Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030072868 A1
Publication typeApplication
Application numberUS 10/304,360
Publication date17 Apr 2003
Filing date25 Nov 2002
Priority date28 Dec 2000
Also published asUS6503556, US20020122877
Publication number10304360, 304360, US 2003/0072868 A1, US 2003/072868 A1, US 20030072868 A1, US 20030072868A1, US 2003072868 A1, US 2003072868A1, US-A1-20030072868, US-A1-2003072868, US2003/0072868A1, US2003/072868A1, US20030072868 A1, US20030072868A1, US2003072868 A1, US2003072868A1
InventorsSameer Harish, Steven Wu, Deborra Sanders Millare, Judy Guruwaiya, Stephen Pacetti, Syed Hossainy
Original AssigneeSameer Harish, Steven Wu, Deborra Sanders Millare, Judy Guruwaiya, Stephen Pacetti, Hossainy Syed Faiyaz Ahmed
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods of forming a coating for a prosthesis
US 20030072868 A1
Abstract
Methods of forming a coating onto an implantable device or endoluminal prosthesis, such as a stent, are provided. The coating may be used for the delivery of an active ingredient. The coating may have a selected pattern of interstices for allowing a fluid to seep through the coating in the direction of the pattern created.
Images(4)
Previous page
Next page
Claims(17)
What is claimed is:
1. A method of forming a coating for a prosthesis, comprising:
depositing a polymeric sheath over at least a portion of a prosthesis, said prosthesis having a plurality of interconnected struts separated by gaps and a longitudinally extending central bore for allowing a fluid to travel through said prosthesis; and
exposing said polymeric sheath to a temperature not greater than about the melting temperature of the polymer to form a coating for said prosthesis.
2. A coated stent produced in accordance with the method of claim 1.
3. The method of claim 1, wherein said coating covers said gaps underlying said sheath.
4. The method of claim 1, wherein said method further comprises:
removing a portion of said coating positioned over some of said gaps to form a pattern of interstices dispersed between said struts for allowing a fluid that flows through said central bore to seep through said coating.
5. The method of claim 4, wherein said removing is performed by applying a laser discharge to said portion of said coating to form a preselected pattern of interstices.
6. The method of claim 1, wherein said temperature is above the glass transition temperature for the polymer.
7. The method of claim 1, wherein said coating is made from an ethylene vinyl alcohol copolymer.
8. The method of claim 1, wherein said coating is impregnated with an active ingredient for the sustained release of said active ingredient when said prosthesis is implanted in a biological passageway, and wherein said active ingredient is selected from a group of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidant substances and combinations thereof.
9. The method of claim 8, wherein said method further comprises:
forming a rate limiting membrane over said coating.
10. The method of claim 1, wherein said coating contains actinomycin D, docetaxel, or paclitaxel.
11. The method of claim 1, wherein said coating contains a material selected from a group of radioactive isotopes and radiopaque elements.
12. The method of claim 1, wherein said method further comprises:
forming a second coating onto said coating on said prosthesis, wherein said second coating is impregnated with an active ingredient for the sustained release of said active ingredient when said prosthesis is implanted in a biological passageway.
13. A method for increasing an amount of a polymeric coating on a stent having struts separated by gaps, without increasing the thickness of the coating, comprising the acts of:
inserting a stent having a plurality of interconnected struts separated by gaps into a polymeric sheath; and
exposing said polymeric sheath to a temperature not greater than about the melting temperature of the polymer to form a coating for said stent, wherein said coating covers said struts and said gaps between said struts so as to increase the quantity of said polymeric coating supported by said stent without increasing the thickness of said coating on said stent.
14. The method of claim 13, further comprising:
removing a portion of said coating deposited over at least one of said gaps to create an opening in said coating, wherein the size of said opening is smaller than the size of said gap, and wherein said opening allows a fluid to travel through said coating from within said stent.
15. The method of claim 14, wherein said act of removing comprises:
applying a laser discharge to a portion of said coating deposited over at least one of said gaps to create said opening in said coating.
16. The method of claim 13, wherein said polymeric coating comprises an active ingredient to inhibit restenosis.
17. The method of claim 13, wherein said temperature is not less than about the glass transition temperature of the polymer.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The invention relates to implantable devices or endoluminal prostheses, such as stents, and methods of coating such devices.
  • [0003]
    2. Description of the Background
  • [0004]
    Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially press against the atherosclerotic plaque of the lesion for remodeling of the vessel wall. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
  • [0005]
    A problem associated with the above procedure includes formation of intimal flaps or torn arterial linings, which can collapse and occlude the conduit after the balloon is deflated. Vasospasms and recoil of the vessel wall also threaten vessel closure. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may necessitate another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, an expandable, intraluminal prosthesis, one example of which is a stent, is implanted in the lumen to maintain the vascular patency.
  • [0006]
    Stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically stents are capable of being compressed, so that they can be inserted through small cavities via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in the patent literature disclosing stents that have been applied in PTCA procedures include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor. Mechanical intervention via stents has reduced the rate of restenosis as compared to balloon angioplasty. Yet, restenosis is still a significant clinical problem with rates ranging from 20-40%. When restenosis does occur in the stented segment, its treatment can be challenging, as clinical options are more limited as compared to lesions that were treated solely with a balloon.
  • [0007]
    Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or even toxic side effects for the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
  • [0008]
    One method of medicating a stent involves the use of a polymeric carrier coated onto the surface of the stent. A composition including a solvent, a polymer dissolved in the solvent, and a therapeutic substance dispersed in the blend is applied to the stent by immersing the stent in the composition or by spraying the composition onto the stent. The solvent is allowed to evaporate, leaving on the stent strut surfaces a coating of the polymer and the therapeutic substance impregnated in the polymer.
  • [0009]
    Depending on the physiological mechanism targeted, the therapeutic substance may be required to be released at an efficacious concentration for an extended duration of time. Increasing the quantity of the therapeutic substance in the polymeric coating can lead to poor coating mechanical properties, inadequate coating adhesion, and overly rapid rate of release. Increasing the quantity of the polymeric compound by producing a thicker coating can perturb the geometrical and mechanical functionality of the stent, as well as limit the procedure for which the stent can be used.
  • [0010]
    It is desirable to increase the residence time of a substance at the site of implantation, at a therapeutically useful concentration, without the application of a thicker coating. It is also desirable to be able to increase the quantity of the therapeutic substance carried by the polymeric layer without perturbing the mechanical properties of the coating, such as adhesion of the polymer to the stent substrate.
  • SUMMARY OF THE INVENTION
  • [0011]
    The present invention provides a method of forming a coating for a prosthesis, e.g., a stent. The method includes depositing a polymeric sheath over at least a portion of a prosthesis. The prosthesis has a plurality of interconnected struts separated by gaps and a longitudinally extending central bore for allowing a fluid to travel through the prosthesis. The method further includes exposing the polymeric sheath to a temperature not greater than about the melting temperature of the polymer to form a coating for the prosthesis. The method can further include removing a portion of the coating positioned over some of the gaps to form a pattern of interstices dispersed between the struts for allowing a fluid that flows through the central bore to seep through the coating.
  • [0012]
    In one embodiment, the coating contains an active ingredient. In other embodiments, the coating contains radiopaque elements or radioactive isotopes.
  • [0013]
    Also provided is a method for increasing an amount of a polymeric coating on a stent having struts separated by gaps, without increasing the thickness of the coating. The method includes inserting a stent having a plurality of interconnected struts separated by gaps into a polymeric sheath. The method further includes exposing the polymeric sheath to a temperature not greater than about the melting temperature of the polymer to form a coating for the stent. The coating covers the struts and the gaps between the struts so as to increase the quantity of the coating supported by the stent without increasing the thickness of the coating on the stent. The method can also include removing a portion of the coating deposited over at least one of the gaps to create an opening in the coating. The size of the opening is smaller than the size of the gap. The opening allows a fluid, such as blood, to travel through the coating from within the stent.
  • BRIEF DESCRIPTION OF THE FIGURES
  • [0014]
    [0014]FIG. 1 illustrates a side view of an implantable device;
  • [0015]
    [0015]FIG. 2 illustrates a side view of a sheath;
  • [0016]
    [0016]FIG. 3 illustrates the implantable device of FIG. 1 after the sheath of FIG. 2 has been deposited thereon;
  • [0017]
    [0017]FIG. 4 illustrates the implantable device of FIG. 3 following a heat treatment to form a coating thereon;
  • [0018]
    [0018]FIG. 5A illustrates the implantable device of FIG. 4 after a pattern of interstices has been created within the coating;
  • [0019]
    [0019]FIG. 5B illustrates an enlarged view of region 5B of the implantable device in FIG. 5A; and
  • [0020]
    [0020]FIG. 6 illustrates exemplary paths of blood flow through interstices within the implantable device of FIG. 5A as employed in a blood vessel.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • [0021]
    Some of the various embodiments of the present invention are illustrated by FIGS. 1-6. The Figures have not been drawn to scale, and the size of the various regions have been over or under emphasized for illustrative purposes.
  • Examples of the Prosthesis
  • [0022]
    The device or prosthesis used in conjunction with the compositions described below may be any suitable device used for the release of an active ingredient or for the incorporation of radiopaque or radioactive materials, examples of which include self-expandable stents, balloon-expandable stents, grafts, and stent-grafts. Referring to FIG. 1, a body of a stent 10 is formed from a plurality of struts 12. Struts 12 are separated by gaps 14 and may be interconnected by connecting elements 16. Struts 12 can be connected in any suitable configuration and pattern. Stent 10 is illustrated having an outer surface (tissue-contacting surface) and an inner surface. A hollow, central bore 18 extends longitudinally from a first end 20 to a second end 22 of stent 10.
  • [0023]
    Stent 10 can be made of a metallic material or an alloy such as, but not limited to, stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Stent 10 made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. A polymeric device should be compatible with the selected compositions described below.
  • Composition for Forming a Sheath
  • [0024]
    The embodiments of the composition for forming a sheath are prepared by conventional methods wherein all components are combined, then blended. More particularly, in accordance with one embodiment, a predetermined amount of a polymeric compound is added to a predetermined amount of a mutually compatible solvent. The polymeric compound can be added to the solvent at ambient pressure and, if applicable, under anhydrous atmosphere. If necessary, gentle heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent, for example 12 hours in a water bath at about 60° C.
  • [0025]
    “Polymer,” “poly,” and “polymeric” are defined as compounds that are the product of a polymerization reaction and are inclusive of homopolymers, copolymers, terpolymers etc., including random, alternating, block, and graft variations thereof. Particular care should be taken to ensure that the polymer employed in the composition will not be adversely affected by the heat treatment applied to the sheath formed from the composition as described below. The polymer chosen should be a polymer that is biocompatible. The polymer may be bioabsorbable or biostable. Bioabsorbable polymers that may be used include poly(hydroxyvalerate), poly(L-lactic acid), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(ether-esters) (e.g., PEO/PLA), polyalkylene oxalates, polyphosphazenes and biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid. In addition, biostable polymers with a relatively low chronic tissue response such as polyurethanes, silicones, and polyesters may be used. Other polymers may also be used if they can be dissolved and cured or polymerized on stent 10 such as polyolefins, polyisobutylene and ethylene-alphaolefin copolymers; acrylic polymers and copolymers; vinyl halide polymers and copolymers, such as polyvinyl chloride; polyvinyl ethers, such as polyvinyl methyl ether; polyvinylidene halides, such as polyvinylidene fluoride and polyvinylidene chloride; polyacrylonitrile; polyvinyl ketones; polyvinyl aromatics, such as polystyrene; polyvinyl esters, such as polyvinyl acetate; copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers; polyamides, such as Nylon 66 and polycaprolactam; alkyd resins; polycarbonates; polyoxymethylenes; polyimides; polyethers; epoxy resins; polyurethanes; rayon; rayon-triacetate; cellulose; cellulose acetate; cellulose butyrate; cellulose acetate butyrate; cellophane; cellulose nitrate; cellulose propionate; cellulose ethers; and carboxymethyl cellulose.
  • [0026]
    Ethylene vinyl alcohol is functionally a very suitable choice of polymer. The copolymer adheres well to metal surfaces, such as stainless steel, and has illustrated the ability to expand with a stent without any significant detachment of the copolymer from the surface of the stent. Ethylene vinyl alcohol copolymer, commonly known by the generic name EVOH or by the trade name EVAL, refers to copolymers comprising residues of both ethylene and vinyl alcohol monomers. One of ordinary skill in the art understands that ethylene vinyl alcohol copolymer may also be a terpolymer so as to include small amounts of additional monomers, for example less than about five (5) mole percentage of styrenes, propylene, or other suitable monomers. In a useful embodiment, the copolymer comprises a mole percentage of ethylene of from about 27% to about 47%. Typically, 44 mole percent ethylene is suitable. Ethylene vinyl alcohol copolymers are available commercially from companies such as Aldrich Chemical Company, Milwaukee, Wis., or EVAL Company of America, Lisle, Ill., or can be prepared by conventional polymerization procedures that are well known to one of ordinary skill in the art.
  • [0027]
    The solvent should be capable of placing the polymer into solution at the concentration desired in the composition. Examples of solvents include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, and N-methyl pyrrolidinone. With the use of low ethylene content, e.g., 29 mol %, ethylene vinyl alcohol copolymer, a suitable solvent is iso-propylalcohol (IPA) admixed with water (e.g., 1:1).
  • [0028]
    By way of example, the polymer can comprise from about 15% to about 34%, more narrowly from about 20% to about 25% by weight of the total weight of the composition, and the solvent can comprise from about 66% to about 85%, more narrowly from about 75% to about 80% by weight of the total weight of the composition.
  • [0029]
    In another embodiment, sufficient amounts of an active ingredient are dispersed in the blended composition of the polymer and the solvent. The active ingredient may be in true solution or saturated in the blended composition. If the active ingredient is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity of the residues. The active ingredient may be added so that the dispersion is in fine particles. The mixing of the active ingredient can be conducted at ambient pressure, at room temperature, and if applicable in an anhydrous atmosphere, such that supersaturating the active ingredient is not desired.
  • [0030]
    As with the selection of the polymer, particular care should be taken to ensure that the active ingredient employed in the composition will not be adversely affected by the heat treatment applied to the sheath formed from the composition as described below. Otherwise, the active ingredient may be any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active ingredients include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances as well as combinations thereof.
  • [0031]
    A suitable example of an antiproliferative substance is actinomycin D, or derivatives and analogs thereof. Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Examples of suitable antineoplastics include paclitaxel and docetaxel. Examples of suitable antiplatelets, anticoagulants, antifibrins, and antithrombins include sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3BŪ (an antiplatelet drug from Centocore). Examples of suitable antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin. Examples of suitable cytostatic or antiproliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck); calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available form Glazo), Seramin (a PDGF antagonist), serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone. Exposure of the composition to the active ingredient is not permitted to adversely alter the active ingredient's composition or characteristic. Accordingly, the particular active ingredient is selected for mutual compatibility with the blended polymer-solvent composition.
  • [0032]
    The dosage or concentration of the active ingredient required to produce a favorable therapeutic effect should be less than the level at which the active ingredient produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the active ingredient required can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the treatment site; and if other bioactive substances are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • [0033]
    By way of example, the polymer can comprise from about 14% to about 33%, more narrowly from about 20% to about 25% by weight of the total weight of the composition, the solvent can comprise from about 33% to about 85%, more narrowly from about 50% to about 70% by weight of the total weight of the composition, and the active ingredient can comprise from about 1% to about 50%, more narrowly from about 10% to about 25% by weight of the total weight of the composition. More than 40% by weight of the active ingredient could adversely affect characteristics that are desirable in the polymeric coating, such as controlled release of the active ingredient. Selection of a specific weight ratio of the polymer and solvent is dependent on factors such as, but not limited to, the material from which the device is made, the geometrical structure of the device, and the type and amount of the active ingredient employed. The particular weight percentage of the active ingredient mixed within the composition depends on factors such as duration of the release, cumulative amount of release, and release rate that is desired.
  • [0034]
    In accordance with another embodiment, the polymeric composition includes radiopaque elements or radioactive isotopes. Examples of radiopaque elements include, but are not limited to, gold, tantalum, and platinum. An exemplary radioactive isotope is P32. Sufficient amounts of radiopaque elements or radioactive isotopes may be dispersed in the composition. By dispersed it is meant that the substances are not present in the composition as agglomerates or flocs. In some compositions, certain substances will disperse with ordinary mixing. Otherwise, the substances can be dispersed in the composition by high shear processes such as ball mill, disc mill, sand mill, attritor, rotor stator mixer, or ultrasonication—all such high shear dispersion techniques being well known to one of ordinary skill in the art. Biocompatible dispersing agents in the form of surfactants, emulsifiers, or stablilizers may also be added to the composition to assist in dispersion.
  • Forming a Sheath from the Composition
  • [0035]
    Referring now to FIG. 2, a sheath 24 is formed from the embodiments of the above-described composition, which may contain an active ingredient. The inner diameter of sheath 24 should be slightly larger than the outer diameter of stent 10 to allow sheath 24 to be fitted over stent 10 as described below. Sheath 24 can have any suitable thickness so long as the thickness does not compromise properties that are critical for achieving optimum performance. Such properties include low susceptibility to defects or tearing, the ability to be deposited on stent 10, good flexibility, and the ability to allow stent 10 to expand for engagement against the vessel wall. By way of example and not limitation, the thickness can be in the range of about 0.001 inch to about 0.002 inch, or about 25.4 microns to about 50.8 microns.
  • [0036]
    Sheath 24 may be formed using any suitable method known to one of ordinary skill in the art. By example, and not limitation, sheath 24 may be extruded in the form of a generally tubular structure using conventional extrusion techniques, which are well known to those of ordinary skill in the art. Alternatively, a flat sheet of uniform thickness may be formed from the composition using, for example, a casting blade, then rolled into a generally tubular structure, and sealed at its ends to form sheath 24.
  • Formation of a Coating for a Stent
  • [0037]
    Referring to FIG. 3, sheath 24 is fitted over stent 10 and exposed to a heat treatment. Heat may be applied to stent 10 via a convection oven, a heat gun, or by any other suitable heat source.
  • [0038]
    With the use of the above-described thermoplastic polymers such as ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), and poly(hydroxybutyrate), sheath 24 should be exposed to a heat treatment at a temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the selected polymer. Unexpected results have been discovered with treatment of the composition under this temperature range, specifically strong adhesion or bonding of the polymeric coating to the metallic surface of a stent. Stent 10 should be exposed to the heat treatment for any suitable duration of time that will allow for the polymer to take on a somewhat sticky consistency without complete liquefaction. Particular care should be exercised to ensure that an active ingredient contained in sheath 24 is not exposed to a temperature that may adversely alter the active ingredient's composition or characteristic.
  • [0039]
    Table 1 lists the Tg and Tm for some of the polymers used in the embodiments of the composition for forming sheath 24 and, ultimately, coating 26. Tg and Tm of polymers are attainable by one of ordinary skill in the art. The cited exemplary temperature is provided by way of illustration and is not meant to be limiting.
    TABLE 1
    Exemplary
    Polymer Tg (° C.) Tm (° C.) Temperature (° C.)
    EVOH   55 165 70
    polycaprolactone −60  60 50
    ethylene vinyl   36  63 45
    acetate (e.g., 33%
    vinyl acetate content)
    Polyvinyl 75-85* 200-220* 75
    alcohol
  • [0040]
    The above-described heat treatment allows the polymeric material of sheath 24 to adhere to struts 12 of stent 10 to form a coating 26, as illustrated in FIG. 4. Vacuum 10 conditions may be employed to ensure that coating 26 adheres uniformly to stent 10. Coating 26 covers struts 12 as well as gaps 14 between struts 12.
  • [0041]
    As mentioned above, conventional coating methods coat the struts of a stent, leaving voids in the coating over the gaps between the struts. By forming coating 26 to cover struts 12 as well as gaps 14 between struts 12, the present invention allows an increased amount of the polymeric coating to be present on stent 10 without increasing the thickness of the coating. Accordingly, the amount of therapeutic substance is increased concomitantly.
  • Formation of an Optional Primer Layer
  • [0042]
    An optional primer layer can be formed on the outer surface of stent 10 prior to the insertion of stent 10 within sheath 24. The presence of an active ingredient in a polymeric matrix typically interferes with the ability of the matrix to adhere effectively to the surface of the device. An increase in the quantity of the active ingredient reduces the effectiveness of the adhesion. High drug loadings of, for example, 10-40% by weight in the coating may significantly hinder the retention of the coating on the surface of the device. The primer layer serves as a functionally useful intermediary layer between the surface of the device and an active ingredient-containing sheath. The primer layer provides for an adhesive tie between sheath 24 and stent 10—which, in effect, would also allow for the quantity of the active ingredient in coating 26 formed from sheath 24 to be increased without compromising the ability of coating 26 to be effectively contained on stent 10 during delivery and, if applicable, expansion of stent 10.
  • [0043]
    To form an optional primer layer, the surfaces of stent 10 should be clean and free from contaminants that may be introduced during manufacturing. However, the surfaces of stent 10 require no particular surface treatment to retain the applied coating. Metallic surfaces of stents can be, for example, cleaned by an argon plasma process as is well known to one of ordinary skill in the art. A primer layer may be formed on stent 10 by applying a primer composition to stent 10 and then removing the solvent from the applied primer composition to form the desired primer layer on stent 10.
  • [0044]
    The primer composition typically includes a polymer dissolved in a solvent. Suitable polymers and solvents were described above with reference to the composition for forming sheath 24 and are equally applicable here. Application of the primer composition can be accomplished by any conventional method, such as by spraying the primer composition onto stent 10 or immersing stent 10 in the primer composition. Such application methods are understood by one of ordinary skill in the art.
  • [0045]
    The solvent is removed from the primer composition by allowing the solvent to evaporate. The evaporation can be induced by heating stent 10 at a predetermined temperature for a predetermined period of time. For example, stent 10 can be heated at a temperature of about 60° C. for about 12 hours to about 24 hours. The heating can be conducted in an anhydrous atmosphere and at ambient pressure. The heating can, alternatively, be conducted under a vacuum condition. It is understood that essentially all of the solvent will be removed from the primer composition but traces or residues can remain. Upon removal of the solvent from the primer composition, a primer layer is formed on stent 10.
  • Patterning the Coating to Form Interstices Therein
  • [0046]
    As illustrated in FIGS. 5A and 5B, coating 26 may be patterned such that portions of coating 26 positioned over at least some of gaps 14 are removed to yield a pattern of interstices 28 dispersed between struts 12. Such patterning of coating 26 may be accomplished, for example, by exposing designated portions of coating 26 to the discharge of a laser, such as an excimer laser. Application of a laser discharge to form patterns can be performed by one of ordinary skill in the art.
  • [0047]
    Interstices 28 may be of any suitable size and shape and are typically smaller than the gap 14 in which they are created. Interstices 28 may be interspersed between struts 12 in any pattern. The pattern of interstices 28 created depends, in part, on the application for which stent 10 is to be utilized.
  • [0048]
    As depicted in FIG. 6, interstices 28 allow a fluid, such as blood, which flows through central bore 18 to seep through coating 26. Interstices 28 can be selectively patterned to direct the flow of blood in a selected direction, for example in a direction 30 to make contact with a vessel wall 34 of a targeted vessel 32. Such contact between blood and the vessel wall 34 may be required to allow vessel wall 34 to acquire essential nutrients from red blood cells. Alternatively, interstices 28 can be selectively patterned to direct the flow of blood in a direction 36 and into a side vessel 38. In this manner, the creation of interstices 28 allows branching side vessels 38 to remain patent during treatment of targeted vessel 32 with stent 10.
  • Optional Topcoat
  • [0049]
    In some embodiments, a second polymeric coating, or topcoat, is formed onto at least a portion of coating 26 on stent 10. In one such embodiment, the topcoat may function as a rate limiting membrane with respect to an active ingredient contained within coating 26. In another embodiment the topcoat itself may be impregnated with an active ingredient, while coating 26 functions as a primer layer to aid the adhesion of the active-ingredient-containing topcoat to stent 10.
  • Methods of Use
  • [0050]
    In accordance with the above-described methods, an active ingredient can be applied to a device, e.g., a stent, retained on the stent during delivery and expansion of the stent, and released at a desired control rate and for a predetermined duration of time at the site of implantation. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, or restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • [0051]
    Briefly, an angiogram is first performed to determine the appropriate positioning for stent therapy. Angiography is typically accomplished by injecting a radiopaque contrast agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter that allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post insertion angiogram may also be utilized to confirm appropriate positioning.
  • [0052]
    While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2072303 *14 Oct 19332 Mar 1937Chemische Forschungs GmbhArtificial threads, bands, tubes, and the like for surgical and other purposes
US4733665 *7 Nov 198529 Mar 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882 *13 Mar 198731 Jan 1989Cook IncorporatedEndovascular stent and delivery system
US4886062 *19 Oct 198712 Dec 1989Medtronic, Inc.Intravascular radially expandable stent and method of implant
US4977901 *6 Apr 199018 Dec 1990Minnesota Mining And Manufacturing CompanyArticle having non-crosslinked crystallized polymer coatings
US5328471 *4 Aug 199312 Jul 1994Endoluminal Therapeutics, Inc.Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5383928 *19 Aug 199324 Jan 1995Emory UniversityStent sheath for local drug delivery
US5464650 *26 Apr 19937 Nov 1995Medtronic, Inc.Intravascular stent and method
US5575818 *14 Feb 199519 Nov 1996Corvita CorporationEndovascular stent with locking ring
US5578073 *16 Sep 199426 Nov 1996Ramot Of Tel Aviv UniversityThromboresistant surface treatment for biomaterials
US5605696 *30 Mar 199525 Feb 1997Advanced Cardiovascular Systems, Inc.Drug loaded polymeric material and method of manufacture
US5628730 *18 Jul 199413 May 1997Cortrak Medical, Inc.Phoretic balloon catheter with hydrogel coating
US5649977 *22 Sep 199422 Jul 1997Advanced Cardiovascular Systems, Inc.Metal reinforced polymer stent
US5667767 *27 Jul 199516 Sep 1997Micro Therapeutics, Inc.Compositions for use in embolizing blood vessels
US5670558 *6 Jul 199523 Sep 1997Terumo Kabushiki KaishaMedical instruments that exhibit surface lubricity when wetted
US5700286 *22 Aug 199623 Dec 1997Advanced Cardiovascular Systems, Inc.Polymer film for wrapping a stent structure
US5716981 *7 Jun 199510 Feb 1998Angiogenesis Technologies, Inc.Anti-angiogenic compositions and methods of use
US5800392 *8 May 19961 Sep 1998Emed CorporationMicroporous catheter
US5824049 *31 Oct 199620 Oct 1998Med Institute, Inc.Coated implantable medical device
US5830178 *11 Oct 19963 Nov 1998Micro Therapeutics, Inc.Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5837313 *13 Jun 199617 Nov 1998Schneider (Usa) IncDrug release stent coating process
US5851508 *14 Feb 199722 Dec 1998Microtherapeutics, Inc.Compositions for use in embolizing blood vessels
US5865814 *6 Aug 19972 Feb 1999Medtronic, Inc.Blood contacting medical device and method
US5869127 *18 Jun 19979 Feb 1999Boston Scientific CorporationMethod of providing a substrate with a bio-active/biocompatible coating
US5873904 *24 Feb 199723 Feb 1999Cook IncorporatedSilver implantable medical device
US5897911 *11 Aug 199727 Apr 1999Advanced Cardiovascular Systems, Inc.Polymer-coated stent structure
US5968092 *22 May 199819 Oct 1999Boston Scientific CorporationMethod for making a biodegradable stent
US5971954 *29 Jan 199726 Oct 1999Rochester Medical CorporationMethod of making catheter
US5980928 *29 Jul 19979 Nov 1999Terry; Paul B.Implant for preventing conjunctivitis in cattle
US5980972 *22 Sep 19979 Nov 1999Schneider (Usa) IncMethod of applying drug-release coatings
US6010530 *18 Feb 19984 Jan 2000Boston Scientific Technology, Inc.Self-expanding endoluminal prosthesis
US6015541 *3 Nov 199718 Jan 2000Micro Therapeutics, Inc.Radioactive embolizing compositions
US6096070 *16 May 19961 Aug 2000Med Institute Inc.Coated implantable medical device
US6139573 *5 Mar 199831 Oct 2000Scimed Life Systems, Inc.Conformal laminate stent device
US6153252 *19 Apr 199928 Nov 2000Ethicon, Inc.Process for coating stents
US6165212 *28 Jun 199926 Dec 2000Corvita CorporationExpandable supportive endoluminal grafts
US6251136 *8 Dec 199926 Jun 2001Advanced Cardiovascular Systems, Inc.Method of layering a three-coated stent using pharmacological and polymeric agents
US6419694 *26 Aug 199816 Jul 2002Scimed Life Systems, Inc.Medical prosthesis
US6458867 *28 Sep 19991 Oct 2002Scimed Life Systems, Inc.Hydrophilic lubricant coatings for medical devices
US6475235 *16 Nov 19995 Nov 2002Iowa-India Investments Company, LimitedEncapsulated stent preform
US6503556 *28 Dec 20007 Jan 2003Advanced Cardiovascular Systems, Inc.Methods of forming a coating for a prosthesis
US6530950 *3 Aug 200011 Mar 2003Quanam Medical CorporationIntraluminal stent having coaxial polymer member
US6713119 *23 Dec 199930 Mar 2004Advanced Cardiovascular Systems, Inc.Biocompatible coating for a prosthesis and a method of forming the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US764872519 May 200619 Jan 2010Advanced Cardiovascular Systems, Inc.Clamp mandrel fixture and a method of using the same to minimize coating defects
US764872726 Aug 200419 Jan 2010Advanced Cardiovascular Systems, Inc.Methods for manufacturing a coated stent-balloon assembly
US769140117 May 20056 Apr 2010Advanced Cardiovascular Systems, Inc.Poly(butylmethacrylate) and rapamycin coated stent
US76998892 May 200820 Apr 2010Advanced Cardiovascular Systems, Inc.Poly(ester amide) block copolymers
US77136373 Mar 200611 May 2010Advanced Cardiovascular Systems, Inc.Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US773544928 Jul 200515 Jun 2010Advanced Cardiovascular Systems, Inc.Stent fixture having rounded support structures and method for use thereof
US77492637 Jan 20086 Jul 2010Abbott Cardiovascular Systems Inc.Poly(ester amide) filler blends for modulation of coating properties
US775888031 Mar 200420 Jul 2010Advanced Cardiovascular Systems, Inc.Biocompatible polyacrylate compositions for medical applications
US775888124 Mar 200520 Jul 2010Advanced Cardiovascular Systems, Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US776688425 May 20073 Aug 2010Advanced Cardiovascular Systems, Inc.Polymers of fluorinated monomers and hydrophilic monomers
US77723599 Sep 200810 Aug 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US777517826 May 200617 Aug 2010Advanced Cardiovascular Systems, Inc.Stent coating apparatus and method
US777692611 Dec 200217 Aug 2010Advanced Cardiovascular Systems, Inc.Biocompatible coating for implantable medical devices
US778551225 May 200431 Aug 2010Advanced Cardiovascular Systems, Inc.Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US778564725 Jul 200531 Aug 2010Advanced Cardiovascular Systems, Inc.Methods of providing antioxidants to a drug containing product
US77862499 Sep 200831 Aug 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US77947432 Sep 200514 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of making the same
US779546726 Apr 200514 Sep 2010Advanced Cardiovascular Systems, Inc.Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US780339417 Nov 200628 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide hydrogel coatings for cardiovascular therapy
US780340626 Aug 200528 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US78072105 Apr 20045 Oct 2010Advanced Cardiovascular Systems, Inc.Hemocompatible polymers on hydrophobic porous polymers
US780721127 May 20045 Oct 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of an implantable medical device
US782073230 Apr 200426 Oct 2010Advanced Cardiovascular Systems, Inc.Methods for modulating thermal and mechanical properties of coatings on implantable devices
US782353330 Jun 20052 Nov 2010Advanced Cardiovascular Systems, Inc.Stent fixture and method for reducing coating defects
US786754719 Dec 200511 Jan 2011Advanced Cardiovascular Systems, Inc.Selectively coating luminal surfaces of stents
US787506830 Sep 200325 Jan 2011Merit Medical Systems, Inc.Removable biliary stent
US787528626 Aug 200525 Jan 2011Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US789259230 Nov 200422 Feb 2011Advanced Cardiovascular Systems, Inc.Coating abluminal surfaces of stents and other implantable medical devices
US790170323 Mar 20078 Mar 2011Advanced Cardiovascular Systems, Inc.Polycationic peptides for cardiovascular therapy
US795967120 Nov 200314 Jun 2011Merit Medical Systems, Inc.Differential covering and coating methods
US797689116 Dec 200512 Jul 2011Advanced Cardiovascular Systems, Inc.Abluminal stent coating apparatus and method of using focused acoustic energy
US79854407 Sep 200526 Jul 2011Advanced Cardiovascular Systems, Inc.Method of using a mandrel to coat a stent
US79854414 May 200626 Jul 2011Yiwen TangPurification of polymers for coating applications
US80031564 May 200623 Aug 2011Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US800777530 Dec 200430 Aug 2011Advanced Cardiovascular Systems, Inc.Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US801714021 May 200713 Sep 2011Advanced Cardiovascular System, Inc.Drug-delivery stent formulations for restenosis and vulnerable plaque
US801723723 Jun 200613 Sep 2011Abbott Cardiovascular Systems, Inc.Nanoshells on polymers
US80216768 Jul 200520 Sep 2011Advanced Cardiovascular Systems, Inc.Functionalized chemically inert polymers for coatings
US802981610 May 20074 Oct 2011Abbott Cardiovascular Systems Inc.Medical device coated with a coating containing elastin pentapeptide VGVPG
US804844125 Jun 20071 Nov 2011Abbott Cardiovascular Systems, Inc.Nanobead releasing medical devices
US804844815 Jun 20061 Nov 2011Abbott Cardiovascular Systems Inc.Nanoshells for drug delivery
US80529121 Oct 20048 Nov 2011Advanced Cardiovascular Systems, Inc.Temperature controlled crimping
US806235021 Feb 200822 Nov 2011Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US8066762 *14 Oct 200929 Nov 2011Advanced Cardiovascular Systems, Inc.Assembly for manufacturing an implantable polymeric medical device
US806702315 Jul 200529 Nov 2011Advanced Cardiovascular Systems, Inc.Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US806702520 Mar 200729 Nov 2011Advanced Cardiovascular Systems, Inc.Nitric oxide generating medical devices
US80698144 May 20066 Dec 2011Advanced Cardiovascular Systems, Inc.Stent support devices
US810990425 Jun 20077 Feb 2012Abbott Cardiovascular Systems Inc.Drug delivery medical devices
US811021122 Sep 20047 Feb 2012Advanced Cardiovascular Systems, Inc.Medicated coatings for implantable medical devices including polyacrylates
US811415014 Jun 200614 Feb 2012Advanced Cardiovascular Systems, Inc.RGD peptide attached to bioabsorbable stents
US811886321 Feb 200821 Feb 2012Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US814776916 May 20073 Apr 2012Abbott Cardiovascular Systems Inc.Stent and delivery system with reduced chemical degradation
US817319926 Sep 20068 May 2012Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US819275221 Nov 20035 Jun 2012Advanced Cardiovascular Systems, Inc.Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US819787916 Jan 200712 Jun 2012Advanced Cardiovascular Systems, Inc.Method for selectively coating surfaces of a stent
US820643611 Nov 200926 Jun 2012Merit Medical Systems, Inc.Coated stent with geometry determinated functionality and method of making the same
US8262721 *12 May 200611 Sep 2012Merit Medical Systems, Inc.Drainage stent and associated method
US829336715 Jul 201123 Oct 2012Advanced Cardiovascular Systems, Inc.Nanoshells on polymers
US829389030 Apr 200423 Oct 2012Advanced Cardiovascular Systems, Inc.Hyaluronic acid based copolymers
US83036517 Sep 20016 Nov 2012Advanced Cardiovascular Systems, Inc.Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US83040124 May 20066 Nov 2012Advanced Cardiovascular Systems, Inc.Method for drying a stent
US835739130 Jul 200422 Jan 2013Advanced Cardiovascular Systems, Inc.Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US843555013 Aug 20087 May 2013Abbot Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US846578918 Jul 201118 Jun 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US850661721 Jun 200213 Aug 2013Advanced Cardiovascular Systems, Inc.Micronized peptide coated stent
US856876431 May 200629 Oct 2013Advanced Cardiovascular Systems, Inc.Methods of forming coating layers for medical devices utilizing flash vaporization
US858018021 Dec 200912 Nov 2013Advanced Cardiovascular Systems, Inc.Polymeric stent polishing method and apparatus
US858606929 Dec 200519 Nov 2013Abbott Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US858607527 Nov 201219 Nov 2013Abbott Cardiovascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US859203620 Sep 201226 Nov 2013Abbott Cardiovascular Systems Inc.Nanoshells on polymers
US859621518 Jul 20113 Dec 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US859767313 Dec 20063 Dec 2013Advanced Cardiovascular Systems, Inc.Coating of fast absorption or dissolution
US860353014 Jun 200610 Dec 2013Abbott Cardiovascular Systems Inc.Nanoshell therapy
US860363423 Mar 200910 Dec 2013Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US860912329 Nov 200417 Dec 2013Advanced Cardiovascular Systems, Inc.Derivatized poly(ester amide) as a biobeneficial coating
US8616152 *6 Aug 201231 Dec 2013Abbott Cardiovascular Systems Inc.Stent coating apparatus
US863711018 Jul 201128 Jan 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US864765518 Jun 201011 Feb 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US867333419 Sep 200718 Mar 2014Abbott Cardiovascular Systems Inc.Stent coatings comprising hydrophilic additives
US868543116 Mar 20041 Apr 2014Advanced Cardiovascular Systems, Inc.Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US87031675 Jun 200622 Apr 2014Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US87031698 Aug 200722 Apr 2014Abbott Cardiovascular Systems Inc.Implantable device having a coating comprising carrageenan and a biostable polymer
US872814923 Sep 201120 May 2014Advanced Cardiovascular Systems, Inc.Assembly for making a polymeric medical device
US874137823 Dec 20043 Jun 2014Advanced Cardiovascular Systems, Inc.Methods of coating an implantable device
US874137918 Jul 20113 Jun 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US875880127 Nov 201224 Jun 2014Abbott Cardiocascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US877801431 Mar 200415 Jul 2014Advanced Cardiovascular Systems, Inc.Coatings for preventing balloon damage to polymer coated stents
US877837529 Apr 200515 Jul 2014Advanced Cardiovascular Systems, Inc.Amorphous poly(D,L-lactide) coating
US87783769 Jun 200615 Jul 2014Advanced Cardiovascular Systems, Inc.Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US880834223 Apr 201319 Aug 2014Abbott Cardiovascular Systems Inc.Nanoshell therapy
US883455825 Apr 200616 Sep 2014Merit Medical Systems, Inc.Esophageal stent and associated method
US88712366 Jun 201328 Oct 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US8871829 *7 Sep 200428 Oct 2014Biotronik Vi Patent AgRadio-opaque marker for medical implants
US887188327 Jul 201028 Oct 2014Abbott Cardiovascular Systems Inc.Biocompatible coating for implantable medical devices
US896158826 Sep 200624 Feb 2015Advanced Cardiovascular Systems, Inc.Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US89867266 Jun 201324 Mar 2015Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US90288597 Jul 200612 May 2015Advanced Cardiovascular Systems, Inc.Phase-separated block copolymer coatings for implantable medical devices
US905615529 May 200716 Jun 2015Abbott Cardiovascular Systems Inc.Coatings having an elastic primer layer
US906700018 Nov 201330 Jun 2015Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US908467115 Jul 201321 Jul 2015Advanced Cardiovascular Systems, Inc.Methods of forming a micronized peptide coated stent
US909074515 Nov 201328 Jul 2015Abbott Cardiovascular Systems Inc.Biodegradable triblock copolymers for implantable devices
US910168912 Mar 201011 Aug 2015Advanced Cardiovascular Systems, Inc.Primer coatings for stents with oxide, anionic, or hydroxyl surface moieties
US910169711 Apr 201411 Aug 2015Abbott Cardiovascular Systems Inc.Hyaluronic acid based copolymers
US911419819 Nov 200325 Aug 2015Advanced Cardiovascular Systems, Inc.Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US917516219 Sep 20073 Nov 2015Advanced Cardiovascular Systems, Inc.Methods for forming stent coatings comprising hydrophilic additives
US93395929 Apr 200717 May 2016Abbott Cardiovascular Systems Inc.Polymers of fluorinated monomers and hydrocarbon monomers
US936449822 Jun 200914 Jun 2016Abbott Cardiovascular Systems Inc.Heparin prodrugs and drug delivery stents formed therefrom
US937544522 Jun 200928 Jun 2016Abbott Cardiovascular Systems Inc.Heparin prodrugs and drug delivery stents formed therefrom
US946870726 Jun 201518 Oct 2016Abbott Cardiovascular Systems Inc.Biodegradable triblock copolymers for implantable devices
US953933212 Feb 201510 Jan 2017Abbott Cardiovascular Systems Inc.Plasticizers for coating compositions
US956130927 May 20047 Feb 2017Advanced Cardiovascular Systems, Inc.Antifouling heparin coatings
US956135131 May 20067 Feb 2017Advanced Cardiovascular Systems, Inc.Drug delivery spiral coil construct
US95805589 Jun 200828 Feb 2017Abbott Cardiovascular Systems Inc.Polymers containing siloxane monomers
US20040127973 *30 Sep 20031 Jul 2004Mangiardi Eric K.Removable biliary stent
US20050100609 *16 Dec 200412 May 2005Claude Charles D.Phase-separated polymer coatings
US20050112171 *21 Nov 200326 May 2005Yiwen TangCoatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US20050131201 *16 Dec 200316 Jun 2005Pacetti Stephen D.Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US20050137381 *19 Dec 200323 Jun 2005Pacetti Stephen D.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US20050244363 *30 Apr 20043 Nov 2005Hossainy Syed F AHyaluronic acid based copolymers
US20050287184 *29 Jun 200429 Dec 2005Hossainy Syed F ADrug-delivery stent formulations for restenosis and vulnerable plaque
US20060002968 *30 Jun 20045 Jan 2006Gordon StewartAnti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US20060034888 *30 Jul 200416 Feb 2006Advanced Cardiovascular Systems, Inc.Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US20060062824 *22 Sep 200423 Mar 2006Advanced Cardiovascular Systems, Inc.Medicated coatings for implantable medical devices including polyacrylates
US20060089485 *27 Oct 200427 Apr 2006Desnoyer Jessica REnd-capped poly(ester amide) copolymers
US20060095122 *29 Oct 20044 May 2006Advanced Cardiovascular Systems, Inc.Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same
US20060115449 *30 Nov 20041 Jun 2006Advanced Cardiovascular Systems, Inc.Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US20060115513 *29 Nov 20041 Jun 2006Hossainy Syed F ADerivatized poly(ester amide) as a biobeneficial coating
US20060160985 *14 Jan 200520 Jul 2006Pacetti Stephen DPoly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
US20060259113 *25 Apr 200616 Nov 2006Alveolus, Inc.Esophageal stent and associated method
US20070100437 *12 May 20063 May 2007Alveolus, Inc.Drainage stent and associated method
US20070167602 *21 Mar 200719 Jul 2007Advanced Cardiovascular SystemsBiologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same
US20070191708 *31 Mar 200416 Aug 2007Bodo GeroldRadio-opaque marker for medical implants
US20070249801 *22 Mar 200725 Oct 2007Advanced Cardiovascular Systems, Inc.Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US20080167712 *7 Jan 200810 Jul 2008Advanced Cardiovascular Systems, Inc.Poly(ester amide) filler blends for modulation of coating properties
US20090012243 *9 Sep 20088 Jan 2009Pacetti Stephen DBiobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US20090012259 *9 Sep 20088 Jan 2009Pacetti Stephen DBiobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US20090012606 *9 Sep 20088 Jan 2009Pacetti Stephen DBiobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US20100100171 *14 Oct 200922 Apr 2010Advanced Cardiovascular Systems, Inc.Method Of Manufacturing An Implantable Polymeric Medical Device
US20100198342 *12 Mar 20105 Aug 2010Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US20100198343 *12 Mar 20105 Aug 2010Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US20100292426 *27 Jul 201018 Nov 2010Hossainy Syed F ABiocompatible coating for implantable medical devices
US20120291703 *6 Aug 201222 Nov 2012Advanced Cardiovascular Systems, Inc.Stent coating apparatus
USRE457447 Nov 201313 Oct 2015Abbott Cardiovascular Systems Inc.Temperature controlled crimping
EP1885288B1 *12 May 200618 Mar 2015Merit Medical Systems, Inc.Drainage stent and associated method
WO2005115493A2 *26 May 20058 Dec 2005Advanced Cardiovascular Systems, Inc.Thermal treatment of an implantable medical device
WO2005115493A3 *26 May 200510 Aug 2006Advanced Cardiovascular SystemThermal treatment of an implantable medical device
Classifications
U.S. Classification427/2.24
International ClassificationA61L31/10, A61L31/16
Cooperative ClassificationA61L2300/602, A61L2300/416, A61L31/10, A61L2300/606, A61L31/16
European ClassificationA61L31/10, A61L31/16