US20030082730A1 - Secreted and transmembrane polypeptides and nucleic acids encoding the same - Google Patents

Secreted and transmembrane polypeptides and nucleic acids encoding the same Download PDF

Info

Publication number
US20030082730A1
US20030082730A1 US10/245,473 US24547302A US2003082730A1 US 20030082730 A1 US20030082730 A1 US 20030082730A1 US 24547302 A US24547302 A US 24547302A US 2003082730 A1 US2003082730 A1 US 2003082730A1
Authority
US
United States
Prior art keywords
seq
acid sequence
pro
amino acid
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/245,473
Inventor
Kevin Baker
Dan Eaton
Ellen Filvaroff
Audrey Goddard
J. Grimaldi
Austin Gurney
Victoria Smith
Jean Stephan
Colin Watanabe
William Wood
Zemin Zhang
Sherman Fong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2001/027099 external-priority patent/WO2002024888A2/en
Priority claimed from US10/197,942 external-priority patent/US20030175882A1/en
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US10/245,473 priority Critical patent/US20030082730A1/en
Publication of US20030082730A1 publication Critical patent/US20030082730A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds

Definitions

  • the present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides.
  • Extracellular proteins play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms.
  • secreted polypeptides for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones
  • secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment.
  • Secreted proteins have various industrial applications, including as pharmaceuticals, diagnostics, biosensors and bioreactors.
  • Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins.
  • Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents.
  • Efforts are being undertaken by both industry and proficient to identify new, native secreted proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Pat. No. 5,536,637)].
  • Membrane-bound proteins and receptors can play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms.
  • membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor.
  • Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents.
  • Receptor immunoadhesins for instance, can be employed as therapeutic agents to block receptor-ligand interactions.
  • the membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction.
  • the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.
  • the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nu
  • the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nu
  • the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively
  • Another aspect the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated.
  • Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or as antisense oligonucleotide probes.
  • nucleic acid fragments are usually at least about 10 nucleotides in length, alternatively at least about 15 nucleotides in length, alternatively at least about 20 nucleotides in length, alternatively at least about 30 nucleotides in length, alternatively at least about 40 nucleotides in length, alternatively at least about 50 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 70 nucleotides in length, alternatively at least about 80 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 100 nucleotides in length, alternatively at least about 110 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 130 nucleotides in length, alternatively at least about 140 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 160 nucleotides in length, alternatively at least about 170 nucleo
  • novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody.
  • the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified.
  • the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at
  • the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least
  • the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described.
  • Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.
  • Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated.
  • Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.
  • the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein.
  • the agonist or antagonist is an anti-PRO antibody or a small molecule.
  • the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide.
  • the PRO polypeptide is a native PRO polypeptide.
  • the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier.
  • the carrier is a pharmaceutically acceptable carrier.
  • Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody.
  • the invention provides vectors comprising DNA encoding any of the herein described polypeptides.
  • Host cell comprising any such vector are also provided.
  • the host cells may be CHO cells, E. coli , or yeast.
  • a process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.
  • the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence.
  • Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.
  • the invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides.
  • the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.
  • the invention provides oligonucleotide probes which may be useful for isolating genomic and cDNA nucleotide sequences, measuring or detecting expression of an associated gene or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences. Preferred probe lengths are described above.
  • the present invention is directed to methods of using the PRO polypeptides of the present invention for a variety of uses based upon the functional biological assay data presented in the Examples below.
  • FIG. 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO281 cDNA, wherein SEQ ID NO:1 is a clone designated herein as “DNA16422-1209”.
  • FIG. 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in FIG. 1.
  • FIG. 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO1560 cDNA, wherein SEQ ID NO:3 is a clone designated herein as “DNA19902-1669”.
  • FIG. 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in FIG. 3.
  • FIG. 5 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO189 cDNA, wherein SEQ ID NO:5 is a clone designated herein as “DNA21624-1391”.
  • FIG. 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in FIG. 5.
  • FIG. 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO240 cDNA, wherein SEQ ID NO:7 is a clone designated herein as “DNA34387-1138”.
  • FIG. 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in FIG. 7.
  • FIG. 9 shows a nucleotide sequence (SEQ ID NO:9) of a native sequence PRO256 cDNA, wherein SEQ ID NO:9 is a clone designated herein as “DNA35880-1160”.
  • FIG. 10 shows the amino acid sequence (SEQ ID NO:10) derived from the coding sequence of SEQ ID NO:9 shown in FIG. 9.
  • FIG. 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO306 cDNA, wherein SEQ ID NO:11 is a clone designated herein as “DNA39984-1221”.
  • FIG. 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in FIG. 11.
  • FIG. 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO540 cDNA, wherein SEQ ID NO:13 is a clone designated herein as “DNA44189-1322”.
  • FIG. 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in FIG. 13.
  • FIG. 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO773 cDNA, wherein SEQ ID NO:15 is a clone designated herein as “DNA48303-2829”.
  • FIG. 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in FIG. 15.
  • FIG. 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO698 cDNA, wherein SEQ ID NO:17 is a clone designated herein as “DNA48320-1433”.
  • FIG. 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in FIG. 17.
  • FIG. 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO3567 cDNA, wherein SEQ ID NO:19 is a clone designated herein as “DNA56049-2543”.
  • FIG. 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in FIG. 19.
  • FIG. 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO826 cDNA, wherein SEQ ID NO:21 is a clone designated herein as “DNA57694-1341”.
  • FIG. 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in FIG. 21.
  • FIG. 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO1002 cDNA, wherein SEQ ID NO:23 is a clone designated herein as “DNA59208-1373”.
  • FIG. 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in FIG. 23.
  • FIG. 25 shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO1068 cDNA, wherein SEQ ID NO:25 is a clone designated herein as “DNA59214-1449”.
  • FIG. 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in FIG. 25.
  • FIG. 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO1030 cDNA, wherein SEQ ID NO:27 is a clone designated herein as “DNA59485-1336”.
  • FIG. 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in FIG. 27.
  • FIG. 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO1313 cDNA, wherein SEQ ID NO:29 is a clone designated herein as “DNA64966-1575”.
  • FIG. 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in FIG. 29.
  • FIG. 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO6071 cDNA, wherein SEQ ID NO:31 is a clone designated herein as “DNA82403-2959”.
  • FIG. 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in FIG. 31.
  • FIG. 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO4397 cDNA, wherein SEQ ID NO:33 is a clone designated herein as “DNA83505-2606”.
  • FIG. 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in FIG. 33.
  • FIG. 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO4344 cDNA, wherein SEQ ID NO:35 is a clone designated herein as “DNA84927-2585”.
  • FIG. 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in FIG. 35.
  • FIG. 37 shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO4407 cDNA, wherein SEQ ID NO:37 is a clone designated herein as “DNA92264-2616”.
  • FIG. 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in FIG. 37.
  • FIG. 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO4316 cDNA, wherein SEQ ID NO:39 is a clone designated herein as “DNA94713-2561”.
  • FIG. 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in FIG. 39.
  • FIG. 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO5775 cDNA, wherein SEQ ID NO:41 is a clone designated herein as “DNA96869-2673”.
  • FIG. 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in FIG. 41.
  • FIG. 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO6016 cDNA, wherein SEQ ID NO:43 is a clone designated herein as “DNA96881-2699”.
  • FIG. 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in FIG. 43.
  • FIG. 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO4499 cDNA, wherein SEQ ID NO:45 is a clone designated herein as “DNA96889-2641”.
  • FIG. 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in FIG. 45.
  • FIG. 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO4487 cDNA, wherein SEQ ID NO:47 is a clone designated herein as “DNA96898-2640”.
  • FIG. 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in FIG. 47.
  • FIG. 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO4980 cDNA, wherein SEQ ID NO:49 is a clone designated herein as “DNA97003-2649”.
  • FIG. 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in FIG. 49.
  • FIG. 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO6018 cDNA, wherein SEQ ID NO:51 is a clone designated herein as “DNA98565-2701”.
  • FIG. 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in FIG. 51.
  • FIG. 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO7168 cDNA, wherein SEQ ID NO:53 is a clone designated herein as “DNA102846-2742”.
  • FIG. 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in FIG. 53.
  • FIG. 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO6308 cDNA, wherein SEQ ID NO:55 is a clone designated herein as “DNA102847-2726”.
  • FIG. 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in FIG. 55.
  • FIG. 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO6000 cDNA, wherein SEQ ID NO:57 is a clone designated herein as “DNA102880-2689”.
  • FIG. 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in FIG. 57.
  • FIG. 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO6006 cDNA, wherein SEQ ID NO:59 is a clone designated herein as “DNA105782-2693”.
  • FIG. 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in FIG. 59.
  • FIG. 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO5800 cDNA, wherein SEQ ID NO:61 is a clone designated herein as “DNA108912-2680”.
  • FIG. 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in FIG. 61.
  • FIG. 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO7476 cDNA, wherein SEQ ID NO:63 is a clone designated herein as “DNA115253-2757”.
  • FIG. 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in FIG. 63.
  • FIG. 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO6496 cDNA, wherein SEQ ID NO:65 is a clone designated herein as “DNA119302-2737”.
  • FIG. 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in FIG. 65.
  • FIG. 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO7422 cDNA, wherein SEQ ID NO:67 is a clone designated herein as “DNA119536-2752”.
  • FIG. 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in FIG. 67.
  • FIG. 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO7431 cDNA, wherein SEQ ID NO:69 is a clone designated herein as “DNA119542-2754”.
  • FIG. 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in FIG. 69.
  • FIG. 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO10275 cDNA, wherein SEQ ID NO:71 is a clone designated herein as “DNA143498-2824”.
  • FIG. 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in FIG. 71.
  • FIG. 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO10268 cDNA, wherein SEQ ID NO:73 is a clone designated herein as “DNA145583-2820”.
  • FIG. 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in FIG. 73.
  • FIG. 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO20080 cDNA, wherein SEQ ID NO:75 is a clone designated herein as “DNA161000-2896”.
  • FIG. 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in FIG. 75.
  • FIG. 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO21207 cDNA, wherein SEQ ID NO:77 is a clone designated herein as “DNA161005-2943”.
  • FIG. 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in FIG. 77.
  • FIG. 79 shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO28633 cDNA, wherein SEQ ID NO:79 is a clone designated herein as “DNA170245-3053”.
  • FIG. 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in FIG. 79.
  • FIG. 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO20933 cDNA, wherein SEQ ID NO:81 is a clone designated herein as “DNA171771-2919”.
  • FIG. 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in FIG. 81.
  • FIG. 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO21383 cDNA, wherein SEQ ID NO:83 is a clone designated herein as “DNA173157-2981”.
  • FIG. 84 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in FIG. 83.
  • FIG. 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO21485 cDNA, wherein SEQ ID NO:85 is a clone designated herein as “DNA175734-2985”.
  • FIG. 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in FIG. 85.
  • FIG. 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO28700 cDNA, wherein SEQ ID NO:87 is a clone designated herein as “DNA176108-3040”.
  • FIG. 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in FIG. 87.
  • FIG. 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO34012 cDNA, wherein SEQ ID NO:89 is a clone designated herein as “DNA190710-3028”.
  • FIG. 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in FIG. 89.
  • FIG. 91 shows a nucleotide sequence (SEQ ID NO:91) of a native sequence PRO34003 cDNA, wherein SEQ ID NO:91 is a clone designated herein as “DNA190803-3019”.
  • FIG. 92 shows the amino acid sequence (SEQ ID NO:92) derived from the coding sequence of SEQ ID NO:91 shown in FIG. 91.
  • FIG. 93 shows a nucleotide sequence (SEQ ID NO:93) of a native sequence PRO34274 cDNA, wherein SEQ ID NO:93 is a clone designated herein as “DNA191064-3069”.
  • FIG. 94 shows the amino acid sequence (SEQ ID NO:94) derived from the coding sequence of SEQ ID NO:93 shown in FIG. 93.
  • FIGS. 95 A- 95 B shows a nucleotide sequence (SEQ ID NO:95) of a native sequence PRO34001 cDNA, wherein SEQ ID NO:95 is a clone designated herein as “DNA194909-3013”.
  • FIG. 96 shows the amino acid sequence (SEQ ID NO:96) derived from the coding sequence of SEQ ID NO:95 shown in FIGS. 95 A- 95 B.
  • FIG. 97 shows a nucleotide sequence (SEQ ID NO:97) of a native sequence PRO34009 cDNA, wherein SEQ ID NO:97 is a clone designated herein as “DNA203532-3029”.
  • FIG. 98 shows the amino acid sequence (SEQ ID NO:98) derived from the coding sequence of SEQ ID NO:97 shown in FIG. 97.
  • FIG. 99 shows a nucleotide sequence (SEQ ID NO:99) of a native sequence PRO34192 cDNA, wherein SEQ ID NO:99 is a clone designated herein as “DNA213858-3060”.
  • FIG. 100 shows the amino acid sequence (SEQ ID NO:100) derived from the coding sequence of SEQ ID NO:99 shown in FIG. 99.
  • FIG. 101 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO34564 cDNA, wherein SEQ ID NO:101 is a clone designated herein as “DNA216676-3083”.
  • FIG. 102 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in FIG. 101.
  • FIG. 103 shows a nucleotide sequence (SEQ ID NO:103) of a native sequence PRO35444 cDNA, wherein SEQ ID NO:103 is a clone designated herein as “DNA222653-3104”.
  • FIG. 104 shows the amino acid sequence (SEQ ID NO:104) derived from the coding sequence of SEQ ID NO:103 shown in FIG. 103.
  • FIG. 105 shows a nucleotide sequence (SEQ ID NO:105) of a native sequence PRO5998 cDNA, wherein SEQ ID NO:105 is a clone designated herein as “DNA96897-2688”.
  • FIG. 106 shows the amino acid sequence (SEQ ID NO:106) derived from the coding sequence of SEQ ID NO:105 shown in FIG. 105.
  • FIG. 107 shows a nucleotide sequence (SEQ ID NO:107) of a native sequence PRO19651 cDNA, wherein SEQ ID NO:107 is a clone designated herein as “DNA142917-3081”.
  • FIG. 108 shows the amino acid sequence (SEQ ID NO:108) derived from the coding sequence of SEQ ID NO:107 shown in FIG. 107.
  • FIG. 109 shows a nucleotide sequence (SEQ ID NO:109) of a native sequence PRO20221 cDNA, wherein SEQ ID NO:109 is a clone designated herein as “DNA142930-2914”.
  • FIG. 110 shows the amino acid sequence (SEQ ID NO:110) derived from the coding sequence of SEQ ID NO:109 shown in FIG. 109.
  • FIG. 111 shows a nucleotide sequence (SEQ ID NO:111) of a native sequence PRO21434 cDNA, wherein SEQ ID NO:111 is a clone designated herein as “DNA147253-2983”.
  • FIG. 112 shows the amino acid sequence (SEQ ID NO:112) derived from the coding sequence of SEQ ID NO:111 shown in FIG. 111.
  • FIG. 113 shows a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO19822 cDNA, wherein SEQ ID NO:113 is a clone designated herein as “DNA149927-2887”.
  • FIG. 114 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in FIG. 113.
  • PRO polypeptide and “PRO” as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein.
  • the terms “PRO/number polypeptide” and “PRO/number” wherein the term “number” is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein).
  • the PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.
  • PRO polypeptide refers to each individual PRO/number polypeptide disclosed herein.
  • PRO polypeptide refers to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually.
  • the term “PRO polypeptide” also includes variants of the PRO/number polypeptides disclosed herein.
  • a “native sequence PRO polypeptide” comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means.
  • the term “native sequence PRO polypeptide” specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide.
  • the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO polypeptides.
  • the PRO polypeptide “extracellular domain” or “ECD” refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein.
  • an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are comtemplated by the present invention.
  • cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species.
  • These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.
  • PRO polypeptide variant means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein.
  • Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence.
  • a PRO polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length
  • PRO variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20 amino acids in length, alternatively at least about 30 amino acids in length, alternatively at least about 40 amino acids in length, alternatively at least about 50 amino acids in length, alternatively at least about 60 amino acids in length, alternatively at least about 70 amino acids in length, alternatively at least about 80 amino acids in length, alternatively at least about 90 amino acids in length, alternatively at least about 100 amino acids in length, alternatively at least about 150 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 300 amino acids in length, or more.
  • Percent (%) amino acid sequence identity with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
  • % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below.
  • the ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087.
  • the ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below.
  • the ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
  • % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows:
  • Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated “Comparison Protein” to the amino acid sequence designated “PRO”, wherein “PRO” represents the amino acid sequence of a hypothetical PRO polypeptide of interest, “Comparison Protein” represents the amino acid sequence of a polypeptide against which the “PRO” polypeptide of interest is being compared, and “X, “Y” and “Z” each represent different hypothetical amino acid residues.
  • a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest.
  • amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.
  • Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).
  • NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md.
  • % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows:
  • PRO variant polynucleotide or “PRO variant nucleic acid sequence” means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein.
  • a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 9
  • PRO variant polynucleotides are at least about 30 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 210 nucleotides in length, alternatively at least about 240 nucleotides in length, alternatively at least about 270 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 900 nucleotides in length, or more.
  • Percent (%) nucleic acid sequence identity with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software.
  • % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below.
  • the ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087.
  • the ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below.
  • the ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
  • the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D is calculated as follows:
  • W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D
  • Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.
  • Tables 4 and 5 demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated “Comparison DNA” to the nucleic acid sequence designated “PRO-DNA”, wherein “PRO-DNA” represents a hypothetical PRO-encoding nucleic acid sequence of interest, “Comparison DNA” represents the nucleotide sequence of a nucleic acid molecule against which the “PRO-DNA” nucleic acid molecule of interest is being compared, and “N”, “L” and “V” each represent different hypothetical nucleotides.
  • a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest.
  • nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest.
  • Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).
  • NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md.
  • % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D is calculated as follows:
  • W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D
  • Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.
  • PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein.
  • PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide.
  • Isolated when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
  • the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
  • An “isolated” PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid.
  • An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells.
  • an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
  • control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
  • Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • antibody is used in the broadest sense and specifically covers, for example, single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below).
  • monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5 ⁇ SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 ⁇ Denhardt's solution, sonicated salmon sperm DNA (50 ⁇ g/ml), 0.1% SDS, and 10% dex
  • Modely stringent conditions may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above.
  • washing solution and hybridization conditions e.g., temperature, ionic strength and % SDS
  • An example of moderately stringent conditions is overnight incubation at 37° C.
  • epitope tagged when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a “tag polypeptide”.
  • the tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused.
  • the tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes.
  • Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).
  • immunoadhesin designates antibody-like molecules which combine the binding specificity of a heterologous protein (an “adhesin”) with the effector functions of immunoglobulin constant domains.
  • the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is “heterologous”), and an immunoglobulin constant domain sequence.
  • the adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand.
  • the immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.
  • immunoglobulin such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.
  • “Active” or “activity” for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein “biological” activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an “immunological” activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO.
  • the term “antagonist” is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide disclosed herein.
  • the term “agonist” is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein.
  • Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc.
  • Methods for identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder.
  • Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
  • Chronic administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.
  • Intermittent administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.
  • Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
  • Carriers as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution.
  • physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM, polyethylene glycol (PEG), and PLURONICSTM.
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid
  • proteins such as serum albumin,
  • Antibody fragments comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody.
  • antibody fragments include Fab, Fab′, F(ab′) 2 , and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily.
  • Pepsin treatment yields an F(ab′) 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • Fv is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V H -V L dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • the Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain.
  • Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
  • Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • F(ab′) 2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • the “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains.
  • immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
  • Single-chain Fv or “sFv” antibody fragments comprise the V H and V L domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the sFv to form the desired structure for antigen binding.
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) in the same polypeptide chain (V H -V L ).
  • V H heavy-chain variable domain
  • V L light-chain variable domain
  • the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
  • Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaccous or nonproteinaceous solutes.
  • the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • An antibody that “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.
  • label when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a “labeled” antibody.
  • the label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.
  • solid phase is meant a non-aqueous matrix to which the antibody of the present invention can adhere.
  • solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones.
  • the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149.
  • a “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal.
  • a drug such as a PRO polypeptide or antibody thereto
  • the components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.
  • a “small molecule” is defined herein to have a molecular weight below about 500 Daltons.
  • an “effective amount” of a polypeptide disclosed herein or an agonist or antagonist thereof is an amount sufficient to carry out a specifically stated purpose.
  • An “effective amount” may be determined empirically and in a routine manner, in relation to the stated purpose.
  • the present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides.
  • cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed.
  • PRO/number the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as “PRO/number”, regardless of their origin or mode of preparation.
  • PRO variants can be prepared.
  • PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide.
  • amino acid changes may alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.
  • Variations in the native full-length sequence PRO or in various domains of the PRO described herein can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934.
  • Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO.
  • the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO.
  • Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology.
  • Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements.
  • Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.
  • PRO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO polypeptide.
  • PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5′ and 3′ primers in the PCR. Preferably, PRO polypeptide fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed herein.
  • PCR polymerase chain reaction
  • Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
  • Naturally occurring residues are divided into groups based on common side-chain properties:
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.
  • the variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis.
  • Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)]
  • cassette mutagenesis [Wells et al., Gene, 34:315 (1985)]
  • restriction selection mutagenesis Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA.
  • Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence.
  • preferred scanning amino acids are relatively small, neutral amino acids.
  • amino acids include alanine, glycine, serine, and cysteine.
  • Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244: 1081-1085 (1989)].
  • Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W. H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.
  • Covalent modifications of PRO are included within the scope of this invention.
  • One type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the PRO.
  • Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa.
  • crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.
  • 1,1-bis(diazoacetyl)-2-phenylethane glutaraldehyde
  • N-hydroxysuccinimide esters for example, esters with 4-azidosalicylic acid
  • homobifunctional imidoesters including disuccinimidyl esters such as 3,3′-dithiobis(s
  • Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide.
  • “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO.
  • the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.
  • Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence.
  • the alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites).
  • the PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).
  • Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation.
  • Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981).
  • Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).
  • PRO polypeptide comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • PEG polyethylene glycol
  • polypropylene glycol polypropylene glycol
  • polyoxyalkylenes polyoxyalkylenes
  • the PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence.
  • such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind.
  • the epitope tag is generally placed at the amino- or carboxyl-terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag.
  • tag polypeptides and their respective antibodies are well known in the art.
  • poly-histidine poly-his
  • poly-histidine-glycine poly-his-glycine tags
  • flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]
  • c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]
  • Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)].
  • tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an ⁇ -tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].
  • the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin.
  • an immunoglobulin also referred to as an “immunoadhesin”
  • a fusion could be to the Fc region of an IgG molecule.
  • the Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule.
  • the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule.
  • PRO sequence or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid - Phase Peptide Synthesis, W. H. Freeman Co., San Francisco, Calif. (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation.
  • Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions.
  • Various portions of the PRO may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO.
  • DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples.
  • the PRO-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis).
  • Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].
  • the oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized.
  • the oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like 32 P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.
  • Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.
  • Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.
  • Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • the culture conditions such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.
  • Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl 2 , CaPO 4 , liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells.
  • the calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes.
  • Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989.
  • DNA into cells such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used.
  • polycations e.g., polybrene, polyornithine.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells.
  • Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli .
  • Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5772 (ATCC 53,635).
  • suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli , Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium , Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting.
  • Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes.
  • strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E.
  • coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan r ;
  • E. coli W3110 strain 37D6 which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan r ;
  • E. coli W3110 strain 40B4 which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued Aug. 7, 1990.
  • in vitro methods of cloning e.g., PCR or other nucleic acid polymerase reactions, are suitable.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO-encoding vectors.
  • Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
  • Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published May 2, 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K.
  • lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. manrianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J.
  • Candida Trichoderma reesia (EP 244,234); Neurospora crassa (Case et at., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published Oct. 31, 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published Jan. 10, 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res.
  • Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).
  • Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms.
  • invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells.
  • useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci.
  • mice sertoli cells TM4, Mather, Biol. Reprod., 23:243-251 (1980)
  • human lung cells W138, ATCC CCL 75
  • human liver cells Hep G2, HB 8065
  • mouse mammary tumor MMT 060562, ATCC CCL51. The selection of the appropriate host cell is deemed to be within the skill in the art.
  • the nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression.
  • a replicable vector for cloning (amplification of the DNA) or for expression.
  • the vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage.
  • the appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art.
  • Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.
  • the PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the signal sequence may be a component of the vector, or it may be a part of the PRO-encoding DNA that is inserted into the vector.
  • the signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, 1 pp, or heat-stable enterotoxin II leaders.
  • the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published Apr. 4, 1990), or the signal described in WO 90/13646 published Nov. 15, 1990.
  • mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.
  • Selection genes will typically contain a selection gene, also termed a selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • Suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase.
  • An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).
  • a suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)).
  • the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1[Jones, Genetics, 85:12 (1977)].
  • Expression and cloning vectors usually contain a promoter operably linked to the PRO-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the ⁇ -lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA en
  • Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv.
  • yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
  • PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published Jul. 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.
  • viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published Jul. 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus,
  • Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription.
  • Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus.
  • Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • the enhancer may be spliced into the vector at a position 5′ or 3′ to the PRO coding sequence, but is preferably located at a site 5′ from the promoter.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO.
  • Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein.
  • antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Gene expression may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product.
  • Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope.
  • Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.
  • a suitable detergent solution e.g. Triton-X 100
  • Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.
  • the following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO.
  • Nucleotide sequences (or their complement) encoding PRO have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA.
  • PRO nucleic acid will also be useful for the preparation of PRO polypeptides by the recombinant techniques described herein.
  • the full-length native sequence PRO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of PRO or PRO from other species) which have a desired sequence identity to the native PRO sequence disclosed herein.
  • the length of the probes will be about 20 to about 50 bases.
  • the hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO.
  • a screening method will comprise isolating the coding region of the PRO gene using the known DNA sequence to synthesize a selected probe of about 40 bases.
  • Hybridization probes may be labeled by a variety of labels, including radionucleotides such as 32 P or 35 S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.
  • antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target PRO mRNA (sense) or PRO DNA (antisense) sequences.
  • Antisense or sense oligonucleotides comprise a fragment of the coding region of PRO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides.
  • Stein and Cohen Cancer Res. 48:2659, 1988
  • van der Krol et al. BioTechniques 6:958, 1988.
  • binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means.
  • the antisense oligonucleotides thus may be used to block expression of PRO proteins.
  • Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases.
  • Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences.
  • sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine).
  • intercalating agents such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.
  • Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO 4 -mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus.
  • an antisense or sense oligonucleotide is inserted into a suitable retroviral vector.
  • a cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo.
  • Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641).
  • Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753.
  • Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors.
  • conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.
  • a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448.
  • the sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.
  • Antisense or sense RNA or DNA molecules are generally at least about 5 bases in length, about 10 bases in length, about 15 bases in length, about 20 bases in length, about 25 bases in length, about 30 bases in length, about 35 bases in length, about 40 bases in length, about 45 bases in length, about 50 bases in length, about 55 bases in length, about 60 bases in length, about 65 bases in length, about 70 bases in length, about 75 bases in length, about 80 bases in length, about 85 bases in length, about 90 bases in length, about 95 bases in length, about 100 bases in length, or more.
  • the probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO coding sequences.
  • Nucleotide sequences encoding a PRO can also be used to construct hybridization probes for mapping the gene which encodes that PRO and for the genetic analysis of individuals with genetic disorders.
  • the nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries.
  • the coding sequences for PRO encode a protein which binds to another protein (example, where the PRO is a receptor)
  • the PRO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO or a receptor for PRO.
  • screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.
  • Small molecules contemplated include synthetic organic or inorganic compounds.
  • the assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.
  • Nucleic acids which encode PRO or its modified forms can also be used to generate either transgenic animals or “knock out” animals which, in turn, are useful in the development and screening of therapeutically useful reagents.
  • a transgenic animal e.g., a mouse or rat
  • a transgenic animal is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage.
  • a transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops.
  • cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding PRO.
  • Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009.
  • particular cells would be targeted for PRO transgene incorporation with tissue-specific enhancers.
  • Transgenic animals that include a copy of a transgene encoding PRO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding PRO.
  • Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression.
  • an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition.
  • non-human homologues of PRO can be used to construct a PRO “knockout” animal which has a defective or altered gene encoding PRO as a result of homologous recombination between the endogenous gene encoding PRO and altered genomic DNA encoding PRO introduced into an embryonic stem cell of the animal.
  • cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques. A portion of the genomic DNA encoding PRO can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration.
  • flanking DNA typically, several kilobases of unaltered flanking DNA (both at the 5′ and 3′ ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors].
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)].
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152].
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a “knock out” animal.
  • Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA.
  • Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the PRO polypeptide.
  • Nucleic acid encoding the PRO polypeptides may also be used in gene therapy.
  • genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene.
  • Gene therapy includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA.
  • Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane.
  • oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups.
  • nucleic acids there are a variety of techniques available for introducing nucleic acids into viable cells.
  • the techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host.
  • Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc.
  • the currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11, 205-210 [1993]).
  • the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc.
  • an agent that targets the target cells such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc.
  • proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life.
  • the technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem.
  • PRO polypeptides described herein may also be employed as molecular weight markers for protein electrophoresis purposes and the isolated nucleic acid sequences may be used for recombinantly expressing those markers.
  • nucleic acid molecules encoding the PRO polypeptides or fragments thereof described herein are useful for chromosome identification.
  • Each PRO nucleic acid molecule of the present invention can be used as a chromosome marker.
  • PRO polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the PRO polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type.
  • PRO nucleic acid molecules will find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis.
  • PRO polypeptides described herein may also be employed as therapeutic agents.
  • the PRO polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the PRO product hereof is combined in admixture with a pharmaceutically acceptable carrier vehicle.
  • Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers ( Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumim, gelatin or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM, PLURONICSTM or PEG.
  • buffers such as phosphate, citrate and other organic acids
  • antioxidants including ascorbic acid
  • formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution.
  • Therapeutic compositions herein generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • the route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial or intralesional routes, topical administration, or by sustained release systems.
  • Dosages and desired drug concentrations of pharmaceutical compositions of the present invention may vary depending on the particular use envisioned. The determination of the appropriate dosage or route of administration is well within the skill of an ordinary physician. Animal experiments provide reliable guidance for be determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles laid down by Mordenti, J. and Chappell, W. “The use of interspecies scaling in toxicokinetics” In Toxicokinetics and New Drug Development, Yacobi et al., Eds., Pergamon Press, New York 1989, pp. 42-96.
  • a PRO polypeptide or agonist or antagonist thereof When in vivo administration of a PRO polypeptide or agonist or antagonist thereof is employed, normal dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of mammal body weight or more per day, preferably about 1 ⁇ g/kg/day to 10 mg/kg/day, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212. It is anticipated that different formulations will be effective for different treatment compounds and different disorders, that administration targeting one organ or tissue, for example, may necessitate delivery in a manner different from that to another organ or tissue.
  • microencapsulation of the PRO polypeptide is contemplated. Microencapsulation of recombinant proteins; for sustained release has been successfully performed with human growth hormone (rhGH), interferon-(rhIFN), interleukin-2, and MN rgp120. Johnson et al., Nat. Med., 2:795-799 (1996); Yasuda, Biomed.
  • rhGH human growth hormone
  • rhIFN interferon-(rhIFN)
  • interleukin-2 interleukin-2
  • MN rgp120 MN rgp120
  • the sustained-release formulations of these proteins were developed using poly-lactic-coglycolic acid (PLGA) polymer due to its biocompatibility and wide range of biodegradable properties.
  • PLGA poly-lactic-coglycolic acid
  • the degradation products of PLGA, lactic and glycolic acids, can be cleared quickly within the human body.
  • the degradability of this polymer can be adjusted from months to years depending on its molecular weight and composition.
  • Lewis “Controlled release of bioactive agents from lactide/glycolide polymer,” in: M. Chasin and R. Langer (Eds.), Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp. 1-41.
  • This invention encompasses methods of screening compounds to identify those that mimic the PRO polypeptide (agonists) or prevent the effect of the PRO polypeptide (antagonists).
  • Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins.
  • Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.
  • the assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art.
  • the interaction is binding and the complex formed can be isolated or detected in the reaction mixture.
  • the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments.
  • Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying.
  • an immobilized antibody e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface.
  • the assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized component, e.g., the coated surface containing the anchored component.
  • the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected.
  • the detection of label immobilized on the surface indicates that complexing occurred.
  • complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex.
  • the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions.
  • assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns.
  • protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature ( London ), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci.
  • yeast GAL4 Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain.
  • yeast expression system described in the foregoing publications (generally referred to as the “two-hybrid system”) takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain.
  • GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for ⁇ -galactosidase.
  • a complete kit (MATCHMAKERTM) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.
  • the PRO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the PRO polypeptide indicates that the compound is an antagonist to the PRO polypeptide.
  • antagonists may be detected by combining the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay.
  • the PRO polypeptide can be labeled, such as by radioactivity, such that the number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist.
  • the gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991).
  • expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the PRO polypeptide. Transfected cells that are grown on glass slides are exposed to labeled PRO polypeptide.
  • the PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor.
  • labeled PRO polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro-sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.
  • mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured.
  • potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with PRO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments.
  • a potential antagonist may be a closely related protein, for example, a mutated form of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the PRO polypeptide.
  • Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation.
  • Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA.
  • the 5′ coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
  • a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456(1988); Dervanet al., Science, 251:1360(1991)), thereby preventing transcription and the production of the PRO polypeptide.
  • the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the PRO polypeptide (antisense—Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, Fla., 1988).
  • the oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the PRO polypeptide.
  • antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about ⁇ 10 and +10 positions of the target gene nucleotide sequence, are preferred.
  • Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological activity of the PRO polypeptide.
  • small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds.
  • Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current Biology, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published Sep. 18, 1997).
  • Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides.
  • the base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex.
  • Hoogsteen base-pairing rules which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex.
  • Diagnostic and therapeutic uses of the herein disclosed molecules may also be based upon the positive functional assay hits disclosed and described below.
  • the present invention further provides anti-PRO antibodies.
  • Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.
  • the anti-PRO antibodies may comprise polygonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections.
  • the immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized.
  • immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
  • adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
  • the immunization protocol may be selected by one skilled in the art without undue experimentation.
  • the anti-PRO antibodies may, alternatively, be monoclonal antibodies.
  • Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975).
  • a hybridoma method a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent.
  • the lymphocytes may be immunized in vitro.
  • the immunizing agent will typically include the PRO polypeptide or a fusion protein thereof.
  • PBLs peripheral blood lymphocytes
  • spleen cells or lymph node cells are used if non-human mammalian sources are desired.
  • the lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103].
  • Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin.
  • rat or mouse myeloma cell lines are employed.
  • the hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].
  • the culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO.
  • the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunoabsorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal.
  • the monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • the monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567.
  • DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells of the invention serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Pat. No. 4,816,567; Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.
  • the antibodies may be monovalent antibodies.
  • Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain.
  • the heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking.
  • the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.
  • the anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies.
  • Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′) 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
  • Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.
  • CDR complementary determining region
  • Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].
  • Fc immunoglobulin constant region
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain.
  • Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)].
  • the techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)].
  • human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos.
  • the antibodies may also be affinity matured using known selection and/or mutagenesis methods as described above.
  • Preferred affinity matured antibodies have an affinity which is five times, more preferably 10 times, even more preferably 20 or 30 times greater than the starting antibody (generally murine, humanized or human) from which the matured antibody is prepared.
  • Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens.
  • one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.
  • bispecific antibodies Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • Antibody variable domains with the desired binding specificities can be fused to immunoglobulin constant domain sequences.
  • the fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions.
  • DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
  • the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture.
  • the preferred interface comprises at least a part of the CH3 region of an antibody constant domain.
  • one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′) 2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′) 2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • TAB thionitrobenzoate
  • One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody.
  • the bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • Fab′ fragments may be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′) 2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
  • bispecific antibodies have been produced using leucine zippers.
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers.
  • the fragments comprise a heavy-chain variable domain (V H ) connected to a light-chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • sFv single-chain Fv
  • Antibodies with more than two valencies are contemplated.
  • trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).
  • bispecific antibodies may bind to two different epitopes on a given PRO polypeptide herein.
  • an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32) and Fc ⁇ RIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular PRO polypeptide.
  • Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide.
  • These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA.
  • a cytotoxic agent or a radionuclide chelator such as EOTUBE, DPTA, DOTA, or TETA.
  • Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF).
  • Heteroconjugate antibodies are also within the scope of the present invention.
  • Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Pat. No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089].
  • the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.
  • cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region.
  • the homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992).
  • Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993).
  • an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti - Cancer Drug Design, 3: 219-230 (1989).
  • the invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa ), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
  • radionuclides are available for the production of radioconjugated antibodies. Examples include 212 Bi, 131 I, 131 In, 90 Y, and 186 Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis
  • a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987).
  • Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.
  • the antibody may be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide).
  • a receptor such streptavidin
  • a ligand e.g., avidin
  • cytotoxic agent e.g., a radionucleotide
  • the antibodies disclosed herein may also be formulated as immunoliposomes.
  • Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
  • Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
  • Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction.
  • a chemotherapeutic agent such as Doxorubicin is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).
  • Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders in the form of pharmaceutical compositions.
  • the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred.
  • lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred.
  • peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco el al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).
  • the formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent.
  • cytotoxic agent such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent.
  • Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • the active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules
  • formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate copolymers of L-glutamic acid and ⁇ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-( ⁇ )-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • encapsulated antibodies When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • anti-PRO antibodies of the invention have various utilities.
  • anti-PRO antibodies may be used in diagnostic assays for PRO, e.g., detecting its expression (and in some cases, differential expression) in specific cells, tissues, or serum.
  • diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp. 147-158].
  • the antibodies used in the diagnostic assays can be labeled with a detectable moiety.
  • the detectable moiety should be capable of producing, either directly or indirectly, a detectable signal.
  • the detectable moiety may be a radioisotope, such as 3 H, 14 C, 32 P, 35 S, or 125 I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase.
  • any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13: 1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).
  • Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources.
  • the antibodies against PRO are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art.
  • the immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody.
  • the extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to search EST databases.
  • the EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQTM, Incyte Pharmaceuticals, Palo Alto, Calif.).
  • the search was performed using the computer program BLAST or BLAST-2 (Altschul et al., Methods in Enzymology 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program “phrap” (Phil Green, University of Washington, Seattle, Wash.).
  • oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide.
  • Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length.
  • the probe sequences are typically 40-55 bp in length.
  • additional oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5 kbp.
  • DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.
  • the cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, Calif.
  • the cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.
  • a suitable cloning vector such as pRKB or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes
  • mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, Calif. (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, Md. (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the SalI/NotI linkered cDNA was cloned into XhoI/NotI cleaved vector.
  • pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the XhoI/NotI cDNA cloning sites.
  • a secondary cDNA library was generated in order to preferentially represent the 5′ ends of the primary cDNA clones.
  • Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector.
  • pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites.
  • cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies.
  • DNA from the library described in paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37° C. for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37° C.). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.
  • yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis.
  • yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL + , SUC + , GAL + .
  • yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec71, sec72, sec62, with truncated sec71 being most preferred.
  • antagonists including antisense nucleotides and/or ligands which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.
  • other proteins implicated in this post translation pathway e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p
  • the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.
  • the cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li 2 OOCCH 3 ), and resuspended into LiAc/TE (2.5 ml).
  • LiAc/TE 10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li 2 OOCCH 3
  • Transformation took place by mixing the prepared cells (100 ⁇ l) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, Md.) and transforming DNA (1 ⁇ g, vol. ⁇ 10 ⁇ l) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 ⁇ l, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li 2 OOCCH 3 , pH 7.5) was added. This mixture was gently mixed and incubated at 30° C. while agitating for 30 minutes. The cells were then heat shocked at 42° C.
  • TE 500 ⁇ l, 10 mM Tris-HCl, 1 mM EDTA pH 7.5
  • the cells were then diluted into TE (1 ml) and aliquots (200 ⁇ l) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).
  • the selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., p. 208-210 (1994). Transformants were grown at 30° C. for 2-3 days.
  • the detection of colonies secreting amylase was performed by including red starch in the selective growth media.
  • Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., Anal. Biochem., 172:176-179 (1988).
  • the coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).
  • the positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies.
  • Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly.
  • PCR was then performed as follows: a. Denature 92° C., 5 minutes b. 3 cycles of: Denature 92° C., 30 seconds Anneal 59° C., 30 seconds Extend 72° C., 60 seconds c. 3 cycles of: Denature 92° C., 30 seconds Anneal 57° C., 30 seconds Extend 72° C., 60 seconds d. 25 cycles of: Denature 92° C., 30 seconds Anneal 55° C., 30 seconds Extend 72° C., 60 seconds e. Hold 4° C.
  • Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc. (South San Francisco, Calif.) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, Calif.) databases.
  • the signal sequence algorithm computes a secretion signal score based on the character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5′-end of the sequence or sequence fragment under consideration.
  • the nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored.
  • the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences.
  • DNA comprising the coding sequence of full-length or mature PRO as disclosed herein is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries.
  • Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions.
  • Hybridization of radiolabeled PRO-derived probe to the filters is performed in a solution of 50% formamide, 5 ⁇ SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2 ⁇ Denhardt's solution, and 10% dextran sulfate at 42° C. for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1 ⁇ SSC and 0.1% SDS at 42° C.
  • DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO can then be identified using standard techniques known in the art.
  • This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in E. coli.
  • the DNA sequence encoding PRO is initially amplified using selected PCR primers.
  • the primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector.
  • a variety of expression vectors may be employed.
  • An example of a suitable vector is pBR322 (derived from E. coli ; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance.
  • the vector is digested with restriction enzyme and dephosphorylated.
  • the PCR amplified sequences are then ligated into the vector.
  • the vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene.
  • the ligation mixture is then used to transform a selected E. coli strain using the methods described in Sambrook et al., supra. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.
  • Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics.
  • the overnight culture may subsequently be used to inoculate a larger scale culture.
  • the cells are then grown to a desired optical density, during which the expression promoter is turned on.
  • the cells After culturing the cells for several more hours, the cells can be harvested by centrifugation.
  • the cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein.
  • PRO may be expressed in E. coli in a poly-His tagged form, using the following procedure.
  • the DNA encoding PRO is initially amplified using selected PCR primers.
  • the primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase.
  • the PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an E. coli host based on strain 52 (W3110 fuhA(tonA) lon galE rpoHts(htpRts) clpP(lacIq).
  • Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30° C. with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH 4 ) 2 SO 4 , 0.71 g sodium citrate.2H 2 O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO 4 ) and grown for approximately 20-30 hours at 30° C. with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.
  • CRAP media prepared by mixing 3.57 g (NH 4 ) 2 SO 4 , 0.71 g sodium citrate.2H 2 O, 1.07 g
  • E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer.
  • Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4° C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization.
  • the solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min.
  • the supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify.
  • the clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer.
  • the column is washed with additional buffer containing 50 mM imidazole (Calbipchem, Utrol grade), pH 7.4.
  • the protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4° C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.
  • the proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml.
  • the refolding solution is stirred gently at 4° C. for 12-36 hours.
  • the refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3).
  • the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration.
  • the refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.
  • This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells.
  • the vector, pRK5 (see EP 307,247, published Mar. 15, 1989), is employed as the expression vector.
  • the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., supra.
  • the resulting vector is called pRK5-PRO.
  • the selected host cells may be 293 cells.
  • Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics.
  • About 10 ⁇ g pRK5-PRO DNA is mixed with about 1 ⁇ g DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 ⁇ l of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl 2 .
  • the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 ⁇ Ci/ml 35 S-cysteine and 200 ⁇ Ci/ml 35 S-methionine.
  • culture medium alone
  • culture medium containing 200 ⁇ Ci/ml 35 S-cysteine and 200 ⁇ Ci/ml 35 S-methionine After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO polypeptide.
  • the cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.
  • PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 ⁇ g pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours.
  • the cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 ⁇ g/ml bovine insulin and 0.1 ⁇ g/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.
  • PRO can be expressed in CHO cells.
  • the pRK5-PRO can be transfected into CHO cells using known reagents such as CaPO 4 or DEAE-dextran.
  • the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as 35 S-methionine.
  • the culture medium may be replaced with serum free medium.
  • the cultures are incubated for about 6 days, and then the conditioned medium is harvested.
  • the medium containing the expressed PRO can then be concentrated and purified by any selected method.
  • Epitope-tagged PRO may also be expressed in host CHO cells.
  • the PRO may be subcloned out of the pRK5 vector.
  • the subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector.
  • the poly-his tagged PRO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones.
  • the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression.
  • the culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Ni 2+ -chelate affinity chromatography.
  • PRO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure.
  • Stable expression in CHO cells is performed using the following procedure.
  • the proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form.
  • CHO expression vectors are constructed to have compatible restriction sites 5′ and 3′ of the DNA of interest to allow the convenient shuttling of cDNA's.
  • the vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR).
  • DHFR expression permits selection for stable maintenance of the plasmid following transfection.
  • the ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing.
  • the contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes.
  • the supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 ⁇ m filtered PS20 with 5% 0.2 ⁇ m diafiltered fetal bovine serum).
  • the cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37° C.
  • spinners After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 ⁇ 10 5 cells/mL.
  • the cell media is exchanged with fresh media by centrifugation and resuspension in production medium.
  • any suitable CHO media may be employed, a production medium described in U.S. Pat. No. 5,122,469, issued Jun. 16, 1992 may actually be used.
  • a 3L production spinner is seeded at 1.2 ⁇ 10 6 cells/mL. On day 0, the cell number pH ie determined. On day 1, the spinner is sampled and sparging with filtered air is commenced.
  • the spinner On day 2, the spinner is sampled, the temperature shifted to 33° C., and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 ⁇ m filter. The filtrate was either stored at 4° C. or immediately loaded onto columns for purification.
  • 10% antifoam e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion
  • the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4° C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole.
  • Ni-NTA column Qiagen
  • the highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at ⁇ 80° C.
  • Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows.
  • the conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5.
  • the eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 ⁇ L of 1 M Tris buffer, pH 9.
  • the highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation.
  • yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter.
  • DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO.
  • DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO.
  • yeast cells such as yeast strain AB110
  • yeast cells can then be transformed with the expression plasmids described above and cultured in selected fermentation media.
  • the transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.
  • Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters.
  • the concentrate containing PRO may further be purified using selected column chromatography resins.
  • sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector.
  • epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG).
  • a variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen).
  • the sequence encoding PRO or the desired portion of the coding sequence of PRO such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5′ and 3′ regions.
  • the 5′ primer may incorporate flanking (selected) restriction enzyme sites.
  • the product is then digested with those selected restriction enzymes and subcloned into the expression vector.
  • Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldTM virus DNA (Pharmingen) into Spodoptera frugiperda (“Sf9”) cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4-5 days of incubation at 28° C., the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994).
  • Expressed poly-his tagged PRO can then be purified, for example, by Ni 2+ -chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl 2 ; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice.
  • sonication buffer 25 mL Hepes, pH 7.9; 12.5 mM MgCl 2 ; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl
  • the sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 ⁇ m filter.
  • loading buffer 50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8
  • a Ni 2+ -NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer.
  • the filtered cell extract is loaded onto the column at 0.5 mL per minute.
  • the column is washed to baseline A 280 with loading buffer, at which point fraction collection is started.
  • the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein.
  • a secondary wash buffer 50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0
  • the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer.
  • One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni 2+ -NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His 10 -tagged PRO are pooled and dialyzed against loading buffer.
  • purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.
  • This example illustrates preparation of monoclonal antibodies which can specifically bind PRO.
  • Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.
  • mice such as Balb/c are immunized with the PRO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms.
  • the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, Mont.) and injected into the animal's hind foot pads.
  • MPL-TDM adjuvant Ribi Immunochemical Research, Hamilton, Mont.
  • the immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies.
  • the animals “positive” for antibodies can be injected with a final intravenous injection of PRO.
  • the mice Three to four days later, the mice are sacrificed and the spleen cells are harvested.
  • the spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597.
  • the fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.
  • HAT hyperxanthine, aminopterin, and thymidine
  • hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of “positive” hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art.
  • the positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO monoclonal antibodies.
  • the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.
  • Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin.
  • Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by anunonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.
  • a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.
  • Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.
  • a soluble PRO polypeptide-containing preparation is passed over the immunoaffinty column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected.
  • a low pH buffer such as approximately pH 2-3
  • a chaotrope such as urea or thiocyanate ion
  • This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques.
  • the PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly.
  • One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays.
  • One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested.
  • the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with an PRO polypeptide or fragment thereof and assaying (I) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled.
  • free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex.
  • Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on Sep. 13, 1984. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the peptide and immobilize it on the solid support.
  • This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRO polypeptide.
  • the goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (cf., Hodgson, Bio/Technology, 2: 19-21 (1991)).
  • the three-dimensional structure of the PRO polypeptide, or of an PRO polypeptide-inhibitor complex is determined by x-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors.
  • Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, Biochemistry, 31:7796-7801 (1992) or which act as inhibitors, agonists, or antagonists of native peptides as shown by Athauda et al., J. Biochem., 113:742-746 (1993).
  • PRO polypeptide may be made available to perform such analytical studies as X-ray crystallography.
  • knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to x-ray crystallography.
  • PRO polypeptides were then added at 1% either alone or in combination with 18 ng/ml interleukin-1 ⁇ , a known stimulator of proteoglycan release from cartilage tissue. The supernatant was then harvested and assayed for the amount of proteoglycans using the 1,9-dimethyl-methylene blue (DMB) colorimetric assay (Farndale and Buttle, Biochem. Biophys. Acta 883:173-177 (1985)). A positive result in this assay indicates that the test polypeptide will find use, for example, in the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis.
  • DMB 1,9-dimethyl-methylene blue
  • PRO polypeptides When various PRO polypeptides were tested in the above assay, the polypeptides demonstrated a marked ability to stimulate release of proteoglycans from cartilage tissue both basally and after stimulation with interleukin-1 ⁇ and at 24 and 72 hours after treatment, thereby indicating that these PRO polypeptides are useful for stimulating proteoglycan release from cartilage tissue. As such, these PRO polypeptides are useful for the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis. PRO6018 polypeptide testing positive in this assay.
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce proliferation of human microvascular endothelial cells in culture and, therefore, function as useful growth factors.
  • PRO polypeptides stimulated human microvascular endothelial cell proliferation in this assay: PRO1313, PRO20080, and PRO21383.
  • PRO polypeptides inhibited human microvascular endothelial cell proliferation in this assay: PRO6071, PRO4487, and PRO6006.
  • Nucleic acid microarrays are useful for identifying differentially expressed genes in diseased tissues as compared to their normal counterparts.
  • test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes.
  • the cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support.
  • the array is configured such that the sequence and position of each member of the array is known. For example, a selection of genes known to be expressed in certain disease states may be arrayed on a solid support. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene.
  • hybridization signal of a probe from a test (disease tissue) sample is greater than hybridization signal of a probe from a control (normal tissue) sample, the gene or genes overexpressed in the disease tissue are identified.
  • an overexpressed protein in a diseased tissue is useful not only as a diagnostic marker for the presence of the disease condition, but also as a therapeutic target for treatment of the disease condition.
  • cancerous tumors derived from various human tissues were studied for PRO polypeptide-encoding gene expression relative to non-cancerous human tissue in an attempt to identify those PRO polypeptides which are overexpressed in cancerous tumors.
  • Cancerous human tumor tissue from any of a variety of different human tumors was obtained and compared to a “universal” epithelial control sample which was prepared by pooling non-cancerous human tissues of epithelial origin, including liver, kidney, and lung.
  • mRNA isolated from the pooled tissues represents a mixture of expressed gene products from these different tissues.
  • Microarray hybridization experiments using the pooled control samples generated a linear plot in a 2-color analysis.
  • nucleic acid probes derived from the herein described PRO polypeptide-encoding nucleic acid sequences were used in the creation of the microarray and RNA from a panel of nine different tumor tissues (listed below) were used for the hybridization thereto.
  • a value based upon the normalized ratio:experimental ratio was designated as a “cutoff ratio”. Only values that were above this cutoff ratio were determined to be significant.
  • Table 8 below shows the results of these experiments, demonstrating that various PRO polypeptides of the present invention are significantly overexpressed in various human tumor tissues, as compared to a non-cancerous human tissue control or other human tumor tissues.
  • This assay is useful for screening PRO polypeptides for the ability to induce the switch from adult hemoglobin to fetal hemoglobin in an erythroblastic cell line. Molecules testing positive in this assay are expected to be useful for therapeutically treating various mammalian hemoglobin-associated disorders such as the various thalassemias.
  • the assay is performed as follows. Erythroblastic cells are plated in standard growth medium at 1000 cells/well in a 96 well format. PRO polypeptides are added to the growth medium at a concentration of 0.2% or 2% and the cells are incubated for 5 days at 37° C. As a positive control, cells are treated with 100 ⁇ M hemin and as a negative control, the cells are untreated. After 5 days, cell lysates are prepared and analyzed for the expression of gamma globin (a fetal marker). A positive in the assay is a gamma globin level at least 2-fold above the negative control.
  • PRO20080 polypeptide tested positive in this assay tested positive in this assay.
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce angiogenesis by stimulating endothelial cell tube formation in HUVEC cells.
  • Nucleic acid microarrays are useful for identifying differentially expressed genes in tissues exposed to various stimuli (e.g., growth factors) as compared to their normal, unexposed counterparts.
  • test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes.
  • the cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support.
  • the array is configured such that the sequence and position of each member of the array is known. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene.
  • hybridization signal of a probe from a test (exposed tissue) sample is greater than hybridization signal of a probe from a control (normal, unexposed tissue) sample, the gene or genes overexpressed in the exposed tissue are identified.
  • an overexpressed protein in an exposed tissue may be involved in the functional changes within the tissue following exposure to the stimuli (e.g., tube formation).
  • HUVEC cells grown in either collagen gels or fibrin gels were induced to form tubes by the addition of various growth factors.
  • collagen gels were prepared as described previously in Yang et al., American J. Pathology, 1999, 155(3):887-895 and Xin et al., American J. Pathology, 2001, 158(3): 1111-1120.
  • 1X basal medium containing M199 supplemented with 1% FBS, 1 ⁇ ITS, 2 mM L-glutamine, 50 ⁇ g/ml ascorbic acid, 26.5 mM NaHCO 3 , 100U/ml penicillin and 100 U/ml streptomycin was added.
  • Tube formation was elicited by the inclusion in the culture media of either a mixture of phorbol myrsitate acetate (50 nM), vascular endothelial cell growth factor (40 ng/ml) and basic fibroblast growth factor (40 ng/ml) (“PMA growth factor mix”) or hepatocyte growth factor (40 ng/ml) and vascular endothelial cell growth factor (40 ng/ml) (HGF/VEGF mix) for the indicated period of time.
  • Fibrin Gels were prepared by suspending Huvec (4 ⁇ 10 5 cells/ml) in M199 containing 1% fetal bovine serum (Hyclone) and human fibrinogen (2.5 mg/ml).
  • Thrombin 50U/ml was then added to the fibrinogen suspension at a ratio of 1 part thrombin solution:30 parts fibrinogen suspension.
  • the solution was then layered onto 10 cm tissue culture plates (total volume: 15 ml/plate) and allowed to solidify at 37° C. for 20 min.
  • Tissue culture media (10 ml of BM containing PMA (50 nM), bFGF (40 ng/ml) and VEGF (40 ng/ml) was then added and the cells incubated at 37° C. in 5%CO 2 in air for the indicated period of time.
  • nucleic acid probes derived from the herein described PRO polypeptide-encoding nucleic acid sequences were used in the creation of the microarray and RNA from the HUVEC cells described above were used for the hybridization thereto. Pairwise comparisons were made using time 0 chips as a baseline. Three replicate samples were analyzed for each experimental condition and time. Hence there were 3 time 0 samples for each treatment and 3 replicates of each successive time point. Therefore, a 3 by 3 comparison was performed for each time point compared against each time 0 point. This resulted in 9 comparisons per time point.
  • Oligonucleotide probes were constructed from some of the PRO polypeptide-encoding nucleotide sequences shown in the accompanying figures for use in quantitative PCR amplification reactions.
  • the oligonucleotide probes were chosen so as to give an approximately 200-600 base pair amplified fragment from the 3′ end of its associated template in a standard PCR reaction.
  • the oligonucleotide probes were employed in standard quantitative PCR amplification reactions with cDNA libraries isolated from different human tumor and normal human tissue samples and analyzed by agarose gel electrophoresis so as to obtain a quantitative determination of the level of expression of the PRO polypeptide-encoding nucleic acid in the various tumor and normal tissues tested.
  • ⁇ -actin was used as a control to assure that equivalent amounts of nucleic acid was used in each reaction.
  • Identification of the differential expression of the PRO polypeptide-encoding nucleic acid in one or more tumor tissues as compared to one or more normal tissues of the same tissue type renders the molecule useful diagnostically for the determination of the presence or absence of tumor in a subject suspected of possessing a tumor as well as therapeutically as a target for the treatment of a tumor in a subject possessing such a tumor.
  • DNA161005-2943 molecule is very highly expressed in human umblilical vein endothelial cells (HUVEC), substantia niagra, hippocampus and dendrocytes; highly expressed in lymphoblasts; expressed in spleen, prostate, uterus and macrophages; and is weakly expressed in cartilage and heart.
  • HAVEC human umblilical vein endothelial cells
  • substantia niagra hippocampus and dendrocytes
  • lymphoblasts highly expressed in lymphoblasts
  • expressed in spleen, prostate, uterus and macrophages and is weakly expressed in cartilage and heart.
  • esophageal tumor Among a panel of normal and tumor tissues examined, it is expressed in esophageal tumor, and is not expressed in normal esophagus, normal stomach, stomach tumor, normal kidney, kidney tumor, normal lung, lung tumor, normal rectum, rectal tumor, normal liver and liver tumor.
  • DNA170245-3053 molecule is highly expressed in cartilage, testis, adrenal gland, and uterus, and not expressed in HUVEC, colon tumor, heart, placenta, bone marrow, spleen and aortic endothelial cells.
  • the DNA170245-3053 molecule was found to be expressed in normal esophagus and esophagial tumor, expressed in normal stomach and in stomach tumor, not expressed in normal kidney, but expressed in kidney tumor, not expressed in normal lung, but expressed in lung tumor, not expressed in normal rectum nor in rectal tumor, and not expressed in normal liver, but is expressed in liver tumor.
  • DNA173157-2981 molecule is significantly expressed in the following tissues: cartilage, testis, HUVEC, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells, and uterus.
  • tissue panel When these assays were conducted on a tumor tissue panel, it was found that the DNA173157-2981 molecule is significantly expressed in the following tissues: normal esophagus and esophagial tumor, normal stomach and stomach tumor, normal kidney and kidney tumor, normal lung and lung tumor, normal rectum and rectal tumor, normal liver and liver tumor, and colon tumor.
  • DNA175734-2985 molecule is significantly expressed in the adrenal gland and the uterus.
  • the DNA175734-2985 molecule is not significantly expressed in the following tissues: cartilage, testis, HUVEC, colon tumor, heart, placenta, bone marrow, prostate, spleen and aortic endothelial cells.
  • Screening of a tumor panel revealed that DNA175734-2985 is significantly expressed in normal esophagus but not in esophagial tumor.
  • DNA175734-2985 is expressed to a lesser extent in rectal tumor.
  • DNA175734-2985 is expressed equally in normal stomach and stomach tumor as well as normal liver and liver tumor. While not expressed in normal kidney, DNA175734-2985 is highly expressed in kidney tumor.
  • DNA176108-3040 molecule is highly expressed in prostate and uterus, expressed in cartilage, testis, heart, placenta, bone marrow, adrenal gland and spleen, and not significantly expressed in HUVEC, colon tumor, and aortic endothelial cells.
  • the DNA176108-3040 molecule was found to be highly expressed in normal esophagus, but expressed at lower levels in esophagial tumor, highly expressed in normal stomach, and expressed at a lower level in stomach tumor, expressed in kidney and in kidney tumor, expressed in normal rectum and at a lower level in rectal tumor, and expressed in normal liver and not expressed in liver tumor.
  • DNA191064-3069 molecule is significantly expressed in the following tissues: cartilage, testis, HUVEC, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells, and uterus and not significantly expressed in colon tumor.
  • the DNA191064-3069 molecule was found to be expressed in normal esophagus and in esophagial tumors, expressed in normal stomach and in stomach tumors, expressed in normal kidney and in kidney tumors, expressed in normal lung and in lung tumors, expressed in normal rectum and in rectal tumors, expressed in normal liver and in liver tumors.
  • DNA194909-3013 molecule is highly expressed in placenta, and expressed in cartilage, testis, HUVEC, colon tumor, heart, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells and uterus.
  • the DNA194909-3013 molecule was found to be expressed in normal esophagus and expressed at a lower level in esophagial tumor, not expressed in normal stomach nor stomach tumor, expressed in normal kidney and kidney tumor, expressed in normal lung and lung tumor, expressed in normal rectum and rectal tumor, and not expressed in normal liver, but is expressed in liver tumor.
  • PRO34009 encoding genes of the invention were screened in normal tissues and the following primary tumors and the resulting values are reported below.
  • PRO34009 encoding genes were expressed 39.3 fold higher in lung tumor than normal lung. It is expressed 9.5 fold higher in esophagial tumors than normal esophagus. It is expressed 6.7 fold higher in kidney tumor than normal kidney. It is expressed 4.0 fold higher in colon tumor than normal colon. It is expressed 2.7 fold higher in stomach tumor than normal stomach. It is expressed at similar levels in normal rectum and rectal tumor, normal liver and liver tumor, normal uterus and uterine tumor.
  • the normal tissue with the highest expression in this case normal thymus, was given a value of 1 and all other normal tissues were given a value of less than 1, and described as expressed, weakly expressed or not expressed, based on their expression relative to thymus.
  • PRO34009 encoding genes were expressed in normal thymus. It is weakly expressed in lymphoblast, spleen, heart, fetal limb, fetal lung, placenta, HUVEC, testis, fetal kidney, uterus, prostate, macrophage, substantia nigra, hippocampus, liver, skin, esophagus, stomach, rectum, kidney, thyroid, skeletal muscle, or fetal articular cartilage. It is not expressed in bone marrow, fetal liver, colon, lung or dendrocytes.
  • DNA213858-3060 molecule is not significantly expressed in cartilage, testis, HUVEC, colon tumor, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells or uterus.
  • the DNA213858-3060 molecule was found to be expressed in normal esophagus and esophagial tumor, expressed in normal stomach and in stomach tumor, expressed in normal kidney and and kidney tumor, expressed in normal lung and in lung tumor, expressed in normal rectum and in rectal tumor, and expressed in normal liver and in liver tumor.
  • DNA216676-3083 molecule is significantly expressed in the following tissues: testis, heart, bone marrow, and uterus, and not significantly expressed in the following tissues: cartilage, HUVEC, colon tumor, placenta, adrenal gland, prostate, spleen, or aortic endothelial cells
  • the DNA216676-3083 molecule was found to be expressed in normal esophagus and esophagial tumor, not expressed in normal stomach, but is expressed in stomach tumor, not expressed in normal kidney nor in kidney tumor, not expressed in normal lung, but is expressed in lung tumor, not expressed in normal rectum, but is expressed in rectal tumor, and not expressed in normal liver nor in liver tumor.
  • DNA222653-3104 molecule is significantly expressed testis, and not significantly expressed in cartilage, HUVEC, colon tumor, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells and uterus. In a panel of tumor and normal tissue samples examined, the DNA22653-3104 molecule was not expressed in normal esophagus, esophagial tumor, normal stomach, stomach tumor, normal kidney, kidney tumor, normal lung, lung tumor, normal rectum, rectal tumor, normal liver and liver tumor.
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce vascular permeability. Polypeptides testing positive in this assay are expected to be useful for the therapeutic treatment of conditions which would benefit from enhanced vascular permeability including, for example, conditions which may benefit from enhanced local immune system cell infiltration.
  • Skin vascular permeability responses to the compounds are visually scored by measuring the diameter (in mm) of blue-colored leaks from the site of injection at 1 and 6 hours post administration of the test materials.
  • the mm diameter of blueness at the site of injection is observed and recorded as well as the severity of the vascular leakage.
  • Blemishes of at least 5 mm in diameter are considered positive for the assay when testing purified proteins, being indicative of the ability to induce vascular leakage or permeability.
  • a response greater than 7 mm diameter is considered positive for conditioned media samples.
  • Human VEGF at 0.1 ⁇ g/100 ⁇ l is used as a positive control, inducing a response of 15-23 mm diameter.
  • PRO19822 polypeptides tested positive in this assay were tested positive in this assay.
  • This assay shows that certain polypeptides of the invention stimulate an immune response and induce inflammation by inducing mononuclear cell, eosinophil and PMN infiltration at the site of injection of the animal. Compounds which stimulate an immune response are useful therapeutically where stimulation of an immune response is beneficial.
  • This skin vascular permeability assay is conducted as follows. Hairless guinea pigs weighing 350 grams or more are anesthetized with ketamine (75-80 mg/Kg) and 5 mg/Kg xylazine intramuscularly (IM).
  • a sample of purified polypeptide of the invention or a conditioned media test sample is injected intradermally onto the backs of the test animals with 100 ⁇ l per injection site: It is possible to have about 10-30, preferably about 16-24, injection sites per animal.
  • One ⁇ l of Evans blue dye (1% in physiologic buffered saline) is injected intracardially. Blemishes at the injection sites are then measured (mm diameter) at 1 hr and 6 hr post injection. Animals were sacrificed at 6 hrs after injection. Each skin injection site is biopsied and fixed in formalin. The skins are then prepared for histopathologic evaluation. Each site is evaluated for inflammatory cell infiltration into the skin. Sites with visible inflammatory cell inflammation are scored as positive.
  • Inflammatory cells may be neutrophilic, eosinophilic, monocytic or lymphocytic. At least a minimal perivascular infiltrate at the injection site is scored as positive, no infiltrate at the site of injection is scored as negative.
  • PRO19822 polypeptide tested positive in this assay # SEQUENCE LIS #TING ⁇ 160> NUMBER OF SEQ ID NOS: 116 ⁇ 210> SEQ ID NO 1 ⁇ 211> LENGTH: 1943 ⁇ 212> TYPE: DNA ⁇ 213> ORGANISM: Homo Sapien ⁇ 400> SEQUENCE: 1 cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat # 50 ctgctcggta gacctggtgc accaccacca tgttggctgc aaggctggtg # 100 tgtctccgga cactaccttc tagggttttc cacccagctt tcaccaaggc # 150 ctcccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgtta

Abstract

The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides. [0001]
  • BACKGROUND OF THE INVENTION
  • Extracellular proteins play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. These secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment. [0002]
  • Secreted proteins have various industrial applications, including as pharmaceuticals, diagnostics, biosensors and bioreactors. Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins. Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents. Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., [0003] Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Pat. No. 5,536,637)].
  • Membrane-bound proteins and receptors can play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor. [0004]
  • Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immunoadhesins, for instance, can be employed as therapeutic agents to block receptor-ligand interactions. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. [0005]
  • Efforts are being undertaken by both industry and academia to identify new, native receptor or membrane-bound proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor or membrane-bound proteins. [0006]
  • SUMMARY OF THE INVENTION
  • In one embodiment, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide. [0007]
  • In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). [0008]
  • In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). [0009]
  • In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a). [0010]
  • Another aspect the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated. [0011]
  • Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or as antisense oligonucleotide probes. Such nucleic acid fragments are usually at least about 10 nucleotides in length, alternatively at least about 15 nucleotides in length, alternatively at least about 20 nucleotides in length, alternatively at least about 30 nucleotides in length, alternatively at least about 40 nucleotides in length, alternatively at least about 50 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 70 nucleotides in length, alternatively at least about 80 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 100 nucleotides in length, alternatively at least about 110 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 130 nucleotides in length, alternatively at least about 140 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 160 nucleotides in length, alternatively at least about 170 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 190 nucleotides in length, alternatively at least about 200 nucleotides in length, alternatively at least about 250 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 350 nucleotides in length, alternatively at least about 400 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 500 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 700 nucleotides in length, alternatively at least about 800 nucleotides in length, alternatively at least about 900 nucleotides in length and alternatively at least about 1000 nucleotides in length, wherein in this context the term “about” means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody. [0012]
  • In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified. [0013]
  • In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein. [0014]
  • In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein. [0015]
  • In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. [0016]
  • Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. [0017]
  • In yet another embodiment, the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule. [0018]
  • In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide. [0019]
  • In a still further embodiment, the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier. [0020]
  • Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody. [0021]
  • In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, [0022] E. coli, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.
  • In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin. [0023]
  • In another embodiment, the invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody. [0024]
  • In yet other embodiments, the invention provides oligonucleotide probes which may be useful for isolating genomic and cDNA nucleotide sequences, measuring or detecting expression of an associated gene or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences. Preferred probe lengths are described above. [0025]
  • In yet other embodiments, the present invention is directed to methods of using the PRO polypeptides of the present invention for a variety of uses based upon the functional biological assay data presented in the Examples below.[0026]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO281 cDNA, wherein SEQ ID NO:1 is a clone designated herein as “DNA16422-1209”. [0027]
  • FIG. 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in FIG. 1. [0028]
  • FIG. 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO1560 cDNA, wherein SEQ ID NO:3 is a clone designated herein as “DNA19902-1669”. [0029]
  • FIG. 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in FIG. 3. [0030]
  • FIG. 5 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO189 cDNA, wherein SEQ ID NO:5 is a clone designated herein as “DNA21624-1391”. [0031]
  • FIG. 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in FIG. 5. [0032]
  • FIG. 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO240 cDNA, wherein SEQ ID NO:7 is a clone designated herein as “DNA34387-1138”. [0033]
  • FIG. 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in FIG. 7. [0034]
  • FIG. 9 shows a nucleotide sequence (SEQ ID NO:9) of a native sequence PRO256 cDNA, wherein SEQ ID NO:9 is a clone designated herein as “DNA35880-1160”. [0035]
  • FIG. 10 shows the amino acid sequence (SEQ ID NO:10) derived from the coding sequence of SEQ ID NO:9 shown in FIG. 9. [0036]
  • FIG. 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO306 cDNA, wherein SEQ ID NO:11 is a clone designated herein as “DNA39984-1221”. [0037]
  • FIG. 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in FIG. 11. [0038]
  • FIG. 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO540 cDNA, wherein SEQ ID NO:13 is a clone designated herein as “DNA44189-1322”. [0039]
  • FIG. 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in FIG. 13. [0040]
  • FIG. 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO773 cDNA, wherein SEQ ID NO:15 is a clone designated herein as “DNA48303-2829”. [0041]
  • FIG. 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in FIG. 15. [0042]
  • FIG. 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO698 cDNA, wherein SEQ ID NO:17 is a clone designated herein as “DNA48320-1433”. [0043]
  • FIG. 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in FIG. 17. [0044]
  • FIG. 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO3567 cDNA, wherein SEQ ID NO:19 is a clone designated herein as “DNA56049-2543”. [0045]
  • FIG. 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in FIG. 19. [0046]
  • FIG. 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO826 cDNA, wherein SEQ ID NO:21 is a clone designated herein as “DNA57694-1341”. [0047]
  • FIG. 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in FIG. 21. [0048]
  • FIG. 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO1002 cDNA, wherein SEQ ID NO:23 is a clone designated herein as “DNA59208-1373”. [0049]
  • FIG. 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in FIG. 23. [0050]
  • FIG. 25 shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO1068 cDNA, wherein SEQ ID NO:25 is a clone designated herein as “DNA59214-1449”. [0051]
  • FIG. 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in FIG. 25. [0052]
  • FIG. 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO1030 cDNA, wherein SEQ ID NO:27 is a clone designated herein as “DNA59485-1336”. [0053]
  • FIG. 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in FIG. 27. [0054]
  • FIG. 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO1313 cDNA, wherein SEQ ID NO:29 is a clone designated herein as “DNA64966-1575”. [0055]
  • FIG. 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in FIG. 29. [0056]
  • FIG. 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO6071 cDNA, wherein SEQ ID NO:31 is a clone designated herein as “DNA82403-2959”. [0057]
  • FIG. 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in FIG. 31. [0058]
  • FIG. 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO4397 cDNA, wherein SEQ ID NO:33 is a clone designated herein as “DNA83505-2606”. [0059]
  • FIG. 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in FIG. 33. [0060]
  • FIG. 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO4344 cDNA, wherein SEQ ID NO:35 is a clone designated herein as “DNA84927-2585”. [0061]
  • FIG. 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in FIG. 35. [0062]
  • FIG. 37 shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO4407 cDNA, wherein SEQ ID NO:37 is a clone designated herein as “DNA92264-2616”. [0063]
  • FIG. 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in FIG. 37. [0064]
  • FIG. 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO4316 cDNA, wherein SEQ ID NO:39 is a clone designated herein as “DNA94713-2561”. [0065]
  • FIG. 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in FIG. 39. [0066]
  • FIG. 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO5775 cDNA, wherein SEQ ID NO:41 is a clone designated herein as “DNA96869-2673”. [0067]
  • FIG. 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in FIG. 41. [0068]
  • FIG. 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO6016 cDNA, wherein SEQ ID NO:43 is a clone designated herein as “DNA96881-2699”. [0069]
  • FIG. 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in FIG. 43. [0070]
  • FIG. 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO4499 cDNA, wherein SEQ ID NO:45 is a clone designated herein as “DNA96889-2641”. [0071]
  • FIG. 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in FIG. 45. [0072]
  • FIG. 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO4487 cDNA, wherein SEQ ID NO:47 is a clone designated herein as “DNA96898-2640”. [0073]
  • FIG. 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in FIG. 47. [0074]
  • FIG. 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO4980 cDNA, wherein SEQ ID NO:49 is a clone designated herein as “DNA97003-2649”. [0075]
  • FIG. 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in FIG. 49. [0076]
  • FIG. 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO6018 cDNA, wherein SEQ ID NO:51 is a clone designated herein as “DNA98565-2701”. [0077]
  • FIG. 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in FIG. 51. [0078]
  • FIG. 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO7168 cDNA, wherein SEQ ID NO:53 is a clone designated herein as “DNA102846-2742”. [0079]
  • FIG. 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in FIG. 53. [0080]
  • FIG. 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO6308 cDNA, wherein SEQ ID NO:55 is a clone designated herein as “DNA102847-2726”. [0081]
  • FIG. 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in FIG. 55. [0082]
  • FIG. 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO6000 cDNA, wherein SEQ ID NO:57 is a clone designated herein as “DNA102880-2689”. [0083]
  • FIG. 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in FIG. 57. [0084]
  • FIG. 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO6006 cDNA, wherein SEQ ID NO:59 is a clone designated herein as “DNA105782-2693”. [0085]
  • FIG. 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in FIG. 59. [0086]
  • FIG. 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO5800 cDNA, wherein SEQ ID NO:61 is a clone designated herein as “DNA108912-2680”. [0087]
  • FIG. 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in FIG. 61. [0088]
  • FIG. 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO7476 cDNA, wherein SEQ ID NO:63 is a clone designated herein as “DNA115253-2757”. [0089]
  • FIG. 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in FIG. 63. [0090]
  • FIG. 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO6496 cDNA, wherein SEQ ID NO:65 is a clone designated herein as “DNA119302-2737”. [0091]
  • FIG. 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in FIG. 65. [0092]
  • FIG. 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO7422 cDNA, wherein SEQ ID NO:67 is a clone designated herein as “DNA119536-2752”. [0093]
  • FIG. 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in FIG. 67. [0094]
  • FIG. 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO7431 cDNA, wherein SEQ ID NO:69 is a clone designated herein as “DNA119542-2754”. [0095]
  • FIG. 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in FIG. 69. [0096]
  • FIG. 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO10275 cDNA, wherein SEQ ID NO:71 is a clone designated herein as “DNA143498-2824”. [0097]
  • FIG. 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in FIG. 71. [0098]
  • FIG. 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO10268 cDNA, wherein SEQ ID NO:73 is a clone designated herein as “DNA145583-2820”. [0099]
  • FIG. 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in FIG. 73. [0100]
  • FIG. 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO20080 cDNA, wherein SEQ ID NO:75 is a clone designated herein as “DNA161000-2896”. [0101]
  • FIG. 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in FIG. 75. [0102]
  • FIG. 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO21207 cDNA, wherein SEQ ID NO:77 is a clone designated herein as “DNA161005-2943”. [0103]
  • FIG. 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in FIG. 77. [0104]
  • FIG. 79 shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO28633 cDNA, wherein SEQ ID NO:79 is a clone designated herein as “DNA170245-3053”. [0105]
  • FIG. 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in FIG. 79. [0106]
  • FIG. 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO20933 cDNA, wherein SEQ ID NO:81 is a clone designated herein as “DNA171771-2919”. [0107]
  • FIG. 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in FIG. 81. [0108]
  • FIG. 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO21383 cDNA, wherein SEQ ID NO:83 is a clone designated herein as “DNA173157-2981”. [0109]
  • FIG. 84 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in FIG. 83. [0110]
  • FIG. 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO21485 cDNA, wherein SEQ ID NO:85 is a clone designated herein as “DNA175734-2985”. [0111]
  • FIG. 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in FIG. 85. [0112]
  • FIG. 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO28700 cDNA, wherein SEQ ID NO:87 is a clone designated herein as “DNA176108-3040”. [0113]
  • FIG. 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in FIG. 87. [0114]
  • FIG. 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO34012 cDNA, wherein SEQ ID NO:89 is a clone designated herein as “DNA190710-3028”. [0115]
  • FIG. 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in FIG. 89. [0116]
  • FIG. 91 shows a nucleotide sequence (SEQ ID NO:91) of a native sequence PRO34003 cDNA, wherein SEQ ID NO:91 is a clone designated herein as “DNA190803-3019”. [0117]
  • FIG. 92 shows the amino acid sequence (SEQ ID NO:92) derived from the coding sequence of SEQ ID NO:91 shown in FIG. 91. [0118]
  • FIG. 93 shows a nucleotide sequence (SEQ ID NO:93) of a native sequence PRO34274 cDNA, wherein SEQ ID NO:93 is a clone designated herein as “DNA191064-3069”. [0119]
  • FIG. 94 shows the amino acid sequence (SEQ ID NO:94) derived from the coding sequence of SEQ ID NO:93 shown in FIG. 93. [0120]
  • FIGS. [0121] 95A-95B shows a nucleotide sequence (SEQ ID NO:95) of a native sequence PRO34001 cDNA, wherein SEQ ID NO:95 is a clone designated herein as “DNA194909-3013”.
  • FIG. 96 shows the amino acid sequence (SEQ ID NO:96) derived from the coding sequence of SEQ ID NO:95 shown in FIGS. [0122] 95A-95B.
  • FIG. 97 shows a nucleotide sequence (SEQ ID NO:97) of a native sequence PRO34009 cDNA, wherein SEQ ID NO:97 is a clone designated herein as “DNA203532-3029”. [0123]
  • FIG. 98 shows the amino acid sequence (SEQ ID NO:98) derived from the coding sequence of SEQ ID NO:97 shown in FIG. 97. [0124]
  • FIG. 99 shows a nucleotide sequence (SEQ ID NO:99) of a native sequence PRO34192 cDNA, wherein SEQ ID NO:99 is a clone designated herein as “DNA213858-3060”. [0125]
  • FIG. 100 shows the amino acid sequence (SEQ ID NO:100) derived from the coding sequence of SEQ ID NO:99 shown in FIG. 99. [0126]
  • FIG. 101 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO34564 cDNA, wherein SEQ ID NO:101 is a clone designated herein as “DNA216676-3083”. [0127]
  • FIG. 102 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in FIG. 101. [0128]
  • FIG. 103 shows a nucleotide sequence (SEQ ID NO:103) of a native sequence PRO35444 cDNA, wherein SEQ ID NO:103 is a clone designated herein as “DNA222653-3104”. [0129]
  • FIG. 104 shows the amino acid sequence (SEQ ID NO:104) derived from the coding sequence of SEQ ID NO:103 shown in FIG. 103. [0130]
  • FIG. 105 shows a nucleotide sequence (SEQ ID NO:105) of a native sequence PRO5998 cDNA, wherein SEQ ID NO:105 is a clone designated herein as “DNA96897-2688”. [0131]
  • FIG. 106 shows the amino acid sequence (SEQ ID NO:106) derived from the coding sequence of SEQ ID NO:105 shown in FIG. 105. [0132]
  • FIG. 107 shows a nucleotide sequence (SEQ ID NO:107) of a native sequence PRO19651 cDNA, wherein SEQ ID NO:107 is a clone designated herein as “DNA142917-3081”. [0133]
  • FIG. 108 shows the amino acid sequence (SEQ ID NO:108) derived from the coding sequence of SEQ ID NO:107 shown in FIG. 107. [0134]
  • FIG. 109 shows a nucleotide sequence (SEQ ID NO:109) of a native sequence PRO20221 cDNA, wherein SEQ ID NO:109 is a clone designated herein as “DNA142930-2914”. [0135]
  • FIG. 110 shows the amino acid sequence (SEQ ID NO:110) derived from the coding sequence of SEQ ID NO:109 shown in FIG. 109. [0136]
  • FIG. 111 shows a nucleotide sequence (SEQ ID NO:111) of a native sequence PRO21434 cDNA, wherein SEQ ID NO:111 is a clone designated herein as “DNA147253-2983”. [0137]
  • FIG. 112 shows the amino acid sequence (SEQ ID NO:112) derived from the coding sequence of SEQ ID NO:111 shown in FIG. 111. [0138]
  • FIG. 113 shows a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO19822 cDNA, wherein SEQ ID NO:113 is a clone designated herein as “DNA149927-2887”. [0139]
  • FIG. 114 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in FIG. 113.[0140]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • I. Definitions [0141]
  • The terms “PRO polypeptide” and “PRO” as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms “PRO/number polypeptide” and “PRO/number” wherein the term “number” is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term “PRO polypeptide” refers to each individual PRO/number polypeptide disclosed herein. All disclosures in this specification which refer to the “PRO polypeptide” refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term “PRO polypeptide” also includes variants of the PRO/number polypeptides disclosed herein. [0142]
  • A “native sequence PRO polypeptide” comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term “native sequence PRO polypeptide” specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as [0143] amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO polypeptides.
  • The PRO polypeptide “extracellular domain” or “ECD” refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are comtemplated by the present invention. [0144]
  • The approximate location of the “signal peptides” of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., [0145] Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.
  • “PRO polypeptide variant” means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20 amino acids in length, alternatively at least about 30 amino acids in length, alternatively at least about 40 amino acids in length, alternatively at least about 50 amino acids in length, alternatively at least about 60 amino acids in length, alternatively at least about 70 amino acids in length, alternatively at least about 80 amino acids in length, alternatively at least about 90 amino acids in length, alternatively at least about 100 amino acids in length, alternatively at least about 150 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 300 amino acids in length, or more. [0146]
  • “Percent (%) amino acid sequence identity” with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. [0147]
  • In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: [0148]
  • 100 times the fraction {fraction (X/Y)}
  • where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated “Comparison Protein” to the amino acid sequence designated “PRO”, wherein “PRO” represents the amino acid sequence of a hypothetical PRO polypeptide of interest, “Comparison Protein” represents the amino acid sequence of a polypeptide against which the “PRO” polypeptide of interest is being compared, and “X, “Y” and “Z” each represent different hypothetical amino acid residues. [0149]
  • Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % amino acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., [0150] Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=11, and scoring matrix=BLOSUM62. When WU-BLAST-2 is employed, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement “a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B”, the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.
  • Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., [0151] Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask=yes, strand=all, expected occurrences=10, minimum low complexity length=15/5, multi-pass e-value=0.01, constant for multi-pass=25, dropoff for final gapped alignment=25 and scoring matrix=BLOSUM62.
  • In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: [0152]
  • 100 times the fraction {fraction (X/Y)}
  • where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. [0153]
  • “PRO variant polynucleotide” or “PRO variant nucleic acid sequence” means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence. [0154]
  • Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 210 nucleotides in length, alternatively at least about 240 nucleotides in length, alternatively at least about 270 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 900 nucleotides in length, or more. [0155]
  • “Percent (%) nucleic acid sequence identity” with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. [0156]
  • In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: [0157]
  • 100 times the fraction {fraction (W/Z)}
  • where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated “Comparison DNA” to the nucleic acid sequence designated “PRO-DNA”, wherein “PRO-DNA” represents a hypothetical PRO-encoding nucleic acid sequence of interest, “Comparison DNA” represents the nucleotide sequence of a nucleic acid molecule against which the “PRO-DNA” nucleic acid molecule of interest is being compared, and “N”, “L” and “V” each represent different hypothetical nucleotides. [0158]
  • Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., [0159] Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=11, and scoring matrix=BLOSUM62. When WU-BLAST-2 is employed, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement “an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B”, the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest.
  • Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., [0160] Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask=yes, strand=all, expected occurrences=10, minimum low complexity length=15/5, multi-pass e-value=0.01, constant for multi-pass=25, dropoff for final gapped alignment=25 and scoring matrix=BLOSUM62.
  • In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: [0161]
  • 100 times the fraction {fraction (W/Z)}
  • where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. [0162]
  • In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide. [0163]
  • “Isolated,” when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step. [0164]
  • An “isolated” PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells. [0165]
  • The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. [0166]
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. [0167]
  • The term “antibody” is used in the broadest sense and specifically covers, for example, single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. [0168]
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., [0169] Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5× SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5× Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2× SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1× SSC containing EDTA at 55° C. [0170]
  • “Moderately stringent conditions” may be identified as described by Sambrook et al., [0171] Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5× SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1× SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
  • The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues). [0172]
  • As used herein, the term “immunoadhesin” designates antibody-like molecules which combine the binding specificity of a heterologous protein (an “adhesin”) with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is “heterologous”), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM. [0173]
  • “Active” or “activity” for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein “biological” activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an “immunological” activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO. [0174]
  • The term “antagonist” is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide disclosed herein. In a similar manner, the term “agonist” is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide. [0175]
  • “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. [0176]
  • “Chronic” administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. [0177]
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human. [0178]
  • Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order. [0179]
  • “Carriers” as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™. [0180]
  • “Antibody fragments” comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)[0181] 2, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
  • Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an F(ab′)[0182] 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V[0183] H-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)[0184] 2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
  • The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. [0185]
  • Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. [0186]
  • “Single-chain Fv” or “sFv” antibody fragments comprise the V[0187] H and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).
  • The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V[0188] H) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
  • An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaccous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. [0189]
  • An antibody that “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope. [0190]
  • The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a “labeled” antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. [0191]
  • By “solid phase” is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149. [0192]
  • A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. [0193]
  • A “small molecule” is defined herein to have a molecular weight below about 500 Daltons. [0194]
  • An “effective amount” of a polypeptide disclosed herein or an agonist or antagonist thereof is an amount sufficient to carry out a specifically stated purpose. An “effective amount” may be determined empirically and in a routine manner, in relation to the stated purpose. [0195]
    Figure US20030082730A1-20030501-P00001
    Figure US20030082730A1-20030501-P00002
    Figure US20030082730A1-20030501-P00003
    Figure US20030082730A1-20030501-P00004
    Figure US20030082730A1-20030501-P00005
    Figure US20030082730A1-20030501-P00006
    Figure US20030082730A1-20030501-P00007
    Figure US20030082730A1-20030501-P00008
    Figure US20030082730A1-20030501-P00009
    Figure US20030082730A1-20030501-P00010
    Figure US20030082730A1-20030501-P00011
    Figure US20030082730A1-20030501-P00012
    Figure US20030082730A1-20030501-P00013
    Figure US20030082730A1-20030501-P00014
    Figure US20030082730A1-20030501-P00015
    Figure US20030082730A1-20030501-P00016
    Figure US20030082730A1-20030501-P00017
    TABLE 2
    PRO XXXXXXXXXXXXXXX (Length = 15 amino acids)
    Comparison XXXXXYYYYYYY (Length = 12 amino acids)
    Protein
  • [0196]
    TABLE 3
    PRO XXXXXXXXXX (Length = 10 amino acids)
    Comparison XXXXXYYYYYYZZYZ (Length = 15 amino acids)
    Protein
  • [0197]
    TABLE 4
    PRO-DNA NNNNNNNNNNNNNN (Length = 14 nucleotides)
    Comparison NNNNNNLLLLLLLLLL (Length = 16 nucleotides)
    DNA
  • [0198]
    TABLE 5
    PRO-DNA NNNNNNNNNNNN (Length = 12 nucleotides)
    Comparison DNA NNNNLLLVV (Length = 9 nucleotides)
  • II. Compositions and Methods of the Invention [0199]
  • A. Full-Length PRO Polypeptides [0200]
  • The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as “PRO/number”, regardless of their origin or mode of preparation. [0201]
  • As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time. [0202]
  • B. PRO Polypeptide Variants [0203]
  • In addition to the full-length native sequence PRO polypeptides described herein, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics. [0204]
  • Variations in the native full-length sequence PRO or in various domains of the PRO described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence. [0205]
  • PRO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO polypeptide. [0206]
  • PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5′ and 3′ primers in the PCR. Preferably, PRO polypeptide fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed herein. [0207]
  • In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened. [0208]
    TABLE 6
    Original Exemplary Preferred
    Residue Substitutions Substitutions
    Ala (A) val; leu; ile val
    Arg (R) lys; gln; asn lys
    Asn (N) gln; his; lys; arg gln
    Asp (D) glu glu
    Cys (C) ser ser
    Gln (Q) asn asn
    Glu (E) asp asp
    Gly (G) pro; ala ala
    His (H) asn; gln; lys; arg arg
    Ile (I) leu; val; met; ala; phe; leu
    norleucine
    Leu (L) norleucine; ile; val; ile
    met; ala; phe
    Lys (K) arg; gln; asn arg
    Met (M) leu; phe; ile leu
    Phe (F) leu; val; ile; ala; tyr leu
    Pro (P) ala ala
    Ser (S) thr thr
    Thr (T) ser ser
    Trp (W) tyr; phe tyr
    Tyr (Y) trp; phe; thr; ser phe
    Val (V) ile; leu; met; phe; leu
    ala; norleucine
  • Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: [0209]
  • (1) hydrophobic: norleucine, met, ala, val, leu, ile; [0210]
  • (2) neutral hydrophilic: cys, ser, thr; [0211]
  • (3) acidic: asp, glu; [0212]
  • (4) basic: asn, gln, his, lys, arg; [0213]
  • (5) residues that influence chain orientation: gly, pro; and [0214]
  • (6) aromatic: trp, tyr, phe. [0215]
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites. [0216]
  • The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., [0217] Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA.
  • Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, [0218] Science, 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W. H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.
  • C. Modifications of PRO [0219]
  • Covalent modifications of PRO are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the PRO. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate. [0220]
  • Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains [T. E. Creighton, [0221] Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.
  • Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. [0222]
  • Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. [0223]
  • Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston, [0224] CRC Crit. Rev. Biochem., pp. 259-306 (1981).
  • Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., [0225] Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).
  • Another type of covalent modification of PRO comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. [0226]
  • The PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence. [0227]
  • In one embodiment, such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl-terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., [0228] Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].
  • In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an “immunoadhesin”), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule. For the production of immunoglobulin fusions see also U.S. Pat. No. 5,428,130 issued Jun. 27, 1995. [0229]
  • D. Preparation of PRO [0230]
  • The description below relates primarily to production of PRO by culturing cells transformed or transfected with a vector containing PRO nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare PRO. For instance, the PRO sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., [0231] Solid-Phase Peptide Synthesis, W. H. Freeman Co., San Francisco, Calif. (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions. Various portions of the PRO may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO.
  • 1. Isolation of DNA Encoding PRO
  • DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis). [0232]
  • Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., [0233] Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].
  • The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like [0234] 32P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.
  • Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein. [0235]
  • Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. [0236]
  • 2. Selection and Transformation of Host Cells
  • Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in [0237] Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.
  • Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl[0238] 2, CaPO4, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).
  • Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as [0239] E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kanr ; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kanr ; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued Aug. 7, 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
  • In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO-encoding vectors. [0240] Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published May 2, 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. manrianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et at., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published Oct. 31, 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published Jan. 10, 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).
  • Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., [0241] J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.
  • 3. Selection and Use of a Replicable Vector
  • The nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. [0242]
  • The PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the PRO-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, 1 pp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the [0243] C. albicans glucoamylase leader (EP 362,179 published Apr. 4, 1990), or the signal described in WO 90/13646 published Nov. 15, 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. [0244]
  • Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. [0245]
  • An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., [0246] Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1[Jones, Genetics, 85:12 (1977)].
  • Expression and cloning vectors usually contain a promoter operably linked to the PRO-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., [0247] Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding PRO.
  • Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., [0248] J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
  • Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for [0249] alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
  • PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published Jul. 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. [0250]
  • Transcription of a DNA encoding the PRO by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a [0251] position 5′ or 3′ to the PRO coding sequence, but is preferably located at a site 5′ from the promoter.
  • Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO. [0252]
  • Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO in recombinant vertebrate cell culture are described in Gething et al., [0253] Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.
  • 4. Detecting Gene Amplification/Expression
  • Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, [0254] Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope. [0255]
  • 5. Purification of Polypeptide
  • Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents. [0256]
  • It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, [0257] Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced.
  • E. Uses for PRO [0258]
  • Nucleotide sequences (or their complement) encoding PRO have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA. PRO nucleic acid will also be useful for the preparation of PRO polypeptides by the recombinant techniques described herein. [0259]
  • The full-length native sequence PRO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of PRO or PRO from other species) which have a desired sequence identity to the native PRO sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO. By way of example, a screening method will comprise isolating the coding region of the PRO gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as [0260] 32P or 35S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.
  • Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein. [0261]
  • Other useful fragments of the PRO nucleic acids include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target PRO mRNA (sense) or PRO DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of PRO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen ([0262] Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).
  • Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. The antisense oligonucleotides thus may be used to block expression of PRO proteins. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. [0263]
  • Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence. [0264]
  • Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO[0265] 4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641).
  • Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. [0266]
  • Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase. [0267]
  • Antisense or sense RNA or DNA molecules are generally at least about 5 bases in length, about 10 bases in length, about 15 bases in length, about 20 bases in length, about 25 bases in length, about 30 bases in length, about 35 bases in length, about 40 bases in length, about 45 bases in length, about 50 bases in length, about 55 bases in length, about 60 bases in length, about 65 bases in length, about 70 bases in length, about 75 bases in length, about 80 bases in length, about 85 bases in length, about 90 bases in length, about 95 bases in length, about 100 bases in length, or more. [0268]
  • The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO coding sequences. [0269]
  • Nucleotide sequences encoding a PRO can also be used to construct hybridization probes for mapping the gene which encodes that PRO and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries. [0270]
  • When the coding sequences for PRO encode a protein which binds to another protein (example, where the PRO is a receptor), the PRO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO or a receptor for PRO. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art. [0271]
  • Nucleic acids which encode PRO or its modified forms can also be used to generate either transgenic animals or “knock out” animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding PRO. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for PRO transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding PRO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding PRO. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition. [0272]
  • Alternatively, non-human homologues of PRO can be used to construct a PRO “knockout” animal which has a defective or altered gene encoding PRO as a result of homologous recombination between the endogenous gene encoding PRO and altered genomic DNA encoding PRO introduced into an embryonic stem cell of the animal. For example, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques. A portion of the genomic DNA encoding PRO can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5′ and 3′ ends) are included in the vector [see e.g., Thomas and Capecchi, [0273] Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a “knock out” animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the PRO polypeptide.
  • Nucleic acid encoding the PRO polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. “Gene therapy” includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik et al., [0274] Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups.
  • There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., [0275] Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262, 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414 (1990). For review of gene marking and gene therapy protocols see Anderson et al., Science 256, 808-813 (1992).
  • The PRO polypeptides described herein may also be employed as molecular weight markers for protein electrophoresis purposes and the isolated nucleic acid sequences may be used for recombinantly expressing those markers. [0276]
  • The nucleic acid molecules encoding the PRO polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently available. Each PRO nucleic acid molecule of the present invention can be used as a chromosome marker. [0277]
  • The PRO polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the PRO polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type. PRO nucleic acid molecules will find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis. [0278]
  • The PRO polypeptides described herein may also be employed as therapeutic agents. The PRO polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the PRO product hereof is combined in admixture with a pharmaceutically acceptable carrier vehicle. Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers ([0279] Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumim, gelatin or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, PLURONICS™ or PEG.
  • The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. [0280]
  • Therapeutic compositions herein generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. [0281]
  • The route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial or intralesional routes, topical administration, or by sustained release systems. [0282]
  • Dosages and desired drug concentrations of pharmaceutical compositions of the present invention may vary depending on the particular use envisioned. The determination of the appropriate dosage or route of administration is well within the skill of an ordinary physician. Animal experiments provide reliable guidance for be determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles laid down by Mordenti, J. and Chappell, W. “The use of interspecies scaling in toxicokinetics” In Toxicokinetics and New Drug Development, Yacobi et al., Eds., Pergamon Press, New York 1989, pp. 42-96. [0283]
  • When in vivo administration of a PRO polypeptide or agonist or antagonist thereof is employed, normal dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of mammal body weight or more per day, preferably about 1 μg/kg/day to 10 mg/kg/day, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212. It is anticipated that different formulations will be effective for different treatment compounds and different disorders, that administration targeting one organ or tissue, for example, may necessitate delivery in a manner different from that to another organ or tissue. [0284]
  • Where sustained-release administration of a PRO polypeptide is desired in a formulation with release characteristics suitable for the treatment of any disease or disorder requiring administration of the PRO polypeptide, microencapsulation of the PRO polypeptide is contemplated. Microencapsulation of recombinant proteins; for sustained release has been successfully performed with human growth hormone (rhGH), interferon-(rhIFN), interleukin-2, and MN rgp120. Johnson et al., [0285] Nat. Med., 2:795-799 (1996); Yasuda, Biomed. Ther., 27: 1221-1223 (1993); Hora et al., Bio/Technology, 8:755-758 (1990); Cleland, “Design and Production of Single Immunization Vaccines Using Polylactide Polyglycolide Microsphere Systems,” in Vaccine Design: The Subunit and Adjuvant Approach, Powell and Newman, eds, (Plenum Press: New York, 1995), pp. 439-462; WO 97/03692, WO 96/40072, WO 96/07399; and U.S. Pat. No. 5,654,010.
  • The sustained-release formulations of these proteins were developed using poly-lactic-coglycolic acid (PLGA) polymer due to its biocompatibility and wide range of biodegradable properties. The degradation products of PLGA, lactic and glycolic acids, can be cleared quickly within the human body. Moreover, the degradability of this polymer can be adjusted from months to years depending on its molecular weight and composition. Lewis, “Controlled release of bioactive agents from lactide/glycolide polymer,” in: M. Chasin and R. Langer (Eds.), [0286] Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp. 1-41.
  • This invention encompasses methods of screening compounds to identify those that mimic the PRO polypeptide (agonists) or prevent the effect of the PRO polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. [0287]
  • The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art. [0288]
  • All assays for antagonists are common in that they call for contacting the drug candidate with a PRO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact. [0289]
  • In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex. [0290]
  • If the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, [0291] Nature (London), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the “two-hybrid system”) takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKER™) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.
  • Compounds that interfere with the interaction of a gene encoding a PRO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner. [0292]
  • To assay for antagonists, the PRO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the PRO polypeptide indicates that the compound is an antagonist to the PRO polypeptide. Alternatively, antagonists may be detected by combining the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The PRO polypeptide can be labeled, such as by radioactivity, such that the number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., [0293] Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the PRO polypeptide. Transfected cells that are grown on glass slides are exposed to labeled PRO polypeptide. The PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor.
  • As an alternative approach for receptor identification, labeled PRO polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro-sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor. [0294]
  • In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured. [0295]
  • More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with PRO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the PRO polypeptide. [0296]
  • Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5′ coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., [0297] Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456(1988); Dervanet al., Science, 251:1360(1991)), thereby preventing transcription and the production of the PRO polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the PRO polypeptide (antisense—Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, Fla., 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the PRO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about −10 and +10 positions of the target gene nucleotide sequence, are preferred.
  • Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological activity of the PRO polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds. [0298]
  • Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, [0299] Current Biology, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published Sep. 18, 1997).
  • Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra. [0300]
  • These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art. [0301]
  • Diagnostic and therapeutic uses of the herein disclosed molecules may also be based upon the positive functional assay hits disclosed and described below. [0302]
  • F. Anti-PRO Antibodies [0303]
  • The present invention further provides anti-PRO antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies. [0304]
  • 1. Polyclonal Antibodies [0305]
  • The anti-PRO antibodies may comprise polygonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation. [0306]
  • 2. Monoclonal Antibodies [0307]
  • The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, [0308] Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.
  • The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes (“PBLs”) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, [0309] Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, Calif. and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, [0310] J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].
  • The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, [0311] Anal. Biochem., 107:220 (1980).
  • After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal. [0312]
  • The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. [0313]
  • The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Pat. No. 4,816,567; Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody. [0314]
  • The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking. [0315]
  • In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. [0316]
  • 3. Human and Humanized Antibodies [0317]
  • The anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)[0318] 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].
  • Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., [0319] Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
  • Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, [0320] J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 1365-93 (1995).
  • The antibodies may also be affinity matured using known selection and/or mutagenesis methods as described above. Preferred affinity matured antibodies have an affinity which is five times, more preferably 10 times, even more preferably 20 or 30 times greater than the starting antibody (generally murine, humanized or human) from which the matured antibody is prepared. [0321]
  • 4. Bispecific Antibodies [0322]
  • Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit. [0323]
  • Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, [0324] Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
  • Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., [0325] Methods in Enzymology, 121:210 (1986).
  • According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers. [0326]
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)[0327] 2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
  • Fab′ fragments may be directly recovered from [0328] E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
  • Various technique for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., [0329] J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).
  • Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., [0330] J. Immunol. 147:60 (1991).
  • Exemplary bispecific antibodies may bind to two different epitopes on a given PRO polypeptide herein. Alternatively, an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular PRO polypeptide. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide. These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF). [0331]
  • 5. Heteroconjugate Antibodies [0332]
  • Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Pat. No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980. [0333]
  • 6. Effector Function Engineering [0334]
  • It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., [0335] J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).
  • 7. Immunoconjugates [0336]
  • The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). [0337]
  • Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from [0338] Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.
  • In another embodiment, the antibody may be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide). [0339]
  • 8. Immunoliposomes [0340]
  • The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., [0341] Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
  • Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., [0342] J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).
  • 9. Pharmaceutical Compositions of Antibodies [0343]
  • Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. [0344]
  • If the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco el al., [0345] Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's [0346] Pharmaceutical Sciences, supra.
  • The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes. [0347]
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. [0348]
  • G. Uses for Anti-PRO Antibodies [0349]
  • The anti-PRO antibodies of the invention have various utilities. For example, anti-PRO antibodies may be used in diagnostic assays for PRO, e.g., detecting its expression (and in some cases, differential expression) in specific cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, [0350] Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as 3H, 14C, 32P, 35S, or 125I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13: 1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).
  • Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources. In this process, the antibodies against PRO are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody. [0351]
  • The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. [0352]
  • All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety. [0353]
  • EXAMPLES
  • Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, Va. [0354]
  • Example 1 Extracellular Domain Homology Screening to Identify Novel Polypeptides and cDNA Encoding Therefor
  • The extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to search EST databases. The EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, Calif.). The search was performed using the computer program BLAST or BLAST-2 (Altschul et al., [0355] Methods in Enzymology 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program “phrap” (Phil Green, University of Washington, Seattle, Wash.).
  • Using this extracellular domain homology screen, consensus DNA sequences were assembled relative to the other identified EST sequences using phrap. In addition, the consensus DNA sequences obtained were often (but not always) extended using repeated cycles of BLAST or BLAST-2 and phrap to extend the consensus sequence as far as possible using the sources of EST sequences discussed above. [0356]
  • Based upon the consensus sequences obtained as described above, oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5 kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., [0357] Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs.
  • The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, Calif. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., [0358] Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites.
  • Example 2 Isolation of cDNA Clones by Amylase Screening
  • 1. Preparation of Oligo dT Primed cDNA Library [0359]
  • mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, Calif. (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, Md. (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the SalI/NotI linkered cDNA was cloned into XhoI/NotI cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the XhoI/NotI cDNA cloning sites. [0360]
  • 2. Preparation of Random Primed cDNA Library [0361]
  • A secondary cDNA library was generated in order to preferentially represent the 5′ ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies. [0362]
  • 3. Transformation and Detection [0363]
  • DNA from the library described in [0364] paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37° C. for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37° C.). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.
  • The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis. [0365]
  • The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL[0366] +, SUC+, GAL+. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec71, sec72, sec62, with truncated sec71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.
  • Transformation was performed based on the protocol outlined by Gietz et al., [0367] Nucl. Acid. Res., 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30° C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., p. 207 (1994). The overnight culture was then diluted to about 2×106 cells/ml (approx. OD600=0.1) into fresh YEPD broth (500 ml) and regrown to 1×107 cells/ml (approx. OD600=0.4-0.5).
  • The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li[0368] 2OOCCH3), and resuspended into LiAc/TE (2.5 ml).
  • Transformation took place by mixing the prepared cells (100 μl) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, Md.) and transforming DNA (1 μg, vol.<10 μl) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 μl, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li[0369] 2OOCCH3, pH 7.5) was added. This mixture was gently mixed and incubated at 30° C. while agitating for 30 minutes. The cells were then heat shocked at 42° C. for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 μl, 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 μl) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).
  • Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly. [0370]
  • The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., [0371] Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., p. 208-210 (1994). Transformants were grown at 30° C. for 2-3 days.
  • The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., [0372] Anal. Biochem., 172:176-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).
  • The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly. [0373]
  • 4. Isolation of DNA by PCR Amplification [0374]
  • When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μl) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μl) was used as a template for the PCR reaction in a 25 μl volume containing: 0.5 μl Klentaq (Clontech, Palo Alto, Calif.); 4.0 μl 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μl Kentaq buffer (Clontech); 0.25 μl [0375] forward oligo 1; 0.25 μl reverse oligo 2; 12.5 μl distilled water. The sequence of the forward oligonucleotide 1 was:
  • 5′-TGTAAAACGACGGCCAGT[0376] TAAATAGACCTGCAATTATTAATCT-3′ (SEQ ID NO:115)
  • The sequence of [0377] reverse oligonucleotide 2 was:
  • 5′-CAGGAAACAGCTATGACC[0378] ACCTGCACACCTGCAAATCCATT-3′ (SEQ ID NO:116)
  • PCR was then performed as follows: [0379]
    a. Denature 92° C., 5 minutes
    b. 3 cycles of: Denature 92° C., 30 seconds
    Anneal 59° C., 30 seconds
    Extend 72° C., 60 seconds
    c. 3 cycles of: Denature 92° C., 30 seconds
    Anneal 57° C., 30 seconds
    Extend 72° C., 60 seconds
    d. 25 cycles of:  Denature 92° C., 30 seconds
    Anneal 55° C., 30 seconds
    Extend 72° C., 60 seconds
    e. Hold  4° C.
  • The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5′ end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences. [0380]
  • Following the PCR, an aliquot of the reaction (5 μl) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook et al., supra. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, Calif.). [0381]
  • Example 3 Isolation of cDNA Clones Using Signal Algorithm Analysis
  • Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc. (South San Francisco, Calif.) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, Calif.) databases. The signal sequence algorithm computes a secretion signal score based on the character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5′-end of the sequence or sequence fragment under consideration. The nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored. In order to determine whether the EST sequence contains an authentic signal sequence, the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences. [0382]
  • Example 4 Isolation of cDNA Clones Encoding Human PRO Polypeptides
  • Using the techniques described in Examples 1 to 3 above, numerous full-length cDNA clones were identified as encoding PRO polypeptides as disclosed herein. These cDNAs were then deposited under the terms of the Budapest Treaty with the American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209, USA (ATCC) as shown in Table 7 below. [0383]
    TABLE 7
    Material ATCC Dep. No. Deposit Date
    DNA16422-1209 209929 Jun. 2, 1998
    DNA19902-1669 203454 Nov. 3, 1998
    DNA21624-1391 209917 Jun. 2, 1998
    DNA34387-1138 209260 Sept. 16, 1997
    DNA35880-1160 209379 Oct. 16, 1997
    DNA39984-1221 209435 Nov. 7, 1997
    DNA44189-1322 209699 Mar. 26, 1998
    DNA48303-2829 PTA-1342 Feb. 8, 2000
    DNA48320-1433 209904 May 27, 1998
    DNA56049-2543 203662 Feb. 9, 1999
    DNA57694-1341 203017 Jun. 23, 1998
    DNA59208-1373 209881 May 20, 1998
    DNA59214-1449 203046 Jul. 1, 1998
    DNA59485-1336 203015 Jun. 23, 1998
    DNA64966-1575 203575 Jan. 12, 1999
    DNA82403-2959 PTA-2317 Aug. 1, 2000
    DNA83505-2606 PTA-132  May 25, 1999
    DNA84927-2585 203865 Mar. 23, 1999
    DNA92264-2616 203969 Apr. 27, 1999
    DNA94713-2561 203835 Mar. 9, 1999
    DNA96869-2673 PTA-255  Jun. 22, 1999
    DNA96881-2699 PTA-553  Aug. 17, 1999
    DNA96889-2641 PTA-119  May 25, 1999
    DNA96898-2640 PTA-122  May 25, 1999
    DNA97003-2649 PTA-43  May 11, 1999
    DNA98565-2701 PTA-481  Aug. 3, 1999
    DNA102846-2742 PTA-545  Aug. 17, 1999
    DNA102847-2726 PTA-517  Aug. 10, 1999
    DNA102880-2689 PTA-383  Jul. 20, 1999
    DNA105782-2683 PTA-387  Jul. 20, 1999
    DNA108912-2680 PTA-124  May 25, 1999
    DNA115253-2757 PTA-612  Aug. 31, 1999
    DNA119302-2737 PTA-520  Aug. 10, 1999
    DNA119536-2752 PTA-551  Aug. 17, 1999
    DNA119542-2754 PTA-619  Aug. 31, 1999
    DNA143498-2824 PTA-1263 Feb. 2, 2000
    DNA145583-2820 PTA-1179 Jan. 11, 2000
    DNA161000-2896 PTA-1731 Apr. 18, 2000
    DNA161005-2943 PTA-2243 Jun. 27, 2000
    DNA170245-3053 PTA-2952 Jan. 23, 2001
    DNA171771-2919 PTA-1902 May 23, 2000
    DNA173157-2981 PTA-2388 Aug. 8, 2000
    DNA175734-2985 PTA-2455 Sept. 12, 2000
    DNA176108-3040 PTA-2824 Dec. 19, 2000
    DNA190710-3028 PTA-2822 Dec. 19, 2000
    DNA190803-3019 PTA-2785 Dec. 12, 2000
    DNA191064-3069 PTA-3016 Feb. 6, 2001
    DNA194909-3013 PTA-2779 Dec. 12, 2000
    DNA203532-3029 PTA-2823 Dec. 19, 2000
    DNA213858-3060 PTA-2958 Jan. 23, 2001
    DNA216676-3083 PTA-3157 Mar. 6, 2001
    DNA222653-3104 PTA-3330 Apr. 24, 2001
    DNA96897-2688 PTA-379  Jul. 20, 1999
    DNA142917-3081 PTA-3155 Mar. 6, 2001
    DNA142930-2914 PTA-1901 May 23, 2000
    DNA147253-2983 PTA-2405 Aug. 22, 2000
    DNA149927-2887 PTA-1782 Apr. 25, 2000
  • These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638). [0384]
  • The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws. [0385]
  • Example 5 Use of PRO as a Hybridization Probe
  • The following method describes use of a nucleotide sequence encoding PRO as a hybridization probe. [0386]
  • DNA comprising the coding sequence of full-length or mature PRO as disclosed herein is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries. [0387]
  • Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled PRO-derived probe to the filters is performed in a solution of 50% formamide, 5× SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2× Denhardt's solution, and 10% dextran sulfate at 42° C. for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1× SSC and 0.1% SDS at 42° C. [0388]
  • DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO can then be identified using standard techniques known in the art. [0389]
  • Example 6 Expression of PRO in E. coli
  • This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in [0390] E. coli.
  • The DNA sequence encoding PRO is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from [0391] E. coli; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene.
  • The ligation mixture is then used to transform a selected [0392] E. coli strain using the methods described in Sambrook et al., supra. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.
  • Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on. [0393]
  • After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein. [0394]
  • PRO may be expressed in [0395] E. coli in a poly-His tagged form, using the following procedure. The DNA encoding PRO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an E. coli host based on strain 52 (W3110 fuhA(tonA) lon galE rpoHts(htpRts) clpP(lacIq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30° C. with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH4)2SO4, 0.71 g sodium citrate.2H2O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO4) and grown for approximately 20-30 hours at 30° C. with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.
  • [0396] E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4° C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbipchem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4° C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.
  • The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4° C. for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples. [0397]
  • Fractions containing the desired folded PRO polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered. [0398]
  • Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0399]
  • Example 7 Expression of PRO in mammalian cells
  • This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells. [0400]
  • The vector, pRK5 (see EP 307,247, published Mar. 15, 1989), is employed as the expression vector. Optionally, the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5-PRO. [0401]
  • In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 μg pRK5-PRO DNA is mixed with about 1 μg DNA encoding the VA RNA gene [Thimmappaya et al., [0402] Cell, 31:543 (1982)] and dissolved in 500 μl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl2. To this mixture is added, dropwise, 500 μl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO4, and a precipitate is allowed to form for 10 minutes at 25° C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37° C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.
  • Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 μCi/ml [0403] 35S-cysteine and 200 μCi/ml 35S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.
  • In an alternative technique, PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., [0404] Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μg pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 μg/ml bovine insulin and 0.1 μg/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.
  • In another embodiment, PRO can be expressed in CHO cells. The pRK5-PRO can be transfected into CHO cells using known reagents such as CaPO[0405] 4 or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as 35S-methionine. After determining the presence of PRO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed PRO can then be concentrated and purified by any selected method.
  • Epitope-tagged PRO may also be expressed in host CHO cells. The PRO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector. The poly-his tagged PRO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Ni[0406] 2+-chelate affinity chromatography.
  • PRO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure. [0407]
  • Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form. [0408]
  • Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., [0409] Current Protocols of Molecular Biology, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5′ and 3′ of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection.
  • Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect® (Qiagen), Dosper® or Fugene® (Boehringer Mannheim). The cells are grown as described in Lucas et al., supra. Approximately 3×10[0410] 7 cells are frozen in an ampule for further growth and production as described below.
  • The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 μm filtered PS20 with 5% 0.2 μm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37° C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3×10[0411] 5 cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Pat. No. 5,122,469, issued Jun. 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2×106 cells/mL. On day 0, the cell number pH ie determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33° C., and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 μm filter. The filtrate was either stored at 4° C. or immediately loaded onto columns for purification.
  • For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4° C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at −80° C. [0412]
  • Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 μL of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation. [0413]
  • Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0414]
  • Example 8 Expression of PRO in Yeast
  • The following method describes recombinant expression of PRO in yeast. [0415]
  • First, yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter. DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO. For secretion, DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO. [0416]
  • Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain. [0417]
  • Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing PRO may further be purified using selected column chromatography resins. [0418]
  • Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0419]
  • Example 9 Expression of PRO in Baculovirus-Infected Insect Cells
  • The following method describes recombinant expression of PRO in Baculovirus-infected insect cells. [0420]
  • The sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding PRO or the desired portion of the coding sequence of PRO such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5′ and 3′ regions. The 5′ primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector. [0421]
  • Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold™ virus DNA (Pharmingen) into [0422] Spodoptera frugiperda (“Sf9”) cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4-5 days of incubation at 28° C., the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994).
  • Expressed poly-his tagged PRO can then be purified, for example, by Ni[0423] 2+-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl2; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 μm filter. A Ni2+-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A280 with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A280 baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni2+-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His10-tagged PRO are pooled and dialyzed against loading buffer.
  • Alternatively, purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography. [0424]
  • Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0425]
  • Example 10 Preparation of Antibodies that Bind PRO
  • This example illustrates preparation of monoclonal antibodies which can specifically bind PRO. [0426]
  • Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, supra. Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation. [0427]
  • Mice, such as Balb/c, are immunized with the PRO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, Mont.) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies. [0428]
  • After a suitable antibody titer has been detected, the animals “positive” for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids. [0429]
  • The hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of “positive” hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art. [0430]
  • The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed. [0431]
  • Example 11 Purification of PRO Polypeptides Using Specific Antibodies
  • Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin. [0432]
  • Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by anunonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSE™ (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions. [0433]
  • Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown. [0434]
  • A soluble PRO polypeptide-containing preparation is passed over the immunoaffinty column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected. [0435]
  • Example 12 Drug Screening
  • This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques. The PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested. [0436]
  • Thus, the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with an PRO polypeptide or fragment thereof and assaying (I) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled. After suitable incubation, free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex. [0437]
  • Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on Sep. 13, 1984. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the peptide and immobilize it on the solid support. [0438]
  • This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRO polypeptide. [0439]
  • Example 13 Rational Drug Design
  • The goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (cf., Hodgson, [0440] Bio/Technology, 2: 19-21 (1991)).
  • In one approach, the three-dimensional structure of the PRO polypeptide, or of an PRO polypeptide-inhibitor complex, is determined by x-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors. Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, [0441] Biochemistry, 31:7796-7801 (1992) or which act as inhibitors, agonists, or antagonists of native peptides as shown by Athauda et al., J. Biochem., 113:742-746 (1993).
  • It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced peptides. The isolated peptides would then act as the pharmacore. [0442]
  • By virtue of the present invention, sufficient amounts of the PRO polypeptide may be made available to perform such analytical studies as X-ray crystallography. In addition, knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to x-ray crystallography. [0443]
  • Example 14 Ability of PRO Polypeptides to Stimulate the Release of Proteoglycans from Cartilage (Assay 97)
  • The ability of various PRO polypeptides to stimulate the release of proteoglycans from cartilage tissue was tested as follows. [0444]
  • The metacarphophalangeal joint of 4-6 month old pigs was aseptically dissected, and articular cartilage was removed by free hand slicing being careful to avoid the underlying bone. The cartilage was minced and cultured in bulk for 24 hours in a humidified atmosphere of 95% air, 5% CO[0445] 2 in serum free (SF) media (DME/F12 1:1) with 0.1% BSA and 100U/ml penicillin and 100 μg/ml streptomycin. After washing three times, approximately 100 mg of articular cartilage was aliquoted into micronics tubes and incubated for an additional 24 hours in the above SF media. PRO polypeptides were then added at 1% either alone or in combination with 18 ng/ml interleukin-1α, a known stimulator of proteoglycan release from cartilage tissue. The supernatant was then harvested and assayed for the amount of proteoglycans using the 1,9-dimethyl-methylene blue (DMB) colorimetric assay (Farndale and Buttle, Biochem. Biophys. Acta 883:173-177 (1985)). A positive result in this assay indicates that the test polypeptide will find use, for example, in the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis.
  • When various PRO polypeptides were tested in the above assay, the polypeptides demonstrated a marked ability to stimulate release of proteoglycans from cartilage tissue both basally and after stimulation with interleukin-1α and at 24 and 72 hours after treatment, thereby indicating that these PRO polypeptides are useful for stimulating proteoglycan release from cartilage tissue. As such, these PRO polypeptides are useful for the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis. PRO6018 polypeptide testing positive in this assay. [0446]
  • Example 15 Human Microvascular Endothelial Cell Proliferation (Assay 146)
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce proliferation of human microvascular endothelial cells in culture and, therefore, function as useful growth factors. [0447]
  • On day 0, human microvascular endothelial cells were plated in 96-well plates at 1000 cells/well per 100 microliter and incubated overnight in complete media [EBM-2 growth media, plus supplements: IGF-1; ascorbic acid; VEGF; hEGF; hFGF; hydrocortisone, gentamicin (GA-1000), and fetal bovine serum (FBS, Clonetics)]. On [0448] day 1, complete media was replaced by basal media [EBM-2 plus 1% FBS] and addition of PRO polypeptides at 1%, 0.1% and 0.01%. On day 7, an assessment of cell proliferation was performed using the ViaLight HS kit [ATP/luciferase Lumitech]. Results are expressed as % of the cell growth observed with control buffer.
  • The following PRO polypeptides stimulated human microvascular endothelial cell proliferation in this assay: PRO1313, PRO20080, and PRO21383. [0449]
  • The following PRO polypeptides inhibited human microvascular endothelial cell proliferation in this assay: PRO6071, PRO4487, and PRO6006. [0450]
  • Example 16 Microarray Analysis to Detect Overexpression of PRO Polypeptides in Cancerous Tumors
  • Nucleic acid microarrays, often containing thousands of gene sequences, are useful for identifying differentially expressed genes in diseased tissues as compared to their normal counterparts. Using nucleic acid microarrays, test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes. The cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support. The array is configured such that the sequence and position of each member of the array is known. For example, a selection of genes known to be expressed in certain disease states may be arrayed on a solid support. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene. If the hybridization signal of a probe from a test (disease tissue) sample is greater than hybridization signal of a probe from a control (normal tissue) sample, the gene or genes overexpressed in the disease tissue are identified. The implication of this result is that an overexpressed protein in a diseased tissue is useful not only as a diagnostic marker for the presence of the disease condition, but also as a therapeutic target for treatment of the disease condition. [0451]
  • The methodology of hybridization of nucleic acids and microarray technology is well known in the art. In the present example, the specific preparation of nucleic acids for hybridization and probes, slides, and hybridization conditions are all detailed in U.S. Provisional Patent Application Serial No. 60/193,767, filed on Mar. 31, 2000 and which is herein incorporated by reference. [0452]
  • In the present example, cancerous tumors derived from various human tissues were studied for PRO polypeptide-encoding gene expression relative to non-cancerous human tissue in an attempt to identify those PRO polypeptides which are overexpressed in cancerous tumors. Cancerous human tumor tissue from any of a variety of different human tumors was obtained and compared to a “universal” epithelial control sample which was prepared by pooling non-cancerous human tissues of epithelial origin, including liver, kidney, and lung. mRNA isolated from the pooled tissues represents a mixture of expressed gene products from these different tissues. Microarray hybridization experiments using the pooled control samples generated a linear plot in a 2-color analysis. The slope of the line generated in a 2-color analysis was then used to normalize the ratios of (test:control detection) within each experiment. The normalized ratios from various experiments were then compared and used to identify clustering of gene expression. Thus, the pooled “universal control” sample not only allowed effective relative gene expression determinations in a simple 2-sample comparison, it also allowed multi-sample comparisons across several experiments. [0453]
  • In the present experiments, nucleic acid probes derived from the herein described PRO polypeptide-encoding nucleic acid sequences were used in the creation of the microarray and RNA from a panel of nine different tumor tissues (listed below) were used for the hybridization thereto. A value based upon the normalized ratio:experimental ratio was designated as a “cutoff ratio”. Only values that were above this cutoff ratio were determined to be significant. Table 8 below shows the results of these experiments, demonstrating that various PRO polypeptides of the present invention are significantly overexpressed in various human tumor tissues, as compared to a non-cancerous human tissue control or other human tumor tissues. As described above, these data demonstrate that the PRO polypeptides of the present invention are useful not only as diagnostic markers for the presence of one or more cancerous tumors, but also serve as therapeutic targets for the treatment of those tumors. [0454]
    TABLE 8
    Molecule is overexpressed in: as compared to normal control:
    PRO240 breast tumor universal normal control
    PRO240 lung tumor universal normal control
    PRO256 colon tumor universal normal control
    PRO256 lung tumor universal normal control
    PRO256 breast tumor universal normal control
    PRO306 colon tumor universal normal control
    PRO306 lung tumor universal normal control
    PRO540 lung tumor universal normal control
    PRO540 colon tumor universal normal control
    PRO773 breast tumor universal normal control
    PRO773 colon tumor universal normal control
    PRO698 colon tumor universal normal control
    PRO698 breast tumor universal normal control
    PRO698 lung tumor universal normal control
    PRO698 prostate tumor universal normal control
    PRO698 rectal tumor universal normal control
    PRO3567 colon tumor universal normal control
    PRO3567 breast tumor universal normal control
    PRO3567 lung tumor universal normal control
    PRO826 colon tumor universal normal control
    PRO826 lung tumor universal normal control
    PRO826 breast tumor universal normal control
    PRO826 rectal tumor universal normal control
    PRO826 liver tumor universal normal control
    PRO1002 colon tumor universal normal control
    PRO1002 lung tumor universal normal control
    PRO1068 colon tumor universal normal control
    PRO1068 breast tumor universal normal control
    PRO1030 colon tumor universal normal control
    PRO1030 breast tumor universal normal control
    PRO1030 lung tumor universal normal control
    PRO1030 prostate tumor universal normal control
    PRO1030 rectal tumor universal normal control
    PRO4397 colon tumor universal normal control
    PRO4397 breast tumor universal normal control
    PRO4344 colon tumor universal normal control
    PRO4344 lung tumor universal normal control
    PRO4344 rectal tumor universal normal control
    PRO4407 colon tumor universal normal control
    PRO4407 breast tumor universal normal control
    PRO4407 lung tumor universal normal control
    PRO4407 liver tumor universal normal control
    PRO4407 rectal tumor universal normal control
    PRO4316 colon tumor universal normal control
    PRO4316 prostate tumor universal normal control
    PRO5775 colon tumor universal normal control
    PRO6016 colon tumor universal normal control
    PRO4980 breast tumor universal normal control
    PRO4980 colon tumor universal normal control
    PRO4980 lung tumor universal normal control
    PRO6018 colon tumor universal normal control
    PRO7168 colon tumor universal normal control
    PRO6000 colon tumor universal normal control
    PRO6006 colon tumor universal normal control
    PRO5800 colon tumor universal normal control
    PRO5800 breast tumor universal normal control
    PRO5800 lung tumor universal normal control
    PRO5800 rectal tumor universal normal control
    PRO7476 colon tumor universal normal control
    PRO10268 colon tumor universal normal control
    PRO6496 colon tumor universal normal control
    PRO6496 breast tumor universal normal control
    PRO6496 lung tumor universal normal control
    PRO7422 colon tumor universal normal control
    PRO7431 colon tumor universal normal control
    PRO28633 colon tumor universal normal control
    PRO28633 lung tumor universal normal control
    PRO28633 liver tumor universal normal control
    PRO21485 colon tumor universal normal control
    PRO28700 breast tumor universal normal control
    PRO28700 lung tumor universal normal control
    PRO28700 colon tumor universal normal control
    PRO34012 colon tumor universal normal control
    PRO34012 lung tumor universal normal control
    PRO34003 colon tumor universal normal control
    PRO34003 lung tumor universal normal control
    PRO34001 colon tumor universal normal control
    PRO34009 colon tumor universal normal control
    PRO34009 breast tumor universal normal control
    PRO34009 lung tumor universal normal control
    PRO34009 rectal tumor universal normal control
    PRO34192 colon tumor universal normal control
    PRO34564 colon tumor universal normal control
    PRO35444 colon tumor universal normal control
    PRO5998 colon tumor universal normal control
    PRO5998 lung tumor universal normal control
    PRO5998 kidney tumor universal normal control
    PRO19651 colon tumor universal normal control
    PRO20221 liver tumor universal normal control
    PRO21434 liver tumor universal normal control
  • Example 17 Fetal Hemoglobin Induction in an Erythroblastic Cell Line (Assay 107)
  • This assay is useful for screening PRO polypeptides for the ability to induce the switch from adult hemoglobin to fetal hemoglobin in an erythroblastic cell line. Molecules testing positive in this assay are expected to be useful for therapeutically treating various mammalian hemoglobin-associated disorders such as the various thalassemias. The assay is performed as follows. Erythroblastic cells are plated in standard growth medium at 1000 cells/well in a 96 well format. PRO polypeptides are added to the growth medium at a concentration of 0.2% or 2% and the cells are incubated for 5 days at 37° C. As a positive control, cells are treated with 100 μM hemin and as a negative control, the cells are untreated. After 5 days, cell lysates are prepared and analyzed for the expression of gamma globin (a fetal marker). A positive in the assay is a gamma globin level at least 2-fold above the negative control. [0455]
  • PRO20080 polypeptide tested positive in this assay. [0456]
  • Example 18 Microarray Analysis to Detect Overexpression of PRO Polypeptides in HUVEC Cells Treated with Growth Factors
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce angiogenesis by stimulating endothelial cell tube formation in HUVEC cells. [0457]
  • Nucleic acid microarrays, often containing thousands of gene sequences, are useful for identifying differentially expressed genes in tissues exposed to various stimuli (e.g., growth factors) as compared to their normal, unexposed counterparts. Using nucleic acid microarrays, test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes. The cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support. The array is configured such that the sequence and position of each member of the array is known. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene. If the hybridization signal of a probe from a test (exposed tissue) sample is greater than hybridization signal of a probe from a control (normal, unexposed tissue) sample, the gene or genes overexpressed in the exposed tissue are identified. The implication of this result is that an overexpressed protein in an exposed tissue may be involved in the functional changes within the tissue following exposure to the stimuli (e.g., tube formation). [0458]
  • The methodology of hybridization of nucleic acids and microarray technology is well known in the art. In the present example, the specific preparation of nucleic acids for hybridization and probes, slides, and hybridization conditions are all detailed in U.S. Provisional Patent Application Serial No. 60/193,767, filed on Mar. 31, 2000 and which is herein incorporated by reference. [0459]
  • In the present example, HUVEC cells grown in either collagen gels or fibrin gels were induced to form tubes by the addition of various growth factors. Specifically, collagen gels were prepared as described previously in Yang et al., [0460] American J. Pathology, 1999, 155(3):887-895 and Xin et al., American J. Pathology, 2001, 158(3): 1111-1120. Following gelation of the HUVEC cells, 1X basal medium containing M199 supplemented with 1% FBS, 1× ITS, 2 mM L-glutamine, 50 μg/ml ascorbic acid, 26.5 mM NaHCO3, 100U/ml penicillin and 100 U/ml streptomycin was added. Tube formation was elicited by the inclusion in the culture media of either a mixture of phorbol myrsitate acetate (50 nM), vascular endothelial cell growth factor (40 ng/ml) and basic fibroblast growth factor (40 ng/ml) (“PMA growth factor mix”) or hepatocyte growth factor (40 ng/ml) and vascular endothelial cell growth factor (40 ng/ml) (HGF/VEGF mix) for the indicated period of time. Fibrin Gels were prepared by suspending Huvec (4×105 cells/ml) in M199 containing 1% fetal bovine serum (Hyclone) and human fibrinogen (2.5 mg/ml). Thrombin (50U/ml) was then added to the fibrinogen suspension at a ratio of 1 part thrombin solution:30 parts fibrinogen suspension. The solution was then layered onto 10 cm tissue culture plates (total volume: 15 ml/plate) and allowed to solidify at 37° C. for 20 min. Tissue culture media (10 ml of BM containing PMA (50 nM), bFGF (40 ng/ml) and VEGF (40 ng/ml)) was then added and the cells incubated at 37° C. in 5%CO2 in air for the indicated period of time.
  • Total RNA was extracted from the HUVEC cells incubated for 0, 4, 8, 24, 40 and 50 hours in the different matrix and media combinations using a TRIzol extraction followed by a second purification using RNAeasy Mini Kit (Qiagen). The total RNA was used to prepare cRNA which was then hybridized to the microarrays. [0461]
  • In the present experiments, nucleic acid probes derived from the herein described PRO polypeptide-encoding nucleic acid sequences were used in the creation of the microarray and RNA from the HUVEC cells described above were used for the hybridization thereto. Pairwise comparisons were made using time 0 chips as a baseline. Three replicate samples were analyzed for each experimental condition and time. Hence there were 3 time 0 samples for each treatment and 3 replicates of each successive time point. Therefore, a 3 by 3 comparison was performed for each time point compared against each time 0 point. This resulted in 9 comparisons per time point. Only those genes that had increased expression in all three non-time-0 replicates in each of the different matrix and media combinations as compared to any of the three time zero replicates were considered positive. Although this stringent method of data analysis does allow for false negatives, it minimizes false positives. [0462]
  • PRO281, PRO1560, PRO189, PRO4499, PRO6308, PRO6000, PRO10275, PRO21207, PRO20933,and PRO34274 tested positive in this assay. [0463]
  • Example 19 Tumor Versus Normal Differential Tissue Exression Distribution
  • Oligonucleotide probes were constructed from some of the PRO polypeptide-encoding nucleotide sequences shown in the accompanying figures for use in quantitative PCR amplification reactions. The oligonucleotide probes were chosen so as to give an approximately 200-600 base pair amplified fragment from the 3′ end of its associated template in a standard PCR reaction. The oligonucleotide probes were employed in standard quantitative PCR amplification reactions with cDNA libraries isolated from different human tumor and normal human tissue samples and analyzed by agarose gel electrophoresis so as to obtain a quantitative determination of the level of expression of the PRO polypeptide-encoding nucleic acid in the various tumor and normal tissues tested. β-actin was used as a control to assure that equivalent amounts of nucleic acid was used in each reaction. Identification of the differential expression of the PRO polypeptide-encoding nucleic acid in one or more tumor tissues as compared to one or more normal tissues of the same tissue type renders the molecule useful diagnostically for the determination of the presence or absence of tumor in a subject suspected of possessing a tumor as well as therapeutically as a target for the treatment of a tumor in a subject possessing such a tumor. These assays provided the following results: [0464]
  • (1) DNA161005-2943 molecule is very highly expressed in human umblilical vein endothelial cells (HUVEC), substantia niagra, hippocampus and dendrocytes; highly expressed in lymphoblasts; expressed in spleen, prostate, uterus and macrophages; and is weakly expressed in cartilage and heart. Among a panel of normal and tumor tissues examined, it is expressed in esophageal tumor, and is not expressed in normal esophagus, normal stomach, stomach tumor, normal kidney, kidney tumor, normal lung, lung tumor, normal rectum, rectal tumor, normal liver and liver tumor. [0465]
  • (2) DNA170245-3053 molecule is highly expressed in cartilage, testis, adrenal gland, and uterus, and not expressed in HUVEC, colon tumor, heart, placenta, bone marrow, spleen and aortic endothelial cells. In a panel of tumor and normal tissue samples examined, the DNA170245-3053 molecule was found to be expressed in normal esophagus and esophagial tumor, expressed in normal stomach and in stomach tumor, not expressed in normal kidney, but expressed in kidney tumor, not expressed in normal lung, but expressed in lung tumor, not expressed in normal rectum nor in rectal tumor, and not expressed in normal liver, but is expressed in liver tumor. [0466]
  • (3) DNA173157-2981 molecule is significantly expressed in the following tissues: cartilage, testis, HUVEC, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells, and uterus. When these assays were conducted on a tumor tissue panel, it was found that the DNA173157-2981 molecule is significantly expressed in the following tissues: normal esophagus and esophagial tumor, normal stomach and stomach tumor, normal kidney and kidney tumor, normal lung and lung tumor, normal rectum and rectal tumor, normal liver and liver tumor, and colon tumor. [0467]
  • (4) DNA175734-2985 molecule is significantly expressed in the adrenal gland and the uterus. The DNA175734-2985 molecule is not significantly expressed in the following tissues: cartilage, testis, HUVEC, colon tumor, heart, placenta, bone marrow, prostate, spleen and aortic endothelial cells. Screening of a tumor panel revealed that DNA175734-2985 is significantly expressed in normal esophagus but not in esophagial tumor. Similarly, while highly expressed in normal rectum, DNA175734-2985 is expressed to a lesser extent in rectal tumor. DNA175734-2985 is expressed equally in normal stomach and stomach tumor as well as normal liver and liver tumor. While not expressed in normal kidney, DNA175734-2985 is highly expressed in kidney tumor. [0468]
  • (5) DNA176108-3040 molecule is highly expressed in prostate and uterus, expressed in cartilage, testis, heart, placenta, bone marrow, adrenal gland and spleen, and not significantly expressed in HUVEC, colon tumor, and aortic endothelial cells. In a panel of tumor and normal tissue samples examined, the DNA176108-3040 molecule was found to be highly expressed in normal esophagus, but expressed at lower levels in esophagial tumor, highly expressed in normal stomach, and expressed at a lower level in stomach tumor, expressed in kidney and in kidney tumor, expressed in normal rectum and at a lower level in rectal tumor, and expressed in normal liver and not expressed in liver tumor. [0469]
  • (6) DNA191064-3069 molecule is significantly expressed in the following tissues: cartilage, testis, HUVEC, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells, and uterus and not significantly expressed in colon tumor. In a panel of tumor and normal tissue samples, the DNA191064-3069 molecule was found to be expressed in normal esophagus and in esophagial tumors, expressed in normal stomach and in stomach tumors, expressed in normal kidney and in kidney tumors, expressed in normal lung and in lung tumors, expressed in normal rectum and in rectal tumors, expressed in normal liver and in liver tumors. [0470]
  • (7) DNA194909-3013 molecule is highly expressed in placenta, and expressed in cartilage, testis, HUVEC, colon tumor, heart, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells and uterus. In a panel of tumor and normal tissue samples examined, the DNA194909-3013 molecule was found to be expressed in normal esophagus and expressed at a lower level in esophagial tumor, not expressed in normal stomach nor stomach tumor, expressed in normal kidney and kidney tumor, expressed in normal lung and lung tumor, expressed in normal rectum and rectal tumor, and not expressed in normal liver, but is expressed in liver tumor. [0471]
  • (8) The PRO34009 encoding genes of the invention (DNA203532-3029) were screened in normal tissues and the following primary tumors and the resulting values are reported below. [0472]
  • Tumor Panel: [0473]
  • PRO34009 encoding genes were expressed 39.3 fold higher in lung tumor than normal lung. It is expressed 9.5 fold higher in esophagial tumors than normal esophagus. It is expressed 6.7 fold higher in kidney tumor than normal kidney. It is expressed 4.0 fold higher in colon tumor than normal colon. It is expressed 2.7 fold higher in stomach tumor than normal stomach. It is expressed at similar levels in normal rectum and rectal tumor, normal liver and liver tumor, normal uterus and uterine tumor. [0474]
  • Normal Panel: [0475]
  • For the normal tissue values, the normal tissue with the highest expression, in this case normal thymus, was given a value of 1 and all other normal tissues were given a value of less than 1, and described as expressed, weakly expressed or not expressed, based on their expression relative to thymus. PRO34009 encoding genes were expressed in normal thymus. It is weakly expressed in lymphoblast, spleen, heart, fetal limb, fetal lung, placenta, HUVEC, testis, fetal kidney, uterus, prostate, macrophage, substantia nigra, hippocampus, liver, skin, esophagus, stomach, rectum, kidney, thyroid, skeletal muscle, or fetal articular cartilage. It is not expressed in bone marrow, fetal liver, colon, lung or dendrocytes. [0476]
  • (9) DNA213858-3060 molecule is not significantly expressed in cartilage, testis, HUVEC, colon tumor, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells or uterus. In a panel of tumor and normal tissue samples examined, the DNA213858-3060 molecule was found to be expressed in normal esophagus and esophagial tumor, expressed in normal stomach and in stomach tumor, expressed in normal kidney and and kidney tumor, expressed in normal lung and in lung tumor, expressed in normal rectum and in rectal tumor, and expressed in normal liver and in liver tumor. [0477]
  • (10) DNA216676-3083 molecule is significantly expressed in the following tissues: testis, heart, bone marrow, and uterus, and not significantly expressed in the following tissues: cartilage, HUVEC, colon tumor, placenta, adrenal gland, prostate, spleen, or aortic endothelial cells In a panel of tumor and normal tissues samples examined, the DNA216676-3083 molecule was found to be expressed in normal esophagus and esophagial tumor, not expressed in normal stomach, but is expressed in stomach tumor, not expressed in normal kidney nor in kidney tumor, not expressed in normal lung, but is expressed in lung tumor, not expressed in normal rectum, but is expressed in rectal tumor, and not expressed in normal liver nor in liver tumor. [0478]
  • (11) DNA222653-3104 molecule is significantly expressed testis, and not significantly expressed in cartilage, HUVEC, colon tumor, heart, placenta, bone marrow, adrenal gland, prostate, spleen, aortic endothelial cells and uterus. In a panel of tumor and normal tissue samples examined, the DNA22653-3104 molecule was not expressed in normal esophagus, esophagial tumor, normal stomach, stomach tumor, normal kidney, kidney tumor, normal lung, lung tumor, normal rectum, rectal tumor, normal liver and liver tumor. [0479]
  • Example 20 Guinea Pig Vascular Leak (Assay 51)
  • This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce vascular permeability. Polypeptides testing positive in this assay are expected to be useful for the therapeutic treatment of conditions which would benefit from enhanced vascular permeability including, for example, conditions which may benefit from enhanced local immune system cell infiltration. [0480]
  • Hairless guinea pigs weighing 350 grams or more were anesthetized with Ketamine (75-80 mg/kg) and 5 mg/kg Xylazine intramuscularly. Test samples containing the PRO polypeptide or a physiological buffer without the test polypeptide are injected into skin on the back of the test animals with 100 μl per injection site intradermally. There were approximately 16-24 injection sites per animal. One ml of Evans blue dye (1% in PBS) is then injected intracardially. Skin vascular permeability responses to the compounds (i.e., blemishes at the injection sites of injection) are visually scored by measuring the diameter (in mm) of blue-colored leaks from the site of injection at 1 and 6 hours post administration of the test materials. The mm diameter of blueness at the site of injection is observed and recorded as well as the severity of the vascular leakage. Blemishes of at least 5 mm in diameter are considered positive for the assay when testing purified proteins, being indicative of the ability to induce vascular leakage or permeability. A response greater than 7 mm diameter is considered positive for conditioned media samples. Human VEGF at 0.1 μg/100 μl is used as a positive control, inducing a response of 15-23 mm diameter. [0481]
  • PRO19822 polypeptides tested positive in this assay. [0482]
  • Example 21 Skin Vascular Permeability Assay (Assay 64)
  • This assay shows that certain polypeptides of the invention stimulate an immune response and induce inflammation by inducing mononuclear cell, eosinophil and PMN infiltration at the site of injection of the animal. Compounds which stimulate an immune response are useful therapeutically where stimulation of an immune response is beneficial. This skin vascular permeability assay is conducted as follows. Hairless guinea pigs weighing 350 grams or more are anesthetized with ketamine (75-80 mg/Kg) and 5 mg/Kg xylazine intramuscularly (IM). A sample of purified polypeptide of the invention or a conditioned media test sample is injected intradermally onto the backs of the test animals with 100 μl per injection site: It is possible to have about 10-30, preferably about 16-24, injection sites per animal. One μl of Evans blue dye (1% in physiologic buffered saline) is injected intracardially. Blemishes at the injection sites are then measured (mm diameter) at 1 hr and 6 hr post injection. Animals were sacrificed at 6 hrs after injection. Each skin injection site is biopsied and fixed in formalin. The skins are then prepared for histopathologic evaluation. Each site is evaluated for inflammatory cell infiltration into the skin. Sites with visible inflammatory cell inflammation are scored as positive. Inflammatory cells may be neutrophilic, eosinophilic, monocytic or lymphocytic. At least a minimal perivascular infiltrate at the injection site is scored as positive, no infiltrate at the site of injection is scored as negative. [0483]
  • PRO19822 polypeptide tested positive in this assay. [0484]
                      
    #              SEQUENCE LIS
    #TING
    <160> NUMBER OF SEQ ID NOS: 116
    <210> SEQ ID NO 1
    <211> LENGTH: 1943
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 1
    cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat  
    #              50
    ctgctcggta gacctggtgc accaccacca tgttggctgc aaggctggtg  
    #             100
    tgtctccgga cactaccttc tagggttttc cacccagctt tcaccaaggc  
    #             150
    ctcccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgttaacac  
    #             200
    ctagcaggga atatgccacc aaaacaagaa ttgggatccg gcgtgggaga  
    #             250
    actggccaag aactcaaaga ggcagcattg gaaccatcga tggaaaaaat  
    #             300
    atttaaaatt gatcagatgg gaagatggtt tgttgctgga ggggctgctg  
    #             350
    ttggtcttgg agcattgtgc tactatggct tgggactgtc taatgagatt  
    #             400
    ggagctattg aaaaggctgt aatttggcct cagtatgtca aggatagaat  
    #             450
    tcattccacc tatatgtact tagcagggag tattggttta acagctttgt  
    #             500
    ctgccatagc aatcagcaga acgcctgttc tcatgaactt catgatgaga  
    #             550
    ggctcttggg tgacaattgg tgtgaccttt gcagccatgg ttggagctgg  
    #             600
    aatgctggta cgatcaatac catatgacca gagcccaggc ccaaagcatc  
    #             650
    ttgcttggtt gctacattct ggtgtgatgg gtgcagtggt ggctcctctg  
    #             700
    acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg  
    #             750
    cattgtggga ggcctctcca ctgtggccat gtgtgcgccc agtgaaaagt  
    #             800
    ttctgaacat gggtgcaccc ctgggagtgg gcctgggtct cgtctttgtg  
    #             850
    tcctcattgg gatctatgtt tcttccacct accaccgtgg ctggtgccac  
    #             900
    tctttactca gtggcaatgt acggtggatt agttcttttc agcatgttcc  
    #             950
    ttctgtatga tacccagaaa gtaatcaagc gtgcagaagt atcaccaatg  
    #            1000
    tatggagttc aaaaatatga tcccattaac tcgatgctga gtatctacat  
    #            1050
    ggatacatta aatatattta tgcgagttgc aactatgctg gcaactggag  
    #            1100
    gcaacagaaa gaaatgaagt gactcagctt ctggcttctc tgctacatca  
    #            1150
    aatatcttgt ttaatggggc agatatgcat taaatagttt gtacaagcag  
    #            1200
    ctttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt  
    #            1250
    ccggtaatgt gatgcctcag gtctgccttt ttttctggag aataaatgca  
    #            1300
    gtaatcctct cccaaataag cacacacatt ttcaattctc atgtttgagt  
    #            1350
    gattttaaaa tgttttggtg aatgtgaaaa ctaaagtttg tgtcatgaga  
    #            1400
    atgtaagtct tttttctact ttaaaattta gtaggttcac tgagtaacta  
    #            1450
    aaatttagca aacctgtgtt tgcatatttt tttggagtgc agaatattgt  
    #            1500
    aattaatgtc ataagtgatt tggagctttg gtaaagggac cagagagaag  
    #            1550
    gagtcacctg cagtcttttg tttttttaaa tacttagaac ttagcacttg  
    #            1600
    tgttattgat tagtgaggag ccagtaagaa acatctgggt atttggaaac  
    #            1650
    aagtggtcat tgttacattc atttgctgaa cttaacaaaa ctgttcatcc  
    #            1700
    tgaaacaggc acaggtgatg cattctcctg ctgttgcttc tcagtgctct  
    #            1750
    ctttccaata tagatgtggt catgtttgac ttgtacagaa tgttaatcat  
    #            1800
    acagagaatc cttgatggaa ttatatatgt gtgttttact tttgaatgtt  
    #            1850
    acaaaaggaa ataactttaa aactattctc aagagaaaat attcaaagca  
    #            1900
    tgaaatatgt tgctttttcc agaatacaaa cagtatactc atg    
    #                 194
    #3
    <210> SEQ ID NO 2
    <211> LENGTH: 345
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 2
    Met Leu Ala Ala Arg Leu Val Cys Leu Arg Th
    #r Leu Pro Ser Arg
      1               5 
    #                 10 
    #                 15
    Val Phe His Pro Ala Phe Thr Lys Ala Ser Pr
    #o Val Val Lys Asn
                     20 
    #                 25 
    #                 30
    Ser Ile Thr Lys Asn Gln Trp Leu Leu Thr Pr
    #o Ser Arg Glu Tyr
                     35 
    #                 40 
    #                 45
    Ala Thr Lys Thr Arg Ile Gly Ile Arg Arg Gl
    #y Arg Thr Gly Gln
                     50 
    #                 55 
    #                 60
    Glu Leu Lys Glu Ala Ala Leu Glu Pro Ser Me
    #t Glu Lys Ile Phe
                     65 
    #                 70 
    #                 75
    Lys Ile Asp Gln Met Gly Arg Trp Phe Val Al
    #a Gly Gly Ala Ala
                     80 
    #                 85 
    #                 90
    Val Gly Leu Gly Ala Leu Cys Tyr Tyr Gly Le
    #u Gly Leu Ser Asn
                     95 
    #                100 
    #                105
    Glu Ile Gly Ala Ile Glu Lys Ala Val Ile Tr
    #p Pro Gln Tyr Val
                    110  
    #               115  
    #               120
    Lys Asp Arg Ile His Ser Thr Tyr Met Tyr Le
    #u Ala Gly Ser Ile
                    125  
    #               130  
    #               135
    Gly Leu Thr Ala Leu Ser Ala Ile Ala Ile Se
    #r Arg Thr Pro Val
                    140  
    #               145  
    #               150
    Leu Met Asn Phe Met Met Arg Gly Ser Trp Va
    #l Thr Ile Gly Val
                    155  
    #               160  
    #               165
    Thr Phe Ala Ala Met Val Gly Ala Gly Met Le
    #u Val Arg Ser Ile
                    170  
    #               175  
    #               180
    Pro Tyr Asp Gln Ser Pro Gly Pro Lys His Le
    #u Ala Trp Leu Leu
                    185  
    #               190  
    #               195
    His Ser Gly Val Met Gly Ala Val Val Ala Pr
    #o Leu Thr Ile Leu
                    200  
    #               205  
    #               210
    Gly Gly Pro Leu Leu Ile Arg Ala Ala Trp Ty
    #r Thr Ala Gly Ile
                    215  
    #               220  
    #               225
    Val Gly Gly Leu Ser Thr Val Ala Met Cys Al
    #a Pro Ser Glu Lys
                    230  
    #               235  
    #               240
    Phe Leu Asn Met Gly Ala Pro Leu Gly Val Gl
    #y Leu Gly Leu Val
                    245  
    #               250  
    #               255
    Phe Val Ser Ser Leu Gly Ser Met Phe Leu Pr
    #o Pro Thr Thr Val
                    260  
    #               265  
    #               270
    Ala Gly Ala Thr Leu Tyr Ser Val Ala Met Ty
    #r Gly Gly Leu Val
                    275  
    #               280  
    #               285
    Leu Phe Ser Met Phe Leu Leu Tyr Asp Thr Gl
    #n Lys Val Ile Lys
                    290  
    #               295  
    #               300
    Arg Ala Glu Val Ser Pro Met Tyr Gly Val Gl
    #n Lys Tyr Asp Pro
                    305  
    #               310  
    #               315
    Ile Asn Ser Met Leu Ser Ile Tyr Met Asp Th
    #r Leu Asn Ile Phe
                    320  
    #               325  
    #               330
    Met Arg Val Ala Thr Met Leu Ala Thr Gly Gl
    #y Asn Arg Lys Lys
                    335  
    #               340  
    #               345
    <210> SEQ ID NO 3
    <211> LENGTH: 1110
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 3
    ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc  
    #              50
    cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt  
    #             100
    ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc  
    #             150
    agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa  
    #             200
    atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc  
    #             250
    attattcttt tgggcacctt tggttgtttt gctacctgcc gagcttctgc  
    #             300
    atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg  
    #             350
    aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac  
    #             400
    agctttaaga ataattatga gaaggctttg aagcagtata actctacagg  
    #             450
    agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt  
    #             500
    gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa  
    #             550
    aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag  
    #             600
    agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca  
    #             650
    ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct  
    #             700
    tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat  
    #             750
    aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat  
    #             800
    tcctctctac ctttaaggac atttagggtc ccccctgtga attagaaagt  
    #             850
    tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta  
    #             900
    caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca  
    #             950
    ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa  
    #            1000
    gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag  
    #            1050
    atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg  
    #            1100
    taaatgaagt                
    #                  
    #                  
    #      1110
    <210> SEQ ID NO 4
    <211> LENGTH: 245
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <220> FEATURE:
    <221> NAME/KEY: unsure
    <222> LOCATION: 233
    <223> OTHER INFORMATION: unknown amino acid
    <400> SEQUENCE: 4
    Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Ly
    #s Pro Val Ile Thr
      1               5 
    #                 10 
    #                 15
    Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Ph
    #e Ile Phe Trp Ile
                     20 
    #                 25 
    #                 30
    Thr Gly Val Ile Leu Leu Ala Val Gly Ile Tr
    #p Gly Lys Val Ser
                     35 
    #                 40 
    #                 45
    Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Ly
    #s Ala Thr Asn Val
                     50 
    #                 55 
    #                 60
    Pro Phe Val Leu Ile Ala Thr Gly Thr Val Il
    #e Ile Leu Leu Gly
                     65 
    #                 70 
    #                 75
    Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Se
    #r Ala Trp Met Leu
                     80 
    #                 85 
    #                 90
    Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Ph
    #e Leu Val Glu Leu
                     95 
    #                100 
    #                105
    Val Ala Ala Ile Val Gly Phe Val Phe Arg Hi
    #s Glu Ile Lys Asn
                    110  
    #               115  
    #               120
    Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Ly
    #s Gln Tyr Asn Ser
                    125  
    #               130  
    #               135
    Thr Gly Asp Tyr Arg Ser His Ala Val Asp Ly
    #s Ile Gln Asn Thr
                    140  
    #               145  
    #               150
    Leu His Cys Cys Gly Val Thr Asp Tyr Arg As
    #p Trp Thr Asp Thr
                    155  
    #               160  
    #               165
    Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Se
    #r Cys Cys Lys Leu
                    170  
    #               175  
    #               180
    Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Ly
    #s Val Asn Asn Glu
                    185  
    #               190  
    #               195
    Gly Cys Phe Ile Lys Val Met Thr Ile Ile Gl
    #u Ser Glu Met Gly
                    200  
    #               205  
    #               210
    Val Val Ala Gly Ile Ser Phe Gly Val Ala Cy
    #s Phe Gln Leu Ile
                    215  
    #               220  
    #               225
    Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Al
    #a Ile Thr Asn Asn
                    230  
    #               235  
    #               240
    Gln Tyr Glu Ile Val
                    245
    <210> SEQ ID NO 5
    <211> LENGTH: 1373
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 5
    ggggccgcgg tctagggcgg ctacgtgtgt tgccatagcg accattttgc  
    #              50
    attaactggt tggtagcttc tatcctgggg gctgagcgac tgcgggccag  
    #             100
    ctcttcccct actccctctc ggctccttgt ggcccaaagg cctaaccggg  
    #             150
    gtccggcggt ctggcctagg gatcttcccc gttgcccctt tggggcggga  
    #             200
    tggctgcgga agaagaagac gaggtggagt gggtagtgga gagcatcgcg  
    #             250
    gggttcctgc gaggcccaga ctggtccatc cccatcttgg actttgtgga  
    #             300
    acagaaatgt gaagttaact gcaaaggagg gcatgtgata actccaggaa  
    #             350
    gcccagagcc ggtgattttg gtggcctgtg ttccccttgt ttttgatgat  
    #             400
    gaagaagaaa gcaaattgac ctatacagag attcatcagg aatacaaaga  
    #             450
    actagttgaa aagctgttag aaggttacct caaagaaatt ggaattaatg  
    #             500
    aagatcaatt tcaagaagca tgcacttctc ctcttgcaaa gacccataca  
    #             550
    tcacaggcca ttttgcaacc tgtgttggca gcagaagatt ttactatctt  
    #             600
    taaagcaatg atggtccaga aaaacattga aatgcagctg caagccattc  
    #             650
    gaataattca agagagaaat ggtgtattac ctgactgctt aaccgatggc  
    #             700
    tctgatgtgg tcagtgacct tgaacacgaa gagatgaaaa tcctgaggga  
    #             750
    agttcttaga aaatcaaaag aggaatatga ccaggaagaa gaaaggaaga  
    #             800
    ggaaaaaaca gttatcagag gctaaaacag aagagcccac agtgcattcc  
    #             850
    agtgaagctg caataatgaa taattcccaa ggggatggtg aacattttgc  
    #             900
    acacccaccc tcagaagtta aaatgcattt tgctaatcag tcaatagaac  
    #             950
    ctttgggaag aaaagtggaa aggtctgaaa cttcctccct cccacaaaaa  
    #            1000
    ggcctgaaga ttcctggctt agagcatgcg agcattgaag gaccaatagc  
    #            1050
    aaacttatca gtacttggaa cagaagaact tcggcaacga gaacactatc  
    #            1100
    tcaagcagaa gagagataag ttgatgtcca tgagaaagga tatgaggact  
    #            1150
    aaacagatac aaaatatgga gcagaaagga aaacccactg gggaggtaga  
    #            1200
    ggaaatgaca gagaaaccag aaatgacagc agaggagaag caaacattac  
    #            1250
    taaagaggag attgcttgca gagaaactca aagaagaagt tattaataag  
    #            1300
    taataattaa gaacaattta acaaaatgga agttcaaatt gtcttaaaaa  
    #            1350
    taaattattt agtccttaca ctg           
    #                  
    #              1373
    <210> SEQ ID NO 6
    <211> LENGTH: 367
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 6
    Met Ala Ala Glu Glu Glu Asp Glu Val Glu Tr
    #p Val Val Glu Ser
      1               5 
    #                 10 
    #                 15
    Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Se
    #r Ile Pro Ile Leu
                     20 
    #                 25 
    #                 30
    Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cy
    #s Lys Gly Gly His
                     35 
    #                 40 
    #                 45
    Val Ile Thr Pro Gly Ser Pro Glu Pro Val Il
    #e Leu Val Ala Cys
                     50 
    #                 55 
    #                 60
    Val Pro Leu Val Phe Asp Asp Glu Glu Glu Se
    #r Lys Leu Thr Tyr
                     65 
    #                 70 
    #                 75
    Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Va
    #l Glu Lys Leu Leu
                     80 
    #                 85 
    #                 90
    Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Gl
    #u Asp Gln Phe Gln
                     95 
    #                100 
    #                105
    Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr Hi
    #s Thr Ser Gln Ala
                    110  
    #               115  
    #               120
    Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Ph
    #e Thr Ile Phe Lys
                    125  
    #               130  
    #               135
    Ala Met Met Val Gln Lys Asn Ile Glu Met Gl
    #n Leu Gln Ala Ile
                    140  
    #               145  
    #               150
    Arg Ile Ile Gln Glu Arg Asn Gly Val Leu Pr
    #o Asp Cys Leu Thr
                    155  
    #               160  
    #               165
    Asp Gly Ser Asp Val Val Ser Asp Leu Glu Hi
    #s Glu Glu Met Lys
                    170  
    #               175  
    #               180
    Ile Leu Arg Glu Val Leu Arg Lys Ser Lys Gl
    #u Glu Tyr Asp Gln
                    185  
    #               190  
    #               195
    Glu Glu Glu Arg Lys Arg Lys Lys Gln Leu Se
    #r Glu Ala Lys Thr
                    200  
    #               205  
    #               210
    Glu Glu Pro Thr Val His Ser Ser Glu Ala Al
    #a Ile Met Asn Asn
                    215  
    #               220  
    #               225
    Ser Gln Gly Asp Gly Glu His Phe Ala His Pr
    #o Pro Ser Glu Val
                    230  
    #               235  
    #               240
    Lys Met His Phe Ala Asn Gln Ser Ile Glu Pr
    #o Leu Gly Arg Lys
                    245  
    #               250  
    #               255
    Val Glu Arg Ser Glu Thr Ser Ser Leu Pro Gl
    #n Lys Gly Leu Lys
                    260  
    #               265  
    #               270
    Ile Pro Gly Leu Glu His Ala Ser Ile Glu Gl
    #y Pro Ile Ala Asn
                    275  
    #               280  
    #               285
    Leu Ser Val Leu Gly Thr Glu Glu Leu Arg Gl
    #n Arg Glu His Tyr
                    290  
    #               295  
    #               300
    Leu Lys Gln Lys Arg Asp Lys Leu Met Ser Me
    #t Arg Lys Asp Met
                    305  
    #               310  
    #               315
    Arg Thr Lys Gln Ile Gln Asn Met Glu Gln Ly
    #s Gly Lys Pro Thr
                    320  
    #               325  
    #               330
    Gly Glu Val Glu Glu Met Thr Glu Lys Pro Gl
    #u Met Thr Ala Glu
                    335  
    #               340  
    #               345
    Glu Lys Gln Thr Leu Leu Lys Arg Arg Leu Le
    #u Ala Glu Lys Leu
                    350  
    #               355  
    #               360
    Lys Glu Glu Val Ile Asn Lys
                    365
    <210> SEQ ID NO 7
    <211> LENGTH: 932
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <220> FEATURE:
    <221> NAME/KEY: unsure
    <222> LOCATION: 911
    <223> OTHER INFORMATION: unknown base
    <400> SEQUENCE: 7
    gggaacggaa aatggcgcct cacggcccgg gtagtcttac gaccctggtg  
    #              50
    ccctgggctg ccgccctgct cctcgctctg ggcgtggaaa gggctctggc  
    #             100
    gctacccgag atatgcaccc aatgtccagg gagcgtgcaa aatttgtcaa  
    #             150
    aagtggcctt ttattgtaaa acgacacgag agctaatgct gcatgcccgt  
    #             200
    tgctgcctga atcagaaggg caccatcttg gggctggatc tccagaactg  
    #             250
    ttctctggag gaccctggtc caaactttca tcaggcacat accactgtca  
    #             300
    tcatagacct gcaagcaaac cccctcaaag gtgacttggc caacaccttc  
    #             350
    cgtggcttta ctcagctcca gactctgata ctgccacaac atgtcaactg  
    #             400
    tcctggagga attaatgcct ggaatactat cacctcttat atagacaacc  
    #             450
    aaatctgtca agggcaaaag aacctttgca ataacactgg ggacccagaa  
    #             500
    atgtgtcctg agaatggatc ttgtgtacct gatggtccag gtcttttgca  
    #             550
    gtgtgtttgt gctgatggtt tccatggata caagtgtatg cgccagggct  
    #             600
    cgttctcact gcttatgttc ttcgggattc tgggagccac cactctatcc  
    #             650
    gtctccattc tgctttgggc gacccagcgc cgaaaagcca agacttcatg  
    #             700
    aactacatag gtcttaccat tgacctaaga tcaatctgaa ctatcttagc  
    #             750
    ccagtcaggg agctctgctt cctagaaagg catctttcgc cagtggattc  
    #             800
    gcctcaaggt tgaggccgcc attggaagat gaaaaattgc actcccttgg  
    #             850
    tgtagacaaa taccagttcc cattggtgtt gttgcctata ataaacactt  
    #             900
    tttctttttt naaaaaaaaa aaaaaaaaaa aa       
    #                  
    #         932
    <210> SEQ ID NO 8
    <211> LENGTH: 229
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 8
    Met Ala Pro His Gly Pro Gly Ser Leu Thr Th
    #r Leu Val Pro Trp
      1               5 
    #                 10 
    #                 15
    Ala Ala Ala Leu Leu Leu Ala Leu Gly Val Gl
    #u Arg Ala Leu Ala
                     20 
    #                 25 
    #                 30
    Leu Pro Glu Ile Cys Thr Gln Cys Pro Gly Se
    #r Val Gln Asn Leu
                     35 
    #                 40 
    #                 45
    Ser Lys Val Ala Phe Tyr Cys Lys Thr Thr Ar
    #g Glu Leu Met Leu
                     50 
    #                 55 
    #                 60
    His Ala Arg Cys Cys Leu Asn Gln Lys Gly Th
    #r Ile Leu Gly Leu
                     65 
    #                 70 
    #                 75
    Asp Leu Gln Asn Cys Ser Leu Glu Asp Pro Gl
    #y Pro Asn Phe His
                     80 
    #                 85 
    #                 90
    Gln Ala His Thr Thr Val Ile Ile Asp Leu Gl
    #n Ala Asn Pro Leu
                     95 
    #                100 
    #                105
    Lys Gly Asp Leu Ala Asn Thr Phe Arg Gly Ph
    #e Thr Gln Leu Gln
                    110  
    #               115  
    #               120
    Thr Leu Ile Leu Pro Gln His Val Asn Cys Pr
    #o Gly Gly Ile Asn
                    125  
    #               130  
    #               135
    Ala Trp Asn Thr Ile Thr Ser Tyr Ile Asp As
    #n Gln Ile Cys Gln
                    140  
    #               145  
    #               150
    Gly Gln Lys Asn Leu Cys Asn Asn Thr Gly As
    #p Pro Glu Met Cys
                    155  
    #               160  
    #               165
    Pro Glu Asn Gly Ser Cys Val Pro Asp Gly Pr
    #o Gly Leu Leu Gln
                    170  
    #               175  
    #               180
    Cys Val Cys Ala Asp Gly Phe His Gly Tyr Ly
    #s Cys Met Arg Gln
                    185  
    #               190  
    #               195
    Gly Ser Phe Ser Leu Leu Met Phe Phe Gly Il
    #e Leu Gly Ala Thr
                    200  
    #               205  
    #               210
    Thr Leu Ser Val Ser Ile Leu Leu Trp Ala Th
    #r Gln Arg Arg Lys
                    215  
    #               220  
    #               225
    Ala Lys Thr Ser
    <210> SEQ ID NO 9
    <211> LENGTH: 2482
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 9
    gggggagaag gcggccgagc cccagctctc cgagcaccgg gtcggaagcc  
    #              50
    gcgacccgag ccgcgcagga agctgggacc ggaacctcgg cggacccggc  
    #             100
    cccacccaac tcacctgcgc aggtcaccag caccctcgga acccagaggc  
    #             150
    ccgcgctctg aaggtgaccc ccctggggag gaaggcgatg gcccctgcga  
    #             200
    ggacgatggc ccgcgcccgc ctcgccccgg ccggcatccc tgccgtcgcc  
    #             250
    ttgtggcttc tgtgcacgct cggcctccag ggcacccagg ccgggccacc  
    #             300
    gcccgcgccc cctgggctgc ccgcgggagc cgactgcctg aacagcttta  
    #             350
    ccgccggggt gcctggcttc gtgctggaca ccaacgcctc ggtcagcaac  
    #             400
    ggagctacct tcctggagtc ccccaccgtg cgccggggct gggactgcgt  
    #             450
    gcgcgcctgc tgcaccaccc agaactgcaa cttggcgcta gtggagctgc  
    #             500
    agcccgaccg cggggaggac gccatcgccg cctgcttcct catcaactgc  
    #             550
    ctctacgagc agaacttcgt gtgcaagttc gcgcccaggg agggcttcat  
    #             600
    caactacctc acgagggaag tgtaccgctc ctaccgccag ctgcggaccc  
    #             650
    agggctttgg agggtctggg atccccaagg cctgggcagg catagacttg  
    #             700
    aaggtacaac cccaggaacc cctggtgctg aaggatgtgg aaaacacaga  
    #             750
    ttggcgccta ctgcggggtg acacggatgt cagggtagag aggaaagacc  
    #             800
    caaaccaggt ggaactgtgg ggactcaagg aaggcaccta cctgttccag  
    #             850
    ctgacagtga ctagctcaga ccacccagag gacacggcca acgtcacagt  
    #             900
    cactgtgctg tccaccaagc agacagaaga ctactgcctc gcatccaaca  
    #             950
    aggtgggtcg ctgccggggc tctttcccac gctggtacta tgaccccacg  
    #            1000
    gagcagatct gcaagagttt cgtttatgga ggctgcttgg gcaacaagaa  
    #            1050
    caactacctt cgggaagaag agtgcattct agcctgtcgg ggtgtgcaag  
    #            1100
    gtgggccttt gagaggcagc tctggggctc aggcgacttt cccccagggc  
    #            1150
    ccctccatgg aaaggcgcca tccagtgtgc tctggcacct gtcagcccac  
    #            1200
    ccagttccgc tgcagcaatg gctgctgcat cgacagtttc ctggagtgtg  
    #            1250
    acgacacccc caactgcccc gacgcctccg acgaggctgc ctgtgaaaaa  
    #            1300
    tacacgagtg gctttgacga gctccagcgc atccatttcc ccagtgacaa  
    #            1350
    agggcactgc gtggacctgc cagacacagg actctgcaag gagagcatcc  
    #            1400
    cgcgctggta ctacaacccc ttcagcgaac actgcgcccg ctttacctat  
    #            1450
    ggtggttgtt atggcaacaa gaacaacttt gaggaagagc agcagtgcct  
    #            1500
    cgagtcttgt cgcggcatct ccaagaagga tgtgtttggc ctgaggcggg  
    #            1550
    aaatccccat tcccagcaca ggctctgtgg agatggctgt cacagtgttc  
    #            1600
    ctggtcatct gcattgtggt ggtggtagcc atcttgggtt actgcttctt  
    #            1650
    caagaaccag agaaaggact tccacggaca ccaccaccac ccaccaccca  
    #            1700
    cccctgccag ctccactgtc tccactaccg aggacacgga gcacctggtc  
    #            1750
    tataaccaca ccacccggcc cctctgagcc tgggtctcac cggctctcac  
    #            1800
    ctggccctgc ttcctgcttg ccaaggcaga ggcctgggct gggaaaaact  
    #            1850
    ttggaaccag actcttgcct gtttcccagg cccactgtgc ctcagagacc  
    #            1900
    agggctccag cccctcttgg agaagtctca gctaagctca cgtcctgaga  
    #            1950
    aagctcaaag gtttggaagg agcagaaaac ccttgggcca gaagtaccag  
    #            2000
    actagatgga cctgcctgca taggagtttg gaggaagttg gagttttgtt  
    #            2050
    tcctctgttc aaagctgcct gtccctaccc catggtgcta ggaagaggag  
    #            2100
    tggggtggtg tcagaccctg gaggccccaa ccctgtcctc ccgagctcct  
    #            2150
    cttccatgct gtgcgcccag ggctgggagg aaggacttcc ctgtgtagtt  
    #            2200
    tgtgctgtaa agagttgctt tttgtttatt taatgctgtg gcatgggtga  
    #            2250
    agaggagggg aagaggcctg tttggcctct ctgtcctctc ttcctcttcc  
    #            2300
    cccaagattg agctctctgc ccttgatcag ccccaccctg gcctagacca  
    #            2350
    gcagacagag ccaggagagg ctcagctgca ttccgcagcc cccaccccca  
    #            2400
    aggttctcca acatcacagc ccagcccacc cactgggtaa taaaagtggt  
    #            2450
    ttgtggaaaa aaaaaaaaaa aaaaaaaaaa aa       
    #                  
    #        2482
    <210> SEQ ID NO 10
    <211> LENGTH: 529
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 10
    Met Ala Pro Ala Arg Thr Met Ala Arg Ala Ar
    #g Leu Ala Pro Ala
      1               5 
    #                 10 
    #                 15
    Gly Ile Pro Ala Val Ala Leu Trp Leu Leu Cy
    #s Thr Leu Gly Leu
                     20 
    #                 25 
    #                 30
    Gln Gly Thr Gln Ala Gly Pro Pro Pro Ala Pr
    #o Pro Gly Leu Pro
                     35 
    #                 40 
    #                 45
    Ala Gly Ala Asp Cys Leu Asn Ser Phe Thr Al
    #a Gly Val Pro Gly
                     50 
    #                 55 
    #                 60
    Phe Val Leu Asp Thr Asn Ala Ser Val Ser As
    #n Gly Ala Thr Phe
                     65 
    #                 70 
    #                 75
    Leu Glu Ser Pro Thr Val Arg Arg Gly Trp As
    #p Cys Val Arg Ala
                     80 
    #                 85 
    #                 90
    Cys Cys Thr Thr Gln Asn Cys Asn Leu Ala Le
    #u Val Glu Leu Gln
                     95 
    #                100 
    #                105
    Pro Asp Arg Gly Glu Asp Ala Ile Ala Ala Cy
    #s Phe Leu Ile Asn
                    110  
    #               115  
    #               120
    Cys Leu Tyr Glu Gln Asn Phe Val Cys Lys Ph
    #e Ala Pro Arg Glu
                    125  
    #               130  
    #               135
    Gly Phe Ile Asn Tyr Leu Thr Arg Glu Val Ty
    #r Arg Ser Tyr Arg
                    140  
    #               145  
    #               150
    Gln Leu Arg Thr Gln Gly Phe Gly Gly Ser Gl
    #y Ile Pro Lys Ala
                    155  
    #               160  
    #               165
    Trp Ala Gly Ile Asp Leu Lys Val Gln Pro Gl
    #n Glu Pro Leu Val
                    170  
    #               175  
    #               180
    Leu Lys Asp Val Glu Asn Thr Asp Trp Arg Le
    #u Leu Arg Gly Asp
                    185  
    #               190  
    #               195
    Thr Asp Val Arg Val Glu Arg Lys Asp Pro As
    #n Gln Val Glu Leu
                    200  
    #               205  
    #               210
    Trp Gly Leu Lys Glu Gly Thr Tyr Leu Phe Gl
    #n Leu Thr Val Thr
                    215  
    #               220  
    #               225
    Ser Ser Asp His Pro Glu Asp Thr Ala Asn Va
    #l Thr Val Thr Val
                    230  
    #               235  
    #               240
    Leu Ser Thr Lys Gln Thr Glu Asp Tyr Cys Le
    #u Ala Ser Asn Lys
                    245  
    #               250  
    #               255
    Val Gly Arg Cys Arg Gly Ser Phe Pro Arg Tr
    #p Tyr Tyr Asp Pro
                    260  
    #               265  
    #               270
    Thr Glu Gln Ile Cys Lys Ser Phe Val Tyr Gl
    #y Gly Cys Leu Gly
                    275  
    #               280  
    #               285
    Asn Lys Asn Asn Tyr Leu Arg Glu Glu Glu Cy
    #s Ile Leu Ala Cys
                    290  
    #               295  
    #               300
    Arg Gly Val Gln Gly Gly Pro Leu Arg Gly Se
    #r Ser Gly Ala Gln
                    305  
    #               310  
    #               315
    Ala Thr Phe Pro Gln Gly Pro Ser Met Glu Ar
    #g Arg His Pro Val
                    320  
    #               325  
    #               330
    Cys Ser Gly Thr Cys Gln Pro Thr Gln Phe Ar
    #g Cys Ser Asn Gly
                    335  
    #               340  
    #               345
    Cys Cys Ile Asp Ser Phe Leu Glu Cys Asp As
    #p Thr Pro Asn Cys
                    350  
    #               355  
    #               360
    Pro Asp Ala Ser Asp Glu Ala Ala Cys Glu Ly
    #s Tyr Thr Ser Gly
                    365  
    #               370  
    #               375
    Phe Asp Glu Leu Gln Arg Ile His Phe Pro Se
    #r Asp Lys Gly His
                    380  
    #               385  
    #               390
    Cys Val Asp Leu Pro Asp Thr Gly Leu Cys Ly
    #s Glu Ser Ile Pro
                    395  
    #               400  
    #               405
    Arg Trp Tyr Tyr Asn Pro Phe Ser Glu His Cy
    #s Ala Arg Phe Thr
                    410  
    #               415  
    #               420
    Tyr Gly Gly Cys Tyr Gly Asn Lys Asn Asn Ph
    #e Glu Glu Glu Gln
                    425  
    #               430  
    #               435
    Gln Cys Leu Glu Ser Cys Arg Gly Ile Ser Ly
    #s Lys Asp Val Phe
                    440  
    #               445  
    #               450
    Gly Leu Arg Arg Glu Ile Pro Ile Pro Ser Th
    #r Gly Ser Val Glu
                    455  
    #               460  
    #               465
    Met Ala Val Thr Val Phe Leu Val Ile Cys Il
    #e Val Val Val Val
                    470  
    #               475  
    #               480
    Ala Ile Leu Gly Tyr Cys Phe Phe Lys Asn Gl
    #n Arg Lys Asp Phe
                    485  
    #               490  
    #               495
    His Gly His His His His Pro Pro Pro Thr Pr
    #o Ala Ser Ser Thr
                    500  
    #               505  
    #               510
    Val Ser Thr Thr Glu Asp Thr Glu His Leu Va
    #l Tyr Asn His Thr
                    515  
    #               520  
    #               525
    Thr Arg Pro Leu
    <210> SEQ ID NO 11
    <211> LENGTH: 1899
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 11
    gtgctgggct ttttcagaca agtgcatctc ctaaccaggt cacatttcag  
    #              50
    ccgcgaccca ctctccgcca gtcaccggag gcagaccgcg ggaggagagc  
    #             100
    tgaggacagc cgcgtgcgct tcgccagcag cggggtggga ggaaggacat  
    #             150
    taaaatactg cagaagtcaa gaccccccca ggtcgaaccc agaccacgat  
    #             200
    gcgcgccccg ggctgcgggc ggctggtgct gccgctgctg ctcctggccg  
    #             250
    cggcagccct ggccgaaggc gacgccaagg ggctcaagga gggcgagacc  
    #             300
    cccggcaatt tcatggagga cgagcaatgg ctgtcgtcca tctcgcagta  
    #             350
    cagcggcaag atcaagcact ggaaccgctt ccgagacgaa gtggaggatg  
    #             400
    actatatcaa gagctgggag gacaatcagc aaggagatga agccctggat  
    #             450
    accaccaagg acccctgcca gaaggtgaag tgcagccgcc acaaggtgtg  
    #             500
    cattgcccag ggctaccagc gggccatgtg catcagtcgc aagaagctgg  
    #             550
    agcacaggat caagcagccg accgtgaaac tccatggaaa caaagactcc  
    #             600
    atctgcaagc cctgccacat ggcccagctt gcctctgtct gcggctcaga  
    #             650
    tggccacact tacagctctg tgtgtaagct ggagcaacag gcgtgcctga  
    #             700
    gcagcaagca gctggcggtg cgatgcgagg gcccctgccc ctgccccacg  
    #             750
    gagcaggctg ccacctccac cgccgatggc aaaccagaga cttgcaccgg  
    #             800
    tcaggacctg gctgacctgg gagatcggct gcgggactgg ttccagctcc  
    #             850
    ttcatgagaa ctccaagcag aatggctcag ccagcagtgt agccggcccg  
    #             900
    gccagcgggc tggacaagag cctgggggcc agctgcaagg actccattgg  
    #             950
    ctggatgttc tccaagctgg acaccagtgc tgacctcttc ctggaccaga  
    #            1000
    cggagctggc cgccatcaac ctggacaagt acgaggtctg catccgtccc  
    #            1050
    ttcttcaact cctgtgacac ctacaaggat ggccgggtct ctactgctga  
    #            1100
    gtggtgcttc tgcttctgga gggagaagcc cccctgcctg gcagagctgg  
    #            1150
    agcgcatcca gatccaggag gccgccaaga agaagccagg catcttcatc  
    #            1200
    ccgagctgcg acgaggatgg ctactaccgg aagatgcagt gtgaccagag  
    #            1250
    cagcggtgac tgctggcgtg tggaccagct gggcctggag ctgactggca  
    #            1300
    cgcgcacgca tgggagcccc gactgcgatg acatcgtggg cttctcgggg  
    #            1350
    gactttggaa gcggtgtcgg ctgggaggat gaggaggaga aggagacgga  
    #            1400
    ggaagcaggc gaggaggccg aggaggagga gggcgaggca ggcgaggctg  
    #            1450
    acgacggggg ctacatctgg tagacgccct caggagccgg ctgccggggg  
    #            1500
    ggactcaaca gcagagctct gagcagcagc aggcaacttc gagaacggat  
    #            1550
    ccagaaatgc agtcagaagg accctgctcc acctgggggg actgggagtg  
    #            1600
    tgagtgtgca tggcatgtgt gtggcacaga tggctgggac gggtgacagt  
    #            1650
    gtgagtgcat gtgtgcatgc atgtgtgtat gtgtgtgtgt gtgtggcatg  
    #            1700
    cgctgacaaa tgtgtccttg atccacactg ctcctggcag agtgagtcac  
    #            1750
    ccaaaggccc cttcggcctc cttgtagctg ttttctttcc ttttgttgtt  
    #            1800
    ggttttaaaa tacattcaca cacaaataca aaaaaaaaaa aaaaaaaaaa  
    #            1850
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa  
    #             1899
    <210> SEQ ID NO 12
    <211> LENGTH: 424
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 12
    Met Arg Ala Pro Gly Cys Gly Arg Leu Val Le
    #u Pro Leu Leu Leu
      1               5 
    #                 10 
    #                 15
    Leu Ala Ala Ala Ala Leu Ala Glu Gly Asp Al
    #a Lys Gly Leu Lys
                     20 
    #                 25 
    #                 30
    Glu Gly Glu Thr Pro Gly Asn Phe Met Glu As
    #p Glu Gln Trp Leu
                     35 
    #                 40 
    #                 45
    Ser Ser Ile Ser Gln Tyr Ser Gly Lys Ile Ly
    #s His Trp Asn Arg
                     50 
    #                 55 
    #                 60
    Phe Arg Asp Glu Val Glu Asp Asp Tyr Ile Ly
    #s Ser Trp Glu Asp
                     65 
    #                 70 
    #                 75
    Asn Gln Gln Gly Asp Glu Ala Leu Asp Thr Th
    #r Lys Asp Pro Cys
                     80 
    #                 85 
    #                 90
    Gln Lys Val Lys Cys Ser Arg His Lys Val Cy
    #s Ile Ala Gln Gly
                     95 
    #                100 
    #                105
    Tyr Gln Arg Ala Met Cys Ile Ser Arg Lys Ly
    #s Leu Glu His Arg
                    110  
    #               115  
    #               120
    Ile Lys Gln Pro Thr Val Lys Leu His Gly As
    #n Lys Asp Ser Ile
                    125  
    #               130  
    #               135
    Cys Lys Pro Cys His Met Ala Gln Leu Ala Se
    #r Val Cys Gly Ser
                    140  
    #               145  
    #               150
    Asp Gly His Thr Tyr Ser Ser Val Cys Lys Le
    #u Glu Gln Gln Ala
                    155  
    #               160  
    #               165
    Cys Leu Ser Ser Lys Gln Leu Ala Val Arg Cy
    #s Glu Gly Pro Cys
                    170  
    #               175  
    #               180
    Pro Cys Pro Thr Glu Gln Ala Ala Thr Ser Th
    #r Ala Asp Gly Lys
                    185  
    #               190  
    #               195
    Pro Glu Thr Cys Thr Gly Gln Asp Leu Ala As
    #p Leu Gly Asp Arg
                    200  
    #               205  
    #               210
    Leu Arg Asp Trp Phe Gln Leu Leu His Glu As
    #n Ser Lys Gln Asn
                    215  
    #               220  
    #               225
    Gly Ser Ala Ser Ser Val Ala Gly Pro Ala Se
    #r Gly Leu Asp Lys
                    230  
    #               235  
    #               240
    Ser Leu Gly Ala Ser Cys Lys Asp Ser Ile Gl
    #y Trp Met Phe Ser
                    245  
    #               250  
    #               255
    Lys Leu Asp Thr Ser Ala Asp Leu Phe Leu As
    #p Gln Thr Glu Leu
                    260  
    #               265  
    #               270
    Ala Ala Ile Asn Leu Asp Lys Tyr Glu Val Cy
    #s Ile Arg Pro Phe
                    275  
    #               280  
    #               285
    Phe Asn Ser Cys Asp Thr Tyr Lys Asp Gly Ar
    #g Val Ser Thr Ala
                    290  
    #               295  
    #               300
    Glu Trp Cys Phe Cys Phe Trp Arg Glu Lys Pr
    #o Pro Cys Leu Ala
                    305  
    #               310  
    #               315
    Glu Leu Glu Arg Ile Gln Ile Gln Glu Ala Al
    #a Lys Lys Lys Pro
                    320  
    #               325  
    #               330
    Gly Ile Phe Ile Pro Ser Cys Asp Glu Asp Gl
    #y Tyr Tyr Arg Lys
                    335  
    #               340  
    #               345
    Met Gln Cys Asp Gln Ser Ser Gly Asp Cys Tr
    #p Arg Val Asp Gln
                    350  
    #               355  
    #               360
    Leu Gly Leu Glu Leu Thr Gly Thr Arg Thr Hi
    #s Gly Ser Pro Asp
                    365  
    #               370  
    #               375
    Cys Asp Asp Ile Val Gly Phe Ser Gly Asp Ph
    #e Gly Ser Gly Val
                    380  
    #               385  
    #               390
    Gly Trp Glu Asp Glu Glu Glu Lys Glu Thr Gl
    #u Glu Ala Gly Glu
                    395  
    #               400  
    #               405
    Glu Ala Glu Glu Glu Glu Gly Glu Ala Gly Gl
    #u Ala Asp Asp Gly
                    410  
    #               415  
    #               420
    Gly Tyr Ile Trp
    <210> SEQ ID NO 13
    <211> LENGTH: 2680
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 13
    tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgtgtg  
    #              50
    gggctgctcc cggatggcct cctgttcctc ttgctgctgc taatgctgct  
    #             100
    cgcggaccca gcgctcccgg ccggacgtca ccccccagtg gtgctggtcc  
    #             150
    ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagtg  
    #             200
    gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct  
    #             250
    gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata  
    #             300
    tcaggctggt ttacaacaaa acatccaggg ccacccagtt tcctgatggt  
    #             350
    gtggatgtac gtgtccctgg ctttgggaag accttctcac tggagttcct  
    #             400
    ggaccccagc aaaagcagcg tgggttccta tttccacacc atggtggaga  
    #             450
    gccttgtggg ctggggctac acacggggtg aggatgtccg aggggctccc  
    #             500
    tatgactggc gccgagcccc aaatgaaaac gggccctact tcctggccct  
    #             550
    ccgcgagatg atcgaggaga tgtaccagct gtatgggggc cccgtggtgc  
    #             600
    tggttgccca cagtatgggc aacatgtaca cgctctactt tctgcagcgg  
    #             650
    cagccgcagg cctggaagga caagtatatc cgggccttcg tgtcactggg  
    #             700
    tgcgccctgg gggggcgtgg ccaagaccct gcgcgtcctg gcttcaggag  
    #             750
    acaacaaccg gatcccagtc atcgggcccc tgaagatccg ggagcagcag  
    #             800
    cggtcagctg tctccaccag ctggctgctg ccctacaact acacatggtc  
    #             850
    acctgagaag gtgttcgtgc agacacccac aatcaactac acactgcggg  
    #             900
    actaccgcaa gttcttccag gacatcggct ttgaagatgg ctggctcatg  
    #             950
    cggcaggaca cagaagggct ggtggaagcc acgatgccac ctggcgtgca  
    #            1000
    gctgcactgc ctctatggta ctggcgtccc cacaccagac tccttctact  
    #            1050
    atgagagctt ccctgaccgt gaccctaaaa tctgctttgg tgacggcgat  
    #            1100
    ggtactgtga acttgaagag tgccctgcag tgccaggcct ggcagagccg  
    #            1150
    ccaggagcac caagtgttgc tgcaggagct gccaggcagc gagcacatcg  
    #            1200
    agatgctggc caacgccacc accctggcct atctgaaacg tgtgctcctt  
    #            1250
    gggccctgac tcctgtgcca caggactcct gtggctcggc cgtggacctg  
    #            1300
    ctgttggcct ctggggctgt catggcccac gcgttttgca aagtttgtga  
    #            1350
    ctcaccattc aaggccccga gtcttggact gtgaagcatc tgccatgggg  
    #            1400
    aagtgctgtt tgttatcctt tctctgtggc agtgaagaag gaagaaatga  
    #            1450
    gagtctagac tcaagggaca ctggatggca agaatgctgc tgatggtgga  
    #            1500
    actgctgtga ccttaggact ggctccacag ggtggactgg ctgggccctg  
    #            1550
    gtcccagtcc ctgcctgggg ccatgtgtcc ccctattcct gtgggctttt  
    #            1600
    catacttgcc tactgggccc tggccccgca gccttcctat gagggatgtt  
    #            1650
    actgggctgt ggtcctgtac ccagaggtcc cagggatcgg ctcctggccc  
    #            1700
    ctcgggtgac ccttcccaca caccagccac agataggcct gccactggtc  
    #            1750
    atgggtagct agagctgctg gcttccctgt ggcttagctg gtggccagcc  
    #            1800
    tgactggctt cctgggcgag cctagtagct cctgcaggca ggggcagttt  
    #            1850
    gttgcgttct tcgtggttcc caggccctgg gacatctcac tccactccta  
    #            1900
    cctcccttac caccaggagc attcaagctc tggattgggc agcagatgtg  
    #            1950
    cccccagtcc cgcaggctgt gttccagggg ccctgatttc ctcggatgtg  
    #            2000
    ctattggccc caggactgaa gctgcctccc ttcaccctgg gactgtggtt  
    #            2050
    ccaaggatga gagcaggggt tggagccatg gccttctggg aacctatgga  
    #            2100
    gaaagggaat ccaaggaagc agccaaggct gctcgcagct tccctgagct  
    #            2150
    gcacctcttg ctaaccccac catcacactg ccaccctgcc ctagggtctc  
    #            2200
    actagtacca agtgggtcag cacagggctg aggatggggc tcctatccac  
    #            2250
    cctggccagc acccagctta gtgctgggac tagcccagaa acttgaatgg  
    #            2300
    gaccctgaga gagccagggg tcccctgagg cccccctagg ggctttctgt  
    #            2350
    ctgccccagg gtgctccatg gatctccctg tggcagcagg catggagagt  
    #            2400
    cagggctgcc ttcatggcag taggctctaa gtgggtgact ggccacaggc  
    #            2450
    cgagaaaagg gtacagcctc taggtggggt tcccaaagac gccttcaggc  
    #            2500
    tggactgagc tgctctccca cagggtttct gtgcagctgg attttctctg  
    #            2550
    ttgcatacat gcctggcatc tgtctcccct tgttcctgag tggccccaca  
    #            2600
    tggggctctg agcaggctgt atctggattc tggcaataaa agtactctgg  
    #            2650
    atgctgtaaa aaaaaaaaaa aaaaaaaaaa         
    #                  
    #         2680
    <210> SEQ ID NO 14
    <211> LENGTH: 412
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 14
    Met Gly Leu His Leu Arg Pro Tyr Arg Val Gl
    #y Leu Leu Pro Asp
      1               5 
    #                 10 
    #                 15
    Gly Leu Leu Phe Leu Leu Leu Leu Leu Met Le
    #u Leu Ala Asp Pro
                     20 
    #                 25 
    #                 30
    Ala Leu Pro Ala Gly Arg His Pro Pro Val Va
    #l Leu Val Pro Gly
                     35 
    #                 40 
    #                 45
    Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu As
    #p Lys Pro Thr Val
                     50 
    #                 55 
    #                 60
    Val His Tyr Leu Cys Ser Lys Lys Thr Glu Se
    #r Tyr Phe Thr Ile
                     65 
    #                 70 
    #                 75
    Trp Leu Asn Leu Glu Leu Leu Leu Pro Val Il
    #e Ile Asp Cys Trp
                     80 
    #                 85 
    #                 90
    Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Th
    #r Ser Arg Ala Thr
                     95 
    #                100 
    #                105
    Gln Phe Pro Asp Gly Val Asp Val Arg Val Pr
    #o Gly Phe Gly Lys
                    110  
    #               115  
    #               120
    Thr Phe Ser Leu Glu Phe Leu Asp Pro Ser Ly
    #s Ser Ser Val Gly
                    125  
    #               130  
    #               135
    Ser Tyr Phe His Thr Met Val Glu Ser Leu Va
    #l Gly Trp Gly Tyr
                    140  
    #               145  
    #               150
    Thr Arg Gly Glu Asp Val Arg Gly Ala Pro Ty
    #r Asp Trp Arg Arg
                    155  
    #               160  
    #               165
    Ala Pro Asn Glu Asn Gly Pro Tyr Phe Leu Al
    #a Leu Arg Glu Met
                    170  
    #               175  
    #               180
    Ile Glu Glu Met Tyr Gln Leu Tyr Gly Gly Pr
    #o Val Val Leu Val
                    185  
    #               190  
    #               195
    Ala His Ser Met Gly Asn Met Tyr Thr Leu Ty
    #r Phe Leu Gln Arg
                    200  
    #               205  
    #               210
    Gln Pro Gln Ala Trp Lys Asp Lys Tyr Ile Ar
    #g Ala Phe Val Ser
                    215  
    #               220  
    #               225
    Leu Gly Ala Pro Trp Gly Gly Val Ala Lys Th
    #r Leu Arg Val Leu
                    230  
    #               235  
    #               240
    Ala Ser Gly Asp Asn Asn Arg Ile Pro Val Il
    #e Gly Pro Leu Lys
                    245  
    #               250  
    #               255
    Ile Arg Glu Gln Gln Arg Ser Ala Val Ser Th
    #r Ser Trp Leu Leu
                    260  
    #               265  
    #               270
    Pro Tyr Asn Tyr Thr Trp Ser Pro Glu Lys Va
    #l Phe Val Gln Thr
                    275  
    #               280  
    #               285
    Pro Thr Ile Asn Tyr Thr Leu Arg Asp Tyr Ar
    #g Lys Phe Phe Gln
                    290  
    #               295  
    #               300
    Asp Ile Gly Phe Glu Asp Gly Trp Leu Met Ar
    #g Gln Asp Thr Glu
                    305  
    #               310  
    #               315
    Gly Leu Val Glu Ala Thr Met Pro Pro Gly Va
    #l Gln Leu His Cys
                    320  
    #               325  
    #               330
    Leu Tyr Gly Thr Gly Val Pro Thr Pro Asp Se
    #r Phe Tyr Tyr Glu
                    335  
    #               340  
    #               345
    Ser Phe Pro Asp Arg Asp Pro Lys Ile Cys Ph
    #e Gly Asp Gly Asp
                    350  
    #               355  
    #               360
    Gly Thr Val Asn Leu Lys Ser Ala Leu Gln Cy
    #s Gln Ala Trp Gln
                    365  
    #               370  
    #               375
    Ser Arg Gln Glu His Gln Val Leu Leu Gln Gl
    #u Leu Pro Gly Ser
                    380  
    #               385  
    #               390
    Glu His Ile Glu Met Leu Ala Asn Ala Thr Th
    #r Leu Ala Tyr Leu
                    395  
    #               400  
    #               405
    Lys Arg Val Leu Leu Gly Pro
                    410
    <210> SEQ ID NO 15
    <211> LENGTH: 1371
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 15
    cagagcagat aatggcaagc atggctgccg tgctcacctg ggctctggct  
    #              50
    cttctttcag cgttttcggc cacccaggca cggaaaggct tctgggacta  
    #             100
    cttcagccag accagcgggg acaaaggcag ggtggagcag atccatcagc  
    #             150
    agaagatggc tcgcgagccc gcgaccctga aagacagcct tgagcaagac  
    #             200
    ctcaacaata tgaacaagtt cctggaaaag ctgaggcctc tgagtgggag  
    #             250
    cgaggctcct cggctcccac aggacccggt gggcatgcgg cggcagctgc  
    #             300
    aggaggagtt ggaggaggtg aaggctcgcc tccagcccta catggcagag  
    #             350
    gcgcacgagc tggtgggctg gaatttggag ggcttgcggc agcaactgaa  
    #             400
    gccctacacg atggatctga tggagcaggt ggccctgcgc gtgcaggagc  
    #             450
    tgcaggagca gttgcgcgtg gtgggggaag acaccaaggc ccagttgctg  
    #             500
    gggggcgtgg acgaggcttg ggctttgctg cagggactgc agagccgcgt  
    #             550
    ggtgcaccac accggccgct tcaaagagct cttccaccca tacgccgaga  
    #             600
    gcctggtgag cggcatcggg cgccacgtgc aggagctgca ccgcagtgtg  
    #             650
    gctccgcacg cccccgccag ccccgcgcgc ctcagtcgct gcgtgcaggt  
    #             700
    gctctcccgg aagctcacgc tcaaggccaa ggccctgcac gcacgcatcc  
    #             750
    agcagaacct ggaccagctg cgcgaagagc tcagcagagc ctttgcaggc  
    #             800
    actgggactg aggaaggggc cggcccggac ccctagatgc tctccgagga  
    #             850
    ggtgcgccag cgacttcagg ctttccgcca ggacacctac ctgcagatag  
    #             900
    ctgccttcac tcgcgccatc gaccaggaga ctgaggaggt ccagcagcag  
    #             950
    ctggcgccac ctccaccagg ccacagtgcc ttcgccccag agtttcaaca  
    #            1000
    aacagacagt ggcaaggttc tgagcaagct gcaggcccgt ctggatgacc  
    #            1050
    tgtgggaaga catcactcac agccttcatg accagggcca cagccatctg  
    #            1100
    ggggacccct gaggatctac ctgcccaggc ccattcccag cttcttgtct  
    #            1150
    ggggagcctt ggctctgagc ctctagcatg gttcagtcct tgaaagtggc  
    #            1200
    ctgttgggtg gagggtggaa ggtcctgtgc aggacaggga ggccaccaaa  
    #            1250
    ggggctgctg tctcctgcat atccagcctc ctgcgactcc ccaatctgga  
    #            1300
    tgcattacat tcaccaggct ttgcaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            1350
    aaaaaaaaaa aaaaaaaaaa a           
    #                  
    #                1371
    <210> SEQ ID NO 16
    <211> LENGTH: 274
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 16
    Met Ala Ser Met Ala Ala Val Leu Thr Trp Al
    #a Leu Ala Leu Leu
      1               5 
    #                 10 
    #                 15
    Ser Ala Phe Ser Ala Thr Gln Ala Arg Lys Gl
    #y Phe Trp Asp Tyr
                     20 
    #                 25 
    #                 30
    Phe Ser Gln Thr Ser Gly Asp Lys Gly Arg Va
    #l Glu Gln Ile His
                     35 
    #                 40 
    #                 45
    Gln Gln Lys Met Ala Arg Glu Pro Ala Thr Le
    #u Lys Asp Ser Leu
                     50 
    #                 55 
    #                 60
    Glu Gln Asp Leu Asn Asn Met Asn Lys Phe Le
    #u Glu Lys Leu Arg
                     65 
    #                 70 
    #                 75
    Pro Leu Ser Gly Ser Glu Ala Pro Arg Leu Pr
    #o Gln Asp Pro Val
                     80 
    #                 85 
    #                 90
    Gly Met Arg Arg Gln Leu Gln Glu Glu Leu Gl
    #u Glu Val Lys Ala
                     95 
    #                100 
    #                105
    Arg Leu Gln Pro Tyr Met Ala Glu Ala His Gl
    #u Leu Val Gly Trp
                    110  
    #               115  
    #               120
    Asn Leu Glu Gly Leu Arg Gln Gln Leu Lys Pr
    #o Tyr Thr Met Asp
                    125  
    #               130  
    #               135
    Leu Met Glu Gln Val Ala Leu Arg Val Gln Gl
    #u Leu Gln Glu Gln
                    140  
    #               145  
    #               150
    Leu Arg Val Val Gly Glu Asp Thr Lys Ala Gl
    #n Leu Leu Gly Gly
                    155  
    #               160  
    #               165
    Val Asp Glu Ala Trp Ala Leu Leu Gln Gly Le
    #u Gln Ser Arg Val
                    170  
    #               175  
    #               180
    Val His His Thr Gly Arg Phe Lys Glu Leu Ph
    #e His Pro Tyr Ala
                    185  
    #               190  
    #               195
    Glu Ser Leu Val Ser Gly Ile Gly Arg His Va
    #l Gln Glu Leu His
                    200  
    #               205  
    #               210
    Arg Ser Val Ala Pro His Ala Pro Ala Ser Pr
    #o Ala Arg Leu Ser
                    215  
    #               220  
    #               225
    Arg Cys Val Gln Val Leu Ser Arg Lys Leu Th
    #r Leu Lys Ala Lys
                    230  
    #               235  
    #               240
    Ala Leu His Ala Arg Ile Gln Gln Asn Leu As
    #p Gln Leu Arg Glu
                    245  
    #               250  
    #               255
    Glu Leu Ser Arg Ala Phe Ala Gly Thr Gly Th
    #r Glu Glu Gly Ala
                    260  
    #               265  
    #               270
    Gly Pro Asp Pro
    <210> SEQ ID NO 17
    <211> LENGTH: 2854
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 17
    ctaagaggac aagatgaggc ccggcctctc atttctccta gcccttctgt  
    #              50
    tcttccttgg ccaagctgca ggggatttgg gggatgtggg acctccaatt  
    #             100
    cccagccccg gcttcagctc tttcccaggt gttgactcca gctccagctt  
    #             150
    cagctccagc tccaggtcgg gctccagctc cagccgcagc ttaggcagcg  
    #             200
    gaggttctgt gtcccagttg ttttccaatt tcaccggctc cgtggatgac  
    #             250
    cgtgggacct gccagtgctc tgtttccctg ccagacacca cctttcccgt  
    #             300
    ggacagagtg gaacgcttgg aattcacagc tcatgttctt tctcagaagt  
    #             350
    ttgagaaaga actttctaaa gtgagggaat atgtccaatt aattagtgtg  
    #             400
    tatgaaaaga aactgttaaa cctaactgtc cgaattgaca tcatggagaa  
    #             450
    ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag  
    #             500
    tgaaggagat ggaaaaactg gtcatacagc tgaaggagag ttttggtgga  
    #             550
    agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct  
    #             600
    cttggtagag aagcttgaga cactagacaa aaacaatgtc cttgccattc  
    #             650
    gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct  
    #             700
    aaagatcaaa acacccctgt cgtccaccct cctcccactc cagggagctg  
    #             750
    tggtcatggt ggtgtggtga acatcagcaa accgtctgtg gttcagctca  
    #             800
    actggagagg gttttcttat ctatatggtg cttggggtag ggattactct  
    #             850
    ccccagcatc caaacaaagg actgtattgg gtggcgccat tgaatacaga  
    #             900
    tgggagactg ttggagtatt atagactgta caacacactg gatgatttgc  
    #             950
    tattgtatat aaatgctcga gagttgcgga tcacctatgg ccaaggtagt  
    #            1000
    ggtacagcag tttacaacaa caacatgtac gtcaacatgt acaacaccgg  
    #            1050
    gaatattgcc agagttaacc tgaccaccaa cacgattgct gtgactcaaa  
    #            1100
    ctctccctaa tgctgcctat aataaccgct tttcatatgc taatgttgct  
    #            1150
    tggcaagata ttgactttgc tgtggatgag aatggattgt gggttattta  
    #            1200
    ttcaactgaa gccagcactg gtaacatggt gattagtaaa ctcaatgaca  
    #            1250
    ccacacttca ggtgctaaac acttggtata ccaagcagta taaaccatct  
    #            1300
    gcttctaacg ccttcatggt atgtggggtt ctgtatgcca cccgtactat  
    #            1350
    gaacaccaga acagaagaga ttttttacta ttatgacaca aacacaggga  
    #            1400
    aagagggcaa actagacatt gtaatgcata agatgcagga aaaagtgcag  
    #            1450
    agcattaact ataacccttt tgaccagaaa ctttatgtct ataacgatgg  
    #            1500
    ttaccttctg aattatgatc tttctgtctt gcagaagccc cagtaagctg  
    #            1550
    tttaggagtt agggtgaaag agaaaatgtt tgttgaaaaa atagtcttct  
    #            1600
    ccacttactt agatatctgc aggggtgtct aaaagtgtgt tcattttgca  
    #            1650
    gcaatgttta ggtgcatagt tctaccacac tagagatcta ggacatttgt  
    #            1700
    cttgatttgg tgagttctct tgggaatcat ctgcctcttc aggcgcattt  
    #            1750
    tgcaataaag tctgtctagg gtgggattgt cagaggtcta ggggcactgt  
    #            1800
    gggcctagtg aagcctactg tgaggaggct tcactagaag ccttaaatta  
    #            1850
    ggaattaagg aacttaaaac tcagtatggc gtctagggat tctttgtaca  
    #            1900
    ggaaatattg cccaatgact agtcctcatc catgtagcac cactaattct  
    #            1950
    tccatgcctg gaagaaacct ggggacttag ttaggtagat taatatctgg  
    #            2000
    agctcctcga gggaccaaat ctccaacttt tttttcccct cactagcacc  
    #            2050
    tggaatgatg ctttgtatgt ggcagataag taaatttggc atgcttatat  
    #            2100
    attctacatc tgtaaagtgc tgagttttat ggagagaggc ctttttatgc  
    #            2150
    attaaattgt acatggcaaa taaatcccag aaggatctgt agatgaggca  
    #            2200
    cctgcttttt cttttctctc attgtccacc ttactaaaag tcagtagaat  
    #            2250
    cttctacctc ataacttcct tccaaaggca gctcagaaga ttagaaccag  
    #            2300
    acttactaac caattccacc ccccaccaac ccccttctac tgcctacttt  
    #            2350
    aaaaaaatta atagttttct atggaactga tctaagatta gaaaaattaa  
    #            2400
    ttttctttaa tttcattatg gacttttatt tacatgactc taagactata  
    #            2450
    agaaaatctg atggcagtga caaagtgcta gcatttattg ttatctaata  
    #            2500
    aagaccttgg agcatatgtg caacttatga gtgtatcagt tgttgcatgt  
    #            2550
    aatttttgcc tttgtttaag cctggaactt gtaagaaaat gaaaatttaa  
    #            2600
    tttttttttc taggacgagc tatagaaaag ctattgagag tatctagtta  
    #            2650
    atcagtgcag tagttggaaa ccttgctggt gtatgtgatg tgcttctgtg  
    #            2700
    cttttgaatg actttatcat ctagtctttg tctatttttc ctttgatgtt  
    #            2750
    caagtcctag tctataggat tggcagttta aatgctttac tccccctttt  
    #            2800
    aaaataaatg attaaaatgt gctttgaaaa aaaaaaaaaa aaaaaaaaaa  
    #            2850
    aaaa                 
    #                  
    #                  
    #           2854
    <210> SEQ ID NO 18
    <211> LENGTH: 510
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 18
    Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Le
    #u Leu Phe Phe Leu
      1               5 
    #                 10 
    #                 15
    Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gl
    #y Pro Pro Ile Pro
                     20 
    #                 25 
    #                 30
    Ser Pro Gly Phe Ser Ser Phe Pro Gly Val As
    #p Ser Ser Ser Ser
                     35 
    #                 40 
    #                 45
    Phe Ser Ser Ser Ser Arg Ser Gly Ser Ser Se
    #r Ser Arg Ser Leu
                     50 
    #                 55 
    #                 60
    Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Se
    #r Asn Phe Thr Gly
                     65 
    #                 70 
    #                 75
    Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Se
    #r Val Ser Leu Pro
                     80 
    #                 85 
    #                 90
    Asp Thr Thr Phe Pro Val Asp Arg Val Glu Ar
    #g Leu Glu Phe Thr
                     95 
    #                100 
    #                105
    Ala His Val Leu Ser Gln Lys Phe Glu Lys Gl
    #u Leu Ser Lys Val
                    110  
    #               115  
    #               120
    Arg Glu Tyr Val Gln Leu Ile Ser Val Tyr Gl
    #u Lys Lys Leu Leu
                    125  
    #               130  
    #               135
    Asn Leu Thr Val Arg Ile Asp Ile Met Glu Ly
    #s Asp Thr Ile Ser
                    140  
    #               145  
    #               150
    Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Va
    #l Glu Val Lys Glu
                    155  
    #               160  
    #               165
    Met Glu Lys Leu Val Ile Gln Leu Lys Glu Se
    #r Phe Gly Gly Ser
                    170  
    #               175  
    #               180
    Ser Glu Ile Val Asp Gln Leu Glu Val Glu Il
    #e Arg Asn Met Thr
                    185  
    #               190  
    #               195
    Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Ly
    #s Asn Asn Val Leu
                    200  
    #               205  
    #               210
    Ala Ile Arg Arg Glu Ile Val Ala Leu Lys Th
    #r Lys Leu Lys Glu
                    215  
    #               220  
    #               225
    Cys Glu Ala Ser Lys Asp Gln Asn Thr Pro Va
    #l Val His Pro Pro
                    230  
    #               235  
    #               240
    Pro Thr Pro Gly Ser Cys Gly His Gly Gly Va
    #l Val Asn Ile Ser
                    245  
    #               250  
    #               255
    Lys Pro Ser Val Val Gln Leu Asn Trp Arg Gl
    #y Phe Ser Tyr Leu
                    260  
    #               265  
    #               270
    Tyr Gly Ala Trp Gly Arg Asp Tyr Ser Pro Gl
    #n His Pro Asn Lys
                    275  
    #               280  
    #               285
    Gly Leu Tyr Trp Val Ala Pro Leu Asn Thr As
    #p Gly Arg Leu Leu
                    290  
    #               295  
    #               300
    Glu Tyr Tyr Arg Leu Tyr Asn Thr Leu Asp As
    #p Leu Leu Leu Tyr
                    305  
    #               310  
    #               315
    Ile Asn Ala Arg Glu Leu Arg Ile Thr Tyr Gl
    #y Gln Gly Ser Gly
                    320  
    #               325  
    #               330
    Thr Ala Val Tyr Asn Asn Asn Met Tyr Val As
    #n Met Tyr Asn Thr
                    335  
    #               340  
    #               345
    Gly Asn Ile Ala Arg Val Asn Leu Thr Thr As
    #n Thr Ile Ala Val
                    350  
    #               355  
    #               360
    Thr Gln Thr Leu Pro Asn Ala Ala Tyr Asn As
    #n Arg Phe Ser Tyr
                    365  
    #               370  
    #               375
    Ala Asn Val Ala Trp Gln Asp Ile Asp Phe Al
    #a Val Asp Glu Asn
                    380  
    #               385  
    #               390
    Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala Se
    #r Thr Gly Asn Met
                    395  
    #               400  
    #               405
    Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gl
    #n Val Leu Asn Thr
                    410  
    #               415  
    #               420
    Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Se
    #r Asn Ala Phe Met
                    425  
    #               430  
    #               435
    Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Me
    #t Asn Thr Arg Thr
                    440  
    #               445  
    #               450
    Glu Glu Ile Phe Tyr Tyr Tyr Asp Thr Asn Th
    #r Gly Lys Glu Gly
                    455  
    #               460  
    #               465
    Lys Leu Asp Ile Val Met His Lys Met Gln Gl
    #u Lys Val Gln Ser
                    470  
    #               475  
    #               480
    Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Ty
    #r Val Tyr Asn Asp
                    485  
    #               490  
    #               495
    Gly Tyr Leu Leu Asn Tyr Asp Leu Ser Val Le
    #u Gln Lys Pro Gln
                    500  
    #               505  
    #               510
    <210> SEQ ID NO 19
    <211> LENGTH: 663
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 19
    gcaccgcaga cggcgcggat cgcagggagc cggtccgccg ccggaacggg  
    #              50
    agcctgggtg tgcgtgtgga gtccggactc gtgggagacg atcgcgatga  
    #             100
    acacggtgct gtcgcgggcg aactcactgt tcgccttctc gctgagcgtg  
    #             150
    atggcggcgc tcaccttcgg ctgcttcatc accaccgcct tcaaagacag  
    #             200
    gagcgtcccg gtgcggctgc acgtctcgcg gatcatgcta aaaaatgtag  
    #             250
    aagatttcac tggacctaga gaaagaagtg atctgggatt tatcacattt  
    #             300
    gatataactg ctgatctaga gaatatattt gattggaatg ttaagcagtt  
    #             350
    gtttctttat ttatcagcag aatattcaac aaaaaataat gctctgaacc  
    #             400
    aagttgtcct atgggacaag attgttttga gaggtgataa tccgaagctg  
    #             450
    ctgctgaaag atatgaaaac aaaatatttt ttctttgacg atggaaatgg  
    #             500
    tctcaaggga aacaggaatg tcactttgac cctgtcttgg aacgtcgtac  
    #             550
    caaatgctgg aattctacct cttgtgacag gatcaggaca cgtatctgtc  
    #             600
    ccatttccag atacatatga aataacgaag agttattaaa ttattctgaa  
    #             650
    tttgaaacaa aaa              
    #                  
    #                  
    #     663
    <210> SEQ ID NO 20
    <211> LENGTH: 180
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 20
    Met Asn Thr Val Leu Ser Arg Ala Asn Ser Le
    #u Phe Ala Phe Ser
      1               5 
    #                 10 
    #                 15
    Leu Ser Val Met Ala Ala Leu Thr Phe Gly Cy
    #s Phe Ile Thr Thr
                     20 
    #                 25 
    #                 30
    Ala Phe Lys Asp Arg Ser Val Pro Val Arg Le
    #u His Val Ser Arg
                     35 
    #                 40 
    #                 45
    Ile Met Leu Lys Asn Val Glu Asp Phe Thr Gl
    #y Pro Arg Glu Arg
                     50 
    #                 55 
    #                 60
    Ser Asp Leu Gly Phe Ile Thr Phe Asp Ile Th
    #r Ala Asp Leu Glu
                     65 
    #                 70 
    #                 75
    Asn Ile Phe Asp Trp Asn Val Lys Gln Leu Ph
    #e Leu Tyr Leu Ser
                     80 
    #                 85 
    #                 90
    Ala Glu Tyr Ser Thr Lys Asn Asn Ala Leu As
    #n Gln Val Val Leu
                     95 
    #                100 
    #                105
    Trp Asp Lys Ile Val Leu Arg Gly Asp Asn Pr
    #o Lys Leu Leu Leu
                    110  
    #               115  
    #               120
    Lys Asp Met Lys Thr Lys Tyr Phe Phe Phe As
    #p Asp Gly Asn Gly
                    125  
    #               130  
    #               135
    Leu Lys Gly Asn Arg Asn Val Thr Leu Thr Le
    #u Ser Trp Asn Val
                    140  
    #               145  
    #               150
    Val Pro Asn Ala Gly Ile Leu Pro Leu Val Th
    #r Gly Ser Gly His
                    155  
    #               160  
    #               165
    Val Ser Val Pro Phe Pro Asp Thr Tyr Glu Il
    #e Thr Lys Ser Tyr
                    170  
    #               175  
    #               180
    <210> SEQ ID NO 21
    <211> LENGTH: 415
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 21
    aaacttgacg ccatgaagat cccggtcctt cctgccgtgg tgctcctctc  
    #              50
    cctcctggtg ctccactctg cccagggagc caccctgggt ggtcctgagg  
    #             100
    aagaaagcac cattgagaat tatgcgtcac gacccgaggc ctttaacacc  
    #             150
    ccgttcctga acatcgacaa attgcgatct gcgtttaagg ctgatgagtt  
    #             200
    cctgaactgg cacgccctct ttgagtctat caaaaggaaa cttcctttcc  
    #             250
    tcaactggga tgcctttcct aagctgaaag gactgaggag cgcaactcct  
    #             300
    gatgcccagt gaccatgacc tccactggaa gagggggcta gcgtgagcgc  
    #             350
    tgattctcaa cctaccataa ctctttcctg cctcaggaac tccaataaaa  
    #             400
    cattttccat ccaaa              
    #                  
    #                  
    #   415
    <210> SEQ ID NO 22
    <211> LENGTH: 99
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 22
    Met Lys Ile Pro Val Leu Pro Ala Val Val Le
    #u Leu Ser Leu Leu
      1               5 
    #                 10 
    #                 15
    Val Leu His Ser Ala Gln Gly Ala Thr Leu Gl
    #y Gly Pro Glu Glu
                     20 
    #                 25 
    #                 30
    Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pr
    #o Glu Ala Phe Asn
                     35 
    #                 40 
    #                 45
    Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Se
    #r Ala Phe Lys Ala
                     50 
    #                 55 
    #                 60
    Asp Glu Phe Leu Asn Trp His Ala Leu Phe Gl
    #u Ser Ile Lys Arg
                     65 
    #                 70 
    #                 75
    Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pr
    #o Lys Leu Lys Gly
                     80 
    #                 85 
    #                 90
    Leu Arg Ser Ala Thr Pro Asp Ala Gln
                     95
    <210> SEQ ID NO 23
    <211> LENGTH: 866
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 23
    tctcagactc ttggaagggg ctatactaga cacacaaaga cagccccaag  
    #              50
    aaggacggtg gagtagtgtc ctcgctaaaa gacagtagat atgcaacgcc  
    #             100
    tcttgctcct gccctttctc ctgctgggaa cagtttctgc tcttcatctg  
    #             150
    gagaatgatg ccccccatct ggagagccta gagacacagg cagacctagg  
    #             200
    ccaggatctg gatagttcaa aggagcagga gagagacttg gctctgacgg  
    #             250
    aggaggtgat tcaggcagag ggagaggagg tcaaggcttc tgcctgtcaa  
    #             300
    gacaactttg aggatgagga agccatggag tcggacccag ctgccttaga  
    #             350
    caaggacttc cagtgcccca gggaagaaga cattgttgaa gtgcagggaa  
    #             400
    gtccaaggtg caagacctgc cgctacctat tggtgcggac tcctaaaact  
    #             450
    tttgcagaag ctcagaatgt ctgcagcaga tgctacggag gcaaccttgt  
    #             500
    ctctatccat gacttcaact tcaactatcg cattcagtgc tgcactagca  
    #             550
    cagtcaacca agcccaggtc tggattggag gcaacctcag gggctggttc  
    #             600
    ctgtggaagc ggttttgctg gactgatggg agccactgga attttgctta  
    #             650
    ctggtcccca gggcaacctg ggaatgggca aggctcctgt gtggccctat  
    #             700
    gcaccaaagg aggttattgg cgacgagctc aatgcgacaa gcaactgccc  
    #             750
    ttcgtctgct ccttctaagc cagcggcacg gagaccctgc cagcagctcc  
    #             800
    ctcccgtccc ccaacctctc ctgctcataa atccagactt cccacagcaa  
    #             850
    aaaaaaaaaa aaaaaa             
    #                  
    #                  
    #   866
    <210> SEQ ID NO 24
    <211> LENGTH: 225
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 24
    Met Gln Arg Leu Leu Leu Leu Pro Phe Leu Le
    #u Leu Gly Thr Val
      1               5 
    #                 10 
    #                 15
    Ser Ala Leu His Leu Glu Asn Asp Ala Pro Hi
    #s Leu Glu Ser Leu
                     20 
    #                 25 
    #                 30
    Glu Thr Gln Ala Asp Leu Gly Gln Asp Leu As
    #p Ser Ser Lys Glu
                     35 
    #                 40 
    #                 45
    Gln Glu Arg Asp Leu Ala Leu Thr Glu Glu Va
    #l Ile Gln Ala Glu
                     50 
    #                 55 
    #                 60
    Gly Glu Glu Val Lys Ala Ser Ala Cys Gln As
    #p Asn Phe Glu Asp
                     65 
    #                 70 
    #                 75
    Glu Glu Ala Met Glu Ser Asp Pro Ala Ala Le
    #u Asp Lys Asp Phe
                     80 
    #                 85 
    #                 90
    Gln Cys Pro Arg Glu Glu Asp Ile Val Glu Va
    #l Gln Gly Ser Pro
                     95 
    #                100 
    #                105
    Arg Cys Lys Thr Cys Arg Tyr Leu Leu Val Ar
    #g Thr Pro Lys Thr
                    110  
    #               115  
    #               120
    Phe Ala Glu Ala Gln Asn Val Cys Ser Arg Cy
    #s Tyr Gly Gly Asn
                    125  
    #               130  
    #               135
    Leu Val Ser Ile His Asp Phe Asn Phe Asn Ty
    #r Arg Ile Gln Cys
                    140  
    #               145  
    #               150
    Cys Thr Ser Thr Val Asn Gln Ala Gln Val Tr
    #p Ile Gly Gly Asn
                    155  
    #               160  
    #               165
    Leu Arg Gly Trp Phe Leu Trp Lys Arg Phe Cy
    #s Trp Thr Asp Gly
                    170  
    #               175  
    #               180
    Ser His Trp Asn Phe Ala Tyr Trp Ser Pro Gl
    #y Gln Pro Gly Asn
                    185  
    #               190  
    #               195
    Gly Gln Gly Ser Cys Val Ala Leu Cys Thr Ly
    #s Gly Gly Tyr Trp
                    200  
    #               205  
    #               210
    Arg Arg Ala Gln Cys Asp Lys Gln Leu Pro Ph
    #e Val Cys Ser Phe
                    215  
    #               220  
    #               225
    <210> SEQ ID NO 25
    <211> LENGTH: 584
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 25
    caacagaagc caagaaggaa gccgtctatc ttgtggcgat catgtataag  
    #              50
    ctggcctcct gctgtttgct tttcacagga ttcttaaatc ctctcttatc  
    #             100
    tcttcctctc cttgactcca gggaaatatc ctttcaactc tcagcacctc  
    #             150
    atgaagacgc gcgcttaact ccggaggagc tagaaagagc ttcccttcta  
    #             200
    cagatattgc cagagatgct gggtgcagaa agaggggata ttctcaggaa  
    #             250
    agcagactca agtaccaaca tttttaaccc aagaggaaat ttgagaaagt  
    #             300
    ttcaggattt ctctggacaa gatcctaaca ttttactgag tcatcttttg  
    #             350
    gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg  
    #             400
    gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac  
    #             450
    acccatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagtg  
    #             500
    tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata  
    #             550
    aatcctctat gttttgcaca aaaaaaaaaa aaaa       
    #                  
    #       584
    <210> SEQ ID NO 26
    <211> LENGTH: 124
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 26
    Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Ph
    #e Thr Gly Phe Leu
      1               5 
    #                 10 
    #                 15
    Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Se
    #r Arg Glu Ile Ser
                     20 
    #                 25 
    #                 30
    Phe Gln Leu Ser Ala Pro His Glu Asp Ala Ar
    #g Leu Thr Pro Glu
                     35 
    #                 40 
    #                 45
    Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Le
    #u Pro Glu Met Leu
                     50 
    #                 55 
    #                 60
    Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Al
    #a Asp Ser Ser Thr
                     65 
    #                 70 
    #                 75
    Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Ly
    #s Phe Gln Asp Phe
                     80 
    #                 85 
    #                 90
    Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser Hi
    #s Leu Leu Ala Arg
                     95 
    #                100 
    #                105
    Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pr
    #o Asp Cys Phe Trp
                    110  
    #               115  
    #               120
    Lys Tyr Cys Val
    <210> SEQ ID NO 27
    <211> LENGTH: 920
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 27
    caagtaaatg cagcactagt gggtgggatt gaggtatgcc ctggtgcata  
    #              50
    aatagagact cagctgtgct ggcacactca gaagcttgga ccgcatccta  
    #             100
    gccgccgact cacacaaggc aggtgggtga ggaaatccag agttgccatg  
    #             150
    gagaaaattc cagtgtcagc attcttgctc cttgtggccc tctcctacac  
    #             200
    tctggccaga gataccacag tcaaacctgg agccaaaaag gacacaaagg  
    #             250
    actctcgacc caaactgccc cagaccctct ccagaggttg gggtgaccaa  
    #             300
    ctcatctgga ctcagacata tgaagaagct ctatataaat ccaagacaag  
    #             350
    caacaaaccc ttgatgatta ttcatcactt ggatgagtgc ccacacagtc  
    #             400
    aagctttaaa gaaagtgttt gctgaaaata aagaaatcca gaaattggca  
    #             450
    gagcagtttg tcctcctcaa tctggtttat gaaacaactg acaaacacct  
    #             500
    ttctcctgat ggccagtatg tccccaggat tatgtttgtt gacccatctc  
    #             550
    tgacagttag agccgatatc actggaagat attcaaatcg tctctatgct  
    #             600
    tacgaacctg cagatacagc tctgttgctt gacaacatga agaaagctct  
    #             650
    caagttgctg aagactgaat tgtaaagaaa aaaaatctcc aagcccttct  
    #             700
    gtctgtcagg ccttgagact tgaaaccaga agaagtgtga gaagactggc  
    #             750
    tagtgtggaa gcatagtgaa cacactgatt aggttatggt ttaatgttac  
    #             800
    aacaactatt ttttaagaaa aacaagtttt agaaatttgg tttcaagtgt  
    #             850
    acatgtgtga aaacaatatt gtatactacc atagtgagcc atgattttct  
    #             900
    aaaaaaaaaa ataaatgtta            
    #                  
    #                  
    #920
    <210> SEQ ID NO 28
    <211> LENGTH: 175
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 28
    Met Glu Lys Ile Pro Val Ser Ala Phe Leu Le
    #u Leu Val Ala Leu
      1               5 
    #                 10 
    #                 15
    Ser Tyr Thr Leu Ala Arg Asp Thr Thr Val Ly
    #s Pro Gly Ala Lys
                     20 
    #                 25 
    #                 30
    Lys Asp Thr Lys Asp Ser Arg Pro Lys Leu Pr
    #o Gln Thr Leu Ser
                     35 
    #                 40 
    #                 45
    Arg Gly Trp Gly Asp Gln Leu Ile Trp Thr Gl
    #n Thr Tyr Glu Glu
                     50 
    #                 55 
    #                 60
    Ala Leu Tyr Lys Ser Lys Thr Ser Asn Lys Pr
    #o Leu Met Ile Ile
                     65 
    #                 70 
    #                 75
    His His Leu Asp Glu Cys Pro His Ser Gln Al
    #a Leu Lys Lys Val
                     80 
    #                 85 
    #                 90
    Phe Ala Glu Asn Lys Glu Ile Gln Lys Leu Al
    #a Glu Gln Phe Val
                     95 
    #                100 
    #                105
    Leu Leu Asn Leu Val Tyr Glu Thr Thr Asp Ly
    #s His Leu Ser Pro
                    110  
    #               115  
    #               120
    Asp Gly Gln Tyr Val Pro Arg Ile Met Phe Va
    #l Asp Pro Ser Leu
                    125  
    #               130  
    #               135
    Thr Val Arg Ala Asp Ile Thr Gly Arg Tyr Se
    #r Asn Arg Leu Tyr
                    140  
    #               145  
    #               150
    Ala Tyr Glu Pro Ala Asp Thr Ala Leu Leu Le
    #u Asp Asn Met Lys
                    155  
    #               160  
    #               165
    Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu
                    170  
    #               175
    <210> SEQ ID NO 29
    <211> LENGTH: 1181
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 29
    aagaccctct ctttcgctgt ttgagagtct ctcggctcaa ggaccgggag  
    #              50
    gtaagaggtt tgggactgcc ccggcaactc cagggtgtct ggtccacgac  
    #             100
    ctatcctagg cgccatgggt gtgataggta tacagctggt tgttaccatg  
    #             150
    gtgatggcca gtgtcatgca gaagattata cctcactatt ctcttgctcg  
    #             200
    atggctactc tgtaatggca gtttgaggtg gtatcaacat cctacagaag  
    #             250
    aagaattaag aattcttgca gggaaacaac aaaaagggaa aaccaaaaaa  
    #             300
    gataggaaat ataatggtca cattgaaagt aagccattaa ccattccaaa  
    #             350
    ggatattgac cttcatctag aaacaaagtc agttacagaa gtggatactt  
    #             400
    tagcattgca ttactttcca gaataccagt ggctggtgga tttcacagtg  
    #             450
    gctgctacag ttgtgtatct agtaactgaa gtctactaca attttatgaa  
    #             500
    gcctacacag gaaatgaata tcagcttagt ctggtgccta cttgttttgt  
    #             550
    cttttgcaat caaagttcta ttttcattaa ctacacacta ttttaaagta  
    #             600
    gaagatggtg gtgaaagatc tgtttgtgtc acctttggat tttttttctt  
    #             650
    tgtcaaagca atggcagtgt tgattgtaac agaaaattat ctggaatttg  
    #             700
    gacttgaaac agggtttaca aatttttcag acagtgcgat gcagtttctt  
    #             750
    gaaaagcaag gtttagaatc tcagagtcct gtttcaaaac ttactttcaa  
    #             800
    atttttcctg gctattttct gttcattcat tggggctttt ttgacatttc  
    #             850
    ctggattacg actggctcaa atgcatctgg atgccctgaa tttggcaaca  
    #             900
    gaaaaaatta cacaaacttt acttcatatc aacttcttgg cacctttatt  
    #             950
    tatggttttg ctctgggtaa aaccaatcac caaagactac attatgaacc  
    #            1000
    caccactggg caaagaaatt tccccatctg gaagatgaag ataatagtat  
    #            1050
    ctaactcaca aggttatcat tggaataaat gaaagaacac atgtaatgca  
    #            1100
    accagctgga attaagtgct taataaatgt tcttttcact gctttgcctc  
    #            1150
    atcagaatta aaatagaaat acttgactag t        
    #                  
    #        1181
    <210> SEQ ID NO 30
    <211> LENGTH: 307
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 30
    Met Gly Val Ile Gly Ile Gln Leu Val Val Th
    #r Met Val Met Ala
      1               5 
    #                 10 
    #                 15
    Ser Val Met Gln Lys Ile Ile Pro His Tyr Se
    #r Leu Ala Arg Trp
                     20 
    #                 25 
    #                 30
    Leu Leu Cys Asn Gly Ser Leu Arg Trp Tyr Gl
    #n His Pro Thr Glu
                     35 
    #                 40 
    #                 45
    Glu Glu Leu Arg Ile Leu Ala Gly Lys Gln Gl
    #n Lys Gly Lys Thr
                     50 
    #                 55 
    #                 60
    Lys Lys Asp Arg Lys Tyr Asn Gly His Ile Gl
    #u Ser Lys Pro Leu
                     65 
    #                 70 
    #                 75
    Thr Ile Pro Lys Asp Ile Asp Leu His Leu Gl
    #u Thr Lys Ser Val
                     80 
    #                 85 
    #                 90
    Thr Glu Val Asp Thr Leu Ala Leu His Tyr Ph
    #e Pro Glu Tyr Gln
                     95 
    #                100 
    #                105
    Trp Leu Val Asp Phe Thr Val Ala Ala Thr Va
    #l Val Tyr Leu Val
                    110  
    #               115  
    #               120
    Thr Glu Val Tyr Tyr Asn Phe Met Lys Pro Th
    #r Gln Glu Met Asn
                    125  
    #               130  
    #               135
    Ile Ser Leu Val Trp Cys Leu Leu Val Leu Se
    #r Phe Ala Ile Lys
                    140  
    #               145  
    #               150
    Val Leu Phe Ser Leu Thr Thr His Tyr Phe Ly
    #s Val Glu Asp Gly
                    155  
    #               160  
    #               165
    Gly Glu Arg Ser Val Cys Val Thr Phe Gly Ph
    #e Phe Phe Phe Val
                    170  
    #               175  
    #               180
    Lys Ala Met Ala Val Leu Ile Val Thr Glu As
    #n Tyr Leu Glu Phe
                    185  
    #               190  
    #               195
    Gly Leu Glu Thr Gly Phe Thr Asn Phe Ser As
    #p Ser Ala Met Gln
                    200  
    #               205  
    #               210
    Phe Leu Glu Lys Gln Gly Leu Glu Ser Gln Se
    #r Pro Val Ser Lys
                    215  
    #               220  
    #               225
    Leu Thr Phe Lys Phe Phe Leu Ala Ile Phe Cy
    #s Ser Phe Ile Gly
                    230  
    #               235  
    #               240
    Ala Phe Leu Thr Phe Pro Gly Leu Arg Leu Al
    #a Gln Met His Leu
                    245  
    #               250  
    #               255
    Asp Ala Leu Asn Leu Ala Thr Glu Lys Ile Th
    #r Gln Thr Leu Leu
                    260  
    #               265  
    #               270
    His Ile Asn Phe Leu Ala Pro Leu Phe Met Va
    #l Leu Leu Trp Val
                    275  
    #               280  
    #               285
    Lys Pro Ile Thr Lys Asp Tyr Ile Met Asn Pr
    #o Pro Leu Gly Lys
                    290  
    #               295  
    #               300
    Glu Ile Ser Pro Ser Gly Arg
                    305
    <210> SEQ ID NO 31
    <211> LENGTH: 513
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 31
    gtagcatagt gtgcagttca ctggaccaaa agctttggct gcacctcttc  
    #              50
    tggaaagctg gccatggggc tcttcatgat cattgcaatt ctgctgttcc  
    #             100
    agaaacccac agtaaccgaa caacttaaga agtgctggaa taactatgta  
    #             150
    caaggacatt gcaggaaaat ctgcagagta aatgaagtgc ctgaggcact  
    #             200
    atgtgaaaat gggagatact gttgcctcaa tatcaaggaa ctggaagcat  
    #             250
    gtaaaaaaat tacaaagcca cctcgtccaa agccagcaac acttgcactg  
    #             300
    actcttcaag actatgttac aataatagaa aatttcccaa gcctgaagac  
    #             350
    acagtctaca taaatcaaat acaatttcgt tttcacttgc ttctcaacct  
    #             400
    agtctaataa actaaggtga tgagatatac atcttcttcc ttctggtttc  
    #             450
    ttgatcctta aaatgacctt cgagcatatt ctaataaagt gcattgccag  
    #             500
    ttaaaaaaaa aaa              
    #                  
    #                  
    #     513
    <210> SEQ ID NO 32
    <211> LENGTH: 99
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 32
    Met Gly Leu Phe Met Ile Ile Ala Ile Leu Le
    #u Phe Gln Lys Pro
      1               5 
    #                 10 
    #                 15
    Thr Val Thr Glu Gln Leu Lys Lys Cys Trp As
    #n Asn Tyr Val Gln
                     20 
    #                 25 
    #                 30
    Gly His Cys Arg Lys Ile Cys Arg Val Asn Gl
    #u Val Pro Glu Ala
                     35 
    #                 40 
    #                 45
    Leu Cys Glu Asn Gly Arg Tyr Cys Cys Leu As
    #n Ile Lys Glu Leu
                     50 
    #                 55 
    #                 60
    Glu Ala Cys Lys Lys Ile Thr Lys Pro Pro Ar
    #g Pro Lys Pro Ala
                     65 
    #                 70 
    #                 75
    Thr Leu Ala Leu Thr Leu Gln Asp Tyr Val Th
    #r Ile Ile Glu Asn
                     80 
    #                 85 
    #                 90
    Phe Pro Ser Leu Lys Thr Gln Ser Thr
                     95
    <210> SEQ ID NO 33
    <211> LENGTH: 2684
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <220> FEATURE:
    <221> NAME/KEY: unsure
    <222> LOCATION: 2636-2637
    <223> OTHER INFORMATION: unknown base
    <400> SEQUENCE: 33
    cggacgcgtg ggcgctgagc cccggaggcc agggcgtccg gggctgcgcc  
    #              50
    acttccgagg gccgagcgct gccggtcccg gcggtgcgac acggccggga  
    #             100
    ggaggagaac aacgcaaggg gctcaaccgt cggtcgctgg agcccccccc  
    #             150
    ggggcgtggc ctcccgcccc ctcagctggg gagggcgggg ctcgctgccc  
    #             200
    cctgctgccg actgcgaccc ttacagggga gggagggcgc aggccgcgcg  
    #             250
    gagatgagga ggaggctgcg cctacgcagg gacgcattgc tcacgctgct  
    #             300
    ccttggcgcc tccctgggcc tcttactcta tgcgcagcgc gacggcgcgg  
    #             350
    ccccgacggc gagcgcgccg cgagggcgag ggagggcggc accgaggccc  
    #             400
    acccccggac cccgcgcgtt ccagttaccc gacgcgggtg cagccccgcc  
    #             450
    ggcctacgaa ggggacacac cggcgccgcc cacgcctacg ggaccctttg  
    #             500
    acttcgcccg ctatttgcgc gccaaggacc agcggcggtt tccactgctc  
    #             550
    attaaccagc cgcacaagtg ccgcggcgac ggcgcacccg gtggccgccc  
    #             600
    ggacctgctt attgctgtca agtcggtggc agaggacttc gagcggcgcc  
    #             650
    aagccgtgcg ccagacgtgg ggcgcggagg gtcgcgtgca gggggcgctg  
    #             700
    gtgcgccgcg tgttcttgct gggcgtgccc aggggcgcag gctcgggcgg  
    #             750
    ggccgacgaa gttggggagg gcgcgcgaac ccactggcgc gccctgctgc  
    #             800
    gggccgagag ccttgcgtat gcggacatcc tgctctgggc cttcgacgac  
    #             850
    acctttttta acctaacgct caaggagatc cactttctag cctgggcctc  
    #             900
    agctttctgc cccgacgtgc gcttcgtttt taagggcgac gcagatgtgt  
    #             950
    tcgtgaacgt gggaaatctc ctggagttcc tggcgccgcg ggacccggcg  
    #            1000
    caagacctgc ttgctggtga cgtaattgtg catgcgcggc ccatccgcac  
    #            1050
    gcgggctagc aagtactaca tccccgaggc cgtgtacggc ctgcccgcct  
    #            1100
    atccggccta cgcgggcggc ggtggctttg tgctttccgg ggccacgctg  
    #            1150
    caccgcctgg ctggcgcctg tgcgcaggtc gagctcttcc ccatcgacga  
    #            1200
    cgtctttctg ggcatgtgtc tgcagcgcct gcggctcacg cccgagcctc  
    #            1250
    accctgcctt ccgcaccttt ggcatccccc agccttcagc cgcgccgcat  
    #            1300
    ttgagcacct tcgacccctg cttttaccgt gagctggttg tagtgcacgg  
    #            1350
    gctctcggcc gctgacatct ggcttatgtg gcgcctgctg cacgggccgc  
    #            1400
    atgggccagc ctgtgcgcat ccacagcctg tcgctgcagg ccccttccaa  
    #            1450
    tgggactcct agctccccac tacagcccca agctcctaac tcagacccag  
    #            1500
    aatggagccg gtttcccaga ttattgccgt gtatgtggtt cttccctgat  
    #            1550
    caccaggtgc ctgtctccac aggatcccag gggatggggg ttaagcttgg  
    #            1600
    ctcctggcgg tccaccctgc tggaaccagt tgaaacccgt gtaatggtga  
    #            1650
    ccctttgagc gagccaaggc tgggtggtag atgaccatct cttgtccaac  
    #            1700
    aggtcccaga gcagtggata tgtctggtcc tcctagtagc acagaggtgt  
    #            1750
    gttctggtgt ggtggcaggg acttagggaa tcctaccact ctgctggatt  
    #            1800
    tggaaccccc taggctgacg cggacgtatg cagaggctct caaggccagg  
    #            1850
    ccccacaggg aggtggaggg gctccggccg ccacagcctg aattcatgaa  
    #            1900
    cctggcaggc actttgccat agctcatctg aaaacagata ttatgcttcc  
    #            1950
    cacaacctct cctgggccca ggtgtggctg agcaccaggg atggagccac  
    #            2000
    acataaggga caaatgagtg cacggtccta cctagtcttt cctcacctcc  
    #            2050
    tgaactcaca caacaatgcc agtctcccac tggaggctgt atcccctcag  
    #            2100
    aggagccaag gaatgtcttc ccctgagatg ccaccactat taatttcccc  
    #            2150
    atatgcttca accaccccct tgctcaaaaa accaataccc acacttacct  
    #            2200
    taatacaaac atcccagcaa cagcacatgg caggccattg ctgagggcac  
    #            2250
    aggtgcttta ttggagaggg gatgtgggca ggggataagg aaggttcccc  
    #            2300
    cattccagga ggatgggaac agtcctggct gcccctgaca gtggggatat  
    #            2350
    gcaaggggct ctggccaggc cacagtccaa atgggaagac accagtcagt  
    #            2400
    cacaaaagtc gggagcgcca cacaaacctg gctataaggc ccaggaacca  
    #            2450
    tataggagcc tgagacaggt cccctgcaca ttcatcatta aactatacag  
    #            2500
    gatgaggctg tacatgagtt aattacaaaa gagtcatatt tacaaaaatc  
    #            2550
    tgtacacaca tttgaaaaac tcacaaaatt gtcatctatg tatcacaagt  
    #            2600
    tgctagaccc aaaatattaa aaatgggata aaattnnttt aaaaaaaaaa  
    #            2650
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa       
    #                  
    #      2684
    <210> SEQ ID NO 34
    <211> LENGTH: 402
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 34
    Met Arg Arg Arg Leu Arg Leu Arg Arg Asp Al
    #a Leu Leu Thr Leu
      1               5 
    #                 10 
    #                 15
    Leu Leu Gly Ala Ser Leu Gly Leu Leu Leu Ty
    #r Ala Gln Arg Asp
                     20 
    #                 25 
    #                 30
    Gly Ala Ala Pro Thr Ala Ser Ala Pro Arg Gl
    #y Arg Gly Arg Ala
                     35 
    #                 40 
    #                 45
    Ala Pro Arg Pro Thr Pro Gly Pro Arg Ala Ph
    #e Gln Leu Pro Asp
                     50 
    #                 55 
    #                 60
    Ala Gly Ala Ala Pro Pro Ala Tyr Glu Gly As
    #p Thr Pro Ala Pro
                     65 
    #                 70 
    #                 75
    Pro Thr Pro Thr Gly Pro Phe Asp Phe Ala Ar
    #g Tyr Leu Arg Ala
                     80 
    #                 85 
    #                 90
    Lys Asp Gln Arg Arg Phe Pro Leu Leu Ile As
    #n Gln Pro His Lys
                     95 
    #                100 
    #                105
    Cys Arg Gly Asp Gly Ala Pro Gly Gly Arg Pr
    #o Asp Leu Leu Ile
                    110  
    #               115  
    #               120
    Ala Val Lys Ser Val Ala Glu Asp Phe Glu Ar
    #g Arg Gln Ala Val
                    125  
    #               130  
    #               135
    Arg Gln Thr Trp Gly Ala Glu Gly Arg Val Gl
    #n Gly Ala Leu Val
                    140  
    #               145  
    #               150
    Arg Arg Val Phe Leu Leu Gly Val Pro Arg Gl
    #y Ala Gly Ser Gly
                    155  
    #               160  
    #               165
    Gly Ala Asp Glu Val Gly Glu Gly Ala Arg Th
    #r His Trp Arg Ala
                    170  
    #               175  
    #               180
    Leu Leu Arg Ala Glu Ser Leu Ala Tyr Ala As
    #p Ile Leu Leu Trp
                    185  
    #               190  
    #               195
    Ala Phe Asp Asp Thr Phe Phe Asn Leu Thr Le
    #u Lys Glu Ile His
                    200  
    #               205  
    #               210
    Phe Leu Ala Trp Ala Ser Ala Phe Cys Pro As
    #p Val Arg Phe Val
                    215  
    #               220  
    #               225
    Phe Lys Gly Asp Ala Asp Val Phe Val Asn Va
    #l Gly Asn Leu Leu
                    230  
    #               235  
    #               240
    Glu Phe Leu Ala Pro Arg Asp Pro Ala Gln As
    #p Leu Leu Ala Gly
                    245  
    #               250  
    #               255
    Asp Val Ile Val His Ala Arg Pro Ile Arg Th
    #r Arg Ala Ser Lys
                    260  
    #               265  
    #               270
    Tyr Tyr Ile Pro Glu Ala Val Tyr Gly Leu Pr
    #o Ala Tyr Pro Ala
                    275  
    #               280  
    #               285
    Tyr Ala Gly Gly Gly Gly Phe Val Leu Ser Gl
    #y Ala Thr Leu His
                    290  
    #               295  
    #               300
    Arg Leu Ala Gly Ala Cys Ala Gln Val Glu Le
    #u Phe Pro Ile Asp
                    305  
    #               310  
    #               315
    Asp Val Phe Leu Gly Met Cys Leu Gln Arg Le
    #u Arg Leu Thr Pro
                    320  
    #               325  
    #               330
    Glu Pro His Pro Ala Phe Arg Thr Phe Gly Il
    #e Pro Gln Pro Ser
                    335  
    #               340  
    #               345
    Ala Ala Pro His Leu Ser Thr Phe Asp Pro Cy
    #s Phe Tyr Arg Glu
                    350  
    #               355  
    #               360
    Leu Val Val Val His Gly Leu Ser Ala Ala As
    #p Ile Trp Leu Met
                    365  
    #               370  
    #               375
    Trp Arg Leu Leu His Gly Pro His Gly Pro Al
    #a Cys Ala His Pro
                    380  
    #               385  
    #               390
    Gln Pro Val Ala Ala Gly Pro Phe Gln Trp As
    #p Ser
                    395  
    #               400
    <210> SEQ ID NO 35
    <211> LENGTH: 1643
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 35
    agcagcctct gcccgacccg gctcgtgcgg accccaggac cgggcgcggg  
    #              50
    acgcgtgcgt ccagcctccg gcgctgcgga gacccgcggc tgggtccggg  
    #             100
    gaggccccaa acccgccccc gccagaaccc cgccccaaat tcccacctcc  
    #             150
    tccagaagcc ccgcccactc ccgagccccg agagctccgc gcacctgggc  
    #             200
    gccatccgcc ctggctccgc tgcacgagct ccacgcccgt accccggcgt  
    #             250
    cacgctcagc ccgcggtgct cgcacacctg agactcatct cgcttcgacc  
    #             300
    ccgccgccgc cgccgcccgg catcctgagc acggagacag tctccagctg  
    #             350
    ccgttcatgc ttcctcccca gccttccgca gcccaccagg gaaggggcgg  
    #             400
    taggagtggc cttttaccaa agggaccggc gatgctctgc aggctgtgct  
    #             450
    ggctggtctc gtacagcttg gctgtgctgt tgctcggctg cctgctcttc  
    #             500
    ctgaggaagg cggccaagcc cgcaggagac cccacggccc accagccttt  
    #             550
    ctgggctccc ccaacacccc gtcacagccg gtgtccaccc aaccacacag  
    #             600
    tgtctagcgc ctctctgtcc ctgcctagcc gtcaccgtct cttcttgacc  
    #             650
    tatcgtcact gccgaaattt ctctatcttg ctggagcctt caggctgttc  
    #             700
    caaggatacc ttcttgctcc tggccatcaa gtcacagcct ggtcacgtgg  
    #             750
    agcgacgtgc ggctatccgc agcacgtggg gcagggtggg gggatgggct  
    #             800
    aggggccggc agctgaagct ggtgttcctc ctaggggtgg caggatccgc  
    #             850
    tcccccagcc cagctgctgg cctatgagag tagggagttt gatgacatcc  
    #             900
    tccagtggga cttcactgag gacttcttca acctgacgct caaggagctg  
    #             950
    cacctgcagc gctgggtggt ggctgcctgc ccccaggccc atttcatgct  
    #            1000
    aaagggagat gacgatgtct ttgtccacgt ccccaacgtg ttagagttcc  
    #            1050
    tggatggctg ggacccagcc caggacctcc tggtgggaga tgtcatccgc  
    #            1100
    caagccctgc ccaacaggaa cactaaggtc aaatacttca tcccaccctc  
    #            1150
    aatgtacagg gccacccact acccacccta tgctggtggg ggaggatatg  
    #            1200
    tcatgtccag agccacagtg cggcgcctcc aggctatcat ggaagatgct  
    #            1250
    gaactcttcc ccattgatga tgtctttgtg ggtatgtgcc tgaggaggct  
    #            1300
    ggggctgagc cctatgcacc atgctggctt caagacattt ggaatccggc  
    #            1350
    ggcccctgga ccccttagac ccctgcctgt atagggggct cctgctggtt  
    #            1400
    caccgcctca gccccctcga gatgtggacc atgtgggcac tggtgacaga  
    #            1450
    tgaggggctc aagtgtgcag ctggccccat accccagcgc tgaagggtgg  
    #            1500
    gttgggcaac agcctgagag tggactcagt gttgattctc tatcgtgatg  
    #            1550
    cgaaattgat gcctgctgct ctacagaaaa tgccaacttg gttttttaac  
    #            1600
    tcctctcacc ctgttagctc tgattaaaaa cactgcaacc caa    
    #                 164
    #3
    <210> SEQ ID NO 36
    <211> LENGTH: 378
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 36
    Met Leu Pro Pro Gln Pro Ser Ala Ala His Gl
    #n Gly Arg Gly Gly
      1               5 
    #                 10 
    #                 15
    Arg Ser Gly Leu Leu Pro Lys Gly Pro Ala Me
    #t Leu Cys Arg Leu
                     20 
    #                 25 
    #                 30
    Cys Trp Leu Val Ser Tyr Ser Leu Ala Val Le
    #u Leu Leu Gly Cys
                     35 
    #                 40 
    #                 45
    Leu Leu Phe Leu Arg Lys Ala Ala Lys Pro Al
    #a Gly Asp Pro Thr
                     50 
    #                 55 
    #                 60
    Ala His Gln Pro Phe Trp Ala Pro Pro Thr Pr
    #o Arg His Ser Arg
                     65 
    #                 70 
    #                 75
    Cys Pro Pro Asn His Thr Val Ser Ser Ala Se
    #r Leu Ser Leu Pro
                     80 
    #                 85 
    #                 90
    Ser Arg His Arg Leu Phe Leu Thr Tyr Arg Hi
    #s Cys Arg Asn Phe
                     95 
    #                100 
    #                105
    Ser Ile Leu Leu Glu Pro Ser Gly Cys Ser Ly
    #s Asp Thr Phe Leu
                    110  
    #               115  
    #               120
    Leu Leu Ala Ile Lys Ser Gln Pro Gly His Va
    #l Glu Arg Arg Ala
                    125  
    #               130  
    #               135
    Ala Ile Arg Ser Thr Trp Gly Arg Val Gly Gl
    #y Trp Ala Arg Gly
                    140  
    #               145  
    #               150
    Arg Gln Leu Lys Leu Val Phe Leu Leu Gly Va
    #l Ala Gly Ser Ala
                    155  
    #               160  
    #               165
    Pro Pro Ala Gln Leu Leu Ala Tyr Glu Ser Ar
    #g Glu Phe Asp Asp
                    170  
    #               175  
    #               180
    Ile Leu Gln Trp Asp Phe Thr Glu Asp Phe Ph
    #e Asn Leu Thr Leu
                    185  
    #               190  
    #               195
    Lys Glu Leu His Leu Gln Arg Trp Val Val Al
    #a Ala Cys Pro Gln
                    200  
    #               205  
    #               210
    Ala His Phe Met Leu Lys Gly Asp Asp Asp Va
    #l Phe Val His Val
                    215  
    #               220  
    #               225
    Pro Asn Val Leu Glu Phe Leu Asp Gly Trp As
    #p Pro Ala Gln Asp
                    230  
    #               235  
    #               240
    Leu Leu Val Gly Asp Val Ile Arg Gln Ala Le
    #u Pro Asn Arg Asn
                    245  
    #               250  
    #               255
    Thr Lys Val Lys Tyr Phe Ile Pro Pro Ser Me
    #t Tyr Arg Ala Thr
                    260  
    #               265  
    #               270
    His Tyr Pro Pro Tyr Ala Gly Gly Gly Gly Ty
    #r Val Met Ser Arg
                    275  
    #               280  
    #               285
    Ala Thr Val Arg Arg Leu Gln Ala Ile Met Gl
    #u Asp Ala Glu Leu
                    290  
    #               295  
    #               300
    Phe Pro Ile Asp Asp Val Phe Val Gly Met Cy
    #s Leu Arg Arg Leu
                    305  
    #               310  
    #               315
    Gly Leu Ser Pro Met His His Ala Gly Phe Ly
    #s Thr Phe Gly Ile
                    320  
    #               325  
    #               330
    Arg Arg Pro Leu Asp Pro Leu Asp Pro Cys Le
    #u Tyr Arg Gly Leu
                    335  
    #               340  
    #               345
    Leu Leu Val His Arg Leu Ser Pro Leu Glu Me
    #t Trp Thr Met Trp
                    350  
    #               355  
    #               360
    Ala Leu Val Thr Asp Glu Gly Leu Lys Cys Al
    #a Ala Gly Pro Ile
                    365  
    #               370  
    #               375
    Pro Gln Arg
    <210> SEQ ID NO 37
    <211> LENGTH: 1226
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 37
    atgaaagtga taatcaggca gcccaaatga ttgttaataa ggatcaaatg  
    #              50
    agatcgtgta tgtgggtcca atcaattgat tctacacaaa ggagcctggg  
    #             100
    gaggggccat ggtgccaatg cacttactgg ggagactgga gaagccgctt  
    #             150
    ctcctcctgt gctgcgcctc cttcctactg gggctggctt tgctgggcat  
    #             200
    aaagacggac atcacccccg ttgcttattt ctttctcaca ttgggtggct  
    #             250
    tcttcttgtt tgcctatctc ctggtccggt ttctggaatg ggggcttcgg  
    #             300
    tcccagctcc aatcaatgca gactgagagc ccagggccct caggcaatgc  
    #             350
    acgggacaat gaagcctttg aagtgccagt ctatgaagag gccgtggtgg  
    #             400
    gactagaatc ccagtgccgc ccccaagagt tggaccaacc acccccctac  
    #             450
    agcactgttg tgataccccc agcacctgag gaggaacaac ctagccatcc  
    #             500
    agaggggtcc aggagagcca aactggaaca gaggcgaatg gcctcagagg  
    #             550
    ggtccatggc ccaggaagga agccctggaa gagctccaat caaccttcgg  
    #             600
    cttcggggac cacgggctgt gtccactgct cctgatctgc agagcttggc  
    #             650
    ggcagtcccc acattagagc ctctgactcc accccctgcc tatgatgtct  
    #             700
    gctttggtca ccctgatgat gatagtgttt tttatgagga caactgggca  
    #             750
    cccccttaaa tgactctccc aagatttctc ttctctccac accagacctc  
    #             800
    gttcatttga ctaacatttt ccagcgccta ctatgtgtca gaaacaagtg  
    #             850
    tttctgcctg gacatcataa atggggactt ggaccctgag gagagtcagg  
    #             900
    ccacggtaag cccttcccag ctgagatatg ggtggcataa tttgagtctt  
    #             950
    ctggcaacat ttggtgacct accccatatc caatatttcc agcgttagat  
    #            1000
    tgaggatgag gtagggaggt gatccagaga aggcggagaa ggaagaagta  
    #            1050
    acctctgagt ggcggctatt gcttctgttc caggtgctgt tcgagctgtt  
    #            1100
    agaaccctta ggcttgacag ctttgtgagt tattattgaa aaatgaggat  
    #            1150
    tccaagagtc agaggagttt gataatgtgc acgagggcac actgctagta  
    #            1200
    aataacatta aaataactgg aatgaa          
    #                  
    #            1226
    <210> SEQ ID NO 38
    <211> LENGTH: 216
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 38
    Met Val Pro Met His Leu Leu Gly Arg Leu Gl
    #u Lys Pro Leu Leu
      1               5 
    #                 10 
    #                 15
    Leu Leu Cys Cys Ala Ser Phe Leu Leu Gly Le
    #u Ala Leu Leu Gly
                     20 
    #                 25 
    #                 30
    Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Ph
    #e Phe Leu Thr Leu
                     35 
    #                 40 
    #                 45
    Gly Gly Phe Phe Leu Phe Ala Tyr Leu Leu Va
    #l Arg Phe Leu Glu
                     50 
    #                 55 
    #                 60
    Trp Gly Leu Arg Ser Gln Leu Gln Ser Met Gl
    #n Thr Glu Ser Pro
                     65 
    #                 70 
    #                 75
    Gly Pro Ser Gly Asn Ala Arg Asp Asn Glu Al
    #a Phe Glu Val Pro
                     80 
    #                 85 
    #                 90
    Val Tyr Glu Glu Ala Val Val Gly Leu Glu Se
    #r Gln Cys Arg Pro
                     95 
    #                100 
    #                105
    Gln Glu Leu Asp Gln Pro Pro Pro Tyr Ser Th
    #r Val Val Ile Pro
                    110  
    #               115  
    #               120
    Pro Ala Pro Glu Glu Glu Gln Pro Ser His Pr
    #o Glu Gly Ser Arg
                    125  
    #               130  
    #               135
    Arg Ala Lys Leu Glu Gln Arg Arg Met Ala Se
    #r Glu Gly Ser Met
                    140  
    #               145  
    #               150
    Ala Gln Glu Gly Ser Pro Gly Arg Ala Pro Il
    #e Asn Leu Arg Leu
                    155  
    #               160  
    #               165
    Arg Gly Pro Arg Ala Val Ser Thr Ala Pro As
    #p Leu Gln Ser Leu
                    170  
    #               175  
    #               180
    Ala Ala Val Pro Thr Leu Glu Pro Leu Thr Pr
    #o Pro Pro Ala Tyr
                    185  
    #               190  
    #               195
    Asp Val Cys Phe Gly His Pro Asp Asp Asp Se
    #r Val Phe Tyr Glu
                    200  
    #               205  
    #               210
    Asp Asn Trp Ala Pro Pro
                    215
    <210> SEQ ID NO 39
    <211> LENGTH: 2770
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 39
    cccacgcgtc cggcggctac acacctaggt gcggtgggct tcgggtgggg  
    #              50
    ggcctgcagc tagctgatgg caagggagga atagcagggg tggggattgt  
    #             100
    ggtgtgcgag aggtcccgcg gacggggggc tcgggggtct cttcagacga  
    #             150
    gattcccttc aggcttgggc cgggtccctt cgcacggaga tcccaatgaa  
    #             200
    cgcgggcccc tggaggccgg tggttggggc ttctccgcgt cggggatggg  
    #             250
    gccggtaccc tagcccgttt ccagcgcctc agtcggttcc ccatgccctc  
    #             300
    agaggtggcc cggggcaagc gcgccgccct cttcttcgct gcggtggcca  
    #             350
    tcgtgctggg gctaccgctc tggtggaaga ccacggagac ctaccgggcc  
    #             400
    tcgttgcctt actcccagat cagtggcctg aatgcccttc agctccgcct  
    #             450
    catggtgcct gtcactgtcg tgtttacgcg ggagtcagtg cccctggacg  
    #             500
    accaggagaa gctgcccttc accgttgtgc atgaaagaga gattcctctg  
    #             550
    aaatacaaaa tgaaaatcaa atgccgtttc cagaaggcct atcggagggc  
    #             600
    tttggaccat gaggaggagg ccctgtcatc gggcagtgtg caagaggcag  
    #             650
    aagccatgtt agatgagcct caggaacaag cggagggctc cctgactgtg  
    #             700
    tacgtgatat ctgaacactc ctcacttctt ccccaggaca tgatgagcta  
    #             750
    cattgggccc aagaggacag cagtggtgcg ggggataatg caccgggagg  
    #             800
    cctttaacat cattggccgc cgcatagtcc aggtggccca ggccatgtct  
    #             850
    ttgactgagg atgtgcttgc tgctgctctg gctgaccacc ttccagagga  
    #             900
    caagtggagc gctgagaaga ggcggcctct caagtccagc ttgggctatg  
    #             950
    agatcacctt cagtttactc aacccagacc ccaagtccca tgatgtctac  
    #            1000
    tgggacattg agggggctgt ccggcgctat gtgcaacctt tcctgaatgc  
    #            1050
    cctcggtgcc gctggcaact tctctgtgga ctctcagatt ctttactatg  
    #            1100
    caatgttggg ggtgaatccc cgctttgact cagcttcctc cagctactat  
    #            1150
    ttggacatgc acagcctccc ccatgtcatc aacccagtgg agtcccggct  
    #            1200
    gggatccagt gctgcctcct tgtaccctgt gctcaacttt ctactctacg  
    #            1250
    tgcctgagct tgcacactca ccgctgtaca ttcaggacaa ggatggcgct  
    #            1300
    ccagtggcca ccaatgcctt ccatagtccc cgctggggtg gcattatggt  
    #            1350
    atataatgtt gactccaaaa cctataatgc ctcagtgctg ccagtgagag  
    #            1400
    tcgaggtgga catggtgcga gtgatggagg tgttcctggc acagttgcgg  
    #            1450
    ttgctctttg ggattgctca gccccagctg cctccaaaat gcctgctttc  
    #            1500
    agggcctacg agtgaagggc taatgacctg ggagctagac cggctgctct  
    #            1550
    gggctcggtc agtggagaac ctggccacag ccaccaccac ccttacctcc  
    #            1600
    ctggcgcagc ttctgggcaa gatcagcaac attgtcatta aggacgacgt  
    #            1650
    ggcatctgag gtgtacaagg ctgtagctgc cgtccagaag tcggcagaag  
    #            1700
    agttggcgtc tgggcacctg gcatctgcct ttgtcgccag ccaggaagct  
    #            1750
    gtgacatcct ctgagcttgc cttctttgac ccgtcactcc tccacctcct  
    #            1800
    ttatttccct gatgaccaga agtttgccat ctacatccca ctcttcctgc  
    #            1850
    ctatggctgt gcccatcctc ctgtccctgg tcaagatctt cctggagacc  
    #            1900
    cgcaagtcct ggagaaagcc tgagaagaca gactgagcag ggcagcacct  
    #            1950
    ccataggaag ccttcctttc tggccaaggt gggcggtgtt agattgtgag  
    #            2000
    gcacgtacat ggggcctgcc ggaatgactt aaatatttgt ctccagtctc  
    #            2050
    cactgttggc tctccagcaa ccaaagtaca acactccaag atgggttcat  
    #            2100
    cttttcttcc tttcccattc acctggctca atcctcctcc accaccaggg  
    #            2150
    gcctcaaaag gcacatcatc cgggtctcct tatcttgttt gataaggctg  
    #            2200
    ctgcctgtct ccctctgtgg caaggactgt ttgttctttt gccccatttc  
    #            2250
    tcaacatagc acacttgtgc actgagagga gggagcatta tgggaaagtc  
    #            2300
    cctgccttcc acacctctct ctagtccctg tgggacagcc ctagcccctg  
    #            2350
    ctgtcatgaa ggggccaggc attggtcacc tgtgggacct tctccctcac  
    #            2400
    tcccctccct cctagttggc tttgtctgtc aggtgcagtc tggcgggagt  
    #            2450
    ccaggaggca gcagctcagg acatggtgct gtgtgtgtgt gtgtgtgtgt  
    #            2500
    gtgtgtgtgt gtgtgtgtca gaggttccag aaagttccag atttggaatc  
    #            2550
    aaacagtcct gaattcaaat ccttgttttt gcacttattg tctggagagc  
    #            2600
    tttggataag gtattgaatc tctctgagcc tcagtttttc atttgttcaa  
    #            2650
    atggcactga tgatgtctcc cttacaagat ggttgtgagg agtaaatgtg  
    #            2700
    atcagcatgt aaagtgtctg gcgtgtagta ggctcttaat aaacactggc  
    #            2750
    tgaatatgaa ttggaatgat            
    #                  
    #                 277
    #0
    <210> SEQ ID NO 40
    <211> LENGTH: 547
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 40
    Met Pro Ser Glu Val Ala Arg Gly Lys Arg Al
    #a Ala Leu Phe Phe
      1               5 
    #                 10 
    #                 15
    Ala Ala Val Ala Ile Val Leu Gly Leu Pro Le
    #u Trp Trp Lys Thr
                     20 
    #                 25 
    #                 30
    Thr Glu Thr Tyr Arg Ala Ser Leu Pro Tyr Se
    #r Gln Ile Ser Gly
                     35 
    #                 40 
    #                 45
    Leu Asn Ala Leu Gln Leu Arg Leu Met Val Pr
    #o Val Thr Val Val
                     50 
    #                 55 
    #                 60
    Phe Thr Arg Glu Ser Val Pro Leu Asp Asp Gl
    #n Glu Lys Leu Pro
                     65 
    #                 70 
    #                 75
    Phe Thr Val Val His Glu Arg Glu Ile Pro Le
    #u Lys Tyr Lys Met
                     80 
    #                 85 
    #                 90
    Lys Ile Lys Cys Arg Phe Gln Lys Ala Tyr Ar
    #g Arg Ala Leu Asp
                     95 
    #                100 
    #                105
    His Glu Glu Glu Ala Leu Ser Ser Gly Ser Va
    #l Gln Glu Ala Glu
                    110  
    #               115  
    #               120
    Ala Met Leu Asp Glu Pro Gln Glu Gln Ala Gl
    #u Gly Ser Leu Thr
                    125  
    #               130  
    #               135
    Val Tyr Val Ile Ser Glu His Ser Ser Leu Le
    #u Pro Gln Asp Met
                    140  
    #               145  
    #               150
    Met Ser Tyr Ile Gly Pro Lys Arg Thr Ala Va
    #l Val Arg Gly Ile
                    155  
    #               160  
    #               165
    Met His Arg Glu Ala Phe Asn Ile Ile Gly Ar
    #g Arg Ile Val Gln
                    170  
    #               175  
    #               180
    Val Ala Gln Ala Met Ser Leu Thr Glu Asp Va
    #l Leu Ala Ala Ala
                    185  
    #               190  
    #               195
    Leu Ala Asp His Leu Pro Glu Asp Lys Trp Se
    #r Ala Glu Lys Arg
                    200  
    #               205  
    #               210
    Arg Pro Leu Lys Ser Ser Leu Gly Tyr Glu Il
    #e Thr Phe Ser Leu
                    215  
    #               220  
    #               225
    Leu Asn Pro Asp Pro Lys Ser His Asp Val Ty
    #r Trp Asp Ile Glu
                    230  
    #               235  
    #               240
    Gly Ala Val Arg Arg Tyr Val Gln Pro Phe Le
    #u Asn Ala Leu Gly
                    245  
    #               250  
    #               255
    Ala Ala Gly Asn Phe Ser Val Asp Ser Gln Il
    #e Leu Tyr Tyr Ala
                    260  
    #               265  
    #               270
    Met Leu Gly Val Asn Pro Arg Phe Asp Ser Al
    #a Ser Ser Ser Tyr
                    275  
    #               280  
    #               285
    Tyr Leu Asp Met His Ser Leu Pro His Val Il
    #e Asn Pro Val Glu
                    290  
    #               295  
    #               300
    Ser Arg Leu Gly Ser Ser Ala Ala Ser Leu Ty
    #r Pro Val Leu Asn
                    305  
    #               310  
    #               315
    Phe Leu Leu Tyr Val Pro Glu Leu Ala His Se
    #r Pro Leu Tyr Ile
                    320  
    #               325  
    #               330
    Gln Asp Lys Asp Gly Ala Pro Val Ala Thr As
    #n Ala Phe His Ser
                    335  
    #               340  
    #               345
    Pro Arg Trp Gly Gly Ile Met Val Tyr Asn Va
    #l Asp Ser Lys Thr
                    350  
    #               355  
    #               360
    Tyr Asn Ala Ser Val Leu Pro Val Arg Val Gl
    #u Val Asp Met Val
                    365  
    #               370  
    #               375
    Arg Val Met Glu Val Phe Leu Ala Gln Leu Ar
    #g Leu Leu Phe Gly
                    380  
    #               385  
    #               390
    Ile Ala Gln Pro Gln Leu Pro Pro Lys Cys Le
    #u Leu Ser Gly Pro
                    395  
    #               400  
    #               405
    Thr Ser Glu Gly Leu Met Thr Trp Glu Leu As
    #p Arg Leu Leu Trp
                    410  
    #               415  
    #               420
    Ala Arg Ser Val Glu Asn Leu Ala Thr Ala Th
    #r Thr Thr Leu Thr
                    425  
    #               430  
    #               435
    Ser Leu Ala Gln Leu Leu Gly Lys Ile Ser As
    #n Ile Val Ile Lys
                    440  
    #               445  
    #               450
    Asp Asp Val Ala Ser Glu Val Tyr Lys Ala Va
    #l Ala Ala Val Gln
                    455  
    #               460  
    #               465
    Lys Ser Ala Glu Glu Leu Ala Ser Gly His Le
    #u Ala Ser Ala Phe
                    470  
    #               475  
    #               480
    Val Ala Ser Gln Glu Ala Val Thr Ser Ser Gl
    #u Leu Ala Phe Phe
                    485  
    #               490  
    #               495
    Asp Pro Ser Leu Leu His Leu Leu Tyr Phe Pr
    #o Asp Asp Gln Lys
                    500  
    #               505  
    #               510
    Phe Ala Ile Tyr Ile Pro Leu Phe Leu Pro Me
    #t Ala Val Pro Ile
                    515  
    #               520  
    #               525
    Leu Leu Ser Leu Val Lys Ile Phe Leu Glu Th
    #r Arg Lys Ser Trp
                    530  
    #               535  
    #               540
    Arg Lys Pro Glu Lys Thr Asp
                    545
    <210> SEQ ID NO 41
    <211> LENGTH: 1964
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 41
    ccagctgcag agaggaggag gtgagctgca gagaagagga ggttggtgtg  
    #              50
    gagcacaggc agcaccgagc ctgccccgtg agctgagggc ctgcagtctg  
    #             100
    cggctggaat caggatagac accaaggcag gacccccaga gatgctgaag  
    #             150
    cctctttgga aagcagcagt ggcccccaca tggccatgct ccatgccgcc  
    #             200
    ccgccgcccg tgggacagag aggctggcac gttgcaggtc ctgggagcgc  
    #             250
    tggctgtgct gtggctgggc tccgtggctc ttatctgcct cctgtggcaa  
    #             300
    gtgccccgtc ctcccacctg gggccaggtg cagcccaagg acgtgcccag  
    #             350
    gtcctgggag catggctcca gcccagcttg ggagcccctg gaagcagagg  
    #             400
    ccaggcagca gagggactcc tgccagcttg tccttgtgga aagcatcccc  
    #             450
    caggacctgc catctgcagc cggcagcccc tctgcccagc ctctgggcca  
    #             500
    ggcctggctg cagctgctgg acactgccca ggagagcgtc cacgtggctt  
    #             550
    catactactg gtccctcaca gggcctgaca tcggggtcaa cgactcgtct  
    #             600
    tcccagctgg gagaggctct tctgcagaag ctgcagcagc tgctgggcag  
    #             650
    gaacatttcc ctggctgtgg ccaccagcag cccgacactg gccaggacat  
    #             700
    ccaccgacct gcaggttctg gctgcccgag gtgcccatgt acgacaggtg  
    #             750
    cccatggggc ggctcaccag gggtgttttg cactccaaat tctgggttgt  
    #             800
    ggatggacgg cacatataca tgggcagtgc caacatggac tggcggtctc  
    #             850
    tgacgcaggt gaaggagctt ggcgctgtca tctataactg cagccacctg  
    #             900
    gcccaagacc tggagaagac cttccagacc tactgggtac tgggggtgcc  
    #             950
    caaggctgtc ctccccaaaa cctggcctca gaacttctca tctcacttca  
    #            1000
    accgtttcca gcccttccac ggcctctttg atggggtgcc caccactgcc  
    #            1050
    tacttctcag cgtcgccacc agcactctgt ccccagggcc gcacccggga  
    #            1100
    cctggaggcg ctgctggcgg tgatggggag cgcccaggag ttcatctatg  
    #            1150
    cctccgtgat ggagtatttc cccaccacgc gcttcagcca ccccccgagg  
    #            1200
    tactggccgg tgctggacaa cgcgctgcgg gcggcagcct tcggcaaggg  
    #            1250
    cgtgcgcgtg cgcctgctgg tcggctgcgg actcaacacg gaccccacca  
    #            1300
    tgttccccta cctgcggtcc ctgcaggcgc tcagcaaccc cgcggccaac  
    #            1350
    gtctctgtgg acgtgaaagt cttcatcgtg ccggtgggga accattccaa  
    #            1400
    catcccattc agcagggtga accacagcaa gttcatggtc acggagaagg  
    #            1450
    cagcctacat aggcacctcc aactggtcgg aggattactt cagcagcacg  
    #            1500
    gcgggggtgg gcttggtggt cacccagagc cctggcgcgc agcccgcggg  
    #            1550
    ggccacggtg caggagcagc tgcggcagct ctttgagcgg gactggagtt  
    #            1600
    cgcgctacgc cgtcggcctg gacggacagg ctccgggcca ggactgcgtt  
    #            1650
    tggcagggct gaggggggcc tctttttctc tcggcgaccc cgccccgcac  
    #            1700
    gcgccctccc ctctgacccc ggcctgggct tcagccgctt cctcccgcaa  
    #            1750
    gcagcccggg tccgcactgc gccaggagcc gcctgcgacc gcccgggcgt  
    #            1800
    cgcaaaccgc ccgcctgctc tctgatttcc gagtccagcc ccccctgagc  
    #            1850
    cccacctcct ccagggagcc ctccaggaag ccccttccct gactcctggc  
    #            1900
    ccacaggcca ggcctaaaaa aaactcgtgg cttcaaaaaa aaaaaaaaaa  
    #            1950
    aaaaaaaaaa aaaa              
    #                  
    #                  
    #   1964
    <210> SEQ ID NO 42
    <211> LENGTH: 489
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 42
    Met Pro Pro Arg Arg Pro Trp Asp Arg Glu Al
    #a Gly Thr Leu Gln
      1               5 
    #                 10 
    #                 15
    Val Leu Gly Ala Leu Ala Val Leu Trp Leu Gl
    #y Ser Val Ala Leu
                     20 
    #                 25 
    #                 30
    Ile Cys Leu Leu Trp Gln Val Pro Arg Pro Pr
    #o Thr Trp Gly Gln
                     35 
    #                 40 
    #                 45
    Val Gln Pro Lys Asp Val Pro Arg Ser Trp Gl
    #u His Gly Ser Ser
                     50 
    #                 55 
    #                 60
    Pro Ala Trp Glu Pro Leu Glu Ala Glu Ala Ar
    #g Gln Gln Arg Asp
                     65 
    #                 70 
    #                 75
    Ser Cys Gln Leu Val Leu Val Glu Ser Ile Pr
    #o Gln Asp Leu Pro
                     80 
    #                 85 
    #                 90
    Ser Ala Ala Gly Ser Pro Ser Ala Gln Pro Le
    #u Gly Gln Ala Trp
                     95 
    #                100 
    #                105
    Leu Gln Leu Leu Asp Thr Ala Gln Glu Ser Va
    #l His Val Ala Ser
                    110  
    #               115  
    #               120
    Tyr Tyr Trp Ser Leu Thr Gly Pro Asp Ile Gl
    #y Val Asn Asp Ser
                    125  
    #               130  
    #               135
    Ser Ser Gln Leu Gly Glu Ala Leu Leu Gln Ly
    #s Leu Gln Gln Leu
                    140  
    #               145  
    #               150
    Leu Gly Arg Asn Ile Ser Leu Ala Val Ala Th
    #r Ser Ser Pro Thr
                    155  
    #               160  
    #               165
    Leu Ala Arg Thr Ser Thr Asp Leu Gln Val Le
    #u Ala Ala Arg Gly
                    170  
    #               175  
    #               180
    Ala His Val Arg Gln Val Pro Met Gly Arg Le
    #u Thr Arg Gly Val
                    185  
    #               190  
    #               195
    Leu His Ser Lys Phe Trp Val Val Asp Gly Ar
    #g His Ile Tyr Met
                    200  
    #               205  
    #               210
    Gly Ser Ala Asn Met Asp Trp Arg Ser Leu Th
    #r Gln Val Lys Glu
                    215  
    #               220  
    #               225
    Leu Gly Ala Val Ile Tyr Asn Cys Ser His Le
    #u Ala Gln Asp Leu
                    230  
    #               235  
    #               240
    Glu Lys Thr Phe Gln Thr Tyr Trp Val Leu Gl
    #y Val Pro Lys Ala
                    245  
    #               250  
    #               255
    Val Leu Pro Lys Thr Trp Pro Gln Asn Phe Se
    #r Ser His Phe Asn
                    260  
    #               265  
    #               270
    Arg Phe Gln Pro Phe His Gly Leu Phe Asp Gl
    #y Val Pro Thr Thr
                    275  
    #               280  
    #               285
    Ala Tyr Phe Ser Ala Ser Pro Pro Ala Leu Cy
    #s Pro Gln Gly Arg
                    290  
    #               295  
    #               300
    Thr Arg Asp Leu Glu Ala Leu Leu Ala Val Me
    #t Gly Ser Ala Gln
                    305  
    #               310  
    #               315
    Glu Phe Ile Tyr Ala Ser Val Met Glu Tyr Ph
    #e Pro Thr Thr Arg
                    320  
    #               325  
    #               330
    Phe Ser His Pro Pro Arg Tyr Trp Pro Val Le
    #u Asp Asn Ala Leu
                    335  
    #               340  
    #               345
    Arg Ala Ala Ala Phe Gly Lys Gly Val Arg Va
    #l Arg Leu Leu Val
                    350  
    #               355  
    #               360
    Gly Cys Gly Leu Asn Thr Asp Pro Thr Met Ph
    #e Pro Tyr Leu Arg
                    365  
    #               370  
    #               375
    Ser Leu Gln Ala Leu Ser Asn Pro Ala Ala As
    #n Val Ser Val Asp
                    380  
    #               385  
    #               390
    Val Lys Val Phe Ile Val Pro Val Gly Asn Hi
    #s Ser Asn Ile Pro
                    395  
    #               400  
    #               405
    Phe Ser Arg Val Asn His Ser Lys Phe Met Va
    #l Thr Glu Lys Ala
                    410  
    #               415  
    #               420
    Ala Tyr Ile Gly Thr Ser Asn Trp Ser Glu As
    #p Tyr Phe Ser Ser
                    425  
    #               430  
    #               435
    Thr Ala Gly Val Gly Leu Val Val Thr Gln Se
    #r Pro Gly Ala Gln
                    440  
    #               445  
    #               450
    Pro Ala Gly Ala Thr Val Gln Glu Gln Leu Ar
    #g Gln Leu Phe Glu
                    455  
    #               460  
    #               465
    Arg Asp Trp Ser Ser Arg Tyr Ala Val Gly Le
    #u Asp Gly Gln Ala
                    470  
    #               475  
    #               480
    Pro Gly Gln Asp Cys Val Trp Gln Gly
                    485
    <210> SEQ ID NO 43
    <211> LENGTH: 1130
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 43
    gggcctggcg atccggatcc cgcaggcgcg ctggctgcgc tgcccggctg  
    #              50
    tctgtcgtca tggtggggcc ctgggtgtat ctggtggcgg cagttttgct  
    #             100
    catcggcctg atcctcttcc tgactcgcag ccggggtcgg gcggcagcag  
    #             150
    ctgacggaga accactgcac aatgaggaag agagggcagg agcaggccag  
    #             200
    gtaggccgct ctttgcccca ggagtctgaa gaacagagaa ctggaagcag  
    #             250
    accccggcgt cggagggact tgggcagccg tctacaggcc cagcgtcgag  
    #             300
    cccagcgagt ggcctgggaa gacggggatg agaatgtggg tcaaactgtt  
    #             350
    attccagccc aggaggaaga aggcattgag aagccagcag aagttcaccc  
    #             400
    aacagggaaa attggagcca agaaactacg gaagctagag gaaaaacagg  
    #             450
    ctcgaaaggc tcagcgagag gcagaggagg ctgaacgtga agaacggaaa  
    #             500
    cgcctagagt cccaacgtga ggccgaatgg aagaaggaag aggaacggct  
    #             550
    tcgcctgaag gaagaacaga aggaggagga agagaggaag gctcaggagg  
    #             600
    agcaggcccg gcgggatcac gaggagtacc tgaaactgaa ggaggccttc  
    #             650
    gtggtagaag aagaaggtgt tagcgaaacc atgactgagg agcagtctca  
    #             700
    cagcttcctg acagaattca tcaattacat caagaagtcc aaggttgtgc  
    #             750
    ttttggaaga tctggctttc cagatgggcc taaggactca ggacgccata  
    #             800
    aaccgcatcc aggacctgct gacggagggg actctaacag gtgtgattga  
    #             850
    cgaccggggc aagtttatct acataacccc agaggaactg gctgccgtgg  
    #             900
    ccaatttcat ccgacagcgg ggccgggtgt ccatcacaga gcttgcccag  
    #             950
    gccagcaact ccctcatctc ctggggccag gacctccctg cccaggcttc  
    #            1000
    agcctgactc cagtccttcc ttgagtgtat cctgtggcct acatgtgtct  
    #            1050
    tcatccttcc ctaatgccgt cttggggcag ggatggaata tgaccagaaa  
    #            1100
    gttgtggatt aaaggcctgt gaatactgaa         
    #                  
    #         1130
    <210> SEQ ID NO 44
    <211> LENGTH: 315
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 44
    Met Val Gly Pro Trp Val Tyr Leu Val Ala Al
    #a Val Leu Leu Ile
      1               5 
    #                 10 
    #                 15
    Gly Leu Ile Leu Phe Leu Thr Arg Ser Arg Gl
    #y Arg Ala Ala Ala
                     20 
    #                 25 
    #                 30
    Ala Asp Gly Glu Pro Leu His Asn Glu Glu Gl
    #u Arg Ala Gly Ala
                     35 
    #                 40 
    #                 45
    Gly Gln Val Gly Arg Ser Leu Pro Gln Glu Se
    #r Glu Glu Gln Arg
                     50 
    #                 55 
    #                 60
    Thr Gly Ser Arg Pro Arg Arg Arg Arg Asp Le
    #u Gly Ser Arg Leu
                     65 
    #                 70 
    #                 75
    Gln Ala Gln Arg Arg Ala Gln Arg Val Ala Tr
    #p Glu Asp Gly Asp
                     80 
    #                 85 
    #                 90
    Glu Asn Val Gly Gln Thr Val Ile Pro Ala Gl
    #n Glu Glu Glu Gly
                     95 
    #                100 
    #                105
    Ile Glu Lys Pro Ala Glu Val His Pro Thr Gl
    #y Lys Ile Gly Ala
                    110  
    #               115  
    #               120
    Lys Lys Leu Arg Lys Leu Glu Glu Lys Gln Al
    #a Arg Lys Ala Gln
                    125  
    #               130  
    #               135
    Arg Glu Ala Glu Glu Ala Glu Arg Glu Glu Ar
    #g Lys Arg Leu Glu
                    140  
    #               145  
    #               150
    Ser Gln Arg Glu Ala Glu Trp Lys Lys Glu Gl
    #u Glu Arg Leu Arg
                    155  
    #               160  
    #               165
    Leu Lys Glu Glu Gln Lys Glu Glu Glu Glu Ar
    #g Lys Ala Gln Glu
                    170  
    #               175  
    #               180
    Glu Gln Ala Arg Arg Asp His Glu Glu Tyr Le
    #u Lys Leu Lys Glu
                    185  
    #               190  
    #               195
    Ala Phe Val Val Glu Glu Glu Gly Val Ser Gl
    #u Thr Met Thr Glu
                    200  
    #               205  
    #               210
    Glu Gln Ser His Ser Phe Leu Thr Glu Phe Il
    #e Asn Tyr Ile Lys
                    215  
    #               220  
    #               225
    Lys Ser Lys Val Val Leu Leu Glu Asp Leu Al
    #a Phe Gln Met Gly
                    230  
    #               235  
    #               240
    Leu Arg Thr Gln Asp Ala Ile Asn Arg Ile Gl
    #n Asp Leu Leu Thr
                    245  
    #               250  
    #               255
    Glu Gly Thr Leu Thr Gly Val Ile Asp Asp Ar
    #g Gly Lys Phe Ile
                    260  
    #               265  
    #               270
    Tyr Ile Thr Pro Glu Glu Leu Ala Ala Val Al
    #a Asn Phe Ile Arg
                    275  
    #               280  
    #               285
    Gln Arg Gly Arg Val Ser Ile Thr Glu Leu Al
    #a Gln Ala Ser Asn
                    290  
    #               295  
    #               300
    Ser Leu Ile Ser Trp Gly Gln Asp Leu Pro Al
    #a Gln Ala Ser Ala
                    305  
    #               310  
    #               315
    <210> SEQ ID NO 45
    <211> LENGTH: 1977
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 45
    acgggccgca gcggcagtga cgtagggttg gcgcacggat ccgttgcggc  
    #              50
    tgcagctctg cagtcgggcc gttccttcgc cgccgccagg ggtagcggtg  
    #             100
    tagctgcgca gcgtcgcgcg cgctaccgca cccaggttcg gcccgtaggc  
    #             150
    gtctggcagc ccggcgccat cttcatcgag cgccatggcc gcagcctgcg  
    #             200
    ggccgggagc ggccgggtac tgcttgctcc tcggcttgca tttgtttctg  
    #             250
    ctgaccgcgg gccctgccct gggctggaac gaccctgaca gaatgttgct  
    #             300
    gcgggatgta aaagctctta ccctccacta tgaccgctat accacctccc  
    #             350
    gcaggctgga tcccatccca cagttgaaat gtgttggagg cacagctggt  
    #             400
    tgtgattctt ataccccaaa agtcatacag tgtcagaaca aaggctggga  
    #             450
    tgggtatgat gtacagtggg aatgtaagac ggacttagat attgcataca  
    #             500
    aatttggaaa aactgtggtg agctgtgaag gctatgagtc ctctgaagac  
    #             550
    cagtatgtac taagaggttc ttgtggcttg gagtataatt tagattatac  
    #             600
    agaacttggc ctgcagaaac tgaaggagtc tggaaagcag cacggctttg  
    #             650
    cctctttctc tgattattat tataagtggt cctcggcgga ttcctgtaac  
    #             700
    atgagtggat tgattaccat cgtggtactc cttgggatcg cctttgtagt  
    #             750
    ctataagctg ttcctgagtg acgggcagta ttctcctcca ccgtactctg  
    #             800
    agtatcctcc attttcccac cgttaccaga gattcaccaa ctcagcagga  
    #             850
    cctcctcccc caggctttaa gtctgagttc acaggaccac agaatactgg  
    #             900
    ccatggtgca acttctggtt ttggcagtgc ttttacagga caacaaggat  
    #             950
    atgaaaattc aggaccaggg ttctggacag gcttgggaac tggtggaata  
    #            1000
    ctaggatatt tgtttggcag caatagagcg gcaacaccct tctcagactc  
    #            1050
    gtggtactac ccgtcctatc ctccctccta ccctggcacg tggaataggg  
    #            1100
    cttactcacc ccttcatgga ggctcgggca gctattcggt atgttcaaac  
    #            1150
    tcagacacga aaaccagaac tgcatcagga tatggtggta ccaggagacg  
    #            1200
    ataaagtaga aagttggagt caaacactgg atgcagaaat tttggatttt  
    #            1250
    tcatcacttt ctctttagaa aaaaagtact acctgttaac aattgggaaa  
    #            1300
    aggggatatt caaaagttct gtggtgttat gtccagtgta gctttttgta  
    #            1350
    ttctattatt tgaggctaaa agttgatgtg tgacaaaata cttatgtgtt  
    #            1400
    gtatgtcagt gtaacatgca gatgtatatt gcagtttttg aaagtgatca  
    #            1450
    ttactgtgga atgctaaaaa tacattaatt tctaaaacct gtgatgccct  
    #            1500
    aagaagcatt aagaatgaag gtgttgtact aatagaaact aagtacagaa  
    #            1550
    aatttcagtt ttaggtggtt gtagctgatg agttattacc tcatagagac  
    #            1600
    tataatattc tatttggtat tatattattt gatgtttgct gttcttcaaa  
    #            1650
    catttaaatc aagctttgga ctaattatgc taatttgtga gttctgatca  
    #            1700
    cttttgagct ctgaagcttt gaatcattca gtggtggaga tggccttctg  
    #            1750
    gtaactgaat attaccttct gtaggaaaag gtggaaaata agcatctaga  
    #            1800
    aggttgttgt gaatgactct gtgctggcaa aaatgcttga aacctctata  
    #            1850
    tttctttcgt tcataagagg taaaggtcaa atttttcaac aaaagtcttt  
    #            1900
    taataacaaa agcatgcagt tctctgtgaa atctcaaata ttgttgtaat  
    #            1950
    agtctgtttc aatcttaaaa agaatca          
    #                  
    #           1977
    <210> SEQ ID NO 46
    <211> LENGTH: 339
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 46
    Met Ala Ala Ala Cys Gly Pro Gly Ala Ala Gl
    #y Tyr Cys Leu Leu
      1               5 
    #                 10 
    #                 15
    Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gl
    #y Pro Ala Leu Gly
                     20 
    #                 25 
    #                 30
    Trp Asn Asp Pro Asp Arg Met Leu Leu Arg As
    #p Val Lys Ala Leu
                     35 
    #                 40 
    #                 45
    Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Ar
    #g Arg Leu Asp Pro
                     50 
    #                 55 
    #                 60
    Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Al
    #a Gly Cys Asp Ser
                     65 
    #                 70 
    #                 75
    Tyr Thr Pro Lys Val Ile Gln Cys Gln Asn Ly
    #s Gly Trp Asp Gly
                     80 
    #                 85 
    #                 90
    Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Le
    #u Asp Ile Ala Tyr
                     95 
    #                100 
    #                105
    Lys Phe Gly Lys Thr Val Val Ser Cys Glu Gl
    #y Tyr Glu Ser Ser
                    110  
    #               115  
    #               120
    Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys Gl
    #y Leu Glu Tyr Asn
                    125  
    #               130  
    #               135
    Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Le
    #u Lys Glu Ser Gly
                    140  
    #               145  
    #               150
    Lys Gln His Gly Phe Ala Ser Phe Ser Asp Ty
    #r Tyr Tyr Lys Trp
                    155  
    #               160  
    #               165
    Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Le
    #u Ile Thr Ile Val
                    170  
    #               175  
    #               180
    Val Leu Leu Gly Ile Ala Phe Val Val Tyr Ly
    #s Leu Phe Leu Ser
                    185  
    #               190  
    #               195
    Asp Gly Gln Tyr Ser Pro Pro Pro Tyr Ser Gl
    #u Tyr Pro Pro Phe
                    200  
    #               205  
    #               210
    Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Al
    #a Gly Pro Pro Pro
                    215  
    #               220  
    #               225
    Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gl
    #n Asn Thr Gly His
                    230  
    #               235  
    #               240
    Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Th
    #r Gly Gln Gln Gly
                    245  
    #               250  
    #               255
    Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gl
    #y Leu Gly Thr Gly
                    260  
    #               265  
    #               270
    Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Ar
    #g Ala Ala Thr Pro
                    275  
    #               280  
    #               285
    Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pr
    #o Pro Ser Tyr Pro
                    290  
    #               295  
    #               300
    Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu Hi
    #s Gly Gly Ser Gly
                    305  
    #               310  
    #               315
    Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Ly
    #s Thr Arg Thr Ala
                    320  
    #               325  
    #               330
    Ser Gly Tyr Gly Gly Thr Arg Arg Arg
                    335
    <210> SEQ ID NO 47
    <211> LENGTH: 1766
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 47
    cccggagccg gggagggagg gagcgaggtt cggacaccgg cggcggctgc  
    #              50
    ctggcctttc catgagcccg cggcggaccc tcccgcgccc cctctcgctc  
    #             100
    tgcctctccc tctgcctctg cctctgcctg gccgcggctc tgggaagtgc  
    #             150
    gcagtccggg tcgtgtaggg ataaaaagaa ctgtaaggtg gtcttttccc  
    #             200
    agcaggaact gaggaagcgg ctaacacccc tgcagtacca tgtcactcag  
    #             250
    gagaaaggga ccgaaagtgc ctttgaagga gaatacacac atcacaaaga  
    #             300
    tcctggaata tataaatgtg ttgtttgtgg aactccattg tttaagtcag  
    #             350
    aaaccaaatt tgactccggt tcaggttggc cttcattcca cgatgtgatc  
    #             400
    aattctgagg caatcacatt cacagatgac ttttcctatg ggatgcacag  
    #             450
    ggtggaaaca agctgctctc agtgtggtgc tcaccttggg cacatttttg  
    #             500
    atgatgggcc tcgtccaact gggaaaagat actgcataaa ttcggctgcc  
    #             550
    ttgtctttta cacctgcgga tagcagtggc accgccgagg gaggcagtgg  
    #             600
    ggtcgccagc ccggcccagg cagacaaagc ggagctctag agtaatggag  
    #             650
    agtgatggaa acaaagtgta cttaatgcac agcttattaa aaaaatcaaa  
    #             700
    attgttatct taatagatat attttttcaa aaactataag ggcagttttg  
    #             750
    tgctattgat attttttctt cttttgctta aacagaagcc ctggccatcc  
    #             800
    atgtattttg caattgacta gatcaagaac tgtttatagc tttagcaaat  
    #             850
    ggagacagct ttgtgaaact tcttcacaag ccacttatac cctttggcat  
    #             900
    tcttttcttt gagcacatgg cttcttttgc agtttttccc cctttgattc  
    #             950
    agaagcagag ggttcatggt cttcaaacat gaaaatagag atctcctctg  
    #            1000
    cagtgtagag accagagctg ggcagtgcag ggcatggaga cctgcaagac  
    #            1050
    acatggcctt gaggcctttg cacagaccca cctaagataa ggttggagtg  
    #            1100
    atgttttaat gagactgttc agctttgtgg aaagtttgag ctaaggtcat  
    #            1150
    tttttttttt ctcactgaaa gggtgtgaag gtctaaagtc tttccttatg  
    #            1200
    ttaaattgtt gccagatcca aaggggcata ctgagtgttg tggcagagaa  
    #            1250
    gtaaacatta ccacactgtt aggcctttat tttattttat tttccatcga  
    #            1300
    aagcattgga ggcccagtgc aatggctcac gcctgtgatc ccagcacttt  
    #            1350
    gggaggccaa ggcgggtgga tcacgaggtc aggagatgga gaccatcctg  
    #            1400
    gctaacatgg tgaaaccccg tctctactaa aaatacgaaa aattagccag  
    #            1450
    gcgtggtggt gggcacctgt agtcccagct actcaggagg ctgaggcagg  
    #            1500
    agaatggcgt gaacccggaa ggcggagctt gcagttagcc gagatcatgc  
    #            1550
    cactgcactc cagcctacat gacaatgtga cactccatct caaaaaataa  
    #            1600
    taataataac aatataagaa ctagctgggc atggtggcgc atgcatgtag  
    #            1650
    tcccagctac tcctgaggct cagtcaggag aatcgcttga acttgggagg  
    #            1700
    cggaggttgc agtgagctga gctcatacca ctgcactcca gcctgaacag  
    #            1750
    agtgagatcc tgtcaa             
    #                  
    #                  
    #  1766
    <210> SEQ ID NO 48
    <211> LENGTH: 192
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 48
    Met Ser Pro Arg Arg Thr Leu Pro Arg Pro Le
    #u Ser Leu Cys Leu
      1               5 
    #                 10 
    #                 15
    Ser Leu Cys Leu Cys Leu Cys Leu Ala Ala Al
    #a Leu Gly Ser Ala
                     20 
    #                 25 
    #                 30
    Gln Ser Gly Ser Cys Arg Asp Lys Lys Asn Cy
    #s Lys Val Val Phe
                     35 
    #                 40 
    #                 45
    Ser Gln Gln Glu Leu Arg Lys Arg Leu Thr Pr
    #o Leu Gln Tyr His
                     50 
    #                 55 
    #                 60
    Val Thr Gln Glu Lys Gly Thr Glu Ser Ala Ph
    #e Glu Gly Glu Tyr
                     65 
    #                 70 
    #                 75
    Thr His His Lys Asp Pro Gly Ile Tyr Lys Cy
    #s Val Val Cys Gly
                     80 
    #                 85 
    #                 90
    Thr Pro Leu Phe Lys Ser Glu Thr Lys Phe As
    #p Ser Gly Ser Gly
                     95 
    #                100 
    #                105
    Trp Pro Ser Phe His Asp Val Ile Asn Ser Gl
    #u Ala Ile Thr Phe
                    110  
    #               115  
    #               120
    Thr Asp Asp Phe Ser Tyr Gly Met His Arg Va
    #l Glu Thr Ser Cys
                    125  
    #               130  
    #               135
    Ser Gln Cys Gly Ala His Leu Gly His Ile Ph
    #e Asp Asp Gly Pro
                    140  
    #               145  
    #               150
    Arg Pro Thr Gly Lys Arg Tyr Cys Ile Asn Se
    #r Ala Ala Leu Ser
                    155  
    #               160  
    #               165
    Phe Thr Pro Ala Asp Ser Ser Gly Thr Ala Gl
    #u Gly Gly Ser Gly
                    170  
    #               175  
    #               180
    Val Ala Ser Pro Ala Gln Ala Asp Lys Ala Gl
    #u Leu
                    185  
    #               190
    <210> SEQ ID NO 49
    <211> LENGTH: 2065
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 49
    cccaaagagg tgaggagccg gcagcggggg cggctgtaac tgtgaggaag  
    #              50
    gctgcagagt ggcgacgtct acgccgtagg ttggaggctg tggggggtgg  
    #             100
    ccgggcgcca gctcccaggc cgcagaagtg acctgcggtg gagttccctc  
    #             150
    ctcgctgctg gagaacggag ggagaaggtt gctggccggg tgaaagtgcc  
    #             200
    tccctctgct tgacggggct gaggggcccg aagtctaggg cgtccgtagt  
    #             250
    cgccccggcc tccgtgaagc cccaggtcta gagatatgac ccgagagtgc  
    #             300
    ccatctccgg ccccggggcc tggggctccg ctgagtggat cggtgctggc  
    #             350
    agaggcggca gtagtgtttg cagtggtgct gagcatccac gcaaccgtat  
    #             400
    gggaccgata ctcgtggtgc gccgtggccc tcgcagtgca ggccttctac  
    #             450
    gtccaataca agtgggaccg gctgctacag cagggaagcg ccgtcttcca  
    #             500
    gttccgaatg tccgcaaaca gtggcctatt gcccgcctcc atggtcatgc  
    #             550
    ctttgcttgg actagtcatg aaggagcggt gccagactgc tgggaacccg  
    #             600
    ttctttgagc gttttggcat tgtggtggca gccactggca tggcagtggc  
    #             650
    cctcttctca tcagtgttgg cgctcggcat cactcgccca gtgccaacca  
    #             700
    acacttgtgt catcttgggc ttggctggag gtgttatcat ttatatcatg  
    #             750
    aagcactcgt tgagcgtggg ggaggtgatc gaagtcctgg aagtccttct  
    #             800
    gatcttcgtt tatctcaaca tgatcctgct gtacctgctg ccccgctgct  
    #             850
    tcacccctgg tgaggcactg ctggtattgg gtggcattag ctttgtcctc  
    #             900
    aaccagctca tcaagcgctc tctgacactg gtggaaagtc agggggaccc  
    #             950
    agtggacttc ttcctgctgg tggtggtagt agggatggta ctcatgggca  
    #            1000
    ttttcttcag cactctgttt gtcttcatgg actcaggcac ctgggcctcc  
    #            1050
    tccatcttct tccacctcat gacctgtgtg ctgagccttg gtgtggtcct  
    #            1100
    accctggctg caccggctca tccgcaggaa tcccctgctc tggcttcttc  
    #            1150
    agtttctctt ccagacagac acccgcatct acctcctagc ctattggtct  
    #            1200
    ctgctggcca ccttggcctg cctggtggtg ctgtaccaga atgccaagcg  
    #            1250
    gtcatcttcc gagtccaaga agcaccaggc ccccaccatc gcccgaaagt  
    #            1300
    atttccacct cattgtggta gccacctaca tcccaggtat catctttgac  
    #            1350
    cggccactgc tctatgtagc cgccactgta tgcctggcgg tcttcatctt  
    #            1400
    cctggagtat gtgcgctact tccgcatcaa gcctttgggt cacactctac  
    #            1450
    ggagcttcct gtcccttttt ctggatgaac gagacagtgg accactcatt  
    #            1500
    ctgacacaca tctacctgct cctgggcatg tctcttccca tctggctgat  
    #            1550
    ccccagaccc tgcacacaga agggtagcct gggaggagcc agggccctcg  
    #            1600
    tcccctatgc cggtgtcctg gctgtgggtg tgggtgatac tgtggcctcc  
    #            1650
    atcttcggta gcaccatggg ggagatccgc tggcctggaa ccaaaaagac  
    #            1700
    ttttgagggg accatgacat ctatatttgc gcagatcatt tctgtagctc  
    #            1750
    tgatcttaat ctttgacagt ggagtggacc taaactacag ttatgcttgg  
    #            1800
    attttggggt ccatcagcac tgtgtccctc ctggaagcat acactacaca  
    #            1850
    gatagacaat ctccttctgc ctctctacct cctgatattg ctgatggcct  
    #            1900
    agctgttaca gtgcagcagc agtgacggag gaaacagaca tggggagggt  
    #            1950
    gaacagtccc cacagcagac agctacttgg gcatgaagag ccaaggtgtg  
    #            2000
    aaaagcagat ttgatttttc agttgattca gatttaaaat aaaaagcaaa  
    #            2050
    gctctcctag ttcta              
    #                  
    #                  
    #  2065
    <210> SEQ ID NO 50
    <211> LENGTH: 538
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 50
    Met Thr Arg Glu Cys Pro Ser Pro Ala Pro Gl
    #y Pro Gly Ala Pro
      1               5 
    #                 10 
    #                 15
    Leu Ser Gly Ser Val Leu Ala Glu Ala Ala Va
    #l Val Phe Ala Val
                     20 
    #                 25 
    #                 30
    Val Leu Ser Ile His Ala Thr Val Trp Asp Ar
    #g Tyr Ser Trp Cys
                     35 
    #                 40 
    #                 45
    Ala Val Ala Leu Ala Val Gln Ala Phe Tyr Va
    #l Gln Tyr Lys Trp
                     50 
    #                 55 
    #                 60
    Asp Arg Leu Leu Gln Gln Gly Ser Ala Val Ph
    #e Gln Phe Arg Met
                     65 
    #                 70 
    #                 75
    Ser Ala Asn Ser Gly Leu Leu Pro Ala Ser Me
    #t Val Met Pro Leu
                     80 
    #                 85 
    #                 90
    Leu Gly Leu Val Met Lys Glu Arg Cys Gln Th
    #r Ala Gly Asn Pro
                     95 
    #                100 
    #                105
    Phe Phe Glu Arg Phe Gly Ile Val Val Ala Al
    #a Thr Gly Met Ala
                    110  
    #               115  
    #               120
    Val Ala Leu Phe Ser Ser Val Leu Ala Leu Gl
    #y Ile Thr Arg Pro
                    125  
    #               130  
    #               135
    Val Pro Thr Asn Thr Cys Val Ile Leu Gly Le
    #u Ala Gly Gly Val
                    140  
    #               145  
    #               150
    Ile Ile Tyr Ile Met Lys His Ser Leu Ser Va
    #l Gly Glu Val Ile
                    155  
    #               160  
    #               165
    Glu Val Leu Glu Val Leu Leu Ile Phe Val Ty
    #r Leu Asn Met Ile
                    170  
    #               175  
    #               180
    Leu Leu Tyr Leu Leu Pro Arg Cys Phe Thr Pr
    #o Gly Glu Ala Leu
                    185  
    #               190  
    #               195
    Leu Val Leu Gly Gly Ile Ser Phe Val Leu As
    #n Gln Leu Ile Lys
                    200  
    #               205  
    #               210
    Arg Ser Leu Thr Leu Val Glu Ser Gln Gly As
    #p Pro Val Asp Phe
                    215  
    #               220  
    #               225
    Phe Leu Leu Val Val Val Val Gly Met Val Le
    #u Met Gly Ile Phe
                    230  
    #               235  
    #               240
    Phe Ser Thr Leu Phe Val Phe Met Asp Ser Gl
    #y Thr Trp Ala Ser
                    245  
    #               250  
    #               255
    Ser Ile Phe Phe His Leu Met Thr Cys Val Le
    #u Ser Leu Gly Val
                    260  
    #               265  
    #               270
    Val Leu Pro Trp Leu His Arg Leu Ile Arg Ar
    #g Asn Pro Leu Leu
                    275  
    #               280  
    #               285
    Trp Leu Leu Gln Phe Leu Phe Gln Thr Asp Th
    #r Arg Ile Tyr Leu
                    290  
    #               295  
    #               300
    Leu Ala Tyr Trp Ser Leu Leu Ala Thr Leu Al
    #a Cys Leu Val Val
                    305  
    #               310  
    #               315
    Leu Tyr Gln Asn Ala Lys Arg Ser Ser Ser Gl
    #u Ser Lys Lys His
                    320  
    #               325  
    #               330
    Gln Ala Pro Thr Ile Ala Arg Lys Tyr Phe Hi
    #s Leu Ile Val Val
                    335  
    #               340  
    #               345
    Ala Thr Tyr Ile Pro Gly Ile Ile Phe Asp Ar
    #g Pro Leu Leu Tyr
                    350  
    #               355  
    #               360
    Val Ala Ala Thr Val Cys Leu Ala Val Phe Il
    #e Phe Leu Glu Tyr
                    365  
    #               370  
    #               375
    Val Arg Tyr Phe Arg Ile Lys Pro Leu Gly Hi
    #s Thr Leu Arg Ser
                    380  
    #               385  
    #               390
    Phe Leu Ser Leu Phe Leu Asp Glu Arg Asp Se
    #r Gly Pro Leu Ile
                    395  
    #               400  
    #               405
    Leu Thr His Ile Tyr Leu Leu Leu Gly Met Se
    #r Leu Pro Ile Trp
                    410  
    #               415  
    #               420
    Leu Ile Pro Arg Pro Cys Thr Gln Lys Gly Se
    #r Leu Gly Gly Ala
                    425  
    #               430  
    #               435
    Arg Ala Leu Val Pro Tyr Ala Gly Val Leu Al
    #a Val Gly Val Gly
                    440  
    #               445  
    #               450
    Asp Thr Val Ala Ser Ile Phe Gly Ser Thr Me
    #t Gly Glu Ile Arg
                    455  
    #               460  
    #               465
    Trp Pro Gly Thr Lys Lys Thr Phe Glu Gly Th
    #r Met Thr Ser Ile
                    470  
    #               475  
    #               480
    Phe Ala Gln Ile Ile Ser Val Ala Leu Ile Le
    #u Ile Phe Asp Ser
                    485  
    #               490  
    #               495
    Gly Val Asp Leu Asn Tyr Ser Tyr Ala Trp Il
    #e Leu Gly Ser Ile
                    500  
    #               505  
    #               510
    Ser Thr Val Ser Leu Leu Glu Ala Tyr Thr Th
    #r Gln Ile Asp Asn
                    515  
    #               520  
    #               525
    Leu Leu Leu Pro Leu Tyr Leu Leu Ile Leu Le
    #u Met Ala
                    530  
    #               535
    <210> SEQ ID NO 51
    <211> LENGTH: 3476
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 51
    gctctatgcc gcctaccttg ctctcgccgc tgctgccgga gccgaagcag  
    #              50
    agaaggcagc gggtcccgtg accgtcccga gagccccgcg ctcccgacca  
    #             100
    gggggcgggg gcggccccgg ggagggcggg gcaggggcgg ggggaagaaa  
    #             150
    gggggttttg tgctgcgccg ggagggccgg cgccctcttc cgaatgtcct  
    #             200
    gcggccccag cctctcctca cgctcgcgca gtctccgccg cagtctcagc  
    #             250
    tgcagctgca ggactgagcc gtgcacccgg aggagacccc cggaggaggc  
    #             300
    gacaaacttc gcagtgccgc gacccaaccc cagccctggg tagcctgcag  
    #             350
    catggcccag ctgttcctgc ccctgctggc agccctggtc ctggcccagg  
    #             400
    ctcctgcagc tttagcagat gttctggaag gagacagctc agaggaccgc  
    #             450
    gcttttcgcg tgcgcatcgc gggcgacgcg ccactgcagg gcgtgctcgg  
    #             500
    cggcgccctc accatccctt gccacgtcca ctacctgcgg ccaccgccga  
    #             550
    gccgccgggc tgtgctgggc tctccgcggg tcaagtggac tttcctgtcc  
    #             600
    cggggccggg aggcagaggt gctggtggcg cggggagtgc gcgtcaaggt  
    #             650
    gaacgaggcc taccggttcc gcgtggcact gcctgcgtac ccagcgtcgc  
    #             700
    tcaccgacgt ctccctggcg ctgagcgagc tgcgccccaa cgactcaggt  
    #             750
    atctatcgct gtgaggtcca gcacggcatc gatgacagca gcgacgctgt  
    #             800
    ggaggtcaag gtcaaagggg tcgtctttct ctaccgagag ggctctgccc  
    #             850
    gctatgcttt ctccttttct ggggcccagg aggcctgtgc ccgcattgga  
    #             900
    gcccacatcg ccaccccgga gcagctctat gccgcctacc ttgggggcta  
    #             950
    tgagcaatgt gatgctggct ggctgtcgga tcagaccgtg aggtatccca  
    #            1000
    tccagacccc acgagaggcc tgttacggag acatggatgg cttccccggg  
    #            1050
    gtccggaact atggtgtggt ggacccggat gacctctatg atgtgtactg  
    #            1100
    ttatgctgaa gacctaaatg gagaactgtt cctgggtgac cctccagaga  
    #            1150
    agctgacatt ggaggaagca cgggcgtact gccaggagcg gggtgcagag  
    #            1200
    attgccacca cgggccaact gtatgcagcc tgggatggtg gcctggacca  
    #            1250
    ctgcagccca gggtggctag ctgatggcag tgtgcgctac cccatcgtca  
    #            1300
    cacccagcca gcgctgtggt gggggcttgc ctggtgtcaa gactctcttc  
    #            1350
    ctcttcccca accagactgg cttccccaat aagcacagcc gcttcaacgt  
    #            1400
    ctactgcttc cgagactcgg cccagccttc tgccatccct gaggcctcca  
    #            1450
    acccagcctc caacccagcc tctgatggac tagaggctat cgtcacagtg  
    #            1500
    acagagaccc tggaggaact gcagctgcct caggaagcca cagagagtga  
    #            1550
    atcccgtggg gccatctact ccatccccat catggaggac ggaggaggtg  
    #            1600
    gaagctccac tccagaagac ccagcagagg cccctaggac gctcctagaa  
    #            1650
    tttgaaacac aatccatggt accgcccacg gggttctcag aagaggaagg  
    #            1700
    taaggcattg gaggaagaag agaaatatga agatgaagaa gagaaagagg  
    #            1750
    aggaagaaga agaggaggag gtggaggatg aggctctgtg ggcatggccc  
    #            1800
    agcgagctca gcagcccggg ccctgaggcc tctctcccca ctgagccagc  
    #            1850
    agcccaggag aagtcactct cccaggcgcc agcaagggca gtcctgcagc  
    #            1900
    ctggtgcatc accacttcct gatggagagt cagaagcttc caggcctcca  
    #            1950
    agggtccatg gaccacctac tgagactctg cccactccca gggagaggaa  
    #            2000
    cctagcatcc ccatcacctt ccactctggt tgaggcaaga gaggtggggg  
    #            2050
    aggcaactgg tggtcctgag ctatctgggg tccctcgagg agagagcgag  
    #            2100
    gagacaggaa gctccgaggg tgccccttcc ctgcttccag ccacacgggc  
    #            2150
    ccctgagggt accagggagc tggaggcccc ctctgaagat aattctggaa  
    #            2200
    gaactgcccc agcagggacc tcagtgcagg cccagccagt gctgcccact  
    #            2250
    gacagcgcca gccgaggtgg agtggccgtg gtccccgcat caggtgactg  
    #            2300
    tgtccccagc ccctgccaca atggtgggac atgcttggag gaggaggaag  
    #            2350
    gggtccgctg cctatgtctg cctggctatg ggggggacct gtgcgatgtt  
    #            2400
    ggcctccgct tctgcaaccc cggctgggac gccttccagg gcgcctgcta  
    #            2450
    caagcacttt tccacacgaa ggagctggga ggaggcagag acccagtgcc  
    #            2500
    ggatgtacgg cgcgcatctg gccagcatca gcacacccga ggaacaggac  
    #            2550
    ttcatcaaca accggtaccg ggagtaccag tggatcggac tcaacgacag  
    #            2600
    gaccatcgaa ggcgacttct tgtggtcgga tggcgtcccc ctgctctatg  
    #            2650
    agaactggaa ccctgggcag cctgacagct acttcctgtc tggagagaac  
    #            2700
    tgcgtggtca tggtgtggca tgatcaggga caatggagtg acgtgccctg  
    #            2750
    caactaccac ctgtcctaca cctgcaagat ggggctggtg tcctgtgggc  
    #            2800
    cgccaccgga gctgcccctg gctcaagtgt tcggccgccc acggctgcgc  
    #            2850
    tatgaggtgg acactgtgct tcgctaccgg tgccgggaag gactggccca  
    #            2900
    gcgcaatctg ccgctgatcc gatgccaaga gaacggtcgt tgggaggccc  
    #            2950
    cccagatctc ctgtgtgccc agaagacctg cccgagctct gcacccagag  
    #            3000
    gaggacccag aaggacgtca ggggaggcta ctgggacgct ggaaggcgct  
    #            3050
    gttgatcccc ccttccagcc ccatgccagg tccctagggg gcaaggcctt  
    #            3100
    gaacactgcc ggccacagca ctgccctgtc acccaaattt tccctcacac  
    #            3150
    cttgcgctcc cgccaccaca ggaagtgaca acatgacgag gggtggtgct  
    #            3200
    ggagtccagg tgacagttcc tgaaggggct tctgggaaat acctaggagg  
    #            3250
    ctccagccca gcccaggccc tctcccccta ccctgggcac cagatcttcc  
    #            3300
    atcagggccg gagtaaatcc ctaagtgcct caactgccct ctccctggca  
    #            3350
    gccatcttgt cccctctatt cctctaggga gcactgtgcc cactctttct  
    #            3400
    gggttttcca agggaatggg cttgcaggat ggagtgtctg taaaatcaac  
    #            3450
    aggaaataaa actgtgtatg agccca          
    #                  
    #            3476
    <210> SEQ ID NO 52
    <211> LENGTH: 911
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 52
    Met Ala Gln Leu Phe Leu Pro Leu Leu Ala Al
    #a Leu Val Leu Ala
      1               5 
    #                 10 
    #                 15
    Gln Ala Pro Ala Ala Leu Ala Asp Val Leu Gl
    #u Gly Asp Ser Ser
                     20 
    #                 25 
    #                 30
    Glu Asp Arg Ala Phe Arg Val Arg Ile Ala Gl
    #y Asp Ala Pro Leu
                     35 
    #                 40 
    #                 45
    Gln Gly Val Leu Gly Gly Ala Leu Thr Ile Pr
    #o Cys His Val His
                     50 
    #                 55 
    #                 60
    Tyr Leu Arg Pro Pro Pro Ser Arg Arg Ala Va
    #l Leu Gly Ser Pro
                     65 
    #                 70 
    #                 75
    Arg Val Lys Trp Thr Phe Leu Ser Arg Gly Ar
    #g Glu Ala Glu Val
                     80 
    #                 85 
    #                 90
    Leu Val Ala Arg Gly Val Arg Val Lys Val As
    #n Glu Ala Tyr Arg
                     95 
    #                100 
    #                105
    Phe Arg Val Ala Leu Pro Ala Tyr Pro Ala Se
    #r Leu Thr Asp Val
                    110  
    #               115  
    #               120
    Ser Leu Ala Leu Ser Glu Leu Arg Pro Asn As
    #p Ser Gly Ile Tyr
                    125  
    #               130  
    #               135
    Arg Cys Glu Val Gln His Gly Ile Asp Asp Se
    #r Ser Asp Ala Val
                    140  
    #               145  
    #               150
    Glu Val Lys Val Lys Gly Val Val Phe Leu Ty
    #r Arg Glu Gly Ser
                    155  
    #               160  
    #               165
    Ala Arg Tyr Ala Phe Ser Phe Ser Gly Ala Gl
    #n Glu Ala Cys Ala
                    170  
    #               175  
    #               180
    Arg Ile Gly Ala His Ile Ala Thr Pro Glu Gl
    #n Leu Tyr Ala Ala
                    185  
    #               190  
    #               195
    Tyr Leu Gly Gly Tyr Glu Gln Cys Asp Ala Gl
    #y Trp Leu Ser Asp
                    200  
    #               205  
    #               210
    Gln Thr Val Arg Tyr Pro Ile Gln Thr Pro Ar
    #g Glu Ala Cys Tyr
                    215  
    #               220  
    #               225
    Gly Asp Met Asp Gly Phe Pro Gly Val Arg As
    #n Tyr Gly Val Val
                    230  
    #               235  
    #               240
    Asp Pro Asp Asp Leu Tyr Asp Val Tyr Cys Ty
    #r Ala Glu Asp Leu
                    245  
    #               250  
    #               255
    Asn Gly Glu Leu Phe Leu Gly Asp Pro Pro Gl
    #u Lys Leu Thr Leu
                    260  
    #               265  
    #               270
    Glu Glu Ala Arg Ala Tyr Cys Gln Glu Arg Gl
    #y Ala Glu Ile Ala
                    275  
    #               280  
    #               285
    Thr Thr Gly Gln Leu Tyr Ala Ala Trp Asp Gl
    #y Gly Leu Asp His
                    290  
    #               295  
    #               300
    Cys Ser Pro Gly Trp Leu Ala Asp Gly Ser Va
    #l Arg Tyr Pro Ile
                    305  
    #               310  
    #               315
    Val Thr Pro Ser Gln Arg Cys Gly Gly Gly Le
    #u Pro Gly Val Lys
                    320  
    #               325  
    #               330
    Thr Leu Phe Leu Phe Pro Asn Gln Thr Gly Ph
    #e Pro Asn Lys His
                    335  
    #               340  
    #               345
    Ser Arg Phe Asn Val Tyr Cys Phe Arg Asp Se
    #r Ala Gln Pro Ser
                    350  
    #               355  
    #               360
    Ala Ile Pro Glu Ala Ser Asn Pro Ala Ser As
    #n Pro Ala Ser Asp
                    365  
    #               370  
    #               375
    Gly Leu Glu Ala Ile Val Thr Val Thr Glu Th
    #r Leu Glu Glu Leu
                    380  
    #               385  
    #               390
    Gln Leu Pro Gln Glu Ala Thr Glu Ser Glu Se
    #r Arg Gly Ala Ile
                    395  
    #               400  
    #               405
    Tyr Ser Ile Pro Ile Met Glu Asp Gly Gly Gl
    #y Gly Ser Ser Thr
                    410  
    #               415  
    #               420
    Pro Glu Asp Pro Ala Glu Ala Pro Arg Thr Le
    #u Leu Glu Phe Glu
                    425  
    #               430  
    #               435
    Thr Gln Ser Met Val Pro Pro Thr Gly Phe Se
    #r Glu Glu Glu Gly
                    440  
    #               445  
    #               450
    Lys Ala Leu Glu Glu Glu Glu Lys Tyr Glu As
    #p Glu Glu Glu Lys
                    455  
    #               460  
    #               465
    Glu Glu Glu Glu Glu Glu Glu Glu Val Glu As
    #p Glu Ala Leu Trp
                    470  
    #               475  
    #               480
    Ala Trp Pro Ser Glu Leu Ser Ser Pro Gly Pr
    #o Glu Ala Ser Leu
                    485  
    #               490  
    #               495
    Pro Thr Glu Pro Ala Ala Gln Glu Lys Ser Le
    #u Ser Gln Ala Pro
                    500  
    #               505  
    #               510
    Ala Arg Ala Val Leu Gln Pro Gly Ala Ser Pr
    #o Leu Pro Asp Gly
                    515  
    #               520  
    #               525
    Glu Ser Glu Ala Ser Arg Pro Pro Arg Val Hi
    #s Gly Pro Pro Thr
                    530  
    #               535  
    #               540
    Glu Thr Leu Pro Thr Pro Arg Glu Arg Asn Le
    #u Ala Ser Pro Ser
                    545  
    #               550  
    #               555
    Pro Ser Thr Leu Val Glu Ala Arg Glu Val Gl
    #y Glu Ala Thr Gly
                    560  
    #               565  
    #               570
    Gly Pro Glu Leu Ser Gly Val Pro Arg Gly Gl
    #u Ser Glu Glu Thr
                    575  
    #               580  
    #               585
    Gly Ser Ser Glu Gly Ala Pro Ser Leu Leu Pr
    #o Ala Thr Arg Ala
                    590  
    #               595  
    #               600
    Pro Glu Gly Thr Arg Glu Leu Glu Ala Pro Se
    #r Glu Asp Asn Ser
                    605  
    #               610  
    #               615
    Gly Arg Thr Ala Pro Ala Gly Thr Ser Val Gl
    #n Ala Gln Pro Val
                    620  
    #               625  
    #               630
    Leu Pro Thr Asp Ser Ala Ser Arg Gly Gly Va
    #l Ala Val Val Pro
                    635  
    #               640  
    #               645
    Ala Ser Gly Asp Cys Val Pro Ser Pro Cys Hi
    #s Asn Gly Gly Thr
                    650  
    #               655  
    #               660
    Cys Leu Glu Glu Glu Glu Gly Val Arg Cys Le
    #u Cys Leu Pro Gly
                    665  
    #               670  
    #               675
    Tyr Gly Gly Asp Leu Cys Asp Val Gly Leu Ar
    #g Phe Cys Asn Pro
                    680  
    #               685  
    #               690
    Gly Trp Asp Ala Phe Gln Gly Ala Cys Tyr Ly
    #s His Phe Ser Thr
                    695  
    #               700  
    #               705
    Arg Arg Ser Trp Glu Glu Ala Glu Thr Gln Cy
    #s Arg Met Tyr Gly
                    710  
    #               715  
    #               720
    Ala His Leu Ala Ser Ile Ser Thr Pro Glu Gl
    #u Gln Asp Phe Ile
                    725  
    #               730  
    #               735
    Asn Asn Arg Tyr Arg Glu Tyr Gln Trp Ile Gl
    #y Leu Asn Asp Arg
                    740  
    #               745  
    #               750
    Thr Ile Glu Gly Asp Phe Leu Trp Ser Asp Gl
    #y Val Pro Leu Leu
                    755  
    #               760  
    #               765
    Tyr Glu Asn Trp Asn Pro Gly Gln Pro Asp Se
    #r Tyr Phe Leu Ser
                    770  
    #               775  
    #               780
    Gly Glu Asn Cys Val Val Met Val Trp His As
    #p Gln Gly Gln Trp
                    785  
    #               790  
    #               795
    Ser Asp Val Pro Cys Asn Tyr His Leu Ser Ty
    #r Thr Cys Lys Met
                    800  
    #               805  
    #               810
    Gly Leu Val Ser Cys Gly Pro Pro Pro Glu Le
    #u Pro Leu Ala Gln
                    815  
    #               820  
    #               825
    Val Phe Gly Arg Pro Arg Leu Arg Tyr Glu Va
    #l Asp Thr Val Leu
                    830  
    #               835  
    #               840
    Arg Tyr Arg Cys Arg Glu Gly Leu Ala Gln Ar
    #g Asn Leu Pro Leu
                    845  
    #               850  
    #               855
    Ile Arg Cys Gln Glu Asn Gly Arg Trp Glu Al
    #a Pro Gln Ile Ser
                    860  
    #               865  
    #               870
    Cys Val Pro Arg Arg Pro Ala Arg Ala Leu Hi
    #s Pro Glu Glu Asp
                    875  
    #               880  
    #               885
    Pro Glu Gly Arg Gln Gly Arg Leu Leu Gly Ar
    #g Trp Lys Ala Leu
                    890  
    #               895  
    #               900
    Leu Ile Pro Pro Ser Ser Pro Met Pro Gly Pr
    #o
                    905  
    #               910
    <210> SEQ ID NO 53
    <211> LENGTH: 3316
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 53
    ctgccaggtg acagccgcca agatggggtc ttgggccctg ctgtggcctc  
    #              50
    ccctgctgtt caccgggctg ctcgtccgac ccccggggac catggcccag  
    #             100
    gcccagtact gctctgtgaa caaggacatc tttgaagtag aggagaacac  
    #             150
    aaatgtcacc gagccgctgg tggacatcca cgtcccggag ggccaggagg  
    #             200
    tgaccctcgg agccttgtcc accccctttg catttcggat ccagggaaac  
    #             250
    cagctgtttc tcaacgtgac tcctgattac gaggagaagt cactgcttga  
    #             300
    ggctcagctg ctgtgtcaga gcggaggcac attggtgacc cagctaaggg  
    #             350
    tgttcgtgtc agtgctggac gtcaatgaca atgcccccga attccccttt  
    #             400
    aagaccaagg agataagggt ggaggaggac acgaaagtga actccaccgt  
    #             450
    catccctgag acgcaactgc aggctgagga ccgcgacaag gacgacattc  
    #             500
    tgttctacac cctccaggaa atgacagcag gtgccagtga ctacttctcc  
    #             550
    ctggtgagtg taaaccgtcc cgccctgagg ctggaccggc ccctggactt  
    #             600
    ctacgagcgg ccgaacatga ccttctggct gctggtgcgg gacactccag  
    #             650
    gggagaatgt ggaacccagc cacactgcca ccgccacact agtgctgaac  
    #             700
    gtggtgcccg ccgacctgcg gcccccgtgg ttcctgccct gcaccttctc  
    #             750
    agatggctac gtctgcattc aagctcagta ccacggggct gtccccacgg  
    #             800
    ggcacatact gccatctccc ctcgtcctgc gtcccggacc catctacgct  
    #             850
    gaggacggag accgcggcat caaccagccc atcatctaca gcatctttag  
    #             900
    gggaaacgtg aatggtacat tcatcatcca cccagactcg ggcaacctca  
    #             950
    ccgtggccag gagtgtcccc agccccatga ccttccttct gctggtgaag  
    #            1000
    ggccaacagg ccgaccttgc ccgctactca gtgacccagg tcaccgtgga  
    #            1050
    ggctgtggct gcggccggga gcccgccccg cttcccccag agcctgtatc  
    #            1100
    gtggcaccgt ggcgcgtggc gctggagcgg gcgttgtggt caaggatgca  
    #            1150
    gctgcccctt ctcagcctct gaggatccag gctcaggacc cggagttctc  
    #            1200
    ggacctcaac tcggccatca catatcgaat taccaaccac tcacacttcc  
    #            1250
    ggatggaggg agaggttgtg ctgaccacca ccacactggc acaggcggga  
    #            1300
    gccttctacg cagaggttga ggcccacaac acggtgacct ctggcaccgc  
    #            1350
    aaccacagtc attgagatac aagtttccga acaggagccc ccctccacag  
    #            1400
    aggctggagg aacaactggg ccctggacca gcaccacttc cgaggtcccc  
    #            1450
    agaccccctg agccctccca gggaccctcc acgaccagct ctgggggagg  
    #            1500
    cacaggccct catccaccct ctggcacaac tctgaggcca ccaacctcgt  
    #            1550
    ccacacccgg ggggcccccg ggtgcagaaa acagcacctc ccaccaacca  
    #            1600
    gccactcccg gtggggacac agcacagacc ccaaagccag gaacctctca  
    #            1650
    gccgatgccc cccggtgtgg gaaccagcac ctcccaccaa ccagccacac  
    #            1700
    ccagtggggg cacagcacag accccagagc caggaacctc tcagccgatg  
    #            1750
    ccccccagta tgggaaccag cacctcccac caaccagcca cacccggtgg  
    #            1800
    gggcacagca cagaccccag aggcaggaac ctctcagccg atgccccccg  
    #            1850
    gtatgggaac cagcacctcc caccaaccaa ccacacccgg tgggggcaca  
    #            1900
    gcacagaccc cagagccagg aacctctcag ccgatgcccc tcagcaagag  
    #            1950
    caccccatct tcaggtggcg gcccctcgga ggacaagcgc ttctcggtgg  
    #            2000
    tggatatggc ggccctgggc ggggtgctgg gtgcgctgct gctgctggct  
    #            2050
    ctccttggcc tcgccgtcct tgtccacaag cactatggcc cccggctcaa  
    #            2100
    gtgctgctct ggcaaagctc cggagcccca gccccaaggc tttgacaacc  
    #            2150
    aggcgttcct ccctgaccac aaggccaact gggcgcccgt ccccagcccc  
    #            2200
    acgcacgacc ccaagcccgc ggaggcaccg atgcccgcag agcccgcacc  
    #            2250
    ccccggccct gcctccccag gcggtgcccc tgagcccccc gcagcggccc  
    #            2300
    gagctggcgg aagccccacg gcggtgaggt ccatcctgac caaggagcgg  
    #            2350
    cggccggagg gcgggtacaa ggccgtctgg tttggcgagg acatcgggac  
    #            2400
    ggaggcagac gtggtcgttc tcaacgcgcc caccctggac gtggatggcg  
    #            2450
    ccagtgactc cggcagcggc gacgagggcg agggcgcggg gaggggtggg  
    #            2500
    ggtccctacg atgcacccgg tggtgatgac tcctacatct aagtggcccc  
    #            2550
    tccaccctct cccccagccg cacgggcact ggaggtctcg ctcccccagc  
    #            2600
    ctccgacccg aggcagaata aagcaaggct cccgaaaccc aggccatggc  
    #            2650
    gtggggcagg cgcgtgggtc cctgggggcc ccattcactc agtcccctgt  
    #            2700
    cgtcattagc gcttgagccc aggtgtgcag atgaggcggt gggtctggcc  
    #            2750
    acgctgtccc caccccaagg ctgcagcact tcccgtaaac cacctgcagt  
    #            2800
    gcccgccgcc ttcccgaggc tctgtgccag ctagtctggg aagttcctct  
    #            2850
    cccgctctaa ccacagcccg aggggggctc ccctcccccg acctgcacca  
    #            2900
    gagatctcag gcacccggct caactcagac ctcccgctcc cgaccctaca  
    #            2950
    cagagattgc ctggggaggc tgaggagccg atgcaaaccc ccaaggcgac  
    #            3000
    gcacttggga gccggtggtc tcaaacacct gccgggggtc ctagtcccct  
    #            3050
    tctgaaatct acatgcttgg gttggagcgc agcagtaaac accctgccca  
    #            3100
    gtgacctgga ctgaggcgcg ctgggggtgg gtgcgccgtg tggcctgagc  
    #            3150
    aggagccaga ccaggaggcc taggggtgag agacacattc ccctcgctgc  
    #            3200
    tcccaaagcc agagcccagg ctgggcgccc atgcccagaa ccatcaaggg  
    #            3250
    atcccttgcg gcttgtcagc actttcccta atggaaatac accattaatt  
    #            3300
    cctttccaaa tgtttt             
    #                  
    #                  
    #  3316
    <210> SEQ ID NO 54
    <211> LENGTH: 839
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 54
    Met Gly Ser Trp Ala Leu Leu Trp Pro Pro Le
    #u Leu Phe Thr Gly
      1               5 
    #                 10 
    #                 15
    Leu Leu Val Arg Pro Pro Gly Thr Met Ala Gl
    #n Ala Gln Tyr Cys
                     20 
    #                 25 
    #                 30
    Ser Val Asn Lys Asp Ile Phe Glu Val Glu Gl
    #u Asn Thr Asn Val
                     35 
    #                 40 
    #                 45
    Thr Glu Pro Leu Val Asp Ile His Val Pro Gl
    #u Gly Gln Glu Val
                     50 
    #                 55 
    #                 60
    Thr Leu Gly Ala Leu Ser Thr Pro Phe Ala Ph
    #e Arg Ile Gln Gly
                     65 
    #                 70 
    #                 75
    Asn Gln Leu Phe Leu Asn Val Thr Pro Asp Ty
    #r Glu Glu Lys Ser
                     80 
    #                 85 
    #                 90
    Leu Leu Glu Ala Gln Leu Leu Cys Gln Ser Gl
    #y Gly Thr Leu Val
                     95 
    #                100 
    #                105
    Thr Gln Leu Arg Val Phe Val Ser Val Leu As
    #p Val Asn Asp Asn
                    110  
    #               115  
    #               120
    Ala Pro Glu Phe Pro Phe Lys Thr Lys Glu Il
    #e Arg Val Glu Glu
                    125  
    #               130  
    #               135
    Asp Thr Lys Val Asn Ser Thr Val Ile Pro Gl
    #u Thr Gln Leu Gln
                    140  
    #               145  
    #               150
    Ala Glu Asp Arg Asp Lys Asp Asp Ile Leu Ph
    #e Tyr Thr Leu Gln
                    155  
    #               160  
    #               165
    Glu Met Thr Ala Gly Ala Ser Asp Tyr Phe Se
    #r Leu Val Ser Val
                    170  
    #               175  
    #               180
    Asn Arg Pro Ala Leu Arg Leu Asp Arg Pro Le
    #u Asp Phe Tyr Glu
                    185  
    #               190  
    #               195
    Arg Pro Asn Met Thr Phe Trp Leu Leu Val Ar
    #g Asp Thr Pro Gly
                    200  
    #               205  
    #               210
    Glu Asn Val Glu Pro Ser His Thr Ala Thr Al
    #a Thr Leu Val Leu
                    215  
    #               220  
    #               225
    Asn Val Val Pro Ala Asp Leu Arg Pro Pro Tr
    #p Phe Leu Pro Cys
                    230  
    #               235  
    #               240
    Thr Phe Ser Asp Gly Tyr Val Cys Ile Gln Al
    #a Gln Tyr His Gly
                    245  
    #               250  
    #               255
    Ala Val Pro Thr Gly His Ile Leu Pro Ser Pr
    #o Leu Val Leu Arg
                    260  
    #               265  
    #               270
    Pro Gly Pro Ile Tyr Ala Glu Asp Gly Asp Ar
    #g Gly Ile Asn Gln
                    275  
    #               280  
    #               285
    Pro Ile Ile Tyr Ser Ile Phe Arg Gly Asn Va
    #l Asn Gly Thr Phe
                    290  
    #               295  
    #               300
    Ile Ile His Pro Asp Ser Gly Asn Leu Thr Va
    #l Ala Arg Ser Val
                    305  
    #               310  
    #               315
    Pro Ser Pro Met Thr Phe Leu Leu Leu Val Ly
    #s Gly Gln Gln Ala
                    320  
    #               325  
    #               330
    Asp Leu Ala Arg Tyr Ser Val Thr Gln Val Th
    #r Val Glu Ala Val
                    335  
    #               340  
    #               345
    Ala Ala Ala Gly Ser Pro Pro Arg Phe Pro Gl
    #n Ser Leu Tyr Arg
                    350  
    #               355  
    #               360
    Gly Thr Val Ala Arg Gly Ala Gly Ala Gly Va
    #l Val Val Lys Asp
                    365  
    #               370  
    #               375
    Ala Ala Ala Pro Ser Gln Pro Leu Arg Ile Gl
    #n Ala Gln Asp Pro
                    380  
    #               385  
    #               390
    Glu Phe Ser Asp Leu Asn Ser Ala Ile Thr Ty
    #r Arg Ile Thr Asn
                    395  
    #               400  
    #               405
    His Ser His Phe Arg Met Glu Gly Glu Val Va
    #l Leu Thr Thr Thr
                    410  
    #               415  
    #               420
    Thr Leu Ala Gln Ala Gly Ala Phe Tyr Ala Gl
    #u Val Glu Ala His
                    425  
    #               430  
    #               435
    Asn Thr Val Thr Ser Gly Thr Ala Thr Thr Va
    #l Ile Glu Ile Gln
                    440  
    #               445  
    #               450
    Val Ser Glu Gln Glu Pro Pro Ser Thr Glu Al
    #a Gly Gly Thr Thr
                    455  
    #               460  
    #               465
    Gly Pro Trp Thr Ser Thr Thr Ser Glu Val Pr
    #o Arg Pro Pro Glu
                    470  
    #               475  
    #               480
    Pro Ser Gln Gly Pro Ser Thr Thr Ser Ser Gl
    #y Gly Gly Thr Gly
                    485  
    #               490  
    #               495
    Pro His Pro Pro Ser Gly Thr Thr Leu Arg Pr
    #o Pro Thr Ser Ser
                    500  
    #               505  
    #               510
    Thr Pro Gly Gly Pro Pro Gly Ala Glu Asn Se
    #r Thr Ser His Gln
                    515  
    #               520  
    #               525
    Pro Ala Thr Pro Gly Gly Asp Thr Ala Gln Th
    #r Pro Lys Pro Gly
                    530  
    #               535  
    #               540
    Thr Ser Gln Pro Met Pro Pro Gly Val Gly Th
    #r Ser Thr Ser His
                    545  
    #               550  
    #               555
    Gln Pro Ala Thr Pro Ser Gly Gly Thr Ala Gl
    #n Thr Pro Glu Pro
                    560  
    #               565  
    #               570
    Gly Thr Ser Gln Pro Met Pro Pro Ser Met Gl
    #y Thr Ser Thr Ser
                    575  
    #               580  
    #               585
    His Gln Pro Ala Thr Pro Gly Gly Gly Thr Al
    #a Gln Thr Pro Glu
                    590  
    #               595  
    #               600
    Ala Gly Thr Ser Gln Pro Met Pro Pro Gly Me
    #t Gly Thr Ser Thr
                    605  
    #               610  
    #               615
    Ser His Gln Pro Thr Thr Pro Gly Gly Gly Th
    #r Ala Gln Thr Pro
                    620  
    #               625  
    #               630
    Glu Pro Gly Thr Ser Gln Pro Met Pro Leu Se
    #r Lys Ser Thr Pro
                    635  
    #               640  
    #               645
    Ser Ser Gly Gly Gly Pro Ser Glu Asp Lys Ar
    #g Phe Ser Val Val
                    650  
    #               655  
    #               660
    Asp Met Ala Ala Leu Gly Gly Val Leu Gly Al
    #a Leu Leu Leu Leu
                    665  
    #               670  
    #               675
    Ala Leu Leu Gly Leu Ala Val Leu Val His Ly
    #s His Tyr Gly Pro
                    680  
    #               685  
    #               690
    Arg Leu Lys Cys Cys Ser Gly Lys Ala Pro Gl
    #u Pro Gln Pro Gln
                    695  
    #               700  
    #               705
    Gly Phe Asp Asn Gln Ala Phe Leu Pro Asp Hi
    #s Lys Ala Asn Trp
                    710  
    #               715  
    #               720
    Ala Pro Val Pro Ser Pro Thr His Asp Pro Ly
    #s Pro Ala Glu Ala
                    725  
    #               730  
    #               735
    Pro Met Pro Ala Glu Pro Ala Pro Pro Gly Pr
    #o Ala Ser Pro Gly
                    740  
    #               745  
    #               750
    Gly Ala Pro Glu Pro Pro Ala Ala Ala Arg Al
    #a Gly Gly Ser Pro
                    755  
    #               760  
    #               765
    Thr Ala Val Arg Ser Ile Leu Thr Lys Glu Ar
    #g Arg Pro Glu Gly
                    770  
    #               775  
    #               780
    Gly Tyr Lys Ala Val Trp Phe Gly Glu Asp Il
    #e Gly Thr Glu Ala
                    785  
    #               790  
    #               795
    Asp Val Val Val Leu Asn Ala Pro Thr Leu As
    #p Val Asp Gly Ala
                    800  
    #               805  
    #               810
    Ser Asp Ser Gly Ser Gly Asp Glu Gly Glu Gl
    #y Ala Gly Arg Gly
                    815  
    #               820  
    #               825
    Gly Gly Pro Tyr Asp Ala Pro Gly Gly Asp As
    #p Ser Tyr Ile
                    830  
    #               835
    <210> SEQ ID NO 55
    <211> LENGTH: 3846
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 55
    gcagctgggt tctcccggtt cccttgggca ggtgcagggt cgggttcaaa  
    #              50
    gcctccggaa cgcgttttgg cctgatttga ggaggggggc ggggagggac  
    #             100
    ctgcggcttg cggccccgcc cccttctccg gctcgcagcc gaccggtaag  
    #             150
    cccgcctcct ccctcggccg gccctggggc cgtgtccgcc gggcaactcc  
    #             200
    agccgaggcc tgggcttctg cctgcaggtg tctgcggcga ggcccctagg  
    #             250
    gtacagcccg atttggcccc atggtgggtt tcggggccaa ccggcgggct  
    #             300
    ggccgcctgc cctctctcgt gctggtggtg ctgctggtgg tgatcgtcgt  
    #             350
    cctcgccttc aactactgga gcatctcctc ccgccacgtc ctgcttcagg  
    #             400
    aggaggtggc cgagctgcag ggccaggtcc agcgcaccga agtggcccgc  
    #             450
    gggcggctgg aaaagcgcaa ttcggacctc ttgctgttgg tggacacgca  
    #             500
    caagaaacag atcgaccaga aggaggccga ctacggccgc ctcagcagcc  
    #             550
    ggctgcaggc cagagagggc ctcgggaaga gatgcgagga tgacaaggtt  
    #             600
    aaactacaga acaacatatc gtatcagatg gcagacatac atcatttaaa  
    #             650
    ggagcaactt gctgagcttc gtcaggaatt tcttcgacaa gaagaccagc  
    #             700
    ttcaggacta taggaagaac aatacttacc ttgtgaagag gttagaatat  
    #             750
    gaaagttttc agtgtggaca gcagatgaag gaattgagag cacagcatga  
    #             800
    agaaaatatt aaaaagttag cagaccagtt tttagaggaa caaaagcaag  
    #             850
    agacccaaaa gattcaatca aatgatggaa aggaattgga tataaacaat  
    #             900
    caagtagtac ctaaaaatat tccaaaagta gctgagaatg ttgcagataa  
    #             950
    gaatgaagaa ccctcaagca atcatattcc acatgggaaa gaacaaatca  
    #            1000
    aaagaggtgg tgatgcaggg atgcctggaa tagaagagaa tgacctagca  
    #            1050
    aaagttgatg atcttccccc tgctttaagg aagcctccta tttcagtttc  
    #            1100
    tcaacatgaa agtcatcaag caatctccca tcttccaact ggacaacctc  
    #            1150
    tctccccaaa tatgcctcca gattcacaca taaaccacaa tggaaacccc  
    #            1200
    ggtacttcaa aacagaatcc ttccagtcct cttcagcgtt taattccagg  
    #            1250
    ctcaaacttg gacagtgaac ccagaattca aacagatata ctaaagcagg  
    #            1300
    ctaccaagga cagagtcagt gatttccata aattgaagca aaatgatgaa  
    #            1350
    gaacgagagc ttcaaatgga tcctgcagac tatggaaagc aacatttcaa  
    #            1400
    tgatgtcctt taagtcctaa aggaatgctt cagaaaacct aaagtgctgt  
    #            1450
    aaaatgaaat cattctactt tgtcctttct gacttttgtt gtaaagacga  
    #            1500
    attgtatcag ttgtaaagat acattgagat agaattaagg aaaaacttta  
    #            1550
    atgaaggaat gtacccatgt acatatgtga actttttcat attgtattat  
    #            1600
    caaggtatag acttttttgg ttatgataca gttaagccaa aaacagctaa  
    #            1650
    tctttgcatc taaagcaaac taatgtatat ttcacatttt attgagccga  
    #            1700
    cttatttcca caaatagata aacaggacaa aatagttgta caggttatat  
    #            1750
    gtggcatagc ataaccacag taagaacaga acagatattc agcagaaaac  
    #            1800
    tttttatact ctaattcttt tttttttttt tttgagacag agttttagtc  
    #            1850
    ttgtttccca ggctggagtg caatggcaca atcttggctc actgcaacct  
    #            1900
    ccgcctcctg ggttcaggca attttcctgc ctcagcctcc caagtagctg  
    #            1950
    ggattacagg cacccaccac catgcccagc taatttttgt atttttaata  
    #            2000
    gagagctaat aattgtatat ttaataaaga cgggtttcac catgttggcc  
    #            2050
    aggctggtct tgaactcctg acctcaggtg atcctcctgc attggcctcc  
    #            2100
    caaagtgctg gaattccagg catgagccac tgcgcccagt ctacacacta  
    #            2150
    attcttgtta gcccaacagc tgttctgttc tatctacccc tcatttcacg  
    #            2200
    ctcaaggagt catacctaga atagttacac acaagaggga aactggaagc  
    #            2250
    caaacactgt acagtattgt gtagaaagtc acctccctac tccttttatt  
    #            2300
    ttacatgagt gctgatgtgt tttggcagat gagctttcag ctgaggcctg  
    #            2350
    atggaaattg agataacctg caaagacata acagtattta tgagttatat  
    #            2400
    cttagttctt gaaattgtgg aatgcatgat tgacaatata tttttaattt  
    #            2450
    ttattttttc aagtaatacc agtactgttt aactatagcc agaactggct  
    #            2500
    aaaattttta tattttcaga gttgaagttg gtgaagacat tcatgattta  
    #            2550
    aacaccagat cctgaaaggg gttaaatcta ctttgaaatg aatctgcaat  
    #            2600
    cagtatttca aagcttttct ggtaatttta gtgatcttat ttgattagac  
    #            2650
    tttttcagaa gtactaaata aggaatttta acaggttttt attaatgcac  
    #            2700
    agataaatag aagtacagtg aggtctatag ccattttatt aaaatagctt  
    #            2750
    aaaagtttgt aaaaaaatga atctttgtaa ttacttaata tgttagttaa  
    #            2800
    gaacccgtca agcttatatt tgctagactt acaaattatt ttaaatgcat  
    #            2850
    ttatcttttt tgacactatt cagtggaatg tgtaagctag ctaattcttg  
    #            2900
    ttttctgatt taaagcactt ttaaatctta tcctgccccc taaaaacaaa  
    #            2950
    aggttttgat cacaagggga aatttaagat tgttaaccct gtttttcaga  
    #            3000
    agggctactg ttaattgcac ataaacatga aatgtgtttt cccctgtgta  
    #            3050
    ctaacacatt ctaggcaaaa ttcaaactta tagtggtaaa gaaacaggtt  
    #            3100
    gttcacttgc tgaggtgcaa aaattcttaa gacttctgtt tgaaattgct  
    #            3150
    caatgactag gaaaagatgt agtagtttac taaaattgtt tttctaccat  
    #            3200
    atcaaattaa acaattcatg cctttatagg gtcaggccta caatgaatag  
    #            3250
    gtatggtggt ttcacagaat tttaaaatag agttaaaggg aagtgatgta  
    #            3300
    catttcgggg gcattagggt agggagatga atcaaaaaat acccctagta  
    #            3350
    atgctttata ttttaatact gcaaaagctt tacaaatgga aaccatgcaa  
    #            3400
    ttacctgcct tagttctttt gtcataaaaa caatcacttg gttggttgta  
    #            3450
    ttgtagctat tacttataca gcaacatttc ttcaattagc agtctagaca  
    #            3500
    ttttataaac agaaatcttg gaccaattga taatatttct gactgtatta  
    #            3550
    atattttagt gctataaaat actatgtgaa tctcttaaaa atctgacatt  
    #            3600
    ttacagtctg tattagacat actgttttta taatgtttta cttctgcctt  
    #            3650
    aagatttagg ttttttaaat gtatttttgc cctgaattaa gtgttaattt  
    #            3700
    gatggaaact ctgcttttaa aatcatcatt tactgggttc taataaatta  
    #            3750
    aaaattaaac ttgaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            3800
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa   
    #               3846
    <210> SEQ ID NO 56
    <211> LENGTH: 380
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 56
    Met Val Gly Phe Gly Ala Asn Arg Arg Ala Gl
    #y Arg Leu Pro Ser
      1               5 
    #                 10 
    #                 15
    Leu Val Leu Val Val Leu Leu Val Val Ile Va
    #l Val Leu Ala Phe
                     20 
    #                 25 
    #                 30
    Asn Tyr Trp Ser Ile Ser Ser Arg His Val Le
    #u Leu Gln Glu Glu
                     35 
    #                 40 
    #                 45
    Val Ala Glu Leu Gln Gly Gln Val Gln Arg Th
    #r Glu Val Ala Arg
                     50 
    #                 55 
    #                 60
    Gly Arg Leu Glu Lys Arg Asn Ser Asp Leu Le
    #u Leu Leu Val Asp
                     65 
    #                 70 
    #                 75
    Thr His Lys Lys Gln Ile Asp Gln Lys Glu Al
    #a Asp Tyr Gly Arg
                     80 
    #                 85 
    #                 90
    Leu Ser Ser Arg Leu Gln Ala Arg Glu Gly Le
    #u Gly Lys Arg Cys
                     95 
    #                100 
    #                105
    Glu Asp Asp Lys Val Lys Leu Gln Asn Asn Il
    #e Ser Tyr Gln Met
                    110  
    #               115  
    #               120
    Ala Asp Ile His His Leu Lys Glu Gln Leu Al
    #a Glu Leu Arg Gln
                    125  
    #               130  
    #               135
    Glu Phe Leu Arg Gln Glu Asp Gln Leu Gln As
    #p Tyr Arg Lys Asn
                    140  
    #               145  
    #               150
    Asn Thr Tyr Leu Val Lys Arg Leu Glu Tyr Gl
    #u Ser Phe Gln Cys
                    155  
    #               160  
    #               165
    Gly Gln Gln Met Lys Glu Leu Arg Ala Gln Hi
    #s Glu Glu Asn Ile
                    170  
    #               175  
    #               180
    Lys Lys Leu Ala Asp Gln Phe Leu Glu Glu Gl
    #n Lys Gln Glu Thr
                    185  
    #               190  
    #               195
    Gln Lys Ile Gln Ser Asn Asp Gly Lys Glu Le
    #u Asp Ile Asn Asn
                    200  
    #               205  
    #               210
    Gln Val Val Pro Lys Asn Ile Pro Lys Val Al
    #a Glu Asn Val Ala
                    215  
    #               220  
    #               225
    Asp Lys Asn Glu Glu Pro Ser Ser Asn His Il
    #e Pro His Gly Lys
                    230  
    #               235  
    #               240
    Glu Gln Ile Lys Arg Gly Gly Asp Ala Gly Me
    #t Pro Gly Ile Glu
                    245  
    #               250  
    #               255
    Glu Asn Asp Leu Ala Lys Val Asp Asp Leu Pr
    #o Pro Ala Leu Arg
                    260  
    #               265  
    #               270
    Lys Pro Pro Ile Ser Val Ser Gln His Glu Se
    #r His Gln Ala Ile
                    275  
    #               280  
    #               285
    Ser His Leu Pro Thr Gly Gln Pro Leu Ser Pr
    #o Asn Met Pro Pro
                    290  
    #               295  
    #               300
    Asp Ser His Ile Asn His Asn Gly Asn Pro Gl
    #y Thr Ser Lys Gln
                    305  
    #               310  
    #               315
    Asn Pro Ser Ser Pro Leu Gln Arg Leu Ile Pr
    #o Gly Ser Asn Leu
                    320  
    #               325  
    #               330
    Asp Ser Glu Pro Arg Ile Gln Thr Asp Ile Le
    #u Lys Gln Ala Thr
                    335  
    #               340  
    #               345
    Lys Asp Arg Val Ser Asp Phe His Lys Leu Ly
    #s Gln Asn Asp Glu
                    350  
    #               355  
    #               360
    Glu Arg Glu Leu Gln Met Asp Pro Ala Asp Ty
    #r Gly Lys Gln His
                    365  
    #               370  
    #               375
    Phe Asn Asp Val Leu
                    380
    <210> SEQ ID NO 57
    <211> LENGTH: 841
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 57
    ggatgggcga gcagtctgaa tgccagaatg gataaccgtt ttgctacagc  
    #              50
    atttgtaatt gcttgtgtgc ttagcctcat ttccaccatc tacatggcag  
    #             100
    cctccattgg cacagacttc tggtatgaat atcgaagtcc agttcaagaa  
    #             150
    aattccagtg atttgaataa aagcatctgg gatgaattca ttagtgatga  
    #             200
    ggcagatgaa aagacttata atgatgcact ttttcgatac aatggcacag  
    #             250
    tgggattgtg gagacggtgt atcaccatac ccaaaaacat gcattggtat  
    #             300
    agcccaccag aaaggacaga gtcatttgat gtggtcacaa aatgtgtgag  
    #             350
    tttcacacta actgagcagt tcatggagaa atttgttgat cccggaaacc  
    #             400
    acaatagcgg gattgatctc cttaggacct atctttggcg ttgccagttc  
    #             450
    cttttacctt ttgtgagttt aggtttgatg tgctttgggg ctttgatcgg  
    #             500
    actttgtgct tgcatttgcc gaagcttata tcccaccatt gccacgggca  
    #             550
    ttctccatct ccttgcagat accatgctgt gaagtccagg ccacatggag  
    #             600
    gtgtcctgtg tagatgctcc agctgaaatc ccaagctaag ctcccaactg  
    #             650
    acagccaaca tcatttccag ccatgtgtgg gagccatcct ggatgtccag  
    #             700
    ccttaacaag ccttcagagg acttcagcca cagctattat cttactacat  
    #             750
    ccttgtgaga ctctaataaa gaaccaacta gctgagccca atcaacctat  
    #             800
    ggaactgata gaaataaaat gaattgttgt tttgtgccgt t    
    #                  
    #  841
    <210> SEQ ID NO 58
    <211> LENGTH: 184
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 58
    Met Asp Asn Arg Phe Ala Thr Ala Phe Val Il
    #e Ala Cys Val Leu
      1               5 
    #                 10 
    #                 15
    Ser Leu Ile Ser Thr Ile Tyr Met Ala Ala Se
    #r Ile Gly Thr Asp
                     20 
    #                 25 
    #                 30
    Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln Gl
    #u Asn Ser Ser Asp
                     35 
    #                 40 
    #                 45
    Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Se
    #r Asp Glu Ala Asp
                     50 
    #                 55 
    #                 60
    Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Ty
    #r Asn Gly Thr Val
                     65 
    #                 70 
    #                 75
    Gly Leu Trp Arg Arg Cys Ile Thr Ile Pro Ly
    #s Asn Met His Trp
                     80 
    #                 85 
    #                 90
    Tyr Ser Pro Pro Glu Arg Thr Glu Ser Phe As
    #p Val Val Thr Lys
                     95 
    #                100 
    #                105
    Cys Val Ser Phe Thr Leu Thr Glu Gln Phe Me
    #t Glu Lys Phe Val
                    110  
    #               115  
    #               120
    Asp Pro Gly Asn His Asn Ser Gly Ile Asp Le
    #u Leu Arg Thr Tyr
                    125  
    #               130  
    #               135
    Leu Trp Arg Cys Gln Phe Leu Leu Pro Phe Va
    #l Ser Leu Gly Leu
                    140  
    #               145  
    #               150
    Met Cys Phe Gly Ala Leu Ile Gly Leu Cys Al
    #a Cys Ile Cys Arg
                    155  
    #               160  
    #               165
    Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Le
    #u His Leu Leu Ala
                    170  
    #               175  
    #               180
    Asp Thr Met Leu
    <210> SEQ ID NO 59
    <211> LENGTH: 997
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 59
    gcgtggacac cacctcagcc cactgagcag gagtcacagc acgaagacca  
    #              50
    agcgcaaagc gacccctgcc ctccatcctg actgctcctc ctaagagaga  
    #             100
    tggcaccggc cagagcagga ttctgccccc ttctgctgct tctgctgctg  
    #             150
    gggctgtggg tggcagagat cccagtcagt gccaagccca agggcatgac  
    #             200
    ctcatcacag tggtttaaaa ttcagcacat gcagcccagc cctcaagcat  
    #             250
    gcaactcagc catgaaaaac attaacaagc acacaaaacg gtgcaaagac  
    #             300
    ctcaacacct tcctgcacga gcctttctcc agtgtggccg ccacctgcca  
    #             350
    gacccccaaa atagcctgca agaatggcga taaaaactgc caccagagcc  
    #             400
    acgggcccgt gtccctgacc atgtgtaagc tcacctcagg gaagtatccg  
    #             450
    aactgcaggt acaaagagaa gcgacagaac aagtcttacg tagtggcctg  
    #             500
    taagcctccc cagaaaaagg actctcagca attccacctg gttcctgtac  
    #             550
    acttggacag agtcctttag gtttccagac tggcttgctc tttggctgac  
    #             600
    cttcaattcc ctctccagga ctccgcacca ctcccctaca cccagagcat  
    #             650
    tctcttcccc tcatctcttg gggctgttcc tggttcagcc tctgctggga  
    #             700
    ggctgaagct gacactctgg tgagctgagc tctagaggga tggcttttca  
    #             750
    tctttttgtt gctgttttcc cagatgctta tccccaagaa acagcaagct  
    #             800
    caggtctgtg ggttccctgg tctatgccat tgcacatgtc tcccctgccc  
    #             850
    cctggcatta gggcagcatg acaaggagag gaaataaatg gaaagggggc  
    #             900
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #             950
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa   
    #               997
    <210> SEQ ID NO 60
    <211> LENGTH: 156
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 60
    Met Ala Pro Ala Arg Ala Gly Phe Cys Pro Le
    #u Leu Leu Leu Leu
      1               5 
    #                 10 
    #                 15
    Leu Leu Gly Leu Trp Val Ala Glu Ile Pro Va
    #l Ser Ala Lys Pro
                     20 
    #                 25 
    #                 30
    Lys Gly Met Thr Ser Ser Gln Trp Phe Lys Il
    #e Gln His Met Gln
                     35 
    #                 40 
    #                 45
    Pro Ser Pro Gln Ala Cys Asn Ser Ala Met Ly
    #s Asn Ile Asn Lys
                     50 
    #                 55 
    #                 60
    His Thr Lys Arg Cys Lys Asp Leu Asn Thr Ph
    #e Leu His Glu Pro
                     65 
    #                 70 
    #                 75
    Phe Ser Ser Val Ala Ala Thr Cys Gln Thr Pr
    #o Lys Ile Ala Cys
                     80 
    #                 85 
    #                 90
    Lys Asn Gly Asp Lys Asn Cys His Gln Ser Hi
    #s Gly Pro Val Ser
                     95 
    #                100 
    #                105
    Leu Thr Met Cys Lys Leu Thr Ser Gly Lys Ty
    #r Pro Asn Cys Arg
                    110  
    #               115  
    #               120
    Tyr Lys Glu Lys Arg Gln Asn Lys Ser Tyr Va
    #l Val Ala Cys Lys
                    125  
    #               130  
    #               135
    Pro Pro Gln Lys Lys Asp Ser Gln Gln Phe Hi
    #s Leu Val Pro Val
                    140  
    #               145  
    #               150
    His Leu Asp Arg Val Leu
                    155
    <210> SEQ ID NO 61
    <211> LENGTH: 520
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 61
    cgggtcatgc gccgccgcct gtggctgggc ctggcctggc tgctgctggc  
    #              50
    gcgggcgccg gacgccgcgg gaaccccgag cgcgtcgcgg ggaccgcgca  
    #             100
    gctacccgca cctggagggc gacgtgcgct ggcggcgcct cttctcctcc  
    #             150
    actcacttct tcctgcgcgt ggatcccggc ggccgcgtgc agggcacccg  
    #             200
    ctggcgccac ggccaggaca gcatcctgga gatccgctct gtacacgtgg  
    #             250
    gcgtcgtggt catcaaagca gtgtcctcag gcttctacgt ggccatgaac  
    #             300
    cgccggggcc gcctctacgg gtcgcgactc tacaccgtgg actgcaggtt  
    #             350
    ccgggagcgc atcgaagaga acggccacaa cacctacgcc tcacagcgct  
    #             400
    ggcgccgccg cggccagccc atgttcctgg cgctggacag gagggggggg  
    #             450
    ccccggccag gcggccggac gcggcggtac cacctgtccg cccacttcct  
    #             500
    gcccgtcctg gtctcctgag            
    #                  
    #                  
    #520
    <210> SEQ ID NO 62
    <211> LENGTH: 170
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 62
    Met Arg Arg Arg Leu Trp Leu Gly Leu Ala Tr
    #p Leu Leu Leu Ala
      1               5 
    #                 10 
    #                 15
    Arg Ala Pro Asp Ala Ala Gly Thr Pro Ser Al
    #a Ser Arg Gly Pro
                     20 
    #                 25 
    #                 30
    Arg Ser Tyr Pro His Leu Glu Gly Asp Val Ar
    #g Trp Arg Arg Leu
                     35 
    #                 40 
    #                 45
    Phe Ser Ser Thr His Phe Phe Leu Arg Val As
    #p Pro Gly Gly Arg
                     50 
    #                 55 
    #                 60
    Val Gln Gly Thr Arg Trp Arg His Gly Gln As
    #p Ser Ile Leu Glu
                     65 
    #                 70 
    #                 75
    Ile Arg Ser Val His Val Gly Val Val Val Il
    #e Lys Ala Val Ser
                     80 
    #                 85 
    #                 90
    Ser Gly Phe Tyr Val Ala Met Asn Arg Arg Gl
    #y Arg Leu Tyr Gly
                     95 
    #                100 
    #                105
    Ser Arg Leu Tyr Thr Val Asp Cys Arg Phe Ar
    #g Glu Arg Ile Glu
                    110  
    #               115  
    #               120
    Glu Asn Gly His Asn Thr Tyr Ala Ser Gln Ar
    #g Trp Arg Arg Arg
                    125  
    #               130  
    #               135
    Gly Gln Pro Met Phe Leu Ala Leu Asp Arg Ar
    #g Gly Gly Pro Arg
                    140  
    #               145  
    #               150
    Pro Gly Gly Arg Thr Arg Arg Tyr His Leu Se
    #r Ala His Phe Leu
                    155  
    #               160  
    #               165
    Pro Val Leu Val Ser
                    170
    <210> SEQ ID NO 63
    <211> LENGTH: 2329
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 63
    atccctcgac ctcgacccac gcgtccgctg gaaggtggcg tgccctcctc  
    #              50
    tggctggtac catgcagctc ccactggccc tgtgtctcgt ctgcctgctg  
    #             100
    gtacacacag ccttccgtgt agtggagggc caggggtggc aggcgttcaa  
    #             150
    gaatgatgcc acggaaatca tccccgagct cggagagtac cccgagcctc  
    #             200
    caccggagct ggagaacaac aagaccatga accgggcgga gaacggaggg  
    #             250
    cggcctcccc accacccctt tgagaccaaa gacgtgtccg agtacagctg  
    #             300
    ccgcgagctg cacttcaccc gctacgtgac cgatgggccg tgccgcagcg  
    #             350
    ccaagccggt caccgagctg gtgtgctccg gccagtgcgg cccggcgcgc  
    #             400
    ctgctgccca acgccatcgg ccgcggcaag tggtggcgac ctagtgggcc  
    #             450
    cgacttccgc tgcatccccg accgctaccg cgcgcagcgc gtgcagctgc  
    #             500
    tgtgtcccgg tggtgaggcg ccgcgcgcgc gcaaggtgcg cctggtggcc  
    #             550
    tcgtgcaagt gcaagcgcct cacccgcttc cacaaccagt cggagctcaa  
    #             600
    ggacttcggg accgaggccg ctcggccgca gaagggccgg aagccgcggc  
    #             650
    cccgcgcccg gagcgccaaa gccaaccagg ccgagctgga gaacgcctac  
    #             700
    tagagcccgc ccgcgcccct ccccaccggc gggcgccccg gccctgaacc  
    #             750
    cgcgccccac atttctgtcc tctgcgcgtg gtttgattgt ttatatttca  
    #             800
    ttgtaaatgc ctgcaaccca gggcaggggg ctgagacctt ccaggccctg  
    #             850
    aggaatcccg ggcgccggca aggcccccct cagcccgcca gctgaggggt  
    #             900
    cccacggggc aggggaggga attgagagtc acagacactg agccacgcag  
    #             950
    ccccgcctct ggggccgcct acctttgctg gtcccacttc agaggaggca  
    #            1000
    gaaatggaag cattttcacc gccctggggt tttaagggag cggtgtggga  
    #            1050
    gtgggaaagt ccagggactg gttaagaaag ttggataaga ttcccccttg  
    #            1100
    cacctcgctg cccatcagaa agcctgaggc gtgcccagag cacaagactg  
    #            1150
    ggggcaactg tagatgtggt ttctagtcct ggctctgcca ctaacttcct  
    #            1200
    gtgtaacctt gaactacaca attctccttc gggacctcaa tttccacttt  
    #            1250
    gtaaaatgag ggtggaggtg ggaataggat ctcgaggaga ctattggcat  
    #            1300
    atgattccaa ggactccagt gccttttgaa tgggcagagg tgagagagag  
    #            1350
    agagagaaag agagagaatg aatgcagttg cattgattca gtgccaaggt  
    #            1400
    cacttccaga attcagagtt gtgatgctct cttctgacag ccaaagatga  
    #            1450
    aaaacaaaca gaaaaaaaaa agtaaagagt ctatttatgg ctgacatatt  
    #            1500
    tacggctgac aaactcctgg aagaagctat gctgcttccc agcctggctt  
    #            1550
    ccccggatgt ttggctacct ccacccctcc atctcaaaga aataacatca  
    #            1600
    tccattgggg tagaaaagga gagggtccga gggtggtggg agggatagaa  
    #            1650
    atcacatccg ccccaacttc ccaaagagca gcatccctcc cccgacccat  
    #            1700
    agccatgttt taaagtcacc ttccgaagag aagtgaaagg ttcaaggaca  
    #            1750
    ctggccttgc aggcccgagg gagcagccat cacaaactca cagaccagca  
    #            1800
    catccctttt gagacaccgc cttctgccca ccactcacgg acacatttct  
    #            1850
    gcctagaaaa cagcttctta ctgctcttac atgtgatggc atatcttaca  
    #            1900
    ctaaaagaat attattgggg gaaaaactac aagtgctgta catatgctga  
    #            1950
    gaaactgcag agcataatag ctgccaccca aaaatctttt tgaaaatcat  
    #            2000
    ttccagacaa cctcttactt tctgtgtagt ttttaattgt taaaaaaaaa  
    #            2050
    aagttttaaa cagaagcaca tgacatatga aagcctgcag gactggtcgt  
    #            2100
    ttttttggca attcttccac gtgggacttg tccacaagaa tgaaagtagt  
    #            2150
    ggtttttaaa gagttaagtt acatatttat tttctcactt aagttattta  
    #            2200
    tgcaaaagtt tttcttgtag agaatgacaa tgttaatatt gctttatgaa  
    #            2250
    ttaacagtct gttcttccag agtccagaga cattgttaat aaagacaatg  
    #            2300
    aatcatgaaa aaaaaaaaaa aaaaaaaaa         
    #                  
    #          2329
    <210> SEQ ID NO 64
    <211> LENGTH: 213
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 64
    Met Gln Leu Pro Leu Ala Leu Cys Leu Val Cy
    #s Leu Leu Val His
      1               5 
    #                 10 
    #                 15
    Thr Ala Phe Arg Val Val Glu Gly Gln Gly Tr
    #p Gln Ala Phe Lys
                     20 
    #                 25 
    #                 30
    Asn Asp Ala Thr Glu Ile Ile Pro Glu Leu Gl
    #y Glu Tyr Pro Glu
                     35 
    #                 40 
    #                 45
    Pro Pro Pro Glu Leu Glu Asn Asn Lys Thr Me
    #t Asn Arg Ala Glu
                     50 
    #                 55 
    #                 60
    Asn Gly Gly Arg Pro Pro His His Pro Phe Gl
    #u Thr Lys Asp Val
                     65 
    #                 70 
    #                 75
    Ser Glu Tyr Ser Cys Arg Glu Leu His Phe Th
    #r Arg Tyr Val Thr
                     80 
    #                 85 
    #                 90
    Asp Gly Pro Cys Arg Ser Ala Lys Pro Val Th
    #r Glu Leu Val Cys
                     95 
    #                100 
    #                105
    Ser Gly Gln Cys Gly Pro Ala Arg Leu Leu Pr
    #o Asn Ala Ile Gly
                    110  
    #               115  
    #               120
    Arg Gly Lys Trp Trp Arg Pro Ser Gly Pro As
    #p Phe Arg Cys Ile
                    125  
    #               130  
    #               135
    Pro Asp Arg Tyr Arg Ala Gln Arg Val Gln Le
    #u Leu Cys Pro Gly
                    140  
    #               145  
    #               150
    Gly Glu Ala Pro Arg Ala Arg Lys Val Arg Le
    #u Val Ala Ser Cys
                    155  
    #               160  
    #               165
    Lys Cys Lys Arg Leu Thr Arg Phe His Asn Gl
    #n Ser Glu Leu Lys
                    170  
    #               175  
    #               180
    Asp Phe Gly Thr Glu Ala Ala Arg Pro Gln Ly
    #s Gly Arg Lys Pro
                    185  
    #               190  
    #               195
    Arg Pro Arg Ala Arg Ser Ala Lys Ala Asn Gl
    #n Ala Glu Leu Glu
                    200  
    #               205  
    #               210
    Asn Ala Tyr
    <210> SEQ ID NO 65
    <211> LENGTH: 2663
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 65
    cccactcggc ggtttggcgg gagggagggg ctttgcgcag gccccgctcc  
    #              50
    cgccccgcct ccatgcggcc cgccccgatt gcgctgtggc tgcgcctggt  
    #             100
    cttggccctg gcccttgtcc gcccccgggc tgtggggtgg gccccggtcc  
    #             150
    gagcccccat ctatgtcagc agctgggccg tccaggtgtc ccagggtaac  
    #             200
    cgggaggtcg agcgcctggc acgcaaattc ggcttcgtca acctggggcc  
    #             250
    gatcttctct gacgggcagt actttcacct gcggcaccgg ggcgtggtcc  
    #             300
    agcagtccct gaccccgcac tggggccacc gcctgcacct gaagaaaaac  
    #             350
    cccaaggtgc agtggttcca gcagcagacg ctgcagcggc gggtgaaacg  
    #             400
    ctctgtcgtg gtgcccacgg acccctggtt ctccaagcag tggtacatga  
    #             450
    acagcgaggc ccaaccagac ctgagcatcc tgcaggcctg gagtcagggg  
    #             500
    ctgtcaggcc agggcatcgt ggtctctgtg ctggacgatg gcatcgagaa  
    #             550
    ggaccacccg gacctctggg ccaactacga ccccctggcc agctatgact  
    #             600
    tcaatgacta cgacccggac ccccagcccc gctacacccc cagcaaagag  
    #             650
    aaccggcacg ggacccgctg tgctggggag gtggccgcga tggccaacaa  
    #             700
    tggcttctgt ggtgtggggg tcgctttcaa cgcccgaatc ggaggcgtac  
    #             750
    ggatgctgga cggtaccatc accgatgtca tcgaggccca gtcgctgagc  
    #             800
    ctgcagccgc agcacatcca catttacagc gccagctggg gtcccgagga  
    #             850
    cgacggccgc acggtggacg gccccggcat cctcacccgc gaggccttcc  
    #             900
    ggcgtggtgt gaccaagggc cgcggcgggc tgggcacgct cttcatctgg  
    #             950
    gcctcgggca acggcggcct gcactacgac aactgcaact gcgacggcta  
    #            1000
    caccaacagc atccacacgc tttccgtggg cagcaccacc cagcagggcc  
    #            1050
    gcgtgccctg gtacagcgaa gcctgcgcct ccaccctcac caccacctac  
    #            1100
    agcagcggcg tggccaccga cccccagatc gtcaccacgg acctgcatca  
    #            1150
    cgggtgcaca gaccagcaca cgggcacctc ggcctcagcc ccactggcgg  
    #            1200
    ccggcatgat cgccctagcg ctggaggcca acccgttcct gacgtggaga  
    #            1250
    gacatgcagc acctggtggt ccgcgcgtcc aagccggcgc acctgcaggc  
    #            1300
    cgaggactgg aggaccaacg gcgtggggcg ccaagtgagc catcactacg  
    #            1350
    gatacgggct gctggacgcc gggctgctgg tggacaccgc ccgcacctgg  
    #            1400
    ctgcccaccc agccgcagag gaagtgcgcc gtccgggtcc agagccgccc  
    #            1450
    cacccccatc ctgccgctga tctacatcag ggaaaacgta tcggcctgcg  
    #            1500
    ccggcctcca caactccatc cgctcgctgg agcacgtgca ggcgcagctg  
    #            1550
    acgctgtcct acagccggcg cggagacctg gagatctcgc tcaccagccc  
    #            1600
    catgggcacg cgctccacac tcgtggccat acgacccttg gacgtcagca  
    #            1650
    ctgaaggcta caacaactgg gtcttcatgt ccacccactt ctgggatgag  
    #            1700
    aacccacagg gcgtgtggac cctgggccta gagaacaagg gctactattt  
    #            1750
    caacacgggg acgttgtacc gctacacgct gctgctctat gggacggccg  
    #            1800
    aggacatgac agcgcggcct acaggccccc aggtgaccag cagcgcgtgt  
    #            1850
    gtgcagcggg acacagaggg gctgtgccag gcgtgtgacg gccccgccta  
    #            1900
    catcctggga cagctctgcc tggcctactg ccccccgcgg ttcttcaacc  
    #            1950
    acacaaggct ggtgaccgct gggcctgggc acacggcggc gcccgcgctg  
    #            2000
    agggtctgct ccagctgcca tgcctcctgc tacacctgcc gcggcggctc  
    #            2050
    cccgagggac tgcacctcct gtcccccatc ctccacgctg gaccagcagc  
    #            2100
    agggctcctg catgggaccc accacccccg acagccgccc ccggcttaga  
    #            2150
    gctgccgcct gtccccacca ccgctgccca gcctcggcca tggtgctgag  
    #            2200
    cctcctggcc gtgaccctcg gaggccccgt cctctgcggc atgtccatgg  
    #            2250
    acctcccact atacgcctgg ctctcccgtg ccagggccac ccccaccaaa  
    #            2300
    ccccaggtct ggctgccagc tggaacctga agttgtcagc tcagaaagcg  
    #            2350
    accttgcccc cgcctgggtc cctgacaggc actgctgcca tgctgcctcc  
    #            2400
    ccaggctggc cccagaggag cgagcaccag cacccgacgc ctggcctgcc  
    #            2450
    agggatgggc cccgtggaac cccgaagcct ggcgggagag agagagagag  
    #            2500
    aagtctcctc tgcattttgg gtttgggcag gagtgggctg gggggagagg  
    #            2550
    ctggagcacc ccaaaagcca ggggaaagtg gagggagaga aacgtgacac  
    #            2600
    tgtccgtctc gggcaccgcg tccaacctca gagtttgcaa ataaaggttg  
    #            2650
    cttagaaggt gaa              
    #                  
    #                  
    #    2663
    <210> SEQ ID NO 66
    <211> LENGTH: 755
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 66
    Met Arg Pro Ala Pro Ile Ala Leu Trp Leu Ar
    #g Leu Val Leu Ala
      1               5 
    #                 10 
    #                 15
    Leu Ala Leu Val Arg Pro Arg Ala Val Gly Tr
    #p Ala Pro Val Arg
                     20 
    #                 25 
    #                 30
    Ala Pro Ile Tyr Val Ser Ser Trp Ala Val Gl
    #n Val Ser Gln Gly
                     35 
    #                 40 
    #                 45
    Asn Arg Glu Val Glu Arg Leu Ala Arg Lys Ph
    #e Gly Phe Val Asn
                     50 
    #                 55 
    #                 60
    Leu Gly Pro Ile Phe Ser Asp Gly Gln Tyr Ph
    #e His Leu Arg His
                     65 
    #                 70 
    #                 75
    Arg Gly Val Val Gln Gln Ser Leu Thr Pro Hi
    #s Trp Gly His Arg
                     80 
    #                 85 
    #                 90
    Leu His Leu Lys Lys Asn Pro Lys Val Gln Tr
    #p Phe Gln Gln Gln
                     95 
    #                100 
    #                105
    Thr Leu Gln Arg Arg Val Lys Arg Ser Val Va
    #l Val Pro Thr Asp
                    110  
    #               115  
    #               120
    Pro Trp Phe Ser Lys Gln Trp Tyr Met Asn Se
    #r Glu Ala Gln Pro
                    125  
    #               130  
    #               135
    Asp Leu Ser Ile Leu Gln Ala Trp Ser Gln Gl
    #y Leu Ser Gly Gln
                    140  
    #               145  
    #               150
    Gly Ile Val Val Ser Val Leu Asp Asp Gly Il
    #e Glu Lys Asp His
                    155  
    #               160  
    #               165
    Pro Asp Leu Trp Ala Asn Tyr Asp Pro Leu Al
    #a Ser Tyr Asp Phe
                    170  
    #               175  
    #               180
    Asn Asp Tyr Asp Pro Asp Pro Gln Pro Arg Ty
    #r Thr Pro Ser Lys
                    185  
    #               190  
    #               195
    Glu Asn Arg His Gly Thr Arg Cys Ala Gly Gl
    #u Val Ala Ala Met
                    200  
    #               205  
    #               210
    Ala Asn Asn Gly Phe Cys Gly Val Gly Val Al
    #a Phe Asn Ala Arg
                    215  
    #               220  
    #               225
    Ile Gly Gly Val Arg Met Leu Asp Gly Thr Il
    #e Thr Asp Val Ile
                    230  
    #               235  
    #               240
    Glu Ala Gln Ser Leu Ser Leu Gln Pro Gln Hi
    #s Ile His Ile Tyr
                    245  
    #               250  
    #               255
    Ser Ala Ser Trp Gly Pro Glu Asp Asp Gly Ar
    #g Thr Val Asp Gly
                    260  
    #               265  
    #               270
    Pro Gly Ile Leu Thr Arg Glu Ala Phe Arg Ar
    #g Gly Val Thr Lys
                    275  
    #               280  
    #               285
    Gly Arg Gly Gly Leu Gly Thr Leu Phe Ile Tr
    #p Ala Ser Gly Asn
                    290  
    #               295  
    #               300
    Gly Gly Leu His Tyr Asp Asn Cys Asn Cys As
    #p Gly Tyr Thr Asn
                    305  
    #               310  
    #               315
    Ser Ile His Thr Leu Ser Val Gly Ser Thr Th
    #r Gln Gln Gly Arg
                    320  
    #               325  
    #               330
    Val Pro Trp Tyr Ser Glu Ala Cys Ala Ser Th
    #r Leu Thr Thr Thr
                    335  
    #               340  
    #               345
    Tyr Ser Ser Gly Val Ala Thr Asp Pro Gln Il
    #e Val Thr Thr Asp
                    350  
    #               355  
    #               360
    Leu His His Gly Cys Thr Asp Gln His Thr Gl
    #y Thr Ser Ala Ser
                    365  
    #               370  
    #               375
    Ala Pro Leu Ala Ala Gly Met Ile Ala Leu Al
    #a Leu Glu Ala Asn
                    380  
    #               385  
    #               390
    Pro Phe Leu Thr Trp Arg Asp Met Gln His Le
    #u Val Val Arg Ala
                    395  
    #               400  
    #               405
    Ser Lys Pro Ala His Leu Gln Ala Glu Asp Tr
    #p Arg Thr Asn Gly
                    410  
    #               415  
    #               420
    Val Gly Arg Gln Val Ser His His Tyr Gly Ty
    #r Gly Leu Leu Asp
                    425  
    #               430  
    #               435
    Ala Gly Leu Leu Val Asp Thr Ala Arg Thr Tr
    #p Leu Pro Thr Gln
                    440  
    #               445  
    #               450
    Pro Gln Arg Lys Cys Ala Val Arg Val Gln Se
    #r Arg Pro Thr Pro
                    455  
    #               460  
    #               465
    Ile Leu Pro Leu Ile Tyr Ile Arg Glu Asn Va
    #l Ser Ala Cys Ala
                    470  
    #               475  
    #               480
    Gly Leu His Asn Ser Ile Arg Ser Leu Glu Hi
    #s Val Gln Ala Gln
                    485  
    #               490  
    #               495
    Leu Thr Leu Ser Tyr Ser Arg Arg Gly Asp Le
    #u Glu Ile Ser Leu
                    500  
    #               505  
    #               510
    Thr Ser Pro Met Gly Thr Arg Ser Thr Leu Va
    #l Ala Ile Arg Pro
                    515  
    #               520  
    #               525
    Leu Asp Val Ser Thr Glu Gly Tyr Asn Asn Tr
    #p Val Phe Met Ser
                    530  
    #               535  
    #               540
    Thr His Phe Trp Asp Glu Asn Pro Gln Gly Va
    #l Trp Thr Leu Gly
                    545  
    #               550  
    #               555
    Leu Glu Asn Lys Gly Tyr Tyr Phe Asn Thr Gl
    #y Thr Leu Tyr Arg
                    560  
    #               565  
    #               570
    Tyr Thr Leu Leu Leu Tyr Gly Thr Ala Glu As
    #p Met Thr Ala Arg
                    575  
    #               580  
    #               585
    Pro Thr Gly Pro Gln Val Thr Ser Ser Ala Cy
    #s Val Gln Arg Asp
                    590  
    #               595  
    #               600
    Thr Glu Gly Leu Cys Gln Ala Cys Asp Gly Pr
    #o Ala Tyr Ile Leu
                    605  
    #               610  
    #               615
    Gly Gln Leu Cys Leu Ala Tyr Cys Pro Pro Ar
    #g Phe Phe Asn His
                    620  
    #               625  
    #               630
    Thr Arg Leu Val Thr Ala Gly Pro Gly His Th
    #r Ala Ala Pro Ala
                    635  
    #               640  
    #               645
    Leu Arg Val Cys Ser Ser Cys His Ala Ser Cy
    #s Tyr Thr Cys Arg
                    650  
    #               655  
    #               660
    Gly Gly Ser Pro Arg Asp Cys Thr Ser Cys Pr
    #o Pro Ser Ser Thr
                    665  
    #               670  
    #               675
    Leu Asp Gln Gln Gln Gly Ser Cys Met Gly Pr
    #o Thr Thr Pro Asp
                    680  
    #               685  
    #               690
    Ser Arg Pro Arg Leu Arg Ala Ala Ala Cys Pr
    #o His His Arg Cys
                    695  
    #               700  
    #               705
    Pro Ala Ser Ala Met Val Leu Ser Leu Leu Al
    #a Val Thr Leu Gly
                    710  
    #               715  
    #               720
    Gly Pro Val Leu Cys Gly Met Ser Met Asp Le
    #u Pro Leu Tyr Ala
                    725  
    #               730  
    #               735
    Trp Leu Ser Arg Ala Arg Ala Thr Pro Thr Ly
    #s Pro Gln Val Trp
                    740  
    #               745  
    #               750
    Leu Pro Ala Gly Thr
                    755
    <210> SEQ ID NO 67
    <211> LENGTH: 332
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 67
    atgaggaagc tccagggcag gatggtttac ctgcctggac agcaagatga  
    #              50
    tggctacact agcccccatt ctctgggcgc ctggatttgc ccaccagatc  
    #             100
    tcctcacctc ttgcccttca cctcctgctg tacctacaag gtctccccga  
    #             150
    ttctcatctg cccataatca tggacacagc cccaggatgt gcaggactct  
    #             200
    cagggaccat ctggagttcc agctggaatc tgggcctggt ggagtgggag  
    #             250
    tggggcaggg gcctgcattg ggctgactta gagagcacag ttattccatc  
    #             300
    catatggaaa taaacatttt ggattcctga tc       
    #                  
    #         332
    <210> SEQ ID NO 68
    <211> LENGTH: 88
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 68
    Met Met Ala Thr Leu Ala Pro Ile Leu Trp Al
    #a Pro Gly Phe Ala
      1               5 
    #                 10 
    #                 15
    His Gln Ile Ser Ser Pro Leu Ala Leu His Le
    #u Leu Leu Tyr Leu
                     20 
    #                 25 
    #                 30
    Gln Gly Leu Pro Asp Ser His Leu Pro Ile Il
    #e Met Asp Thr Ala
                     35 
    #                 40 
    #                 45
    Pro Gly Cys Ala Gly Leu Ser Gly Thr Ile Tr
    #p Ser Ser Ser Trp
                     50 
    #                 55 
    #                 60
    Asn Leu Gly Leu Val Glu Trp Glu Trp Gly Ar
    #g Gly Leu His Trp
                     65 
    #                 70 
    #                 75
    Ala Asp Leu Glu Ser Thr Val Ile Pro Ser Il
    #e Trp Lys
                     80 
    #                 85
    <210> SEQ ID NO 69
    <211> LENGTH: 1302
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <220> FEATURE:
    <221> NAME/KEY: unsure
    <222> LOCATION: 1218-1253
    <223> OTHER INFORMATION: unknown base
    <400> SEQUENCE: 69
    tttgcagtgg ggtcctcctc tggcctcctg cccctcctgc tgctgctgct  
    #              50
    gcttccattg ctggcagccc agggtggggg tggcctgcag gcagcgctgc  
    #             100
    tggcccttga ggtggggctg gtgggtctgg gggcctccta cctgctcctt  
    #             150
    tgtacagccc tgcacctgcc ctccagtctt ttcctactcc tggcccaggg  
    #             200
    taccgcactg ggggccgtcc tgggcctgag ctggcgccga ggcctcatgg  
    #             250
    gtgttcccct gggccttgga gctgcctggc tcttagcttg gccaggccta  
    #             300
    gctctacctc tggtggctat ggcagcgggg ggcagatggg tgcggcagca  
    #             350
    gggcccccgg gtgcgccggg gcatatctcg actctggttg cgggttctgc  
    #             400
    tgcgcctgtc acccatggcc ttccgggccc tgcagggctg tggggctgtg  
    #             450
    ggggaccggg gtctgtttgc actgtacccc aaaaccaaca aggatggctt  
    #             500
    ccgcagccgc ctgcccgtcc ctgggccccg gcggcgtaat ccccgcacca  
    #             550
    cccaacaccc attagctctg ttggcaaggg tctgggtcct gtgcaagggc  
    #             600
    tggaactggc gtctggcacg ggccagccag ggtttagcat cccacttgcc  
    #             650
    cccgtgggcc atccacacac tggccagctg gggcctgctt cggggtgaac  
    #             700
    ggcccacccg aatcccccgg ctactaccac gcagccagcg ccagctaggg  
    #             750
    ccccctgcct cccgccagcc actgccaggg actctagccg ggcggaggtc  
    #             800
    acgcacccgc cagtcccggg ccctgccccc ctggaggtag ctgactccag  
    #             850
    cccttccagc ccaaatctag agcattgagc actttatctc ccacgactca  
    #             900
    gtgaagtttc tccagtccct agtcctctct tttcacccac cttcctcagt  
    #             950
    ttgctcactt accccaggcc cagcccttcg gacctctaga caggcagcct  
    #            1000
    cctcagctgt ggagtccagc agtcactctg tgttctcctg gcgctcctcc  
    #            1050
    cctaagttat tgctgttcgc ccgctgtgtg tgctcatcct caccctcatt  
    #            1100
    gactcaggcc tggggccagg ggtggtggag ggtgggaaga gtcatgtttt  
    #            1150
    ttttctcctc tttgattttg tttttctgtc tcccttccaa cctgtcccct  
    #            1200
    tccccccacc aaaaaaannn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn  
    #            1250
    nnnaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            1300
    aa                  
    #                  
    #                  
    #            1302
    <210> SEQ ID NO 70
    <211> LENGTH: 197
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 70
    Met Gly Val Pro Leu Gly Leu Gly Ala Ala Tr
    #p Leu Leu Ala Trp
      1               5 
    #                 10 
    #                 15
    Pro Gly Leu Ala Leu Pro Leu Val Ala Met Al
    #a Ala Gly Gly Arg
                     20 
    #                 25 
    #                 30
    Trp Val Arg Gln Gln Gly Pro Arg Val Arg Ar
    #g Gly Ile Ser Arg
                     35 
    #                 40 
    #                 45
    Leu Trp Leu Arg Val Leu Leu Arg Leu Ser Pr
    #o Met Ala Phe Arg
                     50 
    #                 55 
    #                 60
    Ala Leu Gln Gly Cys Gly Ala Val Gly Asp Ar
    #g Gly Leu Phe Ala
                     65 
    #                 70 
    #                 75
    Leu Tyr Pro Lys Thr Asn Lys Asp Gly Phe Ar
    #g Ser Arg Leu Pro
                     80 
    #                 85 
    #                 90
    Val Pro Gly Pro Arg Arg Arg Asn Pro Arg Th
    #r Thr Gln His Pro
                     95 
    #                100 
    #                105
    Leu Ala Leu Leu Ala Arg Val Trp Val Leu Cy
    #s Lys Gly Trp Asn
                    110  
    #               115  
    #               120
    Trp Arg Leu Ala Arg Ala Ser Gln Gly Leu Al
    #a Ser His Leu Pro
                    125  
    #               130  
    #               135
    Pro Trp Ala Ile His Thr Leu Ala Ser Trp Gl
    #y Leu Leu Arg Gly
                    140  
    #               145  
    #               150
    Glu Arg Pro Thr Arg Ile Pro Arg Leu Leu Pr
    #o Arg Ser Gln Arg
                    155  
    #               160  
    #               165
    Gln Leu Gly Pro Pro Ala Ser Arg Gln Pro Le
    #u Pro Gly Thr Leu
                    170  
    #               175  
    #               180
    Ala Gly Arg Arg Ser Arg Thr Arg Gln Ser Ar
    #g Ala Leu Pro Pro
                    185  
    #               190  
    #               195
    Trp Arg
    <210> SEQ ID NO 71
    <211> LENGTH: 1976
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 71
    gtttgggggt tgtttgggat tagtgaagct actgcctttg ccgccagcgc  
    #              50
    agcctcagag tttgattatt tgcaatgtca ggctttgaaa acttaaacac  
    #             100
    ggatttctac cagacaagtt acagcatcga tgatcagtca cagcagtcct  
    #             150
    atgattatgg aggaagtgga ggaccctata gcaaacagta tgctggctat  
    #             200
    gactattcgc agcaaggcag atttgtccct ccagacatga tgcagccaca  
    #             250
    acagccatac accgggcaga tttaccagcc aactcaggca tatactccag  
    #             300
    cttcacctca gcctttctat ggaaacaact ttgaggatga gccaccttta  
    #             350
    ttagaagagt taggtatcaa ttttgaccac atctggcaaa aaacactaac  
    #             400
    agtattacat ccgttaaaag tagcagatgg cagcatcatg aatgaaactg  
    #             450
    atttggcagg tccaatggtt ttttgccttg cttttggagc cacattgcta  
    #             500
    ctggctggca aaatccagtt tggctatgta tacgggatca gtgcaattgg  
    #             550
    atgtctagga atgttttgtt tattaaactt aatgagtatg acaggtgttt  
    #             600
    catttggttg tgtggcaagt gtccttggat attgtcttct gcccatgatc  
    #             650
    ctactttcca gctttgcagt gatattttct ttgcaaggaa tggtaggaat  
    #             700
    cattctcact gctgggatta ttggatggtg tagtttttct gcttccaaaa  
    #             750
    tatttatttc tgcattagcc atggaaggac agcaactttt agtagcatat  
    #             800
    ccttgcgctt tgttatatgg agtctttgcc ctgatttccg tcttttgaaa  
    #             850
    atttatctgg gatgtggaca tcagtgggcc agatgtacaa aaaggacctt  
    #             900
    gaactcttaa attggaccag caaactgctg cagcgcaact ctcatgcaga  
    #             950
    tttacatttg actgttggag caatgaaagt aaacgtgtat ctcttgttca  
    #            1000
    tttttataga acttttgcat actatattgg atttacctgc ggtgtgacta  
    #            1050
    gctttaaatg tttgtgttta tacagataag aaatgctatt tctttctggt  
    #            1100
    tcctgcagcc attgaaaaac ctttttcctt gcaaattata atgtttttga  
    #            1150
    tagattttta tcaactgtgg gaaaccaaac acaaagctga taacctttct  
    #            1200
    taaaaacgac ccagtcacag taaagaagac acaagacggc cgggcgtggt  
    #            1250
    agctcacgcc tgtaatccca gcactttggg aggccgaggc gggcggatca  
    #            1300
    caagggcagg agatcgagac catcctggtt aacacggtga aaccccgact  
    #            1350
    ctactaaaac tacaaaaaaa attagctggg cgtggtggcg ggcgcctgta  
    #            1400
    gtcccagcta ctcaggaggc tgaggcagga gaagtgtgaa cccaggaggc  
    #            1450
    ggagcttgca gtgagccgag atcacaccac tgcactccat ccagcctggg  
    #            1500
    tgacagggtg agactctgtc tcaaaaaaaa aaaaaaaagg agacacaaga  
    #            1550
    cttactgcaa aaatattttt ccaaggattt aggaaagaaa aattgccttg  
    #            1600
    tattctcaag tcaggtaact caaagcaaaa aagtgatcca aatgtagagt  
    #            1650
    atgagtttgc actccaaaaa tttgacatta ctgtaaatta tctcatggaa  
    #            1700
    tttttgctaa aattcagaga tacgggaagt tcacaatcta cctcattgta  
    #            1750
    gacatgaaat gcgaacactt acttacatat taatgttaac tcaaccttag  
    #            1800
    ggacctggaa tggttgcatt aatgctataa tcgttggatc gccacatttc  
    #            1850
    ccaaaaataa taaaaaaatc actaaccttt tttaaggaaa atatttaaag  
    #            1900
    ttttacaaaa ttcaatattg caattatcaa tgtaaagtac atttgaatgc  
    #            1950
    ttattaaaac tttcccaatt aatttt          
    #                  
    #            1976
    <210> SEQ ID NO 72
    <211> LENGTH: 257
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 72
    Met Ser Gly Phe Glu Asn Leu Asn Thr Asp Ph
    #e Tyr Gln Thr Ser
      1               5 
    #                 10 
    #                 15
    Tyr Ser Ile Asp Asp Gln Ser Gln Gln Ser Ty
    #r Asp Tyr Gly Gly
                     20 
    #                 25 
    #                 30
    Ser Gly Gly Pro Tyr Ser Lys Gln Tyr Ala Gl
    #y Tyr Asp Tyr Ser
                     35 
    #                 40 
    #                 45
    Gln Gln Gly Arg Phe Val Pro Pro Asp Met Me
    #t Gln Pro Gln Gln
                     50 
    #                 55 
    #                 60
    Pro Tyr Thr Gly Gln Ile Tyr Gln Pro Thr Gl
    #n Ala Tyr Thr Pro
                     65 
    #                 70 
    #                 75
    Ala Ser Pro Gln Pro Phe Tyr Gly Asn Asn Ph
    #e Glu Asp Glu Pro
                     80 
    #                 85 
    #                 90
    Pro Leu Leu Glu Glu Leu Gly Ile Asn Phe As
    #p His Ile Trp Gln
                     95 
    #                100 
    #                105
    Lys Thr Leu Thr Val Leu His Pro Leu Lys Va
    #l Ala Asp Gly Ser
                    110  
    #               115  
    #               120
    Ile Met Asn Glu Thr Asp Leu Ala Gly Pro Me
    #t Val Phe Cys Leu
                    125  
    #               130  
    #               135
    Ala Phe Gly Ala Thr Leu Leu Leu Ala Gly Ly
    #s Ile Gln Phe Gly
                    140  
    #               145  
    #               150
    Tyr Val Tyr Gly Ile Ser Ala Ile Gly Cys Le
    #u Gly Met Phe Cys
                    155  
    #               160  
    #               165
    Leu Leu Asn Leu Met Ser Met Thr Gly Val Se
    #r Phe Gly Cys Val
                    170  
    #               175  
    #               180
    Ala Ser Val Leu Gly Tyr Cys Leu Leu Pro Me
    #t Ile Leu Leu Ser
                    185  
    #               190  
    #               195
    Ser Phe Ala Val Ile Phe Ser Leu Gln Gly Me
    #t Val Gly Ile Ile
                    200  
    #               205  
    #               210
    Leu Thr Ala Gly Ile Ile Gly Trp Cys Ser Ph
    #e Ser Ala Ser Lys
                    215  
    #               220  
    #               225
    Ile Phe Ile Ser Ala Leu Ala Met Glu Gly Gl
    #n Gln Leu Leu Val
                    230  
    #               235  
    #               240
    Ala Tyr Pro Cys Ala Leu Leu Tyr Gly Val Ph
    #e Ala Leu Ile Ser
                    245  
    #               250  
    #               255
    Val Phe
    <210> SEQ ID NO 73
    <211> LENGTH: 1285
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 73
    acactggcca aaacgcggct cgccctcggc tgcgctcggc tcccgcgggc  
    #              50
    gctcggcccc gagcccctcc tccccctacc cgccggccgg acagggagga  
    #             100
    gccaatggct gggcctgcca tccacaccgc tcccatgctg ttcctcgtcc  
    #             150
    tcctgctgcc ccagctgagc ctggcaggcg cccttgcacc tgggacccct  
    #             200
    gcccggaacc tccctgagaa tcacattgac ctcccaggcc cagcgctgtg  
    #             250
    gacgcctcag gccagccacc accgccggcg gggcccgggc aagaaggagt  
    #             300
    ggggcccagg cctgcccagc caggcccagg atggggctgt ggtcaccgcc  
    #             350
    accaggcagg cctccaggct gccagaggct gaggggctgc tgcctgagca  
    #             400
    gagtcctgca ggcctgctgc aggacaagga cctgctcctg ggactggcat  
    #             450
    tgccctaccc cgagaaggag aacagacctc caggttggga gaggaccagg  
    #             500
    aaacgcagca gggagcacaa gagacgcagg gacaggttga ggctgcacca  
    #             550
    aggccgagcc ttggtccgag gtcccagctc cctgatgaag aaggcagagc  
    #             600
    tctccgaagc ccaggtgctg gatgcagcca tggaggaatc ctccaccagc  
    #             650
    ctggcgccca ccatgttctt tctcaccacc tttgaggcag cacctgccac  
    #             700
    agaagagtcc ctgatcctgc ccgtcacctc cctgcggccc cagcaggcac  
    #             750
    agcccaggtc tgacggggag gtgatgccca cgctggacat ggccttgttc  
    #             800
    gactggaccg attatgaaga cttaaaacct gatggttggc cctctgcaaa  
    #             850
    gaagaaagag aaacaccgcg gtaaactctc cagtgatggt aacgaaacat  
    #             900
    caccagccga aggggaacca tgcgaccatc accaagactg cctgccaggg  
    #             950
    acttgctgcg acctgcggga gcatctctgc acaccccaca accgaggcct  
    #            1000
    caacaacaaa tgcttcgatg actgcatgtg tgtggaaggg ctgcgctgct  
    #            1050
    atgccaaatt ccaccggaac cgcagggtta cacggaggaa agggcgctgt  
    #            1100
    gtggagcccg agacggccaa cggcgaccag ggatccttca tcaacgtcta  
    #            1150
    gcggccccgc gggactgggg actgagccca ggaggtttgc acaagccggg  
    #            1200
    cgatttgttt gtaactagca gtgggagatc aagttgggga acagatggct  
    #            1250
    gaggctgcag actcaggccc aggacactca acccc       
    #                  
    #     1285
    <210> SEQ ID NO 74
    <211> LENGTH: 348
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 74
    Met Ala Gly Pro Ala Ile His Thr Ala Pro Me
    #t Leu Phe Leu Val
      1               5 
    #                 10 
    #                 15
    Leu Leu Leu Pro Gln Leu Ser Leu Ala Gly Al
    #a Leu Ala Pro Gly
                     20 
    #                 25 
    #                 30
    Thr Pro Ala Arg Asn Leu Pro Glu Asn His Il
    #e Asp Leu Pro Gly
                     35 
    #                 40 
    #                 45
    Pro Ala Leu Trp Thr Pro Gln Ala Ser His Hi
    #s Arg Arg Arg Gly
                     50 
    #                 55 
    #                 60
    Pro Gly Lys Lys Glu Trp Gly Pro Gly Leu Pr
    #o Ser Gln Ala Gln
                     65 
    #                 70 
    #                 75
    Asp Gly Ala Val Val Thr Ala Thr Arg Gln Al
    #a Ser Arg Leu Pro
                     80 
    #                 85 
    #                 90
    Glu Ala Glu Gly Leu Leu Pro Glu Gln Ser Pr
    #o Ala Gly Leu Leu
                     95 
    #                100 
    #                105
    Gln Asp Lys Asp Leu Leu Leu Gly Leu Ala Le
    #u Pro Tyr Pro Glu
                    110  
    #               115  
    #               120
    Lys Glu Asn Arg Pro Pro Gly Trp Glu Arg Th
    #r Arg Lys Arg Ser
                    125  
    #               130  
    #               135
    Arg Glu His Lys Arg Arg Arg Asp Arg Leu Ar
    #g Leu His Gln Gly
                    140  
    #               145  
    #               150
    Arg Ala Leu Val Arg Gly Pro Ser Ser Leu Me
    #t Lys Lys Ala Glu
                    155  
    #               160  
    #               165
    Leu Ser Glu Ala Gln Val Leu Asp Ala Ala Me
    #t Glu Glu Ser Ser
                    170  
    #               175  
    #               180
    Thr Ser Leu Ala Pro Thr Met Phe Phe Leu Th
    #r Thr Phe Glu Ala
                    185  
    #               190  
    #               195
    Ala Pro Ala Thr Glu Glu Ser Leu Ile Leu Pr
    #o Val Thr Ser Leu
                    200  
    #               205  
    #               210
    Arg Pro Gln Gln Ala Gln Pro Arg Ser Asp Gl
    #y Glu Val Met Pro
                    215  
    #               220  
    #               225
    Thr Leu Asp Met Ala Leu Phe Asp Trp Thr As
    #p Tyr Glu Asp Leu
                    230  
    #               235  
    #               240
    Lys Pro Asp Gly Trp Pro Ser Ala Lys Lys Ly
    #s Glu Lys His Arg
                    245  
    #               250  
    #               255
    Gly Lys Leu Ser Ser Asp Gly Asn Glu Thr Se
    #r Pro Ala Glu Gly
                    260  
    #               265  
    #               270
    Glu Pro Cys Asp His His Gln Asp Cys Leu Pr
    #o Gly Thr Cys Cys
                    275  
    #               280  
    #               285
    Asp Leu Arg Glu His Leu Cys Thr Pro His As
    #n Arg Gly Leu Asn
                    290  
    #               295  
    #               300
    Asn Lys Cys Phe Asp Asp Cys Met Cys Val Gl
    #u Gly Leu Arg Cys
                    305  
    #               310  
    #               315
    Tyr Ala Lys Phe His Arg Asn Arg Arg Val Th
    #r Arg Arg Lys Gly
                    320  
    #               325  
    #               330
    Arg Cys Val Glu Pro Glu Thr Ala Asn Gly As
    #p Gln Gly Ser Phe
                    335  
    #               340  
    #               345
    Ile Asn Val
    <210> SEQ ID NO 75
    <211> LENGTH: 1868
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 75
    cagaagggca aaaacattga ctgcctcaag gtctcaagca ccagtcttca  
    #              50
    ccgcggaaag catgttgtgg ctgttccaat cgctcctgtt tgtcttctgc  
    #             100
    tttggcccag ggaatgtagt ttcacaaagc agcttaaccc cattgatggt  
    #             150
    gaacgggatt ctgggggagt cagtaactct tcccctggag tttcctgcag  
    #             200
    gagagaaggt caacttcatc acttggcttt tcaatgaaac atctcttgcc  
    #             250
    ttcatagtac cccatgaaac caaaagtcca gaaatccacg tgactaatcc  
    #             300
    gaaacaggga aagcgactga acttcaccca gtcctactcc ctgcaactca  
    #             350
    gcaacctgaa gatggaagac acaggctctt acagagccca gatatccaca  
    #             400
    aagacctctg caaagctgtc cagttacact ctgaggatat taagacaact  
    #             450
    gaggaacata caagttacca atcacagtca gctatttcag aatatgacct  
    #             500
    gtgagctcca tctgacttgc tctgtggagg atgcagatga caatgtctca  
    #             550
    ttcagatggg aggccttggg aaacacactt tcaagtcagc caaacctcac  
    #             600
    tgtctcctgg gaccccagga tttccagtga acaggactac acctgcatag  
    #             650
    cagagaatgc tgtcagtaat ttatccttct ctgtctctgc ccagaagctt  
    #             700
    tgcgaagatg ttaaaattca atatacagat accaaaatga ttctgtttat  
    #             750
    ggtttctggg atatgcatag tcttcggttt catcatactg ctgttacttg  
    #             800
    ttttgaggaa aagaagagat tccctatctt tgtctactca gcgaacacag  
    #             850
    ggccccgcag agtccgcaag gaacctagag tatgtttcag tgtctccaac  
    #             900
    gaacaacact gtgtatgctt cagtcactca ttcaaacagg gaaacagaaa  
    #             950
    tctggacacc tagagaaaat gatactatca caatttactc cacaattaat  
    #            1000
    cattccaaag agagtaaacc cactttttcc agggcaactg cccttgacaa  
    #            1050
    tgtcgtgtaa gttgctgaaa ggcctcagag gaattcggga atgacacgtc  
    #            1100
    ttctgatccc atgagacaga acaaagaaca ggaagcttgg ttcctgttgt  
    #            1150
    tcctggcaac agaatttgaa tatctaggat aggatgatca cctccagtcc  
    #            1200
    ttcggactta aacctgccta cctgagtcaa acacctaagg ataacatcat  
    #            1250
    ttccagcatg tggttcaaat aatattttcc aatccacttc aggccaaaac  
    #            1300
    atgctaaaga taacacacca gcacattgac tctctctttg ataactaagc  
    #            1350
    aaatggaatt atggttgaca gagagtttat gatccagaag acaaccactt  
    #            1400
    ctctcctttt agaaagcagc aggattgact tattgagaaa taatgcagtg  
    #            1450
    tgttggttac atgtgtagtc tctggagttg gatgggccca tcctgataca  
    #            1500
    agttgagcat cccttgtctg aaatgcttgg gattagaaat gtttcagatt  
    #            1550
    tcaatttttt ttcagatttt ggaatatttg cattatattt agcggttgag  
    #            1600
    tatccaaatc caaaaatcca aaattcaaaa tgctccaata agcatttccc  
    #            1650
    ttgagtttca ttgatgtcga tgcagtgctc aaaatctcag attttggagc  
    #            1700
    aatttggata ttggattttt ggatttggga tgctcaactt gtacaatgtt  
    #            1750
    tattagacac atctcctggg acatactgcc taaccttttg gagccttagt  
    #            1800
    ctcccagact gaaaaaggaa gaggatggta ttacatcagc tccattgttt  
    #            1850
    gagccaagaa tctaagtc             
    #                  
    #                  
    #1868
    <210> SEQ ID NO 76
    <211> LENGTH: 332
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 76
    Met Leu Trp Leu Phe Gln Ser Leu Leu Phe Va
    #l Phe Cys Phe Gly
      1               5 
    #                 10 
    #                 15
    Pro Gly Asn Val Val Ser Gln Ser Ser Leu Th
    #r Pro Leu Met Val
                     20 
    #                 25 
    #                 30
    Asn Gly Ile Leu Gly Glu Ser Val Thr Leu Pr
    #o Leu Glu Phe Pro
                     35 
    #                 40 
    #                 45
    Ala Gly Glu Lys Val Asn Phe Ile Thr Trp Le
    #u Phe Asn Glu Thr
                     50 
    #                 55 
    #                 60
    Ser Leu Ala Phe Ile Val Pro His Glu Thr Ly
    #s Ser Pro Glu Ile
                     65 
    #                 70 
    #                 75
    His Val Thr Asn Pro Lys Gln Gly Lys Arg Le
    #u Asn Phe Thr Gln
                     80 
    #                 85 
    #                 90
    Ser Tyr Ser Leu Gln Leu Ser Asn Leu Lys Me
    #t Glu Asp Thr Gly
                     95 
    #                100 
    #                105
    Ser Tyr Arg Ala Gln Ile Ser Thr Lys Thr Se
    #r Ala Lys Leu Ser
                    110  
    #               115  
    #               120
    Ser Tyr Thr Leu Arg Ile Leu Arg Gln Leu Ar
    #g Asn Ile Gln Val
                    125  
    #               130  
    #               135
    Thr Asn His Ser Gln Leu Phe Gln Asn Met Th
    #r Cys Glu Leu His
                    140  
    #               145  
    #               150
    Leu Thr Cys Ser Val Glu Asp Ala Asp Asp As
    #n Val Ser Phe Arg
                    155  
    #               160  
    #               165
    Trp Glu Ala Leu Gly Asn Thr Leu Ser Ser Gl
    #n Pro Asn Leu Thr
                    170  
    #               175  
    #               180
    Val Ser Trp Asp Pro Arg Ile Ser Ser Glu Gl
    #n Asp Tyr Thr Cys
                    185  
    #               190  
    #               195
    Ile Ala Glu Asn Ala Val Ser Asn Leu Ser Ph
    #e Ser Val Ser Ala
                    200  
    #               205  
    #               210
    Gln Lys Leu Cys Glu Asp Val Lys Ile Gln Ty
    #r Thr Asp Thr Lys
                    215  
    #               220  
    #               225
    Met Ile Leu Phe Met Val Ser Gly Ile Cys Il
    #e Val Phe Gly Phe
                    230  
    #               235  
    #               240
    Ile Ile Leu Leu Leu Leu Val Leu Arg Lys Ar
    #g Arg Asp Ser Leu
                    245  
    #               250  
    #               255
    Ser Leu Ser Thr Gln Arg Thr Gln Gly Pro Al
    #a Glu Ser Ala Arg
                    260  
    #               265  
    #               270
    Asn Leu Glu Tyr Val Ser Val Ser Pro Thr As
    #n Asn Thr Val Tyr
                    275  
    #               280  
    #               285
    Ala Ser Val Thr His Ser Asn Arg Glu Thr Gl
    #u Ile Trp Thr Pro
                    290  
    #               295  
    #               300
    Arg Glu Asn Asp Thr Ile Thr Ile Tyr Ser Th
    #r Ile Asn His Ser
                    305  
    #               310  
    #               315
    Lys Glu Ser Lys Pro Thr Phe Ser Arg Ala Th
    #r Ala Leu Asp Asn
                    320  
    #               325  
    #               330
    Val Val
    <210> SEQ ID NO 77
    <211> LENGTH: 3073
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 77
    gatccctcga cctcgaccca cgcgtccgct ctttaatgct ttctttttaa  
    #              50
    gagatcacct tctgacttct cacagaagag gttaactatt acctgtggga  
    #             100
    agtcagaagg tgatctcttt aatgctttct ttttaagaat ttttcaaatt  
    #             150
    gagactaatt gcagaggttc cagttgacca gcattcatag gaatgaagac  
    #             200
    aaacacagag atggtgtgtc taagaaactt caaaaggtgt agacctcctg  
    #             250
    actgaagcat attggattta tttaattttt ttcactgtat ttctgtcctc  
    #             300
    ctacaaggga aagtcatgat tacactaact gagctaaaat gcttagcaga  
    #             350
    tgcccagtca tcttatcaca tcttaaaacc atggtgggac gtcttctggt  
    #             400
    attacatcac actgatcatg ctgctggtgg ccgtgctggc cggagctctc  
    #             450
    cagctgacgc agagcagggt tctgtgctgt cttccatgca aagtggaatt  
    #             500
    tgacaatcac tgtgccgtgc cttgggacat cctgaaagcc agcatgaaca  
    #             550
    catcctctaa tcctgggaca ccgcttccgc tccccctccg aattcagaat  
    #             600
    gacctccacc gacagcagta ctcctatatt gatgccgtct gttacgagaa  
    #             650
    acagctccat tggtttgcaa agtttttccc ctatctggtg ctcttgcaca  
    #             700
    cgctcatctt tgcagcctgc agcaactttt ggcttcacta ccccagtacc  
    #             750
    agttccaggc tcgagcattt tgtggccatc cttcacaagt gcttcgattc  
    #             800
    tccatggacc acccgcgccc tttcagaaac agtggctgag cagtcagtga  
    #             850
    ggcctctgaa actctccaag tccaagattt tgctttcgtc ctcagggtgt  
    #             900
    tcagctgaca tagattccgg caaacagtca ttgccctacc cacagccagg  
    #             950
    tttggagtca gctggtatag aaagcccaac ttccagtggc ctggacaaga  
    #            1000
    aggagggtga acaggccaaa gccatctttg aaaaagtgaa aagattccgc  
    #            1050
    atgcatgtgg agcagaagga catcatttat agagtatatc tgaaacagat  
    #            1100
    aatagtcaaa gtcattttgt ttgtgctcat cataacttat gttccatatt  
    #            1150
    ttttaaccca catcactctt gaaatcgact gttcagttga tgtgcaggct  
    #            1200
    tttacaggat ataagcgcta ccagtgtgtc tattccttgg cagaaatctt  
    #            1250
    taaggtcctg gcttcatttt atgtcatttt ggttatactt tatggtctga  
    #            1300
    cctcttccta cagcctgtgg tggatgctga ggagttccct gaagcaatat  
    #            1350
    tcctttgagg cgttaagaga aaaaagcaac tacagtgaca tccctgatgt  
    #            1400
    caagaatgac tttgccttca tccttcatct ggctgatcag tatgatcctc  
    #            1450
    tttattccaa acgcttctcc atattcctat cagaggtcag tgagaacaaa  
    #            1500
    ctgaaacaga tcaacctcaa taatgaatgg acagttgaga aactgaaaag  
    #            1550
    taagcttgtg aaaaatgccc aggacaagat agaactgcat ctttttatgc  
    #            1600
    tcaacggtct tccagacaat gtctttgagt taactgaaat ggaagtgcta  
    #            1650
    agcctggagc ttatcccaga ggtgaagctg ccctctgcag tctcacagct  
    #            1700
    ggtcaacctc aaggagcttc gtgtgtacca ttcatctctg gtcgtagacc  
    #            1750
    atcctgcact ggcctttcta gaggagaatt taaaaatcct ccgcctgaaa  
    #            1800
    tttactgaaa tgggaaaaat cccacgctgg gtatttcacc tcaagaatct  
    #            1850
    caaggaactt tatctttcgg gctgtgttct ccctgaacag ttgagtacta  
    #            1900
    tgcagttgga gggctttcag gacttaaaaa atctaaggac cctgtacttg  
    #            1950
    aagagcagcc tctcccggat cccacaagtt gttacagacc tcctgccttc  
    #            2000
    attgcagaaa ctgtcccttg ataatgaggg aagcaaactg gttgtgttga  
    #            2050
    acaacttgaa aaagatggtc aatctgaaaa gcctagaact gatcagctgt  
    #            2100
    gacctggaac gcatcccaca ttccattttc agcctgaata atttgcatga  
    #            2150
    gttagaccta agggaaaata accttaaaac tgtggaagag attagctttc  
    #            2200
    agcatcttca gaatctttcc tgcttaaagt tgtggcacaa taacattgct  
    #            2250
    tatattcctg cacagattgg ggcattatct aacctagagc agctctcttt  
    #            2300
    ggaccataat aatattgaga atctgccctt gcagcttttc ctatgcacta  
    #            2350
    aactacatta tttggatcta agctataacc acttgacctt cattccagaa  
    #            2400
    gaaatccagt atctgagtaa tttgcagtac tttgctgtga ccaacaacaa  
    #            2450
    tattgagatg ctaccagatg ggctgtttca gtgcaaaaag ctgcagtgtt  
    #            2500
    tacttttggg gaaaaatagc ttgatgaatt tgtcccctca tgtgggtgag  
    #            2550
    ctgtcaaacc ttactcatct ggagctcatt ggtaattacc tggaaacact  
    #            2600
    tcctcctgaa ctagaaggat gtcagtccct aaaacggaac tgtctgattg  
    #            2650
    ttgaggagaa cttgctcaat actcttcctc tccctgtaac agaacgttta  
    #            2700
    cagacgtgct tagacaaatg ttgacttaaa gaaaagagac ccgtgtttca  
    #            2750
    aaatcatttt taaaagtatg ctcggccggg cgtggtggct catgcctata  
    #            2800
    atcccagcac tttgggaggc caagatgggc ggattgcttg aggtcaggag  
    #            2850
    ttcgagacca gtctggccaa cctggtgaaa ccccatctct gctaaaacta  
    #            2900
    caaaaaaatt agccaggcgt ggtggcgtgc gcctgtaatc ccagctactt  
    #            2950
    gggaggctga cgcaggggaa ttgcttgaac cagggaggtg gaggttgcag  
    #            3000
    tgagccgaga ttgtgccact gtacaccagc ctgggtgaca gagcaagact  
    #            3050
    cttatctcaa aaaaaaaaaa aaa           
    #                  
    #              3073
    <210> SEQ ID NO 78
    <211> LENGTH: 802
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 78
    Met Ile Thr Leu Thr Glu Leu Lys Cys Leu Al
    #a Asp Ala Gln Ser
      1               5 
    #                 10 
    #                 15
    Ser Tyr His Ile Leu Lys Pro Trp Trp Asp Va
    #l Phe Trp Tyr Tyr
                     20 
    #                 25 
    #                 30
    Ile Thr Leu Ile Met Leu Leu Val Ala Val Le
    #u Ala Gly Ala Leu
                     35 
    #                 40 
    #                 45
    Gln Leu Thr Gln Ser Arg Val Leu Cys Cys Le
    #u Pro Cys Lys Val
                     50 
    #                 55 
    #                 60
    Glu Phe Asp Asn His Cys Ala Val Pro Trp As
    #p Ile Leu Lys Ala
                     65 
    #                 70 
    #                 75
    Ser Met Asn Thr Ser Ser Asn Pro Gly Thr Pr
    #o Leu Pro Leu Pro
                     80 
    #                 85 
    #                 90
    Leu Arg Ile Gln Asn Asp Leu His Arg Gln Gl
    #n Tyr Ser Tyr Ile
                     95 
    #                100 
    #                105
    Asp Ala Val Cys Tyr Glu Lys Gln Leu His Tr
    #p Phe Ala Lys Phe
                    110  
    #               115  
    #               120
    Phe Pro Tyr Leu Val Leu Leu His Thr Leu Il
    #e Phe Ala Ala Cys
                    125  
    #               130  
    #               135
    Ser Asn Phe Trp Leu His Tyr Pro Ser Thr Se
    #r Ser Arg Leu Glu
                    140  
    #               145  
    #               150
    His Phe Val Ala Ile Leu His Lys Cys Phe As
    #p Ser Pro Trp Thr
                    155  
    #               160  
    #               165
    Thr Arg Ala Leu Ser Glu Thr Val Ala Glu Gl
    #n Ser Val Arg Pro
                    170  
    #               175  
    #               180
    Leu Lys Leu Ser Lys Ser Lys Ile Leu Leu Se
    #r Ser Ser Gly Cys
                    185  
    #               190  
    #               195
    Ser Ala Asp Ile Asp Ser Gly Lys Gln Ser Le
    #u Pro Tyr Pro Gln
                    200  
    #               205  
    #               210
    Pro Gly Leu Glu Ser Ala Gly Ile Glu Ser Pr
    #o Thr Ser Ser Gly
                    215  
    #               220  
    #               225
    Leu Asp Lys Lys Glu Gly Glu Gln Ala Lys Al
    #a Ile Phe Glu Lys
                    230  
    #               235  
    #               240
    Val Lys Arg Phe Arg Met His Val Glu Gln Ly
    #s Asp Ile Ile Tyr
                    245  
    #               250  
    #               255
    Arg Val Tyr Leu Lys Gln Ile Ile Val Lys Va
    #l Ile Leu Phe Val
                    260  
    #               265  
    #               270
    Leu Ile Ile Thr Tyr Val Pro Tyr Phe Leu Th
    #r His Ile Thr Leu
                    275  
    #               280  
    #               285
    Glu Ile Asp Cys Ser Val Asp Val Gln Ala Ph
    #e Thr Gly Tyr Lys
                    290  
    #               295  
    #               300
    Arg Tyr Gln Cys Val Tyr Ser Leu Ala Glu Il
    #e Phe Lys Val Leu
                    305  
    #               310  
    #               315
    Ala Ser Phe Tyr Val Ile Leu Val Ile Leu Ty
    #r Gly Leu Thr Ser
                    320  
    #               325  
    #               330
    Ser Tyr Ser Leu Trp Trp Met Leu Arg Ser Se
    #r Leu Lys Gln Tyr
                    335  
    #               340  
    #               345
    Ser Phe Glu Ala Leu Arg Glu Lys Ser Asn Ty
    #r Ser Asp Ile Pro
                    350  
    #               355  
    #               360
    Asp Val Lys Asn Asp Phe Ala Phe Ile Leu Hi
    #s Leu Ala Asp Gln
                    365  
    #               370  
    #               375
    Tyr Asp Pro Leu Tyr Ser Lys Arg Phe Ser Il
    #e Phe Leu Ser Glu
                    380  
    #               385  
    #               390
    Val Ser Glu Asn Lys Leu Lys Gln Ile Asn Le
    #u Asn Asn Glu Trp
                    395  
    #               400  
    #               405
    Thr Val Glu Lys Leu Lys Ser Lys Leu Val Ly
    #s Asn Ala Gln Asp
                    410  
    #               415  
    #               420
    Lys Ile Glu Leu His Leu Phe Met Leu Asn Gl
    #y Leu Pro Asp Asn
                    425  
    #               430  
    #               435
    Val Phe Glu Leu Thr Glu Met Glu Val Leu Se
    #r Leu Glu Leu Ile
                    440  
    #               445  
    #               450
    Pro Glu Val Lys Leu Pro Ser Ala Val Ser Gl
    #n Leu Val Asn Leu
                    455  
    #               460  
    #               465
    Lys Glu Leu Arg Val Tyr His Ser Ser Leu Va
    #l Val Asp His Pro
                    470  
    #               475  
    #               480
    Ala Leu Ala Phe Leu Glu Glu Asn Leu Lys Il
    #e Leu Arg Leu Lys
                    485  
    #               490  
    #               495
    Phe Thr Glu Met Gly Lys Ile Pro Arg Trp Va
    #l Phe His Leu Lys
                    500  
    #               505  
    #               510
    Asn Leu Lys Glu Leu Tyr Leu Ser Gly Cys Va
    #l Leu Pro Glu Gln
                    515  
    #               520  
    #               525
    Leu Ser Thr Met Gln Leu Glu Gly Phe Gln As
    #p Leu Lys Asn Leu
                    530  
    #               535  
    #               540
    Arg Thr Leu Tyr Leu Lys Ser Ser Leu Ser Ar
    #g Ile Pro Gln Val
                    545  
    #               550  
    #               555
    Val Thr Asp Leu Leu Pro Ser Leu Gln Lys Le
    #u Ser Leu Asp Asn
                    560  
    #               565  
    #               570
    Glu Gly Ser Lys Leu Val Val Leu Asn Asn Le
    #u Lys Lys Met Val
                    575  
    #               580  
    #               585
    Asn Leu Lys Ser Leu Glu Leu Ile Ser Cys As
    #p Leu Glu Arg Ile
                    590  
    #               595  
    #               600
    Pro His Ser Ile Phe Ser Leu Asn Asn Leu Hi
    #s Glu Leu Asp Leu
                    605  
    #               610  
    #               615
    Arg Glu Asn Asn Leu Lys Thr Val Glu Glu Il
    #e Ser Phe Gln His
                    620  
    #               625  
    #               630
    Leu Gln Asn Leu Ser Cys Leu Lys Leu Trp Hi
    #s Asn Asn Ile Ala
                    635  
    #               640  
    #               645
    Tyr Ile Pro Ala Gln Ile Gly Ala Leu Ser As
    #n Leu Glu Gln Leu
                    650  
    #               655  
    #               660
    Ser Leu Asp His Asn Asn Ile Glu Asn Leu Pr
    #o Leu Gln Leu Phe
                    665  
    #               670  
    #               675
    Leu Cys Thr Lys Leu His Tyr Leu Asp Leu Se
    #r Tyr Asn His Leu
                    680  
    #               685  
    #               690
    Thr Phe Ile Pro Glu Glu Ile Gln Tyr Leu Se
    #r Asn Leu Gln Tyr
                    695  
    #               700  
    #               705
    Phe Ala Val Thr Asn Asn Asn Ile Glu Met Le
    #u Pro Asp Gly Leu
                    710  
    #               715  
    #               720
    Phe Gln Cys Lys Lys Leu Gln Cys Leu Leu Le
    #u Gly Lys Asn Ser
                    725  
    #               730  
    #               735
    Leu Met Asn Leu Ser Pro His Val Gly Glu Le
    #u Ser Asn Leu Thr
                    740  
    #               745  
    #               750
    His Leu Glu Leu Ile Gly Asn Tyr Leu Glu Th
    #r Leu Pro Pro Glu
                    755  
    #               760  
    #               765
    Leu Glu Gly Cys Gln Ser Leu Lys Arg Asn Cy
    #s Leu Ile Val Glu
                    770  
    #               775  
    #               780
    Glu Asn Leu Leu Asn Thr Leu Pro Leu Pro Va
    #l Thr Glu Arg Leu
                    785  
    #               790  
    #               795
    Gln Thr Cys Leu Asp Lys Cys
                    800
    <210> SEQ ID NO 79
    <211> LENGTH: 1504
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 79
    cggacgcgtg ggccgcgctc cctcacggcc cctcggcggc gcccgtcgga  
    #              50
    tccggcctct ctctgcgccc cggggcgcgc cacctccccg ccggaggtgt  
    #             100
    ccacgcgtcc ggccgtccat ccgtccgtcc ctcctggggc cggcgctgac  
    #             150
    catgcccagc ggctgccgct gcctgcatct cgtgtgcctg ttgtgcattc  
    #             200
    tgggggctcc cggtcagcct gtccgagccg atgactgcag ctcccactgt  
    #             250
    gacctggccc acggctgctg tgcacctgac ggctcctgca ggtgtgaccc  
    #             300
    gggctgggag gggctgcact gtgagcgctg tgtgaggatg cctggctgcc  
    #             350
    agcacggtac ctgccaccag ccatggcagt gcatctgcca cagtggctgg  
    #             400
    gcaggcaagt tctgtgacaa agatgaacat atctgtacca cgcagtcccc  
    #             450
    ctgccagaat ggaggccagt gcatgtatga cgggggcggt gagtaccatt  
    #             500
    gtgtgtgctt accaggcttc catgggcgtg actgcgagcg caaggctgga  
    #             550
    ccctgtgaac aggcaggctc cccatgccgc aatggcgggc agtgccagga  
    #             600
    cgaccagggc tttgctctca acttcacgtg ccgctgcttg gtgggctttg  
    #             650
    tgggtgcccg ctgtgaggta aatgtggatg actgcctgat gcggccttgt  
    #             700
    gctaacggtg ccacctgcct tgacggcata aaccgcttct cctgcctctg  
    #             750
    tcctgagggc tttgctggac gcttctgcac catcaacctg gatgactgtg  
    #             800
    ccagccgccc atgccagaga ggggcccgct gtcgggaccg tgtccacgac  
    #             850
    ttcgactgcc tctgccccag tggctatggt ggcaagacct gtgagcttgt  
    #             900
    cttacctgtc ccagaccccc caaccacagt ggacacccct ctagggccca  
    #             950
    cctcagctgt agtggtacct gctacggggc cagcccccca cagcgcaggg  
    #            1000
    gctggtctgc tgcggatctc agtgaaggag gtggtgcgga ggcaagaggc  
    #            1050
    tgggctaggt gagcctagct tggtggccct ggtggtgttt ggggccctca  
    #            1100
    ctgctgccct ggttctggct actgtgttgc tgaccctgag ggcctggcgc  
    #            1150
    cggggtgtct gcccccctgg accctgttgc taccctgccc cacactatgc  
    #            1200
    tccagcgtgc caggaccagg agtgtcaggt tagcatgctg ccagcagggc  
    #            1250
    tccccctgcc acgtgacttg ccccctgagc ctggaaagac cacagcactg  
    #            1300
    tgatggaggt gggggctttc tggccccctt cctcacctct tccacccctc  
    #            1350
    agactggagt ggtccgttct caccaccctt cagcttgggt acacacacag  
    #            1400
    aggagacctc agcctcacac cagaaatatt atttttttaa tacacagaat  
    #            1450
    gtaagatgga attttatcaa ataaaactat gaaaatgcaa aaaaaaaaaa  
    #            1500
    aaaa                 
    #                  
    #                  
    #           1504
    <210> SEQ ID NO 80
    <211> LENGTH: 383
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 80
    Met Pro Ser Gly Cys Arg Cys Leu His Leu Va
    #l Cys Leu Leu Cys
      1               5 
    #                 10 
    #                 15
    Ile Leu Gly Ala Pro Gly Gln Pro Val Arg Al
    #a Asp Asp Cys Ser
                     20 
    #                 25 
    #                 30
    Ser His Cys Asp Leu Ala His Gly Cys Cys Al
    #a Pro Asp Gly Ser
                     35 
    #                 40 
    #                 45
    Cys Arg Cys Asp Pro Gly Trp Glu Gly Leu Hi
    #s Cys Glu Arg Cys
                     50 
    #                 55 
    #                 60
    Val Arg Met Pro Gly Cys Gln His Gly Thr Cy
    #s His Gln Pro Trp
                     65 
    #                 70 
    #                 75
    Gln Cys Ile Cys His Ser Gly Trp Ala Gly Ly
    #s Phe Cys Asp Lys
                     80 
    #                 85 
    #                 90
    Asp Glu His Ile Cys Thr Thr Gln Ser Pro Cy
    #s Gln Asn Gly Gly
                     95 
    #                100 
    #                105
    Gln Cys Met Tyr Asp Gly Gly Gly Glu Tyr Hi
    #s Cys Val Cys Leu
                    110  
    #               115  
    #               120
    Pro Gly Phe His Gly Arg Asp Cys Glu Arg Ly
    #s Ala Gly Pro Cys
                    125  
    #               130  
    #               135
    Glu Gln Ala Gly Ser Pro Cys Arg Asn Gly Gl
    #y Gln Cys Gln Asp
                    140  
    #               145  
    #               150
    Asp Gln Gly Phe Ala Leu Asn Phe Thr Cys Ar
    #g Cys Leu Val Gly
                    155  
    #               160  
    #               165
    Phe Val Gly Ala Arg Cys Glu Val Asn Val As
    #p Asp Cys Leu Met
                    170  
    #               175  
    #               180
    Arg Pro Cys Ala Asn Gly Ala Thr Cys Leu As
    #p Gly Ile Asn Arg
                    185  
    #               190  
    #               195
    Phe Ser Cys Leu Cys Pro Glu Gly Phe Ala Gl
    #y Arg Phe Cys Thr
                    200  
    #               205  
    #               210
    Ile Asn Leu Asp Asp Cys Ala Ser Arg Pro Cy
    #s Gln Arg Gly Ala
                    215  
    #               220  
    #               225
    Arg Cys Arg Asp Arg Val His Asp Phe Asp Cy
    #s Leu Cys Pro Ser
                    230  
    #               235  
    #               240
    Gly Tyr Gly Gly Lys Thr Cys Glu Leu Val Le
    #u Pro Val Pro Asp
                    245  
    #               250  
    #               255
    Pro Pro Thr Thr Val Asp Thr Pro Leu Gly Pr
    #o Thr Ser Ala Val
                    260  
    #               265  
    #               270
    Val Val Pro Ala Thr Gly Pro Ala Pro His Se
    #r Ala Gly Ala Gly
                    275  
    #               280  
    #               285
    Leu Leu Arg Ile Ser Val Lys Glu Val Val Ar
    #g Arg Gln Glu Ala
                    290  
    #               295  
    #               300
    Gly Leu Gly Glu Pro Ser Leu Val Ala Leu Va
    #l Val Phe Gly Ala
                    305  
    #               310  
    #               315
    Leu Thr Ala Ala Leu Val Leu Ala Thr Val Le
    #u Leu Thr Leu Arg
                    320  
    #               325  
    #               330
    Ala Trp Arg Arg Gly Val Cys Pro Pro Gly Pr
    #o Cys Cys Tyr Pro
                    335  
    #               340  
    #               345
    Ala Pro His Tyr Ala Pro Ala Cys Gln Asp Gl
    #n Glu Cys Gln Val
                    350  
    #               355  
    #               360
    Ser Met Leu Pro Ala Gly Leu Pro Leu Pro Ar
    #g Asp Leu Pro Pro
                    365  
    #               370  
    #               375
    Glu Pro Gly Lys Thr Thr Ala Leu
                    380
    <210> SEQ ID NO 81
    <211> LENGTH: 1034
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 81
    gtttgttgct caaaccgagt tctggagaac gccatcagct cgctgcttaa  
    #              50
    aattaaacca caggttccat tatgggtcga cttgatggga aagtcatcat  
    #             100
    cctgacggcc gctgctcagg ggattggcca agcagctgcc ttagcttttg  
    #             150
    caagagaagg tgccaaagtc atagccacag acattaatga gtccaaactt  
    #             200
    caggaactgg aaaagtaccc gggtattcaa actcgtgtcc ttgatgtcac  
    #             250
    aaagaagaaa caaattgatc agtttgccag tgaagttgag agacttgatg  
    #             300
    ttctctttaa tgttgctggt tttgtccatc atggaactgt cctggattgt  
    #             350
    gaggagaaag actgggactt ctcgatgaat ctcaatgtgc gcagcatgta  
    #             400
    cctgatgatc aaggcattcc ttcctaaaat gcttgctcag aaatctggca  
    #             450
    atattatcaa catgtcttct gtggcttcca gcgtcaaagg agttgtgaac  
    #             500
    agatgtgtgt acagcacaac caaggcagcc gtgattggcc tcacaaaatc  
    #             550
    tctggctgca gatttcatcc agcagggcat caggtgcaac tgtgtgtgcc  
    #             600
    caggaacagt tgatacgcca tctctacaag aaagaataca agccagagga  
    #             650
    aatcctgaag aggcacggaa tgatttcctg aagagacaaa agacgggaag  
    #             700
    attcgcaact gcagaagaaa tagccatgct ctgcgtgtat ttggcttctg  
    #             750
    atgaatctgc ttatgtaact ggtaaccctg tcatcattga tggaggctgg  
    #             800
    agcttgtgat tttaggatct ccatggtggg aaggaaggca ggcccttcct  
    #             850
    atccacagtg aacctggtta cgaagaaaac tcaccaatca tctccttcct  
    #             900
    gttaatcaca tgttaatgaa aataagctct ttttaatgat gtcactgttt  
    #             950
    gcaagagtct gattctttaa gtatattaat ctctttgtaa tctcttctga  
    #            1000
    aatcattgta aagaaataaa aatattgaac tcat       
    #                  
    #      1034
    <210> SEQ ID NO 82
    <211> LENGTH: 245
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 82
    Met Gly Arg Leu Asp Gly Lys Val Ile Ile Le
    #u Thr Ala Ala Ala
      1               5 
    #                 10 
    #                 15
    Gln Gly Ile Gly Gln Ala Ala Ala Leu Ala Ph
    #e Ala Arg Glu Gly
                     20 
    #                 25 
    #                 30
    Ala Lys Val Ile Ala Thr Asp Ile Asn Glu Se
    #r Lys Leu Gln Glu
                     35 
    #                 40 
    #                 45
    Leu Glu Lys Tyr Pro Gly Ile Gln Thr Arg Va
    #l Leu Asp Val Thr
                     50 
    #                 55 
    #                 60
    Lys Lys Lys Gln Ile Asp Gln Phe Ala Ser Gl
    #u Val Glu Arg Leu
                     65 
    #                 70 
    #                 75
    Asp Val Leu Phe Asn Val Ala Gly Phe Val Hi
    #s His Gly Thr Val
                     80 
    #                 85 
    #                 90
    Leu Asp Cys Glu Glu Lys Asp Trp Asp Phe Se
    #r Met Asn Leu Asn
                     95 
    #                100 
    #                105
    Val Arg Ser Met Tyr Leu Met Ile Lys Ala Ph
    #e Leu Pro Lys Met
                    110  
    #               115  
    #               120
    Leu Ala Gln Lys Ser Gly Asn Ile Ile Asn Me
    #t Ser Ser Val Ala
                    125  
    #               130  
    #               135
    Ser Ser Val Lys Gly Val Val Asn Arg Cys Va
    #l Tyr Ser Thr Thr
                    140  
    #               145  
    #               150
    Lys Ala Ala Val Ile Gly Leu Thr Lys Ser Le
    #u Ala Ala Asp Phe
                    155  
    #               160  
    #               165
    Ile Gln Gln Gly Ile Arg Cys Asn Cys Val Cy
    #s Pro Gly Thr Val
                    170  
    #               175  
    #               180
    Asp Thr Pro Ser Leu Gln Glu Arg Ile Gln Al
    #a Arg Gly Asn Pro
                    185  
    #               190  
    #               195
    Glu Glu Ala Arg Asn Asp Phe Leu Lys Arg Gl
    #n Lys Thr Gly Arg
                    200  
    #               205  
    #               210
    Phe Ala Thr Ala Glu Glu Ile Ala Met Leu Cy
    #s Val Tyr Leu Ala
                    215  
    #               220  
    #               225
    Ser Asp Glu Ser Ala Tyr Val Thr Gly Asn Pr
    #o Val Ile Ile Asp
                    230  
    #               235  
    #               240
    Gly Gly Trp Ser Leu
                    245
    <210> SEQ ID NO 83
    <211> LENGTH: 1961
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 83
    gggcggcggc ggcagcggtt ggaggttgta ggaccggcga ggaataggaa  
    #              50
    tcatggcggc tgcgctgttc gtgctgctgg gattcgcgct gctgggcacc  
    #             100
    cacggagcct ccggggctgc cggcttcgtc caggcgccgc tgtcccagca  
    #             150
    gaggtgggtg gggggcagtg tggagctgca ctgcgaggcc gtgggcagcc  
    #             200
    cggtgcccga gatccagtgg tggtttgaag ggcagggtcc caacgacacc  
    #             250
    tgctcccagc tctgggacgg cgcccggctg gaccgcgtcc acatccacgc  
    #             300
    cacctaccac cagcacgcgg ccagcaccat ctccatcgac acgctcgtgg  
    #             350
    aggaggacac gggcacttac gagtgccggg ccagcaacga cccggatcgc  
    #             400
    aaccacctga cccgggcgcc cagggtcaag tgggtccgcg cccaggcagt  
    #             450
    cgtgctagtc ctggaacccg gcacagtctt cactaccgta gaagaccttg  
    #             500
    gctccaagat actcctcacc tgctccttga atgacagcgc cacagaggtc  
    #             550
    acagggcacc gctggctgaa ggggggcgtg gtgctgaagg aggacgcgct  
    #             600
    gcccggccag aaaacggagt tcaaggtgga ctccgacgac cagtggggag  
    #             650
    agtactcctg cgtcttcctc cccgagccca tgggcacggc caacatccag  
    #             700
    ctccacgggc ctcccagagt gaaggctgtg aagtcgtcag aacacatcaa  
    #             750
    cgagggggag acggccatgc tggtctgcaa gtcagagtcc gtgccacctg  
    #             800
    tcactgactg ggcctggtac aagatcactg actctgagga caaggccctc  
    #             850
    atgaacggct ccgagagcag gttcttcgtg agttcctcgc agggccggtc  
    #             900
    agagctacac attgagaacc tgaacatgga ggccgacccc ggccagtacc  
    #             950
    ggtgcaacgg caccagctcc aagggctccg accaggccat catcacgctc  
    #            1000
    cgcgtgcgca gccacctggc cgccctctgg cccttcctgg gcatcgtggc  
    #            1050
    tgaggtgctg gtgctggtca ccatcatctt catctacgag aagcgccgga  
    #            1100
    agcccgagga cgtcctggat gatgacgacg ccggctctgc acccctgaag  
    #            1150
    agcagcgggc agcaccagaa tgacaaaggc aagaacgtcc gccagaggaa  
    #            1200
    ctcttcctga ggcaggtggc ccgaggacgc tccctgctcc acgtctgcgc  
    #            1250
    cgccgccgga gtccactccc agtgcttgca agattccaag ttctcacctc  
    #            1300
    ttaaagaaaa cccaccccgt agattcccat catacacttc cttctttttt  
    #            1350
    aaaaaagttg ggttttctcc attcaggatt ctgttcctta ggtttttttc  
    #            1400
    cttctgaagt gtttcacgag agcccgggag ctgctgccct gcggccccgt  
    #            1450
    ctgtggcttt cagcctctgg gtctgagtca tggccgggtg ggcggcacag  
    #            1500
    ccttctccac tggccggagt cagtgccagg tccttgccct ttgtggaaag  
    #            1550
    tcacaggtca cacgaggggc cccgtgtcct gcctgtctga agccaatgct  
    #            1600
    gtctggttgc gccatttttg tgcttttatg tttaatttta tgagggccac  
    #            1650
    gggtctgtgt tcgactcagc ctcagggacg actctgacct cttggccaca  
    #            1700
    gaggactcac ttgcccacac cgagggcgac cccgtcacag cctcaagtca  
    #            1750
    ctcccaagcc ccctccttgt ctgtgcatcc gggggcagct ctggaggggg  
    #            1800
    tttgctgggg aactggcgcc atcgccggga ctccagaacc gcagaagcct  
    #            1850
    ccccagctca cccctggagg acggccggct ctctatagca ccagggctca  
    #            1900
    cgtgggaacc cccctcccac ccaccgccac aataaagatc gcccccacct  
    #            1950
    ccacccaaaa a               
    #                  
    #                  
    #     1961
    <210> SEQ ID NO 84
    <211> LENGTH: 385
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 84
    Met Ala Ala Ala Leu Phe Val Leu Leu Gly Ph
    #e Ala Leu Leu Gly
      1               5 
    #                 10 
    #                 15
    Thr His Gly Ala Ser Gly Ala Ala Gly Phe Va
    #l Gln Ala Pro Leu
                     20 
    #                 25 
    #                 30
    Ser Gln Gln Arg Trp Val Gly Gly Ser Val Gl
    #u Leu His Cys Glu
                     35 
    #                 40 
    #                 45
    Ala Val Gly Ser Pro Val Pro Glu Ile Gln Tr
    #p Trp Phe Glu Gly
                     50 
    #                 55 
    #                 60
    Gln Gly Pro Asn Asp Thr Cys Ser Gln Leu Tr
    #p Asp Gly Ala Arg
                     65 
    #                 70 
    #                 75
    Leu Asp Arg Val His Ile His Ala Thr Tyr Hi
    #s Gln His Ala Ala
                     80 
    #                 85 
    #                 90
    Ser Thr Ile Ser Ile Asp Thr Leu Val Glu Gl
    #u Asp Thr Gly Thr
                     95 
    #                100 
    #                105
    Tyr Glu Cys Arg Ala Ser Asn Asp Pro Asp Ar
    #g Asn His Leu Thr
                    110  
    #               115  
    #               120
    Arg Ala Pro Arg Val Lys Trp Val Arg Ala Gl
    #n Ala Val Val Leu
                    125  
    #               130  
    #               135
    Val Leu Glu Pro Gly Thr Val Phe Thr Thr Va
    #l Glu Asp Leu Gly
                    140  
    #               145  
    #               150
    Ser Lys Ile Leu Leu Thr Cys Ser Leu Asn As
    #p Ser Ala Thr Glu
                    155  
    #               160  
    #               165
    Val Thr Gly His Arg Trp Leu Lys Gly Gly Va
    #l Val Leu Lys Glu
                    170  
    #               175  
    #               180
    Asp Ala Leu Pro Gly Gln Lys Thr Glu Phe Ly
    #s Val Asp Ser Asp
                    185  
    #               190  
    #               195
    Asp Gln Trp Gly Glu Tyr Ser Cys Val Phe Le
    #u Pro Glu Pro Met
                    200  
    #               205  
    #               210
    Gly Thr Ala Asn Ile Gln Leu His Gly Pro Pr
    #o Arg Val Lys Ala
                    215  
    #               220  
    #               225
    Val Lys Ser Ser Glu His Ile Asn Glu Gly Gl
    #u Thr Ala Met Leu
                    230  
    #               235  
    #               240
    Val Cys Lys Ser Glu Ser Val Pro Pro Val Th
    #r Asp Trp Ala Trp
                    245  
    #               250  
    #               255
    Tyr Lys Ile Thr Asp Ser Glu Asp Lys Ala Le
    #u Met Asn Gly Ser
                    260  
    #               265  
    #               270
    Glu Ser Arg Phe Phe Val Ser Ser Ser Gln Gl
    #y Arg Ser Glu Leu
                    275  
    #               280  
    #               285
    His Ile Glu Asn Leu Asn Met Glu Ala Asp Pr
    #o Gly Gln Tyr Arg
                    290  
    #               295  
    #               300
    Cys Asn Gly Thr Ser Ser Lys Gly Ser Asp Gl
    #n Ala Ile Ile Thr
                    305  
    #               310  
    #               315
    Leu Arg Val Arg Ser His Leu Ala Ala Leu Tr
    #p Pro Phe Leu Gly
                    320  
    #               325  
    #               330
    Ile Val Ala Glu Val Leu Val Leu Val Thr Il
    #e Ile Phe Ile Tyr
                    335  
    #               340  
    #               345
    Glu Lys Arg Arg Lys Pro Glu Asp Val Leu As
    #p Asp Asp Asp Ala
                    350  
    #               355  
    #               360
    Gly Ser Ala Pro Leu Lys Ser Ser Gly Gln Hi
    #s Gln Asn Asp Lys
                    365  
    #               370  
    #               375
    Gly Lys Asn Val Arg Gln Arg Asn Ser Ser
                    380  
    #               385
    <210> SEQ ID NO 85
    <211> LENGTH: 1002
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 85
    ggctcgagca aagacatacg aacagggagg aaggccgact gaaagaaaga  
    #              50
    cggagaagag gagagagaag ccagggccga gcgtgccagc aggcggatgg  
    #             100
    agggcggcct ggtggaggag gagacgtagt ggcctgggct gagctgggtg  
    #             150
    ggccgggaga agcgggtgcc tcagagtggg ggtgggggca tgggaggggc  
    #             200
    aggcattctg ctgctgctgc tggctggggc gggggtggtg gtggcctgga  
    #             250
    gacccccaaa gggaaagtgt cccctgcgct gctcctgctc taaagacagc  
    #             300
    gccctgtgtg agggctcccc ggacctgccc gtcagcttct ctccgaccct  
    #             350
    gctgtcactc tcactcgtca ggacgggagt cacccagctg aaggccggca  
    #             400
    gcttcctgag aattccgtct ctgcacctgc tcctcttcac ctccaactcc  
    #             450
    ttctccgtga ttgaggacga tgcatttgcg ggcctgtccc acctgcagta  
    #             500
    cctcttcatc gaggacaatg agattggctc catctctaag aatgccctca  
    #             550
    gaggacttcg ctcgcttaca cacctaagcc tggccaataa ccatctggag  
    #             600
    accctcccca gattcctgtt ccgaggcctg gacaccctta ctcacgtgga  
    #             650
    cctccgcggg aacccgttcc agtgtgactg ccgcgtcctc tggctcctgc  
    #             700
    agtggatgcc caccgtgaat gccagcgtgg ggaccggcgc ctgtgcgggc  
    #             750
    cccgcctccc tgagccacat gcagctccac cacctcgacc ccaagacttt  
    #             800
    caagtgcaga gccataggtg gggggctttc ccgatggggt gggaggcggg  
    #             850
    agatctgggg gaaaggctgc cagggccaag aggctcgtct cactccctgc  
    #             900
    cctgccattt cccggagtgg gaagaccctg agcaagcagc actgccttcc  
    #             950
    tgagccccag ttttctcatc tgtaaagtgg gggtaataaa cagtgatata  
    #            1000
    gg                  
    #                  
    #                  
    #            1002
    <210> SEQ ID NO 86
    <211> LENGTH: 261
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 86
    Met Gly Gly Ala Gly Ile Leu Leu Leu Leu Le
    #u Ala Gly Ala Gly
      1               5 
    #                 10 
    #                 15
    Val Val Val Ala Trp Arg Pro Pro Lys Gly Ly
    #s Cys Pro Leu Arg
                     20 
    #                 25 
    #                 30
    Cys Ser Cys Ser Lys Asp Ser Ala Leu Cys Gl
    #u Gly Ser Pro Asp
                     35 
    #                 40 
    #                 45
    Leu Pro Val Ser Phe Ser Pro Thr Leu Leu Se
    #r Leu Ser Leu Val
                     50 
    #                 55 
    #                 60
    Arg Thr Gly Val Thr Gln Leu Lys Ala Gly Se
    #r Phe Leu Arg Ile
                     65 
    #                 70 
    #                 75
    Pro Ser Leu His Leu Leu Leu Phe Thr Ser As
    #n Ser Phe Ser Val
                     80 
    #                 85 
    #                 90
    Ile Glu Asp Asp Ala Phe Ala Gly Leu Ser Hi
    #s Leu Gln Tyr Leu
                     95 
    #                100 
    #                105
    Phe Ile Glu Asp Asn Glu Ile Gly Ser Ile Se
    #r Lys Asn Ala Leu
                    110  
    #               115  
    #               120
    Arg Gly Leu Arg Ser Leu Thr His Leu Ser Le
    #u Ala Asn Asn His
                    125  
    #               130  
    #               135
    Leu Glu Thr Leu Pro Arg Phe Leu Phe Arg Gl
    #y Leu Asp Thr Leu
                    140  
    #               145  
    #               150
    Thr His Val Asp Leu Arg Gly Asn Pro Phe Gl
    #n Cys Asp Cys Arg
                    155  
    #               160  
    #               165
    Val Leu Trp Leu Leu Gln Trp Met Pro Thr Va
    #l Asn Ala Ser Val
                    170  
    #               175  
    #               180
    Gly Thr Gly Ala Cys Ala Gly Pro Ala Ser Le
    #u Ser His Met Gln
                    185  
    #               190  
    #               195
    Leu His His Leu Asp Pro Lys Thr Phe Lys Cy
    #s Arg Ala Ile Gly
                    200  
    #               205  
    #               210
    Gly Gly Leu Ser Arg Trp Gly Gly Arg Arg Gl
    #u Ile Trp Gly Lys
                    215  
    #               220  
    #               225
    Gly Cys Gln Gly Gln Glu Ala Arg Leu Thr Pr
    #o Cys Pro Ala Ile
                    230  
    #               235  
    #               240
    Ser Arg Ser Gly Lys Thr Leu Ser Lys Gln Hi
    #s Cys Leu Pro Glu
                    245  
    #               250  
    #               255
    Pro Gln Phe Ser His Leu
                    260
    <210> SEQ ID NO 87
    <211> LENGTH: 2945
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 87
    cggacgcgtg gggcggcgag agcagctgca gttcgcatct caggcagtac  
    #              50
    ctagaggagc tgccggtgcc tcctcagaac atctcctgat cgctacccag  
    #             100
    gaccaggcac caaggacagg gagtcccagg cgcacacccc ccattctggg  
    #             150
    tcccccaggc ccagaccccc actctgccac aggttgcatc ttgacctggt  
    #             200
    cctcctgcag aagtggcccc tgtggtcctg ctctgagact cgtccctggg  
    #             250
    cgcccctgca gcccctttct atgactccat ctggatttgg ctggctgtgg  
    #             300
    ggacgcggtc cgaggggcgg cctggctctc agcgtggtgg cagccagctc  
    #             350
    tctggccacc atggcaaatg ctgagatctg aggggacaag gctctacagc  
    #             400
    ctcagccagg ggcactcagc tgttgcaggg tgtgatggag aacaaagcta  
    #             450
    tgtacctaca caccgtcagc gactgtgaca ccagctccat ctgtgaggat  
    #             500
    tcctttgatg gcaggagcct gtccaagctg aacctgtgtg aggatggtcc  
    #             550
    atgtcacaaa cggcgggcaa gcatctgctg tacccagctg gggtccctgt  
    #             600
    cggccctgaa gcatgctgtc ctggggctct acctgctggt cttcctgatt  
    #             650
    cttgtgggca tcttcatctt agcagggcca ccgggaccca aaggtgatca  
    #             700
    gggggatgaa ggaaaggaag gcaggcctgg catccctgga ttgcctggac  
    #             750
    ttcgaggtct gcccggggag agaggtaccc caggattgcc cgggcccaag  
    #             800
    ggcgatgatg ggaagctggg ggccacagga ccaatgggca tgcgtgggtt  
    #             850
    caaaggtgac cgaggcccaa aaggagagaa aggagagaaa ggagacagag  
    #             900
    ctggggatgc cagtggcgtg gaggccccga tgatgatccg cctggtgaat  
    #             950
    ggctcaggtc cgcacgaggg ccgcgtggaa gtgtaccacg accggcgctg  
    #            1000
    gggcaccgtg tgtgacgacg gctgggacaa gaaggacgga gacgtggtgt  
    #            1050
    gccgcatgct cggcttccgc ggtgtggagg aggtgtaccg cacagctcga  
    #            1100
    ttcgggcaag gcactgggag gatctggatg gatgacgttg cctgcaaggg  
    #            1150
    cacagaggaa accatcttcc gctgcagctt ctccaaatgg ggggtgacaa  
    #            1200
    actgtggaca tgccgaagat gccagcgtga catgcaacag acactgaaag  
    #            1250
    tgggcagagc ccaagttcgg ggtcctgcac agagcaccct tgctgcatcc  
    #            1300
    ctggggtggg gcacagctcg gggccaccct gaccatgcct cgaccacacc  
    #            1350
    ccgtccagca ttctcagtcc tcacacctgc atcccaggac cgtgggggcc  
    #            1400
    ggtcgtcatt tccctcttga acatgtgctc cgaagtataa ctctgggacc  
    #            1450
    tactgcccgt ctctctcttc caccaggttc ctgcatgagg agccctgatc  
    #            1500
    aactggatca ccactttgcc cagcctctga acaccatgca ccaggcctca  
    #            1550
    atatcccagt tccctttggc cttttagtta caggtgaatg ctgagaatgt  
    #            1600
    gtcagagaca agtgcagcag cagcgatggt tggtagtata gatcatttac  
    #            1650
    tcttcagaca attcccaaac ctccattagt ccaagagttt ctacatcttc  
    #            1700
    ctccccagca agaggcaacg tcaagtgatg aatttccccc ctttactctg  
    #            1750
    cctctgctcc ccatttgcta gtttgaggaa gtgacataga ggagaagcca  
    #            1800
    gctgtagggg caagagggaa atgcaagtca cctgcaggaa tccagctaga  
    #            1850
    tttggagaag ggaatgaaac taacattgaa tgactaccat ggcacgctaa  
    #            1900
    atagtatctt gggtgccaaa ttcatgtatc cacttagctg cattggtcca  
    #            1950
    gggcatgtca gtctggatac agccttacct tcaggtagca cttaactggt  
    #            2000
    ccattcacct agactgcaag taagaagaca aaatgactga gaccgtgtgc  
    #            2050
    ccacctgaac ttattgtctt tacttggcct gagctaaaag cttgggtgca  
    #            2100
    ggacctgtgt aactagaaag ttgcctactt cagaacctcc agggcgtgag  
    #            2150
    tgcaaggtca aacatgactg gcttccaggc cgaccatcaa tgtaggagga  
    #            2200
    gagctgatgt ggagggtgac atgggggctg cccatgttaa acctgagtcc  
    #            2250
    agtgctctgg cattgggcag tcacggttaa agccaagtca tgtgtgtctc  
    #            2300
    agctgtttgg aggtgatgat tttgcatctt ccaagcctct tcaggtgtga  
    #            2350
    atctgtggtc aggaaaacac aagtcctaat ggaaccctta ggggggaagg  
    #            2400
    aaatgaagat tccctataac ctctgggggt ggggagtagg aataaggggc  
    #            2450
    cttgggcctc cataaatctg caatctgcac cctcctccta gagacaggga  
    #            2500
    gatcgtgttc tgctttttac atgaggagca gaactgggcc atacacgtgt  
    #            2550
    tcaagaacta ggggagctac ctggtagcaa gtgagtgcag acccacctca  
    #            2600
    ccttggggga atctcaaact cataggcctc agatacacga tcacctgtca  
    #            2650
    tatcaggtga gcactggcct gcttggggag agacctgggc ccctccaggt  
    #            2700
    gtaggaacag caacactcct ggctgacaac taagccaata tggccctagg  
    #            2750
    tcattcttgc ttccaatatg cttgccactc cttaaatgtc ctaatgatga  
    #            2800
    gaaactctct ttctgaccaa ttgctatgtt tacataacac gcatgtactc  
    #            2850
    atgcatccct tgccagagcc catatatgta tgcatatata aacatagcac  
    #            2900
    tttttactac atagctcagc acattgcaag gtttgcattt aagtt   
    #                2945
    <210> SEQ ID NO 88
    <211> LENGTH: 270
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 88
    Met Glu Asn Lys Ala Met Tyr Leu His Thr Va
    #l Ser Asp Cys Asp
      1               5 
    #                 10 
    #                 15
    Thr Ser Ser Ile Cys Glu Asp Ser Phe Asp Gl
    #y Arg Ser Leu Ser
                     20 
    #                 25 
    #                 30
    Lys Leu Asn Leu Cys Glu Asp Gly Pro Cys Hi
    #s Lys Arg Arg Ala
                     35 
    #                 40 
    #                 45
    Ser Ile Cys Cys Thr Gln Leu Gly Ser Leu Se
    #r Ala Leu Lys His
                     50 
    #                 55 
    #                 60
    Ala Val Leu Gly Leu Tyr Leu Leu Val Phe Le
    #u Ile Leu Val Gly
                     65 
    #                 70 
    #                 75
    Ile Phe Ile Leu Ala Gly Pro Pro Gly Pro Ly
    #s Gly Asp Gln Gly
                     80 
    #                 85 
    #                 90
    Asp Glu Gly Lys Glu Gly Arg Pro Gly Ile Pr
    #o Gly Leu Pro Gly
                     95 
    #                100 
    #                105
    Leu Arg Gly Leu Pro Gly Glu Arg Gly Thr Pr
    #o Gly Leu Pro Gly
                    110  
    #               115  
    #               120
    Pro Lys Gly Asp Asp Gly Lys Leu Gly Ala Th
    #r Gly Pro Met Gly
                    125  
    #               130  
    #               135
    Met Arg Gly Phe Lys Gly Asp Arg Gly Pro Ly
    #s Gly Glu Lys Gly
                    140  
    #               145  
    #               150
    Glu Lys Gly Asp Arg Ala Gly Asp Ala Ser Gl
    #y Val Glu Ala Pro
                    155  
    #               160  
    #               165
    Met Met Ile Arg Leu Val Asn Gly Ser Gly Pr
    #o His Glu Gly Arg
                    170  
    #               175  
    #               180
    Val Glu Val Tyr His Asp Arg Arg Trp Gly Th
    #r Val Cys Asp Asp
                    185  
    #               190  
    #               195
    Gly Trp Asp Lys Lys Asp Gly Asp Val Val Cy
    #s Arg Met Leu Gly
                    200  
    #               205  
    #               210
    Phe Arg Gly Val Glu Glu Val Tyr Arg Thr Al
    #a Arg Phe Gly Gln
                    215  
    #               220  
    #               225
    Gly Thr Gly Arg Ile Trp Met Asp Asp Val Al
    #a Cys Lys Gly Thr
                    230  
    #               235  
    #               240
    Glu Glu Thr Ile Phe Arg Cys Ser Phe Ser Ly
    #s Trp Gly Val Thr
                    245  
    #               250  
    #               255
    Asn Cys Gly His Ala Glu Asp Ala Ser Val Th
    #r Cys Asn Arg His
                    260  
    #               265  
    #               270
    <210> SEQ ID NO 89
    <211> LENGTH: 2758
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 89
    gtcgccgcga gggacgcaga gagcaccctc cacgcccaga tgcctgcgta  
    #              50
    gtttttgtga ccagtccgct cctgcctccc cctggggcag tagaggggga  
    #             100
    gcgatggaga actggactgg caggccctgg ctgtatctgc tgctgcttct  
    #             150
    gtccctccct cagctctgct tggatcagga ggtgttgtcc ggacactctc  
    #             200
    ttcagacacc tacagaggag ggccagggcc ccgaaggtgt ctggggacct  
    #             250
    tgggtccagt gggcctcttg ctcccagccc tgcggggtgg gggtgcagcg  
    #             300
    caggagccgg acatgtcagc tccctacagt gcagctccac ccgagtctgc  
    #             350
    ccctccctcc ccggccccca agacatccag aagccctcct cccccggggc  
    #             400
    cagggtccca gaccccagac ttctccagaa accctcccct tgtacaggac  
    #             450
    acagtctcgg ggaaggggtg gcccacttcg aggtcccgct tcccacctag  
    #             500
    ggagagagga gacccaggag attcgagcgg ccaggaggtc ccggcttcga  
    #             550
    gaccccatca agccaggaat gttcggttat gggagagtgc cctttgcatt  
    #             600
    gccactgcac cggaaccgca ggcaccctcg gagcccaccc agatctgagc  
    #             650
    tgtccctgat ctcttctaga ggggaagagg ctattccgtc ccctactcca  
    #             700
    agagcagagc cattctccgc aaacggcagc ccccaaactg agctccctcc  
    #             750
    cacagaactg tctgtccaca ccccatcccc ccaagcagaa cctctaagcc  
    #             800
    ctgaaactgc tcagacagag gtggccccca gaaccaggcc tgccccccta  
    #             850
    cggcatcacc ccagagccca ggcctctggc acagagcccc cctcacccac  
    #             900
    gcactcctta ggagaaggtg gcttcttccg tgcatcccct cagccacgaa  
    #             950
    ggccaagttc ccagggttgg gccagtcccc aggtagcagg gagacgccct  
    #            1000
    gatccttttc cttcggtccc tcggggccga ggccagcagg gccaagggcc  
    #            1050
    ttggggaacg ggggggactc ctcacgggcc ccgcctggag cctgaccctc  
    #            1100
    agcacccggg cgcctggctg cccctgctga gcaacggccc ccatgccagc  
    #            1150
    tccctctgga gcctctttgc tcccagtagc cctattccaa gatgttctgg  
    #            1200
    ggagagtgaa cagctaagag cctgcagcca agcgccctgc ccccctgagc  
    #            1250
    agccagaccc ccgggccctg cagtgcgcag cctttaactc ccaggaattc  
    #            1300
    atgggccagc tgtatcagtg ggagcccttc actgaagtcc agggctccca  
    #            1350
    gcgctgtgaa ctgaactgcc ggccccgtgg cttccgcttc tatgtccgtc  
    #            1400
    acactgaaaa ggtccaggat gggaccctgt gtcagcctgg agcccctgac  
    #            1450
    atctgtgtgg ctggacgctg tctgagcccc ggctgtgatg ggatccttgg  
    #            1500
    ctctggcagg cgtcctgatg gctgtggagt ctgtgggggt gatgattcta  
    #            1550
    cctgtcgcct tgtttcgggg aacctcactg accgaggggg ccccctgggc  
    #            1600
    tatcagaaga tcttgtggat tccagcggga gccttgcggc tccagattgc  
    #            1650
    ccagctccgg cctagctcca actacctggc acttcgtggc cctgggggcc  
    #            1700
    ggtccatcat caatgggaac tgggctgtgg atccccctgg gtcctacagg  
    #            1750
    gccggcggga ccgtctttcg atataaccgt cctcccaggg aggagggcaa  
    #            1800
    aggggagagt ctgtcggctg aaggccccac cacccagcct gtggatgtct  
    #            1850
    atatgatctt tcaggaggaa aacccaggcg ttttttatca gtatgtcatc  
    #            1900
    tcttcacctc ctccaatcct tgagaacccc accccagagc cccctgtccc  
    #            1950
    ccagcttcag ccggagattc tgagggtgga gcccccactt gctccggcac  
    #            2000
    cccgcccagc ccggacccca ggcaccctcc agcgtcaggt gcggatcccc  
    #            2050
    cagatgcccg ccccgcccca tcccaggaca cccctggggt ctccagctgc  
    #            2100
    gtactggaaa cgagtgggac actctgcatg ctcagcgtcc tgcgggaaag  
    #            2150
    gtgtctggcg ccccattttc ctctgcatct cccgtgagtc gggagaggaa  
    #            2200
    ctggatgaac gcagctgtgc cgcgggtgcc aggcccccag cctcccctga  
    #            2250
    accctgccac ggcaccccat gccccccata ctgggaggct ggcgagtgga  
    #            2300
    catcctgcag ccgctcctgt ggccccggca cccagcaccg ccagctgcag  
    #            2350
    tgccggcagg aatttggggg gggtggctcc tcggtgcccc cggagcgctg  
    #            2400
    tggacatctc ccccggccca acatcaccca gtcttgccag ctgcgcctct  
    #            2450
    gtggccattg ggaagttggc tctccttgga gccagtgctc cgtgcggtgc  
    #            2500
    ggccggggcc agagaagccg gcaggttcgc tgtgttggga acaacggtga  
    #            2550
    tgaagtgagc gagcaggagt gtgcgtcagg ccccccacag ccccccagca  
    #            2600
    gagaggcctg tgacatgggg ccctgtacta ctgcctggtt ccacagcgac  
    #            2650
    tggagctcca aggtgagccc ggaaccccca gccatatcct gcatcctggg  
    #            2700
    taaccatgcc caggacacct cagcctttcc agcatagctc aataaacttg  
    #            2750
    tattgatc                
    #                  
    #                  
    #        2758
    <210> SEQ ID NO 90
    <211> LENGTH: 877
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 90
    Met Glu Asn Trp Thr Gly Arg Pro Trp Leu Ty
    #r Leu Leu Leu Leu
      1               5 
    #                 10 
    #                 15
    Leu Ser Leu Pro Gln Leu Cys Leu Asp Gln Gl
    #u Val Leu Ser Gly
                     20 
    #                 25 
    #                 30
    His Ser Leu Gln Thr Pro Thr Glu Glu Gly Gl
    #n Gly Pro Glu Gly
                     35 
    #                 40 
    #                 45
    Val Trp Gly Pro Trp Val Gln Trp Ala Ser Cy
    #s Ser Gln Pro Cys
                     50 
    #                 55 
    #                 60
    Gly Val Gly Val Gln Arg Arg Ser Arg Thr Cy
    #s Gln Leu Pro Thr
                     65 
    #                 70 
    #                 75
    Val Gln Leu His Pro Ser Leu Pro Leu Pro Pr
    #o Arg Pro Pro Arg
                     80 
    #                 85 
    #                 90
    His Pro Glu Ala Leu Leu Pro Arg Gly Gln Gl
    #y Pro Arg Pro Gln
                     95 
    #                100 
    #                105
    Thr Ser Pro Glu Thr Leu Pro Leu Tyr Arg Th
    #r Gln Ser Arg Gly
                    110  
    #               115  
    #               120
    Arg Gly Gly Pro Leu Arg Gly Pro Ala Ser Hi
    #s Leu Gly Arg Glu
                    125  
    #               130  
    #               135
    Glu Thr Gln Glu Ile Arg Ala Ala Arg Arg Se
    #r Arg Leu Arg Asp
                    140  
    #               145  
    #               150
    Pro Ile Lys Pro Gly Met Phe Gly Tyr Gly Ar
    #g Val Pro Phe Ala
                    155  
    #               160  
    #               165
    Leu Pro Leu His Arg Asn Arg Arg His Pro Ar
    #g Ser Pro Pro Arg
                    170  
    #               175  
    #               180
    Ser Glu Leu Ser Leu Ile Ser Ser Arg Gly Gl
    #u Glu Ala Ile Pro
                    185  
    #               190  
    #               195
    Ser Pro Thr Pro Arg Ala Glu Pro Phe Ser Al
    #a Asn Gly Ser Pro
                    200  
    #               205  
    #               210
    Gln Thr Glu Leu Pro Pro Thr Glu Leu Ser Va
    #l His Thr Pro Ser
                    215  
    #               220  
    #               225
    Pro Gln Ala Glu Pro Leu Ser Pro Glu Thr Al
    #a Gln Thr Glu Val
                    230  
    #               235  
    #               240
    Ala Pro Arg Thr Arg Pro Ala Pro Leu Arg Hi
    #s His Pro Arg Ala
                    245  
    #               250  
    #               255
    Gln Ala Ser Gly Thr Glu Pro Pro Ser Pro Th
    #r His Ser Leu Gly
                    260  
    #               265  
    #               270
    Glu Gly Gly Phe Phe Arg Ala Ser Pro Gln Pr
    #o Arg Arg Pro Ser
                    275  
    #               280  
    #               285
    Ser Gln Gly Trp Ala Ser Pro Gln Val Ala Gl
    #y Arg Arg Pro Asp
                    290  
    #               295  
    #               300
    Pro Phe Pro Ser Val Pro Arg Gly Arg Gly Gl
    #n Gln Gly Gln Gly
                    305  
    #               310  
    #               315
    Pro Trp Gly Thr Gly Gly Thr Pro His Gly Pr
    #o Arg Leu Glu Pro
                    320  
    #               325  
    #               330
    Asp Pro Gln His Pro Gly Ala Trp Leu Pro Le
    #u Leu Ser Asn Gly
                    335  
    #               340  
    #               345
    Pro His Ala Ser Ser Leu Trp Ser Leu Phe Al
    #a Pro Ser Ser Pro
                    350  
    #               355  
    #               360
    Ile Pro Arg Cys Ser Gly Glu Ser Glu Gln Le
    #u Arg Ala Cys Ser
                    365  
    #               370  
    #               375
    Gln Ala Pro Cys Pro Pro Glu Gln Pro Asp Pr
    #o Arg Ala Leu Gln
                    380  
    #               385  
    #               390
    Cys Ala Ala Phe Asn Ser Gln Glu Phe Met Gl
    #y Gln Leu Tyr Gln
                    395  
    #               400  
    #               405
    Trp Glu Pro Phe Thr Glu Val Gln Gly Ser Gl
    #n Arg Cys Glu Leu
                    410  
    #               415  
    #               420
    Asn Cys Arg Pro Arg Gly Phe Arg Phe Tyr Va
    #l Arg His Thr Glu
                    425  
    #               430  
    #               435
    Lys Val Gln Asp Gly Thr Leu Cys Gln Pro Gl
    #y Ala Pro Asp Ile
                    440  
    #               445  
    #               450
    Cys Val Ala Gly Arg Cys Leu Ser Pro Gly Cy
    #s Asp Gly Ile Leu
                    455  
    #               460  
    #               465
    Gly Ser Gly Arg Arg Pro Asp Gly Cys Gly Va
    #l Cys Gly Gly Asp
                    470  
    #               475  
    #               480
    Asp Ser Thr Cys Arg Leu Val Ser Gly Asn Le
    #u Thr Asp Arg Gly
                    485  
    #               490  
    #               495
    Gly Pro Leu Gly Tyr Gln Lys Ile Leu Trp Il
    #e Pro Ala Gly Ala
                    500  
    #               505  
    #               510
    Leu Arg Leu Gln Ile Ala Gln Leu Arg Pro Se
    #r Ser Asn Tyr Leu
                    515  
    #               520  
    #               525
    Ala Leu Arg Gly Pro Gly Gly Arg Ser Ile Il
    #e Asn Gly Asn Trp
                    530  
    #               535  
    #               540
    Ala Val Asp Pro Pro Gly Ser Tyr Arg Ala Gl
    #y Gly Thr Val Phe
                    545  
    #               550  
    #               555
    Arg Tyr Asn Arg Pro Pro Arg Glu Glu Gly Ly
    #s Gly Glu Ser Leu
                    560  
    #               565  
    #               570
    Ser Ala Glu Gly Pro Thr Thr Gln Pro Val As
    #p Val Tyr Met Ile
                    575  
    #               580  
    #               585
    Phe Gln Glu Glu Asn Pro Gly Val Phe Tyr Gl
    #n Tyr Val Ile Ser
                    590  
    #               595  
    #               600
    Ser Pro Pro Pro Ile Leu Glu Asn Pro Thr Pr
    #o Glu Pro Pro Val
                    605  
    #               610  
    #               615
    Pro Gln Leu Gln Pro Glu Ile Leu Arg Val Gl
    #u Pro Pro Leu Ala
                    620  
    #               625  
    #               630
    Pro Ala Pro Arg Pro Ala Arg Thr Pro Gly Th
    #r Leu Gln Arg Gln
                    635  
    #               640  
    #               645
    Val Arg Ile Pro Gln Met Pro Ala Pro Pro Hi
    #s Pro Arg Thr Pro
                    650  
    #               655  
    #               660
    Leu Gly Ser Pro Ala Ala Tyr Trp Lys Arg Va
    #l Gly His Ser Ala
                    665  
    #               670  
    #               675
    Cys Ser Ala Ser Cys Gly Lys Gly Val Trp Ar
    #g Pro Ile Phe Leu
                    680  
    #               685  
    #               690
    Cys Ile Ser Arg Glu Ser Gly Glu Glu Leu As
    #p Glu Arg Ser Cys
                    695  
    #               700  
    #               705
    Ala Ala Gly Ala Arg Pro Pro Ala Ser Pro Gl
    #u Pro Cys His Gly
                    710  
    #               715  
    #               720
    Thr Pro Cys Pro Pro Tyr Trp Glu Ala Gly Gl
    #u Trp Thr Ser Cys
                    725  
    #               730  
    #               735
    Ser Arg Ser Cys Gly Pro Gly Thr Gln His Ar
    #g Gln Leu Gln Cys
                    740  
    #               745  
    #               750
    Arg Gln Glu Phe Gly Gly Gly Gly Ser Ser Va
    #l Pro Pro Glu Arg
                    755  
    #               760  
    #               765
    Cys Gly His Leu Pro Arg Pro Asn Ile Thr Gl
    #n Ser Cys Gln Leu
                    770  
    #               775  
    #               780
    Arg Leu Cys Gly His Trp Glu Val Gly Ser Pr
    #o Trp Ser Gln Cys
                    785  
    #               790  
    #               795
    Ser Val Arg Cys Gly Arg Gly Gln Arg Ser Ar
    #g Gln Val Arg Cys
                    800  
    #               805  
    #               810
    Val Gly Asn Asn Gly Asp Glu Val Ser Glu Gl
    #n Glu Cys Ala Ser
                    815  
    #               820  
    #               825
    Gly Pro Pro Gln Pro Pro Ser Arg Glu Ala Cy
    #s Asp Met Gly Pro
                    830  
    #               835  
    #               840
    Cys Thr Thr Ala Trp Phe His Ser Asp Trp Se
    #r Ser Lys Val Ser
                    845  
    #               850  
    #               855
    Pro Glu Pro Pro Ala Ile Ser Cys Ile Leu Gl
    #y Asn His Ala Gln
                    860  
    #               865  
    #               870
    Asp Thr Ser Ala Phe Pro Ala
                    875
    <210> SEQ ID NO 91
    <211> LENGTH: 2597
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 91
    cgagtatttt cccaccatct ccagccggaa actgaccaag aactctgagg  
    #              50
    cggatggcat gttcgcgtac gtcttccatg atgagttcgt ggcctcgatg  
    #             100
    attaagatcc cttcggacac cttcaccatc atccctgact ttgatatcta  
    #             150
    ctatgtctat ggttttagca gtggcaactt tgtctacttt ttgaccctcc  
    #             200
    aacctgagat ggtgtctcca ccaggctcca ccaccaagga gcaggtgtat  
    #             250
    acatccaagc tcgtgaggct ttgcaaggag gacacagcct tcaactccta  
    #             300
    tgtagaggtg cccattggct gtgagcgcag tggggtggag taccgcctgc  
    #             350
    tgcaggctgc ctacctgtcc aaagcggggg ccgtgcttgg caggaccctt  
    #             400
    ggagtccatc cagatgatga cctgctcttc accgtcttct ccaagggcca  
    #             450
    gaagcggaaa atgaaatccc tggatgagtc ggccctgtgc atcttcatct  
    #             500
    tgaagcagat aaatgaccgc attaaggagc ggctgcagtc ttgttaccgg  
    #             550
    ggcgagggca cgctggacct ggcctggctc aaggtgaagg acatcccctg  
    #             600
    cagcagtgcg ctcttaacca ttgacgataa cttctgtggc ctggacatga  
    #             650
    atgctcccct gggagtgtcc gacatggtgc gtggaattcc cgtcttcacg  
    #             700
    gaggacaggg accgcatgac gtctgtcatc gcatatgtct acaagaacca  
    #             750
    ctctctggcc tttgtgggca ccaaaagtgg caagctgaag aaggtgcctg  
    #             800
    gtaccagcct ctgccctacc cttgagctac agacgggacc ccgatcccac  
    #             850
    agagcaacag tgactctgga actcctgttc tccagctgtt catcaaactg  
    #             900
    agaaaaactt cagagctgtg taggcttatt tagtgtgttg tcagccttgg  
    #             950
    atattggaaa atggaaacag atgagacaca tctacctccc tgtgacccca  
    #            1000
    gccatacatc atagctcatg tcctgccacc ccaagtcctt agggaaaaaa  
    #            1050
    gactttggag aatgtgtctc tgcttagctt ggctaggtag ttggtctctt  
    #            1100
    ttctctgccc caagcgtccc ctgggtaatt ttggacaatg gagtgtaggc  
    #            1150
    atgtttgact cttgtggtgt tatcacttgt atatgtcagt gaaactaact  
    #            1200
    gattctccca tcggaatata gttatctctt gggcctgata tatggtagga  
    #            1250
    taaccttatg ctcatctgtc cacttctgca gccaagtcgc ctggccagtg  
    #            1300
    tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtatg cttatctgtg  
    #            1350
    tttaaaggtg tgtgtgcata cacagggcag agaggatgga gcccaccgta  
    #            1400
    ctgcagcatc atgtaattaa ctcagtgctc agaaccatcc cagcctctgc  
    #            1450
    gggaaagaga aaagtaagcc aacagtgcct gatgagctga tcatatgtgc  
    #            1500
    aaaagctctg ttggcatctg gtccaggaga gcacccaaaa aaagttaatt  
    #            1550
    ggtgttgtcc agtctccttt ccttaagact atggttacaa caaagcgtga  
    #            1600
    gcagtgtctc ctgcatggcc actatccagc acaattccat aattccccca  
    #            1650
    tagagccggt ggggaggagg aggtgagtgg cgaaggaagt ggaaacactt  
    #            1700
    ggtgtcatgt gctcctatca tttctactag cttactggga aataaagtgt  
    #            1750
    agtcaagagt gtatgaaggc aagatgtaaa attagcgact ggtgctaatc  
    #            1800
    tggttacttg aaaacaagtg aaagtgctgt agatttgttc tgttgctaag  
    #            1850
    aaccaccaca ctaaacctcg tatagttcct ggaggatata caacagtgta  
    #            1900
    attctcttta gggtgtgcca caggttcctg gcctgtggga gggaatgaat  
    #            1950
    caggagggct cttgagaacc ttcatctgtg tgcttgcact gaaagtgagt  
    #            2000
    cccaaagctg gagatttagt gagagcaggc aacccctctg tgtctcactg  
    #            2050
    tccatattct ggaggcagag gtttgtaaca ggccatgtgc acctgcatag  
    #            2100
    ggatgggtaa agcaaggact ttgaaagagt tgaaaagcat tataaacagt  
    #            2150
    tgttcagaaa tacgtcccag gagttccatg tgaaactggc tctgtgtgca  
    #            2200
    ttgaagcatg gctgttggga attctaactg gtccaacact cctgcaaaac  
    #            2250
    aatgtgtaaa tatttaggaa gaaacttgaa aatagtcaaa tcctttgaac  
    #            2300
    tggtgacaat tttttaaaga atcaattcta atttgtttca agggtaataa  
    #            2350
    tcaccaagat acacatttca gcatttattt agtctatcaa aaattggaat  
    #            2400
    tgatatatac actcatttat aggagaatgg ttaggtagat ttggtatatt  
    #            2450
    tatgtagtca ttgaaaactt agtttataaa ggccaatctt gtaactgatt  
    #            2500
    cttgtgtgat aacattcagt gaaaaagcat gagacaatta gaaagcatga  
    #            2550
    tacaatgaat aaaataaaaa ctggaaagag aaccatcaaa atgctaa   
    #              2597
    <210> SEQ ID NO 92
    <211> LENGTH: 280
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 92
    Met Phe Ala Tyr Val Phe His Asp Glu Phe Va
    #l Ala Ser Met Ile
      1               5 
    #                 10 
    #                 15
    Lys Ile Pro Ser Asp Thr Phe Thr Ile Ile Pr
    #o Asp Phe Asp Ile
                     20 
    #                 25 
    #                 30
    Tyr Tyr Val Tyr Gly Phe Ser Ser Gly Asn Ph
    #e Val Tyr Phe Leu
                     35 
    #                 40 
    #                 45
    Thr Leu Gln Pro Glu Met Val Ser Pro Pro Gl
    #y Ser Thr Thr Lys
                     50 
    #                 55 
    #                 60
    Glu Gln Val Tyr Thr Ser Lys Leu Val Arg Le
    #u Cys Lys Glu Asp
                     65 
    #                 70 
    #                 75
    Thr Ala Phe Asn Ser Tyr Val Glu Val Pro Il
    #e Gly Cys Glu Arg
                     80 
    #                 85 
    #                 90
    Ser Gly Val Glu Tyr Arg Leu Leu Gln Ala Al
    #a Tyr Leu Ser Lys
                     95 
    #                100 
    #                105
    Ala Gly Ala Val Leu Gly Arg Thr Leu Gly Va
    #l His Pro Asp Asp
                    110  
    #               115  
    #               120
    Asp Leu Leu Phe Thr Val Phe Ser Lys Gly Gl
    #n Lys Arg Lys Met
                    125  
    #               130  
    #               135
    Lys Ser Leu Asp Glu Ser Ala Leu Cys Ile Ph
    #e Ile Leu Lys Gln
                    140  
    #               145  
    #               150
    Ile Asn Asp Arg Ile Lys Glu Arg Leu Gln Se
    #r Cys Tyr Arg Gly
                    155  
    #               160  
    #               165
    Glu Gly Thr Leu Asp Leu Ala Trp Leu Lys Va
    #l Lys Asp Ile Pro
                    170  
    #               175  
    #               180
    Cys Ser Ser Ala Leu Leu Thr Ile Asp Asp As
    #n Phe Cys Gly Leu
                    185  
    #               190  
    #               195
    Asp Met Asn Ala Pro Leu Gly Val Ser Asp Me
    #t Val Arg Gly Ile
                    200  
    #               205  
    #               210
    Pro Val Phe Thr Glu Asp Arg Asp Arg Met Th
    #r Ser Val Ile Ala
                    215  
    #               220  
    #               225
    Tyr Val Tyr Lys Asn His Ser Leu Ala Phe Va
    #l Gly Thr Lys Ser
                    230  
    #               235  
    #               240
    Gly Lys Leu Lys Lys Val Pro Gly Thr Ser Le
    #u Cys Pro Thr Leu
                    245  
    #               250  
    #               255
    Glu Leu Gln Thr Gly Pro Arg Ser His Arg Al
    #a Thr Val Thr Leu
                    260  
    #               265  
    #               270
    Glu Leu Leu Phe Ser Ser Cys Ser Ser Asn
                    275  
    #               280
    <210> SEQ ID NO 93
    <211> LENGTH: 2883
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 93
    ccttatcaga caaaggacga gatggaaaat acaagataat ttacagtgga  
    #              50
    gaagaattag aatgtaacct gaaagatctt agaccagcaa cagattatca  
    #             100
    tgtgagggtg tatgccatgt acaattccgt aaagggatcc tgctccgagc  
    #             150
    ctgttagctt caccacccac agctgtgcac ccgagtgtcc tttcccccct  
    #             200
    aagctggcac ataggagcaa aagttcacta accctgcagt ggaaggcacc  
    #             250
    aattgacaac ggttcaaaaa tcaccaacta ccttttagag tgggatgagg  
    #             300
    gaaaaagaaa tagtggtttc agacagtgct tcttcgggag ccagaagcac  
    #             350
    tgcaagttga caaagctttg tccggcaatg gggtacacat tcaggctggc  
    #             400
    cgctcgaaac gacattggca ccagtggtta tagccaagag gtggtgtgct  
    #             450
    acacattagg aaatatccct cagatgcctt ctgcactaag gctggttcga  
    #             500
    gctggcatca catgggtcac gttgcagtgg agtaagccag aaggctgttc  
    #             550
    acccgaggaa gtgatcacct acaccttgga aattcaggag gatgaaaatg  
    #             600
    ataacctttt ccacccaaaa tacactggag aggatttaac ctgtactgtg  
    #             650
    aaaaatctca aaagaagcac acagtataaa ttcaggctga ctgcttctaa  
    #             700
    tacggaagga aaaagctgtc caagcgaagt tcttgtttgt acgacgagtc  
    #             750
    ctgacaggcc tggacctcct accagaccgc ttgtcaaagg cccagttaca  
    #             800
    tctcatggct ttagtgtcaa atgggatccc cctaaggaca atggtggttc  
    #             850
    agaaatcctc aagtacttgc tagagattac tgatggaaat tctgaagcga  
    #             900
    atcagtggga agtggcctac agtgggtcgg ctaccgaata caccttcacc  
    #             950
    cacttgaaac caggcacttt gtacaaactc cgagcatgct gcatcagtac  
    #            1000
    cggcggacac agccagtgtt ctgaaagtct ccctgttcgc acactaagca  
    #            1050
    ttgcaccagg tcaatgtcga ccaccgaggg ttttgggtag accaaagcac  
    #            1100
    aaagaagtcc acttagagtg ggatgttcct gcatcggaaa gtggctgtga  
    #            1150
    ggtctcagag tacagcgtgg agatgacgga gcccgaagac gtagcctcgg  
    #            1200
    aagtgtacca tggcccagag ctggagtgca ccgtcggcaa cctgcttcct  
    #            1250
    ggaaccgtgt atcgcttccg ggtgagggct ctgaatgatg gagggtatgg  
    #            1300
    tccctattct gatgtctcag aaattaccac tgctgcaggg cctcctggac  
    #            1350
    aatgcaaagc accttgtatt tcttgtacac ctgatggatg tgtcttagtg  
    #            1400
    ggttgggaga gtcctgatag ttctggtgct gacatctcag agtacaggtt  
    #            1450
    ggaatgggga gaagatgaag aatccttaga actcatttat catgggacag  
    #            1500
    acacccgttt tgaaataaga gacctgttgc ctgctgcaca gtattgctgt  
    #            1550
    agactacagg ccttcaatca agcaggggca gggccgtaca gtgaacttgt  
    #            1600
    cctttgccag acgccagcgt ctgcccctga ccccgtctcc actctctgtg  
    #            1650
    tcctggagga ggagcccctt gatgcctacc ctgattcacc ttctgcgtgc  
    #            1700
    cttgtactga actgggaaga gccgtgcaat aacggatctg aaatccttgc  
    #            1750
    ttacaccatt gatctaggag acactagcat taccgtgggc aacaccacca  
    #            1800
    tgcatgttat gaaagatctc cttccagaaa ccacctaccg gatcagaatt  
    #            1850
    caggctataa atgaaattgg agctggacca tttagtcagt tcattaaagc  
    #            1900
    aaaaactcgg ccattaccac ccttgcctcc taggctagaa tgtgctgctg  
    #            1950
    ctggtcctca gagcctgaag ctaaaatggg gagacagtaa ctccaagaca  
    #            2000
    catgctgctg aggacattgt gtacacacta cagctggagg acagaaacaa  
    #            2050
    gaggtttatt tcaatctaca gaggacccag ccacacctac aaggtccaga  
    #            2100
    gactgacgga attcacatgc tactccttca gaatccaggc agcaagcgag  
    #            2150
    gctggagaag ggcccttctc agaaacctat accttcagca caaccaaaag  
    #            2200
    tgtccccccc accatcaaag cacctcgagt aacacagtta gaagtaaatt  
    #            2250
    catgtgaaat tttatgggag acggtaccat caatgaaagg tgaccctgtt  
    #            2300
    aactacattc tgcaggtatt ggttggaaga gaatctgagt acaaacaggt  
    #            2350
    gtacaaggga gaagaagcca cattccaaat ctcaggcctc cagaccaaca  
    #            2400
    cagactacag gttccgcgta tgtgcgtgtc gtcgctgttt agacacctct  
    #            2450
    caggagctaa gcggagcctt cagcccctct gcggcttttg tattacaacg  
    #            2500
    aagtgaggtc atgcttacag gggacatggg gagcttagat gatcccaaaa  
    #            2550
    tgaagagcat gatgcctact gatgaacagt ttgcagccat cattgtgctt  
    #            2600
    ggctttgcaa ctttgtccat tttatttgcc tttatattac agtacttctt  
    #            2650
    aatgaagtaa acccaacaaa actagaggta tgaattaatg ctacacattt  
    #            2700
    taatacacac atttattcag atactcccct ttttaaagcc cttttgtttt  
    #            2750
    ttgatttata tactctgttt tacagattta gctagaaaaa aaatgtcagt  
    #            2800
    gttttggtgc acctttttga aatgcaaaac taggaaaagg ttaaactgga  
    #            2850
    ttttttttta aaaaaaaaaa aaaaaaaaaa aaa       
    #                  
    #       2883
    <210> SEQ ID NO 94
    <211> LENGTH: 847
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 94
    Met Tyr Asn Ser Val Lys Gly Ser Cys Ser Gl
    #u Pro Val Ser Phe
      1               5 
    #                 10 
    #                 15
    Thr Thr His Ser Cys Ala Pro Glu Cys Pro Ph
    #e Pro Pro Lys Leu
                     20 
    #                 25 
    #                 30
    Ala His Arg Ser Lys Ser Ser Leu Thr Leu Gl
    #n Trp Lys Ala Pro
                     35 
    #                 40 
    #                 45
    Ile Asp Asn Gly Ser Lys Ile Thr Asn Tyr Le
    #u Leu Glu Trp Asp
                     50 
    #                 55 
    #                 60
    Glu Gly Lys Arg Asn Ser Gly Phe Arg Gln Cy
    #s Phe Phe Gly Ser
                     65 
    #                 70 
    #                 75
    Gln Lys His Cys Lys Leu Thr Lys Leu Cys Pr
    #o Ala Met Gly Tyr
                     80 
    #                 85 
    #                 90
    Thr Phe Arg Leu Ala Ala Arg Asn Asp Ile Gl
    #y Thr Ser Gly Tyr
                     95 
    #                100 
    #                105
    Ser Gln Glu Val Val Cys Tyr Thr Leu Gly As
    #n Ile Pro Gln Met
                    110  
    #               115  
    #               120
    Pro Ser Ala Leu Arg Leu Val Arg Ala Gly Il
    #e Thr Trp Val Thr
                    125  
    #               130  
    #               135
    Leu Gln Trp Ser Lys Pro Glu Gly Cys Ser Pr
    #o Glu Glu Val Ile
                    140  
    #               145  
    #               150
    Thr Tyr Thr Leu Glu Ile Gln Glu Asp Glu As
    #n Asp Asn Leu Phe
                    155  
    #               160  
    #               165
    His Pro Lys Tyr Thr Gly Glu Asp Leu Thr Cy
    #s Thr Val Lys Asn
                    170  
    #               175  
    #               180
    Leu Lys Arg Ser Thr Gln Tyr Lys Phe Arg Le
    #u Thr Ala Ser Asn
                    185  
    #               190  
    #               195
    Thr Glu Gly Lys Ser Cys Pro Ser Glu Val Le
    #u Val Cys Thr Thr
                    200  
    #               205  
    #               210
    Ser Pro Asp Arg Pro Gly Pro Pro Thr Arg Pr
    #o Leu Val Lys Gly
                    215  
    #               220  
    #               225
    Pro Val Thr Ser His Gly Phe Ser Val Lys Tr
    #p Asp Pro Pro Lys
                    230  
    #               235  
    #               240
    Asp Asn Gly Gly Ser Glu Ile Leu Lys Tyr Le
    #u Leu Glu Ile Thr
                    245  
    #               250  
    #               255
    Asp Gly Asn Ser Glu Ala Asn Gln Trp Glu Va
    #l Ala Tyr Ser Gly
                    260  
    #               265  
    #               270
    Ser Ala Thr Glu Tyr Thr Phe Thr His Leu Ly
    #s Pro Gly Thr Leu
                    275  
    #               280  
    #               285
    Tyr Lys Leu Arg Ala Cys Cys Ile Ser Thr Gl
    #y Gly His Ser Gln
                    290  
    #               295  
    #               300
    Cys Ser Glu Ser Leu Pro Val Arg Thr Leu Se
    #r Ile Ala Pro Gly
                    305  
    #               310  
    #               315
    Gln Cys Arg Pro Pro Arg Val Leu Gly Arg Pr
    #o Lys His Lys Glu
                    320  
    #               325  
    #               330
    Val His Leu Glu Trp Asp Val Pro Ala Ser Gl
    #u Ser Gly Cys Glu
                    335  
    #               340  
    #               345
    Val Ser Glu Tyr Ser Val Glu Met Thr Glu Pr
    #o Glu Asp Val Ala
                    350  
    #               355  
    #               360
    Ser Glu Val Tyr His Gly Pro Glu Leu Glu Cy
    #s Thr Val Gly Asn
                    365  
    #               370  
    #               375
    Leu Leu Pro Gly Thr Val Tyr Arg Phe Arg Va
    #l Arg Ala Leu Asn
                    380  
    #               385  
    #               390
    Asp Gly Gly Tyr Gly Pro Tyr Ser Asp Val Se
    #r Glu Ile Thr Thr
                    395  
    #               400  
    #               405
    Ala Ala Gly Pro Pro Gly Gln Cys Lys Ala Pr
    #o Cys Ile Ser Cys
                    410  
    #               415  
    #               420
    Thr Pro Asp Gly Cys Val Leu Val Gly Trp Gl
    #u Ser Pro Asp Ser
                    425  
    #               430  
    #               435
    Ser Gly Ala Asp Ile Ser Glu Tyr Arg Leu Gl
    #u Trp Gly Glu Asp
                    440  
    #               445  
    #               450
    Glu Glu Ser Leu Glu Leu Ile Tyr His Gly Th
    #r Asp Thr Arg Phe
                    455  
    #               460  
    #               465
    Glu Ile Arg Asp Leu Leu Pro Ala Ala Gln Ty
    #r Cys Cys Arg Leu
                    470  
    #               475  
    #               480
    Gln Ala Phe Asn Gln Ala Gly Ala Gly Pro Ty
    #r Ser Glu Leu Val
                    485  
    #               490  
    #               495
    Leu Cys Gln Thr Pro Ala Ser Ala Pro Asp Pr
    #o Val Ser Thr Leu
                    500  
    #               505  
    #               510
    Cys Val Leu Glu Glu Glu Pro Leu Asp Ala Ty
    #r Pro Asp Ser Pro
                    515  
    #               520  
    #               525
    Ser Ala Cys Leu Val Leu Asn Trp Glu Glu Pr
    #o Cys Asn Asn Gly
                    530  
    #               535  
    #               540
    Ser Glu Ile Leu Ala Tyr Thr Ile Asp Leu Gl
    #y Asp Thr Ser Ile
                    545  
    #               550  
    #               555
    Thr Val Gly Asn Thr Thr Met His Val Met Ly
    #s Asp Leu Leu Pro
                    560  
    #               565  
    #               570
    Glu Thr Thr Tyr Arg Ile Arg Ile Gln Ala Il
    #e Asn Glu Ile Gly
                    575  
    #               580  
    #               585
    Ala Gly Pro Phe Ser Gln Phe Ile Lys Ala Ly
    #s Thr Arg Pro Leu
                    590  
    #               595  
    #               600
    Pro Pro Leu Pro Pro Arg Leu Glu Cys Ala Al
    #a Ala Gly Pro Gln
                    605  
    #               610  
    #               615
    Ser Leu Lys Leu Lys Trp Gly Asp Ser Asn Se
    #r Lys Thr His Ala
                    620  
    #               625  
    #               630
    Ala Glu Asp Ile Val Tyr Thr Leu Gln Leu Gl
    #u Asp Arg Asn Lys
                    635  
    #               640  
    #               645
    Arg Phe Ile Ser Ile Tyr Arg Gly Pro Ser Hi
    #s Thr Tyr Lys Val
                    650  
    #               655  
    #               660
    Gln Arg Leu Thr Glu Phe Thr Cys Tyr Ser Ph
    #e Arg Ile Gln Ala
                    665  
    #               670  
    #               675
    Ala Ser Glu Ala Gly Glu Gly Pro Phe Ser Gl
    #u Thr Tyr Thr Phe
                    680  
    #               685  
    #               690
    Ser Thr Thr Lys Ser Val Pro Pro Thr Ile Ly
    #s Ala Pro Arg Val
                    695  
    #               700  
    #               705
    Thr Gln Leu Glu Val Asn Ser Cys Glu Ile Le
    #u Trp Glu Thr Val
                    710  
    #               715  
    #               720
    Pro Ser Met Lys Gly Asp Pro Val Asn Tyr Il
    #e Leu Gln Val Leu
                    725  
    #               730  
    #               735
    Val Gly Arg Glu Ser Glu Tyr Lys Gln Val Ty
    #r Lys Gly Glu Glu
                    740  
    #               745  
    #               750
    Ala Thr Phe Gln Ile Ser Gly Leu Gln Thr As
    #n Thr Asp Tyr Arg
                    755  
    #               760  
    #               765
    Phe Arg Val Cys Ala Cys Arg Arg Cys Leu As
    #p Thr Ser Gln Glu
                    770  
    #               775  
    #               780
    Leu Ser Gly Ala Phe Ser Pro Ser Ala Ala Ph
    #e Val Leu Gln Arg
                    785  
    #               790  
    #               795
    Ser Glu Val Met Leu Thr Gly Asp Met Gly Se
    #r Leu Asp Asp Pro
                    800  
    #               805  
    #               810
    Lys Met Lys Ser Met Met Pro Thr Asp Glu Gl
    #n Phe Ala Ala Ile
                    815  
    #               820  
    #               825
    Ile Val Leu Gly Phe Ala Thr Leu Ser Ile Le
    #u Phe Ala Phe Ile
                    830  
    #               835  
    #               840
    Leu Gln Tyr Phe Leu Met Lys
                    845
    <210> SEQ ID NO 95
    <211> LENGTH: 4725
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 95
    caattcggcc tcgctccttg tgattgcgct aaaccttccg tcctcagctg  
    #              50
    agaacgctcc accacctccc cggatcgctc atctcttggc tgccctccca  
    #             100
    ctgttcctga tgttatttta ctccccgtat cccctactcg ttcttcacaa  
    #             150
    ttctgtaggt gagtggttcc agctggtgcc tggcctgtgt ctcttggatg  
    #             200
    ccctgtggct tcagtccgtc tcctgttgcc caccacctcg tccctgggcc  
    #             250
    gcctgatacc ccagcccaac agctaaggtg tggatggaca gtagggggct  
    #             300
    ggcttctctc actggtcagg ggtcttctcc cctgtctgcc tcccggagct  
    #             350
    aggactgcag aggggcctat catggtgctt gcaggccccc tggctgtctc  
    #             400
    gctgttgctg cccagcctca cactgctggt gtcccacctc tccagctccc  
    #             450
    aggatgtctc cagtgagccc agcagtgagc agcagctgtg cgcccttagc  
    #             500
    aagcacccca ccgtggcctt tgaagacctg cagccgtggg tctctaactt  
    #             550
    cacctaccct ggagcccggg atttctccca gctggctttg gacccctccg  
    #             600
    ggaaccagct catcgtggga gccaggaact acctcttcag actcagcctt  
    #             650
    gccaatgtct ctcttcttca ggccacagag tgggcctcca gtgaggacac  
    #             700
    gcgccgctcc tgccaaagca aagggaagac tgaggaggag tgtcagaact  
    #             750
    acgtgcgagt cctgatcgtc gccggccgga aggtgttcat gtgtggaacc  
    #             800
    aatgcctttt cccccatgtg caccagcaga caggtgggga acctcagccg  
    #             850
    gactattgag aagatcaatg gtgtggcccg ctgcccctat gacccacgcc  
    #             900
    acaactccac agctgtcatc tcctcccagg gggagctcta tgcagccacg  
    #             950
    gtcatcgact tctcaggtcg ggaccctgcc atctaccgca gcctgggcag  
    #            1000
    tgggccaccg cttcgcactg cccaatataa ctccaagtgg cttaatgagc  
    #            1050
    caaacttcgt ggcagcctat gatattgggc tgtttgcata cttcttcctg  
    #            1100
    cgggagaacg cagtggagca cgactgtgga cgcaccgtgt actctcgcgt  
    #            1150
    ggcccgcgtg tgcaagaatg acgtgggggg ccgattcctg ctggaggaca  
    #            1200
    catggaccac attcatgaag gcccggctca actgctcccg cccgggcgag  
    #            1250
    gtccccttct actataacga gctgcagagt gccttccact tgccggagca  
    #            1300
    ggacctcatc tatggagttt tcacaaccaa cgtaaacagc atcgcggctt  
    #            1350
    ctgctgtctg cgccttcaac ctcagtgcta tctcccaggc tttcaatggc  
    #            1400
    ccatttcgct accaggagaa ccccagggct gcctggctcc ccatagccaa  
    #            1450
    ccccatcccc aatttccagt gtggcaccct gcctgagacc ggtcccaacg  
    #            1500
    agaacctgac ggagcgcagc ctgcaggacg cgcagcgcct cttcctgatg  
    #            1550
    agcgaggccg tgcagccggt gacacccgag ccctgtgtca cccaggacag  
    #            1600
    cgtgcgcttc tcacacctcg tggtggacct ggtgcaggct aaagacacgc  
    #            1650
    tctaccatgt actctacatt ggcaccgagt cgggcaccat cctgaaggcg  
    #            1700
    ctgtccacgg cgagccgcag cctccacggc tgctacctgg aggagctgca  
    #            1750
    cgtgctgccc cccgggcgcc gcgagcccct gcgcagcctg cgcatcctgc  
    #            1800
    acagcgcccg cgcgctcttc gtggggctga gagacggcgt cctgcgggtc  
    #            1850
    ccactggaga ggtgcgccgc ctaccgcagc cagggggcat gcctgggggc  
    #            1900
    ccgggacccg tactgtggct gggacgggaa gcagcaacgt tgcagcacac  
    #            1950
    tcgaggacag ctccaacatg agcctctgga cccagaacat caccgcctgt  
    #            2000
    cctgtgcgga atgtgacacg ggatgggggc ttcggcccat ggtcaccatg  
    #            2050
    gcaaccatgt gagcacttgg atggggacaa ctcaggctct tgcctgtgtc  
    #            2100
    gagctcgatc ctgtgattcc cctcgacccc gctgtggggg ccttgactgc  
    #            2150
    ctggggccag ccatccacat cgccaactgc tccaggaatg gggcgtggac  
    #            2200
    cccgtggtca tcgtgggcgc tgtgcagcac gtcctgtggc atcggcttcc  
    #            2250
    aggtccgcca gcgaagttgc agcaaccctg ctccccgcca cgggggccgc  
    #            2300
    atcttcgtgg gcaagagccg ggaggaacgg ttctgtaatg agaacacgcc  
    #            2350
    ttgcccggtg cccatcttct gggcttcctg gggctcctgg agcaagtgca  
    #            2400
    gcagcaactg tggagggggc atgcagtcgc ggcgtcgggc ctgcgagaac  
    #            2450
    ggcaactcct gcctgggctg cggcgagttc aagacgtgca accccgaggg  
    #            2500
    ctgccccgaa gtgcggcgca acaccccctg gacgccgtgg ctgcccgtga  
    #            2550
    acgtgacgca gggcggggca cggcaggagc agcggttccg cttcacctgc  
    #            2600
    cgcgcgcccc ttgcagaccc gcacggcctg cagttcggca ggagaaggac  
    #            2650
    cgagacgagg acctgtcccg cggacggctc cggctcctgc gacaccgacg  
    #            2700
    ccctggtgga ggtcctcctg cgcagcggga gcacctcccc gcacacggtg  
    #            2750
    agcgggggct gggccgcctg gggcccgtgg tcgtcctgct cccgggactg  
    #            2800
    cgagctgggc ttccgcgtcc gcaagagaac gtgcactaac ccggagcccc  
    #            2850
    gcaacggggg cctgccctgc gtgggcgatg ctgccgagta ccaggactgc  
    #            2900
    aacccccagg cttgcccagt tcggggtgct tggtcctgct ggacctcatg  
    #            2950
    gtctccatgc tcagcttcct gtggtggggg tcactatcaa cgcacccgtt  
    #            3000
    cctgcaccag ccccgcaccc tccccaggtg aggacatctg tctcgggctg  
    #            3050
    cacacggagg aggcactatg tgccacacag gcctgcccag gctggtcgcc  
    #            3100
    ctggtctgag tggagtaagt gcactgacga cggagcccag agccgaagcc  
    #            3150
    ggcactgtga ggagctcctc ccagggtcca gcgcctgtgc tggaaacagc  
    #            3200
    agccagagcc gcccctgccc ctacagcgag attcccgtca tcctgccagc  
    #            3250
    ctccagcatg gaggaggcca ccgactgtgc aggtaaaaga aaccggacct  
    #            3300
    acctcatgct gcggtcctcc cagccctcca gcaccccact ccaaagtctg  
    #            3350
    gactctttcc acatcctgct ccagacagcc aagctttgtt ggggtcccca  
    #            3400
    ctgctttgag atgggttcaa tctcatccac ttggtggcca cgggcatctc  
    #            3450
    ctgcttcttg ggctctgggc tcctgaccct agcagtgtac ctgtcttgcc  
    #            3500
    agcactgcca gcgtcagtcc caggagtcca cactggtcca tcctgccacc  
    #            3550
    cccaaccatt tgcactacaa gggcggaggc accccgaaga atgaaaagta  
    #            3600
    cacacccatg gaattcaaga ccctgaacaa gaataacttg atccctgatg  
    #            3650
    acagagccaa cttctaccca ttgcagcaga ccaatgtgta cacgactact  
    #            3700
    tactacccaa gccccctgaa caaacacagc ttccggcccg aggcctcacc  
    #            3750
    tggacaacgg tgcttcccca acagctgata ccgccgtcct ggggacttgg  
    #            3800
    gcttcttgcc ttcataaggc acagagcaga tggagatggg acagtggagc  
    #            3850
    cagtttggtt ttctccctct gcactaggcc aagaacttgc tgccttgcct  
    #            3900
    gtggggggtc ccatccggct tcagagagct ctggctggca ttgaccatgg  
    #            3950
    gggaaagggc tggtttcagg ctgacatatg gccgcaggtc cagttcagcc  
    #            4000
    caggtctctc atggttatct tccaacccac tgtcacgctg acactatgct  
    #            4050
    gccatgcctg ggctgtggac ctactgggca tttgaggaat tggagaatgg  
    #            4100
    agatggcaag agggcaggct tttaagtttg ggttggagac aacttcctgt  
    #            4150
    ggcccccaca agctgagtct ggccttctcc agctggcccc aaaaaaggcc  
    #            4200
    tttgctacat cctgattatc tctgaaagta atcaatcaag tggctccagt  
    #            4250
    agctctggat tttctgccag ggctgggcca ttgtggtgct gccccagtat  
    #            4300
    gacatgggac caaggccagc gcaggttatc cacctctgcc tggaagtcta  
    #            4350
    tactctaccc agggcatccc tctggtcaga ggcagtgagt actgggaact  
    #            4400
    ggaggctgac ctgtgcttag aagtccttta atctgggctg gtacaggcct  
    #            4450
    cagccttgcc ctcaatgcac gaaaggtggc ccaggagaga ggatcaatgc  
    #            4500
    cataggaggc agaagtctgg cctctgtgcc tctatggaga ctatcttcca  
    #            4550
    gttgctgctc aacagagttg ttggctgaga cctgcttggg agtctctgct  
    #            4600
    ggcccttcat ctgttcagga acacacacac acacacactc acacacgcac  
    #            4650
    acacaatcac aatttgctac agcaacaaaa aagacattgg gctgtggcat  
    #            4700
    tattaattaa agatgatatc cagtc          
    #                  
    #             4725
    <210> SEQ ID NO 96
    <211> LENGTH: 1092
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 96
    Met Pro Cys Gly Phe Ser Pro Ser Pro Val Al
    #a His His Leu Val
      1               5 
    #                 10 
    #                 15
    Pro Gly Pro Pro Asp Thr Pro Ala Gln Gln Le
    #u Arg Cys Gly Trp
                     20 
    #                 25 
    #                 30
    Thr Val Gly Gly Trp Leu Leu Ser Leu Val Ar
    #g Gly Leu Leu Pro
                     35 
    #                 40 
    #                 45
    Cys Leu Pro Pro Gly Ala Arg Thr Ala Glu Gl
    #y Pro Ile Met Val
                     50 
    #                 55 
    #                 60
    Leu Ala Gly Pro Leu Ala Val Ser Leu Leu Le
    #u Pro Ser Leu Thr
                     65 
    #                 70 
    #                 75
    Leu Leu Val Ser His Leu Ser Ser Ser Gln As
    #p Val Ser Ser Glu
                     80 
    #                 85 
    #                 90
    Pro Ser Ser Glu Gln Gln Leu Cys Ala Leu Se
    #r Lys His Pro Thr
                     95 
    #                100 
    #                105
    Val Ala Phe Glu Asp Leu Gln Pro Trp Val Se
    #r Asn Phe Thr Tyr
                    110  
    #               115  
    #               120
    Pro Gly Ala Arg Asp Phe Ser Gln Leu Ala Le
    #u Asp Pro Ser Gly
                    125  
    #               130  
    #               135
    Asn Gln Leu Ile Val Gly Ala Arg Asn Tyr Le
    #u Phe Arg Leu Ser
                    140  
    #               145  
    #               150
    Leu Ala Asn Val Ser Leu Leu Gln Ala Thr Gl
    #u Trp Ala Ser Ser
                    155  
    #               160  
    #               165
    Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gl
    #y Lys Thr Glu Glu
                    170  
    #               175  
    #               180
    Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Va
    #l Ala Gly Arg Lys
                    185  
    #               190  
    #               195
    Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pr
    #o Met Cys Thr Ser
                    200  
    #               205  
    #               210
    Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Gl
    #u Lys Ile Asn Gly
                    215  
    #               220  
    #               225
    Val Ala Arg Cys Pro Tyr Asp Pro Arg His As
    #n Ser Thr Ala Val
                    230  
    #               235  
    #               240
    Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Th
    #r Val Ile Asp Phe
                    245  
    #               250  
    #               255
    Ser Gly Arg Asp Pro Ala Ile Tyr Arg Ser Le
    #u Gly Ser Gly Pro
                    260  
    #               265  
    #               270
    Pro Leu Arg Thr Ala Gln Tyr Asn Ser Lys Tr
    #p Leu Asn Glu Pro
                    275  
    #               280  
    #               285
    Asn Phe Val Ala Ala Tyr Asp Ile Gly Leu Ph
    #e Ala Tyr Phe Phe
                    290  
    #               295  
    #               300
    Leu Arg Glu Asn Ala Val Glu His Asp Cys Gl
    #y Arg Thr Val Tyr
                    305  
    #               310  
    #               315
    Ser Arg Val Ala Arg Val Cys Lys Asn Asp Va
    #l Gly Gly Arg Phe
                    320  
    #               325  
    #               330
    Leu Leu Glu Asp Thr Trp Thr Thr Phe Met Ly
    #s Ala Arg Leu Asn
                    335  
    #               340  
    #               345
    Cys Ser Arg Pro Gly Glu Val Pro Phe Tyr Ty
    #r Asn Glu Leu Gln
                    350  
    #               355  
    #               360
    Ser Ala Phe His Leu Pro Glu Gln Asp Leu Il
    #e Tyr Gly Val Phe
                    365  
    #               370  
    #               375
    Thr Thr Asn Val Asn Ser Ile Ala Ala Ser Al
    #a Val Cys Ala Phe
                    380  
    #               385  
    #               390
    Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn Gl
    #y Pro Phe Arg Tyr
                    395  
    #               400  
    #               405
    Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Il
    #e Ala Asn Pro Ile
                    410  
    #               415  
    #               420
    Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Th
    #r Gly Pro Asn Glu
                    425  
    #               430  
    #               435
    Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gl
    #n Arg Leu Phe Leu
                    440  
    #               445  
    #               450
    Met Ser Glu Ala Val Gln Pro Val Thr Pro Gl
    #u Pro Cys Val Thr
                    455  
    #               460  
    #               465
    Gln Asp Ser Val Arg Phe Ser His Leu Val Va
    #l Asp Leu Val Gln
                    470  
    #               475  
    #               480
    Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Il
    #e Gly Thr Glu Ser
                    485  
    #               490  
    #               495
    Gly Thr Ile Leu Lys Ala Leu Ser Thr Ala Se
    #r Arg Ser Leu His
                    500  
    #               505  
    #               510
    Gly Cys Tyr Leu Glu Glu Leu His Val Leu Pr
    #o Pro Gly Arg Arg
                    515  
    #               520  
    #               525
    Glu Pro Leu Arg Ser Leu Arg Ile Leu His Se
    #r Ala Arg Ala Leu
                    530  
    #               535  
    #               540
    Phe Val Gly Leu Arg Asp Gly Val Leu Arg Va
    #l Pro Leu Glu Arg
                    545  
    #               550  
    #               555
    Cys Ala Ala Tyr Arg Ser Gln Gly Ala Cys Le
    #u Gly Ala Arg Asp
                    560  
    #               565  
    #               570
    Pro Tyr Cys Gly Trp Asp Gly Lys Gln Gln Ar
    #g Cys Ser Thr Leu
                    575  
    #               580  
    #               585
    Glu Asp Ser Ser Asn Met Ser Leu Trp Thr Gl
    #n Asn Ile Thr Ala
                    590  
    #               595  
    #               600
    Cys Pro Val Arg Asn Val Thr Arg Asp Gly Gl
    #y Phe Gly Pro Trp
                    605  
    #               610  
    #               615
    Ser Pro Trp Gln Pro Cys Glu His Leu Asp Gl
    #y Asp Asn Ser Gly
                    620  
    #               625  
    #               630
    Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp Se
    #r Pro Arg Pro Arg
                    635  
    #               640  
    #               645
    Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Il
    #e His Ile Ala Asn
                    650  
    #               655  
    #               660
    Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Se
    #r Ser Trp Ala Leu
                    665  
    #               670  
    #               675
    Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Va
    #l Arg Gln Arg Ser
                    680  
    #               685  
    #               690
    Cys Ser Asn Pro Ala Pro Arg His Gly Gly Ar
    #g Ile Phe Val Gly
                    695  
    #               700  
    #               705
    Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu As
    #n Thr Pro Cys Pro
                    710  
    #               715  
    #               720
    Val Pro Ile Phe Trp Ala Ser Trp Gly Ser Tr
    #p Ser Lys Cys Ser
                    725  
    #               730  
    #               735
    Ser Asn Cys Gly Gly Gly Met Gln Ser Arg Ar
    #g Arg Ala Cys Glu
                    740  
    #               745  
    #               750
    Asn Gly Asn Ser Cys Leu Gly Cys Gly Glu Ph
    #e Lys Thr Cys Asn
                    755  
    #               760  
    #               765
    Pro Glu Gly Cys Pro Glu Val Arg Arg Asn Th
    #r Pro Trp Thr Pro
                    770  
    #               775  
    #               780
    Trp Leu Pro Val Asn Val Thr Gln Gly Gly Al
    #a Arg Gln Glu Gln
                    785  
    #               790  
    #               795
    Arg Phe Arg Phe Thr Cys Arg Ala Pro Leu Al
    #a Asp Pro His Gly
                    800  
    #               805  
    #               810
    Leu Gln Phe Gly Arg Arg Arg Thr Glu Thr Ar
    #g Thr Cys Pro Ala
                    815  
    #               820  
    #               825
    Asp Gly Ser Gly Ser Cys Asp Thr Asp Ala Le
    #u Val Glu Val Leu
                    830  
    #               835  
    #               840
    Leu Arg Ser Gly Ser Thr Ser Pro His Thr Va
    #l Ser Gly Gly Trp
                    845  
    #               850  
    #               855
    Ala Ala Trp Gly Pro Trp Ser Ser Cys Ser Ar
    #g Asp Cys Glu Leu
                    860  
    #               865  
    #               870
    Gly Phe Arg Val Arg Lys Arg Thr Cys Thr As
    #n Pro Glu Pro Arg
                    875  
    #               880  
    #               885
    Asn Gly Gly Leu Pro Cys Val Gly Asp Ala Al
    #a Glu Tyr Gln Asp
                    890  
    #               895  
    #               900
    Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Al
    #a Trp Ser Cys Trp
                    905  
    #               910  
    #               915
    Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gl
    #y Gly Gly His Tyr
                    920  
    #               925  
    #               930
    Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pr
    #o Ser Pro Gly Glu
                    935  
    #               940  
    #               945
    Asp Ile Cys Leu Gly Leu His Thr Glu Glu Al
    #a Leu Cys Ala Thr
                    950  
    #               955  
    #               960
    Gln Ala Cys Pro Gly Trp Ser Pro Trp Ser Gl
    #u Trp Ser Lys Cys
                    965  
    #               970  
    #               975
    Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg Hi
    #s Cys Glu Glu Leu
                    980  
    #               985  
    #               990
    Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Se
    #r Ser Gln Ser Arg
                    995  
    #              1000   
    #             1005
    Pro Cys Pro Tyr Ser Glu Ile Pro Val Ile Le
    #u Pro Ala Ser Ser
                   1010  
    #              1015   
    #             1020
    Met Glu Glu Ala Thr Asp Cys Ala Gly Lys Ar
    #g Asn Arg Thr Tyr
                   1025  
    #              1030   
    #             1035
    Leu Met Leu Arg Ser Ser Gln Pro Ser Ser Th
    #r Pro Leu Gln Ser
                   1040  
    #              1045   
    #             1050
    Leu Asp Ser Phe His Ile Leu Leu Gln Thr Al
    #a Lys Leu Cys Trp
                   1055  
    #              1060   
    #             1065
    Gly Pro His Cys Phe Glu Met Gly Ser Ile Se
    #r Ser Thr Trp Trp
                   1070  
    #              1075   
    #             1080
    Pro Arg Ala Ser Pro Ala Ser Trp Ala Leu Gl
    #y Ser
                   1085  
    #              1090
    <210> SEQ ID NO 97
    <211> LENGTH: 3391
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 97
    caagccctcc cagcatcccc tctcctgtgt tcctccccag ttctctactc  
    #              50
    agagttgact gaccagagat ttatcagctt ggagggctgg aggtgtggat  
    #             100
    ccatggggta gcctcaacgc atctgcccct ccaccccagc cagctcatgg  
    #             150
    gccacgtggc ctggcccagc ctcagcaccc agggccagtg aacagagccc  
    #             200
    tggctggagt ccaaacatgt ggggcctggt gaggctcctg ctggcctggc  
    #             250
    tgggtggctg gggctgcatg gggcgtctgg cagccccagc ccgggcctgg  
    #             300
    gcagggtccc gggaacaccc agggcctgct ctgctgcgga ctcgaaggag  
    #             350
    ctgggtctgg aaccagttct ttgtcattga ggaatatgct ggtccagagc  
    #             400
    ctgttctcat tggcaagctg cactcggatg ttgaccgggg agagggccgc  
    #             450
    accaagtacc tgttgaccgg ggagggggca ggcaccgtat ttgtgattga  
    #             500
    tgaggccaca ggcaatattc atgttaccaa gagccttgac cgggaggaaa  
    #             550
    aggcgcaata tgtgctactg gcccaagccg tggaccgagc ctccaaccgg  
    #             600
    cccctggagc ccccatcaga gttcatcatc aaagtgcaag acatcaacga  
    #             650
    caatccaccc atttttcccc ttgggcccta ccatgccacc gtgcccgaga  
    #             700
    tgtccaatgt cgggacatca gtgatccagg tgactgctca cgatgctgat  
    #             750
    gaccccagct atgggaacag tgccaagctg gtgtacactg ttctggatgg  
    #             800
    actgcctttc ttctctgtgg acccccagac tggagtggtg cgtacagcca  
    #             850
    tccccaacat ggaccgggag acacaggagg agttcttggt ggtgatccag  
    #             900
    gccaaggaca tgggcggcca catggggggg ctgtcaggca gcactacggt  
    #             950
    gactgtcacg ctcagcgatg tcaacgacaa cccccccaag ttcccacaga  
    #            1000
    gcctatacca gttctccgtg gtggagacag ctggacctgg cacactggtg  
    #            1050
    ggccggctcc gggcccagga cccagacctg ggggacaacg ccctgatggc  
    #            1100
    atacagcatc ctggatgggg aggggtctga ggccttcagc atcagcacag  
    #            1150
    acttgcaggg tcgagacggg ctcctcactg tccgcaagcc cctagacttt  
    #            1200
    gagagccagc gctcctactc cttccgtgtc gaggccacca acacgctcat  
    #            1250
    tgacccagcc tatctgcggc gagggccctt caaggatgtg gcctctgtgc  
    #            1300
    gtgtggcagt gcaagatgcc ccagagccac ctgccttcac ccaggctgcc  
    #            1350
    taccacctga cagtgcctga gaacaaggcc ccggggaccc tggtaggcca  
    #            1400
    gatctccgcg gctgacctgg actcccctgc cagcccaatc agatactcca  
    #            1450
    tcctccccca ctcagatccg gagcgttgct tctctatcca gcccgaggaa  
    #            1500
    ggcaccatcc atacagcagc acccctggat cgcgaggctc gcgcctggca  
    #            1550
    caacctcact gtgctggcta cagagctcga cagttctgca caggcctcgc  
    #            1600
    gcgtgcaagt ggccatccag accctggatg agaatgacaa tgctccccag  
    #            1650
    ctggctgagc cctacgatac ttttgtgtgt gactctgcag ctcctggcca  
    #            1700
    gctgattcag gtcatccggg ccctggacag agatgaagtt ggcaacagta  
    #            1750
    gccatgtctc ctttcaaggt cctctgggcc ctgatgccaa ctttactgtc  
    #            1800
    caggacaacc gagatggctc cgccagcctg ctgctgccct cccgccctgc  
    #            1850
    tccaccccgc catgccccct acttggttcc catagaactg tgggactggg  
    #            1900
    ggcagccggc gctgagcagc actgccacag tgactgttag tgtgtgccgc  
    #            1950
    tgccagcctg acggctctgt ggcatcctgc tggcctgagg ctcacctctc  
    #            2000
    agctgctggg ctcagcaccg gcgccctgct tgccatcatc acctgtgtgg  
    #            2050
    gtgccctgct tgccctggtg gtgctcttcg tggccctgcg gcggcagaag  
    #            2100
    caagaagcac tgatggtact ggaggaggag gacgtccgag agaacatcat  
    #            2150
    cacctacgac gacgagggcg gcggcgagga ggacaccgag gccttcgaca  
    #            2200
    tcacggcctt gcagaacccg gacggggcgg cccccccggc gcccggccct  
    #            2250
    cccgcgcgcc gagacgtgtt gccccgggcc cgggtgtcgc gccagcccag  
    #            2300
    accccccggc cccgccgacg tggcgcagct cctggcgctg cggctccgcg  
    #            2350
    aggcggacga ggaccccggc gtacccccgt acgactcggt gcaggtgtac  
    #            2400
    ggctacgagg gccgcggctc ctcttgcggc tccctcagct ccctgggctc  
    #            2450
    cggcagcgaa gccggcggcg cccccggccc cgcggagccg ctggacgact  
    #            2500
    ggggtccgct cttccgcacc ctggccgagc tgtatggggc caaggagccc  
    #            2550
    ccggccccct gagcgcccgg gctggcccgg cccaccgcgg ggggggggca  
    #            2600
    gcgggcacag gccctctgag tgagccccac ggggtccagg cgggcggcag  
    #            2650
    cagcccaggg gccccaggcc tcctccctgt ccttgtgtcc ctccttgctt  
    #            2700
    ccccggggca ccctcgctct cacctccctc ctcctgagtc ggtgtgtgtg  
    #            2750
    tctctctcca ggaatctttg tctctatctg tgacacgctc ctctgtccgg  
    #            2800
    gcctgggttt cctgccctgg ccctggccct gcgatctctc actgtgattc  
    #            2850
    ctctccttcc tccgtggcgt tttgtctctg cagttctgaa gctcacacat  
    #            2900
    agtctccctg cgtcttcctt gcccatacac atgctctgtg tctgtctcct  
    #            2950
    gcccacatct cccttccttc tctctgggtc cctgtgactg gctttttgtt  
    #            3000
    tttttctgtt gtccatccca aaatcaagag aaacttccag ccactgctgc  
    #            3050
    ccaccctcct gcaggggatg ttgtgcccca gacctgcctg catggttcca  
    #            3100
    tccattactc atggcctcag cctcatcctg gctccactgg cctccagctg  
    #            3150
    agagagggaa ccagcctgcc tcccagggca agagctccag cctcccgtgt  
    #            3200
    ggccgcctcc ctggagctct gcccagctgc cagcttcccc tgggcatccc  
    #            3250
    agccctgggc attgtcttgt gtgcttcctg agggagtagg gaaaggaaag  
    #            3300
    ggggaggcgg ctggggaagg ggaaagaggg aggaagggga ggggcctcca  
    #            3350
    tctctaattt cataataaac aaacacttta ttttgtaaaa c    
    #                  
    # 3391
    <210> SEQ ID NO 98
    <211> LENGTH: 781
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 98
    Met Trp Gly Leu Val Arg Leu Leu Leu Ala Tr
    #p Leu Gly Gly Trp
      1               5 
    #                 10 
    #                 15
    Gly Cys Met Gly Arg Leu Ala Ala Pro Ala Ar
    #g Ala Trp Ala Gly
                     20 
    #                 25 
    #                 30
    Ser Arg Glu His Pro Gly Pro Ala Leu Leu Ar
    #g Thr Arg Arg Ser
                     35 
    #                 40 
    #                 45
    Trp Val Trp Asn Gln Phe Phe Val Ile Glu Gl
    #u Tyr Ala Gly Pro
                     50 
    #                 55 
    #                 60
    Glu Pro Val Leu Ile Gly Lys Leu His Ser As
    #p Val Asp Arg Gly
                     65 
    #                 70 
    #                 75
    Glu Gly Arg Thr Lys Tyr Leu Leu Thr Gly Gl
    #u Gly Ala Gly Thr
                     80 
    #                 85 
    #                 90
    Val Phe Val Ile Asp Glu Ala Thr Gly Asn Il
    #e His Val Thr Lys
                     95 
    #                100 
    #                105
    Ser Leu Asp Arg Glu Glu Lys Ala Gln Tyr Va
    #l Leu Leu Ala Gln
                    110  
    #               115  
    #               120
    Ala Val Asp Arg Ala Ser Asn Arg Pro Leu Gl
    #u Pro Pro Ser Glu
                    125  
    #               130  
    #               135
    Phe Ile Ile Lys Val Gln Asp Ile Asn Asp As
    #n Pro Pro Ile Phe
                    140  
    #               145  
    #               150
    Pro Leu Gly Pro Tyr His Ala Thr Val Pro Gl
    #u Met Ser Asn Val
                    155  
    #               160  
    #               165
    Gly Thr Ser Val Ile Gln Val Thr Ala His As
    #p Ala Asp Asp Pro
                    170  
    #               175  
    #               180
    Ser Tyr Gly Asn Ser Ala Lys Leu Val Tyr Th
    #r Val Leu Asp Gly
                    185  
    #               190  
    #               195
    Leu Pro Phe Phe Ser Val Asp Pro Gln Thr Gl
    #y Val Val Arg Thr
                    200  
    #               205  
    #               210
    Ala Ile Pro Asn Met Asp Arg Glu Thr Gln Gl
    #u Glu Phe Leu Val
                    215  
    #               220  
    #               225
    Val Ile Gln Ala Lys Asp Met Gly Gly His Me
    #t Gly Gly Leu Ser
                    230  
    #               235  
    #               240
    Gly Ser Thr Thr Val Thr Val Thr Leu Ser As
    #p Val Asn Asp Asn
                    245  
    #               250  
    #               255
    Pro Pro Lys Phe Pro Gln Ser Leu Tyr Gln Ph
    #e Ser Val Val Glu
                    260  
    #               265  
    #               270
    Thr Ala Gly Pro Gly Thr Leu Val Gly Arg Le
    #u Arg Ala Gln Asp
                    275  
    #               280  
    #               285
    Pro Asp Leu Gly Asp Asn Ala Leu Met Ala Ty
    #r Ser Ile Leu Asp
                    290  
    #               295  
    #               300
    Gly Glu Gly Ser Glu Ala Phe Ser Ile Ser Th
    #r Asp Leu Gln Gly
                    305  
    #               310  
    #               315
    Arg Asp Gly Leu Leu Thr Val Arg Lys Pro Le
    #u Asp Phe Glu Ser
                    320  
    #               325  
    #               330
    Gln Arg Ser Tyr Ser Phe Arg Val Glu Ala Th
    #r Asn Thr Leu Ile
                    335  
    #               340  
    #               345
    Asp Pro Ala Tyr Leu Arg Arg Gly Pro Phe Ly
    #s Asp Val Ala Ser
                    350  
    #               355  
    #               360
    Val Arg Val Ala Val Gln Asp Ala Pro Glu Pr
    #o Pro Ala Phe Thr
                    365  
    #               370  
    #               375
    Gln Ala Ala Tyr His Leu Thr Val Pro Glu As
    #n Lys Ala Pro Gly
                    380  
    #               385  
    #               390
    Thr Leu Val Gly Gln Ile Ser Ala Ala Asp Le
    #u Asp Ser Pro Ala
                    395  
    #               400  
    #               405
    Ser Pro Ile Arg Tyr Ser Ile Leu Pro His Se
    #r Asp Pro Glu Arg
                    410  
    #               415  
    #               420
    Cys Phe Ser Ile Gln Pro Glu Glu Gly Thr Il
    #e His Thr Ala Ala
                    425  
    #               430  
    #               435
    Pro Leu Asp Arg Glu Ala Arg Ala Trp His As
    #n Leu Thr Val Leu
                    440  
    #               445  
    #               450
    Ala Thr Glu Leu Asp Ser Ser Ala Gln Ala Se
    #r Arg Val Gln Val
                    455  
    #               460  
    #               465
    Ala Ile Gln Thr Leu Asp Glu Asn Asp Asn Al
    #a Pro Gln Leu Ala
                    470  
    #               475  
    #               480
    Glu Pro Tyr Asp Thr Phe Val Cys Asp Ser Al
    #a Ala Pro Gly Gln
                    485  
    #               490  
    #               495
    Leu Ile Gln Val Ile Arg Ala Leu Asp Arg As
    #p Glu Val Gly Asn
                    500  
    #               505  
    #               510
    Ser Ser His Val Ser Phe Gln Gly Pro Leu Gl
    #y Pro Asp Ala Asn
                    515  
    #               520  
    #               525
    Phe Thr Val Gln Asp Asn Arg Asp Gly Ser Al
    #a Ser Leu Leu Leu
                    530  
    #               535  
    #               540
    Pro Ser Arg Pro Ala Pro Pro Arg His Ala Pr
    #o Tyr Leu Val Pro
                    545  
    #               550  
    #               555
    Ile Glu Leu Trp Asp Trp Gly Gln Pro Ala Le
    #u Ser Ser Thr Ala
                    560  
    #               565  
    #               570
    Thr Val Thr Val Ser Val Cys Arg Cys Gln Pr
    #o Asp Gly Ser Val
                    575  
    #               580  
    #               585
    Ala Ser Cys Trp Pro Glu Ala His Leu Ser Al
    #a Ala Gly Leu Ser
                    590  
    #               595  
    #               600
    Thr Gly Ala Leu Leu Ala Ile Ile Thr Cys Va
    #l Gly Ala Leu Leu
                    605  
    #               610  
    #               615
    Ala Leu Val Val Leu Phe Val Ala Leu Arg Ar
    #g Gln Lys Gln Glu
                    620  
    #               625  
    #               630
    Ala Leu Met Val Leu Glu Glu Glu Asp Val Ar
    #g Glu Asn Ile Ile
                    635  
    #               640  
    #               645
    Thr Tyr Asp Asp Glu Gly Gly Gly Glu Glu As
    #p Thr Glu Ala Phe
                    650  
    #               655  
    #               660
    Asp Ile Thr Ala Leu Gln Asn Pro Asp Gly Al
    #a Ala Pro Pro Ala
                    665  
    #               670  
    #               675
    Pro Gly Pro Pro Ala Arg Arg Asp Val Leu Pr
    #o Arg Ala Arg Val
                    680  
    #               685  
    #               690
    Ser Arg Gln Pro Arg Pro Pro Gly Pro Ala As
    #p Val Ala Gln Leu
                    695  
    #               700  
    #               705
    Leu Ala Leu Arg Leu Arg Glu Ala Asp Glu As
    #p Pro Gly Val Pro
                    710  
    #               715  
    #               720
    Pro Tyr Asp Ser Val Gln Val Tyr Gly Tyr Gl
    #u Gly Arg Gly Ser
                    725  
    #               730  
    #               735
    Ser Cys Gly Ser Leu Ser Ser Leu Gly Ser Gl
    #y Ser Glu Ala Gly
                    740  
    #               745  
    #               750
    Gly Ala Pro Gly Pro Ala Glu Pro Leu Asp As
    #p Trp Gly Pro Leu
                    755  
    #               760  
    #               765
    Phe Arg Thr Leu Ala Glu Leu Tyr Gly Ala Ly
    #s Glu Pro Pro Ala
                    770  
    #               775  
    #               780
    Pro
    <210> SEQ ID NO 99
    <211> LENGTH: 2855
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 99
    gccaacactg gccaaacata tggggctgga atctcaacat cggtcactgg  
    #              50
    gacctcaata tttggagccg gaaccccaca atttggaaca cagaccccaa  
    #             100
    tatttggagc agaaccccaa gatttgacat ctaaaacctc aagcctggag  
    #             150
    ctgaactctg aattctgggc ctgggacctt gaaatctggg actggatttc  
    #             200
    cagtactgta ccctggaacc cactcttggg gacctgaacc ctgggattca  
    #             250
    ggcctcaaat tccaagatct ggactgtggg attccaaggg gcctgaaccc  
    #             300
    gagtttgggc ctgaagtcct tgctgcagac ctgagtgctt aaatctgggg  
    #             350
    cttgagacct cccaatcttg actcagcacc ccaatatctg aatgcagaac  
    #             400
    cccgggatcg gatctcagac tctaaacccc accgtttggc tgcttagcat  
    #             450
    cccaagactg gacctgggag accctgaccc tgaacaaccc aaactggacc  
    #             500
    cgtaaaactg gaccctagag gcccaatatt taggggtctg gaaccccgag  
    #             550
    tattaaggtc tggagactcc gttgccacag atttgagccg agtcaggaca  
    #             600
    cagtccctct acagaagcct tggggacagg aaaagcatga ccagatgctc  
    #             650
    cctccagagc cctgacctct gactcccctg gagctaggac tctgctccct  
    #             700
    ggggctgctt ctagctcagg acacccctgc ccgcgatggc catcctcccg  
    #             750
    ttgctcctgt gcctgctgcc gctggcccct gcctcatccc caccccagtc  
    #             800
    agccacaccc agcccatgtc cccgccgctg ccgctgccag acacagtcgc  
    #             850
    tgcccctaag cgtgctgtgc ccaggggcag gcctcctgtt cgtgccaccc  
    #             900
    tcgctggacc gccgggcagc cgagctgcgg ctggcagaca acttcatcgc  
    #             950
    ctccgtgcgc cgccgcgacc tggccaacat gacaggcctg ctgcatctga  
    #            1000
    gcctgtcgcg gaacaccatc cgccacgtgg ctgccggcgc cttcgccgac  
    #            1050
    ctgcgggccc tgcgtgccct gcacctggat ggcaaccggc tgacctcact  
    #            1100
    gggcgagggc cagctgcgcg gcctggtcaa cttgcgccac ctcatcctca  
    #            1150
    gcaacaacca gctggcagcg ctggcggccg gcgccctgga tgattgtgcc  
    #            1200
    gagacactgg aggacctcga cctctcctac aacaacctcg agcagctgcc  
    #            1250
    ctgggaggcc ctgggccgcc tgggcaacgt caacacgttg ggcctcgacc  
    #            1300
    acaacctgct ggcttctgtg cccggcgctt tttcccgcct gcacaagctg  
    #            1350
    gcccggctgg acatgacctc caaccgcctg accacaatcc cacccgaccc  
    #            1400
    actcttctcc cgcctgcccc tgctcgccag gccccggggc tcgcccgcct  
    #            1450
    ctgccctggt gctggccttt ggcgggaacc ccctgcactg caactgcgag  
    #            1500
    ctggtgtggc tgcgtcgcct ggcgcgggag gacgacctcg aggcctgcgc  
    #            1550
    gtccccacct gctctgggcg gccgctactt ctgggcggtg ggcgaggagg  
    #            1600
    agtttgtctg cgagccgccc gtggtgactc accgctcacc acctctggct  
    #            1650
    gtgcccgcag gtcggccggc tgccctgcgc tgccgggcag tgggggaccc  
    #            1700
    agagccccgt gtgcgttggg tgtcacccca gggccggctg ctaggcaact  
    #            1750
    caagccgtgc ccgcgccttc cccaatggga cgctggagct gctggtcacc  
    #            1800
    gagccgggtg atggtggcat cttcacctgc attgcggcca atgcagctgg  
    #            1850
    cgaggccaca gctgctgtgg agctgactgt gggtccccca ccacctcctc  
    #            1900
    agctagccaa cagcaccagc tgtgaccccc cgcgggacgg ggatcctgat  
    #            1950
    gctctcaccc caccctccgc tgcctctgct tctgccaagg tggccgacac  
    #            2000
    tgggccccct accgaccgtg gcgtccaggt gactgagcac ggggccacag  
    #            2050
    ctgctcttgt ccagtggccg gatcagcggc ctatcccggg catccgcatg  
    #            2100
    taccagatcc agtacaacag ctcggctgat gacatcctcg tctacaggat  
    #            2150
    gatcccggcg gagagccgct cgttcctgct gacggacctg gcgtcaggcc  
    #            2200
    ggacctacga tctgtgcgtg ctcgccgtgt atgaggacag cgccacgggg  
    #            2250
    ctcacggcca cgcggcctgt gggctgcgcc cgcttctcca ccgaacctgc  
    #            2300
    gctgcggcca tgcggggcgc cgcacgctcc cttcctgggc ggcacgatga  
    #            2350
    tcatcgcgct gggcggcgtc atcgtagcct cggtactggt cttcatcttc  
    #            2400
    gtgctgctaa tgcgctacaa ggtgcacggc ggccagcccc ccggcaaggc  
    #            2450
    caagattccc gcgcctgtta gcagcgtttg ctcccagacc aacggcgccc  
    #            2500
    tgggccccac gcccacgccc gccccgcccg ccccggagcc cgcggcgctc  
    #            2550
    agggcccaca ccgtggtcca gctggactgc gagccctggg ggcccggcca  
    #            2600
    cgaacctgtg ggaccctagc caggcgcccc cccctctaag ggtcctctgg  
    #            2650
    ccccacggac agcaggaccc ggacaccctg tgggacctgg cctcaaactc  
    #            2700
    accaaatcgc tcatggtttt taaaactctg atggggaggg tgtcggggac  
    #            2750
    accggggcaa aacaagaaag tcctattttt ccaaaaaaaa aaaaaaaaaa  
    #            2800
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            2850
    aaaaa                 
    #                  
    #                  
    #          2855
    <210> SEQ ID NO 100
    <211> LENGTH: 627
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 100
    Met Ala Ile Leu Pro Leu Leu Leu Cys Leu Le
    #u Pro Leu Ala Pro
      1               5 
    #                 10 
    #                 15
    Ala Ser Ser Pro Pro Gln Ser Ala Thr Pro Se
    #r Pro Cys Pro Arg
                     20 
    #                 25 
    #                 30
    Arg Cys Arg Cys Gln Thr Gln Ser Leu Pro Le
    #u Ser Val Leu Cys
                     35 
    #                 40 
    #                 45
    Pro Gly Ala Gly Leu Leu Phe Val Pro Pro Se
    #r Leu Asp Arg Arg
                     50 
    #                 55 
    #                 60
    Ala Ala Glu Leu Arg Leu Ala Asp Asn Phe Il
    #e Ala Ser Val Arg
                     65 
    #                 70 
    #                 75
    Arg Arg Asp Leu Ala Asn Met Thr Gly Leu Le
    #u His Leu Ser Leu
                     80 
    #                 85 
    #                 90
    Ser Arg Asn Thr Ile Arg His Val Ala Ala Gl
    #y Ala Phe Ala Asp
                     95 
    #                100 
    #                105
    Leu Arg Ala Leu Arg Ala Leu His Leu Asp Gl
    #y Asn Arg Leu Thr
                    110  
    #               115  
    #               120
    Ser Leu Gly Glu Gly Gln Leu Arg Gly Leu Va
    #l Asn Leu Arg His
                    125  
    #               130  
    #               135
    Leu Ile Leu Ser Asn Asn Gln Leu Ala Ala Le
    #u Ala Ala Gly Ala
                    140  
    #               145  
    #               150
    Leu Asp Asp Cys Ala Glu Thr Leu Glu Asp Le
    #u Asp Leu Ser Tyr
                    155  
    #               160  
    #               165
    Asn Asn Leu Glu Gln Leu Pro Trp Glu Ala Le
    #u Gly Arg Leu Gly
                    170  
    #               175  
    #               180
    Asn Val Asn Thr Leu Gly Leu Asp His Asn Le
    #u Leu Ala Ser Val
                    185  
    #               190  
    #               195
    Pro Gly Ala Phe Ser Arg Leu His Lys Leu Al
    #a Arg Leu Asp Met
                    200  
    #               205  
    #               210
    Thr Ser Asn Arg Leu Thr Thr Ile Pro Pro As
    #p Pro Leu Phe Ser
                    215  
    #               220  
    #               225
    Arg Leu Pro Leu Leu Ala Arg Pro Arg Gly Se
    #r Pro Ala Ser Ala
                    230  
    #               235  
    #               240
    Leu Val Leu Ala Phe Gly Gly Asn Pro Leu Hi
    #s Cys Asn Cys Glu
                    245  
    #               250  
    #               255
    Leu Val Trp Leu Arg Arg Leu Ala Arg Glu As
    #p Asp Leu Glu Ala
                    260  
    #               265  
    #               270
    Cys Ala Ser Pro Pro Ala Leu Gly Gly Arg Ty
    #r Phe Trp Ala Val
                    275  
    #               280  
    #               285
    Gly Glu Glu Glu Phe Val Cys Glu Pro Pro Va
    #l Val Thr His Arg
                    290  
    #               295  
    #               300
    Ser Pro Pro Leu Ala Val Pro Ala Gly Arg Pr
    #o Ala Ala Leu Arg
                    305  
    #               310  
    #               315
    Cys Arg Ala Val Gly Asp Pro Glu Pro Arg Va
    #l Arg Trp Val Ser
                    320  
    #               325  
    #               330
    Pro Gln Gly Arg Leu Leu Gly Asn Ser Ser Ar
    #g Ala Arg Ala Phe
                    335  
    #               340  
    #               345
    Pro Asn Gly Thr Leu Glu Leu Leu Val Thr Gl
    #u Pro Gly Asp Gly
                    350  
    #               355  
    #               360
    Gly Ile Phe Thr Cys Ile Ala Ala Asn Ala Al
    #a Gly Glu Ala Thr
                    365  
    #               370  
    #               375
    Ala Ala Val Glu Leu Thr Val Gly Pro Pro Pr
    #o Pro Pro Gln Leu
                    380  
    #               385  
    #               390
    Ala Asn Ser Thr Ser Cys Asp Pro Pro Arg As
    #p Gly Asp Pro Asp
                    395  
    #               400  
    #               405
    Ala Leu Thr Pro Pro Ser Ala Ala Ser Ala Se
    #r Ala Lys Val Ala
                    410  
    #               415  
    #               420
    Asp Thr Gly Pro Pro Thr Asp Arg Gly Val Gl
    #n Val Thr Glu His
                    425  
    #               430  
    #               435
    Gly Ala Thr Ala Ala Leu Val Gln Trp Pro As
    #p Gln Arg Pro Ile
                    440  
    #               445  
    #               450
    Pro Gly Ile Arg Met Tyr Gln Ile Gln Tyr As
    #n Ser Ser Ala Asp
                    455  
    #               460  
    #               465
    Asp Ile Leu Val Tyr Arg Met Ile Pro Ala Gl
    #u Ser Arg Ser Phe
                    470  
    #               475  
    #               480
    Leu Leu Thr Asp Leu Ala Ser Gly Arg Thr Ty
    #r Asp Leu Cys Val
                    485  
    #               490  
    #               495
    Leu Ala Val Tyr Glu Asp Ser Ala Thr Gly Le
    #u Thr Ala Thr Arg
                    500  
    #               505  
    #               510
    Pro Val Gly Cys Ala Arg Phe Ser Thr Glu Pr
    #o Ala Leu Arg Pro
                    515  
    #               520  
    #               525
    Cys Gly Ala Pro His Ala Pro Phe Leu Gly Gl
    #y Thr Met Ile Ile
                    530  
    #               535  
    #               540
    Ala Leu Gly Gly Val Ile Val Ala Ser Val Le
    #u Val Phe Ile Phe
                    545  
    #               550  
    #               555
    Val Leu Leu Met Arg Tyr Lys Val His Gly Gl
    #y Gln Pro Pro Gly
                    560  
    #               565  
    #               570
    Lys Ala Lys Ile Pro Ala Pro Val Ser Ser Va
    #l Cys Ser Gln Thr
                    575  
    #               580  
    #               585
    Asn Gly Ala Leu Gly Pro Thr Pro Thr Pro Al
    #a Pro Pro Ala Pro
                    590  
    #               595  
    #               600
    Glu Pro Ala Ala Leu Arg Ala His Thr Val Va
    #l Gln Leu Asp Cys
                    605  
    #               610  
    #               615
    Glu Pro Trp Gly Pro Gly His Glu Pro Val Gl
    #y Pro
                    620  
    #               625
    <210> SEQ ID NO 101
    <211> LENGTH: 1111
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 101
    cgactccata accgtggcct tggccccagt ccccctgact tccggacttc  
    #              50
    agaccagata ctgcccatat ccccttatga agtcttggcc aggcaacccc  
    #             100
    tagggtgtac gttttctaaa gattaaagag gcggtgctaa gctgcagacg  
    #             150
    gacttgcgac tcagccactg gtgtaagtca ggcgggaggt ggcgcccaat  
    #             200
    aagctcaaga gaggaggcgg gttctggaaa aaggccaata gcctgtgaag  
    #             250
    gcgagtctag cagcaaccaa tagctatgag cgagaggcgg gactctgagg  
    #             300
    gaagtcaatc gctgccgcag gtaccgccaa tggcttttgg cgggggcgtt  
    #             350
    ccccaaccct gccctctctc atgaccccgc tccgggatta tggccgggac  
    #             400
    tgggctgctg gcgctgcgga cgctgccagg gcccagctgg gtgcgaggct  
    #             450
    cgggcccttc cgtgctgagc cgcctgcagg acgcggccgt ggtgcggcct  
    #             500
    ggcttcctga gcacggcaga ggaggagacg ctgagccgag aactggagcc  
    #             550
    cgagctgcgc cgccgccgct acgaatacga tcactgggac gcggccatcc  
    #             600
    acggcttccg agagacagag aagtcgcgct ggtcagaagc cagccgggcc  
    #             650
    atcctgcagc gcgtgcaggc ggccgccttt ggccccggcc agaccctgct  
    #             700
    ctcctccgtg cacgtgctgg acctggaagc ccgcggctac atcaagcccc  
    #             750
    acgtggacag catcaagttc tgcggggcca ccatcgccgg cctgtctctc  
    #             800
    ctgtctccca gcgttatgcg gctggtgcac acccaggagc cgggggagtg  
    #             850
    gctggaactc ttgctggagc cgggctccct ctacatcctt aggggctcag  
    #             900
    cccgttatga cttctcccat gagatccttc gggatgaaga gtccttcttt  
    #             950
    ggggaacgcc ggattccccg gggccggcgc atctccgtga tctgccgctc  
    #            1000
    cctccctgag ggcatggggc caggggagtc tggacagccg cccccagcct  
    #            1050
    gctgaccccc agctttctac agacaccaga tttgtgaata aagttgggga  
    #            1100
    atggacagcc t               
    #                  
    #                  
    #     1111
    <210> SEQ ID NO 102
    <211> LENGTH: 221
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 102
    Met Ala Gly Thr Gly Leu Leu Ala Leu Arg Th
    #r Leu Pro Gly Pro
      1               5 
    #                 10 
    #                 15
    Ser Trp Val Arg Gly Ser Gly Pro Ser Val Le
    #u Ser Arg Leu Gln
                     20 
    #                 25 
    #                 30
    Asp Ala Ala Val Val Arg Pro Gly Phe Leu Se
    #r Thr Ala Glu Glu
                     35 
    #                 40 
    #                 45
    Glu Thr Leu Ser Arg Glu Leu Glu Pro Glu Le
    #u Arg Arg Arg Arg
                     50 
    #                 55 
    #                 60
    Tyr Glu Tyr Asp His Trp Asp Ala Ala Ile Hi
    #s Gly Phe Arg Glu
                     65 
    #                 70 
    #                 75
    Thr Glu Lys Ser Arg Trp Ser Glu Ala Ser Ar
    #g Ala Ile Leu Gln
                     80 
    #                 85 
    #                 90
    Arg Val Gln Ala Ala Ala Phe Gly Pro Gly Gl
    #n Thr Leu Leu Ser
                     95 
    #                100 
    #                105
    Ser Val His Val Leu Asp Leu Glu Ala Arg Gl
    #y Tyr Ile Lys Pro
                    110  
    #               115  
    #               120
    His Val Asp Ser Ile Lys Phe Cys Gly Ala Th
    #r Ile Ala Gly Leu
                    125  
    #               130  
    #               135
    Ser Leu Leu Ser Pro Ser Val Met Arg Leu Va
    #l His Thr Gln Glu
                    140  
    #               145  
    #               150
    Pro Gly Glu Trp Leu Glu Leu Leu Leu Glu Pr
    #o Gly Ser Leu Tyr
                    155  
    #               160  
    #               165
    Ile Leu Arg Gly Ser Ala Arg Tyr Asp Phe Se
    #r His Glu Ile Leu
                    170  
    #               175  
    #               180
    Arg Asp Glu Glu Ser Phe Phe Gly Glu Arg Ar
    #g Ile Pro Arg Gly
                    185  
    #               190  
    #               195
    Arg Arg Ile Ser Val Ile Cys Arg Ser Leu Pr
    #o Glu Gly Met Gly
                    200  
    #               205  
    #               210
    Pro Gly Glu Ser Gly Gln Pro Pro Pro Ala Cy
    #s
                    215  
    #               220
    <210> SEQ ID NO 103
    <211> LENGTH: 3583
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 103
    ctccccggcg ccgcaggcag cgtcctcctc cgaagcagct gcacctgcaa  
    #              50
    ctgggcagcc tggaccctcg tgccctgttc ccgggacctc gcgcaggggg  
    #             100
    cgccccggga caccccctgc gggccgggtg gaggaggaag aggaggagga  
    #             150
    ggaagaagac gtggacaagg acccccatcc tacccagaac acctgcctgc  
    #             200
    gctgccgcca cttctcttta agggagagga aaagagagcc taggagaacc  
    #             250
    atggggggct gcgaagtccg ggaatttctt ttgcaatttg gtttcttctt  
    #             300
    gcctctgctg acagcgtggc caggcgactg cagtcacgtc tccaacaacc  
    #             350
    aagttgtgtt gcttgataca acaactgtac tgggagagct aggatggaaa  
    #             400
    acatatccat taaatgggtg ggatgccatc actgaaatgg atgaacataa  
    #             450
    taggcccatt cacacatacc aggtatgtaa tgtaatggaa ccaaaccaaa  
    #             500
    acaactggct tcgtacaaac tggatctccc gtgatgcagc tcagaaaatt  
    #             550
    tatgtggaaa tgaaattcac actaagggat tgtaacagca tcccatgggt  
    #             600
    cttggggact tgcaaagaaa catttaatct gttttatatg gaatcagatg  
    #             650
    agtcccacgg aattaaattc aagccaaacc agtatacaaa gatcgacaca  
    #             700
    attgctgctg atgagagttt tacccagatg gatttgggtg atcgcatcct  
    #             750
    caaactcaac actgaaattc gtgaggtggg gcctatagaa aggaaaggat  
    #             800
    tttatctggc ttttcaagac attggggcgt gcattgccct ggtttcagtc  
    #             850
    cgtgttttct acaagaaatg ccccttcact gttcgtaact tggccatgtt  
    #             900
    tcctgatacc attccaaggg ttgattcctc ctctttggtt gaagtacggg  
    #             950
    gttcttgtgt gaagagtgct gaagagcgtg acactcctaa actgtattgt  
    #            1000
    ggagctgatg gagattggct ggttcctctt ggaaggtgca tctgcagtac  
    #            1050
    aggatatgaa gaaattgagg gttcttgcca tgcttgcaga ccaggattct  
    #            1100
    ataaagcttt tgctgggaac acaaaatgtt ctaaatgtcc tccacacagt  
    #            1150
    ttaacataca tggaagcaac ttctgtctgt cagtgtgaaa agggttattt  
    #            1200
    ccgagctgaa aaagacccac cttctatggc atgtaccagg ccaccttcag  
    #            1250
    ctcctaggaa tgtggttttt aacatcaatg aaacagccct tattttggaa  
    #            1300
    tggagcccac caagtgacac aggagggaga aaagatctca catacagtgt  
    #            1350
    aatctgtaag aaatgtggct tagacaccag ccagtgtgag gactgtggtg  
    #            1400
    gaggactccg cttcatccca agacatacag gcctgatcaa caattccgtg  
    #            1450
    atagtacttg actttgtgtc tcacgtgaat tacacctttg aaatagaagc  
    #            1500
    aatgaatgga gtttctgagt tgagtttttc tcccaagcca ttcacagcta  
    #            1550
    ttacagtgac cacggatcaa gatgcacctt ccctgatagg tgtggtaagg  
    #            1600
    aaggactggg catcccaaaa tagcattgcc ctatcatggc aagcacctgc  
    #            1650
    tttttccaat ggagccattc tggactacga gatcaagtac tatgagaaag  
    #            1700
    aacatgagca gctgacctac tcttccacaa ggtccaaagc ccccagtgtc  
    #            1750
    atcatcacag gtcttaagcc agccaccaaa tatgtatttc acatccgagt  
    #            1800
    gagaactgcg acaggataca gtggctacag tcagaaattt gaatttgaaa  
    #            1850
    caggagatga aacttctgac atggcagcag aacaaggaca gattctcgtg  
    #            1900
    atagccaccg ccgctgttgg cggattcact ctcctcgtca tcctcacttt  
    #            1950
    attcttcttg atcactggga gatgtcagtg gtacataaaa gccaagatga  
    #            2000
    agtcagaaga gaagagaaga aaccacttac agaatgggca tttgcgcttc  
    #            2050
    ccgggaatta aaacttacat tgatccagat acatatgaag acccatccct  
    #            2100
    agcagtccat gaatttgcaa aggagattga tccctcaaga attcgtattg  
    #            2150
    agagagtcat tggggcaggt gaatttggag aagtctgtag tgggcgtttg  
    #            2200
    aagacaccag ggaaaagaga gatcccagtt gccattaaaa ctttgaaagg  
    #            2250
    tggccacatg gatcggcaaa gaagagattt tctaagagaa gctagtatca  
    #            2300
    tgggccagtt tgaccatcca aacatcattc gcctagaagg ggttgtcacc  
    #            2350
    aaaagatcct tcccggccat tggggtggag gcgttttgcc ccagcttcct  
    #            2400
    gagggcaggg tttttaaata gcatccaggc cccgcatcca gtgccagggg  
    #            2450
    gaggatcttt gccccccagg attcctgctg gcagaccagt aatgattgtg  
    #            2500
    gtggaatata tggagaatgg atccctagac tcctttttgc ggaagcatga  
    #            2550
    tggccacttc acagtcatcc agttggtcgg aatgctccga ggcattgcat  
    #            2600
    caggcatgaa gtatctttct gatatgggtt atgttcatcg agacctagcg  
    #            2650
    gctcggaata tactggtcaa tagcaactta gtatgcaaag tttctgattt  
    #            2700
    tggtctctcc agagtgctgg aagatgatcc agaagctgct tatacaacaa  
    #            2750
    ctggtggaaa aatccccata aggtggacag ccccagaagc catcgcctac  
    #            2800
    agaaaattct cctcagcaag cgatgcatgg agctatggca ttgtcatgtg  
    #            2850
    ggaggtcatg tcctatggag agagacctta ttgggaaatg tctaaccaag  
    #            2900
    atgtcattct gtccattgaa gaagggtaca gacttccagc tcccatgggc  
    #            2950
    tgtccagcat ctctacacca gctgatgctc cactgctggc agaaggagag  
    #            3000
    aaatcacaga ccaaaattta ctgacattgt cagcttcctt gacaaactga  
    #            3050
    tccgaaatcc cagtgccctt cacaccctgg tggaggacat ccttgtaatg  
    #            3100
    ccagagtccc ctggtgaagt tccggaatat cctttgtttg tcacagttgg  
    #            3150
    tgactggcta gattctataa agatggggca atacaagaat aacttcgtgg  
    #            3200
    cagcagggtt tacaacattt gacctgattt caagaatgag cattgatgac  
    #            3250
    attagaagaa ttggagtcat acttattgga caccagagac gaatagtcag  
    #            3300
    cagcatacag actttacgtt tacacatgat gcacatacag gagaagggat  
    #            3350
    ttcatgtatg aaagtaccac aagcacctgt gttttgtgcc tcagcatttc  
    #            3400
    taaaatgaac gatatcctct ctactactct ctcttctgat tctccaaaca  
    #            3450
    tcacttcaca aactgcagtc ttctgttcag actataggca cacaccttat  
    #            3500
    gtttatgctt ccaaccagga ttttaaaatc atgctacata aatccgttct  
    #            3550
    gaataacctg caactaaaaa aaaaaaaaaa aaa       
    #                  
    #       3583
    <210> SEQ ID NO 104
    <211> LENGTH: 1036
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 104
    Met Gly Gly Cys Glu Val Arg Glu Phe Leu Le
    #u Gln Phe Gly Phe
      1               5 
    #                 10 
    #                 15
    Phe Leu Pro Leu Leu Thr Ala Trp Pro Gly As
    #p Cys Ser His Val
                     20 
    #                 25 
    #                 30
    Ser Asn Asn Gln Val Val Leu Leu Asp Thr Th
    #r Thr Val Leu Gly
                     35 
    #                 40 
    #                 45
    Glu Leu Gly Trp Lys Thr Tyr Pro Leu Asn Gl
    #y Trp Asp Ala Ile
                     50 
    #                 55 
    #                 60
    Thr Glu Met Asp Glu His Asn Arg Pro Ile Hi
    #s Thr Tyr Gln Val
                     65 
    #                 70 
    #                 75
    Cys Asn Val Met Glu Pro Asn Gln Asn Asn Tr
    #p Leu Arg Thr Asn
                     80 
    #                 85 
    #                 90
    Trp Ile Ser Arg Asp Ala Ala Gln Lys Ile Ty
    #r Val Glu Met Lys
                     95 
    #                100 
    #                105
    Phe Thr Leu Arg Asp Cys Asn Ser Ile Pro Tr
    #p Val Leu Gly Thr
                    110  
    #               115  
    #               120
    Cys Lys Glu Thr Phe Asn Leu Phe Tyr Met Gl
    #u Ser Asp Glu Ser
                    125  
    #               130  
    #               135
    His Gly Ile Lys Phe Lys Pro Asn Gln Tyr Th
    #r Lys Ile Asp Thr
                    140  
    #               145  
    #               150
    Ile Ala Ala Asp Glu Ser Phe Thr Gln Met As
    #p Leu Gly Asp Arg
                    155  
    #               160  
    #               165
    Ile Leu Lys Leu Asn Thr Glu Ile Arg Glu Va
    #l Gly Pro Ile Glu
                    170  
    #               175  
    #               180
    Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Il
    #e Gly Ala Cys Ile
                    185  
    #               190  
    #               195
    Ala Leu Val Ser Val Arg Val Phe Tyr Lys Ly
    #s Cys Pro Phe Thr
                    200  
    #               205  
    #               210
    Val Arg Asn Leu Ala Met Phe Pro Asp Thr Il
    #e Pro Arg Val Asp
                    215  
    #               220  
    #               225
    Ser Ser Ser Leu Val Glu Val Arg Gly Ser Cy
    #s Val Lys Ser Ala
                    230  
    #               235  
    #               240
    Glu Glu Arg Asp Thr Pro Lys Leu Tyr Cys Gl
    #y Ala Asp Gly Asp
                    245  
    #               250  
    #               255
    Trp Leu Val Pro Leu Gly Arg Cys Ile Cys Se
    #r Thr Gly Tyr Glu
                    260  
    #               265  
    #               270
    Glu Ile Glu Gly Ser Cys His Ala Cys Arg Pr
    #o Gly Phe Tyr Lys
                    275  
    #               280  
    #               285
    Ala Phe Ala Gly Asn Thr Lys Cys Ser Lys Cy
    #s Pro Pro His Ser
                    290  
    #               295  
    #               300
    Leu Thr Tyr Met Glu Ala Thr Ser Val Cys Gl
    #n Cys Glu Lys Gly
                    305  
    #               310  
    #               315
    Tyr Phe Arg Ala Glu Lys Asp Pro Pro Ser Me
    #t Ala Cys Thr Arg
                    320  
    #               325  
    #               330
    Pro Pro Ser Ala Pro Arg Asn Val Val Phe As
    #n Ile Asn Glu Thr
                    335  
    #               340  
    #               345
    Ala Leu Ile Leu Glu Trp Ser Pro Pro Ser As
    #p Thr Gly Gly Arg
                    350  
    #               355  
    #               360
    Lys Asp Leu Thr Tyr Ser Val Ile Cys Lys Ly
    #s Cys Gly Leu Asp
                    365  
    #               370  
    #               375
    Thr Ser Gln Cys Glu Asp Cys Gly Gly Gly Le
    #u Arg Phe Ile Pro
                    380  
    #               385  
    #               390
    Arg His Thr Gly Leu Ile Asn Asn Ser Val Il
    #e Val Leu Asp Phe
                    395  
    #               400  
    #               405
    Val Ser His Val Asn Tyr Thr Phe Glu Ile Gl
    #u Ala Met Asn Gly
                    410  
    #               415  
    #               420
    Val Ser Glu Leu Ser Phe Ser Pro Lys Pro Ph
    #e Thr Ala Ile Thr
                    425  
    #               430  
    #               435
    Val Thr Thr Asp Gln Asp Ala Pro Ser Leu Il
    #e Gly Val Val Arg
                    440  
    #               445  
    #               450
    Lys Asp Trp Ala Ser Gln Asn Ser Ile Ala Le
    #u Ser Trp Gln Ala
                    455  
    #               460  
    #               465
    Pro Ala Phe Ser Asn Gly Ala Ile Leu Asp Ty
    #r Glu Ile Lys Tyr
                    470  
    #               475  
    #               480
    Tyr Glu Lys Glu His Glu Gln Leu Thr Tyr Se
    #r Ser Thr Arg Ser
                    485  
    #               490  
    #               495
    Lys Ala Pro Ser Val Ile Ile Thr Gly Leu Ly
    #s Pro Ala Thr Lys
                    500  
    #               505  
    #               510
    Tyr Val Phe His Ile Arg Val Arg Thr Ala Th
    #r Gly Tyr Ser Gly
                    515  
    #               520  
    #               525
    Tyr Ser Gln Lys Phe Glu Phe Glu Thr Gly As
    #p Glu Thr Ser Asp
                    530  
    #               535  
    #               540
    Met Ala Ala Glu Gln Gly Gln Ile Leu Val Il
    #e Ala Thr Ala Ala
                    545  
    #               550  
    #               555
    Val Gly Gly Phe Thr Leu Leu Val Ile Leu Th
    #r Leu Phe Phe Leu
                    560  
    #               565  
    #               570
    Ile Thr Gly Arg Cys Gln Trp Tyr Ile Lys Al
    #a Lys Met Lys Ser
                    575  
    #               580  
    #               585
    Glu Glu Lys Arg Arg Asn His Leu Gln Asn Gl
    #y His Leu Arg Phe
                    590  
    #               595  
    #               600
    Pro Gly Ile Lys Thr Tyr Ile Asp Pro Asp Th
    #r Tyr Glu Asp Pro
                    605  
    #               610  
    #               615
    Ser Leu Ala Val His Glu Phe Ala Lys Glu Il
    #e Asp Pro Ser Arg
                    620  
    #               625  
    #               630
    Ile Arg Ile Glu Arg Val Ile Gly Ala Gly Gl
    #u Phe Gly Glu Val
                    635  
    #               640  
    #               645
    Cys Ser Gly Arg Leu Lys Thr Pro Gly Lys Ar
    #g Glu Ile Pro Val
                    650  
    #               655  
    #               660
    Ala Ile Lys Thr Leu Lys Gly Gly His Met As
    #p Arg Gln Arg Arg
                    665  
    #               670  
    #               675
    Asp Phe Leu Arg Glu Ala Ser Ile Met Gly Gl
    #n Phe Asp His Pro
                    680  
    #               685  
    #               690
    Asn Ile Ile Arg Leu Glu Gly Val Val Thr Ly
    #s Arg Ser Phe Pro
                    695  
    #               700  
    #               705
    Ala Ile Gly Val Glu Ala Phe Cys Pro Ser Ph
    #e Leu Arg Ala Gly
                    710  
    #               715  
    #               720
    Phe Leu Asn Ser Ile Gln Ala Pro His Pro Va
    #l Pro Gly Gly Gly
                    725  
    #               730  
    #               735
    Ser Leu Pro Pro Arg Ile Pro Ala Gly Arg Pr
    #o Val Met Ile Val
                    740  
    #               745  
    #               750
    Val Glu Tyr Met Glu Asn Gly Ser Leu Asp Se
    #r Phe Leu Arg Lys
                    755  
    #               760  
    #               765
    His Asp Gly His Phe Thr Val Ile Gln Leu Va
    #l Gly Met Leu Arg
                    770  
    #               775  
    #               780
    Gly Ile Ala Ser Gly Met Lys Tyr Leu Ser As
    #p Met Gly Tyr Val
                    785  
    #               790  
    #               795
    His Arg Asp Leu Ala Ala Arg Asn Ile Leu Va
    #l Asn Ser Asn Leu
                    800  
    #               805  
    #               810
    Val Cys Lys Val Ser Asp Phe Gly Leu Ser Ar
    #g Val Leu Glu Asp
                    815  
    #               820  
    #               825
    Asp Pro Glu Ala Ala Tyr Thr Thr Thr Gly Gl
    #y Lys Ile Pro Ile
                    830  
    #               835  
    #               840
    Arg Trp Thr Ala Pro Glu Ala Ile Ala Tyr Ar
    #g Lys Phe Ser Ser
                    845  
    #               850  
    #               855
    Ala Ser Asp Ala Trp Ser Tyr Gly Ile Val Me
    #t Trp Glu Val Met
                    860  
    #               865  
    #               870
    Ser Tyr Gly Glu Arg Pro Tyr Trp Glu Met Se
    #r Asn Gln Asp Val
                    875  
    #               880  
    #               885
    Ile Leu Ser Ile Glu Glu Gly Tyr Arg Leu Pr
    #o Ala Pro Met Gly
                    890  
    #               895  
    #               900
    Cys Pro Ala Ser Leu His Gln Leu Met Leu Hi
    #s Cys Trp Gln Lys
                    905  
    #               910  
    #               915
    Glu Arg Asn His Arg Pro Lys Phe Thr Asp Il
    #e Val Ser Phe Leu
                    920  
    #               925  
    #               930
    Asp Lys Leu Ile Arg Asn Pro Ser Ala Leu Hi
    #s Thr Leu Val Glu
                    935  
    #               940  
    #               945
    Asp Ile Leu Val Met Pro Glu Ser Pro Gly Gl
    #u Val Pro Glu Tyr
                    950  
    #               955  
    #               960
    Pro Leu Phe Val Thr Val Gly Asp Trp Leu As
    #p Ser Ile Lys Met
                    965  
    #               970  
    #               975
    Gly Gln Tyr Lys Asn Asn Phe Val Ala Ala Gl
    #y Phe Thr Thr Phe
                    980  
    #               985  
    #               990
    Asp Leu Ile Ser Arg Met Ser Ile Asp Asp Il
    #e Arg Arg Ile Gly
                    995  
    #              1000   
    #             1005
    Val Ile Leu Ile Gly His Gln Arg Arg Ile Va
    #l Ser Ser Ile Gln
                   1010  
    #              1015   
    #             1020
    Thr Leu Arg Leu His Met Met His Ile Gln Gl
    #u Lys Gly Phe His
                   1025  
    #              1030   
    #             1035
    Val
    <210> SEQ ID NO 105
    <211> LENGTH: 2148
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 105
    ggcggcgggc tgcgcggagc ggcgtcccct gcagccgcgg accgaggcag  
    #              50
    cggcggcacc tgccggccga gcaatgccaa gtgagtacac ctatgtgaaa  
    #             100
    ctgagaagtg attgctcgag gccttccctg caatggtaca cccgagctca  
    #             150
    aagcaagatg agaaggccca gcttgttatt aaaagacatc ctcaaatgta  
    #             200
    cattgcttgt gtttggagtg tggatccttt atatcctcaa gttaaattat  
    #             250
    actactgaag aatgtgacat gaaaaaaatg cattatgtgg accctgacca  
    #             300
    tgtaaagaga gctcagaaat atgctcagca agtcttgcag aaggaatgtc  
    #             350
    gtcccaagtt tgccaagaca tcaatggcgc tgttatttga gcacaggtat  
    #             400
    agcgtggact tactcccttt tgtgcagaag gcccccaaag acagtgaagc  
    #             450
    tgagtccaag tacgatcctc cttttgggtt ccggaagttc tccagtaaag  
    #             500
    tccagaccct cttggaactc ttgccagagc acgacctccc tgaacacttg  
    #             550
    aaagccaaga cctgtcggcg ctgtgtggtt attggaagcg gaggaatact  
    #             600
    gcacggatta gaactgggcc acaccctgaa ccagttcgat gttgtgataa  
    #             650
    ggttaaacag tgcaccagtt gagggatatt cagaacatgt tggaaataaa  
    #             700
    actactataa ggatgactta tccagagggc gcaccactgt ctgaccttga  
    #             750
    atattattcc aatgacttat ttgttgctgt tttatttaag agtgttgatt  
    #             800
    tcaactggct tcaagcaatg gtaaaaaagg aaaccctgcc attctgggta  
    #             850
    cgactcttct tttggaagca ggtggcagaa aaaatcccac tgcagccaaa  
    #             900
    acatttcagg attttgaatc cagttatcat caaagagact gcctttgaca  
    #             950
    tccttcagta ctcagagcct cagtcaaggt tctggggccg agataagaac  
    #            1000
    gtccccacaa tcggtgtcat tgccgttgtc ttagccacac atctgtgcga  
    #            1050
    tgaagtcagt ttggcgggtt ttggatatga cctcaatcaa cccagaacac  
    #            1100
    ctttgcacta cttcgacagt caatgcatgg ctgctatgaa ctttcagacc  
    #            1150
    atgcataatg tgacaacgga aaccaagttc ctcttaaagc tggtcaaaga  
    #            1200
    gggagtggtg aaagatctca gtggaggcat tgatcgtgaa ttttgaacac  
    #            1250
    agaaaacctc agttgaaaat gcaactctaa ctctgagagc tgtttttgac  
    #            1300
    agccttcttg atgtatttct ccatcctgca gatactttga agtgcagctc  
    #            1350
    atgtttttaa cttttaattt aaaaacacaa aaaaaatttt agctcttccc  
    #            1400
    actttttttt tcctatttat ttgaggtcag tgtttgtttt tgcacaccat  
    #            1450
    tttgtaaatg aaacttaaga attgaattgg aaagacttct caaagagaat  
    #            1500
    tgtatgtaac gatgttgtat tgatttttaa gaaagtaatt taatttgtaa  
    #            1550
    aacttctgct cgtttacact gcacattgaa tacaggtaac taattggaag  
    #            1600
    gagaggggag gtcactcttt tgatggtggc cctgaacctc attctggttc  
    #            1650
    cctgctgcgc tgcttggtgt gacccacgga ggatccactc ccaggatgac  
    #            1700
    gtgctccgta gctctgctgc tgatactggg tctgcgatgc agcggcgtga  
    #            1750
    ggcctgggct ggttggagaa ggtcacaacc cttctctgtt ggtctgcctt  
    #            1800
    ctgctgaaag actcgagaac caaccaggga agctgtcctg gaggtccctg  
    #            1850
    gtcggagagg gacatagaat ctgtgacctc tgacaactgt gaagccaccc  
    #            1900
    tgggctacag aaaccacagt cttcccagca attattacaa ttcttgaatt  
    #            1950
    ccttggggat tttttactgc cctttcaaag cacttaagtg ttagatctaa  
    #            2000
    cgtgttccag tgtctgtctg aggtgactta aaaaatcaga acaaaacttc  
    #            2050
    tattatccag agtcatggga gagtacaccc tttccaggaa taatgttttg  
    #            2100
    ggaaacactg aaatgaaatc ttcccagtat tataaattgt gtatttaa  
    #              2148
    <210> SEQ ID NO 106
    <211> LENGTH: 362
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 106
    Met Arg Arg Pro Ser Leu Leu Leu Lys Asp Il
    #e Leu Lys Cys Thr
      1               5 
    #                 10 
    #                 15
    Leu Leu Val Phe Gly Val Trp Ile Leu Tyr Il
    #e Leu Lys Leu Asn
                     20 
    #                 25 
    #                 30
    Tyr Thr Thr Glu Glu Cys Asp Met Lys Lys Me
    #t His Tyr Val Asp
                     35 
    #                 40 
    #                 45
    Pro Asp His Val Lys Arg Ala Gln Lys Tyr Al
    #a Gln Gln Val Leu
                     50 
    #                 55 
    #                 60
    Gln Lys Glu Cys Arg Pro Lys Phe Ala Lys Th
    #r Ser Met Ala Leu
                     65 
    #                 70 
    #                 75
    Leu Phe Glu His Arg Tyr Ser Val Asp Leu Le
    #u Pro Phe Val Gln
                     80 
    #                 85 
    #                 90
    Lys Ala Pro Lys Asp Ser Glu Ala Glu Ser Ly
    #s Tyr Asp Pro Pro
                     95 
    #                100 
    #                105
    Phe Gly Phe Arg Lys Phe Ser Ser Lys Val Gl
    #n Thr Leu Leu Glu
                    110  
    #               115  
    #               120
    Leu Leu Pro Glu His Asp Leu Pro Glu His Le
    #u Lys Ala Lys Thr
                    125  
    #               130  
    #               135
    Cys Arg Arg Cys Val Val Ile Gly Ser Gly Gl
    #y Ile Leu His Gly
                    140  
    #               145  
    #               150
    Leu Glu Leu Gly His Thr Leu Asn Gln Phe As
    #p Val Val Ile Arg
                    155  
    #               160  
    #               165
    Leu Asn Ser Ala Pro Val Glu Gly Tyr Ser Gl
    #u His Val Gly Asn
                    170  
    #               175  
    #               180
    Lys Thr Thr Ile Arg Met Thr Tyr Pro Glu Gl
    #y Ala Pro Leu Ser
                    185  
    #               190  
    #               195
    Asp Leu Glu Tyr Tyr Ser Asn Asp Leu Phe Va
    #l Ala Val Leu Phe
                    200  
    #               205  
    #               210
    Lys Ser Val Asp Phe Asn Trp Leu Gln Ala Me
    #t Val Lys Lys Glu
                    215  
    #               220  
    #               225
    Thr Leu Pro Phe Trp Val Arg Leu Phe Phe Tr
    #p Lys Gln Val Ala
                    230  
    #               235  
    #               240
    Glu Lys Ile Pro Leu Gln Pro Lys His Phe Ar
    #g Ile Leu Asn Pro
                    245  
    #               250  
    #               255
    Val Ile Ile Lys Glu Thr Ala Phe Asp Ile Le
    #u Gln Tyr Ser Glu
                    260  
    #               265  
    #               270
    Pro Gln Ser Arg Phe Trp Gly Arg Asp Lys As
    #n Val Pro Thr Ile
                    275  
    #               280  
    #               285
    Gly Val Ile Ala Val Val Leu Ala Thr His Le
    #u Cys Asp Glu Val
                    290  
    #               295  
    #               300
    Ser Leu Ala Gly Phe Gly Tyr Asp Leu Asn Gl
    #n Pro Arg Thr Pro
                    305  
    #               310  
    #               315
    Leu His Tyr Phe Asp Ser Gln Cys Met Ala Al
    #a Met Asn Phe Gln
                    320  
    #               325  
    #               330
    Thr Met His Asn Val Thr Thr Glu Thr Lys Ph
    #e Leu Leu Lys Leu
                    335  
    #               340  
    #               345
    Val Lys Glu Gly Val Val Lys Asp Leu Ser Gl
    #y Gly Ile Asp Arg
                    350  
    #               355  
    #               360
    Glu Phe
    <210> SEQ ID NO 107
    <211> LENGTH: 1399
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 107
    tgacgcgggg cgccagctgc caacttcgcg cgcggagctc cccggcggtg  
    #              50
    cagtcccgtc ccggcggcgc gggcggcatg aagactagcc gccgcggccg  
    #             100
    agcgctcctg gccgtggccc tgaacctgct ggcgctgctg ttcgccacca  
    #             150
    ccgctttcct caccacgcac tggtgccagg gcacgcagcg ggtccccaag  
    #             200
    ccgggctgcg gccagggcgg gcgcgccaac tgccccaact cgggcgccaa  
    #             250
    cgccacggcc aacggcaccg ccgcccccgc cgccgccgcc gccgccgcca  
    #             300
    ccgcctcggg gaacggcccc cctggcggcg cgctctacag ctgggagacc  
    #             350
    ggcgacgacc gcttcctctt caggaatttc cacaccggca tctggtactc  
    #             400
    gtgcgaggag gagctcagcg ggcttggtga aaaatgtcgc agcttcattg  
    #             450
    acctggcccc ggcgtcggag aaaggcctcc tgggaatggt cgcccacatg  
    #             500
    atgtacacgc aggtgttcca ggtcaccgtg agcctcggtc ctgaggactg  
    #             550
    gagaccccat tcctgggact acgggtggtc cttctgcctg gcgtggggct  
    #             600
    cctttacctg ctgcatggca gcctctgtca ccacgctcaa ctcctacacc  
    #             650
    aagacggtca ttgagttccg gcacaagcgc aaggtctttg agcagggcta  
    #             700
    ccgggaagag ccgaccttca tagaccctga ggccatcaag tacttccggg  
    #             750
    agaggatgga gaagagggac gggagcgagg aggactttca cttagactgc  
    #             800
    cgccacgaga gataccctgc ccgacaccag ccacacatgg cggattcctg  
    #             850
    gccccggagc tccgcacagg aagcaccaga gctgaaccga cagtgctggg  
    #             900
    tcttggggca ctgggtgtga ccaagacctc aacctggccc gcggacctca  
    #             950
    ggccatcgct ggcaccagcc cctgctgcaa gaccaccaga gtggtgcccc  
    #            1000
    cagaaccctg gcctgtgtgc cgtgaactca gtcagcctgc gtgggagatg  
    #            1050
    ccaggcctgt cctgcccatc gctgcctggg tcccatggcc ttggaaatgg  
    #            1100
    ggccagggca ggcccaaggg aatgcacagg gctgcacaga gtgactttgg  
    #            1150
    gacagcagcc ccggactctt gccatcatca catgagccct gctgggcaca  
    #            1200
    gctgcgatgc caggagacac atggccactg gccactgaat ggctggcacc  
    #            1250
    cacaagccag tcaggtgccc agaggggcag agccctttgg ggggcagaga  
    #            1300
    gtggcttcct gaaggagggg gcagtggcgc aggcactgca ggggtgtcac  
    #            1350
    acagcaggca cacagcaggg gctcaataaa tgcttgttga acttgtttt  
    #             1399
    <210> SEQ ID NO 108
    <211> LENGTH: 280
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 108
    Met Lys Thr Ser Arg Arg Gly Arg Ala Leu Le
    #u Ala Val Ala Leu
      1               5 
    #                 10 
    #                 15
    Asn Leu Leu Ala Leu Leu Phe Ala Thr Thr Al
    #a Phe Leu Thr Thr
                     20 
    #                 25 
    #                 30
    His Trp Cys Gln Gly Thr Gln Arg Val Pro Ly
    #s Pro Gly Cys Gly
                     35 
    #                 40 
    #                 45
    Gln Gly Gly Arg Ala Asn Cys Pro Asn Ser Gl
    #y Ala Asn Ala Thr
                     50 
    #                 55 
    #                 60
    Ala Asn Gly Thr Ala Ala Pro Ala Ala Ala Al
    #a Ala Ala Ala Thr
                     65 
    #                 70 
    #                 75
    Ala Ser Gly Asn Gly Pro Pro Gly Gly Ala Le
    #u Tyr Ser Trp Glu
                     80 
    #                 85 
    #                 90
    Thr Gly Asp Asp Arg Phe Leu Phe Arg Asn Ph
    #e His Thr Gly Ile
                     95 
    #                100 
    #                105
    Trp Tyr Ser Cys Glu Glu Glu Leu Ser Gly Le
    #u Gly Glu Lys Cys
                    110  
    #               115  
    #               120
    Arg Ser Phe Ile Asp Leu Ala Pro Ala Ser Gl
    #u Lys Gly Leu Leu
                    125  
    #               130  
    #               135
    Gly Met Val Ala His Met Met Tyr Thr Gln Va
    #l Phe Gln Val Thr
                    140  
    #               145  
    #               150
    Val Ser Leu Gly Pro Glu Asp Trp Arg Pro Hi
    #s Ser Trp Asp Tyr
                    155  
    #               160  
    #               165
    Gly Trp Ser Phe Cys Leu Ala Trp Gly Ser Ph
    #e Thr Cys Cys Met
                    170  
    #               175  
    #               180
    Ala Ala Ser Val Thr Thr Leu Asn Ser Tyr Th
    #r Lys Thr Val Ile
                    185  
    #               190  
    #               195
    Glu Phe Arg His Lys Arg Lys Val Phe Glu Gl
    #n Gly Tyr Arg Glu
                    200  
    #               205  
    #               210
    Glu Pro Thr Phe Ile Asp Pro Glu Ala Ile Ly
    #s Tyr Phe Arg Glu
                    215  
    #               220  
    #               225
    Arg Met Glu Lys Arg Asp Gly Ser Glu Glu As
    #p Phe His Leu Asp
                    230  
    #               235  
    #               240
    Cys Arg His Glu Arg Tyr Pro Ala Arg His Gl
    #n Pro His Met Ala
                    245  
    #               250  
    #               255
    Asp Ser Trp Pro Arg Ser Ser Ala Gln Glu Al
    #a Pro Glu Leu Asn
                    260  
    #               265  
    #               270
    Arg Gln Cys Trp Val Leu Gly His Trp Val
                    275  
    #               280
    <210> SEQ ID NO 109
    <211> LENGTH: 2964
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 109
    gattaccaag caagaacagc taaaatgaaa gccatcattc atcttactct  
    #              50
    tcttgctctc ctttctgtaa acacagccac caaccaaggc aactcagctg  
    #             100
    atgctgtaac aaccacagaa actgcgacta gtggtcctac agtagctgca  
    #             150
    gctgatacca ctgaaactaa tttccctgaa actgctagca ccacagcaaa  
    #             200
    tacaccttct ttcccaacag ctacttcacc tgctcccccc ataattagta  
    #             250
    cacatagttc ctccacaatt cctacacctg ctccccccat aattagtaca  
    #             300
    catagttcct ccacaattcc tatacctact gctgcagaca gtgagtcaac  
    #             350
    cacaaatgta aattcattag ctacctctga cataatcacc gcttcatctc  
    #             400
    caaatgatgg attaatcaca atggttcctt ctgaaacaca aagtaacaat  
    #             450
    gaaatgtccc ccaccacaga agacaatcaa tcatcagggc ctcccactgg  
    #             500
    caccgcttta ttggagacca gcaccctaaa cagcacaggt cccagcaatc  
    #             550
    cttgccaaga tgatccctgt gcagataatt cgttatgtgt taagctgcat  
    #             600
    aatacaagtt tttgcctgtg tttagaaggg tattactaca actcttctac  
    #             650
    atgtaagaaa ggaaaggtat tccctgggaa gatttcagtg acagtatcag  
    #             700
    aaacatttga cccagaagag aaacattcca tggcctatca agacttgcat  
    #             750
    agtgaaatta ctagcttgtt taaagatgta tttggcacat ctgtttatgg  
    #             800
    acagactgta attcttactg taagcacatc tctgtcacca agatctgaaa  
    #             850
    tgcgtgctga tgacaagttt gttaatgtaa caatagtaac aattttggca  
    #             900
    gaaaccacaa gtgacaatga gaagactgtg actgagaaaa ttaataaagc  
    #             950
    aattagaagt agctcaagca actttctaaa ctatgatttg acccttcggt  
    #            1000
    gtgattatta tggctgtaac cagactgcgg atgactgcct caatggttta  
    #            1050
    gcatgcgatt gcaaatctga cctgcaaagg cctaacccac agagcccttt  
    #            1100
    ctgcgttgct tccagtctca agtgtcctga tgcctgcaac gcacagcaca  
    #            1150
    agcaatgctt aataaagaag agtggtgggg cccctgagtg tgcgtgcgtg  
    #            1200
    cccggctacc aggaagatgc taatgggaac tgccaaaagt gtgcatttgg  
    #            1250
    ctacagtgga ctcgactgta aggacaaatt tcagctgatc ctcactattg  
    #            1300
    tgggcaccat cgctggcatt gtcattctca gcatgataat tgcattgatt  
    #            1350
    gtcacagcaa gatcaaataa caaaacgaag catattgaag aagagaactt  
    #            1400
    gattgacgaa gactttcaaa atctaaaact gcggtcgaca ggcttcacca  
    #            1450
    atcttggagc agaagggagc gtctttccta aggtcaggat aacggcctcc  
    #            1500
    agagacagcc agatgcaaaa tccctattca agccacagca gcatgccccg  
    #            1550
    ccctgactat tagaatcata agaatgtgga acccgccatg gcccccaacc  
    #            1600
    aatgtacaag ctattattta gagtgtttag aaagactgat ggagaagtga  
    #            1650
    gcaccagtaa agatctggcc tccggggttt ttcttccatc tgacatctgc  
    #            1700
    cagcctctct gaatggaagt tgtgaatgtt tgcaacgaat ccagctcact  
    #            1750
    tgctaaataa gaatctatga cattaaatgt agtagatgct attagcgctt  
    #            1800
    gtcagagagg tggttttctt caatcagtac aaagtactga gacaatggtt  
    #            1850
    agggttgttt tcttaattct tttcctggta gggcaacaag aaccatttcc  
    #            1900
    aatctagagg aaagctcccc agcattgctt gctcctgggc aaacattgct  
    #            1950
    cttgagttaa gtgacctaat tcccctggga gacatacgca tcaactgtgg  
    #            2000
    aggtccgagg ggatgagaag ggatacccac catctttcaa gggtcacaag  
    #            2050
    ctcactctct gacaagtcag aatagggaca ctgcttctat ccctccaatg  
    #            2100
    gagagattct ggcaaccttt gaacagccca gagcttgcaa cctagcctca  
    #            2150
    cccaagaaga ctggaaagag acatatctct cagctttttc aggaggcgtg  
    #            2200
    cctgggaatc caggaacttt ttgatgctaa ttagaaggcc tggactaaaa  
    #            2250
    atgtccacta tggggtgcac tctacagttt ttgaaatgct aggaggcaga  
    #            2300
    aggggcagag agtaaaaaac atgacctggt agaaggaaga gaggcaaagg  
    #            2350
    aaactgggtg gggaggatca attagagagg aggcacctgg gatccacctt  
    #            2400
    cttccttagg tcccctcctc catcagcaaa ggagcacttc tctaatcatg  
    #            2450
    ccctcccgaa gactggctgg gagaaggttt aaaaacaaaa aatccaggag  
    #            2500
    taagagcctt aggtcagttt gaaattggag acaaactgtc tggcaaaggg  
    #            2550
    tgcgagaggg agcttgtgct caggagtcca gccgcccagc ctcggggtgt  
    #            2600
    aggtttctga ggtgtgccat tggggcctca gccttctctg gtgacagagg  
    #            2650
    ctcagctgtg gccaccaaca cacaaccaca cacacacaac cacacacaca  
    #            2700
    aatgggggca accacatcca gtacaagctt ttacaaatgt tattagtgtc  
    #            2750
    cttttttatt tctaatgcct tgtcctctta aaagttattt tatttgttat  
    #            2800
    tattatttgt tcttgactgt taattgtgaa tggtaatgca ataaagtgcc  
    #            2850
    tttgttagat ggtgaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            2900
    aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa  
    #            2950
    aaaaaaaaaa aaaa              
    #                  
    #                  
    #   2964
    <210> SEQ ID NO 110
    <211> LENGTH: 512
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 110
    Met Lys Ala Ile Ile His Leu Thr Leu Leu Al
    #a Leu Leu Ser Val
      1               5 
    #                 10 
    #                 15
    Asn Thr Ala Thr Asn Gln Gly Asn Ser Ala As
    #p Ala Val Thr Thr
                     20 
    #                 25 
    #                 30
    Thr Glu Thr Ala Thr Ser Gly Pro Thr Val Al
    #a Ala Ala Asp Thr
                     35 
    #                 40 
    #                 45
    Thr Glu Thr Asn Phe Pro Glu Thr Ala Ser Th
    #r Thr Ala Asn Thr
                     50 
    #                 55 
    #                 60
    Pro Ser Phe Pro Thr Ala Thr Ser Pro Ala Pr
    #o Pro Ile Ile Ser
                     65 
    #                 70 
    #                 75
    Thr His Ser Ser Ser Thr Ile Pro Thr Pro Al
    #a Pro Pro Ile Ile
                     80 
    #                 85 
    #                 90
    Ser Thr His Ser Ser Ser Thr Ile Pro Ile Pr
    #o Thr Ala Ala Asp
                     95 
    #                100 
    #                105
    Ser Glu Ser Thr Thr Asn Val Asn Ser Leu Al
    #a Thr Ser Asp Ile
                    110  
    #               115  
    #               120
    Ile Thr Ala Ser Ser Pro Asn Asp Gly Leu Il
    #e Thr Met Val Pro
                    125  
    #               130  
    #               135
    Ser Glu Thr Gln Ser Asn Asn Glu Met Ser Pr
    #o Thr Thr Glu Asp
                    140  
    #               145  
    #               150
    Asn Gln Ser Ser Gly Pro Pro Thr Gly Thr Al
    #a Leu Leu Glu Thr
                    155  
    #               160  
    #               165
    Ser Thr Leu Asn Ser Thr Gly Pro Ser Asn Pr
    #o Cys Gln Asp Asp
                    170  
    #               175  
    #               180
    Pro Cys Ala Asp Asn Ser Leu Cys Val Lys Le
    #u His Asn Thr Ser
                    185  
    #               190  
    #               195
    Phe Cys Leu Cys Leu Glu Gly Tyr Tyr Tyr As
    #n Ser Ser Thr Cys
                    200  
    #               205  
    #               210
    Lys Lys Gly Lys Val Phe Pro Gly Lys Ile Se
    #r Val Thr Val Ser
                    215  
    #               220  
    #               225
    Glu Thr Phe Asp Pro Glu Glu Lys His Ser Me
    #t Ala Tyr Gln Asp
                    230  
    #               235  
    #               240
    Leu His Ser Glu Ile Thr Ser Leu Phe Lys As
    #p Val Phe Gly Thr
                    245  
    #               250  
    #               255
    Ser Val Tyr Gly Gln Thr Val Ile Leu Thr Va
    #l Ser Thr Ser Leu
                    260  
    #               265  
    #               270
    Ser Pro Arg Ser Glu Met Arg Ala Asp Asp Ly
    #s Phe Val Asn Val
                    275  
    #               280  
    #               285
    Thr Ile Val Thr Ile Leu Ala Glu Thr Thr Se
    #r Asp Asn Glu Lys
                    290  
    #               295  
    #               300
    Thr Val Thr Glu Lys Ile Asn Lys Ala Ile Ar
    #g Ser Ser Ser Ser
                    305  
    #               310  
    #               315
    Asn Phe Leu Asn Tyr Asp Leu Thr Leu Arg Cy
    #s Asp Tyr Tyr Gly
                    320  
    #               325  
    #               330
    Cys Asn Gln Thr Ala Asp Asp Cys Leu Asn Gl
    #y Leu Ala Cys Asp
                    335  
    #               340  
    #               345
    Cys Lys Ser Asp Leu Gln Arg Pro Asn Pro Gl
    #n Ser Pro Phe Cys
                    350  
    #               355  
    #               360
    Val Ala Ser Ser Leu Lys Cys Pro Asp Ala Cy
    #s Asn Ala Gln His
                    365  
    #               370  
    #               375
    Lys Gln Cys Leu Ile Lys Lys Ser Gly Gly Al
    #a Pro Glu Cys Ala
                    380  
    #               385  
    #               390
    Cys Val Pro Gly Tyr Gln Glu Asp Ala Asn Gl
    #y Asn Cys Gln Lys
                    395  
    #               400  
    #               405
    Cys Ala Phe Gly Tyr Ser Gly Leu Asp Cys Ly
    #s Asp Lys Phe Gln
                    410  
    #               415  
    #               420
    Leu Ile Leu Thr Ile Val Gly Thr Ile Ala Gl
    #y Ile Val Ile Leu
                    425  
    #               430  
    #               435
    Ser Met Ile Ile Ala Leu Ile Val Thr Ala Ar
    #g Ser Asn Asn Lys
                    440  
    #               445  
    #               450
    Thr Lys His Ile Glu Glu Glu Asn Leu Ile As
    #p Glu Asp Phe Gln
                    455  
    #               460  
    #               465
    Asn Leu Lys Leu Arg Ser Thr Gly Phe Thr As
    #n Leu Gly Ala Glu
                    470  
    #               475  
    #               480
    Gly Ser Val Phe Pro Lys Val Arg Ile Thr Al
    #a Ser Arg Asp Ser
                    485  
    #               490  
    #               495
    Gln Met Gln Asn Pro Tyr Ser Ser His Ser Se
    #r Met Pro Arg Pro
                    500  
    #               505  
    #               510
    Asp Tyr
    <210> SEQ ID NO 111
    <211> LENGTH: 943
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 111
    ctgggacttg gctttctccg gataagcggc ggcaccggcg tcagcgatga  
    #              50
    ccgtgcagag actcgtggcc gcggccgtgc tggtggccct ggtctcactc  
    #             100
    atcctcaaca acgtggcggc cttcacctcc aactgggtgt gccagacgct  
    #             150
    ggaggatggg cgcaggcgca gcgtggggct gtggaggtcc tgctggctgg  
    #             200
    tggacaggac ccggggaggg ccgagccctg gggccagagc cggccaggtg  
    #             250
    gacgcacatg actgtgaggc gctgggctgg ggctccgagg cagccggctt  
    #             300
    ccaggagtcc cgaggcaccg tcaaactgca gttcgacatg atgcgcgcct  
    #             350
    gcaacctggt ggccacggcc gcgctcaccg caggccagct caccttcctc  
    #             400
    ctggggctgg tgggcctgcc cctgctgtca cccgacgccc cgtgctggga  
    #             450
    ggaggccatg gccgctgcat tccaactggc gagttttgtc ctggtcatcg  
    #             500
    ggctcgtgac tttctacaga attggcccat acaccaacct gtcctggtcc  
    #             550
    tgctacctga acattggcgc ctgccttctg gccacgctgg cggcagccat  
    #             600
    gctcatctgg aacattctcc acaagaggga ggactgcatg gccccccggg  
    #             650
    tgattgtcat cagccgctcc ctgacagcgc gctttcgccg tgggctggac  
    #             700
    aatgactacg tggagtcacc atgctgagtc gcccttctca gcgctccatc  
    #             750
    aacgcacacc tgctatcgtg gaacagccta gaaaccaagg gactccacca  
    #             800
    ccaagtcact tcccctgctc gtgcagaggc acgggatgag tctgggtgac  
    #             850
    ctctgcgcca tgcgtgcgag acacgtgtgc gtttactgtt atgtcggtca  
    #             900
    tatgtctgta cgtgtcgtgg gccaacctcg ttctgcctcc agc    
    #                  
    #943
    <210> SEQ ID NO 112
    <211> LENGTH: 226
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 112
    Met Thr Val Gln Arg Leu Val Ala Ala Ala Va
    #l Leu Val Ala Leu
      1               5 
    #                 10 
    #                 15
    Val Ser Leu Ile Leu Asn Asn Val Ala Ala Ph
    #e Thr Ser Asn Trp
                     20 
    #                 25 
    #                 30
    Val Cys Gln Thr Leu Glu Asp Gly Arg Arg Ar
    #g Ser Val Gly Leu
                     35 
    #                 40 
    #                 45
    Trp Arg Ser Cys Trp Leu Val Asp Arg Thr Ar
    #g Gly Gly Pro Ser
                     50 
    #                 55 
    #                 60
    Pro Gly Ala Arg Ala Gly Gln Val Asp Ala Hi
    #s Asp Cys Glu Ala
                     65 
    #                 70 
    #                 75
    Leu Gly Trp Gly Ser Glu Ala Ala Gly Phe Gl
    #n Glu Ser Arg Gly
                     80 
    #                 85 
    #                 90
    Thr Val Lys Leu Gln Phe Asp Met Met Arg Al
    #a Cys Asn Leu Val
                     95 
    #                100 
    #                105
    Ala Thr Ala Ala Leu Thr Ala Gly Gln Leu Th
    #r Phe Leu Leu Gly
                    110  
    #               115  
    #               120
    Leu Val Gly Leu Pro Leu Leu Ser Pro Asp Al
    #a Pro Cys Trp Glu
                    125  
    #               130  
    #               135
    Glu Ala Met Ala Ala Ala Phe Gln Leu Ala Se
    #r Phe Val Leu Val
                    140  
    #               145  
    #               150
    Ile Gly Leu Val Thr Phe Tyr Arg Ile Gly Pr
    #o Tyr Thr Asn Leu
                    155  
    #               160  
    #               165
    Ser Trp Ser Cys Tyr Leu Asn Ile Gly Ala Cy
    #s Leu Leu Ala Thr
                    170  
    #               175  
    #               180
    Leu Ala Ala Ala Met Leu Ile Trp Asn Ile Le
    #u His Lys Arg Glu
                    185  
    #               190  
    #               195
    Asp Cys Met Ala Pro Arg Val Ile Val Ile Se
    #r Arg Ser Leu Thr
                    200  
    #               205  
    #               210
    Ala Arg Phe Arg Arg Gly Leu Asp Asn Asp Ty
    #r Val Glu Ser Pro
                    215  
    #               220  
    #               225
    Cys
    <210> SEQ ID NO 113
    <211> LENGTH: 1389
    <212> TYPE: DNA
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 113
    gactttacca ctactcgcta tagagccctg gtcaagttct ctccacctct  
    #              50
    ctatctatgt ctcagtttct tcatctgtaa catcaaatga ataataatac  
    #             100
    caatctccta gacttcataa gaggattaac aaagacaaaa tatgggaaaa  
    #             150
    acataacatg gcgtcccata attattagat cttattattg acactaaaat  
    #             200
    ggcattaaaa ttaccaaaag gaagacagca tctgtttcct ctttggtcct  
    #             250
    gagctggtta aaaggaacac tggttgcctg aacagtcaca cttgcaacca  
    #             300
    tgatgcctaa acattgcttt ctaggcttcc tcatcagttt cttccttact  
    #             350
    ggtgtagcag gaactcagtc aacgcatgag tctctgaagc ctcagagggt  
    #             400
    acaatttcag tcccgaaatt ttcacaacat tttgcaatgg cagcctggga  
    #             450
    gggcacttac tggcaacagc agtgtctatt ttgtgcagta caaaatatat  
    #             500
    ggacagagac aatggaaaaa taaagaagac tgttggggta ctcaagaact  
    #             550
    ctcttgtgac cttaccagtg aaacctcaga catacaggaa ccttattacg  
    #             600
    ggagggtgag ggcggcctcg gctgggagct actcagaatg gagcatgacg  
    #             650
    ccgcggttca ctccctggtg ggaaacaaaa atagatcctc cagtcatgaa  
    #             700
    tataacccaa gtcaatggct ctttgttggt aattctccat gctccaaatt  
    #             750
    taccatatag ataccaaaag gaaaaaaatg tatctataga agattactat  
    #             800
    gaactactat accgagtttt tataattaac aattcactag aaaaggagca  
    #             850
    aaaggtttat gaaggggctc acagagcggt tgaaattgaa gctctaacac  
    #             900
    cacactccag ctactgtgta gtggctgaaa tatatcagcc catgttagac  
    #             950
    agaagaagtc agagaagtga agagagatgt gtggaaattc catgacttgt  
    #            1000
    ggaatttggc attcagcaat gtggaaattc taaagctccc tgagaacagg  
    #            1050
    atgactcgtg tttgaaggat cttatttaaa attgtttttg tattttctta  
    #            1100
    aagcaatatt cactgttaca ccttggggac ttctttgttt acccattctt  
    #            1150
    ttatccttta tatttcattt gtaaactata tttgaacgac attccccccg  
    #            1200
    aaaaattgaa atgtaaagat gaggcagaga ataaagtgtt ctatgaaatt  
    #            1250
    cagaacttta tttctgaatg taacatccct aataacaacc ttcattcttc  
    #            1300
    taatacagca aaataaaaat ttaacaacca aggaatagta tttaagaaaa  
    #            1350
    tgttgaaata atttttttaa aatagcatta cagactgag      
    #                  
    #  1389
    <210> SEQ ID NO 114
    <211> LENGTH: 231
    <212> TYPE: PRT
    <213> ORGANISM: Homo Sapien
    <400> SEQUENCE: 114
    Met Met Pro Lys His Cys Phe Leu Gly Phe Le
    #u Ile Ser Phe Phe
      1               5 
    #                 10 
    #                 15
    Leu Thr Gly Val Ala Gly Thr Gln Ser Thr Hi
    #s Glu Ser Leu Lys
                     20 
    #                 25 
    #                 30
    Pro Gln Arg Val Gln Phe Gln Ser Arg Asn Ph
    #e His Asn Ile Leu
                     35 
    #                 40 
    #                 45
    Gln Trp Gln Pro Gly Arg Ala Leu Thr Gly As
    #n Ser Ser Val Tyr
                     50 
    #                 55 
    #                 60
    Phe Val Gln Tyr Lys Ile Tyr Gly Gln Arg Gl
    #n Trp Lys Asn Lys
                     65 
    #                 70 
    #                 75
    Glu Asp Cys Trp Gly Thr Gln Glu Leu Ser Cy
    #s Asp Leu Thr Ser
                     80 
    #                 85 
    #                 90
    Glu Thr Ser Asp Ile Gln Glu Pro Tyr Tyr Gl
    #y Arg Val Arg Ala
                     95 
    #                100 
    #                105
    Ala Ser Ala Gly Ser Tyr Ser Glu Trp Ser Me
    #t Thr Pro Arg Phe
                    110  
    #               115  
    #               120
    Thr Pro Trp Trp Glu Thr Lys Ile Asp Pro Pr
    #o Val Met Asn Ile
                    125  
    #               130  
    #               135
    Thr Gln Val Asn Gly Ser Leu Leu Val Ile Le
    #u His Ala Pro Asn
                    140  
    #               145  
    #               150
    Leu Pro Tyr Arg Tyr Gln Lys Glu Lys Asn Va
    #l Ser Ile Glu Asp
                    155  
    #               160  
    #               165
    Tyr Tyr Glu Leu Leu Tyr Arg Val Phe Ile Il
    #e Asn Asn Ser Leu
                    170  
    #               175  
    #               180
    Glu Lys Glu Gln Lys Val Tyr Glu Gly Ala Hi
    #s Arg Ala Val Glu
                    185  
    #               190  
    #               195
    Ile Glu Ala Leu Thr Pro His Ser Ser Tyr Cy
    #s Val Val Ala Glu
                    200  
    #               205  
    #               210
    Ile Tyr Gln Pro Met Leu Asp Arg Arg Ser Gl
    #n Arg Ser Glu Glu
                    215  
    #               220  
    #               225
    Arg Cys Val Glu Ile Pro
                    230
    <210> SEQ ID NO 115
    <211> LENGTH: 43
    <212> TYPE: DNA
    <213> ORGANISM: Artificial Sequence
    <220> FEATURE:
    <223> OTHER INFORMATION: Synthetic Oligonucleotide Pr
    #obe
    <400> SEQUENCE: 115
    tgtaaaacga cggccagtta aatagacctg caattattaa tct    
    #                  
    # 43
    <210> SEQ ID NO 116
    <211> LENGTH: 41
    <212> TYPE: DNA
    <213> ORGANISM: Artificial Sequence
    <220> FEATURE:
    <223> OTHER INFORMATION: Synthetic Oligonucleotide Pr
    #obe
    <400> SEQUENCE: 116
    caggaaacag ctatgaccac ctgcacacct gcaaatccat t    
    #                  
    #   41

Claims (26)

What is claimed is:
1. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence that encodes an amino acid sequence selected from the group consisting of the amino acid sequence shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) and FIG. 114 (SEQ ID NO:114.
2. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequence shown in FIG. 1 (SEQ ID NO:1), FIG. 3 (SEQ ID NO:3), FIG. 5 (SEQ ID NO:5), FIG. 7 (SEQ ID NO:7), FIG. 9 (SEQ ID NO:9), FIG. 11 (SEQ ID NO:11), FIG. 13 (SEQ ID NO:13), FIG. 15 (SEQ ID NO:15), FIG. 17 (SEQ ID NO:17), FIG. 19 (SEQ ID NO:19), FIG. 21 (SEQ ID NO:21), FIG. 23 (SEQ ID NO:23), FIG. 25 (SEQ ID NO:25), FIG. 27 (SEQ ID NO:27), FIG. 29 (SEQ ID NO:29), FIG. 31 (SEQ ID NO:31), FIG. 33 (SEQ ID NO:33), FIG. 35 (SEQ ID NO:35), FIG. 37 (SEQ ID NO:37), FIG. 39 (SEQ ID NO:39), FIG. 41 (SEQ ID NO:41), FIG. 43 (SEQ ID NO:43), FIG. 45 (SEQ ID NO:45), FIG. 47 (SEQ ID NO:47), FIG. 49 (SEQ ID NO:49), FIG. 51 (SEQ ID NO:51), FIG. 53 (SEQ ID NO:53), FIG. 55 (SEQ ID NO:55), FIG. 57 (SEQ ID NO:57), FIG. 59 (SEQ ID NO:59), FIG. 61 (SEQ ID NO:61), FIG. 63 (SEQ ID NO:63), FIG. 65 (SEQ ID NO:65), FIG. 67 (SEQ ID NO:67), FIG. 69 (SEQ ID NO:69), FIG. 71 (SEQ ID NO:71), FIG. 73 (SEQ ID NO:73), FIG. 75 (SEQ ID NO:75), FIG. 77 (SEQ ID NO:77), FIG. 79 (SEQ ID NO:79), FIG. 81 (SEQ ID NO:81), FIG. 83 (SEQ ID NO:83), FIG. 85 (SEQ ID NO:85), FIG. 87 (SEQ ID NO:87), FIG. 89 (SEQ ID NO:89), FIG. 91 (SEQ ID NO:91), FIG. 93 (SEQ ID NO:93), FIGS. 95A-95B (SEQ ID NO:95), FIG. 97 (SEQ ID NO:97), FIG. 99 (SEQ ID NO:99), FIG. 101 (SEQ ID NO:101), FIG. 103 (SEQ ID NO:103), FIG. 105 (SEQ ID NO:105), FIG. 107 (SEQ ID NO:107), FIG. 109 (SEQ ID NO:109), FIG. 111 (SEQ ID NO:111) and FIG. 113 (SEQ ID NO:113).
3. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the full-length coding sequence of the nucleotide sequence shown in FIG. 1 (SEQ ID NO:1), FIG. 3 (SEQ ID NO:3), FIG. 5 (SEQ ID NO:5), FIG. 7 (SEQ ID NO:7), FIG. 9 (SEQ ID NO:9), FIG. 11 (SEQ ID NO:11), FIG. 13 (SEQ ID NO:13), FIG. 15 (SEQ ID NO:15), FIG. 17 (SEQ ID NO:17), FIG. 19 (SEQ ID NO:19), FIG. 21 (SEQ ID NO:21), FIG. 23 (SEQ ID NO:23), FIG. 25 (SEQ ID NO:25), FIG. 27 (SEQ ID NO:27), FIG. 29 (SEQ ID NO:29), FIG. 31 (SEQ ID NO:31), FIG. 33 (SEQ ID NO:33), FIG. 35 (SEQ ID NO:35), FIG. 37 (SEQ ID NO:37), FIG. 39 (SEQ ID NO:39), FIG. 41 (SEQ ID NO:41), FIG. 43 (SEQ ID NO:43), FIG. 45 (SEQ ID NO:45), FIG. 47 (SEQ ID NO:47), FIG. 49 (SEQ ID NO:49), FIG. 51 (SEQ ID NO:51), FIG. 53 (SEQ ID NO:53), FIG. 55 (SEQ ID NO:55), FIG. 57 (SEQ ID NO:57), FIG. 59 (SEQ ID NO:59), FIG. 61 (SEQ ID NO:61), FIG. 63 (SEQ ID NO:63), FIG. 65 (SEQ ID NO:65), FIG. 67 (SEQ ID NO:67), FIG. 69 (SEQ ID NO:69), FIG. 71 (SEQ ID NO:71), FIG. 73 (SEQ ID NO:73), FIG. 75 (SEQ ID NO:75), FIG. 77 (SEQ ID NO:77), FIG. 79 (SEQ ID NO:79), FIG. 81 (SEQ ID NO:81), FIG. 83 (SEQ ID NO:83), FIG. 85 (SEQ ID NO:85), FIG. 87 (SEQ ID NO:87), FIG. 89 (SEQ ID NO:89), FIG. 91 (SEQ ID NO:91), FIG. 93 (SEQ ID NO:93), FIGS. 95A-95B (SEQ ID NO:95), FIG. 97 (SEQ ID NO:97), FIG. 99 (SEQ ID NO:99), FIG. 101 (SEQ ID NO:101), FIG. 103 (SEQ ID NO:103), FIG. 105 (SEQ ID NO:105), FIG. 107 (SEQ ID NO:107), FIG. 109 (SEQ ID NO:109), FIG. 111 (SEQ ID NO:111) and FIG. 113 (SEQ ID NO:113).
4. Isolated nucleic acid having at least 80% nucleic acid sequence identity to the full-length coding sequence of the DNA deposited under any ATCC accession number shown in Table 7.
5. A vector comprising the nucleic acid of claim 1.
6. A host cell comprising the vector of claim 5.
7. The host cell of claim 6, wherein said cell is a CHO cell.
8. The host cell of claim 6, wherein said cell is an E. coli.
9. The host cell of claim 6, wherein said cell is a yeast cell.
10. A process for producing a PRO polypeptide comprising culturing the host cell of claim 6 under conditions suitable for expression of said PRO polypeptide and recovering said PRO polypeptide from the cell culture.
11. An isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence selected from the group consisting of the amino acid sequence shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) and FIG. 114 (SEQ ID NO:114).
12. An isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence encoded by the full-length coding sequence of the DNA deposited under any ATCC accession number shown in Table 7.
13. A chimeric molecule comprising a polypeptide according to claim 11 fused to a heterologous amino acid sequence.
14. The chimeric molecule of claim 13, wherein said heterologous amino acid sequence is an epitope tag sequence.
15. The chimeric molecule of claim 13, wherein said heterologous amino acid sequence is a Fc region of an immunoglobulin.
16. An antibody which specifically binds to a polypeptide according to claim 11.
17. The antibody of claim 16, wherein said antibody is a monoclonal antibody, a humanized antibody or a single-chain antibody.
18. Isolated nucleic acid having at least 80% nucleic acid sequence identity to:
(a) a nucleotide sequence encoding the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), lacking its associated signal peptide;
(b) a nucleotide sequence encoding an extracellular domain of the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), with its associated signal peptide; or
(c) a nucleotide sequence encoding an extracellular domain of the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), lacking its associated signal peptide.
19. An isolated polypeptide having at least 80% amino acid sequence identity to:
(a) an amino acid sequence of the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), lacking its associated signal peptide;
(b) an amino acid sequence of an extracellular domain of the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQ ID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), with its associated signal peptide; or
(c) an amino acid sequence of an extracellular domain of the polypeptide shown in FIG. 2 (SEQ ID NO:2), FIG. 4 (SEQ ID NO:4), FIG. 6 (SEQ ID NO:6), FIG. 8 (SEQ ID NO:8), FIG. 10 (SEQ ID NO:10), FIG. 12 (SEQ ID NO:12), FIG. 14 (SEQ ID NO:14), FIG. 16 (SEQ ID NO:16), FIG. 18 (SEQ ID NO:18), FIG. 20 (SEQ ID NO:20), FIG. 22 (SEQID NO:22), FIG. 24 (SEQ ID NO:24), FIG. 26 (SEQ ID NO:26), FIG. 28 (SEQ ID NO:28), FIG. 30 (SEQ ID NO:30), FIG. 32 (SEQ ID NO:32), FIG. 34 (SEQ ID NO:34), FIG. 36 (SEQ ID NO:36), FIG. 38 (SEQ ID NO:38), FIG. 40 (SEQ ID NO:40), FIG. 42 (SEQ ID NO:42), FIG. 44 (SEQ ID NO:44), FIG. 46 (SEQ ID NO:46), FIG. 48 (SEQ ID NO:48), FIG. 50 (SEQ ID NO:50), FIG. 52 (SEQ ID NO:52), FIG. 54 (SEQ ID NO:54), FIG. 56 (SEQ ID NO:56), FIG. 58 (SEQ ID NO:58), FIG. 60 (SEQ ID NO:60), FIG. 62 (SEQ ID NO:62), FIG. 64 (SEQ ID NO:64), FIG. 66 (SEQ ID NO:66), FIG. 68 (SEQ ID NO:68), FIG. 70 (SEQ ID NO:70), FIG. 72 (SEQ ID NO:72), FIG. 74 (SEQ ID NO:74), FIG. 76 (SEQ ID NO:76), FIG. 78 (SEQ ID NO:78), FIG. 80 (SEQ ID NO:80), FIG. 82 (SEQ ID NO:82), FIG. 84 (SEQ ID NO:84), FIG. 86 (SEQ ID NO:86), FIG. 88 (SEQ ID NO:88), FIG. 90 (SEQ ID NO:90), FIG. 92 (SEQ ID NO:92), FIG. 94 (SEQ ID NO:94), FIG. 96 (SEQ ID NO:96), FIG. 98 (SEQ ID NO:98), FIG. 100 (SEQ ID NO:100), FIG. 102 (SEQ ID NO:102), FIG. 104 (SEQ ID NO:104), FIG. 106 (SEQ ID NO:106), FIG. 108 (SEQ ID NO:108), FIG. 110 (SEQ ID NO:110), FIG. 112 (SEQ ID NO:112) or FIG. 114 (SEQ ID NO:114), lacking its associated signal peptide.
20. A method for stimulating the proliferation or differentiation of chondrocyte cells, said method comprising contacting said cells with a PRO6018 polypeptide, wherein the proliferation or differentiation of said cells is stimulated.
21. A method for stimulating the proliferation of human microvascular endothelial cells, said method comprising contacting said cells with a PRO1313, PRO20080 or PRO21383 polypeptide, wherein the proliferation of said cells is stimulated.
24. A method for inhibiting the proliferation of human microvascular endothelial cells, said method comprising contacting said cells with a PRO6071, PRO4487 or PRO6006 polypeptide, wherein the proliferation of said cells is inhibited.
25. A method for detecting the presence of tumor in a mammal, said method comprising comparing the level of expression of any PRO polypeptide shown in Table 8 in (a) a test sample of cells taken from said mammal and (b) a control sample of normal cells of the same cell type, wherein a higher level of expression of said PRO polypeptide in the test sample as compared to the control sample is indicative of the presence of tumor in said mammal.
26. The method of claim 25, wherein said tumor is lung tumor, colon tumor, breast tumor, prostate tumor, rectal tumor, kidney tumor or liver tumor.
27. A method for inducing endothelial cell tube formation comprising administering to the endothelial cell a PRO281, PRO1560, PRO189, PRO4499, PRO6308, PRO6000, PRO10275, PRO21207, PRO20933 or PRO34274 polypeptide, or agonist thereof, wherein tube formation in said endothelial cell is induced.
28. An oligonucleotide probe derived from any of the nucleotide sequences shown in the accompanying figures.
US10/245,473 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same Abandoned US20030082730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/245,473 US20030082730A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2001/027099 WO2002024888A2 (en) 2000-09-01 2001-08-29 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/197,942 US20030175882A1 (en) 1998-09-10 2002-07-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,473 US20030082730A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/197,942 Continuation US20030175882A1 (en) 1998-03-27 2002-07-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Publications (1)

Publication Number Publication Date
US20030082730A1 true US20030082730A1 (en) 2003-05-01

Family

ID=22731368

Family Applications (20)

Application Number Title Priority Date Filing Date
US10/238,196 Abandoned US20030186372A1 (en) 2000-02-11 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/238,411 Abandoned US20030104562A1 (en) 2000-02-11 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/238,324 Abandoned US20030119115A1 (en) 2000-05-17 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,095 Expired - Lifetime US7504480B2 (en) 2001-08-29 2002-09-12 PRO10275 polypeptides
US10/243,298 Abandoned US20060073553A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,320 Abandoned US20030087388A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,338 Abandoned US20060073579A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,874 Abandoned US20030104566A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,878 Abandoned US20030113860A1 (en) 2000-05-17 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,770 Abandoned US20030082731A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,859 Abandoned US20030064474A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,033 Abandoned US20030078401A1 (en) 2000-02-11 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/244,947 Abandoned US20030113850A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,473 Abandoned US20030082730A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,079 Abandoned US20030113853A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,127 Abandoned US20030113854A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/246,976 Abandoned US20030082733A1 (en) 2001-08-29 2002-09-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/247,036 Abandoned US20030119143A1 (en) 2001-08-29 2002-09-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US11/157,996 Abandoned US20060003370A1 (en) 1999-06-22 2005-06-20 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US11/234,694 Abandoned US20070191270A1 (en) 2000-09-15 2005-09-22 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Family Applications Before (13)

Application Number Title Priority Date Filing Date
US10/238,196 Abandoned US20030186372A1 (en) 2000-02-11 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/238,411 Abandoned US20030104562A1 (en) 2000-02-11 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/238,324 Abandoned US20030119115A1 (en) 2000-05-17 2002-09-09 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,095 Expired - Lifetime US7504480B2 (en) 2001-08-29 2002-09-12 PRO10275 polypeptides
US10/243,298 Abandoned US20060073553A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,320 Abandoned US20030087388A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/243,338 Abandoned US20060073579A1 (en) 2001-08-29 2002-09-13 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,874 Abandoned US20030104566A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,878 Abandoned US20030113860A1 (en) 2000-05-17 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,770 Abandoned US20030082731A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,859 Abandoned US20030064474A1 (en) 2001-08-29 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,033 Abandoned US20030078401A1 (en) 2000-02-11 2002-09-16 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/244,947 Abandoned US20030113850A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Family Applications After (6)

Application Number Title Priority Date Filing Date
US10/245,079 Abandoned US20030113853A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/245,127 Abandoned US20030113854A1 (en) 2001-08-29 2002-09-17 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/246,976 Abandoned US20030082733A1 (en) 2001-08-29 2002-09-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US10/247,036 Abandoned US20030119143A1 (en) 2001-08-29 2002-09-18 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US11/157,996 Abandoned US20060003370A1 (en) 1999-06-22 2005-06-20 Secreted and transmembrane polypeptides and nucleic acids encoding the same
US11/234,694 Abandoned US20070191270A1 (en) 2000-09-15 2005-09-22 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Country Status (1)

Country Link
US (20) US20030186372A1 (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834855B2 (en) * 2004-08-25 2010-11-16 Apple Inc. Wide touchpad on a portable computer
JP2003534773A (en) * 1999-12-03 2003-11-25 ザイモジェネティクス,インコーポレイティド Human cytokine receptor
US6875845B2 (en) * 2001-03-02 2005-04-05 Zymogenetics, Inc. Mouse cytokine receptor
WO2002077174A2 (en) * 2001-03-27 2002-10-03 Zymogenetics, Inc. Human cytokine receptor
BR122018071808B8 (en) 2003-11-06 2020-06-30 Seattle Genetics Inc conjugate
JP5234734B2 (en) 2004-06-01 2013-07-10 ジェネンテック, インコーポレイテッド Antibody-drug conjugates and methods
EP3088004B1 (en) 2004-09-23 2018-03-28 Genentech, Inc. Cysteine engineered antibodies and conjugates
US20100111856A1 (en) 2004-09-23 2010-05-06 Herman Gill Zirconium-radiolabeled, cysteine engineered antibody conjugates
DE102006041788B4 (en) 2006-09-06 2012-06-14 Airbus Operations Gmbh An aircraft electronics cooling device for an aircraft with a liquid cooling system
EP2448966B1 (en) 2009-07-03 2018-11-14 Avipep Pty Ltd Immuno-conjugates and methods for producing them
US8470980B2 (en) 2009-09-09 2013-06-25 Centrose, Llc Extracellular targeted drug conjugates
CA2784610C (en) 2009-12-23 2020-07-14 Avipep Pty Ltd Immuno-conjugates and methods for producing them
CA2793890C (en) 2010-04-15 2017-08-15 Spirogen Developments Sarl Pyrrolobenzodiazepines and conjugates thereof
JP2013534520A (en) 2010-06-08 2013-09-05 ジェネンテック, インコーポレイテッド Cysteine engineered antibodies and conjugates
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates
CN103619877B (en) 2011-04-21 2018-01-02 加文医学研究所 The variable domains molecule and its generation and application method B of modification
EP2707723B1 (en) 2011-05-12 2016-02-10 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides
MX350152B (en) 2011-10-14 2017-08-29 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof.
WO2013130093A1 (en) 2012-03-02 2013-09-06 Genentech, Inc. Biomarkers for treatment with anti-tubulin chemotherapeutic compounds
SI2906251T1 (en) 2012-10-12 2018-01-31 Adc Therapeutics Sa Pyrrolobenzodiazepine-anti-cd22 antibody conjugates
EP2906250B1 (en) 2012-10-12 2018-05-30 ADC Therapeutics SA Pyrrolobenzodiazepine-anti-psma antibody conjugates
ES2660029T3 (en) 2012-10-12 2018-03-20 Medimmune Limited Antibody-pyrrolobenzodiazepine conjugates
DK2906296T3 (en) 2012-10-12 2018-05-22 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
BR112015008173A2 (en) 2012-10-12 2017-11-28 Adc Therapeutics Sarl pyrrolobenzodiazepine-anti-psma antibody conjugates
CN105050661B (en) 2012-10-12 2018-03-30 Adc疗法责任有限公司 Pyrrolobenzodiazepines Zhuo antibody conjugates
HUE045435T2 (en) 2012-10-12 2019-12-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
CA2894961C (en) 2012-12-21 2020-09-15 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
AU2013366490B9 (en) 2012-12-21 2018-02-01 Medimmune Limited Unsymmetrical pyrrolobenzodiazepines-dimers for use in the treatment of proliferative and autoimmune diseases
WO2014140174A1 (en) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014140862A2 (en) 2013-03-13 2014-09-18 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
AU2014244245C1 (en) 2013-03-13 2018-04-19 Genentech, Inc. Pyrrolobenzodiazepines and conjugates thereof
TWI636792B (en) 2013-08-12 2018-10-01 建南德克公司 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
WO2015052535A1 (en) 2013-10-11 2015-04-16 Spirogen Sàrl Pyrrolobenzodiazepine-antibody conjugates
EP3054985B1 (en) 2013-10-11 2018-12-26 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
WO2015052532A1 (en) 2013-10-11 2015-04-16 Spirogen Sàrl Pyrrolobenzodiazepine-antibody conjugates
GB201317982D0 (en) 2013-10-11 2013-11-27 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
CN105873614B (en) 2013-12-16 2020-10-30 基因泰克公司 Peptidomimetic compounds and antibody-drug conjugates thereof
MX2016007578A (en) 2013-12-16 2016-10-03 Genentech Inc 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment.
EA201691023A1 (en) 2013-12-16 2016-10-31 Дженентек, Инк. PEPTIDOMIMETIC CONNECTIONS AND THEIR CONJUGATES ANTIBODIES WITH MEDICINE
JP6531166B2 (en) 2014-09-10 2019-06-12 メドイミューン・リミテッドMedImmune Limited Pyrrolobenzodiazepine and its conjugate
EP3191134B1 (en) 2014-09-12 2019-11-20 Genentech, Inc. Anthracycline disulfide intermediates, antibody-drug conjugates and methods
AR101844A1 (en) 2014-09-12 2017-01-18 Genentech Inc ANTIBODIES AND GENETICALLY MODIFIED CONJUGATES WITH CYSTEINE
GB201416112D0 (en) 2014-09-12 2014-10-29 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
EP3194400A1 (en) 2014-09-17 2017-07-26 Genentech, Inc. Pyrrolobenzodiazepines and antibody disulfide conjugates thereof
BR112017011111A2 (en) 2014-11-25 2017-12-26 Adc Therapeutics Sa pyrrolobenzodiazepine-antibody conjugates
KR20170086121A (en) 2014-12-03 2017-07-25 제넨테크, 인크. Quaternary amine compounds and antibody-drug conjugates thereof
GB201506411D0 (en) 2015-04-15 2015-05-27 Bergenbio As Humanized anti-axl antibodies
GB201506402D0 (en) 2015-04-15 2015-05-27 Berkel Patricius H C Van And Howard Philip W Site-specific antibody-drug conjugates
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
GB201601431D0 (en) 2016-01-26 2016-03-09 Medimmune Ltd Pyrrolobenzodiazepines
GB201602356D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
GB201602359D0 (en) 2016-02-10 2016-03-23 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
GB201607478D0 (en) 2016-04-29 2016-06-15 Medimmune Ltd Pyrrolobenzodiazepine Conjugates
PL3458101T3 (en) 2016-05-20 2021-05-31 F. Hoffmann-La Roche Ag Protac antibody conjugates and methods of use
US20170370906A1 (en) 2016-05-27 2017-12-28 Genentech, Inc. Bioanalytical analysis of site-specific antibody drug conjugates
WO2017214024A1 (en) 2016-06-06 2017-12-14 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
CN109689111B (en) 2016-08-11 2024-04-05 基因泰克公司 Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
WO2018065501A1 (en) 2016-10-05 2018-04-12 F. Hoffmann-La Roche Ag Methods for preparing antibody drug conjugates
GB201617466D0 (en) 2016-10-14 2016-11-30 Medimmune Ltd Pyrrolobenzodiazepine conjugates
GB201702031D0 (en) 2017-02-08 2017-03-22 Medlmmune Ltd Pyrrolobenzodiazepine-antibody conjugates
DK3544636T3 (en) 2017-02-08 2021-05-10 Adc Therapeutics Sa Pyrrolobenzodiazepine antibody conjugates
DK3612537T3 (en) 2017-04-18 2022-08-08 Medimmune Ltd PYRROLOBENZODIAZEPIN CONJUGATES
CA3057748A1 (en) 2017-04-20 2018-10-25 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
KR102442736B1 (en) 2017-06-14 2022-09-16 에이디씨 테라퓨틱스 에스에이 Dosage regime for administration of anti-CD19 ADCs
KR102312910B1 (en) 2017-08-18 2021-10-15 메디뮨 리미티드 Pyrrolobenzodiazepine conjugates
TW201920192A (en) 2017-09-20 2019-06-01 韓商Ph製藥公司 THAILANSTATIN analogs
GB201803342D0 (en) 2018-03-01 2018-04-18 Medimmune Ltd Methods
GB201806022D0 (en) 2018-04-12 2018-05-30 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
CN113056287A (en) 2018-10-24 2021-06-29 豪夫迈·罗氏有限公司 Conjugated chemical degradation inducers and methods of use
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536637A (en) * 1993-04-07 1996-07-16 Genetics Institute, Inc. Method of screening for cDNA encoding novel secreted mammalian proteins in yeast
US6566325B2 (en) * 1998-08-25 2003-05-20 Human Genome Sciences, Inc. 49 human secreted proteins

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492507B1 (en) * 1996-10-23 2002-12-10 Incyte Genomics, Inc. Polynucleotides encoding human eosinophil-derived basic protein
US6548633B1 (en) * 1998-12-22 2003-04-15 Genset, S.A. Complementary DNA's encoding proteins with signal peptides
US6455280B1 (en) * 1998-12-22 2002-09-24 Genset S.A. Methods and compositions for inhibiting neoplastic cell growth
EP1218408A4 (en) * 1999-09-24 2003-02-26 Human Genome Sciences Inc 32 human secreted proteins
US6569662B1 (en) * 2000-01-21 2003-05-27 Hyseq, Inc. Nucleic acids and polypeptides
CA2398546A1 (en) * 2000-01-25 2001-08-02 Hyseq, Inc. Methods and materials relating to cd84-like polypeptides and polynucleotides
EP1294868A2 (en) * 2000-06-29 2003-03-26 Incyte Genomics, Inc. Adenylyl and guanylyl cyclases
US20040024182A1 (en) * 2001-07-03 2004-02-05 Henry Yue Gtp-binding proteins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536637A (en) * 1993-04-07 1996-07-16 Genetics Institute, Inc. Method of screening for cDNA encoding novel secreted mammalian proteins in yeast
US6566325B2 (en) * 1998-08-25 2003-05-20 Human Genome Sciences, Inc. 49 human secreted proteins

Also Published As

Publication number Publication date
US20030078401A1 (en) 2003-04-24
US20070191270A1 (en) 2007-08-16
US20030104566A1 (en) 2003-06-05
US20030087388A1 (en) 2003-05-08
US20030119115A1 (en) 2003-06-26
US20030113850A1 (en) 2003-06-19
US20060073553A1 (en) 2006-04-06
US20030104562A1 (en) 2003-06-05
US20060003370A1 (en) 2006-01-05
US20030082733A1 (en) 2003-05-01
US20030113854A1 (en) 2003-06-19
US20030082731A1 (en) 2003-05-01
US7504480B2 (en) 2009-03-17
US20030186372A1 (en) 2003-10-02
US20030064474A1 (en) 2003-04-03
US20030082726A1 (en) 2003-05-01
US20030113853A1 (en) 2003-06-19
US20030113860A1 (en) 2003-06-19
US20030119143A1 (en) 2003-06-26
US20060073579A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US20030082730A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119122A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119133A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030124665A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030082728A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030064473A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030170809A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030108996A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073189A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030096364A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030068778A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030068779A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119118A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030082729A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030077741A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030077743A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073195A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030068781A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030068780A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073190A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073191A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119140A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030138901A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030119123A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030138898A1 (en) Secreted and transmembrane polypeptides and nucleic acids encoding the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION