US20030096090A1 - Etch-stop resins - Google Patents

Etch-stop resins Download PDF

Info

Publication number
US20030096090A1
US20030096090A1 US10/066,261 US6626101A US2003096090A1 US 20030096090 A1 US20030096090 A1 US 20030096090A1 US 6626101 A US6626101 A US 6626101A US 2003096090 A1 US2003096090 A1 US 2003096090A1
Authority
US
United States
Prior art keywords
silicone resin
units
mole
phsio
dynes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/066,261
Inventor
Ronald Boisvert
Craig Yeakle
Stelian Grigoras
David Ha
Brian Harkness
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Priority to US10/066,261 priority Critical patent/US20030096090A1/en
Assigned to DOW CORNING CORPORATION reassignment DOW CORNING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YEAKLE, CRAIG ROLLIN, BOISVERT, RONALD PAUL, GRIGORAS, STELIAN, HA, DAVID QUOCBINH, HARKNESS, BRIAN ROBERT
Priority to KR1020047005900A priority patent/KR100898158B1/en
Priority to EP02776148A priority patent/EP1442071B1/en
Priority to US10/491,352 priority patent/US6924346B2/en
Priority to CNB028209567A priority patent/CN1260273C/en
Priority to DE60239555T priority patent/DE60239555D1/en
Priority to JP2003538232A priority patent/JP4413612B2/en
Priority to PCT/US2002/031824 priority patent/WO2003035720A1/en
Priority to AT02776148T priority patent/ATE502974T1/en
Priority to TW91123688A priority patent/TW574104B/en
Publication of US20030096090A1 publication Critical patent/US20030096090A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO (3-x)/2 (OH) x ) units and 50 to 95 mole % (HSiO (3-x)/2 (OH) x ), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher.
  • Ph is a phenyl group
  • x has a value of 0, 1 or 2
  • the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher.
  • Interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit (IC).
  • the interconnect levels are typically separated by an insulating or dielectric coating.
  • the coatings may be formed by chemical vapor deposition or by spin-on techniques.
  • U.S. Pat. No. 4,756,977 discloses the use of hydrogen silsesquioxane resins to form coatings on electronic devices.
  • One method for forming the integrated circuits is known as dual damascene. This method involves applying a layer of dielectric, etching the wiring pattern into the dielectric, filling the pattern with wiring metal, and repeating the process until the desired number of levels have been formed.
  • one dielectric material serves as an etch-stop in etching of the other dielectric. It is preferred that one of the dielectric layers be an organic material while the other be an inorganic material to enhance etch selectivity between the materials. Either dielectric layer may serve as the etch-stop to the other.
  • oxygen-based plasmas organic dielectrics tend to etch faster than inorganic dielectrics.
  • carbon fluoride based plasmas inorganic dielectrics tend to etch faster than organic dielectrics.
  • Sandwich structures of inorganic, organic, inorganic or organic, inorganic, organic are also useful as the dielectric layer in the integrated circuit.
  • PCT Patent Application No. WO 01/18861 A1 to AlliedSignal a microelectronic device having a substrate and a first dielectric layer material positioned on the substrate. A layer of a second dielectric material is positioned on the first dielectric layer and an additional layer of the first dielectric material positioned on the second dielectric layer.
  • the organic dielectrics are materials that contain carbon and the inorganic dielectrics are materials that are not carbon containing.
  • U.S. Pat. No. 6,218,317 discloses the formation of methylated-oxide type hardmasks over polymeric interlayer dielectric materials having a dielectric constant of less than 3 and more preferably 2.7 or less.
  • the upper material be able to adequately coat the lower level (i.e. wet the surface). It is also desirable to have sufficient adhesion between the layers.
  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO (3-x)/2 (OH) x ) units and 50 to 95 mole % (HSiO (3-x)/2 (OH) x ), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher.
  • Ph is a phenyl group
  • x has a value of 0, 1 or 2
  • the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher.
  • This invention also pertains to an integrated circuit device having a an organic dielectric layer having a critical surface free energy of 40 dynes/cm or higher and a phenylated-oxide dielectric layer having a critical surface free energy of 30 dynes/cm or higher produced from the silicone resin, wherein at least one surface of the organic dielectric layer contacts a surface of the phenylated-oxide dielectric layer.
  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO (3-x)/2 (OH) x ) units and 50 to 95 mole % (HSiO (3-x)/2 (OH) x ) units based on the total amount of silicon containing units in the resin, where Ph is a phenyl group, x has a value of 0, 1 or 2.
  • the silicone resins contain 5 to 50 mole % of (PhSiO (3-x)/2 (OH) x ) units, alternatively 25 to 50 mole %, alternatively 30 to 45 mole %.
  • Higher amounts of (PhSiO (3-x)/2 (OH) x ) in the silicone resin results in higher amounts of carbon in the phenylated dielectric layer. This reduces the etch selectivity between the phenylated-oxide dielectric layer and the organic dielectric layer. Additionally, higher amounts of carbon in the final film contributes to lower adhesion of the phenylated-oxide dielectric layer to the organic dielectric layer.
  • the silicone resin to have utility as a dielectric layer in combination with an organic dielectric layer it is desirable to have a critical surface free energy of 30 dynes/cm or higher in cured silicone resin. For every 1 mole % increase in (PhSiO (3-x)/2 (OH) x ) in the silicone resin it is theorized that the critical surface free energy in the cured resin increases 0.31 dyne/cm. Thus, higher amounts of (PhSiO (3-x)/2 (OH) x ) units in the silicone resin are desirable however, it has been found that as the amount of (PhSiO (3-x)/2 (OH) x ) units increase the adhesion of the cured silicone resin to the organic dielectric layer decreases. It is preferred that the cured silicone resin have a critical surface free energy in the range of 35 to 60 dynes/cm, more preferably 35 to 45 dynes/cm.
  • the structure of the silicone resin is not specifically limited.
  • the silicone resin may be essentially fully condensed or may be only partially condensed.
  • the silicon resin has a weight average molecular weight (Mw) in the range of 500 to 400,000 and preferably in the range of 500 to 100,000, alternatively 700 to 10,000.
  • Mw weight average molecular weight
  • Silicone resins useful herein may be exemplified by, but not limited to
  • the resins may be produced by methods known in the art.
  • the resins may be produced by the hydrolysis and condensation of a mixture of a phenyl trialkoxy and hydrogen trialkoxy silane as set forth in U.S. Pat. No. 5,762,697 to Sakamoto et al.
  • they may be produced by the hydrolysis and condensation of a phenyl trichlorosilane and hydrogen trichlorosilane as set forth in U.S. Pat. No. 6,281,285 to Becker et al. and U.S. Pat. No. 5,010,159 to Bank et al.
  • the silicone resin is typically produced in the presence of a solvent. Any suitable organic or silicone solvent that does not contain a functional group which may participate in the reaction may be used in producing the silicone resin.
  • the solvent is generally used in an amount of 40 to 98 weight percent based on the total weight of solvent and silane reactants, alternatively 70 to 90 weight percent.
  • the reaction may be carried out as a dual phase or single-phase system.
  • Useful organic solvents may be exemplified by, but not limited to, saturated aliphatics such as n-pentane, hexane, n-heptane, and isooctane; cycloaliphatics such as cyclopentane and cyclohexane; aromatics such as benzene, toluene, xylene, mesitylene; ethers such as tetrahydrofuran, dioxane, ethylene glycol dietheyl ether, ethylene glycol dimethyl ether; ketones such as methylisobutyl ketone (MIBK) and cyclohexanone; halogen substituted alkanes such as trichloroethane; halogenated aromatics such as bromobenzene and chlorobenzene; esters such as isobutyl isobutyrate and propyl propronate.
  • saturated aliphatics such as n-pentane,
  • Useful silicone solvents may be exemplified by, but not limited to cyclic siloxanes such as octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane.
  • a single solvent may be used or a mixture of solvents may be used.
  • the reaction to produce the silicone resin can be carried out at any temperature so long as it does not cause significant gellation or cause curing of the silicone resin. Typically the reaction is carried out at a temperature in the range of 5° C. to 150° C., with ambient temperature suggested.
  • the time to form the silicone resin is dependent upon a number of factors such as the temperature, the type and amount of silane reactants, and the amount of catalyst, if present. Typically the reaction time is from several minutes to several hours. One skilled in the art will be able to readily determine the time necessary to complete the reaction.
  • the catalyst may be optionally removed.
  • Methods for removing the catalyst are well know in the art and would include neutralization, stripping or water washing or combinations thereof.
  • the catalyst may negatively impact the shelf life of the silicone resin especially when in solution thus its removal is suggested.
  • volatiles may be removed from the silicone resin solution under reduced pressure.
  • volatiles include alcohol by-products, excess water, catalyst, hydrochloric acid (chlorosilane routes) and solvents.
  • Methods for removing volatiles are known in the art and include, for example, distillation.
  • the silicone resin may be recovered in solid form by removing the solvent.
  • the method of solvent removal is not critical and numerous methods are well known in the art (e.g. distillation under heat and/or vacuum).
  • the resin can be optionally re-dissolved in the same or another solvent for a particular use.
  • a solvent exchange may be done by adding a secondary solvent and removing the first solvent through distillation, for example.
  • the resin concentration in solvent can be adjusted by removing some of the solvent or adding additional amounts of solvent.
  • This invention also pertains to forming a dielectric material in an integrated circuit device wherein the dielectric material is comprised of at least one layer of an organic dielectric having a critical surface free energy of at least 40 dynes/cm and a second phenylated-oxide dielectric layer produced from the silicone resin of this invention and having a critical surface free energy of at least 30 dynes/cm.
  • this “dual layer” dielectric material is that one dielectric layer is able to serve as an etch stop layer for the other.
  • Good surface wetting can be achieved by the use of a phenylated-oxide inorganic layer having a critical surface free energy of at least 30 dynes/cm with an organic dielectric having a critical surface free energy of at least 40 dynes/cm. By having good surface wetting one is able to achieve an essentially uniform coating of one material over the other.
  • the organic dielectric layer may be produced by methods known in the art, using materials known in the art.
  • One suitable organic dielectric material is SiLKTM manufactured by Dow Chemical Co. This material produces a dielectric layer having a critical surface free energy of 53 dynes/cm.
  • SiLKTM may be processed using conventional spin coating techniques and equipment.
  • the silicon resin may be used to prepare a phenylated-oxide dielectric layer by
  • the semiconductor substrate may contain an organic dielectric layer, over which the phenylated-oxide dielectric layer is formed.
  • the phenylated-oxide dielectric layer may be formed first and the organic dielectric layer is then formed over the phenylated-oxide dielectric layer.
  • the silicone resin is typically applied to the substrate as a solvent dispersion.
  • Solvents that may be used include any agent or mixture of agents that will dissolve or disperse the silicon resin to form an essentially homogeneous liquid mixture.
  • the solvent is typically a single solvent or mixture of solvents that are used in the reaction to produce the silicone resin, described above. Suggested solvents are propylene glycol methyl ether acetate, cyclohexanone, ⁇ -butyrolacetone, methyl isobutyl ketone, methyl propyl ketone, mesitylene, and silicones.
  • the amount of solvent is not particularly limited but is typically present in an amount of 40 to 99.5% by weight, alternatively 60 to 99.5% based on the weight of silicone resin and solvent.
  • Specific methods for application of the silicone resin to the substrate include, but are not limited to, spin-coating, dip-coating, spay-coating, flow-coating, screen-printing and others.
  • the suggested method for application is spin-coating.
  • the solvent is removed from the coated substrate following application. Any suitable means for removal may be used such as drying, the application of a vacuum and/or the application of heat (i.e. such as passing a coated wafer over hot plates).
  • Any suitable means for removal may be used such as drying, the application of a vacuum and/or the application of heat (i.e. such as passing a coated wafer over hot plates).
  • spin coating the additional drying method is minimized since the spinning drives off most of the solvent.
  • the coated substrate is heated at a temperature to cure the silicone resin.
  • a cured silicone resin is essentially insoluble in a solvent which may be used for it application to the substrate.
  • the coated substrate is heated to a temperature in the range of 100° C. to 600° C. to cure the silicone resin, with 100° C. to 450° C. suggested.
  • the atmosphere used during the curing of the resin is not particularly limited.
  • Useful atmosphere include oxygen containing atmospheres such as air and inert atmospheres such as nitrogen, and argon.
  • inert it is meant that the environment contain less than 50 ppm and preferably less than 10 ppm of oxygen.
  • the pressure at which the curing and removal steps are carried out is not critical. The curing is typically carried out at atmospheric pressure however, sub or super atmospheric pressures may work also.
  • any method of heating may be used to cure the silicone resin.
  • the substrate may be placed in a quartz tube furnace, convection oven, rapid thermal processing or allowed to stand on hot plates. Furnaces are commonly used in the industry to produce cured resin films on integrated circuits.
  • the layers of dielectric materials may be produced in any order.
  • a layer of organic dielectric may be produced on a semiconductor substrate and thereafter a layer of inorganic dielectric may be formed thereon.
  • a layer of inorganic dielectric may be produced on the semiconductor substrate and thereafter a layer of organic dielectric may be produced thereon.
  • sandwich structures or multiple layers may be formed.
  • a layer of organic dielectric may be produced on the substrate followed by a layer of inorganic dielectric, followed by another layer of organic dielectric.
  • Adhesion was measured using a stud pull procedure.
  • EGDME ethylene glycol dimethyl ether
  • deionized water containing 100 ppm nitric acid catalyst was added.
  • the mixture was vigorously stirred at room temperature for 4 days.
  • propylene glycol methyl ether acetate (PGMEA) was added.
  • the original solvent ethylene glycol dimethyl ether
  • residual water, alcohol by-products and residual nitric acid were removed from the solution by rotary evaporation, leaving the resin product (10 wt. %) in propylene glycol methyl ether acetate solution.
  • Ethylene glycol dimethyl ether (EGDME), phenyltrichlorosilane and trichlorosilane were added into a flask reactor in the amounts shown in Table 2.
  • the solution was cooled to 10-12° C., while maintaining the solution under a nitrogen atmosphere.
  • EGDME and water were combined in the amounts shown in Table 2.
  • the water/EGDME solution was added to the chlorosilane/EGDME over the time shown in Table 2. After the addition the solution was allowed to warm to 20° C. and stirred for the time shown in Table 2 (Bodying time) to body the formed resin. 200 grams of propylene glycol methyl ether acetate (PGMEA) was added to the solution.
  • PGMEA propylene glycol methyl ether acetate
  • Example 2-2 was carried out in PGMEA instead of EGDME.
  • the organic phase was washed 8 times with 1L portions of deionized water. This was continued until a pH of 4 was achieved.
  • the organic phase was transferred to a flask and concentrated to 30 weight percent resin using a rotary evaporator. Toluene was added to the resin solution to decrease the resin concentration to 20 weight percent. To the solution was then added ethanol at a level of 10 weight percent of the total solution weight. The resin was again concentrated with a rotary evaporator to 30 weight percent in order to remove the ethanol and any residual water and hydrochloric acid. The solution was diluted with toluene to 20 weight percent resin.
  • the resin was purified by fractionation of the resin by adding acetonitrile to the toluene/resin solution. Typically three resin fractions could be isolated by adding acetonitrile to attain a 0.65 ratio of solution/acetonitrile to precipitate the high molecular weight fraction; a 0.13 ratio to precipitate the middle fraction (40-45 percent of the material), with the final solution containing the low molecular weight material.
  • the middle fraction was used for evaluation purposes and had an average molecular weight of 40,000 as measured by 3D light scattering GPC.
  • Samples from Examples 1 and 2 were diluted in PGMEA to a concentration of 1 to 3 wt %, filtered and spin-coated onto silicon wafers.
  • the spin rates were selected in the range of 2000 to 5000 RPM to achieve as-spun thickness in the range of 250 angstroms.
  • the coated wafers were heated in a rapid thermal processor in a nitrogen atmosphere at 250° C. for two minutes to produce the phenylated-oxide coating. Results are given Table 4.
  • Samples from Comparative Examples 1 and 2 were diluted in PGMEA to a concentration of 1 to 3 wt %, filtered and spin-coated onto silicon wafers.
  • the spin rates were selected in the range of 2000 to 5000 RPM to achieve as-spun thickness in the range of 250 angstroms.
  • the coated wafers were heated in a rapid thermal processor in a nitrogen atmosphere at 250° C. for two minutes to produce a methylated-oxide coating. Results are given Table 6. TABLE 6 Cure Temperature Target Example (° C./2 minutes hot Surface Energy Composition No.

Abstract

Silicone resins comprising 5 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher. These resins are useful as etch stop layers for organic dielectric materials having a critical surface free energy of 40 dynes/cm or higher.

Description

    FIELD OF THE INVENTION
  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO[0001] (3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher. These resins are useful as etch stop layers for organic dielectric materials having a critical surface free energy of 40 dynes/cm or higher.
  • BACKGROUND OF THE INVENTION
  • Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit (IC). The interconnect levels are typically separated by an insulating or dielectric coating. The coatings may be formed by chemical vapor deposition or by spin-on techniques. For example, U.S. Pat. No. 4,756,977 discloses the use of hydrogen silsesquioxane resins to form coatings on electronic devices. [0002]
  • One method for forming the integrated circuits is known as dual damascene. This method involves applying a layer of dielectric, etching the wiring pattern into the dielectric, filling the pattern with wiring metal, and repeating the process until the desired number of levels have been formed. [0003]
  • It has become beneficial to use at least two different materials having differing etch characteristics to produce the dielectric layer. In essence, one dielectric material serves as an etch-stop in etching of the other dielectric. It is preferred that one of the dielectric layers be an organic material while the other be an inorganic material to enhance etch selectivity between the materials. Either dielectric layer may serve as the etch-stop to the other. In oxygen-based plasmas, organic dielectrics tend to etch faster than inorganic dielectrics. In carbon fluoride based plasmas, inorganic dielectrics tend to etch faster than organic dielectrics. Sandwich structures of inorganic, organic, inorganic or organic, inorganic, organic are also useful as the dielectric layer in the integrated circuit. [0004]
  • PCT Patent Application No. WO 01/18861 A1 to AlliedSignal a microelectronic device having a substrate and a first dielectric layer material positioned on the substrate. A layer of a second dielectric material is positioned on the first dielectric layer and an additional layer of the first dielectric material positioned on the second dielectric layer. The organic dielectrics are materials that contain carbon and the inorganic dielectrics are materials that are not carbon containing. [0005]
  • U.S. Pat. No. 6,218,317 discloses the formation of methylated-oxide type hardmasks over polymeric interlayer dielectric materials having a dielectric constant of less than 3 and more preferably 2.7 or less. [0006]
  • When using two or more dielectric layers, it is desirable that the upper material be able to adequately coat the lower level (i.e. wet the surface). It is also desirable to have sufficient adhesion between the layers. [0007]
  • SUMMARY OF THE INVENTION
  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO[0008] (3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x), where Ph is a phenyl group, x has a value of 0, 1 or 2 and wherein the cured silicone resin has a critical surface free energy of 30 dynes/cm or higher. These resins are useful as etch stop layers for organic dielectrics having a critical surface free energy of 40 dynes/cm or higher.
  • This invention also pertains to an integrated circuit device having a an organic dielectric layer having a critical surface free energy of 40 dynes/cm or higher and a phenylated-oxide dielectric layer having a critical surface free energy of 30 dynes/cm or higher produced from the silicone resin, wherein at least one surface of the organic dielectric layer contacts a surface of the phenylated-oxide dielectric layer. [0009]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention pertains to silicone resins comprising 5 to 50 mole % of (PhSiO[0010] (3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x) units based on the total amount of silicon containing units in the resin, where Ph is a phenyl group, x has a value of 0, 1 or 2.
  • The silicone resins contain 5 to 50 mole % of (PhSiO[0011] (3-x)/2(OH)x) units, alternatively 25 to 50 mole %, alternatively 30 to 45 mole %. Higher amounts of (PhSiO(3-x)/2(OH)x) in the silicone resin results in higher amounts of carbon in the phenylated dielectric layer. This reduces the etch selectivity between the phenylated-oxide dielectric layer and the organic dielectric layer. Additionally, higher amounts of carbon in the final film contributes to lower adhesion of the phenylated-oxide dielectric layer to the organic dielectric layer.
  • For the silicone resin to have utility as a dielectric layer in combination with an organic dielectric layer it is desirable to have a critical surface free energy of 30 dynes/cm or higher in cured silicone resin. For every 1 mole % increase in (PhSiO[0012] (3-x)/2(OH)x) in the silicone resin it is theorized that the critical surface free energy in the cured resin increases 0.31 dyne/cm. Thus, higher amounts of (PhSiO(3-x)/2(OH)x) units in the silicone resin are desirable however, it has been found that as the amount of (PhSiO(3-x)/2(OH)x) units increase the adhesion of the cured silicone resin to the organic dielectric layer decreases. It is preferred that the cured silicone resin have a critical surface free energy in the range of 35 to 60 dynes/cm, more preferably 35 to 45 dynes/cm.
  • The structure of the silicone resin is not specifically limited. The silicone resin may be essentially fully condensed or may be only partially condensed. When the silicone resin is partially condensed less than about 40 mole % of the units in the silicone resin should contain Si—OH groups. Higher amounts of these units can result in instability in the resin and the formation of gels. Typically 6 to 38 mole % of the units in the silicone resin contain Si—OH groups. [0013]
  • The silicon resin has a weight average molecular weight (Mw) in the range of 500 to 400,000 and preferably in the range of 500 to 100,000, alternatively 700 to 10,000. Silicone resins useful herein may be exemplified by, but not limited to [0014]
  • (PhSiO3/2)a(HSiO3/2)4
  • (PhSiO3/2)a(PhSiO2/2(OH))b(HSiO3/2)d
  • (PhSiO3/2)a(PhSiO2/2(OH))b(HSiO3/2)d(HSiO2/2(OH)e
  • (PhSiO3/2)a(HSiO3/2)d(HSiO2/2(OH)e
  • (PhSiO3/2)a(PhSiO2/2(OH))b(PhSiO1/2(OH)2)c(HSiO3/2)d
  • (PhSiO3/2)a(PhSiO2/2(OH))b(PhSiO1/2(OH)2)c(HSiO3/2)d(HSiO2/2(OH)e
  • where a>0, b≧0, c≧0, d>0, e≧0, 0.05≦a+b+c≦0.5, 0.5≦d+e≦0.95 and b+c+e≦0.4. [0015]
  • The resins may be produced by methods known in the art. For example, the resins may be produced by the hydrolysis and condensation of a mixture of a phenyl trialkoxy and hydrogen trialkoxy silane as set forth in U.S. Pat. No. 5,762,697 to Sakamoto et al. Alternatively they may be produced by the hydrolysis and condensation of a phenyl trichlorosilane and hydrogen trichlorosilane as set forth in U.S. Pat. No. 6,281,285 to Becker et al. and U.S. Pat. No. 5,010,159 to Bank et al. [0016]
  • The silicone resin is typically produced in the presence of a solvent. Any suitable organic or silicone solvent that does not contain a functional group which may participate in the reaction may be used in producing the silicone resin. The solvent is generally used in an amount of 40 to 98 weight percent based on the total weight of solvent and silane reactants, alternatively 70 to 90 weight percent. The reaction may be carried out as a dual phase or single-phase system. [0017]
  • Useful organic solvents may be exemplified by, but not limited to, saturated aliphatics such as n-pentane, hexane, n-heptane, and isooctane; cycloaliphatics such as cyclopentane and cyclohexane; aromatics such as benzene, toluene, xylene, mesitylene; ethers such as tetrahydrofuran, dioxane, ethylene glycol dietheyl ether, ethylene glycol dimethyl ether; ketones such as methylisobutyl ketone (MIBK) and cyclohexanone; halogen substituted alkanes such as trichloroethane; halogenated aromatics such as bromobenzene and chlorobenzene; esters such as isobutyl isobutyrate and propyl propronate. Useful silicone solvents may be exemplified by, but not limited to cyclic siloxanes such as octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. A single solvent may be used or a mixture of solvents may be used. [0018]
  • The reaction to produce the silicone resin can be carried out at any temperature so long as it does not cause significant gellation or cause curing of the silicone resin. Typically the reaction is carried out at a temperature in the range of 5° C. to 150° C., with ambient temperature suggested. [0019]
  • The time to form the silicone resin is dependent upon a number of factors such as the temperature, the type and amount of silane reactants, and the amount of catalyst, if present. Typically the reaction time is from several minutes to several hours. One skilled in the art will be able to readily determine the time necessary to complete the reaction. [0020]
  • Following completion of the reaction the catalyst may be optionally removed. Methods for removing the catalyst are well know in the art and would include neutralization, stripping or water washing or combinations thereof. The catalyst may negatively impact the shelf life of the silicone resin especially when in solution thus its removal is suggested. [0021]
  • In the process for making the silicone resin, after the reaction is complete, volatiles may be removed from the silicone resin solution under reduced pressure. Such volatiles include alcohol by-products, excess water, catalyst, hydrochloric acid (chlorosilane routes) and solvents. Methods for removing volatiles are known in the art and include, for example, distillation. [0022]
  • Following the reaction to produce the silicone resin a number of optional steps may be carried out to obtain the silicone resin in the desired form. For example, the silicone resin may be recovered in solid form by removing the solvent. The method of solvent removal is not critical and numerous methods are well known in the art (e.g. distillation under heat and/or vacuum). Once the silicone resin is recovered in a solid form, the resin can be optionally re-dissolved in the same or another solvent for a particular use. Alternatively, if a different solvent, other than the solvent used in the reaction, is desired for the final product, a solvent exchange may be done by adding a secondary solvent and removing the first solvent through distillation, for example. Additionally, the resin concentration in solvent can be adjusted by removing some of the solvent or adding additional amounts of solvent. [0023]
  • This invention also pertains to forming a dielectric material in an integrated circuit device wherein the dielectric material is comprised of at least one layer of an organic dielectric having a critical surface free energy of at least 40 dynes/cm and a second phenylated-oxide dielectric layer produced from the silicone resin of this invention and having a critical surface free energy of at least 30 dynes/cm. [0024]
  • The benefit of this “dual layer” dielectric material is that one dielectric layer is able to serve as an etch stop layer for the other. Good surface wetting can be achieved by the use of a phenylated-oxide inorganic layer having a critical surface free energy of at least 30 dynes/cm with an organic dielectric having a critical surface free energy of at least 40 dynes/cm. By having good surface wetting one is able to achieve an essentially uniform coating of one material over the other. [0025]
  • The organic dielectric layer may be produced by methods known in the art, using materials known in the art. One suitable organic dielectric material is SiLK™ manufactured by Dow Chemical Co. This material produces a dielectric layer having a critical surface free energy of 53 dynes/cm. SiLK™ may be processed using conventional spin coating techniques and equipment. [0026]
  • The silicon resin may be used to prepare a phenylated-oxide dielectric layer by [0027]
  • (I) coating a semiconductor substrate with a silicone resin comprising 5 to 50 mole % of (PhSiO[0028] (3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x), where Ph is a phenyl group, x has a value of 0, 1 or 2 and
  • (II) heating the coated semiconductor substrate at a temperature sufficient to cure the silicone resin and produce a phenylated-oxide dielectric layer. [0029]
  • The semiconductor substrate may contain an organic dielectric layer, over which the phenylated-oxide dielectric layer is formed. Alternatively the phenylated-oxide dielectric layer may be formed first and the organic dielectric layer is then formed over the phenylated-oxide dielectric layer. [0030]
  • The silicone resin is typically applied to the substrate as a solvent dispersion. Solvents that may be used include any agent or mixture of agents that will dissolve or disperse the silicon resin to form an essentially homogeneous liquid mixture. The solvent is typically a single solvent or mixture of solvents that are used in the reaction to produce the silicone resin, described above. Suggested solvents are propylene glycol methyl ether acetate, cyclohexanone, γ-butyrolacetone, methyl isobutyl ketone, methyl propyl ketone, mesitylene, and silicones. [0031]
  • The amount of solvent is not particularly limited but is typically present in an amount of 40 to 99.5% by weight, alternatively 60 to 99.5% based on the weight of silicone resin and solvent. [0032]
  • Specific methods for application of the silicone resin to the substrate include, but are not limited to, spin-coating, dip-coating, spay-coating, flow-coating, screen-printing and others. The suggested method for application is spin-coating. [0033]
  • When a solvent is used the solvent is removed from the coated substrate following application. Any suitable means for removal may be used such as drying, the application of a vacuum and/or the application of heat (i.e. such as passing a coated wafer over hot plates). When spin coating is used, the additional drying method is minimized since the spinning drives off most of the solvent. [0034]
  • Following application to the substrate, the coated substrate is heated at a temperature to cure the silicone resin. A cured silicone resin is essentially insoluble in a solvent which may be used for it application to the substrate. Typically the coated substrate is heated to a temperature in the range of 100° C. to 600° C. to cure the silicone resin, with 100° C. to 450° C. suggested. [0035]
  • The atmosphere used during the curing of the resin is not particularly limited. Useful atmosphere include oxygen containing atmospheres such as air and inert atmospheres such as nitrogen, and argon. By “inert” it is meant that the environment contain less than 50 ppm and preferably less than 10 ppm of oxygen. The pressure at which the curing and removal steps are carried out is not critical. The curing is typically carried out at atmospheric pressure however, sub or super atmospheric pressures may work also. [0036]
  • Any method of heating may be used to cure the silicone resin. For example, the substrate may be placed in a quartz tube furnace, convection oven, rapid thermal processing or allowed to stand on hot plates. Furnaces are commonly used in the industry to produce cured resin films on integrated circuits. [0037]
  • The layers of dielectric materials may be produced in any order. For example, a layer of organic dielectric may be produced on a semiconductor substrate and thereafter a layer of inorganic dielectric may be formed thereon. Alternatively, a layer of inorganic dielectric may be produced on the semiconductor substrate and thereafter a layer of organic dielectric may be produced thereon. Additionally, sandwich structures or multiple layers may be formed. For example, a layer of organic dielectric may be produced on the substrate followed by a layer of inorganic dielectric, followed by another layer of organic dielectric. [0038]
  • The following non-limiting examples are provided so that one skilled in the art may more readily understand the invention. In the following examples, Ph represents phenyl, Me represents methyl, T represent the unit SiO[0039] 3/2(i.e. TPh=PhSiO3/2).
  • Critical surface free energy (surface energy) was measured using contact angle based on a process under ASTM D 724. [0040]
  • Adhesion was measured using a stud pull procedure. [0041]
  • EXAMPLES Example 1
  • To ethylene glycol dimethyl ether (EGDME) was added the corresponding alkoxysilanes in the amounts given in the table 1. The solution of EGDME and alkoxysilane was stirred for several minutes, following which deionized water containing 100 ppm nitric acid catalyst was added. The mixture was vigorously stirred at room temperature for 4 days. After stirring propylene glycol methyl ether acetate (PGMEA) was added. The original solvent (ethylene glycol dimethyl ether), residual water, alcohol by-products and residual nitric acid were removed from the solution by rotary evaporation, leaving the resin product (10 wt. %) in propylene glycol methyl ether acetate solution. [0042]
  • Example 2
  • Ethylene glycol dimethyl ether (EGDME), phenyltrichlorosilane and trichlorosilane were added into a flask reactor in the amounts shown in Table 2. The solution was cooled to 10-12° C., while maintaining the solution under a nitrogen atmosphere. In a separate flask EGDME and water were combined in the amounts shown in Table 2. The water/EGDME solution was added to the chlorosilane/EGDME over the time shown in Table 2. After the addition the solution was allowed to warm to 20° C. and stirred for the time shown in Table 2 (Bodying time) to body the formed resin. 200 grams of propylene glycol methyl ether acetate (PGMEA) was added to the solution. Using a rotary evaporator at 40° C., the solution was concentrated to approximately 21 weight % resin content to remove the EGDME solvent. To the resin solution was then added 30 g of ethanol to the solution and the flask contents rotary evaporated to remove the ethanol and residual water and hydrochloric acid. The solution was then diluted to 10 weight % resin by addition of PGMEA. Example 2-2 was carried out in PGMEA instead of EGDME. [0043]
    TABLE 1
    Molecular SiOH
    HSi(OEt)3 PhSi(OMe)3 Water EGDME Weight level Target
    Example (grams) (grams) (grams) (grams) Mw(Mn) (mole %) Composition* Actual Composition*
    1-1 100.00 40.23 43.82 370.00 1976 15.7 TPh 0.25TH 0.75 TH 0.71|TH,OH 0.07TPh 0.13TPh,OH 0.09TPh,(OH)2 0.01
     (951)
    1-2 55.00 66.38 36.15 380.00  804 38.22 TPh 0.50TH 0.50 TH 0.46|TH,OH 0.16TPh 0.13TPh,OH 0.23TPh,(OH)2 0.02
     (601)
    1-3 130.00 22.41 48.83 356.00 2944 17.1 TPh 0.125TH 0.875 TH 0.77|TH,OH 0.12TPh 0.04TPh,OH 0.05TPh,(OH)2 0.01
    (1171)
    1-4 160.00 4.95 53.94 350.00 9188 14.3 TPh 0.025TH 0.975 TH 0.86|TH,OH 0.14TPh 0.00TPh,OH 0.01
    (2137)
  • [0044]
    TABLE 2
    EGDME EGDME
    Example PhSiCl3 HSiCl3 1 2 Water Addition Bodying Target
    No. (g) (g) (g) (g) (g) Time, hr Time, hr Composition* Actual Composition*
    2-1 40 63 316  80 23 0.75 2.00 TPh 0.25TH 0.75 TPh,OH 0.07TPh 0.23TH 0.72
    2-2 42 81 PGMEA PGMEA 30 2 0.75 TPh 0.25TH 0.75 TPh,OH 0.08TPh 0.17TH 0.75
    304 615
    2-3 81 52 617 121 30 1 1.5 TPh 0.50TH 0.50 TPh,(OH)2 0.07TPh,OH 0.25TPh 0.22TH 0.46
    2-4 61 69 612 120 30 1.5 3.5 TPh 0.36TH 0.64 TPh,(OH)2 0.02TPh,OH 0.135TPh 0.2TH 0.64
    2-5 54 74 613 120 30 1.5 3.5 TPh 0.32TH 0.68 TPh,(OH)2 0.04TPh,OH 0.14TPh 0.16TH 0.67
  • Comparative Example 1
  • Concentrated hydrochloric acid (37 percent in water), octylsodium sulfate and toluene (1) in the amounts given in Table 3 were combined. The solution was stirrer at 1200 rpm at 20° C. to mix the two phases. Into a separate flask were added toluene (2), trichlorosilane and methyltrichlorosilane in the amounts given in Table 3. The mixture of chlorosilanes and toluene were combined over 4 hours while maintaining vigorous stirring. The resulting resin was bodied for a minimum of 4 hours at 20° C. The stirrer was then stopped and the phases allowed to separate. The concentrated hydrochloric acid phase was removed and discarded. The organic phase was washed 8 times with 1L portions of deionized water. This was continued until a pH of 4 was achieved. The organic phase was transferred to a flask and concentrated to 30 weight percent resin using a rotary evaporator. Toluene was added to the resin solution to decrease the resin concentration to 20 weight percent. To the solution was then added ethanol at a level of 10 weight percent of the total solution weight. The resin was again concentrated with a rotary evaporator to 30 weight percent in order to remove the ethanol and any residual water and hydrochloric acid. The solution was diluted with toluene to 20 weight percent resin. [0045]
  • The resin was purified by fractionation of the resin by adding acetonitrile to the toluene/resin solution. Typically three resin fractions could be isolated by adding acetonitrile to attain a 0.65 ratio of solution/acetonitrile to precipitate the high molecular weight fraction; a 0.13 ratio to precipitate the middle fraction (40-45 percent of the material), with the final solution containing the low molecular weight material. The middle fraction was used for evaluation purposes and had an average molecular weight of 40,000 as measured by 3D light scattering GPC. [0046]
  • These materials were dissolved in cyclohexanone for thin film studies at solids concentrations of 7.5 to 10 wt %. [0047]
  • Comparative Example 2
  • Resins were prepared using the same procedure as in Example 1 except that Me(OMe)[0048] 3 was used in place of Ph(OMe)3. The amounts or reactants and resins produced are in Table 4.
    TABLE 3
    Example MeSiCl3 HSiCl3 HCl OSS** Toluene Toluene Target
    No. (g) (g) (g) (g) 1 2 Composition*
    C1-1 149 406 1422 10 3910 700 TMe 0.25TH 0.75
    C1-2 299 271 1422 10 3910 700 TMe 0.50TH 0.50
  • [0049]
    TABLE 4
    Ex- HSi(OEt)3 MeSi(OMe)3 Water EGDME Target
    ample (grams) (grams) (grams) (grams) Composition*
    C2-1 30.42 40.23 13.82 100.00 TMe 0.25TH 0.75
    C2-2 20.21 16.9 13.92 100 TMe 0.50TH 0.50
  • Example 4
  • Samples from Examples 1 and 2 were diluted in PGMEA to a concentration of 1 to 3 wt %, filtered and spin-coated onto silicon wafers. The spin rates were selected in the range of 2000 to 5000 RPM to achieve as-spun thickness in the range of 250 angstroms. The coated wafers were heated in a rapid thermal processor in a nitrogen atmosphere at 250° C. for two minutes to produce the phenylated-oxide coating. Results are given Table 4. [0050]
  • A second phenylated-oxide layer was produced over the first using the same procedures as above. Results of the film quality (film on film) are given in Table 1. [0051]
    TABLE 5
    Film Surface Film Quality
    Example Quality (Si Energy (film on
    Material Wafer) 250° C. Cure Dk Adhesion film)
    1-1 no dewets 34 3.06 43.9 dewets
    1-2 small pores 41 3.01 13.4 small pores
    1-3 no dewets 31 3.04 65.3 dewets
    1-4 no dewets 31 3.09 59.8 dewets
    2-1 no dewets 37.1 47.3 no dewets
    2-2 no dewets 40.1 3.32 43.9 no dewets
    2-3 no dewets 40.8 3.10 4.4 no dewets
    2-4 no dewets 37 3.35 60.6 no dewets
    2-5 no dewets 35.5 3.38 59.1 no dewets
  • Comparative Example 3
  • Samples from Comparative Examples 1 and 2 were diluted in PGMEA to a concentration of 1 to 3 wt %, filtered and spin-coated onto silicon wafers. The spin rates were selected in the range of 2000 to 5000 RPM to achieve as-spun thickness in the range of 250 angstroms. The coated wafers were heated in a rapid thermal processor in a nitrogen atmosphere at 250° C. for two minutes to produce a methylated-oxide coating. Results are given Table 6. [0052]
    TABLE 6
    Cure Temperature
    Target Example (° C./2 minutes hot Surface Energy
    Composition No. plate) (dyne/cm) Film Quality
    TMe 0.25TH 0.75 C2-1 100 25.5 Dewets
    TMe 0.25TH 0.75 C2-1 150 29.5 Dewets
    TMe 0.50TH 0.50 C2-2 150 29.9 Dewets
    TMe 0.50TH 0.50 C2-2 250 26 Dewets
    TMe 0.25TH 0.75 C1-1 250 24.9 Dewets
    TMe 0.25TH 0.75 C1-1 350 25.9 Dewets
    TMe 0.50TH 0.50 C1-2 250 27.3 Dewets

Claims (24)

What is claimed is:
1. A silicone resin comprising 5 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x) units based on the total amount of silicon containing units in the resin, where Ph is a phenyl group and x has a value of 0, 1 or 2.
2. The silicone resin as claimed in claim 1 wherein there is 25 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 75 mole % (HSiO(3-x)/2(OH)x) units in the silicone resin.
3. The silicone resin as claimed in claim 1 wherein there is 30 to 45 mole % of (PhSiO(3-x)/2(OH)x) units and 55 to 70 mole % (HSiO(3-x)/2(OH)x) units in the silicone resin.
4. The silicone resin as claimed in claim 1 wherein less than 40 mole % of the units in the silicone resin contain Si—OH groups.
5. The silicone resin as claimed in claim 1 wherein 6 to 38 mole % of the units in the silicone resin contain Si—OH groups.
6. A composition comprising
(I) a silicone resin comprising 5 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x) units based on the total amount of silicon containing units in the resin, where Ph is a phenyl group and x has a value of 0, 1 or 2.
(II) a solvent.
7. The solution as claimed in claim 6 wherein the solvent is present in an amount of 40 to 99.5 wt % based on the weight of the silicone resin and solvent.
8. The solution as claimed in claim 6 wherein the solvent is chose from propylene glycol methyl ether acetate, cyclohexanone, γ-butyrolacetone, methyl isobutyl ketone, methyl propyl ketone, mesitylene, silicones.
9. A phenylated-oxide dielectric having a critical surface free energy of at least 30 dynes/cm.
10. The dielectric as claimed in claim 9 wherein the critical surface free energy is in the range of 35 to 60 dynes/cm.
11. The dielectric as claimed in claim 9 wherein the critical surface free energy is in the range of 35 to 45 dynes/cm.
12. A method of producing a phenylated-oxide dielectric comprising
(I) applying silicone resin comprising 5 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 95 mole % (HSiO(3-x)/2(OH)x) units based on the total amount of silicon containing units in the resin, where Ph is a phenyl group and x has a value of 0, 1 or 2 to a substrate,
(II) heating the coated substrate to a temperature in the range of 100° C. to 450° C. to cure the silicone resin.
13. The method as claimed in claim 12 wherein there is 25 to 50 mole % of (PhSiO(3-x)/2(OH)x) units and 50 to 75 mole % (HSiO(3-x)/2(OH)x) units in the silicone resin.
14. The method as claimed in claim 12 wherein there is 30 to 45 mole % of (PhSiO(3-x)/2(OH)x) units and 55 to 70 mole % (HSiO(3-x)/2(OH)x) units in the silicone resin.
15. The method as claimed in claim 12 wherein less than 40 mole % of the units in the silicone resin contain Si—OH groups.
16. The method as claimed in claim 12 wherein 6 to 38 mole % of the units in the silicone resin contain Si—OH groups.
17. The method as claimed in claim 12 wherein the silicone resin is applied to a substrate by spin coating.
18. The method as claimed in claim 12 wherein the coated substrate is heated to a temperature of 100° C. to 450° C.
19. The method as claimed in claim 12 wherein the silicone resin additionally comprises 40 to 99.5 wt % of a solvent, based on the weight of the silicone resin and solvent
20. An integrated circuit comprising a dielectric material wherein the dielectric material comprises
(A) at least one organic dielectric layer having a critical surface free energy of at least 40 dynes/cm and
(B) at least one phenylated-oxide dielectric layer having a critical surface free energy of at least 30 dynes/cm.
21. The integrated circuit as claimed in claim 20 wherein the critical surface free energy of the phenylated-oxide dielectric is in the range of 35 to 60 dynes/cm.
22. The integrated circuit as claimed in claim 20 wherein the critical surface free energy of the phenylated-oxide dielectric is in the range of in the range of 35 to 45 dynes/cm.
23. The integrated circuit as claimed in claim 20 wherein the phenylated-oxide dielectric layer is applied over the organic dielectric layer.
24. The integrated circuit as claimed in claim 20 wherein the organic dielectric layer is applied over the phenylated-oxide dielectric layer.
US10/066,261 2001-10-22 2001-10-22 Etch-stop resins Abandoned US20030096090A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/066,261 US20030096090A1 (en) 2001-10-22 2001-10-22 Etch-stop resins
AT02776148T ATE502974T1 (en) 2001-10-22 2002-10-04 ETCH STOP RESINS
CNB028209567A CN1260273C (en) 2001-10-22 2002-10-04 Etch-stop resins
EP02776148A EP1442071B1 (en) 2001-10-22 2002-10-04 Etch-stop resins
US10/491,352 US6924346B2 (en) 2001-10-22 2002-10-04 Etch-stop resins
KR1020047005900A KR100898158B1 (en) 2001-10-22 2002-10-04 Etch-stop resins
DE60239555T DE60239555D1 (en) 2001-10-22 2002-10-04 ÄTZSTOPP RESINS
JP2003538232A JP4413612B2 (en) 2001-10-22 2002-10-04 Etch stop resin
PCT/US2002/031824 WO2003035720A1 (en) 2001-10-22 2002-10-04 Etch-stop resins
TW91123688A TW574104B (en) 2001-10-22 2002-10-15 Etch-stop resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/066,261 US20030096090A1 (en) 2001-10-22 2001-10-22 Etch-stop resins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10491352 Continuation 2002-10-04

Publications (1)

Publication Number Publication Date
US20030096090A1 true US20030096090A1 (en) 2003-05-22

Family

ID=22068344

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/066,261 Abandoned US20030096090A1 (en) 2001-10-22 2001-10-22 Etch-stop resins
US10/491,352 Expired - Fee Related US6924346B2 (en) 2001-10-22 2002-10-04 Etch-stop resins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/491,352 Expired - Fee Related US6924346B2 (en) 2001-10-22 2002-10-04 Etch-stop resins

Country Status (9)

Country Link
US (2) US20030096090A1 (en)
EP (1) EP1442071B1 (en)
JP (1) JP4413612B2 (en)
KR (1) KR100898158B1 (en)
CN (1) CN1260273C (en)
AT (1) ATE502974T1 (en)
DE (1) DE60239555D1 (en)
TW (1) TW574104B (en)
WO (1) WO2003035720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215713A1 (en) * 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
US20180371172A1 (en) * 2016-02-19 2018-12-27 Dow Silicones Corporation Aged polymeric silsesquioxanes

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004009791T2 (en) * 2003-05-23 2008-10-30 Dow Corning Corp., Midland SILOXAN RESIN BASED ANTI-REFLECTION COATING WITH HIGH WET WATER SPEED
EP1819844B1 (en) 2004-12-17 2008-07-09 Dow Corning Corporation Method for forming anti-reflective coating
ATE486098T1 (en) * 2004-12-17 2010-11-15 Dow Corning SILOXANE RESIN COATING
JP4995096B2 (en) * 2004-12-17 2012-08-08 ダウ・コーニング・コーポレイション Antireflection film forming method, resist image forming method, pattern forming method, electronic device manufacturing method, and ARC composition
DE602006018976D1 (en) 2005-09-29 2011-01-27 Dow Corning METHOD FOR REMOVING HIGH-TEMPERATURE FILMS AND / OR DEVICES OF METAL SUBSTRATES
EP1989593A2 (en) 2006-02-13 2008-11-12 Dow Corning Corporation Antireflective coating material
WO2009007786A2 (en) * 2006-06-05 2009-01-15 Dow Corning Corporation A solar cell including a silicone resin layer
US8653217B2 (en) 2007-05-01 2014-02-18 Dow Corning Corporation Method for forming anti-reflective coating
US20100003828A1 (en) * 2007-11-28 2010-01-07 Guowen Ding Methods for adjusting critical dimension uniformity in an etch process with a highly concentrated unsaturated hydrocarbon gas
EP2240534B1 (en) 2008-01-08 2013-01-23 Dow Corning Toray Co., Ltd. Silsesquioxane resins
KR20100114075A (en) * 2008-01-15 2010-10-22 다우 코닝 코포레이션 Silsesquioxane resins
US8304161B2 (en) * 2008-03-04 2012-11-06 Dow Corning Corporation Silsesquioxane resins
WO2009111121A2 (en) * 2008-03-05 2009-09-11 Dow Corning Corporation Silsesquioxane resins
WO2009121171A1 (en) * 2008-04-01 2009-10-08 The Governors Of The University Of Alberta Method for depositing silicon nanocrystals in hollow fibers
JP5632387B2 (en) * 2008-12-10 2014-11-26 ダウ コーニング コーポレーションDow Corning Corporation Wet-etchable anti-reflection coating
US8809482B2 (en) 2008-12-10 2014-08-19 Dow Corning Corporation Silsesquioxane resins

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789460A (en) * 1995-02-02 1998-08-04 Dow Corning Asia, Ltd. Radiation curable compositions
US5974666A (en) * 1996-02-28 1999-11-02 Fuji Xerox Co., Ltd. Process for preparing a charging device
US6020410A (en) * 1996-10-29 2000-02-01 Alliedsignal Inc. Stable solution of a silsesquioxane or siloxane resin and a silicone solvent

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756977A (en) 1986-12-03 1988-07-12 Dow Corning Corporation Multilayer ceramics from hydrogen silsesquioxane
US5010159A (en) 1989-09-01 1991-04-23 Dow Corning Corporation Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
JP2538426B2 (en) 1991-01-31 1996-09-25 東レ・ダウコーニング・シリコーン株式会社 Method for producing organopolysiloxane
US5840821A (en) * 1994-03-11 1998-11-24 Kawasaki Steel Corporation Coating solution and method for preparing the coating solution, method for forming insulating films for semiconductor devices, and method for evaluating the coating solution
US5565384A (en) 1994-04-28 1996-10-15 Texas Instruments Inc Self-aligned via using low permittivity dielectric
JP3542185B2 (en) 1995-02-02 2004-07-14 ダウ コーニング アジア株式会社 Silicone resin, composition containing the same, and method of curing the same
JP3192947B2 (en) 1995-11-16 2001-07-30 東京応化工業株式会社 Method for producing coating liquid for forming silica-based coating
JPH09268228A (en) * 1996-04-01 1997-10-14 Dow Corning Asia Ltd Ultraviolet-curing composition and formation of cured material pattern using the same
US5973095A (en) * 1997-04-21 1999-10-26 Alliedsignal, Inc. Synthesis of hydrogensilsesquioxane and organohydridosiloxane resins
DE60034876T2 (en) * 1999-01-07 2008-01-17 Alliedsignal Inc. Dielectric films of organohydridosiloxane resins
US6218317B1 (en) 1999-04-19 2001-04-17 National Semiconductor Corp. Methylated oxide-type dielectric as a replacement for SiO2 hardmasks used in polymeric low K, dual damascene interconnect integration
US6281285B1 (en) * 1999-06-09 2001-08-28 Dow Corning Corporation Silicone resins and process for synthesis
US6498399B2 (en) 1999-09-08 2002-12-24 Alliedsignal Inc. Low dielectric-constant dielectric for etchstop in dual damascene backend of integrated circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789460A (en) * 1995-02-02 1998-08-04 Dow Corning Asia, Ltd. Radiation curable compositions
US5974666A (en) * 1996-02-28 1999-11-02 Fuji Xerox Co., Ltd. Process for preparing a charging device
US6020410A (en) * 1996-10-29 2000-02-01 Alliedsignal Inc. Stable solution of a silsesquioxane or siloxane resin and a silicone solvent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215713A1 (en) * 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
US20180371172A1 (en) * 2016-02-19 2018-12-27 Dow Silicones Corporation Aged polymeric silsesquioxanes
US10597495B2 (en) * 2016-02-19 2020-03-24 Dow Silicones Corporation Aged polymeric silsesquioxanes

Also Published As

Publication number Publication date
EP1442071B1 (en) 2011-03-23
WO2003035720A1 (en) 2003-05-01
US6924346B2 (en) 2005-08-02
CN1575310A (en) 2005-02-02
ATE502974T1 (en) 2011-04-15
JP2005507015A (en) 2005-03-10
TW574104B (en) 2004-02-01
EP1442071A1 (en) 2004-08-04
KR20050018629A (en) 2005-02-23
KR100898158B1 (en) 2009-05-19
CN1260273C (en) 2006-06-21
JP4413612B2 (en) 2010-02-10
US20040186223A1 (en) 2004-09-23
DE60239555D1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
US6924346B2 (en) Etch-stop resins
KR100795714B1 (en) Organosilicate resins as hardmasks for organic polymer dielectrics in fabrication of microelectronic devices
US7504470B2 (en) Polyorganosiloxane dielectric materials
US7011889B2 (en) Organosiloxanes
US6177143B1 (en) Electron beam treatment of siloxane resins
EP1245642B1 (en) Siloxane-based resin and method for forming an insulating film between interconnecting layers in wafers
KR20020025992A (en) Nanoporous Silica Treated With Siloxane Polymers For ULSI Application
US6962727B2 (en) Organosiloxanes
US6623711B2 (en) Siloxane-based resin and method for forming insulating film between interconnect layers in semiconductor devices by using the same
US20050173803A1 (en) Interlayer adhesion promoter for low k materials
US20070054136A1 (en) Film forming composition, insulating film and production process of the insulating film
JP2003501518A (en) Low dielectric constant polyorganosilicon coating derived from polycarbosilane
US6399210B1 (en) Alkoxyhydridosiloxane resins
EP1217649A2 (en) Method for forming insulating film between interconnect layers in microelectronic devices
WO2000075979A1 (en) Process of using siloxane dielectric films in the integration of organic dielectric films in electronic devices
US7754003B2 (en) Coating composition and low dielectric siliceous material produced by using same
US20080206578A1 (en) High silicon content siloxane polymers for integrated circuits
WO1996013853A1 (en) Coating solution comprising siloxane polymer and process for producing the same
US6191183B1 (en) Method for the formation of silica thin films
JP2006503165A (en) Organosiloxane
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
US20030064254A1 (en) Siloxane resins

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW CORNING CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOISVERT, RONALD PAUL;YEAKLE, CRAIG ROLLIN;GRIGORAS, STELIAN;AND OTHERS;REEL/FRAME:012753/0168;SIGNING DATES FROM 20011106 TO 20011210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE