at least one measurement pixel based on said measured first electrical characteristic.
36. The electrophoretic display of claim 35 wherein said second electrical characteristic comprises resistivity of said at least one measurement pixel.
37. The electrophoretic display of claim 36 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
38. The electrophoretic display of claim 37 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
39. The electrophoretic display of claim 38 wherein one of said first and second environmental factors is temperature, and the other is humidity.
40. The electrophoretic display of claim 34 wherein said detection circuit comprises a capacitance bridge.
41. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring time constants.
42. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring frequency.
43. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring voltage.
44. An input device, comprising
(a) encapsulated electrophoretic display media, said encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, each pixel having a pixel electrode adjacent thereto;
(b) a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) a signal generator for applying electrical signals to said first electrode and each of said pixel electrodes;
(d) a detection circuit for measuring a first electrical characteristic of each of said plurality of pixels, said first electrical characteristic generated in response to said applied electrical signals;
(e) a discriminator circuit for detecting a change in said first electrical characteristic of at least one pixel of said plurality of pixels; and
(f) a response generator for generating a response to said change and identifying said at least one pixel.
45. The input device of claim 44 wherein said first electrical characteristic is a voltage or capacitance.
46. The input device of claim 44, further comprising a processor for deducing a second electrical characteristic of said at least one pixel based on said measured first electrical characteristic.
47. The input device of claim 46 wherein said second electrical characteristic is resistivity.
US10/277,527 1998-07-08 2002-10-22 Method and apparatus for determining properties of an electrophoretic display Abandoned US20030102858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/277,527 US20030102858A1 (en) 1998-07-08 2002-10-22 Method and apparatus for determining properties of an electrophoretic display
US10/649,370 US6995550B2 (en) 1998-07-08 2003-08-27 Method and apparatus for determining properties of an electrophoretic display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9204698P 1998-07-08 1998-07-08
US09/349,808 US6512354B2 (en) 1998-07-08 1999-07-08 Method and apparatus for sensing the state of an electrophoretic display
US10/277,527 US20030102858A1 (en) 1998-07-08 2002-10-22 Method and apparatus for determining properties of an electrophoretic display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/349,808 Continuation-In-Part US6512354B2 (en) 1998-07-08 1999-07-08 Method and apparatus for sensing the state of an electrophoretic display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/649,370 Continuation US6995550B2 (en) 1998-07-08 2003-08-27 Method and apparatus for determining properties of an electrophoretic display

Publications (1)

Publication Number Publication Date
US20030102858A1 true US20030102858A1 (en) 2003-06-05

Family

ID=26784816

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/277,527 Abandoned US20030102858A1 (en) 1998-07-08 2002-10-22 Method and apparatus for determining properties of an electrophoretic display
US10/649,370 Expired - Fee Related US6995550B2 (en) 1998-07-08 2003-08-27 Method and apparatus for determining properties of an electrophoretic display

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/649,370 Expired - Fee Related US6995550B2 (en) 1998-07-08 2003-08-27 Method and apparatus for determining properties of an electrophoretic display

Country Status (1)

Country Link
US (2) US20030102858A1 (en)

Cited By (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131147A1 (en) * 1998-08-27 2002-09-19 Paolini Richard J. Electrophoretic medium and process for the production thereof
US20030214695A1 (en) * 2002-03-18 2003-11-20 E Ink Corporation Electro-optic displays, and methods for driving same
US20040014265A1 (en) * 2002-04-24 2004-01-22 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20040105036A1 (en) * 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
US20040196215A1 (en) * 2002-12-16 2004-10-07 E Ink Corporation Backplanes for electro-optic displays
US20040226820A1 (en) * 2003-03-25 2004-11-18 E Ink Corporation Processes for the production of electrophoretic displays
US20040233509A1 (en) * 2002-12-23 2004-11-25 E Ink Corporation Flexible electro-optic displays
US20040252360A1 (en) * 2001-07-09 2004-12-16 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US20040257635A1 (en) * 2003-01-31 2004-12-23 E Ink Corporation Construction of electrophoretic displays
US20050007653A1 (en) * 2003-03-27 2005-01-13 E Ink Corporation Electro-optic assemblies, and materials for use therein
US20050012980A1 (en) * 2003-05-02 2005-01-20 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US20050078099A1 (en) * 2002-04-24 2005-04-14 E Ink Corporation Electro-optic displays, and components for use therein
US20050105162A1 (en) * 2001-03-19 2005-05-19 Paolini Richard J.Jr. Electrophoretic medium and process for the production thereof
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
WO2005054933A2 (en) 2003-11-26 2005-06-16 E Ink Corporation Electro-optic displays with reduced remnant voltage
US20050152022A1 (en) * 2003-12-31 2005-07-14 E Ink Corporation Electro-optic displays, and method for driving same
US20050151709A1 (en) * 2003-10-08 2005-07-14 E Ink Corporation Electro-wetting displays
US20050168801A1 (en) * 2004-01-16 2005-08-04 E Ink Corporation Process for sealing electro-optic displays
US20050213191A1 (en) * 2004-03-23 2005-09-29 E Ink Corporation Light modulators
US20050270261A1 (en) * 1999-04-30 2005-12-08 Danner Guy M Methods for driving electro-optic displays, and apparatus for use therein
US20060007528A1 (en) * 2002-05-23 2006-01-12 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US20060023296A1 (en) * 2004-07-27 2006-02-02 E Ink Corporation Electro-optic displays
US20060139311A1 (en) * 1999-04-30 2006-06-29 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US20060176267A1 (en) * 2003-07-24 2006-08-10 E Ink Corporation Improvements in electro-optic displays
US20060209388A1 (en) * 2005-01-26 2006-09-21 E Ink Corporation Electrophoretic displays using gaseous fluids
US20070013683A1 (en) * 2003-10-03 2007-01-18 Koninkijkle Phillips Electronics N.V. Electrophoretic display unit
US20070091417A1 (en) * 2005-10-25 2007-04-26 E Ink Corporation Electrophoretic media and displays with improved binder
US20070207560A1 (en) * 2002-06-10 2007-09-06 E Ink Corporation Components and methods for use in electro-optic displays
WO2007104003A2 (en) 2006-03-08 2007-09-13 E Ink Corporation Methods for production of electro-optic displays
CN100381996C (en) * 2004-11-09 2008-04-16 夏普株式会社 An apparatus for measuring capacitance and sensor array
US20080129667A1 (en) * 2004-03-31 2008-06-05 E Ink Corporation Methods for driving electro-optic displays
US20080169821A1 (en) * 2006-04-07 2008-07-17 Wanheng Wang Inspection methods for defects in electrophoretic display and related devices
US20080254272A1 (en) * 2007-01-22 2008-10-16 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US20080299859A1 (en) * 2002-06-10 2008-12-04 E Ink Corporation Sub-assemblies and processes for the production of electro-optic displays
US20090201242A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc. Sensing to determine pixel state in a passively addressed display array
US20090201033A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technolgies, Inc. Methods for measurement and characterization of interferometric modulators
US20090201282A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc Methods of tuning interferometric modulator displays
US20090204350A1 (en) * 2008-02-11 2009-08-13 Qualcomms Technologies, Inc, Methods for measurement and characterization of interferometric modulators
US20090213107A1 (en) * 2008-02-11 2009-08-27 Qualcomm Mems Technologies, Inc, Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
US20090225398A1 (en) * 2002-09-03 2009-09-10 E Ink Corporation Electro-optic displays
US20090231661A1 (en) * 2005-06-23 2009-09-17 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7667886B2 (en) 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7733311B2 (en) 1999-04-30 2010-06-08 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US7843626B2 (en) 2001-07-09 2010-11-30 E Ink Corporation Electro-optic display and materials for use therein
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7848007B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic medium and process for the production thereof
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
EP2309322A1 (en) 2006-09-22 2011-04-13 E-Ink Corporation Electro-optic display and materials for use therein
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US8027800B2 (en) 2008-06-24 2011-09-27 Qualcomm Mems Technologies, Inc. Apparatus and method for testing a panel of interferometric modulators
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US8054526B2 (en) 2008-03-21 2011-11-08 E Ink Corporation Electro-optic displays, and color filters for use therein
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US8129655B2 (en) 2002-09-03 2012-03-06 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US20120087389A1 (en) * 2010-10-07 2012-04-12 Raytheon Company System and Method for Detecting the Temperature of an Electrophoretic Display Device
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
EP2487540A1 (en) 2006-09-18 2012-08-15 E-Ink Corporation Color electro-optic displays
US8270064B2 (en) 2009-02-09 2012-09-18 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US8314784B2 (en) 2008-04-11 2012-11-20 E Ink Corporation Methods for driving electro-optic displays
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
EP2555182A1 (en) 2007-02-02 2013-02-06 E Ink Corporation Electrophoretic displays having transparent electrode and conductor connected thereto
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
WO2013074167A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of electrophoretic microcapsules in a cosmetic composition
US8553012B2 (en) 2001-03-13 2013-10-08 E Ink Corporation Apparatus for displaying drawings
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
EP2698784A1 (en) 2003-08-19 2014-02-19 E Ink Corporation Methods for controlling electro-optic displays
EP2711770A2 (en) 2005-10-18 2014-03-26 E Ink Corporation Components for electro-optic displays
WO2014078616A1 (en) 2012-11-16 2014-05-22 E Ink Corporation Active matrix display with dual driving modes
WO2014134504A1 (en) 2013-03-01 2014-09-04 E Ink Corporation Methods for driving electro-optic displays
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
WO2015017624A1 (en) 2013-07-31 2015-02-05 E Ink Corporation Methods for driving electro-optic displays
WO2015017503A1 (en) 2013-07-30 2015-02-05 E Ink Corporation Methods for driving electro-optic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US9170467B2 (en) 2005-10-18 2015-10-27 E Ink Corporation Color electro-optic displays, and processes for the production thereof
EP2947647A2 (en) 2003-06-30 2015-11-25 E Ink Corporation Methods for driving electro-optic displays
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US9230492B2 (en) 2003-03-31 2016-01-05 E Ink Corporation Methods for driving electro-optic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices
US9513743B2 (en) 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
WO2017049020A1 (en) 2015-09-16 2017-03-23 E Ink Corporation Apparatus and methods for driving displays
US9620066B2 (en) 2010-02-02 2017-04-11 E Ink Corporation Method for driving electro-optic displays
WO2017062345A1 (en) 2015-10-06 2017-04-13 E Ink Corporation Improved low-temperature electrophoretic media
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US9672766B2 (en) 2003-03-31 2017-06-06 E Ink Corporation Methods for driving electro-optic displays
US9697778B2 (en) 2013-05-14 2017-07-04 E Ink Corporation Reverse driving pulses in electrophoretic displays
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
WO2017139323A1 (en) 2016-02-08 2017-08-17 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US9752034B2 (en) 2015-11-11 2017-09-05 E Ink Corporation Functionalized quinacridone pigments
EP3220383A1 (en) 2012-02-01 2017-09-20 E Ink Corporation Methods for driving electro-optic displays
US20170292933A1 (en) * 2015-07-31 2017-10-12 Chromera, Inc. Electrically determining messages on an electrophoretic display
US9921451B2 (en) 2014-09-10 2018-03-20 E Ink Corporation Colored electrophoretic displays
US9928810B2 (en) 2015-01-30 2018-03-27 E Ink Corporation Font control for electro-optic displays and related apparatus and methods
US9964831B2 (en) 2007-11-14 2018-05-08 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US10040954B2 (en) 2015-05-28 2018-08-07 E Ink California, Llc Electrophoretic medium comprising a mixture of charge control agents
US10048564B2 (en) 2003-11-05 2018-08-14 E Ink Corporation Electro-optic displays, and materials for use therein
US10062337B2 (en) 2015-10-12 2018-08-28 E Ink California, Llc Electrophoretic display device
WO2018160912A1 (en) 2017-03-03 2018-09-07 E Ink Corporation Electro-optic displays and driving methods
WO2018164942A1 (en) 2017-03-06 2018-09-13 E Ink Corporation Method for rendering color images
US10115354B2 (en) 2009-09-15 2018-10-30 E Ink California, Llc Display controller system
US10163406B2 (en) 2015-02-04 2018-12-25 E Ink Corporation Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
US10197883B2 (en) 2015-01-05 2019-02-05 E Ink Corporation Electro-optic displays, and methods for driving same
US20190043397A1 (en) * 2015-07-31 2019-02-07 Chromera, Inc. Electrically determining messages on an electrophoretic display
US10270939B2 (en) 2016-05-24 2019-04-23 E Ink Corporation Method for rendering color images
US10276109B2 (en) 2016-03-09 2019-04-30 E Ink Corporation Method for driving electro-optic displays
US10282033B2 (en) 2012-06-01 2019-05-07 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display
US10319313B2 (en) 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
WO2019126623A1 (en) 2017-12-22 2019-06-27 E Ink Corporation Electro-optic displays, and methods for driving same
US10353266B2 (en) 2014-09-26 2019-07-16 E Ink Corporation Color sets for low resolution dithering in reflective color displays
WO2019144097A1 (en) 2018-01-22 2019-07-25 E Ink Corporation Electro-optic displays, and methods for driving same
US10380931B2 (en) 2013-10-07 2019-08-13 E Ink California, Llc Driving methods for color display device
US10388233B2 (en) 2015-08-31 2019-08-20 E Ink Corporation Devices and techniques for electronically erasing a drawing device
US10444592B2 (en) 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays
US10475396B2 (en) 2015-02-04 2019-11-12 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US10527899B2 (en) 2016-05-31 2020-01-07 E Ink Corporation Backplanes for electro-optic displays
WO2020018508A1 (en) 2018-07-17 2020-01-23 E Ink California, Llc Electro-optic displays and driving methods
WO2020033787A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
WO2020033175A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US10573257B2 (en) 2017-05-30 2020-02-25 E Ink Corporation Electro-optic displays
US10573222B2 (en) 2015-01-05 2020-02-25 E Ink Corporation Electro-optic displays, and methods for driving same
US10593272B2 (en) 2016-03-09 2020-03-17 E Ink Corporation Drivers providing DC-balanced refresh sequences for color electrophoretic displays
WO2020060960A1 (en) 2018-09-17 2020-03-26 E Ink Corporation Backplanes with hexagonal and triangular electrodes
US10657869B2 (en) 2014-09-10 2020-05-19 E Ink Corporation Methods for driving color electrophoretic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US10726760B2 (en) 2013-10-07 2020-07-28 E Ink California, Llc Driving methods to produce a mixed color state for an electrophoretic display
US10795233B2 (en) 2015-11-18 2020-10-06 E Ink Corporation Electro-optic displays
US10796623B2 (en) 2015-04-27 2020-10-06 E Ink Corporation Methods and apparatuses for driving display systems
US10803813B2 (en) 2015-09-16 2020-10-13 E Ink Corporation Apparatus and methods for driving displays
US10832622B2 (en) 2017-04-04 2020-11-10 E Ink Corporation Methods for driving electro-optic displays
US10882042B2 (en) 2017-10-18 2021-01-05 E Ink Corporation Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing
EP3563146A4 (en) * 2016-12-28 2021-05-05 Chromera, Inc. Electrically determining messages on an electrophoretic display
US11004409B2 (en) 2013-10-07 2021-05-11 E Ink California, Llc Driving methods for color display device
US11030936B2 (en) 2012-02-01 2021-06-08 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US11062663B2 (en) 2018-11-30 2021-07-13 E Ink California, Llc Electro-optic displays and driving methods
US11087644B2 (en) 2015-08-19 2021-08-10 E Ink Corporation Displays intended for use in architectural applications
US11205108B2 (en) * 2015-07-31 2021-12-21 Chromera, Inc. Symbol verification for an intelligent label device
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11257445B2 (en) 2019-11-18 2022-02-22 E Ink Corporation Methods for driving electro-optic displays
US11289036B2 (en) 2019-11-14 2022-03-29 E Ink Corporation Methods for driving electro-optic displays
US11314098B2 (en) 2018-08-10 2022-04-26 E Ink California, Llc Switchable light-collimating layer with reflector
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
US11410585B2 (en) * 2015-12-04 2022-08-09 Chromera, Inc. Optically determining messages on a display
US11422427B2 (en) 2017-12-19 2022-08-23 E Ink Corporation Applications of electro-optic displays
US11423852B2 (en) 2017-09-12 2022-08-23 E Ink Corporation Methods for driving electro-optic displays
US11450262B2 (en) 2020-10-01 2022-09-20 E Ink Corporation Electro-optic displays, and methods for driving same
US11460722B2 (en) 2019-05-10 2022-10-04 E Ink Corporation Colored electrophoretic displays
US11511096B2 (en) 2018-10-15 2022-11-29 E Ink Corporation Digital microfluidic delivery device
US11520202B2 (en) 2020-06-11 2022-12-06 E Ink Corporation Electro-optic displays, and methods for driving same
US11568786B2 (en) 2020-05-31 2023-01-31 E Ink Corporation Electro-optic displays, and methods for driving same
WO2023043714A1 (en) 2021-09-14 2023-03-23 E Ink Corporation Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
US11620959B2 (en) 2020-11-02 2023-04-04 E Ink Corporation Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays
US11657774B2 (en) 2015-09-16 2023-05-23 E Ink Corporation Apparatus and methods for driving displays
US11686989B2 (en) 2020-09-15 2023-06-27 E Ink Corporation Four particle electrophoretic medium providing fast, high-contrast optical state switching
WO2023122142A1 (en) 2021-12-22 2023-06-29 E Ink Corporation Methods for driving electro-optic displays
WO2023129692A1 (en) 2021-12-30 2023-07-06 E Ink California, Llc Methods for driving electro-optic displays
WO2023129533A1 (en) 2021-12-27 2023-07-06 E Ink Corporation Methods for measuring electrical properties of electro-optic displays
WO2023132958A1 (en) 2022-01-04 2023-07-13 E Ink Corporation Electrophoretic media comprising electrophoretic particles and a combination of charge control agents
US11721296B2 (en) 2020-11-02 2023-08-08 E Ink Corporation Method and apparatus for rendering color images
US11721295B2 (en) 2017-09-12 2023-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display
WO2023164078A1 (en) 2022-02-25 2023-08-31 E Ink Corporation Electro-optic displays with edge seal components and methods of making the same
US11756494B2 (en) 2020-11-02 2023-09-12 E Ink Corporation Driving sequences to remove prior state information from color electrophoretic displays
US11776496B2 (en) 2020-09-15 2023-10-03 E Ink Corporation Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
WO2023211867A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Color displays configured to convert rgb image data for display on advanced color electronic paper
WO2023211699A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same
US11830448B2 (en) 2021-11-04 2023-11-28 E Ink Corporation Methods for driving electro-optic displays
US11846863B2 (en) 2020-09-15 2023-12-19 E Ink Corporation Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
US11869451B2 (en) 2021-11-05 2024-01-09 E Ink Corporation Multi-primary display mask-based dithering with low blooming sensitivity
WO2024044119A1 (en) 2022-08-25 2024-02-29 E Ink Corporation Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays
US11922893B2 (en) 2021-12-22 2024-03-05 E Ink Corporation High voltage driving using top plane switching with zero voltage frames between driving frames
US11935495B2 (en) 2021-08-18 2024-03-19 E Ink Corporation Methods for driving electro-optic displays

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009852A1 (en) * 2001-05-15 2009-01-08 E Ink Corporation Electrophoretic particles and processes for the production thereof
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US20110199671A1 (en) * 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
US7388572B2 (en) * 2004-02-27 2008-06-17 E Ink Corporation Backplanes for electro-optic displays
US7492339B2 (en) * 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US20050219224A1 (en) * 2004-03-31 2005-10-06 Frank Liebenow Electronic ink digitizer
US20050253777A1 (en) * 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
US8643595B2 (en) * 2004-10-25 2014-02-04 Sipix Imaging, Inc. Electrophoretic display driving approaches
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7492497B2 (en) * 2006-08-02 2009-02-17 E Ink Corporation Multi-layer light modulator
US8274472B1 (en) 2007-03-12 2012-09-25 Sipix Imaging, Inc. Driving methods for bistable displays
US8243013B1 (en) 2007-05-03 2012-08-14 Sipix Imaging, Inc. Driving bistable displays
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US9224342B2 (en) * 2007-10-12 2015-12-29 E Ink California, Llc Approach to adjust driving waveforms for a display device
US8373649B2 (en) * 2008-04-11 2013-02-12 Seiko Epson Corporation Time-overlapping partial-panel updating of a bistable electro-optic display
US8462102B2 (en) * 2008-04-25 2013-06-11 Sipix Imaging, Inc. Driving methods for bistable displays
US9019318B2 (en) * 2008-10-24 2015-04-28 E Ink California, Llc Driving methods for electrophoretic displays employing grey level waveforms
US8558855B2 (en) * 2008-10-24 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
TW201022653A (en) * 2008-12-10 2010-06-16 Ind Tech Res Inst Inspection method and system for display
CN101762921B (en) * 2008-12-23 2012-01-18 财团法人工业技术研究院 Detection method of display and system thereof
US20100194789A1 (en) * 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US9251736B2 (en) 2009-01-30 2016-02-02 E Ink California, Llc Multiple voltage level driving for electrophoretic displays
US20100194733A1 (en) * 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US9460666B2 (en) * 2009-05-11 2016-10-04 E Ink California, Llc Driving methods and waveforms for electrophoretic displays
US8576164B2 (en) 2009-10-26 2013-11-05 Sipix Imaging, Inc. Spatially combined waveforms for electrophoretic displays
US11049463B2 (en) * 2010-01-15 2021-06-29 E Ink California, Llc Driving methods with variable frame time
US8558786B2 (en) * 2010-01-20 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US9224338B2 (en) * 2010-03-08 2015-12-29 E Ink California, Llc Driving methods for electrophoretic displays
US8860658B2 (en) * 2010-05-17 2014-10-14 Creator Technology B.V. Electrophoretic display unit and method for driving an electrophoretic display panel
US9013394B2 (en) 2010-06-04 2015-04-21 E Ink California, Llc Driving method for electrophoretic displays
US10831317B2 (en) * 2010-08-20 2020-11-10 Neodrón Limited Electronic ink touch sensitive display
TWI598672B (en) 2010-11-11 2017-09-11 希畢克斯幻像有限公司 Driving method for electrophoretic displays
US9244559B2 (en) 2012-12-14 2016-01-26 Atmel Corporation Integrated pixel display and touch sensor
GB2523110A (en) * 2014-02-12 2015-08-19 Intelligent Energy Ltd Fuel source, fuel cell system and associated method
EP4260312A1 (en) 2020-12-08 2023-10-18 E Ink Corporation Methods for driving electro-optic displays

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585381A (en) 1969-04-14 1971-06-15 Ncr Co Encapsulated cholesteric liquid crystal display device
JPS4917079B1 (en) 1970-12-21 1974-04-26
GB1458045A (en) 1973-08-15 1976-12-08 Secr Defence Display systems
US4218302A (en) 1979-08-02 1980-08-19 U.S. Philips Corporation Electrophoretic display devices
US4789858A (en) 1984-06-12 1988-12-06 Taliq Corporation Multifunction switch incorporating NCAP liquid crystal
US5194852A (en) 1986-12-01 1993-03-16 More Edward S Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information
US5154617A (en) * 1989-05-09 1992-10-13 Prince Corporation Modular vehicle electronic system
US5174882A (en) 1991-11-25 1992-12-29 Copytele, Inc. Electrode structure for an electrophoretic display apparatus
JPH09502540A (en) 1993-09-09 1997-03-11 コピイテル,インコーポレイテッド Selective character addressable electrophoretic display panel
JPH0916116A (en) 1995-06-26 1997-01-17 Nok Corp Electrophoretic display device
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
JP3991367B2 (en) 1995-12-28 2007-10-17 セイコーエプソン株式会社 Electrophoresis device
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US5866284A (en) 1997-05-28 1999-02-02 Hewlett-Packard Company Print method and apparatus for re-writable medium
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6300932B1 (en) * 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
AU3190499A (en) * 1998-03-18 1999-10-11 E-Ink Corporation Electrophoretic displays and systems for addressing such displays
DE69918308T2 (en) * 1998-04-10 2004-10-21 E Ink Corp ELECTRONIC DISPLAY BASED ON ORGANIC FIELD EFFECT TRANSISTORS
JP4651193B2 (en) * 1998-05-12 2011-03-16 イー インク コーポレイション Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
WO2000003349A1 (en) * 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6051957A (en) 1998-10-21 2000-04-18 Duracell Inc. Battery pack having a state of charge indicator
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
EP1192504B1 (en) * 1999-07-01 2011-03-16 E Ink Corporation Electrophoretic medium provided with spacers
US6608399B2 (en) * 2000-10-17 2003-08-19 Lear Corporation Vehicle universal docking station and electronic feature modules
JP4211312B2 (en) * 2001-08-20 2009-01-21 セイコーエプソン株式会社 Electrophoresis device, electrophoretic device driving method, electrophoretic device driving circuit, and electronic apparatus

Cited By (388)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7848007B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic medium and process for the production thereof
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8441714B2 (en) 1997-08-28 2013-05-14 E Ink Corporation Multi-color electrophoretic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US20020131147A1 (en) * 1998-08-27 2002-09-19 Paolini Richard J. Electrophoretic medium and process for the production thereof
US7733335B2 (en) 1999-04-30 2010-06-08 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US10909936B2 (en) 1999-04-30 2021-02-02 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8558785B2 (en) 1999-04-30 2013-10-15 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US20050270261A1 (en) * 1999-04-30 2005-12-08 Danner Guy M Methods for driving electro-optic displays, and apparatus for use therein
US20060139310A1 (en) * 1999-04-30 2006-06-29 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7688297B2 (en) 1999-04-30 2010-03-30 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US20060139311A1 (en) * 1999-04-30 2006-06-29 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7733311B2 (en) 1999-04-30 2010-06-08 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US8553012B2 (en) 2001-03-13 2013-10-08 E Ink Corporation Apparatus for displaying drawings
US20050105162A1 (en) * 2001-03-19 2005-05-19 Paolini Richard J.Jr. Electrophoretic medium and process for the production thereof
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7843626B2 (en) 2001-07-09 2010-11-30 E Ink Corporation Electro-optic display and materials for use therein
US20040252360A1 (en) * 2001-07-09 2004-12-16 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9886886B2 (en) 2001-11-20 2018-02-06 E Ink Corporation Methods for driving electro-optic displays
US9881564B2 (en) 2001-11-20 2018-01-30 E Ink Corporation Electro-optic displays with reduced remnant voltage
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9564088B2 (en) 2001-11-20 2017-02-07 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9269311B2 (en) 2001-11-20 2016-02-23 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US20030214695A1 (en) * 2002-03-18 2003-11-20 E Ink Corporation Electro-optic displays, and methods for driving same
US20050152018A1 (en) * 2002-03-18 2005-07-14 E Ink Corporation Electro-optic displays, and methods for driving same
US7787169B2 (en) 2002-03-18 2010-08-31 E Ink Corporation Electro-optic displays, and methods for driving same
US8373211B2 (en) 2002-04-24 2013-02-12 E Ink Corporation Field effect transistor
US8389381B2 (en) 2002-04-24 2013-03-05 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20050078099A1 (en) * 2002-04-24 2005-04-14 E Ink Corporation Electro-optic displays, and components for use therein
US7785988B2 (en) 2002-04-24 2010-08-31 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20110194045A1 (en) * 2002-04-24 2011-08-11 E Ink Corporation Electro-optic displays, and components for use therein
US8969886B2 (en) 2002-04-24 2015-03-03 E Ink Corporation Electro-optic displays having backplanes comprising ring diodes
US20040014265A1 (en) * 2002-04-24 2004-01-22 E Ink Corporation Processes for forming backplanes for electro-optic displays
US9632389B2 (en) 2002-04-24 2017-04-25 E Ink Corporation Backplane for electro-optic display
US9419024B2 (en) 2002-04-24 2016-08-16 E Ink Corporation Methods for forming patterned semiconductors
US20070069247A1 (en) * 2002-04-24 2007-03-29 E Ink Corporation Electro-optic displays, and components for use therein
US20060223282A1 (en) * 2002-04-24 2006-10-05 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20060198014A1 (en) * 2002-05-23 2006-09-07 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US20060007528A1 (en) * 2002-05-23 2006-01-12 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US7791782B2 (en) 2002-06-10 2010-09-07 E Ink Corporation Electro-optics displays, and processes for the production thereof
US20100142030A1 (en) * 2002-06-10 2010-06-10 E Ink Corporation Components and methods for use in electro-optic displays
US8786929B2 (en) 2002-06-10 2014-07-22 E Ink Corporation Components and methods for use in electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US9921422B2 (en) 2002-06-10 2018-03-20 E Ink Corporation Electro-optic display with edge seal
US9612502B2 (en) 2002-06-10 2017-04-04 E Ink Corporation Electro-optic display with edge seal
US20110075248A1 (en) * 2002-06-10 2011-03-31 E Ink Corporation Components and methods for use in electro-optic displays
US8482835B2 (en) 2002-06-10 2013-07-09 E Ink Corporation Components and methods for use in electro-optic displays
US20080054879A1 (en) * 2002-06-10 2008-03-06 E Ink Corporation Components and methods for use in electro-optic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US9778536B2 (en) 2002-06-10 2017-10-03 E Ink Corporation Components and methods for use in electro-optic displays
US7729039B2 (en) 2002-06-10 2010-06-01 E Ink Corporation Components and methods for use in electro-optic displays
US9182646B2 (en) 2002-06-10 2015-11-10 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8027081B2 (en) 2002-06-10 2011-09-27 E Ink Corporation Electro-optic display with edge seal
US8891155B2 (en) 2002-06-10 2014-11-18 E Ink Corporation Electro-optic display with edge seal
US8077381B2 (en) 2002-06-10 2011-12-13 E Ink Corporation Components and methods for use in electro-optic displays
US20100149630A1 (en) * 2002-06-10 2010-06-17 E Ink Corporation Components and methods for use in electro-optic displays
US20090168067A1 (en) * 2002-06-10 2009-07-02 E Ink Corporation Components and methods for use in electro-optic displays
US20090034057A1 (en) * 2002-06-10 2009-02-05 E Ink Corporation Components and methods for use in electro-optic displays
US8854721B2 (en) 2002-06-10 2014-10-07 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
US9733540B2 (en) 2002-06-10 2017-08-15 E Ink Corporation Components and methods for use in electro-optic displays
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US11294255B2 (en) 2002-06-10 2022-04-05 E Ink Corporation Components and methods for use in electro-optic displays
US8830560B2 (en) 2002-06-10 2014-09-09 E Ink Corporation Electro-optic display with edge seal
US9563099B2 (en) 2002-06-10 2017-02-07 E Ink Corporation Components and methods for use in electro-optic displays
US8068272B2 (en) 2002-06-10 2011-11-29 E Ink Corporation Components and methods for use in electro-optic displays
US20080299859A1 (en) * 2002-06-10 2008-12-04 E Ink Corporation Sub-assemblies and processes for the production of electro-optic displays
US20070207560A1 (en) * 2002-06-10 2007-09-06 E Ink Corporation Components and methods for use in electro-optic displays
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US20040105036A1 (en) * 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
US10599005B2 (en) 2002-09-03 2020-03-24 E Ink Corporation Electro-optic displays
US8129655B2 (en) 2002-09-03 2012-03-06 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US9075280B2 (en) 2002-09-03 2015-07-07 E Ink Corporation Components and methods for use in electro-optic displays
US20090225398A1 (en) * 2002-09-03 2009-09-10 E Ink Corporation Electro-optic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
EP3056941A2 (en) 2002-09-03 2016-08-17 E Ink Corporation Electro-phoretic displays
US11520179B2 (en) 2002-09-03 2022-12-06 E Ink Corporation Method of forming an electrophoretic display having a color filter array
US10444590B2 (en) 2002-09-03 2019-10-15 E Ink Corporation Electro-optic displays
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US20040196215A1 (en) * 2002-12-16 2004-10-07 E Ink Corporation Backplanes for electro-optic displays
US20080165122A1 (en) * 2002-12-16 2008-07-10 E Ink Corporation Backplanes for electro-optic displays
US8077141B2 (en) 2002-12-16 2011-12-13 E Ink Corporation Backplanes for electro-optic displays
US20040233509A1 (en) * 2002-12-23 2004-11-25 E Ink Corporation Flexible electro-optic displays
US20040257635A1 (en) * 2003-01-31 2004-12-23 E Ink Corporation Construction of electrophoretic displays
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US20040226820A1 (en) * 2003-03-25 2004-11-18 E Ink Corporation Processes for the production of electrophoretic displays
US20050007653A1 (en) * 2003-03-27 2005-01-13 E Ink Corporation Electro-optic assemblies, and materials for use therein
US20050124751A1 (en) * 2003-03-27 2005-06-09 Klingenberg Eric H. Electro-optic assemblies and materials for use therein
EP2273307A1 (en) 2003-03-27 2011-01-12 E Ink Corporation Electro-optic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US9672766B2 (en) 2003-03-31 2017-06-06 E Ink Corporation Methods for driving electro-optic displays
US9620067B2 (en) 2003-03-31 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US9230492B2 (en) 2003-03-31 2016-01-05 E Ink Corporation Methods for driving electro-optic displays
US20050012980A1 (en) * 2003-05-02 2005-01-20 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US9152003B2 (en) 2003-05-12 2015-10-06 E Ink Corporation Electro-optic display with edge seal
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
EP2947647A2 (en) 2003-06-30 2015-11-25 E Ink Corporation Methods for driving electro-optic displays
US7957053B2 (en) 2003-07-24 2011-06-07 E Ink Corporation Electro-optic displays
US20060176267A1 (en) * 2003-07-24 2006-08-10 E Ink Corporation Improvements in electro-optic displays
EP2698784A1 (en) 2003-08-19 2014-02-19 E Ink Corporation Methods for controlling electro-optic displays
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US20070013683A1 (en) * 2003-10-03 2007-01-18 Koninkijkle Phillips Electronics N.V. Electrophoretic display unit
US8300006B2 (en) * 2003-10-03 2012-10-30 E Ink Corporation Electrophoretic display unit
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
US20050151709A1 (en) * 2003-10-08 2005-07-14 E Ink Corporation Electro-wetting displays
US8994705B2 (en) 2003-10-08 2015-03-31 E Ink Corporation Electrowetting displays
EP2487674A2 (en) 2003-11-05 2012-08-15 E-Ink Corporation Electro-optic displays
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
US9152004B2 (en) 2003-11-05 2015-10-06 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US10324354B2 (en) 2003-11-05 2019-06-18 E Ink Corporation Electro-optic displays, and materials for use therein
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US20070097489A1 (en) * 2003-11-05 2007-05-03 E Ink Corporation Electro-optic displays, and materials for use therein
US10048564B2 (en) 2003-11-05 2018-08-14 E Ink Corporation Electro-optic displays, and materials for use therein
US10048563B2 (en) 2003-11-05 2018-08-14 E Ink Corporation Electro-optic displays, and materials for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9542895B2 (en) 2003-11-25 2017-01-10 E Ink Corporation Electro-optic displays, and methods for driving same
WO2005054933A2 (en) 2003-11-26 2005-06-16 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US20050152022A1 (en) * 2003-12-31 2005-07-14 E Ink Corporation Electro-optic displays, and method for driving same
US20050168801A1 (en) * 2004-01-16 2005-08-04 E Ink Corporation Process for sealing electro-optic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US20050213191A1 (en) * 2004-03-23 2005-09-29 E Ink Corporation Light modulators
EP3067744A2 (en) 2004-03-23 2016-09-14 E Ink Corporation Light modulators
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20080129667A1 (en) * 2004-03-31 2008-06-05 E Ink Corporation Methods for driving electro-optic displays
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20060023296A1 (en) * 2004-07-27 2006-02-02 E Ink Corporation Electro-optic displays
CN100381996C (en) * 2004-11-09 2008-04-16 夏普株式会社 An apparatus for measuring capacitance and sensor array
US20060209388A1 (en) * 2005-01-26 2006-09-21 E Ink Corporation Electrophoretic displays using gaseous fluids
US20110069370A1 (en) * 2005-06-23 2011-03-24 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US20090231661A1 (en) * 2005-06-23 2009-09-17 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US8830553B2 (en) 2005-06-23 2014-09-09 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US8208193B2 (en) 2005-06-23 2012-06-26 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7898717B2 (en) 2005-06-23 2011-03-01 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
EP2711770A2 (en) 2005-10-18 2014-03-26 E Ink Corporation Components for electro-optic displays
US9170467B2 (en) 2005-10-18 2015-10-27 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US9726959B2 (en) 2005-10-18 2017-08-08 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US20070091417A1 (en) * 2005-10-25 2007-04-26 E Ink Corporation Electrophoretic media and displays with improved binder
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
WO2007104003A2 (en) 2006-03-08 2007-09-13 E Ink Corporation Methods for production of electro-optic displays
EP2437114A1 (en) 2006-03-08 2012-04-04 E-Ink Corporation Methods for production of electro-optic displays
EP2309304A2 (en) 2006-03-08 2011-04-13 E-Ink Corporation Methods for production of electro-optic displays
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7733554B2 (en) 2006-03-08 2010-06-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US8830559B2 (en) 2006-03-22 2014-09-09 E Ink Corporation Electro-optic media produced using ink jet printing
US10444591B2 (en) 2006-03-22 2019-10-15 E Ink Corporation Electro-optic media produced using ink jet printing
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US9910337B2 (en) 2006-03-22 2018-03-06 E Ink Corporation Electro-optic media produced using ink jet printing
US9164207B2 (en) 2006-03-22 2015-10-20 E Ink Corporation Electro-optic media produced using ink jet printing
US20080169821A1 (en) * 2006-04-07 2008-07-17 Wanheng Wang Inspection methods for defects in electrophoretic display and related devices
US7982479B2 (en) * 2006-04-07 2011-07-19 Sipix Imaging, Inc. Inspection methods for defects in electrophoretic display and related devices
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US8199395B2 (en) 2006-07-13 2012-06-12 E Ink Corporation Particles for use in electrophoretic displays
EP2487540A1 (en) 2006-09-18 2012-08-15 E-Ink Corporation Color electro-optic displays
EP2309322A1 (en) 2006-09-22 2011-04-13 E-Ink Corporation Electro-optic display and materials for use therein
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
EP2546693A2 (en) 2006-12-19 2013-01-16 E Ink Corporation Electro-optic display with edge seal
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7667886B2 (en) 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US8498042B2 (en) 2007-01-22 2013-07-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US20080254272A1 (en) * 2007-01-22 2008-10-16 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US8009344B2 (en) 2007-01-22 2011-08-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
EP2555182A1 (en) 2007-02-02 2013-02-06 E Ink Corporation Electrophoretic displays having transparent electrode and conductor connected thereto
US9310661B2 (en) 2007-03-06 2016-04-12 E Ink Corporation Materials for use in electrophoretic displays
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US9841653B2 (en) 2007-03-06 2017-12-12 E Ink Corporation Materials for use in electrophoretic displays
US10319313B2 (en) 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
US10527880B2 (en) 2007-06-28 2020-01-07 E Ink Corporation Process for the production of electro-optic displays, and color filters for use therein
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US8728266B2 (en) 2007-06-29 2014-05-20 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US9554495B2 (en) 2007-06-29 2017-01-24 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
EP3505585A1 (en) 2007-11-14 2019-07-03 E Ink Corporation Adhesives and binders for use in electro-optic assemblies
US9964831B2 (en) 2007-11-14 2018-05-08 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
US10036930B2 (en) 2007-11-14 2018-07-31 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
US8115471B2 (en) 2008-02-11 2012-02-14 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8386201B2 (en) * 2008-02-11 2013-02-26 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US20090201242A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc. Sensing to determine pixel state in a passively addressed display array
US20090251157A1 (en) * 2008-02-11 2009-10-08 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8258800B2 (en) 2008-02-11 2012-09-04 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US20090201033A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technolgies, Inc. Methods for measurement and characterization of interferometric modulators
US20090201008A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8169426B2 (en) 2008-02-11 2012-05-01 Qualcomm Mems Technologies, Inc. Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
US20090201034A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US20090201009A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US8274299B2 (en) 2008-02-11 2012-09-25 Qualcomm Mems Technologies, Inc. Methods for measurement and characterization of interferometric modulators
US20090213107A1 (en) * 2008-02-11 2009-08-27 Qualcomm Mems Technologies, Inc, Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
US8466858B2 (en) 2008-02-11 2013-06-18 Qualcomm Mems Technologies, Inc. Sensing to determine pixel state in a passively addressed display array
US20090204350A1 (en) * 2008-02-11 2009-08-13 Qualcomms Technologies, Inc, Methods for measurement and characterization of interferometric modulators
US8395371B2 (en) 2008-02-11 2013-03-12 Qualcomm Mems Technologies, Inc. Methods for characterizing the behavior of microelectromechanical system devices
US20090201282A1 (en) * 2008-02-11 2009-08-13 Qualcomm Mems Technologies, Inc Methods of tuning interferometric modulator displays
US20100039409A1 (en) * 2008-02-11 2010-02-18 Qualcomm Mems Technologies, Inc. Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
US8054526B2 (en) 2008-03-21 2011-11-08 E Ink Corporation Electro-optic displays, and color filters for use therein
US8314784B2 (en) 2008-04-11 2012-11-20 E Ink Corporation Methods for driving electro-optic displays
US8027800B2 (en) 2008-06-24 2011-09-27 Qualcomm Mems Technologies, Inc. Apparatus and method for testing a panel of interferometric modulators
US8270064B2 (en) 2009-02-09 2012-09-18 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8441716B2 (en) 2009-03-03 2013-05-14 E Ink Corporation Electro-optic displays, and color filters for use therein
US10115354B2 (en) 2009-09-15 2018-10-30 E Ink California, Llc Display controller system
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
US9881565B2 (en) 2010-02-02 2018-01-30 E Ink Corporation Method for driving electro-optic displays
US9620066B2 (en) 2010-02-02 2017-04-11 E Ink Corporation Method for driving electro-optic displays
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display
US20120087389A1 (en) * 2010-10-07 2012-04-12 Raytheon Company System and Method for Detecting the Temperature of an Electrophoretic Display Device
US8668384B2 (en) * 2010-10-07 2014-03-11 Raytheon Company System and method for detecting the temperature of an electrophoretic display device
WO2013074167A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of electrophoretic microcapsules in a cosmetic composition
US11145261B2 (en) 2012-02-01 2021-10-12 E Ink Corporation Methods for driving electro-optic displays
EP3783597A1 (en) 2012-02-01 2021-02-24 E Ink Corporation Methods for driving electro-optic displays
US11462183B2 (en) 2012-02-01 2022-10-04 E Ink Corporation Methods for driving electro-optic displays
US10672350B2 (en) 2012-02-01 2020-06-02 E Ink Corporation Methods for driving electro-optic displays
US11030936B2 (en) 2012-02-01 2021-06-08 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
EP3220383A1 (en) 2012-02-01 2017-09-20 E Ink Corporation Methods for driving electro-optic displays
US11657773B2 (en) 2012-02-01 2023-05-23 E Ink Corporation Methods for driving electro-optic displays
US9513743B2 (en) 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
US10282033B2 (en) 2012-06-01 2019-05-07 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display
US9996195B2 (en) 2012-06-01 2018-06-12 E Ink Corporation Line segment update method for electro-optic displays
WO2014078616A1 (en) 2012-11-16 2014-05-22 E Ink Corporation Active matrix display with dual driving modes
US10037735B2 (en) 2012-11-16 2018-07-31 E Ink Corporation Active matrix display with dual driving modes
US11854456B2 (en) 2013-02-27 2023-12-26 E Ink Corporation Electro-optic displays and methods for driving the same
US11545065B2 (en) 2013-02-27 2023-01-03 E Ink Corporation Methods for driving electro-optic displays
US11145235B2 (en) 2013-02-27 2021-10-12 E Ink Corporation Methods for driving electro-optic displays
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
US10380954B2 (en) 2013-03-01 2019-08-13 E Ink Corporation Methods for driving electro-optic displays
WO2014134504A1 (en) 2013-03-01 2014-09-04 E Ink Corporation Methods for driving electro-optic displays
US11250761B2 (en) 2013-03-01 2022-02-15 E Ink Corporation Methods for driving electro-optic displays
US9495918B2 (en) 2013-03-01 2016-11-15 E Ink Corporation Methods for driving electro-optic displays
US11195481B2 (en) 2013-05-14 2021-12-07 E Ink Corporation Color electrophoretic displays using same polarity reversing address pulse
US10475399B2 (en) 2013-05-14 2019-11-12 E Ink Corporation Color electrophoretic displays using same polarity reversing address pulse
US10242630B2 (en) 2013-05-14 2019-03-26 E Ink Corporation Color electrophoretic displays using same polarity reversing address pulse
US9697778B2 (en) 2013-05-14 2017-07-04 E Ink Corporation Reverse driving pulses in electrophoretic displays
US9620048B2 (en) 2013-07-30 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
WO2015017503A1 (en) 2013-07-30 2015-02-05 E Ink Corporation Methods for driving electro-optic displays
US11195480B2 (en) 2013-07-31 2021-12-07 E Ink Corporation Partial update driving methods for bistable electro-optic displays and display controllers using the same
WO2015017624A1 (en) 2013-07-31 2015-02-05 E Ink Corporation Methods for driving electro-optic displays
EP4156164A1 (en) 2013-07-31 2023-03-29 E Ink Corporation Methods for driving electro-optic displays
EP4156165A2 (en) 2013-07-31 2023-03-29 E Ink Corporation Methods for driving electro-optic displays
US10380931B2 (en) 2013-10-07 2019-08-13 E Ink California, Llc Driving methods for color display device
US10726760B2 (en) 2013-10-07 2020-07-28 E Ink California, Llc Driving methods to produce a mixed color state for an electrophoretic display
US11004409B2 (en) 2013-10-07 2021-05-11 E Ink California, Llc Driving methods for color display device
US11217145B2 (en) 2013-10-07 2022-01-04 E Ink California, Llc Driving methods to produce a mixed color state for an electrophoretic display
US10795221B2 (en) 2014-01-17 2020-10-06 E Ink Corporation Methods for making two-phase light-transmissive electrode layer with controlled conductivity
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US10151955B2 (en) 2014-01-17 2018-12-11 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US9921451B2 (en) 2014-09-10 2018-03-20 E Ink Corporation Colored electrophoretic displays
US10678111B2 (en) 2014-09-10 2020-06-09 E Ink Corporation Colored electrophoretic displays
US10509293B2 (en) 2014-09-10 2019-12-17 E Ink Corporation Colored electrophoretic displays
US10657869B2 (en) 2014-09-10 2020-05-19 E Ink Corporation Methods for driving color electrophoretic displays
EP3633662A1 (en) 2014-09-10 2020-04-08 E Ink Corporation Colored electrophoretic displays
US11468855B2 (en) 2014-09-10 2022-10-11 E Ink Corporation Colored electrophoretic displays
US11402718B2 (en) 2014-09-26 2022-08-02 E Ink Corporation Color sets for low resolution dithering in reflective color displays
US11846861B2 (en) 2014-09-26 2023-12-19 E Ink Corporation Color sets for low resolution dithering in reflective color displays color sets for low resolution dithering in reflective color displays
US10353266B2 (en) 2014-09-26 2019-07-16 E Ink Corporation Color sets for low resolution dithering in reflective color displays
US10976634B2 (en) 2014-11-07 2021-04-13 E Ink Corporation Applications of electro-optic displays
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
US10551713B2 (en) 2015-01-05 2020-02-04 E Ink Corporation Electro-optic displays, and methods for driving same
US10573222B2 (en) 2015-01-05 2020-02-25 E Ink Corporation Electro-optic displays, and methods for driving same
US10901285B2 (en) 2015-01-05 2021-01-26 E Ink Corporation Methods for driving electro-optic displays
US10197883B2 (en) 2015-01-05 2019-02-05 E Ink Corporation Electro-optic displays, and methods for driving same
US9928810B2 (en) 2015-01-30 2018-03-27 E Ink Corporation Font control for electro-optic displays and related apparatus and methods
US10475396B2 (en) 2015-02-04 2019-11-12 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US10163406B2 (en) 2015-02-04 2018-12-25 E Ink Corporation Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods
US10796623B2 (en) 2015-04-27 2020-10-06 E Ink Corporation Methods and apparatuses for driving display systems
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices
US10997930B2 (en) 2015-05-27 2021-05-04 E Ink Corporation Methods and circuitry for driving display devices
US11398197B2 (en) 2015-05-27 2022-07-26 E Ink Corporation Methods and circuitry for driving display devices
US10233339B2 (en) 2015-05-28 2019-03-19 E Ink California, Llc Electrophoretic medium comprising a mixture of charge control agents
US10040954B2 (en) 2015-05-28 2018-08-07 E Ink California, Llc Electrophoretic medium comprising a mixture of charge control agents
US20170292933A1 (en) * 2015-07-31 2017-10-12 Chromera, Inc. Electrically determining messages on an electrophoretic display
US10168298B2 (en) * 2015-07-31 2019-01-01 Chromera, Inc. Electrically determining messages on an electrophoretic display
US10467935B2 (en) * 2015-07-31 2019-11-05 Chromera, Inc. Electrically determining messages on an electrophoretic display
US20190043397A1 (en) * 2015-07-31 2019-02-07 Chromera, Inc. Electrically determining messages on an electrophoretic display
US11205108B2 (en) * 2015-07-31 2021-12-21 Chromera, Inc. Symbol verification for an intelligent label device
US11087644B2 (en) 2015-08-19 2021-08-10 E Ink Corporation Displays intended for use in architectural applications
US10388233B2 (en) 2015-08-31 2019-08-20 E Ink Corporation Devices and techniques for electronically erasing a drawing device
US11450286B2 (en) 2015-09-16 2022-09-20 E Ink Corporation Apparatus and methods for driving displays
WO2017049020A1 (en) 2015-09-16 2017-03-23 E Ink Corporation Apparatus and methods for driving displays
US10803813B2 (en) 2015-09-16 2020-10-13 E Ink Corporation Apparatus and methods for driving displays
US11657774B2 (en) 2015-09-16 2023-05-23 E Ink Corporation Apparatus and methods for driving displays
WO2017062345A1 (en) 2015-10-06 2017-04-13 E Ink Corporation Improved low-temperature electrophoretic media
US11098206B2 (en) 2015-10-06 2021-08-24 E Ink Corporation Electrophoretic media including charge control agents comprising quartenary amines and unsaturated polymeric tails
US10062337B2 (en) 2015-10-12 2018-08-28 E Ink California, Llc Electrophoretic display device
US9752034B2 (en) 2015-11-11 2017-09-05 E Ink Corporation Functionalized quinacridone pigments
US10662334B2 (en) 2015-11-11 2020-05-26 E Ink Corporation Method of making functionalized quinacridone pigments
US11084935B2 (en) 2015-11-11 2021-08-10 E Ink Corporation Method of making functionalized quinacridone pigments
US10196523B2 (en) 2015-11-11 2019-02-05 E Ink Corporation Functionalized quinacridone pigments
US10795233B2 (en) 2015-11-18 2020-10-06 E Ink Corporation Electro-optic displays
US11410585B2 (en) * 2015-12-04 2022-08-09 Chromera, Inc. Optically determining messages on a display
WO2017139323A1 (en) 2016-02-08 2017-08-17 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US10276109B2 (en) 2016-03-09 2019-04-30 E Ink Corporation Method for driving electro-optic displays
US11404012B2 (en) 2016-03-09 2022-08-02 E Ink Corporation Drivers providing DC-balanced refresh sequences for color electrophoretic displays
US11030965B2 (en) 2016-03-09 2021-06-08 E Ink Corporation Drivers providing DC-balanced refresh sequences for color electrophoretic displays
US10593272B2 (en) 2016-03-09 2020-03-17 E Ink Corporation Drivers providing DC-balanced refresh sequences for color electrophoretic displays
US10270939B2 (en) 2016-05-24 2019-04-23 E Ink Corporation Method for rendering color images
US10554854B2 (en) 2016-05-24 2020-02-04 E Ink Corporation Method for rendering color images
US11265443B2 (en) 2016-05-24 2022-03-01 E Ink Corporation System for rendering color images
US10771652B2 (en) 2016-05-24 2020-09-08 E Ink Corporation Method for rendering color images
US10527899B2 (en) 2016-05-31 2020-01-07 E Ink Corporation Backplanes for electro-optic displays
EP3563146A4 (en) * 2016-12-28 2021-05-05 Chromera, Inc. Electrically determining messages on an electrophoretic display
WO2018160912A1 (en) 2017-03-03 2018-09-07 E Ink Corporation Electro-optic displays and driving methods
US10852568B2 (en) 2017-03-03 2020-12-01 E Ink Corporation Electro-optic displays and driving methods
US11094288B2 (en) 2017-03-06 2021-08-17 E Ink Corporation Method and apparatus for rendering color images
WO2018164942A1 (en) 2017-03-06 2018-09-13 E Ink Corporation Method for rendering color images
US10467984B2 (en) 2017-03-06 2019-11-05 E Ink Corporation Method for rendering color images
US11527216B2 (en) 2017-03-06 2022-12-13 E Ink Corporation Method for rendering color images
US10444592B2 (en) 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays
US10832622B2 (en) 2017-04-04 2020-11-10 E Ink Corporation Methods for driving electro-optic displays
US11398196B2 (en) 2017-04-04 2022-07-26 E Ink Corporation Methods for driving electro-optic displays
US10573257B2 (en) 2017-05-30 2020-02-25 E Ink Corporation Electro-optic displays
US10825405B2 (en) 2017-05-30 2020-11-03 E Ink Corporatior Electro-optic displays
US11107425B2 (en) * 2017-05-30 2021-08-31 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
US11568827B2 (en) 2017-09-12 2023-01-31 E Ink Corporation Methods for driving electro-optic displays to minimize edge ghosting
US11423852B2 (en) 2017-09-12 2022-08-23 E Ink Corporation Methods for driving electro-optic displays
US11721295B2 (en) 2017-09-12 2023-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
US11935496B2 (en) 2017-09-12 2024-03-19 E Ink Corporation Electro-optic displays, and methods for driving same
US10882042B2 (en) 2017-10-18 2021-01-05 E Ink Corporation Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing
US11422427B2 (en) 2017-12-19 2022-08-23 E Ink Corporation Applications of electro-optic displays
WO2019126623A1 (en) 2017-12-22 2019-06-27 E Ink Corporation Electro-optic displays, and methods for driving same
WO2019144097A1 (en) 2018-01-22 2019-07-25 E Ink Corporation Electro-optic displays, and methods for driving same
US11789330B2 (en) 2018-07-17 2023-10-17 E Ink California, Llc Electro-optic displays and driving methods
WO2020018508A1 (en) 2018-07-17 2020-01-23 E Ink California, Llc Electro-optic displays and driving methods
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
WO2020033175A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US11314098B2 (en) 2018-08-10 2022-04-26 E Ink California, Llc Switchable light-collimating layer with reflector
US11656526B2 (en) 2018-08-10 2023-05-23 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US11435606B2 (en) 2018-08-10 2022-09-06 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
US11719953B2 (en) 2018-08-10 2023-08-08 E Ink California, Llc Switchable light-collimating layer with reflector
WO2020033787A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
WO2020060960A1 (en) 2018-09-17 2020-03-26 E Ink Corporation Backplanes with hexagonal and triangular electrodes
US11353759B2 (en) 2018-09-17 2022-06-07 Nuclera Nucleics Ltd. Backplanes with hexagonal and triangular electrodes
US11511096B2 (en) 2018-10-15 2022-11-29 E Ink Corporation Digital microfluidic delivery device
US11735127B2 (en) 2018-11-30 2023-08-22 E Ink California, Llc Electro-optic displays and driving methods
US11380274B2 (en) 2018-11-30 2022-07-05 E Ink California, Llc Electro-optic displays and driving methods
US11062663B2 (en) 2018-11-30 2021-07-13 E Ink California, Llc Electro-optic displays and driving methods
US11460722B2 (en) 2019-05-10 2022-10-04 E Ink Corporation Colored electrophoretic displays
US11289036B2 (en) 2019-11-14 2022-03-29 E Ink Corporation Methods for driving electro-optic displays
US11257445B2 (en) 2019-11-18 2022-02-22 E Ink Corporation Methods for driving electro-optic displays
US11568786B2 (en) 2020-05-31 2023-01-31 E Ink Corporation Electro-optic displays, and methods for driving same
US11520202B2 (en) 2020-06-11 2022-12-06 E Ink Corporation Electro-optic displays, and methods for driving same
US11948523B1 (en) 2020-09-15 2024-04-02 E Ink Corporation Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
US11846863B2 (en) 2020-09-15 2023-12-19 E Ink Corporation Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
US11686989B2 (en) 2020-09-15 2023-06-27 E Ink Corporation Four particle electrophoretic medium providing fast, high-contrast optical state switching
US11837184B2 (en) 2020-09-15 2023-12-05 E Ink Corporation Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
US11776496B2 (en) 2020-09-15 2023-10-03 E Ink Corporation Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
US11450262B2 (en) 2020-10-01 2022-09-20 E Ink Corporation Electro-optic displays, and methods for driving same
US11756494B2 (en) 2020-11-02 2023-09-12 E Ink Corporation Driving sequences to remove prior state information from color electrophoretic displays
US11798506B2 (en) 2020-11-02 2023-10-24 E Ink Corporation Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays
US11620959B2 (en) 2020-11-02 2023-04-04 E Ink Corporation Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays
US11721296B2 (en) 2020-11-02 2023-08-08 E Ink Corporation Method and apparatus for rendering color images
US11935495B2 (en) 2021-08-18 2024-03-19 E Ink Corporation Methods for driving electro-optic displays
WO2023043714A1 (en) 2021-09-14 2023-03-23 E Ink Corporation Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
US11830448B2 (en) 2021-11-04 2023-11-28 E Ink Corporation Methods for driving electro-optic displays
US11869451B2 (en) 2021-11-05 2024-01-09 E Ink Corporation Multi-primary display mask-based dithering with low blooming sensitivity
US11922893B2 (en) 2021-12-22 2024-03-05 E Ink Corporation High voltage driving using top plane switching with zero voltage frames between driving frames
WO2023122142A1 (en) 2021-12-22 2023-06-29 E Ink Corporation Methods for driving electro-optic displays
US11854448B2 (en) 2021-12-27 2023-12-26 E Ink Corporation Methods for measuring electrical properties of electro-optic displays
WO2023129533A1 (en) 2021-12-27 2023-07-06 E Ink Corporation Methods for measuring electrical properties of electro-optic displays
WO2023129692A1 (en) 2021-12-30 2023-07-06 E Ink California, Llc Methods for driving electro-optic displays
WO2023132958A1 (en) 2022-01-04 2023-07-13 E Ink Corporation Electrophoretic media comprising electrophoretic particles and a combination of charge control agents
WO2023164078A1 (en) 2022-02-25 2023-08-31 E Ink Corporation Electro-optic displays with edge seal components and methods of making the same
WO2023211699A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same
WO2023211867A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Color displays configured to convert rgb image data for display on advanced color electronic paper
WO2024044119A1 (en) 2022-08-25 2024-02-29 E Ink Corporation Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays

Also Published As

Publication number Publication date
US20050099672A1 (en) 2005-05-12
US6995550B2 (en) 2006-02-07

Similar Documents

Publication Publication Date Title
US6995550B2 (en) Method and apparatus for determining properties of an electrophoretic display
US6512354B2 (en) Method and apparatus for sensing the state of an electrophoretic display
US6504524B1 (en) Addressing methods for displays having zero time-average field
US6710540B1 (en) Electrostatically-addressable electrophoretic display
US6531997B1 (en) Methods for addressing electrophoretic displays
US6664944B1 (en) Rear electrode structures for electrophoretic displays
US6177921B1 (en) Printable electrode structures for displays
US6473072B1 (en) Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US8089453B2 (en) Stylus-based addressing structures for displays
US6232950B1 (en) Rear electrode structures for displays
US7304634B2 (en) Rear electrode structures for electrophoretic displays
US7352353B2 (en) Electrostatically addressable electrophoretic display
US7956841B2 (en) Stylus-based addressing structures for displays
US7167155B1 (en) Color electrophoretic displays
EP1010035B1 (en) Novel addressing schemes for electrophoretic displays
EP1507165A1 (en) Novel addressing schemes for electrophoretic displays
CA2300827A1 (en) Novel addressing schemes for electrophoretic displays

Legal Events

Date Code Title Description
AS Assignment

Owner name: E INK CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACOBSON, JOSEPH M.;DRZAIC, PAUL;O'NEIL, STEVEN J.;AND OTHERS;REEL/FRAME:013738/0280;SIGNING DATES FROM 20020219 TO 20030122

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING PUBLICATION PROCESS