US20030087590A1 - Method of planarization - Google Patents

Method of planarization Download PDF

Info

Publication number
US20030087590A1
US20030087590A1 US10/288,224 US28822402A US2003087590A1 US 20030087590 A1 US20030087590 A1 US 20030087590A1 US 28822402 A US28822402 A US 28822402A US 2003087590 A1 US2003087590 A1 US 2003087590A1
Authority
US
United States
Prior art keywords
slurry
dielectric layer
polishing
layer
metallic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/288,224
Inventor
Ming-Sheng Yang
Kuen-Jian Chen
Juan-Yuan Wu
Water Lur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/182,968 external-priority patent/US6609954B1/en
Application filed by Individual filed Critical Individual
Priority to US10/288,224 priority Critical patent/US20030087590A1/en
Publication of US20030087590A1 publication Critical patent/US20030087590A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a method of planarization. More particularly, the present invention relates to a method of forming a metallic plug within an inter-metal dielectric layer by filling metallic material into a via, and then performing a chemical-mechanical polishing (CMP) operation to remove excess metal above the plug and surrounding areas. Once the metallic layer is polished away, metallic residues above the inter-metal dielectric layer are removed by a controlled increase in the polishing rate of the dielectric layer. Consequently, undesirable metallic residues are completely removed and a planar surface is obtained at the same time.
  • CMP chemical-mechanical polishing
  • CMP chemical-mechanical polishing
  • the slurry normally contains a chemically active component such as an acid or a base, and a mechanically active component such as abrasive particles made from silicon dioxide.
  • a chemically active component such as an acid or a base
  • a mechanically active component such as abrasive particles made from silicon dioxide.
  • a conventional method of forming a plug includes the steps of depositing insulating material over an integrated circuit device, and then patterning the insulating layer to form a contact hole or a via opening. Finally, conductive material is deposited to fill the hole or the via so that a vertical interconnect penetrating the insulating layer and linking electrically with a portion of the device in the substrate is formed.
  • a chemical vapor deposition (CVD) method is normally used to fill the via of hole with tungsten (W).
  • CVD chemical vapor deposition
  • a layer of tungsten also forms over the insulating layer.
  • An etching back method for example, a reactive ion etching (RIE) method, can be used to remove the tungsten above the insulating layer.
  • RIE reactive ion etching
  • the etching back operation can lead to over-etching, and a portion of the tungsten within the via may be removed to form a recessed cavity. Therefore, subsequently deposited aluminum layer makes poor contact with the tungsten inside the recessed cavity of the via. Furthermore, when the tungsten is etched back, microscopic particles will remain attached to the wafer surface. These attached particles can often lead to undesirable damage of the device. Hence, an alternative method of removing excessive tungsten above an insulating layer, that is, a chemical-mechanical polishing method, is often used.
  • FIGS. 1A through 1D are cross-sectional views showing the progression of manufacturing steps in producing a plug according to a conventional method. Due to insufficient planarization of the inter-metal dielectric layer, recessed cavities are produced in some areas leading to device problems.
  • patterned conductive lines 112 are formed above a semiconductor substrate 100 .
  • the conductive lines 112 are made of aluminum or aluminum alloy.
  • MOS devices and the semiconductor substrate 100 underneath the conductive lines 112 are not fully drawn.
  • a dielectric layer 114 for example, a silicon oxide layer is deposited over the conductive layers 112 and the substrate 100 .
  • the dielectric layer 114 is somewhat influenced by the underlying ridge pattern of the conductive lines 112 on the surface of the semiconductor substrate 100 , such that the surface of dielectric layer 114 manifests an undulated surface.
  • planarization of the dielectric layer 114 is carried out.
  • a chemical-mechanical polishing method is used to form a planarized dielectric layer 114 a .
  • not all areas are planarized and some areas contain recessed cavities 116 .
  • a photoresist layer (not shown in FIG. 1C) is formed over the dielectric layer 114 a .
  • the photoresist layer exposes portions of the dielectric layer 114 a where via openings will form.
  • the dielectric layer 114 a is selectively etched using an etching technique such as a dry etching method.
  • a portion of each conductive line 12 is exposed, forming via openings 126 and a dielectric layer 114 b.
  • a glue layer 118 conformal to the dielectric layer 114 b is formed and covers the substrate structure. Thereafter, a layer of tungsten 120 is formed over the glue layer 118 and completely fills the via openings 126 .
  • a chemical-mechanical polishing operation is carried out using slurry for polishing tungsten.
  • a portion of the tungsten layer 120 above the dielectric layer 114 b is removed, thereby forming tungsten plugs 120 a within the via openings 126 .
  • residual tungsten 120 b is embedded, which makes its removal particularly difficult.
  • the slurry for polishing tungsten has an especially slow removing rate for dielectric layer 114 b , residual tungsten 120 b entrenched inside the cavities 116 is difficult to be removed by prolonging the chemical-mechanical polishing operation.
  • the residual tungsten 120 b within the cavities 116 can affect the quality of a finished device, and may lead to low yield and waste of the silicon wafer.
  • the present invention provides a planarization method that utilizes a chemical-mechanical polishing operation.
  • a planarization method that utilizes a chemical-mechanical polishing operation.
  • this invention provides a planarization method that utilizes a chemical-mechanical polishing operation.
  • a first slurry especially for polishing a metallic layer is first employed to remove a greater portion of the metallic layer.
  • a second slurry for polishing a dielectric layer and having properties very similar to the metal-polishing slurry is added and mixed together so that polishing rate for the dielectric layer is increased. Consequently, metallic residues remaining on the dielectric layer are removed and a planar dielectric layer is obtained at the same time.
  • the invention provides a method of planarization.
  • the method includes the steps of providing a semiconductor substrate having a first metallic layer, and then forming a dielectric layer over the first metallic layer and the substrate.
  • the dielectric layer is patterned to form a via opening.
  • a second metallic layer is formed over the dielectric layer and fills the via opening.
  • a chemical-mechanical polishing operation using a first slurry for removing metallic layer is performed to remove most of the second metallic layer above the dielectric layer.
  • a second slurry for removing dielectric layer is added and mixed with the first slurry for removing metallic layer, while the chemical-mechanical polishing operation is continued. Eventually, the dielectric layer is planarized and any residual material from the second metallic layer is removed.
  • FIGS. 1A through 1D are cross-sectional views showing the progression of manufacturing steps in producing a plug according to a conventional method
  • FIG. 2 is a cross-sectional view showing a plug fabricated according to one preferred embodiment of this invention.
  • FIGS. 3A through 3D are cross-sectional views showing the progression of manufacturing steps for producing a plug within an inter-metal dielectric layer having no embedded residual metallic material according to a second preferred embodiment of this invention.
  • This invention provides a method of removing metallic residues stop an inter-metal dielectric layer and planarizing the dielectric layer at the same time.
  • the method is actually a continuation of the conventional process depicted in FIGS. 1A through 1D.
  • the dielectric layer 114 b (indicated in FIG. 1D) is planarized.
  • a portion of the dielectric layer 114 b together with metallic residues 120 b is removed.
  • FIG. 2 is a cross-sectional view showing a plug fabricated according to one preferred embodiment of this invention.
  • the dielectric layer 114 b is now turned into a dielectric layer 114 c . Since the dielectric layer 114 b is probably an oxide layer, the slurry used in the chemical-mechanical polishing operation is for removing oxide. Since operations are carried forward from FIG. 1D, detailed explanations of elements in FIG. 2 are omitted because they are labeled identically.
  • polishing agents within the slurries will not congeal into lumps that may scratch and damage the wafer. Furthermore, the same type of polishing agents must be used in the two types of slurries, because different polishing agents will have different polishing characteristics. If two or more non-similar types of polishing agents are used at the same time, processing instability may result.
  • pH value of the slurry for removing tungsten is around 2.1-2.5, and the polishing agent is silicon dioxide particles with a size of around 200 nm.
  • the slurry for removing tungsten further comprises oxidant.
  • the oxidant can be ferric nitrate, hydrogen peroxide, potassium periodate or acid solution containing nitrate group, cyanate group, periodate group, peroxide group or strong oxidant, for example.
  • the oxidant in the slurry reacts with the surface of the tungsten under acidic condition to form tungsten oxide and the silicon dioxide particles are used to polish away the tungsten oxide.
  • the slurry for polishing a dielectric has a pH value of around 2.1-2.5, and the polishing agent is again silicon dioxide particles with a size of around 200 nm.
  • the slurry for polishing the dielectric comprises organic acid group such as acetate group, citrate group and oxalate group. The hydroxide group in the slurry bonds with the silicon atoms on the surface of the dielectric to form silicon hydroxide which is easily removed by the silicon dioxide particles.
  • FIGS. 3A through 3D are cross-sectional views showing the progression of manufacturing steps for producing a plug within an inter-metal dielectric layer having no embedded residual metallic material according to a second preferred embodiment of this invention.
  • patterned conductive lines 312 are formed above a semiconductor substrate 300 .
  • the conductive lines 312 are made of aluminum or aluminum alloy.
  • MOS devices and the semiconductor substrate 300 underneath the conductive lines 312 are not fully drawn.
  • a dielectric layer 314 for example, a silicon oxide layer, is deposited over the conductive layers 312 and the substrate 300 .
  • the dielectric layer 314 is somewhat influenced by the underlying ridge pattern of the conductive lines 312 on the surface of the semiconductor substrate 300 , such that the surface of dielectric layer 314 manifests an undulated surface.
  • planarization of the dielectric layer 314 is deferred until after the plug is formed. By this arrangement, one less chemical-mechanical polishing operation can be conducted. Therefore, some wafer processing time is saved.
  • a photoresist layer (not shown in the Fig.) is formed over the unplanarized dielectric layer 314 .
  • the photoresist layer exposes the area where a desired via opening is to be formed.
  • the dielectric layer 314 is selectively etched to form a dielectric layer 314 a using, for example, a dry etching method. Hence, via openings 326 that expose a portion of the conductive line 312 are formed.
  • a glue layer 318 conformal to the dielectric layer 314 a is formed over the substrate structure.
  • a conductive layer 320 is formed over the glue layer 318 and completely fills the via openings 326 .
  • the conductive layer is a tungsten layer.
  • a chemical-mechanical polishing operation is carried out using slurry for removing metal.
  • slurry for removing tungsten is used. Consequently, a large portion of the conductive layer 320 above the dielectric layer 314 a is removed forming plugs 320 a .
  • the slurry for removing tungsten further comprises oxidant.
  • the oxidant can be ferric nitrate, hydrogen peroxide, potassium periodate or acid solution containing nitrate group, cyanate group, periodate group, peroxide group or strong oxidant, for example.
  • the oxidant in the slurry reacts with the surface of the tungsten under acidic condition to form tungsten oxide and the silicon dioxide particles are used to polish away the tungsten oxide. Therefore, the new tungsten surface is exposed and is oxidized by the oxidant in the slurry.
  • slurry for removing dielectric material is added and mixed together with the original slurry. Subsequently, the chemical-mechanical polishing operation is continued until the dielectric layer 314 a is completely planarized and any metallic residues 320 b are removed from the dielectric 314 a surface.
  • the slurry for polishing the dielectric comprises organic acid group such as acetate group, citrate group and oxalate group. The hydroxide group in the slurry bonds with the silicon atoms on the surface of the dielectric to form silicon hydroxide which is easily removed by the silicon dioxide particles.
  • pH value of the slurry for removing metal is around 2.1-2.5
  • the polishing agent is silicon dioxide particles with a size of around 200 nm.
  • the slurry for polishing a dielectric has a pH value of around 2.1-2.5, and the polishing agent is again silicon dioxide particles with a size of around 200 nm.
  • planarization using a chemical-mechanical polishing method according to this invention is capable of eliminating metallic residues above the surface of a dielectric layer as well as planarizing the dielectric layer, device quality can be greatly improved.
  • a chemical-mechanical polishing technique is used for planarization. By first polishing away a large portion of a metallic layer with slurry for polishing a metal and then adding another similar slurry for polishing a dielectric, the dielectric layer is planarized and any metallic residues above the dielectric layer are removed at the same time.
  • the slurry for removing metallic material and the slurry for removing dielectric material are very similar in physical properties. They both have a pH value of between 2.1-2.5, and particles of silicon dioxide with a size of around 200 nm are used as polishing agents.
  • steps in forming a plug can be conducted without the need for performing a planarization operation first. Hence, one less planarization using a chemical-mechanical polishing operation is needed, and some wafer processing time can be saved.

Abstract

A planarization method that utilizes a chemical-mechanical polishing operation. In the polishing operation, a first slurry for polishing a metallic layer is first employed to remove a greater portion of the metallic layer. Next, a second slurry for polishing a dielectric layer and having properties very similar to the metal-polishing slurry is added and mixed together with the slurry for polishing a metallic layer so that the polishing rate for the dielectric layer is increased. Consequently, metallic residues remaining on the dielectric layer are removed, and a planar dielectric layer is obtained at the same time.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of prior application Ser. No. 09/182,968, filed Oct. 29, 1998.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0002]
  • The present invention relates to a method of planarization. More particularly, the present invention relates to a method of forming a metallic plug within an inter-metal dielectric layer by filling metallic material into a via, and then performing a chemical-mechanical polishing (CMP) operation to remove excess metal above the plug and surrounding areas. Once the metallic layer is polished away, metallic residues above the inter-metal dielectric layer are removed by a controlled increase in the polishing rate of the dielectric layer. Consequently, undesirable metallic residues are completely removed and a planar surface is obtained at the same time. [0003]
  • 2. Description of Related Art [0004]
  • Amongst the methods of planarizing a surface, chemical-mechanical polishing (CMP) is one of the most important techniques for the global planarization for VLSI or ULSI circuit fabrication. In the process of manufacturing integrated circuit devices, material often has to be removed from the surfaces of intermediate devices one or more times. Furthermore, material layers sometimes have to be planarized before carrying out the next operation. As the number of material removing operations or planarization increases, CMP operations are used more often. Chemical-mechanical polishing operates by pressing the front surface of a wafer down onto a rotating surface on a polishing table, and supplying slurry at the same time. [0005]
  • The slurry normally contains a chemically active component such as an acid or a base, and a mechanically active component such as abrasive particles made from silicon dioxide. Although the physical mechanism of the polishing action is still not fully understood, the chemical reaction and the mechanical abrasion of its active components has satisfactorily polished and planarized various types of surfaces. Nowadays, CMP methods are frequently applied to the planarization of metallic and dielectric layers. [0006]
  • A conventional method of forming a plug includes the steps of depositing insulating material over an integrated circuit device, and then patterning the insulating layer to form a contact hole or a via opening. Finally, conductive material is deposited to fill the hole or the via so that a vertical interconnect penetrating the insulating layer and linking electrically with a portion of the device in the substrate is formed. [0007]
  • Since metallic conductive material such as aluminum is unable to fill the via or hole satisfactorily, a chemical vapor deposition (CVD) method is normally used to fill the via of hole with tungsten (W). In the process of depositing tungsten into the via, a layer of tungsten also forms over the insulating layer. After the via is completely filled, excess tungsten above the via needs to be removed before aluminum lines are deposited above the insulating layer and the via. An etching back method, for example, a reactive ion etching (RIE) method, can be used to remove the tungsten above the insulating layer. [0008]
  • However, the etching back operation can lead to over-etching, and a portion of the tungsten within the via may be removed to form a recessed cavity. Therefore, subsequently deposited aluminum layer makes poor contact with the tungsten inside the recessed cavity of the via. Furthermore, when the tungsten is etched back, microscopic particles will remain attached to the wafer surface. These attached particles can often lead to undesirable damage of the device. Hence, an alternative method of removing excessive tungsten above an insulating layer, that is, a chemical-mechanical polishing method, is often used. [0009]
  • FIGS. 1A through 1D are cross-sectional views showing the progression of manufacturing steps in producing a plug according to a conventional method. Due to insufficient planarization of the inter-metal dielectric layer, recessed cavities are produced in some areas leading to device problems. [0010]
  • First, as shown in FIG. 1A, patterned [0011] conductive lines 112 are formed above a semiconductor substrate 100. The conductive lines 112 are made of aluminum or aluminum alloy. To simplify the drawing, MOS devices and the semiconductor substrate 100 underneath the conductive lines 112 are not fully drawn. Next, a dielectric layer 114, for example, a silicon oxide layer is deposited over the conductive layers 112 and the substrate 100. The dielectric layer 114 is somewhat influenced by the underlying ridge pattern of the conductive lines 112 on the surface of the semiconductor substrate 100, such that the surface of dielectric layer 114 manifests an undulated surface.
  • Next, as shown in FIG. 1B, planarization of the [0012] dielectric layer 114 is carried out. For example, a chemical-mechanical polishing method is used to form a planarized dielectric layer 114 a. However, not all areas are planarized and some areas contain recessed cavities 116.
  • Next, as shown in FIG. 1C, a photoresist layer (not shown in FIG. 1C) is formed over the [0013] dielectric layer 114 a. The photoresist layer exposes portions of the dielectric layer 114 a where via openings will form. Thereafter, the dielectric layer 114 a is selectively etched using an etching technique such as a dry etching method. Ultimately, a portion of each conductive line 12 is exposed, forming via openings 126 and a dielectric layer 114 b.
  • In the subsequent step, a [0014] glue layer 118 conformal to the dielectric layer 114 b is formed and covers the substrate structure. Thereafter, a layer of tungsten 120 is formed over the glue layer 118 and completely fills the via openings 126.
  • Next, as shown in FIG. 1D, a chemical-mechanical polishing operation is carried out using slurry for polishing tungsten. Hence, a portion of the [0015] tungsten layer 120 above the dielectric layer 114 b is removed, thereby forming tungsten plugs 120 a within the via openings 126. However, due to the presence of recessed cavities 116 on the surface of the original dielectric layer 114 b, residual tungsten 120 b is embedded, which makes its removal particularly difficult.
  • In fact, because the slurry for polishing tungsten has an especially slow removing rate for [0016] dielectric layer 114 b, residual tungsten 120 b entrenched inside the cavities 116 is difficult to be removed by prolonging the chemical-mechanical polishing operation. The residual tungsten 120 b within the cavities 116 can affect the quality of a finished device, and may lead to low yield and waste of the silicon wafer.
  • In light of the foregoing, there is a need to improve the method of planarization. [0017]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a planarization method that utilizes a chemical-mechanical polishing operation. Through increasing and controlling the removal rate of the inter-metal dielectric layer, recessed cavities above the dielectric layer due to an inefficient planarization technique are avoided. Therefore, device problems caused by metallic residues remaining on the dielectric surface can be reduced. [0018]
  • In another aspect, this invention provides a planarization method that utilizes a chemical-mechanical polishing operation. In the polishing operation, a first slurry especially for polishing a metallic layer is first employed to remove a greater portion of the metallic layer. Next, a second slurry for polishing a dielectric layer and having properties very similar to the metal-polishing slurry is added and mixed together so that polishing rate for the dielectric layer is increased. Consequently, metallic residues remaining on the dielectric layer are removed and a planar dielectric layer is obtained at the same time. [0019]
  • To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides a method of planarization. The method includes the steps of providing a semiconductor substrate having a first metallic layer, and then forming a dielectric layer over the first metallic layer and the substrate. Next, the dielectric layer is patterned to form a via opening. Thereafter, a second metallic layer is formed over the dielectric layer and fills the via opening. Subsequently, a chemical-mechanical polishing operation using a first slurry for removing metallic layer is performed to remove most of the second metallic layer above the dielectric layer. Then, a second slurry for removing dielectric layer is added and mixed with the first slurry for removing metallic layer, while the chemical-mechanical polishing operation is continued. Eventually, the dielectric layer is planarized and any residual material from the second metallic layer is removed. [0020]
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings, [0022]
  • FIGS. 1A through 1D are cross-sectional views showing the progression of manufacturing steps in producing a plug according to a conventional method; [0023]
  • FIG. 2 is a cross-sectional view showing a plug fabricated according to one preferred embodiment of this invention; and [0024]
  • FIGS. 3A through 3D are cross-sectional views showing the progression of manufacturing steps for producing a plug within an inter-metal dielectric layer having no embedded residual metallic material according to a second preferred embodiment of this invention.[0025]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts. [0026]
  • This invention provides a method of removing metallic residues stop an inter-metal dielectric layer and planarizing the dielectric layer at the same time. The method is actually a continuation of the conventional process depicted in FIGS. 1A through 1D. By continuing the polishing operation while adding a slurry for removing dielectric layer to the original slurry for removing metallic layer, the [0027] dielectric layer 114 b (indicated in FIG. 1D) is planarized. At the same time, a portion of the dielectric layer 114 b together with metallic residues 120 b is removed.
  • FIG. 2 is a cross-sectional view showing a plug fabricated according to one preferred embodiment of this invention. As shown in FIG. 2, the [0028] dielectric layer 114 b is now turned into a dielectric layer 114 c. Since the dielectric layer 114 b is probably an oxide layer, the slurry used in the chemical-mechanical polishing operation is for removing oxide. Since operations are carried forward from FIG. 1D, detailed explanations of elements in FIG. 2 are omitted because they are labeled identically.
  • Because the slurry for removing tungsten layer is present when the slurry for removing dielectric layer is added, physically similar slurries have to be selected. Physical similarity refers to the characteristic of having similar pH value. Therefore, when the two types of slurries are mixed together, unstable conditions due to a difference in pH values will not happen. [0029]
  • In other words, the polishing agents within the slurries will not congeal into lumps that may scratch and damage the wafer. Furthermore, the same type of polishing agents must be used in the two types of slurries, because different polishing agents will have different polishing characteristics. If two or more non-similar types of polishing agents are used at the same time, processing instability may result. [0030]
  • Hence, according to the embodiment of this invention, pH value of the slurry for removing tungsten is around 2.1-2.5, and the polishing agent is silicon dioxide particles with a size of around 200 nm. It should be noticed that the slurry for removing tungsten further comprises oxidant. The oxidant can be ferric nitrate, hydrogen peroxide, potassium periodate or acid solution containing nitrate group, cyanate group, periodate group, peroxide group or strong oxidant, for example. The oxidant in the slurry reacts with the surface of the tungsten under acidic condition to form tungsten oxide and the silicon dioxide particles are used to polish away the tungsten oxide. Therefore, the new tungsten surface is exposed and is oxidized by the oxidant in the slurry. Similarly, in order to match the slurry for polishing tungsten, the slurry for polishing a dielectric has a pH value of around 2.1-2.5, and the polishing agent is again silicon dioxide particles with a size of around 200 nm. It should be noticed that the slurry for polishing the dielectric comprises organic acid group such as acetate group, citrate group and oxalate group. The hydroxide group in the slurry bonds with the silicon atoms on the surface of the dielectric to form silicon hydroxide which is easily removed by the silicon dioxide particles. [0031]
  • FIGS. 3A through 3D are cross-sectional views showing the progression of manufacturing steps for producing a plug within an inter-metal dielectric layer having no embedded residual metallic material according to a second preferred embodiment of this invention. [0032]
  • First, as shown in FIG. 3A, patterned [0033] conductive lines 312 are formed above a semiconductor substrate 300. The conductive lines 312 are made of aluminum or aluminum alloy. To simplify the drawing, MOS devices and the semiconductor substrate 300 underneath the conductive lines 312 are not fully drawn. Next, a dielectric layer 314, for example, a silicon oxide layer, is deposited over the conductive layers 312 and the substrate 300. The dielectric layer 314 is somewhat influenced by the underlying ridge pattern of the conductive lines 312 on the surface of the semiconductor substrate 300, such that the surface of dielectric layer 314 manifests an undulated surface. However, in this embodiment, planarization of the dielectric layer 314 is deferred until after the plug is formed. By this arrangement, one less chemical-mechanical polishing operation can be conducted. Therefore, some wafer processing time is saved.
  • Next, as shown in FIG. 3B, a photoresist layer (not shown in the Fig.) is formed over the unplanarized [0034] dielectric layer 314. The photoresist layer exposes the area where a desired via opening is to be formed. Thereafter, the dielectric layer 314 is selectively etched to form a dielectric layer 314 a using, for example, a dry etching method. Hence, via openings 326 that expose a portion of the conductive line 312 are formed.
  • In the subsequent step, a [0035] glue layer 318 conformal to the dielectric layer 314 a is formed over the substrate structure. Then, a conductive layer 320 is formed over the glue layer 318 and completely fills the via openings 326. Preferably, the conductive layer is a tungsten layer.
  • Next, as shown in FIG. 3C, a chemical-mechanical polishing operation is carried out using slurry for removing metal. Preferably, slurry for removing tungsten is used. Consequently, a large portion of the [0036] conductive layer 320 above the dielectric layer 314 a is removed forming plugs 320 a. It should be noticed that the slurry for removing tungsten further comprises oxidant. The oxidant can be ferric nitrate, hydrogen peroxide, potassium periodate or acid solution containing nitrate group, cyanate group, periodate group, peroxide group or strong oxidant, for example. The oxidant in the slurry reacts with the surface of the tungsten under acidic condition to form tungsten oxide and the silicon dioxide particles are used to polish away the tungsten oxide. Therefore, the new tungsten surface is exposed and is oxidized by the oxidant in the slurry.
  • Next, as shown in FIG. 3D, with the slurry for removing metal present, slurry for removing dielectric material is added and mixed together with the original slurry. Subsequently, the chemical-mechanical polishing operation is continued until the [0037] dielectric layer 314 a is completely planarized and any metallic residues 320 b are removed from the dielectric 314 a surface. It should be noticed that the slurry for polishing the dielectric comprises organic acid group such as acetate group, citrate group and oxalate group. The hydroxide group in the slurry bonds with the silicon atoms on the surface of the dielectric to form silicon hydroxide which is easily removed by the silicon dioxide particles.
  • Because the slurry for removing tungsten layer is present when the slurry for removing dielectric layer is added, physically similar slurries have to be selected. The reason for choosing physically similar slurries has already been explained in the first embodiment. Therefore, in the second embodiment, pH value of the slurry for removing metal is around 2.1-2.5, and the polishing agent is silicon dioxide particles with a size of around 200 nm. [0038]
  • Similarly, in order to match the slurry for polishing a metal, the slurry for polishing a dielectric has a pH value of around 2.1-2.5, and the polishing agent is again silicon dioxide particles with a size of around 200 nm. [0039]
  • Since planarization using a chemical-mechanical polishing method according to this invention is capable of eliminating metallic residues above the surface of a dielectric layer as well as planarizing the dielectric layer, device quality can be greatly improved. [0040]
  • In summary, major aspects of this invention includes: [0041]
  • 1. A chemical-mechanical polishing technique is used for planarization. By first polishing away a large portion of a metallic layer with slurry for polishing a metal and then adding another similar slurry for polishing a dielectric, the dielectric layer is planarized and any metallic residues above the dielectric layer are removed at the same time. [0042]
  • 2. The slurry for removing metallic material and the slurry for removing dielectric material are very similar in physical properties. They both have a pH value of between 2.1-2.5, and particles of silicon dioxide with a size of around 200 nm are used as polishing agents. [0043]
  • 3. After the deposition of an inter-metal dielectric layer, steps in forming a plug can be conducted without the need for performing a planarization operation first. Hence, one less planarization using a chemical-mechanical polishing operation is needed, and some wafer processing time can be saved. [0044]
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents. [0045]

Claims (12)

What is claimed is:
1. A planarization method that utilizes a chemical-mechanical polishing operation, the method comprising the steps of:
providing a semiconductor substrate that has a first metallic layer formed thereon;
forming a dielectric layer over the first metallic layer;
patterning the dielectric layer to form a via opening that exposes a portion of the first metallic layer;
forming a second metallic layer over the dielectric layer that completely fills the via opening;
performing a chemical-mechanical polishing operation, using a first slurry with an oxidant for polishing the second metallic layer, to remove the second metallic layer above the dielectric layer and form a plug inside the opening; and
adding a second slurry containing organic acid groups for polishing the dielectric material without first removing the first slurry, and then continuing the chemical-mechanical polishing operation until the dielectric layer is planarized and metallic residues of the second metallic layer are completely removed.
2. The method of claim 1, wherein step of forming the second metallic layer includes depositing tungsten.
3. The method of claim 1, wherein a pH value of the first slurry and a pH value of the second slurry are about the same.
4. The method of claim 1, wherein the first slurry and the second slurry contain the same type of polishing agents.
5. The method of claim 1, wherein the first slurry has a pH value of between 2.1-2.5, and includes a polishing agent containing silicon dioxide particles with a size of around 200 nm.
6. The method of claim 1, wherein the second slurry has a pH value of between 2.1-2.5, and includes a polishing agent containing silicon dioxide particles with a size of around 200 nm.
7. The method of claim 1, further comprising planarizing the dielectric layer after forming the dielectric layer.
8. A planarization method that utilizes a chemical-mechanical polishing operation, the method comprising the steps of:
providing a semiconductor substrate that has a first metallic layer formed thereon;
forming a dielectric layer over the first metallic layer;
patterning the dielectric layer to form a via opening that exposes a portion of the first metallic layer;
forming a second metallic layer over the dielectric layer that completely fills the via opening;
performing a chemical-mechanical polishing operation, using a first slurry for polishing the second metallic layer, to remove the second metallic layer above the dielectric layer and form a plug inside the opening, wherein the first slurry comprises an oxidant; and
adding a second slurry containing an organic acid for polishing the dielectric material without first removing the first slurry for polishing the second metallic layer, and then continuing the chemical-mechanical polishing operation until the dielectric layer is planarized and metallic residues of the second metallic layer are completely removed, wherein a pH value of the slurry for polishing the second metallic layer and a pH value of the slurry for polishing the dielectric layer are about the same.
9. The method of claim 8, wherein step of forming the second metallic layer includes depositing tungsten.
10. The method of claim 8, wherein the first slurry and the second slurry contain the same type of polishing agents.
11. The method of claim 8, wherein the first slurry has a pH value of between 2.1 to 2.5, and includes a polishing agent containing silicon dioxide particles with a size of around 200 nm.
12. The method of claim 8, wherein the second slurry has a pH value of between 2.1 to 2.5, and includes a polishing agent containing silicon dioxide particles with a size of around 200 nm.
US10/288,224 1998-10-29 2002-11-04 Method of planarization Abandoned US20030087590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/288,224 US20030087590A1 (en) 1998-10-29 2002-11-04 Method of planarization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/182,968 US6609954B1 (en) 1998-10-29 1998-10-29 Method of planarization
US10/288,224 US20030087590A1 (en) 1998-10-29 2002-11-04 Method of planarization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/182,968 Continuation-In-Part US6609954B1 (en) 1998-10-29 1998-10-29 Method of planarization

Publications (1)

Publication Number Publication Date
US20030087590A1 true US20030087590A1 (en) 2003-05-08

Family

ID=46281476

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/288,224 Abandoned US20030087590A1 (en) 1998-10-29 2002-11-04 Method of planarization

Country Status (1)

Country Link
US (1) US20030087590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176253A1 (en) * 2004-02-05 2005-08-11 Atsushi Shigeta Method of manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676587A (en) * 1995-12-06 1997-10-14 International Business Machines Corporation Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US5954975A (en) * 1993-11-03 1999-09-21 Intel Corporation Slurries for chemical mechanical polishing tungsten films
US6204169B1 (en) * 1997-03-24 2001-03-20 Motorola Inc. Processing for polishing dissimilar conductive layers in a semiconductor device
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6234877B1 (en) * 1997-06-09 2001-05-22 Micron Technology, Inc. Method of chemical mechanical polishing
US6368955B1 (en) * 1999-11-22 2002-04-09 Lucent Technologies, Inc. Method of polishing semiconductor structures using a two-step chemical mechanical planarization with slurry particles having different particle bulk densities
US6609954B1 (en) * 1998-10-29 2003-08-26 United Microelectronics Corp. Method of planarization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954975A (en) * 1993-11-03 1999-09-21 Intel Corporation Slurries for chemical mechanical polishing tungsten films
US5676587A (en) * 1995-12-06 1997-10-14 International Business Machines Corporation Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US6204169B1 (en) * 1997-03-24 2001-03-20 Motorola Inc. Processing for polishing dissimilar conductive layers in a semiconductor device
US6234877B1 (en) * 1997-06-09 2001-05-22 Micron Technology, Inc. Method of chemical mechanical polishing
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6609954B1 (en) * 1998-10-29 2003-08-26 United Microelectronics Corp. Method of planarization
US6368955B1 (en) * 1999-11-22 2002-04-09 Lucent Technologies, Inc. Method of polishing semiconductor structures using a two-step chemical mechanical planarization with slurry particles having different particle bulk densities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176253A1 (en) * 2004-02-05 2005-08-11 Atsushi Shigeta Method of manufacturing semiconductor device
US7413989B2 (en) 2004-02-05 2008-08-19 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
CN100416753C (en) * 2004-02-05 2008-09-03 株式会社东芝 Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
USRE39126E1 (en) Two-step chemical mechanical polishing process for producing flush and protruding tungsten plugs
US5651855A (en) Method of making self aligned contacts to silicon substrates during the manufacture of integrated circuits
KR100359552B1 (en) Combined chemical mechanical polishing and reactive ion etching process
US6114243A (en) Method to avoid copper contamination on the sidewall of a via or a dual damascene structure
US5753967A (en) Damascene process for reduced feature size
US6420257B2 (en) Process for forming trenches and contacts during the formation of a semiconductor memory device
US7018906B2 (en) Chemical mechanical polishing for forming a shallow trench isolation structure
US6171951B1 (en) Dual damascene method comprising ion implanting to densify dielectric layer and forming a hard mask layer with a tapered opening
CN1841701A (en) Method of making a plug
US6329281B1 (en) Methods for fabricating a multilevel interconnection for an integrated circuit device utilizing a selective overlayer
US6280644B1 (en) Method of planarizing a surface on an integrated circuit
US6114232A (en) Method for making an electrical contact to a node location and process for forming a conductive line or other circuit component
US20020182853A1 (en) Method for removing hard-mask layer after metal-CMP in dual-damascene interconnect structure
US6609954B1 (en) Method of planarization
US20030087590A1 (en) Method of planarization
US6461230B1 (en) Chemical-mechanical polishing method
US6087262A (en) Method for manufacturing shallow trench isolation structure
US6153933A (en) Elimination of residual materials in a multiple-layer interconnect structure
KR20000017425A (en) Method for forming embedded metal wiring
US5851910A (en) Method of fabricating a bonding pad window
US6548409B1 (en) Method of reducing micro-scratches during tungsten CMP
US6468897B1 (en) Method of forming damascene structure
US6551914B1 (en) Method of forming polish stop by plasma treatment for interconnection
US5981386A (en) Method for manufacturing interconnection plug
US6211060B1 (en) Method for planarizing a damascene structure

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION