US20030064199A1 - Device and a method for producing flooring panels - Google Patents

Device and a method for producing flooring panels Download PDF

Info

Publication number
US20030064199A1
US20030064199A1 US10/256,711 US25671102A US2003064199A1 US 20030064199 A1 US20030064199 A1 US 20030064199A1 US 25671102 A US25671102 A US 25671102A US 2003064199 A1 US2003064199 A1 US 2003064199A1
Authority
US
United States
Prior art keywords
panels
layer system
panel
plates
tongue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/256,711
Inventor
Maik Moebus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/256,711 priority Critical patent/US20030064199A1/en
Publication of US20030064199A1 publication Critical patent/US20030064199A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/15Impregnating involving polymerisation including use of polymer-containing impregnating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D3/00Veneer presses; Press plates; Plywood presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M3/00Manufacture or reconditioning of specific semi-finished or finished articles
    • B27M3/04Manufacture or reconditioning of specific semi-finished or finished articles of flooring elements, e.g. parqueting blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • B27N3/203Moulding or pressing characterised by using platen-presses with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/0015Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid warp or curl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/16Flooring, e.g. parquet on flexible web, laid as flexible webs; Webs specially adapted for use as flooring; Parquet on flexible web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/19Sheets or webs edge spliced or joined
    • Y10T428/192Sheets or webs coplanar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24281Struck out portion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the invention relates to a device and a method for pressing a layer system for the production of panels.
  • the invention also relates to panels produced in accordance with the method.
  • a panel known from the publication EP 090 6994 Al, for example, is an elongated, thin plate which can be joined laterally to other panels, for instance by way of tongues and grooves. Panels joined together in this way are used in particular as a floor covering.
  • Panels are produced according to the prior art by means of a short-cycle pressing process as follows.
  • a base plate is laid on top of a film-like layer impregnated with resin which is called “counteracting paper”.
  • Another film-like layer impregnated with resin and provided with a pattern is laid on top of this.
  • a layer of this kind is known by the name of “decorative paper”.
  • a next film-like layer containing corundum and resin is applied to the decorative layer. This layer is known by the name of “overlay”.
  • the overlay enables the desired hardness of the surface of a panel to be obtained.
  • the aforementioned layer system is gripped together at the edge with gripping means and conveyed into a press.
  • the press essentially consists of two plates arranged parallel to one another which are heated to about 200° C.
  • the layer system is laid on top of the lower of the two plates.
  • the upper plate is then lowered so that the layer system is compressed.
  • the resins melt as a result of the heat supplied via the plates.
  • the upper plate is then raised.
  • Grippers with suction cups are moved over the compressed layer system and lowered.
  • the suction cups are placed on the layer system and become firmly attached by suction. With the aid of the firmly attached suction cups the layer system is lifted and conveyed out of the press.
  • Panels are cut from this layer system using appropriate devices, the panels usually being about 1200 to 1300 mm long, five to twelve millimetres thick and about 200 mm wide.
  • the panels generally also have tongues and grooves as a consequence of a milling operation. Panels are joined together via tongue and groove. They then form floor coverings or wall claddings.
  • a drawback of a flooring of this kind is that it has a relatively large number of joints or seams between the panels. On the one hand, these joints are undesirable for aesthetic reasons. On the other hand, over the course of time gaps or cracks are left or form via which moisture and dirt may penetrate. Moisture damages the panels. Dirt spoils the appearance and also makes them unhygienic.
  • the object underlying the invention is to avoid the number of joins in a flooring composed of panels.
  • the object is achieved with the aid of a device with the features of the first claim.
  • a method for achieving the object comprises the features of the independent claim.
  • the product produced according to the method comprises the features of the claim directed at the panel.
  • the device comprises gripping means to grip a layer system of the type specified in the introduction and convey it between two plates of a press.
  • the presses are brought to operating temperature via heating means.
  • Moving means are also provided to move the two plates into contact with the layer system at the same time and to press it.
  • the position of the pressing plates relative to the position of the gripping means is selected so that the gripping means cannot get between the pressing plates. After sufficiently long pressing, the pressing plates are moved simultaneously away from the layer system. The now pressed layer system is then processed further in the known manner.
  • the heat is supplied at the same time. Melting or hardening of the resins at different times does not apply. The corresponding deformations are thereby avoided. It is thus possible to produce panels of very good quality which are considerably wider than conventional panels.
  • the temperature applied to the top side of the layer system during the pressing may differ from the temperature applied from the underside. This is generally the case when different resins with different melting points are used.
  • the particular operating temperature which is applied from below or above should be adapted to the particular melting point. Temperature differences of at least 10% are regularly necessary in order to maintain the desired good result. Temperature differences above 10° C. are typical, particularly above 20° C. Optimum temperatures may be obtained in each individual case by means of a few trials.
  • the panels according to the invention have the specified design features.
  • the essential point is that the conventional two-sided heat supply is not performed with a time lag of a few seconds. This applies both to the beginning and to the end of the supply. Melting or re-solidifying of the resins at different times is thus avoided.
  • the temperatures during the combined supply of heat and pressure are generally between 150 and 220° C.
  • the temperature prevailing on the upper side may differ from the temperature prevailing on the underside by 20° C., for example.
  • double tongues and grooves according to the claim meaning that the edges of a panel each have a groove and a tongue arranged one above the other—are certainly known from the publication EP 090 699 4 but not in combination with panels which have a width of more than 300 mm.
  • panels produced according to the process include further locking elements which lock the panels together without glue.
  • additional locking elements for joining without glue are in fact known, for example, from the publications EP 0 877 130 A2, EP 0 855 482 B1, U.S. Pat. No. 5,295,341 or U.S. Pat. No. 4,426,820.
  • practice has shown that it is hardly possible with known production technology to produce precisely enough in order to avoid, for example, play delta in the sense of publication EP 0 855 482 B1.
  • Only the curve-free production in accordance with the invention makes precise production possible so that two panels can be reliably, play-free and precisely joined together.
  • a layer system 1 comprises a base plate and films, paper webs or the like arranged above and beneath the said base plate which are impregnated with resins.
  • the layer system With the aid of moving and gripping means 2 the layer system is brought between two plates 4 of a pressing device—as indicated by the arrow 3 . In this position the gripping means 2 are located laterally adjacent to the pressing plates 4 . The gripping means are thus arranged so that they cannot get between the pressing plates 4 during the pressing operation.
  • the plates 4 are brought to a temperature close to 200° C. by means of heating elements which are not represented. Each exact temperature is adjusted to the melting point of each of the resins to be melted.
  • the plates 4 are moved in the direction of the arrows 5 , i.e. in the direction of the layer system 1 .
  • the movement of the plates 4 is effected such that they come into contact with the layer system 1 at the same time and press it.
  • the layer system is simultaneously acted upon from above and below (both sides) with temperature and pressure.
  • the resins on both sides of the base plates melt simultaneously and not with a time lag of a few seconds as in the prior art mentioned in the introduction.
  • the plates 4 are moved away from the layer system at the same time, i.e. in the opposite direction to the direction of the arrows 5 . As a consequence the temperature supply is stopped simultaneously.
  • a particularly flat pressed layer system is produced which is cut in the known manner into panels having a width of at least 300 mm and a length of at least 800 mm. Finally, tongues and grooves or comparable elements for joining panels to form a floor covering are milled.
  • FIG. 2 Shown in FIG. 2 are two panels 6 , joined together laterally, between which there is a join 7 .
  • this joint is produced by way of tongues and grooves (not represented) which have been appropriately milled on the side of the panels.
  • double tongues and grooves are provided on the edges. A tongue of one panel is inserted into a corresponding groove of an adjacent panel together with glue. When the glue has dried two panels are joined together.
  • At least one groove is intended on the underside of a panel and at least one tongue is intended for a further panel.
  • the tongue is intended in such a way that it can be locked into the groove on the underside of two joined together panels.

Abstract

The invention relates to a compression device for compressing a stratified material for producing panels, in particular for a floor, comprising two heated plates, gripping and transport elements, with which a 5 to 12 mm thick stratified material for producing floor panels is gripped and transported between the plates of the compression device. Said device also comprises displacement elements which convey the heated plates to the stratified material in order to compress the latter, whereby the position of the heated plates in relation to the position of the gripping elements is chosen in such a way that the gripping elements are located next to the press plates. The displacement elements are controlled in such a way that both heated plates reach the stratified material simultaneously and are withdrawn from said stratified material in the same manner. The device enables particularly wide, high-quality panels to be produced.

Description

  • The invention relates to a device and a method for pressing a layer system for the production of panels. The invention also relates to panels produced in accordance with the method. [0001]
  • A panel, known from the publication EP 090 6994 Al, for example, is an elongated, thin plate which can be joined laterally to other panels, for instance by way of tongues and grooves. Panels joined together in this way are used in particular as a floor covering. [0002]
  • Panels are produced according to the prior art by means of a short-cycle pressing process as follows. A base plate is laid on top of a film-like layer impregnated with resin which is called “counteracting paper”. Another film-like layer impregnated with resin and provided with a pattern is laid on top of this. A layer of this kind is known by the name of “decorative paper”. A next film-like layer containing corundum and resin is applied to the decorative layer. This layer is known by the name of “overlay”. The overlay enables the desired hardness of the surface of a panel to be obtained. The aforementioned layer system is gripped together at the edge with gripping means and conveyed into a press. The press essentially consists of two plates arranged parallel to one another which are heated to about 200° C. The layer system is laid on top of the lower of the two plates. The upper plate is then lowered so that the layer system is compressed. The resins melt as a result of the heat supplied via the plates. The upper plate is then raised. Grippers with suction cups are moved over the compressed layer system and lowered. The suction cups are placed on the layer system and become firmly attached by suction. With the aid of the firmly attached suction cups the layer system is lifted and conveyed out of the press. Panels are cut from this layer system using appropriate devices, the panels usually being about 1200 to 1300 mm long, five to twelve millimetres thick and about 200 mm wide. Finally, the panels generally also have tongues and grooves as a consequence of a milling operation. Panels are joined together via tongue and groove. They then form floor coverings or wall claddings. [0003]
  • The joined panels are fitted together, for instance to form a floor covering which is known by the name of laminated flooring. [0004]
  • A drawback of a flooring of this kind is that it has a relatively large number of joints or seams between the panels. On the one hand, these joints are undesirable for aesthetic reasons. On the other hand, over the course of time gaps or cracks are left or form via which moisture and dirt may penetrate. Moisture damages the panels. Dirt spoils the appearance and also makes them unhygienic. [0005]
  • The number of joints could be considerably reduced if the panels were to have a greater width substantially above 200 mm. For production reasons, however, it is not possible at the present time to produce panels which have the required quality. [0006]
  • The problem in production is the supply of heat at different times. When the layer system specified in the introduction is laid on top of the lower hot pressing plate, heat is supplied from beneath and the contiguous resin melts. During this time the resin on the upper surface remains solid. Also, after the pressing operation the supply of heat from above is discontinued sooner as the layer system is still for the time being resting on the lower plate. The resin in the upper regions of the panel accordingly hardens more rapidly. Overall, these differences result in slight bulges which the layer system shows after leaving the press. [0007]
  • The aforementioned bulges are particularly clearly visible in the flooring if the panel is particularly wide. To avoid this undesired visual effect, panels are usually made appropriately narrow. [0008]
  • The object underlying the invention is to avoid the number of joins in a flooring composed of panels. [0009]
  • The object is achieved with the aid of a device with the features of the first claim. A method for achieving the object comprises the features of the independent claim. The product produced according to the method comprises the features of the claim directed at the panel. [0010]
  • The device comprises gripping means to grip a layer system of the type specified in the introduction and convey it between two plates of a press. The presses are brought to operating temperature via heating means. Moving means are also provided to move the two plates into contact with the layer system at the same time and to press it. The position of the pressing plates relative to the position of the gripping means is selected so that the gripping means cannot get between the pressing plates. After sufficiently long pressing, the pressing plates are moved simultaneously away from the layer system. The now pressed layer system is then processed further in the known manner. [0011]
  • In the device according to the invention the heat is supplied at the same time. Melting or hardening of the resins at different times does not apply. The corresponding deformations are thereby avoided. It is thus possible to produce panels of very good quality which are considerably wider than conventional panels. [0012]
  • The dimensions of the panels which can now be produced with the required quality are in the order of above 300 mm in width. Dimensions above 600 mm still have the desired quality. However, these widths can no longer be sufficiently easily handled with the conventional lengths of up to 2000 mm. Dimensions above 600 mm are therefore no longer sensible if the average consumer represents the target group. Dimensions of 380 to 400 mm are advisable as this corresponds to double the width of conventional panels. [0013]
  • The problem of the bulges described in the introduction solely concerns thin panels. By these are meant in particular panels which are up to 12 mm thick. The thicker the panels are, the less the surfaces distort during production in which the heat supply from one side starts a few seconds earlier than the supply from the other side. Panels which are thinner than 5 mm are too fragile. A thickness of at least 5 mm should therefore expediently be observed as the lower limit. [0014]
  • The temperature applied to the top side of the layer system during the pressing may differ from the temperature applied from the underside. This is generally the case when different resins with different melting points are used. The particular operating temperature which is applied from below or above should be adapted to the particular melting point. Temperature differences of at least 10% are regularly necessary in order to maintain the desired good result. Temperature differences above 10° C. are typical, particularly above 20° C. Optimum temperatures may be obtained in each individual case by means of a few trials. [0015]
  • Of course it is not absolutely necessary for the production of the wide panels that the panels according to the invention have the specified design features. The essential point is that the conventional two-sided heat supply is not performed with a time lag of a few seconds. This applies both to the beginning and to the end of the supply. Melting or re-solidifying of the resins at different times is thus avoided. Moreover, in many cases it is necessary to intend different temperatures for the upper side and under side of a panel when pressing. Bulges caused by production are considerably reduced. [0016]
  • The temperatures during the combined supply of heat and pressure are generally between 150 and 220° C. The temperature prevailing on the upper side may differ from the temperature prevailing on the underside by 20° C., for example. [0017]
  • When panels are laid on a floor, any unevenness of the floor is transferred to the flooring composed of the panels. Unevenness of this kind may occur as a result of grains of sand or small stones which have undesirably got between the floor and the panels laid on top. In such cases, the joints, i.e. the joins between the panels, are subjected to strong tensile forces. The wider a panel is, the stronger such tensile forces are due to leverage forces. Panels manufactured according to the invention having a width of more than 300 mm must therefore be joined together in a particularly stable manner to cope with the aforementioned tensile forces. [0018]
  • In a development of the invention, the panels having a width of at least 300 mm—more particularly at least 380 mm—therefore feature double tongues and grooves by which two panels become or are joined together laterally. Such double tongues and grooves according to the claim meaning that the edges of a panel each have a groove and a tongue arranged one above the other—are certainly known from the publication EP 090 699 4 but not in combination with panels which have a width of more than 300 mm. [0019]
  • Alternatively or additionally panels produced according to the process include further locking elements which lock the panels together without glue. Such additional locking elements for joining without glue are in fact known, for example, from the publications EP 0 877 130 A2, EP 0 855 482 B1, U.S. Pat. No. 5,295,341 or U.S. Pat. No. 4,426,820. However, practice has shown that it is hardly possible with known production technology to produce precisely enough in order to avoid, for example, play delta in the sense of publication EP 0 855 482 B1. Only the curve-free production in accordance with the invention makes precise production possible so that two panels can be reliably, play-free and precisely joined together.[0020]
  • The invention is described in more detail with the aid of the two figures. [0021]
  • Outlined in FIG. 1 is a device for pressing a layer system to produce panels for a flooring. A [0022] layer system 1 comprises a base plate and films, paper webs or the like arranged above and beneath the said base plate which are impregnated with resins. With the aid of moving and gripping means 2 the layer system is brought between two plates 4 of a pressing device—as indicated by the arrow 3. In this position the gripping means 2 are located laterally adjacent to the pressing plates 4. The gripping means are thus arranged so that they cannot get between the pressing plates 4 during the pressing operation. The plates 4 are brought to a temperature close to 200° C. by means of heating elements which are not represented. Each exact temperature is adjusted to the melting point of each of the resins to be melted.
  • When the [0023] layer system 1 is located between the plates 4, the plates 4 are moved in the direction of the arrows 5, i.e. in the direction of the layer system 1. The movement of the plates 4 is effected such that they come into contact with the layer system 1 at the same time and press it. As a consequence the layer system is simultaneously acted upon from above and below (both sides) with temperature and pressure. The resins on both sides of the base plates melt simultaneously and not with a time lag of a few seconds as in the prior art mentioned in the introduction.
  • When the layer system has been sufficiently pressed, the [0024] plates 4 are moved away from the layer system at the same time, i.e. in the opposite direction to the direction of the arrows 5. As a consequence the temperature supply is stopped simultaneously. The resins, i.e. the adhesives, solidify simultaneously.
  • By means of the method illustrated with the aid of FIG. 1 or by means of the pressing device, a particularly flat pressed layer system is produced which is cut in the known manner into panels having a width of at least 300 mm and a length of at least 800 mm. Finally, tongues and grooves or comparable elements for joining panels to form a floor covering are milled. [0025]
  • Shown in FIG. 2 are two [0026] panels 6, joined together laterally, between which there is a join 7. In general, this joint is produced by way of tongues and grooves (not represented) which have been appropriately milled on the side of the panels. Advantageously, double tongues and grooves are provided on the edges. A tongue of one panel is inserted into a corresponding groove of an adjacent panel together with glue. When the glue has dried two panels are joined together.
  • If a force is exerted from beneath in the direction of the [0027] arrow 8 due to unevenness, the join 7 is subjected to a strong mechanical load. The load depends on the leverage. The wider the panel, the greater is the leverage. By providing the double tongues and grooves, particularly stable joints capable of taking load are created.
  • As an additional locking element, by which two panels can be joined without glue, at least one groove is intended on the underside of a panel and at least one tongue is intended for a further panel. The tongue is intended in such a way that it can be locked into the groove on the underside of two joined together panels. [0028]

Claims (14)

1. A pressing device for pressing a layer system for the production of panels in particular for a flooring comprising: two heated plates; gripping and conveying means with which a layer system 5 to 12 mm thick for producing flooring panels may be gripped and conveyed between the plates of the pressing device; and moving means to move the heated plates into contact with the layer system and press it, the position of the heated plates relative to the position of the gripping means being selected such that the gripping means are located adjacent to the pressing plates, characterised in that control of the moving means is provided so that the two heated plates arrive at the layer system and are moved away again from the layer system simultaneously.
2. A device according to claim 1, in which the heated plates may be heated up by means of heating devices to a temperature between 150 and 250° C.
3. A device according to claim 1 or 2, in which the surface of a plate with which pressure is exerted on a layer system to be pressed is at least 1 square meter in size.
4. A device according to claim 1 or 2, in which a moving means is provided by which the plates can be brought to the given various temperatures.
5. A method for producing a panel comprising the steps where:
a layer system provided with a meltable adhesive is acted upon in a pressing device with pressure and temperature on both sides in such a way that the layer system is thereby glued together,
the action of temperature on both sides to melt the adhesive takes place simultaneously,
panels are produced from the layer system which are at least 300 mm wide, at least 800 mm long and no thicker than 15 mm.
6. A method according to claim 5, in which a panel when being pressed, has a different temperature admitted to the upper side compared with that of the underside, whereby the temperature difference is at least 10° C.
7. A method according to claim 5 or 6, by which the layer system to be pressed includes a carrier plate.
8. A panel, produced by means of a method according to claim 4, 5, or 6 wherein the panel is at least 300 mm wide, at least 800 mm long and no thicker than 15 mm.
9. A panel according to claim 8 which is provided on each outer edge both with a groove and also with a tongue arranged one above the other.
10. A panel according to claim 5 or 6, characterised in that the particular groove or tongue located lower down is larger than the tongue or groove located above.
11. A panel according to claim 8, 9 or 10, characterised in that the grooves and tongues are conical in cross-section.
12. A panel according to claim 5, 6, 7 or 8, characterised in that the respectively higher-lying groove and tongue are wedge-shaped.
13. A panel according to one of the claims 8 to 12, characterised in that additional locking elements are intended, by which two panels can be locked together without glue.
14. A panel according to one of the claims 8 to 12, characterised in that additional locking elements are intended by which two panels can be locked together without glue, whereby at least one groove is intended on the underside of a panel and at least one tongue is intended for a further panel, the tongue is intended in such a way that it can be locked into the groove on the underside of two joined together panels.
US10/256,711 1999-09-22 2002-09-27 Device and a method for producing flooring panels Abandoned US20030064199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/256,711 US20030064199A1 (en) 1999-09-22 2002-09-27 Device and a method for producing flooring panels

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19945279.2 1999-09-22
DE19945279A DE19945279C1 (en) 1999-09-22 1999-09-22 Device and method for producing floor panels and panels manufactured in accordance with the method
US09/856,087 US6761961B1 (en) 1999-09-22 2000-08-04 Device and method for producing floor panels
US10/256,711 US20030064199A1 (en) 1999-09-22 2002-09-27 Device and a method for producing flooring panels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/856,087 Division US6761961B1 (en) 1999-09-22 2000-08-04 Device and method for producing floor panels

Publications (1)

Publication Number Publication Date
US20030064199A1 true US20030064199A1 (en) 2003-04-03

Family

ID=7922818

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/856,087 Expired - Lifetime US6761961B1 (en) 1999-09-22 2000-08-04 Device and method for producing floor panels
US10/256,711 Abandoned US20030064199A1 (en) 1999-09-22 2002-09-27 Device and a method for producing flooring panels

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/856,087 Expired - Lifetime US6761961B1 (en) 1999-09-22 2000-08-04 Device and method for producing floor panels

Country Status (23)

Country Link
US (2) US6761961B1 (en)
EP (1) EP1131192A1 (en)
JP (1) JP2003509247A (en)
KR (1) KR100639426B1 (en)
CN (1) CN1176790C (en)
AT (1) AT4012U1 (en)
AU (2) AU2541100A (en)
CA (1) CA2350494A1 (en)
CZ (1) CZ20011772A3 (en)
DE (1) DE19945279C1 (en)
EE (1) EE200100265A (en)
ES (1) ES2187226B1 (en)
FR (1) FR2798615B1 (en)
GB (1) GB2354482B (en)
HK (1) HK1038718A1 (en)
HU (1) HUP0200920A2 (en)
IT (1) IT1314057B1 (en)
NO (1) NO20012487D0 (en)
PL (1) PL199111B1 (en)
PT (1) PT102391B (en)
RU (1) RU2246398C2 (en)
WO (1) WO2001021366A1 (en)
YU (1) YU35801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040255538A1 (en) * 2001-10-23 2004-12-23 Herbert Ruhdorfer Panel with a sound insulation layer and production method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203596L (en) * 2002-12-02 2004-06-03 Pergo Europ Ab Process and production of thermoset laminate
BRPI0714737A2 (en) * 2006-09-15 2013-05-07 Valinge Innovation Ab device for producing a building panel, method for producing a building panel and building panel
DE102007013132B4 (en) * 2007-03-15 2022-02-03 Flooring Industries Limited, Sarl Process for producing a flat, printed component
JP5325539B2 (en) * 2008-10-31 2013-10-23 株式会社河合楽器製作所 Soundboard manufacturing equipment
CN102041890A (en) * 2010-11-12 2011-05-04 湖南康派木业有限公司 Method for manufacturing composite floor with low formaldehyde emission through heat treatment
ES2552695T3 (en) 2012-08-06 2015-12-01 Unilin Bvba Method for manufacturing panels with a decorative surface
EP2894047B1 (en) 2014-01-10 2019-08-14 Unilin, BVBA Method for manufacturing panels having a decorative surface
EP2905145B1 (en) 2014-02-06 2019-10-23 Unilin, BVBA Method for manufacturing floor panels having a decorative surface
CN108621441A (en) * 2017-03-17 2018-10-09 昆山艾诺美航天材料有限公司 A kind of ultra-wide large scale PC plate material manufacture craft
BE1025875B1 (en) 2018-01-04 2019-08-06 Unilin Bvba Methods for manufacturing panels
CN111452180A (en) * 2020-05-20 2020-07-28 江苏无锡欧派集成家居有限公司 Furniture board oscillation laser beam gluing process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557509A (en) * 1968-11-05 1971-01-26 Blaski Mfg Co Building panel construction
US3909343A (en) * 1972-04-11 1975-09-30 Siempelkamp Gmbh & Co Apparatus for forming a laminate in a heated-platen press
US3935330A (en) * 1971-12-08 1976-01-27 Union Carbide Corporation Two-step coating process
US5421951A (en) * 1991-10-16 1995-06-06 Trus Joist Macmillan Platen press
US5554429A (en) * 1993-07-14 1996-09-10 Yamaha Corporation Wood board and flooring material
US5925211A (en) * 1997-04-21 1999-07-20 International Paper Company Low pressure melamine/veneer panel and method of making the same
US6162312A (en) * 1999-01-19 2000-12-19 Abney; Dennis R. Method of making a resin impregnated composite wood product from waste, scrap, and used wood

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB431605A (en) * 1934-05-12 1935-07-11 Henry Jensen Improvements in or relating to flooring and like boards or blocks
DE2109539B1 (en) * 1971-03-01 1972-09-21 Becker & Van Huellen Niederrheinische Maschinen Process for coating plate-shaped bodies with synthetic resin-impregnated short-cycle films
US3987917A (en) * 1973-12-21 1976-10-26 G. Siempelkamp & Co. Method of loading a workpiece stack into a platen press
DE3133791C2 (en) * 1981-08-26 1985-03-14 G. Siempelkamp Gmbh & Co, 4150 Krefeld Plate press with permanently heated press plates for pressing wood-based panels to be pressed
US4471012A (en) * 1982-05-19 1984-09-11 Masonite Corporation Square-edged laminated wood strip or plank materials
EP0122905A3 (en) * 1983-04-19 1986-01-15 Panobel Pvba Moisture-resistant panel made of wood fibres and shavings
US4543147A (en) * 1984-08-20 1985-09-24 Tetrahedron Associates, Inc. Laminating process and apparatus
CA1227961A (en) 1985-04-16 1987-10-13 Frank F. Liska Engineered wood flakes, wafers or strands and method of their production
EP0229176B1 (en) 1985-07-16 1990-10-17 INNOFINANCE Altalános Innovácios Pénzintézet Wood treatment composition
JPS62148205A (en) 1985-12-23 1987-07-02 三菱レイヨン株式会社 Method of impregnating and sealing porous article
DE4107249A1 (en) * 1991-03-07 1992-09-10 Roemmler H Resopal Werk Gmbh METHOD AND DEVICE FOR THE PRODUCTION OF HIGH-PRESSURE LAYER COMPRESSED PLATES
US5182892A (en) * 1991-08-15 1993-02-02 Louisiana-Pacific Corporation Tongue and groove board product
SE509060C2 (en) * 1996-12-05 1998-11-30 Valinge Aluminium Ab Method for manufacturing building board such as a floorboard
US5379689A (en) * 1993-07-29 1995-01-10 General Electric Company Composite repair press for manufacturing and repairing a workpiece made from a composite material
JP3244612B2 (en) * 1995-03-02 2002-01-07 永大産業株式会社 Method for producing double-sided decorative board and decorative board
US5930967A (en) * 1995-07-14 1999-08-03 Stoehr; James H. Finger jointed floorboard with sandable wear surface
US5830549A (en) * 1995-11-03 1998-11-03 Triangle Pacific Corporation Glue-down prefinished flooring product
SE520727C2 (en) 1996-03-04 2003-08-19 Ciba Sc Holding Ag Alkylphenyl bisacylphosphine oxide and photoinitiator mixtures
JP3050156B2 (en) * 1996-05-31 2000-06-12 ヤマハ株式会社 Wood board manufacturing method
DE19718857A1 (en) * 1997-05-03 1998-11-05 Dieffenbacher Gmbh Maschf Short-cycle heated press laminating surfacings to woodenpanels
SE514907C2 (en) * 1997-06-17 2001-05-14 Byggelit Ab Particleboard fitted with groove and spontaneously suitable for use in flooring
US5935668A (en) * 1997-08-04 1999-08-10 Triangle Pacific Corporation Wooden flooring strip with enhanced flexibility and straightness
DE59709794D1 (en) * 1997-10-04 2003-05-15 Kronospan Tech Co Ltd Panel, in particular for floor coverings
US5985415A (en) * 1997-11-17 1999-11-16 Reconnx, Inc. Finger joint architecture for wood products, and method and apparatus for formation thereof
DE19754621C2 (en) 1997-12-09 2002-03-21 Mze Engineering Fuer Verfahren Process for hardening and increasing the scratch resistance of radiation-hardened lacquer layers
DE19756129A1 (en) 1997-12-17 1999-07-08 Dts Systemoberflaechen Gmbh Making particle board panels of various fibers, especially of waste or recycled materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557509A (en) * 1968-11-05 1971-01-26 Blaski Mfg Co Building panel construction
US3935330A (en) * 1971-12-08 1976-01-27 Union Carbide Corporation Two-step coating process
US3909343A (en) * 1972-04-11 1975-09-30 Siempelkamp Gmbh & Co Apparatus for forming a laminate in a heated-platen press
US5421951A (en) * 1991-10-16 1995-06-06 Trus Joist Macmillan Platen press
US5554429A (en) * 1993-07-14 1996-09-10 Yamaha Corporation Wood board and flooring material
US5925211A (en) * 1997-04-21 1999-07-20 International Paper Company Low pressure melamine/veneer panel and method of making the same
US6162312A (en) * 1999-01-19 2000-12-19 Abney; Dennis R. Method of making a resin impregnated composite wood product from waste, scrap, and used wood

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040255538A1 (en) * 2001-10-23 2004-12-23 Herbert Ruhdorfer Panel with a sound insulation layer and production method
US8397456B2 (en) * 2001-10-23 2013-03-19 M. Kaindl Panel with a sound insulation layer and production method

Also Published As

Publication number Publication date
NO20012487L (en) 2001-05-21
ES2187226A1 (en) 2003-05-16
IT1314057B1 (en) 2002-12-03
GB2354482A (en) 2001-03-28
GB9925312D0 (en) 1999-12-29
CN1320069A (en) 2001-10-31
ITMI992212A0 (en) 1999-10-21
CN1176790C (en) 2004-11-24
HUP0200920A2 (en) 2002-07-29
PT102391A (en) 2001-03-30
AU6835700A (en) 2001-04-24
KR100639426B1 (en) 2006-10-27
HK1038718A1 (en) 2002-03-28
RU2246398C2 (en) 2005-02-20
EP1131192A1 (en) 2001-09-12
CA2350494A1 (en) 2001-03-29
ES2187226B1 (en) 2004-03-16
GB2354482B (en) 2003-07-16
EE200100265A (en) 2002-08-15
DE19945279C1 (en) 2001-04-05
CZ20011772A3 (en) 2004-03-17
AT4012U1 (en) 2000-12-27
ITMI992212A1 (en) 2001-04-21
JP2003509247A (en) 2003-03-11
FR2798615B1 (en) 2002-06-07
PL199111B1 (en) 2008-08-29
WO2001021366A1 (en) 2001-03-29
KR20010107981A (en) 2001-12-07
PL347737A1 (en) 2002-04-22
US6761961B1 (en) 2004-07-13
YU35801A (en) 2003-02-28
PT102391B (en) 2002-08-30
FR2798615A1 (en) 2001-03-23
AU2541100A (en) 2001-04-24
NO20012487D0 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US6761961B1 (en) Device and method for producing floor panels
US7603826B1 (en) Panels with coupling means
KR101274135B1 (en) Building panel with compressed edges
US20040255538A1 (en) Panel with a sound insulation layer and production method
US20060180731A1 (en) Foam liner for casting objects in poured walls
JP3236392U (en) Bamboo piece laminate that can be connected
US6694682B2 (en) Multicomponent tiles and a method for manufacturing multicomponent tiles
EP1359265A3 (en) Metal faced tile
US20060159900A1 (en) Adhesive combination and method for making hard surfaces-veneer engineered surfacing tiles
CA2430980A1 (en) Radiant barrier products and methods for making same
RU2001113718A (en) DEVICE AND METHOD FOR PRODUCING FLOOR PANELS
WO1985000318A1 (en) Method for fabrication and coating of boardlike articles
EP2237936B1 (en) Process for the production of a multi-layer pressed board, and board so produced
JP2904482B2 (en) Cosmetic fabrication member and method of manufacturing the same
JP6654083B2 (en) Manufacturing method of decorative paste interior material
JP4934064B2 (en) Bonding method between bonded veneer and substrate
US11413784B1 (en) Method for manufacturing wood products formed from natural veneer sheets and veneer strands
JPH052482B2 (en)
JP2582092Y2 (en) Floor material
JPH08239944A (en) Panel for architecture
JP3026752B2 (en) Corner member manufacturing apparatus and manufacturing method
JP2008279717A (en) Manufacturing method for decorative panel
JPH01249344A (en) Production of damping steel plate using striped steel plate as raw plate material
JP2004338106A (en) Large-sized woody laminated sheet and its manufacturing method
JPH0453176B2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION