US20030064090A1 - Manufacture of autogenous replacement body parts - Google Patents

Manufacture of autogenous replacement body parts Download PDF

Info

Publication number
US20030064090A1
US20030064090A1 US10/083,825 US8382502A US2003064090A1 US 20030064090 A1 US20030064090 A1 US 20030064090A1 US 8382502 A US8382502 A US 8382502A US 2003064090 A1 US2003064090 A1 US 2003064090A1
Authority
US
United States
Prior art keywords
tissue
matrix
joint
cartilage
synovial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/083,825
Inventor
Roger Khouri
Kuber Sampath
David Rueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22960109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030064090(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/083,825 priority Critical patent/US20030064090A1/en
Publication of US20030064090A1 publication Critical patent/US20030064090A1/en
Priority to US10/995,979 priority patent/US20050089544A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3612Cartilage, synovial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Definitions

  • This invention relates to materials and methods for the repair and regeneration of plural distinct tissues at a single defect site in a mammal. More particularly, the invention is concerned with materials and methods for the manufacture in vivo of autogenous replacement body parts, including mammalian skeletal joints, comprising plural different tissues, such as ligament, articular cartilage and bone tissues.
  • Skeletal joints provide a movable union of two or more bones.
  • Synovial joints are highly evolved articulating joints that permit free movement Because mammalian lower limbs are concerned with locomotion and upper limbs provide versatility of movement, most of the joints in the extremities are of the synovial type
  • synovial joints There are various types of synovial joints. Their classification is based upon the types of active motion that they permit (uniaxial, biaxial, and polyaxial). They are differentiated further according to their principal morphological features (hinge, pivot, condyloid). In contrast to fibrous and cartilaginous joints where the ends of the bones are found in continuity with intervening tissue, the ends of the bones in a synovial joint are in contact, but separate.
  • synovial joints Because the bones are not bound internally, the integrity of a synovial joint results from its ligaments and capsule (which bind the articulation externally) and to some extent from the surrounding muscles.
  • the contiguous bony surfaces are covered with articular or, hyaline cartilage, and the joint cavity is surrounded by a fibrous capsule which segregates the joint from the surrounding vascularized environment.
  • the inner surface of the capsule is lined by a synovial layer or “membrane” containing cells involved in secreting the viscous lubricating synovial fluid. Gray, Anatomy of the Human Body , pp. 312; 333-336 (13th ed.; C. C. Clemente, ed., (1985)).
  • the joint or synovial cavity may be divided by a meniscus of fibrocartilage.
  • Synovial joints involving two bones and containing a single joint cavity are referred to as simple joints.
  • Joints that contain a meniscus forming two joint cavities are called composite joints.
  • the term compound joint is used for those articulations in which more than a single pair of articulating surfaces are present
  • Joint replacement is a commonly performed procedure in orthopedic surgery.
  • the ideal material for replacement joints remains elusive.
  • joint reconstruction requires repair of the bony defect, the articular cartilage and, in addition, one or more of the joining ligaments.
  • Prosthetic joints which replace all the endogenous joint tissues circumvent some of these problems.
  • prosthetic joints have numerous, well documented limitations, particularly in younger and highly active patients.
  • prosthetic joint replacement is not possible and repair options are limited to osteochondroallograft materials.
  • the articular, or hyaline cartilage, found at the end of articulating bones is a specialized, histologically distinct tissue and is responsible for the distribution of load resistance to compressive forces, and the smooth gliding that is part of joint function.
  • Articular cartilage has little or no self-regenerative properties. Thus, if the articular cartilage is torn or worn down in thickness or is otherwise damaged as a function of time, disease or trauma, its ability to protect the underlying bone surface is compromised.
  • cartilage in skeletal joints include rib cage and elastic cartilage.
  • Secondary cartilaginous joints are formed by discs of fibrocartilage which join vertebrae in the vertebral column.
  • rib cartilage the mucopoly-saccharide network is interlaced with prominent collagen bundles and the chondrocytes are more widely scattered than in hyaline cartage.
  • Elastic cartilage contains collagen fibers which are histologically similar to elastin fibers.
  • the formation of cartilaginous tissue is a complex biological process, involving the interaction of cells and collagen fibers in a unique biochemical milieu.
  • Cartilage tissue including articular cartilage, unlike other connective tissues, lacks blood vessels, nerves, lymphatics and basement membrane.
  • Cartilage is composed of chondrocytes which synthesize an abundant extracellular milieu composed of water, collagens, proteoglycans and noncollagenous proteins and lipids. Collagen serves to trap proteoglycans and to provide tensile strength to the tissue.
  • Type II collagen is the predominant collagen in cartilage tissue.
  • the proteoglycans are composed of a variable number of glycosaminoglycan chains, keratin sulphate, chondroitin sulphate and/or dermatan sulphate, and N-linked and O-linked oligosaccharides covalently bound to a protein core.
  • the sulfated glycosaminoglycans are negatively charged resulting in an osmotic swelling pressure that draws in water.
  • collagens such as the fibrotic cartilaginous tissues which occur in scar tissue for example, are keloid and typical of scar-type tissue, i.e., composed of capillaries and abundant, irregular, disorganized bundles of Type I and Type II collagen.
  • articular or hyaline cartilage can be distinguished from other forms of cartilage, both by its morphology and by its biochemistry.
  • Morphologically, articular cartilage is characterized by superficial versus mid versus deep “zones” which show a characteristic gradation of feats from the surface of the tissue to the base of the tissue adjacent to the bone.
  • chondrocytes are flattened and lie parallel to the surface embedded in an extracellular network that contains tangentially arranged collagen and few proteoglycans.
  • chondrocytes are spherical and surrounded by an extracellular network rich in proteoglycans and obliquely organized collagen fibers.
  • the collage fibers are vertically oriented
  • the keratin sulphate rich proteoglycans increase in concentration with increasing distance from the cartilage surface.
  • articular cartilage micro-structure see, for example, (Aydelotte and Kuettner, (1988), Conn. Tiss. Res. 18:205; Zanetti et al., (1985), J. Cell Biol. 101:53; and Poole et al., (1984), J. Anat. 138:13.
  • articular collagen can be identified by the presence of Type II and Type IX collagen, as well as by the presence of well-characterized proteoglycans, and by the absence of Type X collagen, which is associated with bone formation.
  • Full-thickness defects of an articulating surface include damage to the hyaline cartilage, the calcified cartilage layer and the subchondral bone tissue with its blood vessels and bone marrow.
  • Full-thickness defects can cause severe pain since the bone plate contains sensory nerve endings. Such defects generally arise from severe trauma and/or during the late stages of degenerative joint disease, such as osteoarthritis.
  • Full-thickness defects may, on occasion, lead to bleeding and the induction of a repair reaction from the subchondral bone. In such instances, however, the repair tissue formed is a vascularized fibrous type of cartilage with insufficient biomechanical properties, and does not persist on a long-term basis.
  • Such mechanical derangements may be caused by trauma to the joint, e.g., a displacement of torn meniscus tissue into the joint, meniscectomy, a laxation of the joint by a torn ligament, malalignment of joints, or bone fracture, or by hereditary diseases.
  • Superficial defects are also characteristic of early stages of degenerative joint diseases, such as osteoarthritis. Since the cartilage tissue is not innervated or vascularized, superficial defects do not heal and often degenerate into full-thickness defects.
  • ligaments which serve to connect interacting bones in the joint, have little or no self-regenerative properties.
  • Ligaments typically are composed of substantially parallel bundles of white fibrous tissue. They are pliant and flexible to allow substantially complete freedom of movement, but are inextensile to prevent over-extension of the interacting bones in the joint.
  • ligament tissue is substantially devoid of blood vessels and has little or no self-regenerative properties. Surgical repair of torn or damaged ligament tissue to date is limited to use of autogenous grafts or synthetic materials that are surgically attached to the articular extremities of the bones. Allogenic ligaments typically fail mechanically, presumably due to the treatments required to render these materials biocompatible.
  • tendons are rope-like structures which connect muscle fibers to bone or cartilage and which are formed from substantially parallel fibroids of white connective tissue.
  • the synovial capsule is composed of a thin layer of ligamentous tissue which encloses the joint and allows the joint to be bathed in the lubricating synovial fluid.
  • the interior of the joint capsule is lined with a thin membrane of connective tissue having branched connective-tissue corpuscles defining the synovial membrane, and which is primarily responsible for secreting synovial fluid into the cavity. The integrity of this membrane therefore, is important to maintaining a source for the lubricating synovial fluid. Repair of these tissues in orthopedic contexts typically is limited to resuturing of existing tissue.
  • Bone tissue differs significantly from the other tissues described hereinabove, including cartilage tissue.
  • bone tissue is vascularized tissue composed both of cells and a biphasic medium which is composed of a mineralized, inorganic component (primarily hydroxyapatite crystals) and an organic component comprised primarily of Type I collagen.
  • Glycosaminoglycans constitute less than 2% of this organic component and less than 1% of the biphasic medium itself or of bone tissue per se.
  • the collagen present in bone tissue exists in a highly-organized parallel arrangement.
  • Bony defects whether from degenerative, traumatic or cancerous etiologies, pose a daunting challenge to the reconstructive surgeon. Particularly difficult is reconstruction or repair of skeletal parts that comprise part of a multi-tissue complex, such as occurs in mammalian joints.
  • Mammalian bone tissue is known to contain one or more proteinaceous materials presumably active during growth and natural bone healing which can induce a developmental cascade of cellular events resulting in endochondral bone formation.
  • the developmental cascade involved in endochondral bone differentiation consists of chemotaxis of mesenchymal cells, proliferation of progenitor cells into chondrocytes and osteoblasts, differentiation of cartilage, vascular invasion, bone formation, remodeling, and finally marrow differentiation.
  • these osteogenic proteins when implanted in a mammal typically in association with a substrate that allows the attachment, proliferation and differentiation of migratory progenitor cells, are capable of inducing recruitment of accessible progenitor cells and stimulating their proliferation, inducing differentiation into chondrocytes and osteoblasts, and further inducing differentiation of intermediate cartilage, vascularization, bone formation, remodeling, and finally marrow differentiation.
  • Those proteins are referred to as members of the Vgr-1/OP1 protein subfamily of the TGP ⁇ super gene family of structurally related proteins.
  • Another object is to provide materials and methods for the repair of tissue defects in an articulating mammalian joint, so as to form a mechanically and functionally viable joint comprising bone and articular cartilage, ligament, tendon, synovial membrane and synovial capsule tissue.
  • Another object of the invention is to provide means for restoring functional non-mineralized tissue in a skeletal joint including the avascular tissue therein.
  • the replacement body part includes part or all of a mammalian skeletal joint, including an articulating or synovial joint.
  • the methods and compositions of the invention are sufficient to restore mechanical and functional viable of the tissues associated with a skeletal joint, including bone (and bone marrow), articular cartilage, ligament, tendon, synovial capsule and synovial membrane tissues.
  • the invention provides methods and compositions for replacement of one or more of the plural distinct tissues that define a mammalian skeletal joint.
  • the invention provides, in one aspect therefore, a novel matrix for forming a mechanically and structurally functional, mammalian, replacement body part comprising plural distinct tissues.
  • the matrix comprises intact residues specific for or characteristic of, and/or derived from at least two distinct tissues of the replacement body part.
  • the matrix can include residues specific for four or more distinct tissues.
  • the matrix is biocompatible and bioresorbable. Specifically, it is sufficiently free of pathogens and antigenic stimuli that can result in graft rejection.
  • the matrix is derived from an allogenic or xenogenic body part.
  • it is derived from a mammalian donor, such as a cadaver.
  • the body part may be rendered inert or “devitalized” by dehydration, such as by ethanol extraction and lyophilization, so that no residual cellular metabolism remains, but the function of endogenous growth factors and the like can be restored upon in situ reconstitution by endogenous body fluids.
  • the treated body part which now is substantially depleted in antigenic and pathogenic components and now is biocompatible, maintains the residues specific for the plural distinct tissues constituting the body part sought to be replaced. These residues include those of plural distinct tissues with dimensions and structural relationships to each other which mimic those of the body part to be replaced.
  • the thus treated matrix having utility in the methods and devices of the invention lacks significant mechanical integrity as compared with native tissue and, on its own, is not sufficient to induce regeneration of a replacement body part or tissue when implanted.
  • the device of the instant invention is formed and is sufficient to induce formation of new tissue in vivo such that regeneration of a mechanically and functionally viable replacement body part occurs in situ.
  • the device comprises part or all of a skeletal joint excised from a mammalian donor allogenic or xenogenic to the donee.
  • the device comprising the allogenic or xenogenic skeletal joint (1) is biocompatible, namely, it is non-pathogenic and sufficiently non-antigenic to prevent graft rejection in vivo, and (2) is sufficient to induce formation of a functionally viable autogenous replacement joint in vivo, including generating functional bone, articular cartilage, ligament and capsule tissue in correct relation to one another such that a structurally and mechanically functional replacement joint results.
  • the invention provides a device which serves as a template for forming in vivo part or all of a skeletal synovial joint comprising plural distinct tissues and which, in response to morphogenic signals, induces new tissue formation, including new articular cartilage tissue from responding cells present in the synovial environment.
  • the newly formed tissues assume the shape and function of the original tissue in the skeletal joint.
  • the invention provides methods for replacing a defective body part comprising the steps of: excising the defective body part and implanting the device of the instant invention.
  • the method also comprises the additional step of providing a supply of mesenchymal cells to the implanted device, as by threading or otherwise providing a muscle flap prefused with a blood supply into a hollow portion of the device.
  • the device is implanted at a locus in the body of the individual distinct from the defect site but which allows generation of the replacement body part. The autogenous body part thus formed then can be implanted at the defect site.
  • the invention provides devices and methods for the functional and mechanical restoration of one or more individual tissues in a mammalian skeletal joint, including the non-mineralized and avascular tissue therein.
  • the invention provides methods and devices competent for restoring, without limitation, functional articular cartilage, ligament, synovial membrane and synovial capsule tissue.
  • the methods and devices described herein can be used for example, to correct superficial articular cartilage defects in a joint, to replace torn or compromised ligaments and/or tendons, and to repair defects in synovial capsule or membrane tissue.
  • the devices for repairing individual skeletal joint tissue comprise osteogenic protein disposed on a matrix containing residues specific for, or derived from skeletal joint tissue of the type to be restored, including, without limitation, cartilage, ligament, tendon, synovial capsule, or synovial membrane tissue.
  • the device can take the form of a solid, or it can have the physical properties of a paste or gel.
  • the matrix is derived from allogenic or xenogenic tissue, and is treated as described herein to form a biocompatible devitalized matrix.
  • the matrix can be formulated de novo from synthetic and/or naturally-derived components.
  • the matrix includes both (a) residues specific for, or characteristic of, the given tissue and, (b) materials sufficient to create a temporary scaffold for infiltrating cells and defining a three dimensional structure which mimics the dimensions of the desired replacement tissue. Useful such materials are described hereinbelow. Suitable tissue-specific residues can be obtained from devitalized allogenic or xenogenic tissue and combined with the structural materials as described herein to create the synthetic matrix.
  • the matrix comprises devitalized non-mineralized tissue.
  • a non-mineralized matrix material defining a three-dimensional structure which allows the attachment of infiltrating cells can be sufficient, in combination with osteogenic protein, to induce new tissue formation.
  • the invention contemplates a device suitable as a template for forming in vivo a replacement skeletal joint, as will be appreciated by the practioner in the art, the invention contemplates, and the disclosure enables, a device suitable as a template for forming in vivo functional replacement body parts other than skeletal joints and which comprise plural distinct tissues.
  • the devices of the invention and/or the tissues which result from their application essentially satisfy the following criteria of a preferred grafting material:
  • the devices are capable of being precisely contoured and shaped to exactly match any defect, whichever complex skeletal or organ shape it is meant to replace.
  • the devices have minimal donor site morbidity.
  • the instant invention provides practitioners with materials and methods for skeletal joint repair including the repair of the bone and articular cartilage present therein, and which solve problems that occur using the methods and devices of the art.
  • the instant invention can induce formation of bona fide hyaline cartilage rather than fibrocartilage at a defect site.
  • functional hyaline cartilage forms on the articulating surface of bone at a defect site and does not degenerate over time to fibrocartilage.
  • prior art methods of repairing cartilage defects generally ultimately result in development of fibrous cartilage at the defect site.
  • fibrocartilage lacks the physiological ability to restore articulating joints to their full capacity.
  • the practitioner can substantially functionally restore a cartilage defect in an articulating joint, particularly a superficial articular cartilage defect and substantially avoid the undesirable formation of fibrocartilage typical of prior art methods, or degeneration into a “full-thickness defect”.
  • the invention also provides means for repairing individual tissue of a joint not readily reparable individually using prior art methods, and which, in some cases, previously warranted replacement of the entire joint with a prosthetic device.
  • the invention further allows use of allogenic replacement materials for repairing the avascular tissue in a skeletal joint, and which result in the formation of mechanically and functionally viable replacement tissues at a joint locus.
  • FIG. 1 is a fragmentary front elevational view of a mammalian knee joint with sufficient tissue removed to show the articular cartilage on the condyles of the femur, the ligaments, synovial membrane, joint capsule, and further showing a damaged area in the articular cartilage requiring repair;
  • FIGS. 2A through 2D are schematic representations of the elements used to generate a viable, functional glenohumoral hemi-joint in one embodiment of the invention.
  • FIG. 2A depicts a lyophilized allograft
  • FIG. 2B depicts osteogenic protein for application to the lyophilized allograft of FIG. 2A
  • FIG. 2C depicts a muscle flap of cutaneous maximus muscle to be threaded inside the shaft of the lyophilized allograft
  • FIG. 2D depicts a viable, functional hemi-joint resting from the combination of elements in FIGS. 2A, 2B and 2 C.
  • FIG. 2D represents one embodiment of the device of the instant invention.
  • FIGS. 3A through 3D are schematic representations of the four allografts tested in the hemi-joint of Example 2 (5 week).
  • FIGS. 4A through 4D are schematic representations of the four allografts tested in the hemi-joint of Example 3 (6 month).
  • novel materials and methods are provided for the repair and regeneration of plural distinct tissues, including manufacture of a live autogenous replacement part comprising plural distinct tissues.
  • the replacement body part is a skeletal joint, particularly an articulating joint, and includes, without limitation, residues specific for, or derived from, bone, cartilage, ligament, tendon, synovial capsule and synovial membrane tissue.
  • the invention provides a device comprising an osteogenic protein disposed on the surfaces of a matrix or substrate for forming a functional, mammalian replacement body part comprising plural distinct tissues.
  • matrix is understood to define a structure having interstices for the attachment, proliferation and differentiation of infiltrating cells. It comprises residues specific for the tissue to be replaced and/or derived from the same tissue type, and has a shape and dimension when implanted which substantially mimics that of the replacement tissue desired.
  • the term “residue” is intended to mean a constituent of a given tissue, which has specificity for, or is characteristic of, the given tissue, and which is derivable from the non-viable constituents of the given tissue.
  • a matrix comprising these residue(s), when combined with osteogenic protein, and implanted in a mammal in an environment which mimics the tissue's local environment under physiological conditions, and is sufficient for formation of specific, mechanically and functionally viable replacement tissue.
  • the term “plural distinct tissue” is intended to mean physiologically distinguishable tissues, such as biochemically or ultrastructurally distinguishable tissues which reside at an anatomically similar locus.
  • the matrix can comprise residues specific for, or derived from, bone, cartilage, ligament, tendon and synovial membrane tissue.
  • a significant aspect of the matrix of the invention is a single structure comprising residues of plural, distinct tissues, and which, when combined with an osteogenic protein as defined herein, is suitable for inducing repair or regeneration of a body part that is mechanically and functionally viable over time in vivo.
  • Bone refers to a calcified (mineralized) connective tissue primarily comprising a composite of deposited calcium and phosphate in the form of hydroxyapatite, collagen (predominately Type I collagen) and bone cells, such as osteoblasts, osteocytes and osteoclasts, as well as to the bone marrow tissue which forms in the interior of true endochondral bone.
  • Cartilage refers to a type of connective tissue that contains chondrocytes embedded in an extracellular network comprising fibrils of collagen (predominately Type II collagen along with other minor types, e.g.
  • Articular cartilage refers to hyaline or articular cartilage, an avascular, non-mineral tissue which covers the articulating surfaces of the portions of bones in joints and allows movement in joints without direct bone-to-bone contact, and thereby prevents wearing down and damage to opposing bone surfaces.
  • hyaline Most normal healthy articular cartilage is referred to as “hyaline,” i.e., having a characteristic frosted glass appearance.
  • articular cartilage tissue rests on the underlying, mineralized bone surface, the subchondral bone, which contains highly vascularized ossicles. These highly vascularized ossicles can provide diffusible nutrients to the overlying cartilage, but not mesenchymal stem cells.
  • “Ligament” is intended to mean both the rope-like structures of white fibrous connective tissue which attach anterior extremities of intracting bones, as well as the tissue defining a synovial capsule.
  • “Synovial membrane” is intended to define the connective tissue membrane lining the interior of the synovial cavity and which is involved in synovial fluid secretion.
  • “Tendon” is intended to define the connective tissue structure which joins muscle to bone.
  • the instant invention provide methods and compositions for replacing and repairing a defective body part.
  • the method comprises the steps of surgically excising the defective body part, implanting a device comprising a matrix of the type described above at the site of excision, and, as necessary, surgically repairing tissues adjacent the site of excision as described herein below.
  • a device comprising a matrix of the type described above at the site of excision
  • tissue adjacent the site of excision as described herein below.
  • the device is constructed to replace part or all of a mammalian skeletal joint structure and includes a matrix having residues for plural, distinct tissues, including two or more of bone, cartilage, ligament, tendon, synovial capsule and/or synovial membrane tissue.
  • the device is constructed to replace an individual tissue of a mammalian skeletal joint, including an individual avascular and/or non-mineralized tissue.
  • the device is competent to induce functional replacement tissue formation, including articular cartilage, from responding cells present in the local environment, including a synovial environment, and without requiring cellular infiltration of mesenchymal cells from a vascularized muscle flap.
  • the matrix of this embodiment comprises residues specific for, or characteristic of, and/or derived from, tissue of the same type as the individual tissue to be replaced.
  • the matrix comprises devitalized non-mineralized tissue.
  • the replacement tissue can include articular cartilage, ligament, bone, tendon or synovial capsule tissue.
  • a muscle flap which can itself be pretreated with osteogenic protein, can be surgically introduced into a cavity in the implanted matrix, such as the marrow cavity of devitalized bone, to provide a blood supply to expedite morphogenesis of vascularized tissue and to provide a ready supply of mesenchymal stem cells.
  • the matrix of instant invention has utility as an implantable device when osteogenic protein is disposed on the surfaces of the matrix, present in an amount sufficient to induce formation of each of the replacement tissues. This permits regeneration of the body part within the mammal, including plural tissues of appropriate size, interrelationship, and function. Osteogenic proteins contemplated to be useful in the instant invention are described below and have been earlier-described in, for example, U.S. Pat. Nos. 4,968,550, 5,258,499 and 5,266,683, the disclosures of which are incorporated by reference herein.
  • the osteogenic protein can be, for example, any of the known bone morphogenetic proteins and/or equivalents thereof described herein and/or in the art and includes naturally sourced material recombinant material and any material otherwise produced which is capable of inducing tissue morphogenesis.
  • the movement is uniaxial, i.e., all movements take place around one axis: Among these are the ginglymus or hinge joint in which the axis of movement is transverse to the axes of the bones, and the trochoid or pivot joint in which the axis is longitudinal.
  • movements are around two axes at a right angle or any other angle to each other. These include the condyloid, the ellipsoid, and the saddle joints.
  • the spheroidal or ball-and-socket joint in which the movements are polyaxial, i.e., movements are permitted in an infinite number of axes.
  • plane or gliding type synovial joints there are the plane or gliding type synovial joints.
  • the articular surfaces are molded to each other in such a manner as to permit motion in only one plane around the transverse axis. Flexion at the elbow joint is an example; other examples include the interphalangeal joints of both the fingers and toes. In pivot joints, movement in a pivot joint also occurs around a single axis, however, it is the longitudinal axis. There are several pivot joints in the human body, such as the proximal radioulnar articulation. In condylar joints include, movement occurs principally in one plane. The tibiofemoral articulation of the knee joint is an example. In ellipsoid joint include, movement is around two principal axes which are at right angles to each other.
  • joints examples include the radiocarpal and metacarpophalangeal joints.
  • a saddle joint the articular end of the proximal bone is concave in one axis and convex in a perpendicular axis. These surfaces fit reciprocally into convex and concave surfaces of the distal bone.
  • the best example of a saddle joint is the carpometacarpal joint of the thumb.
  • a ball-and-socket joint is one in which the distal bone is capable of motion around an indefinite number of axes with one common center. Examples of this form of articulation are found in the hip and shoulder joints.
  • a plane or gliding-type joint allows a slight slipping or sliding of one bone over the other.
  • the amount of motion between the surfaces is limited by the ligaments or osseous poses that surround the articulation. This is the form present in the joints between the articular processes of certain vertebrae, the carpal joints, and the intermetatarsal joints.
  • the present invention is usable to repair defects including bone and articular cartilage elsewhere in a mammalian body
  • aspects of the invention are here illustrated in connection with the articulating surfaces on the femur in a knee joint 10 illustrated in FIG. 1.
  • FIG. 1 illustrates a knee joint 10 between the bottom of a femur 11 and the top of a tibia 12 .
  • the joint capsule is represented by the exterior dark lining 25
  • the synovial membrane which lines the synovial cavity and secretes the lubricating synovial fluid, is represented by the interior dark lining 26 .
  • the convexly curved condyles 20 and 21 at the lower end of the femur 11 are normally supported by the meniscus cartilages 16 and 17 , respectively, on the upper end of the tibia 12 .
  • the lower end of the femur 11 including the condyles 20 and 21 , are covered by a layer 22 of hyaline cartilage material, referred to as the articular cartilage 22 .
  • the articular cartilage 22 forms a generally resilient padding which is fixed on the surface of the lower end of the femur 11 to protect the latter from wear and mechanical shock Moreover, the articular cartilage 22 , when lubricated by the synovial fluid in the knee joint 10 , provides a surface which is readily slidable on the underlying surfaces of the meniscus cartilages 16 and 17 (or on the upper surface of the tibia 12 should one or both of the meniscus cartilage 16 and 17 be partly or totally absent) during articulation of the knee joint 10 .
  • FIG. 1 illustrates an example of a damaged area 23 .
  • the matrix has a three dimensional structure sufficient to act as a scaffold for infiltrating cells, and includes the residues specific for, or characteristic of, and/or which are derived from, the same tissue type as the tissue to be repaired, the precise nature of the substrate per se used for the matrices disclosed herein is not determinative of a matrix's ultimate ability to repair and regenerate replacement tissue.
  • the substrate serves as a scaffold upon which certain cellular events, mediated by an osteogenic protein, necessarily will occur. The specific responses to the osteogenic protein ultimately are dictated by the endogenous microenvironment at the implant site and the developmental potential of the responding cells.
  • the precise choice of substrate utilized for the matrices disclosed herein will depend, in part, upon the type of defect to be repaired, anatomical considerations such as the extent of vascularization at the defect site, and the like.
  • the matrix of the invention may be obtained as follows.
  • a replacement tissue or body part to be used as a replacement body part and which comprises at least two distinct tissues in association to form the body part, is provided, as from a cadaver, or from a bone bank and treated, as by ethanol treatment and dehydrated by lyophilization, so that the remaining material is non-pathogenic and sufficient non-antigenic to prevent graft rejection
  • the thus treated material having utility in the devices of the invention further comprises the residues of the extracted tissue or tissues from which it is derived.
  • a replacement body part matrix thus treated further is dimensioned such that the residues have a structural relationship to each other which mimic that of the body part to be replaced.
  • Suitable allogenic or xenogenic matrices can be created as described herein below, using methods well known in the art.
  • the replacement body part or tissue is obtained fresh, from a cadaver or from a tissue bank which freezes its tissues upon harvest. In all cases and as will be appreciated by the practitioner in the field, it is preferable to freeze any tissue upon harvest, unless the tissue is to be put to immediate use.
  • the tissue Prior to use, the tissue is treated with a suitable agent to extract the cellular non-structural components of the tissue so as to devitalize the tissue.
  • the agent also should be capable of extracting any growth inhibiting components associated with the tissue, as well as to extract or otherwise destroy any pathogens.
  • the resulting material is an acellular matrix defining interstices that can be infiltrated by cells, and is substantially depleted in non-structurally-associated components.
  • the tissue is devitalized following a methodology such as that used in the art for fixing tissue.
  • the tissue is exposed to a non-polar solvent, such as 100% (200 proof) ethanol, for a time sufficient to substantially replace the water content of the tissue with ethanol and to destroy the cellular structure of the tissue.
  • a non-polar solvent such as 100% (200 proof) ethanol
  • the tissue is exposed to 200 proof ethanol for several days, at a temperature in the range of about 4-40° C., taking care to replace the solution with fresh ethanol every 6-12 hours, until such time as the liquid content of the tissue comprises 70-90% ethanol.
  • treatment for 3-4 days is appropriate.
  • the volume of liquid added should be more than enough to submerge the tissue.
  • the treated tissue then is lyophilized.
  • the resulting, dry matrix is substantially depleted in non-structural components but retains both intracellular and extracellular matrix components derived from the tissue.
  • Treated allogenic or xenogenic matrices are envisioned to have particular utility for creating devices for forming replacement body parts comprising plural distinct tissues, as well as for creating devices for replacing individual joint tissues, such as ligament and articular cartilage tissue.
  • a replacement ligament device can be formulated from an allogenic ligament matrix and osteogenic protein, and implanted at a skeletal joint locus following standard surgical procedures for autogenous ligament replacement.
  • an allogenic articular cartilage device can be formed from devitalized cartilage tissue, or other inert, non-mineralized matrix material and osteogenic protein, and the device laid on the subchondral bone surface as a sheet.
  • a formulated device can be pulverized or otherwise mechanically abraded to produce particles which can be formulated into a paste or gel as described herein for application to the bone surface.
  • a suitable matrix also can be formulated de novo, using (1) residues derived from and/or characteristic of, or specific for, the same tissue type as the tissue to be repaired, and (2) one or more materials which serve to create a three-dimensional scaffolding structure that can be formed or molded to take on the dimensions of the replacement tissue desired.
  • residues derived from and/or characteristic of, or specific for, the same tissue type as the tissue to be repaired and (2) one or more materials which serve to create a three-dimensional scaffolding structure that can be formed or molded to take on the dimensions of the replacement tissue desired.
  • osteogenic protein in combination with a matrix defining a three-dimensional scaffolding structure sufficient to allow the attachment of infiltrating cells and composed of a non-mineralized material can be sufficient.
  • Any one or combination of materials can be used to advantage, including, without limitation, collagen; homopolymers or copolymers of glycolic acid, lactic acid, and butyric acid, including derivatives thereof; and ceramics, such as hydroxyapatite, tricalcium phosphate and other calcium phosphates and combinations thereof.
  • tissue-specific component of a synthetic matrix ready can be obtained by devitalizing an allogenic or xenogenic tissue as described above and then pulerizing or otherwise mechanically breaking down the insoluble matrix remaining. This particulate material then can be combined with one or more structural materials, including those described herein.
  • tissue-specific components can be further purified from the treated matrix using standard extraction procedures well characterized in the art and, using standard analysis procedures, the extracted material at each purification step can be tested for its tissue-specificity capability. See, for example, Sampath et al (1987) PNAS 78:7599-7603 and U.S. Pat. No. 4,968,590 for exemplary tissue extraction protocols.
  • a synthetic matrix may be desired where, for example, replacement articular cartilage is desired in an existing joint to, for example, correct a tear or limited superficial defect in the tissue, or to increase the height of the articular cartilage surface now worn due to age, disease or trauma.
  • Such “resurfacing” of the articular cartilage layer can be achieved using the methods and compositions of the invention by, in one embodiment, treating a sheet of allogenic or xenogenic articular cartilage tissue as described herein, coating the resulting matrix with osteogenic protein, rolling up the formed device so that it can be introduced to the joint using standard orthoscopic surgical techniques and, once provided to the site, unrolling the device as a layer onto the articular bone surface.
  • the device is formulated as a paste or injectable gel-like substance that can be injected onto the articular bone surface in the joint also using standard orthoscopic surgical techniques.
  • the formulation may comprise a pulverized or otherwise mechanically degraded device comprising both matrix and osteogenic protein and, in addition, one or more components which serve to bind the particles into a paste-like or gel-like substance.
  • Binding materials which characterized in the art include, for example, carboxymethylcellulose, glycerol, polyethylene-glycol and the like.
  • the device can comprise osteogenic protein dispersed in a synthetic matrix which provides the desired physical properties.
  • the matrix comprises a porous crosslinked structural polymer of biocompatible, biodegradable collagen and appropriate, tissue-specific glycosaminoglycans as tissue-specific cell attachment factors.
  • Collagen derived from a number of sources can be used, including insoluble collagen, acid-soluble collagen, collagen soluble in neutral or basic aqueous solutions, as well as those collagens which are commercially available.
  • Glycosaminoglycans or mucopolysaccharides are hexosamine-containig polysaccharides of animal origin that have a tissue specific distribution, and therefore may be used to help determine the tissue specificity of the morphogen-stimulated differentiating cells. Reaction with the GAGs also provides collagen with another valuable property, i.e., inability to provoke an immune reaction (foreign body ion) from an animal host.
  • GAGs are made up of residues of hexoamines glycosidically bound and alternating in a more-or-less regular manner with either hexouronic acid or hexose moieties (see, e.g., Dodgson et al. in Carbohydrate Metabolism and its Disorders (Dickens et al., eds.) Vol. 1, Academic Press (1968)).
  • Useful GAGs include hyaluronic acid, heparin, heparin sulfate, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan sulfate, and keratin sulfate.
  • GAGs also can be used for forming the matrix described herein, and those skilled in the art will either know or be able to ascertain other suitable GAGs using no more than routine experimentation.
  • mucopolysaccharides see Aspinall, Polysaccharides , Pergamon Press, Oxford (1970).
  • Collagen can be reacted with a GAG in aqueous acidic solutions, preferably in diluted acetic acid solutions.
  • a GAG aqueous acidic solutions
  • coprecipitates of tangled collagen fibrils coated with GAG results.
  • This tangled mass of fibers then can be homogenized to form a homogeneous dispersion of fine fibers and then filtered and dried.
  • Insolubility of the collagen-GAG products can be raised to the desired degree by covalently cross-linking these materials, which also serves to, raise the resistance to resorption of these materials.
  • any covalent cross-linking method suitable for cross-linking collagen also is suitable for cross-linking these composite materials, although crosslinking by a dehydrothermal process is preferred
  • the devices of the invention can be formulated using any of the methods described in the art for formulating ostegenic devices. See, for example, U.S. Pat. No. 5,266,683, the disclosure of which is incorporated herein by reference. Briefly, osteogenic protein typically is dissolved in a suitable solvent and combined with the matrix. The components are allowed to associate. Typically, the combined material then is lyophilized, with the result that the osteogenic protein is disposed on, or adsorbed to the surfaces of the matrix.
  • Useful solubilizing solvents include, without limitation, an ethanoltrifluoroacetic acid solution, e.g., 47.5% EtOH/0.01% TFA, and acetonitrile/TFA solution, ethanol or ethanol in water, and physiologically buffered saline solutions.
  • Formulations in an acidic buffer can faciliate adsorption of OP1 onto the matrix surface.
  • the currently preferred formulation protocol is incubation of matrix and osteogenic protein in an ethanol/TFA solution (e.g., 30-40% EtOH/0.01-0.1% TFA) for 24 hours, followed by lyophilization. This procedure is sufficient to adsorb or precipitate 70-90% of the protein onto the matrix surface.
  • the quantity of osteogenic protein used will depend on the size of replacement device to be used and on the specific activity of the osteogenic protein. Typically, 0.5 mg-100 mg/10 g of matrix, dry weight, can be used to advantage.
  • various growth factors, hormones, enzymes, therapeutic compositions, antibiotics, or other bioactive agents also can be adsorbed onto, or impregnated within, a substrate and released over time when implanted and the matrix slowly is absorbed
  • various known growth factors such as EGF, PDGF, IGF, FGF, TGF-a, and TF-B can be released in vivo.
  • the matrix can also be used to release chemotherapeutic agents, insulin, enzymes, enzyme inhibitors or chemotactic-chemoattractant factors.
  • the osteogenic proteins useful in the composition and methods of the invention include the family of dimeric proteins having endochondral bone activity when implanted in a mammal in association with a matrix and which comprise a subclass of the “super family” of “TGF ⁇ -like” proteins.
  • the natural-sourced osteogenic protein in its mature, native form is a glycosylated diner typically having an apparent molecular weight of about 30-36 kDa as determined by SDS-PAGE.
  • the 30 kDa protein gives rise to two glycosylated peptide subunits having apparent molecular weights of about 16 kDa and 18 kDa In the reduced state, the protein has no detectable osteogenic activity.
  • the unglycosylated protein which also has osteogenic activity, has an apparent molecular weight of about 27 kDa When reduced, the 27 kDa protein gives rise to two unglycosylated polypeptides having molecular weights of about 14 kDa to 16 kDa capable of inducing endochondral bone formation in a mammal.
  • Useful sequences include those comprising the C-terminal 102 amino acid sequences of DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse), the OP1 and OP2 proteins, proteins (see U.S. Pat. No.
  • BMP2 5,011,691 and Oppermann et al., as well as the proteins referred to as BMP2, BMP3, BMP4 (see WO88/00205, U.S. Pat. No. 5,013,649 and WO91/18098), BMP5 and BMP6 (see WO90/11366, PCT/US90/01630 and BMP8 and 9.
  • This family of proteins includes longer forms of a given protein, as well as phylogenetic, e.g., species and allelic variants and biosynthetic mutants, including addition and deletion mutants and variants, such as those which may alter the conserved C-terminal cysteine skeleton, provided hat the alteration still allows the protein to form a dimeric species having a conformation capable of inducing bone formation in a mammal when implanted in the mammal in association with a matrix.
  • phylogenetic e.g., species and allelic variants and biosynthetic mutants, including addition and deletion mutants and variants, such as those which may alter the conserved C-terminal cysteine skeleton, provided hat the alteration still allows the protein to form a dimeric species having a conformation capable of inducing bone formation in a mammal when implanted in the mammal in association with a matrix.
  • osteogenic proteins useful in devices of this invention may include forms having varying glycosylation patterns and varying N-termini, may be naturally occurring or biosynthetically derived, and may be produced by expression of recombinant DNA in procaryotic or eucaryotic host cells.
  • the proteins are active as a single species (e.g., as homodimers), or combined as a mixed species, including heterodimers.
  • the osteogenic protein contemplated herein comprises OP1 or an OP1-related sequence.
  • Useful OP1 sequences are recited in U.S. Pat. Nos. 5,011,691; 5,018,753 and 5,266,683; in Ozkaynak et al. (1990) EMBO J. 2:2085-2093; and Sampath et al. (1993) PNAS 90: 6004-6008.
  • OP-1 related sequences include xenogenic homologs, e.g.; 60A, from Drosophila, Wharton et al.
  • PNAS 88 9214-9218 proteins sharing greater than 60% identity with OP1 in the C-terminal seven cysteine domain, preferably at least 65% identity.
  • OP-1 related sequences includes BMP5, BMP6 (and its species homolog Vgr-1, Lyons et al. (1989) PNAS . 86:4554- 4 558), Celeste, et al. (1990) PNAS 87:9843-9847 and PCT international application WO93/00432; OP-2 (Ozkayna et al. (1992) J. Biol. Chem.
  • the invention contemplates osteogenic proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as “OPX” which accommodates the homologies between the various identified species of the osteogenic OP1 and OP2proteins, and which is described by the amino acid sequence presented below and in Sequence ID No. 3.
  • one or both of the polypeptide chain subunits of the osteogenerically active dimer is encoded by nucleic acids which hybridize to DNA or RNA sequences encoding the active region of OP1 under stringent hybridization conditions.
  • stringent hybridization conditions are defined as hybridization in 40% formamide, 5 ⁇ SSPE, 5 ⁇ Denhardt's Solution and 0.1% SDS at 37° C. overnight, and washing in 0.1 ⁇ SSPE, 0.1% SDS at 50° C.
  • the DNAs can be produced by those skilled in the art using well known DNA manipulation techniques involving genomic and cDNA isolation, construction of synthetic DNA from synthesized oligonucleotides, and cassette mutagenesis techniques.
  • 15-100 mer oligonucleotides may be synthesized on a DNA synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer. The DNA then may be electroeluted from the gel.
  • Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified by PAGE.
  • DNA from appropriately identified clones then can be isolated, subcloned (preferably into an expression vector), and sequenced. Plasmids containing sequences of interest then can be transfected into an appropriate host cell for protein expression and further characterization.
  • the host may be a procaryotic or eucaryotic cell since the former's inability to glycosylate protein will not destroy the protein's morphogenic activity.
  • Useful host cells include E. coli , Saccharomyces, the insect/baculovirus cell system, myeloma cells, CHO cells and various other mammalian cells.
  • the vectors additionally may encode various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred signal sequences for protein secretion and the like.
  • the DNA sequence encoding the gene of interest also may be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation
  • the recombinant osteogenic protein also may be expressed as a fusion protein. After being translated, the protein may be purified from the cells themselves or recovered from the culture medium. All biologically active protein forms comprise dimeric species joined by disulfide bonds or otherwise associated, produced by folding and oxidizing one or more of the various recombinant polypeptide chains within an appropriate eucaryotic cell or in vitro after expression of individual subunits.
  • a detailed description of osteogenic proteins expressed from recombinant DNA in E. coli and in numerous different mammalian cells is disclosed in U.S. Pat. No. 5,266,963, the disclosure of which is hereby incorporated by reference.
  • osteogenic polypeptide chains can be synthesized chemically using conventional peptide synthesis techniques well known to those having ordinary skill in the art
  • the proteins may be synthesized intact or in parts on a solid phase peptide synthesizer, using standard operating procedures. Completed chains then are deprotected and purified by HPLC (high pressure liquid chromatography). If the protein is synthesized in parts, the parts may be peptide bonded using standard methodologies to form the intact protein.
  • HPLC high pressure liquid chromatography
  • the manner in which the osteogenic proteins are made can be conventional and does not form a part of this invention.
  • a hemi-joint reconstruction of an articulating synovial joint is resected into an existing joint locus.
  • the methods and compositions of the invention equally can be applied to the formation of replacement body parts other than skeletal joints, as well as to skeletal joints other than articulating or synovial joints.
  • a replacement autogenous joint can be constructed in the recipient first by placing the device of the invention at another convenient locus distal to the defect site, for a time sufficient to induce formation of the replacement body part, and the autogenous body part thus formed then sutured into the joint locus for use.
  • joint defects were created in a recipient by surgically resecting the entire gleno-humeral hemiarticular complex with the proximal two-thirds of the humerus.
  • Allografts for implantation were prepared from hemi-joints excised from a donor animal with the articular surface of the glenohumoral joint. All allografts were extracted in ethanol and lyophilized using standard procedures, and as described herein above, to destroy the pathogenicity and antigenicity of the material. Specifically, intact joint complexes were excised, demarraowed and ethanol treated by exposure to 200ml-500ml of 200 proof ethanol for 72 hours at 40 C.
  • the treated hemi-joints comprised devitalized bone, articular cartilage, ligament, tendon, synovialcapsule and synovial membrane tissue.
  • articular cartilage forms a continuous layer of cartilage tissue possessing identifiable zones.
  • the superficial zone is characterized by chondrocytes having a flattened morphology and an extracellular network which does not stain, or stains poorly, with toluidine blue, indicating the relative absence of sulphated proteoglycans.
  • Chondrocytes in the mid and deep zones have a spherical appearance and the matrix contains abundant sulphated proteoglycans, as evidenced by staining with toluidine blue. Collagen fibers are present diffusely throughout the matrix.
  • the chondrocytes possess abundant rough endoplasmic reticulum and are surrounded by extracellular network.
  • the pericellular network contains numerous thin non-banded collagen fibers.
  • the collagen in the interterritorial network is less compacted and embedded in electron translucent amorphous material, similar to articular cartilage.
  • Collagen fibers in the interterritorial region of the network exhibit the periodic banding characteristic of collagen fibers in the interterritorial zone of cartilage tissue.
  • Type II and Type IX collagen in the cartilage tissue is indicative of the differentiated phenotype of chondrocytes.
  • the presence of Type II and/or Type IX collagen can be determined by standard gel electrophoresis, Western blot analysis and/or immuno histo-chemical staining using, for example, commercially available antibody.
  • Other biochemical markers include hematoxylin, eosin, Goldner's Thichrome and Safranin-O.
  • Histological evaluations involved assessment of: glycosaminoglycan content in the repair cartilage; cartilage and chondrocyte morphology; and, structural integrity and morphology at the defect interface.
  • the morphology of the repair cartilage was exhibited for the type of cartilage formed: articular vs. fibrotic by evaluating glysaminoglycan content, degree of cartilage deposition, and the like.
  • MRI also was used as a non-invasive means for following reformation of articular cartilage in the allografts.
  • a dark signal produced by MRI represents absent or nonviable cartilage, while a bright signal indicates live, viable cartilage.
  • Control allografts produced only a dark signal, when tested at 1, 3 and 5 weeks post-operative. These MRI findings were confirmed by histological analysis performed at 5 weeks post-operative. Sagital sectioning through control allografts showed a degenerated articular surface with no live cells.
  • joints regeneracy with the OP-1-treated allografts regained near normal range of motion by the time they were harvested at 5 weeks post-reconstruction.
  • the near normal range of motion also is indicative of the presence of lubricating synovial fluid.
  • the harvested control allografts were stiff and contracted at harvest
  • hemi-joint replacement devices of the invention succeeded in forming mechanically and functionally viable replacement joints, with an intact capsule, and synovium, and functioning ligament, bone and articular cartilage tissue.
  • the allografts, while not rejected by the donor are insufficient on their own to generate a functional, weight bearing joint.
  • Group 8 rabbits (allograft+OP1, non-shaved) regained near normal range of motion (greater than 80%) in the reconstructed joint
  • Group 7 rabbits (allograft+OP1, shaved) achieved only 50% range of motion
  • Groups 5 and 6 (no OP1) achieved less than 30%.
  • the devices of the invention were competent to induce and maintain both bone and articular cartilage formation in the appropriate context to one another in a long term study (greater than 6 months).
  • the rabbits of Group 8 demonstrated articular cartilage formation on the surface of bone, as evidenced morphologically by the presence of resting, central and deeper zone chondrocytes.
  • muscle flap Group 5 and 6
  • muscle was replaced with scar issue.
  • no significant cartilage regeneration was identified, demonstrating the requirement for cartilage-specific residues in articular cartilage formation in a non-vascularized mileiu.
  • the device can restore normal function to a destroyed body part, including a destroyed skeletal joint, restoring mechanically and functionally viable plural distinct tissues, including bone and bone marrow, articular cartilage, ligament, tendon, synovial capsule and synovial membrane tissue. Moreover, these tissues are restored under substantially physiological conditions including, for example, from responding cells present in a synovial environment, and without exposure to avascularized muscle flap.
  • a device comprising osteogenic protein-treated matrices, including lyophilized allografts or xenografts as disclosed herein can lead to the formation of a new, mechanically, structurally and functionally viable replacement tissue, and to replacement body parts comprising plural distinct tissues, populated by the host cells, and without any of the limitations of prosthetic materials.

Abstract

Disclosed are matrix materials, methods, and devices for manufacture in vivo of autogenous replacement body parts comprising plural distinct tissues. In one embodiment, the replacement body part is a skeletal joint and the new plural distinct tissues include bone and articular cartilage.

Description

    RELATION TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Ser. No. 08/253,398, filed Jun. 3, 1994, the disclosure of which is incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to materials and methods for the repair and regeneration of plural distinct tissues at a single defect site in a mammal. More particularly, the invention is concerned with materials and methods for the manufacture in vivo of autogenous replacement body parts, including mammalian skeletal joints, comprising plural different tissues, such as ligament, articular cartilage and bone tissues. [0002]
  • BACKGROUND OF THE INVENTION
  • Skeletal joints provide a movable union of two or more bones. Synovial joints are highly evolved articulating joints that permit free movement Because mammalian lower limbs are concerned with locomotion and upper limbs provide versatility of movement, most of the joints in the extremities are of the synovial type There are various types of synovial joints. Their classification is based upon the types of active motion that they permit (uniaxial, biaxial, and polyaxial). They are differentiated further according to their principal morphological features (hinge, pivot, condyloid). In contrast to fibrous and cartilaginous joints where the ends of the bones are found in continuity with intervening tissue, the ends of the bones in a synovial joint are in contact, but separate. Because the bones are not bound internally, the integrity of a synovial joint results from its ligaments and capsule (which bind the articulation externally) and to some extent from the surrounding muscles. In synovial joints, the contiguous bony surfaces are covered with articular or, hyaline cartilage, and the joint cavity is surrounded by a fibrous capsule which segregates the joint from the surrounding vascularized environment. The inner surface of the capsule is lined by a synovial layer or “membrane” containing cells involved in secreting the viscous lubricating synovial fluid. Gray, [0003] Anatomy of the Human Body, pp. 312; 333-336 (13th ed.; C. C. Clemente, ed., (1985)).
  • In certain synovial joints, the joint or synovial cavity may be divided by a meniscus of fibrocartilage. Synovial joints involving two bones and containing a single joint cavity are referred to as simple joints. Joints that contain a meniscus forming two joint cavities are called composite joints. The term compound joint is used for those articulations in which more than a single pair of articulating surfaces are present [0004]
  • Joint replacement, particularly articulating joint replacement, is a commonly performed procedure in orthopedic surgery. However, the ideal material for replacement joints remains elusive. Typically, joint reconstruction requires repair of the bony defect, the articular cartilage and, in addition, one or more of the joining ligaments. To date, there are no satisfactory clinical means for readily repairing both articular cartilage and bony defects within a joint which reliably results in viable, fully-functional weight-bearing joints. Prosthetic joints which replace all the endogenous joint tissues circumvent some of these problems. However, prosthetic joints have numerous, well documented limitations, particularly in younger and highly active patients. In addition, in some cigars prosthetic joint replacement is not possible and repair options are limited to osteochondroallograft materials. [0005]
  • The articular, or hyaline cartilage, found at the end of articulating bones is a specialized, histologically distinct tissue and is responsible for the distribution of load resistance to compressive forces, and the smooth gliding that is part of joint function. Articular cartilage has little or no self-regenerative properties. Thus, if the articular cartilage is torn or worn down in thickness or is otherwise damaged as a function of time, disease or trauma, its ability to protect the underlying bone surface is compromised. [0006]
  • Other types of cartilage in skeletal joints include rib cage and elastic cartilage. Secondary cartilaginous joints are formed by discs of fibrocartilage which join vertebrae in the vertebral column. In rib cartilage, the mucopoly-saccharide network is interlaced with prominent collagen bundles and the chondrocytes are more widely scattered than in hyaline cartage. Elastic cartilage contains collagen fibers which are histologically similar to elastin fibers. As with other connective tissues the formation of cartilaginous tissue is a complex biological process, involving the interaction of cells and collagen fibers in a unique biochemical milieu. [0007]
  • Cartilage tissue, including articular cartilage, unlike other connective tissues, lacks blood vessels, nerves, lymphatics and basement membrane. Cartilage is composed of chondrocytes which synthesize an abundant extracellular milieu composed of water, collagens, proteoglycans and noncollagenous proteins and lipids. Collagen serves to trap proteoglycans and to provide tensile strength to the tissue. Type II collagen is the predominant collagen in cartilage tissue. The proteoglycans are composed of a variable number of glycosaminoglycan chains, keratin sulphate, chondroitin sulphate and/or dermatan sulphate, and N-linked and O-linked oligosaccharides covalently bound to a protein core. The sulfated glycosaminoglycans are negatively charged resulting in an osmotic swelling pressure that draws in water. [0008]
  • In contrast, certain collagens such as the fibrotic cartilaginous tissues which occur in scar tissue for example, are keloid and typical of scar-type tissue, i.e., composed of capillaries and abundant, irregular, disorganized bundles of Type I and Type II collagen. [0009]
  • Histologically, articular or hyaline cartilage can be distinguished from other forms of cartilage, both by its morphology and by its biochemistry. Morphologically, articular cartilage is characterized by superficial versus mid versus deep “zones” which show a characteristic gradation of feats from the surface of the tissue to the base of the tissue adjacent to the bone. In the superficial zone, for example, chondrocytes are flattened and lie parallel to the surface embedded in an extracellular network that contains tangentially arranged collagen and few proteoglycans. In the mid zone, chondrocytes are spherical and surrounded by an extracellular network rich in proteoglycans and obliquely organized collagen fibers. In the deep zone, close to the bone, the collage fibers are vertically oriented The keratin sulphate rich proteoglycans increase in concentration with increasing distance from the cartilage surface. For a detailed description of articular cartilage micro-structure, see, for example, (Aydelotte and Kuettner, (1988), [0010] Conn. Tiss. Res. 18:205; Zanetti et al., (1985), J. Cell Biol. 101:53; and Poole et al., (1984), J. Anat. 138:13.
  • Biochemically, articular collagen can be identified by the presence of Type II and Type IX collagen, as well as by the presence of well-characterized proteoglycans, and by the absence of Type X collagen, which is associated with bone formation. [0011]
  • In normal articular cartilage, a balance exists between synthesis and destruction of the above-described extracellular network. However, in tissue subjected to trauma, for example due to friction between misaligned bones in contact with one another, or in joint diseases characterized by net loss of articular cartilage, e.g., osteoarthritis, an imbalance occurs between synthesis and degradation. [0012]
  • Two types of defects are recognized in articular surfaces, i.e., full-thickness defects and superficial defects. These defects differ not only in the extent of physical damage to the cartilage, but also in the nature of the repair response each type of lesion can elicit. [0013]
  • Full-thickness defects of an articulating surface include damage to the hyaline cartilage, the calcified cartilage layer and the subchondral bone tissue with its blood vessels and bone marrow. Full-thickness defects can cause severe pain since the bone plate contains sensory nerve endings. Such defects generally arise from severe trauma and/or during the late stages of degenerative joint disease, such as osteoarthritis. Full-thickness defects may, on occasion, lead to bleeding and the induction of a repair reaction from the subchondral bone. In such instances, however, the repair tissue formed is a vascularized fibrous type of cartilage with insufficient biomechanical properties, and does not persist on a long-term basis. [0014]
  • In contrast, superficial defects in the articular cartilage tissue are restricted to the cartilage tissue itself. Such defects are notorious because they do not heal and show no propensity for repair reactions. Superficial defects may appear as fissures, divots, or clefts in the surface of the cartilage, or they may have a “crab-meat” appearance in the affected tissue. They contain no bleeding vessels (blood spots) such as are seen in full-thickness defects. Superficial defects may have no known cause, however, they are often the result of mechanical derangements which lead to a wearing down of the cartilaginous tissue. Such mechanical derangements may be caused by trauma to the joint, e.g., a displacement of torn meniscus tissue into the joint, meniscectomy, a laxation of the joint by a torn ligament, malalignment of joints, or bone fracture, or by hereditary diseases. Superficial defects are also characteristic of early stages of degenerative joint diseases, such as osteoarthritis. Since the cartilage tissue is not innervated or vascularized, superficial defects do not heal and often degenerate into full-thickness defects. [0015]
  • Replacement with prosthetic joints is currently the preferred option for serious degeneration of joint function involving loss of articular cartilage. It is anticipated that a means for functional reconstruction of joint complexes, including regeneration and repair of articular cartilage, will have a profound effect on alloplastic joint replacement surgery and the management of degenerative joint disease. [0016]
  • Like articular cartilage, joint ligaments which serve to connect interacting bones in the joint, have little or no self-regenerative properties. Ligaments typically are composed of substantially parallel bundles of white fibrous tissue. They are pliant and flexible to allow substantially complete freedom of movement, but are inextensile to prevent over-extension of the interacting bones in the joint. Like cartilage, ligament tissue is substantially devoid of blood vessels and has little or no self-regenerative properties. Surgical repair of torn or damaged ligament tissue to date is limited to use of autogenous grafts or synthetic materials that are surgically attached to the articular extremities of the bones. Allogenic ligaments typically fail mechanically, presumably due to the treatments required to render these materials biocompatible. Similarly, tendons are rope-like structures which connect muscle fibers to bone or cartilage and which are formed from substantially parallel fibroids of white connective tissue. The synovial capsule is composed of a thin layer of ligamentous tissue which encloses the joint and allows the joint to be bathed in the lubricating synovial fluid. The interior of the joint capsule is lined with a thin membrane of connective tissue having branched connective-tissue corpuscles defining the synovial membrane, and which is primarily responsible for secreting synovial fluid into the cavity. The integrity of this membrane therefore, is important to maintaining a source for the lubricating synovial fluid. Repair of these tissues in orthopedic contexts typically is limited to resuturing of existing tissue. [0017]
  • Bone tissue differs significantly from the other tissues described hereinabove, including cartilage tissue. Specifically, bone tissue is vascularized tissue composed both of cells and a biphasic medium which is composed of a mineralized, inorganic component (primarily hydroxyapatite crystals) and an organic component comprised primarily of Type I collagen. Glycosaminoglycans constitute less than 2% of this organic component and less than 1% of the biphasic medium itself or of bone tissue per se. Moreover, relative to cartilage tissue, the collagen present in bone tissue exists in a highly-organized parallel arrangement. [0018]
  • Bony defects, whether from degenerative, traumatic or cancerous etiologies, pose a formidable challenge to the reconstructive surgeon. Particularly difficult is reconstruction or repair of skeletal parts that comprise part of a multi-tissue complex, such as occurs in mammalian joints. [0019]
  • Mammalian bone tissue is known to contain one or more proteinaceous materials presumably active during growth and natural bone healing which can induce a developmental cascade of cellular events resulting in endochondral bone formation. The developmental cascade involved in endochondral bone differentiation consists of chemotaxis of mesenchymal cells, proliferation of progenitor cells into chondrocytes and osteoblasts, differentiation of cartilage, vascular invasion, bone formation, remodeling, and finally marrow differentiation. [0020]
  • True osteogenic factors capable of inducing the above-described cascade of events that result in endochondral bone formation have now been identified, isolated, and cloned. These proteins, which occur in nature as disulfide-bonded dimeric proteins, are referred to in the art as “osteogenic” proteins, “osteoinductive” proteins, and “bone morphogenetic” proteins. Whether naturally-occurring or synthetically prepared, these osteogenic proteins, when implanted in a mammal typically in association with a substrate that allows the attachment, proliferation and differentiation of migratory progenitor cells, are capable of inducing recruitment of accessible progenitor cells and stimulating their proliferation, inducing differentiation into chondrocytes and osteoblasts, and further inducing differentiation of intermediate cartilage, vascularization, bone formation, remodeling, and finally marrow differentiation. Those proteins are referred to as members of the Vgr-1/OP1 protein subfamily of the TGPβ super gene family of structurally related proteins. Members include the proteins described in the art as OP1 (BMP-7), OP2 (BMP-8), BMP2, BMP3, BMP4, BMP5, BMP6, 60A, DPP, Vgr-1 and Vgl. See., e.g., U.S. Pat. No. 5,011,691; U.S. Pat. No. 5,266,683, Ozkaynak et al. (1990) [0021] EMBO J. 9: 2085-2093, Wharton et al. (1991) PNAS 88:9214-9218), (Ozkaynak (1992) J. Biol. Chem. 267:25220-25227 and U.S. Pat. No. 5,266,683); (Celeste et al. (1991) PNAS 87:9843-9847); (Lyons et al. (1989 ) PNAS 86:4554-4558). These disclosures describe the amino acid and DNA sequences, as well as the chemical and physical characteristics of these proteins. See also (Wozney et al. (1988) Science 242:1528-1534); BMP 9 (WO93/00432, published Jan. 7, 1993); DPP (Padgett et al. (1987) Nature 325:81-84; and Vg-1 (Weeks (1987) Cell 51:861-867).
  • It is an object of the instant invention to provide a bioresorbable matrix and device, suitable for regenerating body parts which comprise two or more functionally- and structurally-associated yet distinct replacement tissues in a mammal. Another object is to provide compositions and methods for the repair or complete reconstruction of a mechanically and functionally viable skeletal joint in a mammal, particularly an articulating or synovial joint, as well as other body parts comprising bone and bona fide hyaline cartilage, without relying on prosthetic devices. Another object is to provide materials and methods for the repair of tissue defects in an articulating mammalian joint, so as to form a mechanically and functionally viable joint comprising bone and articular cartilage, ligament, tendon, synovial membrane and synovial capsule tissue. Another object of the invention is to provide means for restoring functional non-mineralized tissue in a skeletal joint including the avascular tissue therein. [0022]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, methods and devices are provided for the manufacture of a live autogenous replacement part comprising plural distinct tissues. In one aspect the replacement body part includes part or all of a mammalian skeletal joint, including an articulating or synovial joint. As described herein below, the methods and compositions of the invention are sufficient to restore mechanical and functional viable of the tissues associated with a skeletal joint, including bone (and bone marrow), articular cartilage, ligament, tendon, synovial capsule and synovial membrane tissues. Thus the invention provides methods and compositions for replacement of one or more of the plural distinct tissues that define a mammalian skeletal joint. [0023]
  • The invention provides, in one aspect therefore, a novel matrix for forming a mechanically and structurally functional, mammalian, replacement body part comprising plural distinct tissues. The matrix comprises intact residues specific for or characteristic of, and/or derived from at least two distinct tissues of the replacement body part. As will be appreciated from the description provided herein below, the matrix can include residues specific for four or more distinct tissues. The matrix is biocompatible and bioresorbable. Specifically, it is sufficiently free of pathogens and antigenic stimuli that can result in graft rejection. Preferably the matrix is derived from an allogenic or xenogenic body part. Preferably, it is derived from a mammalian donor, such as a cadaver. The body part may be rendered inert or “devitalized” by dehydration, such as by ethanol extraction and lyophilization, so that no residual cellular metabolism remains, but the function of endogenous growth factors and the like can be restored upon in situ reconstitution by endogenous body fluids. The treated body part which now is substantially depleted in antigenic and pathogenic components and now is biocompatible, maintains the residues specific for the plural distinct tissues constituting the body part sought to be replaced. These residues include those of plural distinct tissues with dimensions and structural relationships to each other which mimic those of the body part to be replaced. [0024]
  • The thus treated matrix having utility in the methods and devices of the invention lacks significant mechanical integrity as compared with native tissue and, on its own, is not sufficient to induce regeneration of a replacement body part or tissue when implanted. However, by impregnating or otherwise infusing the interstices of the matrix with osteogenic protein so that the protein is disposed on or adsorbed to, the surfaces of the matrix, the device of the instant invention is formed and is sufficient to induce formation of new tissue in vivo such that regeneration of a mechanically and functionally viable replacement body part occurs in situ. [0025]
  • In one preferred embodiment, the device comprises part or all of a skeletal joint excised from a mammalian donor allogenic or xenogenic to the donee. Treated as described herein the device comprising the allogenic or xenogenic skeletal joint (1) is biocompatible, namely, it is non-pathogenic and sufficiently non-antigenic to prevent graft rejection in vivo, and (2) is sufficient to induce formation of a functionally viable autogenous replacement joint in vivo, including generating functional bone, articular cartilage, ligament and capsule tissue in correct relation to one another such that a structurally and mechanically functional replacement joint results. [0026]
  • In another embodiment, the invention provides a device which serves as a template for forming in vivo part or all of a skeletal synovial joint comprising plural distinct tissues and which, in response to morphogenic signals, induces new tissue formation, including new articular cartilage tissue from responding cells present in the synovial environment. The newly formed tissues assume the shape and function of the original tissue in the skeletal joint. [0027]
  • In another aspect, the invention provides methods for replacing a defective body part comprising the steps of: excising the defective body part and implanting the device of the instant invention. In one embodiment, the method also comprises the additional step of providing a supply of mesenchymal cells to the implanted device, as by threading or otherwise providing a muscle flap prefused with a blood supply into a hollow portion of the device. In another embodiment, the device is implanted at a locus in the body of the individual distinct from the defect site but which allows generation of the replacement body part. The autogenous body part thus formed then can be implanted at the defect site. [0028]
  • As will be appreciated from the description provided herein, in another aspect, the invention provides devices and methods for the functional and mechanical restoration of one or more individual tissues in a mammalian skeletal joint, including the non-mineralized and avascular tissue therein. Thus, in one embodiment, the invention provides methods and devices competent for restoring, without limitation, functional articular cartilage, ligament, synovial membrane and synovial capsule tissue. The methods and devices described herein can be used for example, to correct superficial articular cartilage defects in a joint, to replace torn or compromised ligaments and/or tendons, and to repair defects in synovial capsule or membrane tissue. [0029]
  • The devices for repairing individual skeletal joint tissue comprise osteogenic protein disposed on a matrix containing residues specific for, or derived from skeletal joint tissue of the type to be restored, including, without limitation, cartilage, ligament, tendon, synovial capsule, or synovial membrane tissue. The device can take the form of a solid, or it can have the physical properties of a paste or gel. Preferably, the matrix is derived from allogenic or xenogenic tissue, and is treated as described herein to form a biocompatible devitalized matrix. [0030]
  • In another embodiment the matrix can be formulated de novo from synthetic and/or naturally-derived components. The matrix includes both (a) residues specific for, or characteristic of, the given tissue and, (b) materials sufficient to create a temporary scaffold for infiltrating cells and defining a three dimensional structure which mimics the dimensions of the desired replacement tissue. Useful such materials are described hereinbelow. Suitable tissue-specific residues can be obtained from devitalized allogenic or xenogenic tissue and combined with the structural materials as described herein to create the synthetic matrix. In another embodiment, the matrix comprises devitalized non-mineralized tissue. In some circumstances, as in the formation of articular cartilage on subchondral bone, a non-mineralized matrix material defining a three-dimensional structure which allows the attachment of infiltrating cells, can be sufficient, in combination with osteogenic protein, to induce new tissue formation. [0031]
  • While, as described above, in a preferred embodiment the invention contemplates a device suitable as a template for forming in vivo a replacement skeletal joint, as will be appreciated by the practioner in the art, the invention contemplates, and the disclosure enables, a device suitable as a template for forming in vivo functional replacement body parts other than skeletal joints and which comprise plural distinct tissues. [0032]
  • When used in accordance with the methods of the instant invention, the devices of the invention and/or the tissues which result from their application, essentially satisfy the following criteria of a preferred grafting material: [0033]
  • 1. They result in formation of mechanically and functionally viable tissues normally present at the site. These tissues are of an appropriate size and have correct structural relationships so as to result in a functional body part. In particular, the multi-tissue replacement part, whether produced in situ at the site of intended use or remotely, becomes incorporated, integrating with adjacent tissues, essentially maintaining its shape, and avoiding abnormal resorption, regardless of the conditions present at the recipient site. Weiland et al. (1983) [0034] Clin. Orthop. 174:87 (1983).
  • 2. The devices are capable of being precisely contoured and shaped to exactly match any defect, whichever complex skeletal or organ shape it is meant to replace. [0035]
  • 3. The devices virtually have unlimited supply and are relatively easy to obtain. [0036]
  • 4. The devices have minimal donor site morbidity. [0037]
  • Furthermore, the instant invention provides practitioners with materials and methods for skeletal joint repair including the repair of the bone and articular cartilage present therein, and which solve problems that occur using the methods and devices of the art. For example, the instant invention can induce formation of bona fide hyaline cartilage rather than fibrocartilage at a defect site. Using the materials and methods disclosed herein, functional hyaline cartilage forms on the articulating surface of bone at a defect site and does not degenerate over time to fibrocartilage. By contrast, prior art methods of repairing cartilage defects generally ultimately result in development of fibrous cartilage at the defect site. Unlike hyaline cartilage, fibrocartilage lacks the physiological ability to restore articulating joints to their full capacity. Thus, when the instant materials are used in accordance with the instant methods, the practitioner can substantially functionally restore a cartilage defect in an articulating joint, particularly a superficial articular cartilage defect and substantially avoid the undesirable formation of fibrocartilage typical of prior art methods, or degeneration into a “full-thickness defect”. The invention also provides means for repairing individual tissue of a joint not readily reparable individually using prior art methods, and which, in some cases, previously warranted replacement of the entire joint with a prosthetic device. The invention further allows use of allogenic replacement materials for repairing the avascular tissue in a skeletal joint, and which result in the formation of mechanically and functionally viable replacement tissues at a joint locus. [0038]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • While the specification concludes with claims particularly pointing out and specifically claiming the subject matter which is regarded as constituting the present invention, it is believed that the invention will be better understood from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings in which: [0039]
  • FIG. 1 is a fragmentary front elevational view of a mammalian knee joint with sufficient tissue removed to show the articular cartilage on the condyles of the femur, the ligaments, synovial membrane, joint capsule, and further showing a damaged area in the articular cartilage requiring repair; [0040]
  • FIGS. 2A through 2D are schematic representations of the elements used to generate a viable, functional glenohumoral hemi-joint in one embodiment of the invention. FIG. 2A depicts a lyophilized allograft; FIG. 2B depicts osteogenic protein for application to the lyophilized allograft of FIG. 2A; FIG. 2C depicts a muscle flap of cutaneous maximus muscle to be threaded inside the shaft of the lyophilized allograft; and, FIG. 2D depicts a viable, functional hemi-joint resting from the combination of elements in FIGS. 2A, 2B and [0041] 2C. FIG. 2D represents one embodiment of the device of the instant invention;
  • FIGS. 3A through 3D are schematic representations of the four allografts tested in the hemi-joint of Example 2 (5 week); and [0042]
  • FIGS. 4A through 4D are schematic representations of the four allografts tested in the hemi-joint of Example 3 (6 month).[0043]
  • DETAILED DESCRIPTION
  • In accordance with the present invention, novel materials and methods are provided for the repair and regeneration of plural distinct tissues, including manufacture of a live autogenous replacement part comprising plural distinct tissues. In one embodiment the replacement body part is a skeletal joint, particularly an articulating joint, and includes, without limitation, residues specific for, or derived from, bone, cartilage, ligament, tendon, synovial capsule and synovial membrane tissue. [0044]
  • More particularly, in one aspect, the invention provides a device comprising an osteogenic protein disposed on the surfaces of a matrix or substrate for forming a functional, mammalian replacement body part comprising plural distinct tissues. As used herein, the term “matrix” is understood to define a structure having interstices for the attachment, proliferation and differentiation of infiltrating cells. It comprises residues specific for the tissue to be replaced and/or derived from the same tissue type, and has a shape and dimension when implanted which substantially mimics that of the replacement tissue desired. [0045]
  • As used herein, the term “residue” is intended to mean a constituent of a given tissue, which has specificity for, or is characteristic of, the given tissue, and which is derivable from the non-viable constituents of the given tissue. A matrix comprising these residue(s), when combined with osteogenic protein, and implanted in a mammal in an environment which mimics the tissue's local environment under physiological conditions, and is sufficient for formation of specific, mechanically and functionally viable replacement tissue. [0046]
  • The term “plural distinct tissue” is intended to mean physiologically distinguishable tissues, such as biochemically or ultrastructurally distinguishable tissues which reside at an anatomically similar locus. In an articulating replacement joint device for example, the matrix can comprise residues specific for, or derived from, bone, cartilage, ligament, tendon and synovial membrane tissue. Thus, a significant aspect of the matrix of the invention is a single structure comprising residues of plural, distinct tissues, and which, when combined with an osteogenic protein as defined herein, is suitable for inducing repair or regeneration of a body part that is mechanically and functionally viable over time in vivo. [0047]
  • As used herein, the terms “bone” and “articular cartilage” are intended to mean the following: Bone refers to a calcified (mineralized) connective tissue primarily comprising a composite of deposited calcium and phosphate in the form of hydroxyapatite, collagen (predominately Type I collagen) and bone cells, such as osteoblasts, osteocytes and osteoclasts, as well as to the bone marrow tissue which forms in the interior of true endochondral bone. Cartilage refers to a type of connective tissue that contains chondrocytes embedded in an extracellular network comprising fibrils of collagen (predominately Type II collagen along with other minor types, e.g. Types IX and XI), various proteoglycans (e.g., chondroitin sulfate, keratan sulfate, and dermatan sulfate proteoglycans), other proteins, and water. Articular cartilage refers to hyaline or articular cartilage, an avascular, non-mineral tissue which covers the articulating surfaces of the portions of bones in joints and allows movement in joints without direct bone-to-bone contact, and thereby prevents wearing down and damage to opposing bone surfaces. Most normal healthy articular cartilage is referred to as “hyaline,” i.e., having a characteristic frosted glass appearance. Under physiological conditions, articular cartilage tissue rests on the underlying, mineralized bone surface, the subchondral bone, which contains highly vascularized ossicles. These highly vascularized ossicles can provide diffusible nutrients to the overlying cartilage, but not mesenchymal stem cells. [0048]
  • “Ligament” is intended to mean both the rope-like structures of white fibrous connective tissue which attach anterior extremities of intracting bones, as well as the tissue defining a synovial capsule. “Synovial membrane” is intended to define the connective tissue membrane lining the interior of the synovial cavity and which is involved in synovial fluid secretion. “Tendon” is intended to define the connective tissue structure which joins muscle to bone. [0049]
  • Replacement Body Parts [0050]
  • As disclosed herein, the instant invention provide methods and compositions for replacing and repairing a defective body part. The method comprises the steps of surgically excising the defective body part, implanting a device comprising a matrix of the type described above at the site of excision, and, as necessary, surgically repairing tissues adjacent the site of excision as described herein below. For example, for synovial joint replacement, it is desirable to repair the joint capsule, including the synovial membrane and ligaments, so as to surgically approximate the joint structure as it occurs physiological conditions, thereby recreating the avascular environment which is the synovial cavity and which is bathed in synovial fluid. It also is preferable to suture or otherwise mechanically temporarily connect the implanted device to surrounding tissue. [0051]
  • In one embodiment the device is constructed to replace part or all of a mammalian skeletal joint structure and includes a matrix having residues for plural, distinct tissues, including two or more of bone, cartilage, ligament, tendon, synovial capsule and/or synovial membrane tissue. [0052]
  • In another embodiment the device is constructed to replace an individual tissue of a mammalian skeletal joint, including an individual avascular and/or non-mineralized tissue. As demonstrated herein, the device is competent to induce functional replacement tissue formation, including articular cartilage, from responding cells present in the local environment, including a synovial environment, and without requiring cellular infiltration of mesenchymal cells from a vascularized muscle flap. The matrix of this embodiment comprises residues specific for, or characteristic of, and/or derived from, tissue of the same type as the individual tissue to be replaced. In another embodiment, the matrix comprises devitalized non-mineralized tissue. In a preferred embodiment, the replacement tissue can include articular cartilage, ligament, bone, tendon or synovial capsule tissue. [0053]
  • In a partial or complete joint replacement, it is preferred but not required to include in the practice of the method the additional step of threading a muscle flap into a hollow portion of the implanted device. For example, using the method described in Khouri, U.S. Pat. No. 5,067,963, the disclosure of which is incorporated herein by reference and herewith below, a muscle flap, which can itself be pretreated with osteogenic protein, can be surgically introduced into a cavity in the implanted matrix, such as the marrow cavity of devitalized bone, to provide a blood supply to expedite morphogenesis of vascularized tissue and to provide a ready supply of mesenchymal stem cells. [0054]
  • The matrix of instant invention has utility as an implantable device when osteogenic protein is disposed on the surfaces of the matrix, present in an amount sufficient to induce formation of each of the replacement tissues. This permits regeneration of the body part within the mammal, including plural tissues of appropriate size, interrelationship, and function. Osteogenic proteins contemplated to be useful in the instant invention are described below and have been earlier-described in, for example, U.S. Pat. Nos. 4,968,550, 5,258,499 and 5,266,683, the disclosures of which are incorporated by reference herein. The osteogenic protein can be, for example, any of the known bone morphogenetic proteins and/or equivalents thereof described herein and/or in the art and includes naturally sourced material recombinant material and any material otherwise produced which is capable of inducing tissue morphogenesis. [0055]
  • The methods and materials of the instant invention are especially useful for the repair and/or partial or complete replacement of mammalian body joints, including, without limitation, articulating joints, particularly joints enclosed by a ligamentous capsule and bathed in synovial fluid [0056]
  • In some synovial joints, the movement is uniaxial, i.e., all movements take place around one axis: Among these are the ginglymus or hinge joint in which the axis of movement is transverse to the axes of the bones, and the trochoid or pivot joint in which the axis is longitudinal. In the case of biaxial synovial joints, movements are around two axes at a right angle or any other angle to each other. These include the condyloid, the ellipsoid, and the saddle joints. There is a third type of synovial joint, the spheroidal or ball-and-socket joint, in which the movements are polyaxial, i.e., movements are permitted in an infinite number of axes. Finally, there are the plane or gliding type synovial joints. [0057]
  • In hinge joints, the articular surfaces are molded to each other in such a manner as to permit motion in only one plane around the transverse axis. Flexion at the elbow joint is an example; other examples include the interphalangeal joints of both the fingers and toes. In pivot joints, movement in a pivot joint also occurs around a single axis, however, it is the longitudinal axis. There are several pivot joints in the human body, such as the proximal radioulnar articulation. In condylar joints include, movement occurs principally in one plane. The tibiofemoral articulation of the knee joint is an example. In ellipsoid joint include, movement is around two principal axes which are at right angles to each other. Examples of these joints include the radiocarpal and metacarpophalangeal joints. In a saddle joint, the articular end of the proximal bone is concave in one axis and convex in a perpendicular axis. These surfaces fit reciprocally into convex and concave surfaces of the distal bone. The best example of a saddle joint is the carpometacarpal joint of the thumb. A ball-and-socket joint is one in which the distal bone is capable of motion around an indefinite number of axes with one common center. Examples of this form of articulation are found in the hip and shoulder joints. A plane or gliding-type joint allows a slight slipping or sliding of one bone over the other. Unlike the above-described joints, the amount of motion between the surfaces is limited by the ligaments or osseous poses that surround the articulation. This is the form present in the joints between the articular processes of certain vertebrae, the carpal joints, and the intermetatarsal joints. [0058]
  • Although it is contemplated that the present invention is usable to repair defects including bone and articular cartilage elsewhere in a mammalian body, aspects of the invention are here illustrated in connection with the articulating surfaces on the femur in a knee joint [0059] 10 illustrated in FIG. 1.
  • FIG. 1 illustrates a knee joint [0060] 10 between the bottom of a femur 11 and the top of a tibia 12. For clarity of illustration, only portions 13 and 14 of the medial and lateral collateral ligaments which movably tie the femur 11 to the underlying tibia 12 and fibula 15, are shown in FIG. 1. Similarly, the joint capsule is represented by the exterior dark lining 25, and the synovial membrane, which lines the synovial cavity and secretes the lubricating synovial fluid, is represented by the interior dark lining 26. Normally interposed between the opposing surfaces of the femur 11 and tibia 12 are lateral and medial meniscus cartilages 16 and 17 and anterior and posterior cruciate ligaments (not shown). The convexly curved condyles 20 and 21 at the lower end of the femur 11 are normally supported by the meniscus cartilages 16 and 17, respectively, on the upper end of the tibia 12. Normally, the lower end of the femur 11, including the condyles 20 and 21, are covered by a layer 22 of hyaline cartilage material, referred to as the articular cartilage 22. The articular cartilage 22 forms a generally resilient padding which is fixed on the surface of the lower end of the femur 11 to protect the latter from wear and mechanical shock Moreover, the articular cartilage 22, when lubricated by the synovial fluid in the knee joint 10, provides a surface which is readily slidable on the underlying surfaces of the meniscus cartilages 16 and 17 (or on the upper surface of the tibia 12 should one or both of the meniscus cartilage 16 and 17 be partly or totally absent) during articulation of the knee joint 10.
  • A portion of the articular cartilage may become damaged by injury or disease, or become excessively worn. FIG. 1 illustrates an example of a damaged [0061] area 23.
  • Matrix Considerations [0062]
  • As will be appreciated by the skilled artisan, provided the matrix has a three dimensional structure sufficient to act as a scaffold for infiltrating cells, and includes the residues specific for, or characteristic of, and/or which are derived from, the same tissue type as the tissue to be repaired, the precise nature of the substrate per se used for the matrices disclosed herein is not determinative of a matrix's ultimate ability to repair and regenerate replacement tissue. In the instant invention, the substrate serves as a scaffold upon which certain cellular events, mediated by an osteogenic protein, necessarily will occur. The specific responses to the osteogenic protein ultimately are dictated by the endogenous microenvironment at the implant site and the developmental potential of the responding cells. As also will be appreciated by the skilled art the precise choice of substrate utilized for the matrices disclosed herein will depend, in part, upon the type of defect to be repaired, anatomical considerations such as the extent of vascularization at the defect site, and the like. [0063]
  • The matrix of the invention may be obtained as follows. A replacement tissue or body part to be used as a replacement body part and which comprises at least two distinct tissues in association to form the body part, is provided, as from a cadaver, or from a bone bank and treated, as by ethanol treatment and dehydrated by lyophilization, so that the remaining material is non-pathogenic and sufficient non-antigenic to prevent graft rejection As described above, the thus treated material having utility in the devices of the invention further comprises the residues of the extracted tissue or tissues from which it is derived. A replacement body part matrix thus treated further is dimensioned such that the residues have a structural relationship to each other which mimic that of the body part to be replaced. [0064]
  • Natural-sourced Matrices [0065]
  • Suitable allogenic or xenogenic matrices can be created as described herein below, using methods well known in the art. Preferably, the replacement body part or tissue is obtained fresh, from a cadaver or from a tissue bank which freezes its tissues upon harvest. In all cases and as will be appreciated by the practitioner in the field, it is preferable to freeze any tissue upon harvest, unless the tissue is to be put to immediate use. Prior to use, the tissue is treated with a suitable agent to extract the cellular non-structural components of the tissue so as to devitalize the tissue. The agent also should be capable of extracting any growth inhibiting components associated with the tissue, as well as to extract or otherwise destroy any pathogens. The resulting material is an acellular matrix defining interstices that can be infiltrated by cells, and is substantially depleted in non-structurally-associated components. [0066]
  • In a currently preferred procedure, the tissue is devitalized following a methodology such as that used in the art for fixing tissue. The tissue is exposed to a non-polar solvent, such as 100% (200 proof) ethanol, for a time sufficient to substantially replace the water content of the tissue with ethanol and to destroy the cellular structure of the tissue. Typically, the tissue is exposed to 200 proof ethanol for several days, at a temperature in the range of about 4-40° C., taking care to replace the solution with fresh ethanol every 6-12 hours, until such time as the liquid content of the tissue comprises 70-90% ethanol. Typically, treatment for 3-4 days is appropriate. The volume of liquid added should be more than enough to submerge the tissue. The treated tissue then is lyophilized. The resulting, dry matrix is substantially depleted in non-structural components but retains both intracellular and extracellular matrix components derived from the tissue. [0067]
  • Numerous other methods are described in the art for extracting tissues, including mineralized tissue such as bone, and for rendering these tissues biocompatible for allogenic or xenogenic implants. See, for example, Sampath et al. (1983) [0068] PNAS 80:6591-6595, U.S. Pat. No. 5,011,691, and U.S. Pat. Nos. 4,975,526 and 5,171,574. These publications describe extraction with 4M guanidine-HCl, 50 mM Tris-HCl, pH 7.0 for 16 hours at 4° C., and various deglycosylating and collagen fibril modifying agents, including hydrogen fluoride, trifluorocetic acid, dichloromethane, acetonitrile, isopropanol, heated, acidic aqueous solutions, and various combinations of these reagents. The disclosures of the patents is incorporated herein by reference. As described therein and below, where the matrix is treated with a fibril-modifying agent, the treated matrix can be washed to remove any extracted components, following a form of the procedure set forth below:
  • 1. Suspend matrix preparation in TBS (Tris-buffered saline) 1 g/200 ml and stir at 4° C. for 2 hrs; or in 6 M urea, 50 mM Tris-HCl, 500 mM NaCl, pH 7.0 (UTBS) or water and stir at room temperature (RT) for 30 minutes (sufficient time to neutralize pH); [0069]
  • 2. Centrifuge and repeat wash step; and [0070]
  • 3. Centrifuge; discard supernatant water wash residue; and then lyophilize. [0071]
  • Treated allogenic or xenogenic matrices are envisioned to have particular utility for creating devices for forming replacement body parts comprising plural distinct tissues, as well as for creating devices for replacing individual joint tissues, such as ligament and articular cartilage tissue. For example, a replacement ligament device can be formulated from an allogenic ligament matrix and osteogenic protein, and implanted at a skeletal joint locus following standard surgical procedures for autogenous ligament replacement. Similarly, an allogenic articular cartilage device can be formed from devitalized cartilage tissue, or other inert, non-mineralized matrix material and osteogenic protein, and the device laid on the subchondral bone surface as a sheet. Alternatively, a formulated device can be pulverized or otherwise mechanically abraded to produce particles which can be formulated into a paste or gel as described herein for application to the bone surface. [0072]
  • Synthetic Matrices [0073]
  • As an alternative to a natural-sourced matrix, or as a supplement to be used in combination with a natural-sourced matrix, a suitable matrix also can be formulated de novo, using (1) residues derived from and/or characteristic of, or specific for, the same tissue type as the tissue to be repaired, and (2) one or more materials which serve to create a three-dimensional scaffolding structure that can be formed or molded to take on the dimensions of the replacement tissue desired. In some circumstances, as in the formation of articular cartilage on a subchondral bone surface, osteogenic protein in combination with a matrix defining a three-dimensional scaffolding structure sufficient to allow the attachment of infiltrating cells and composed of a non-mineralized material can be sufficient. Any one or combination of materials can be used to advantage, including, without limitation, collagen; homopolymers or copolymers of glycolic acid, lactic acid, and butyric acid, including derivatives thereof; and ceramics, such as hydroxyapatite, tricalcium phosphate and other calcium phosphates and combinations thereof. [0074]
  • The tissue-specific component of a synthetic matrix ready can be obtained by devitalizing an allogenic or xenogenic tissue as described above and then pulerizing or otherwise mechanically breaking down the insoluble matrix remaining. This particulate material then can be combined with one or more structural materials, including those described herein. Alternatively, tissue-specific components can be further purified from the treated matrix using standard extraction procedures well characterized in the art and, using standard analysis procedures, the extracted material at each purification step can be tested for its tissue-specificity capability. See, for example, Sampath et al (1987) [0075] PNAS 78:7599-7603 and U.S. Pat. No. 4,968,590 for exemplary tissue extraction protocols.
  • A synthetic matrix may be desired where, for example, replacement articular cartilage is desired in an existing joint to, for example, correct a tear or limited superficial defect in the tissue, or to increase the height of the articular cartilage surface now worn due to age, disease or trauma. Such “resurfacing” of the articular cartilage layer can be achieved using the methods and compositions of the invention by, in one embodiment, treating a sheet of allogenic or xenogenic articular cartilage tissue as described herein, coating the resulting matrix with osteogenic protein, rolling up the formed device so that it can be introduced to the joint using standard orthoscopic surgical techniques and, once provided to the site, unrolling the device as a layer onto the articular bone surface. In another embodiment, the device is formulated as a paste or injectable gel-like substance that can be injected onto the articular bone surface in the joint also using standard orthoscopic surgical techniques. In this embodiment, the formulation may comprise a pulverized or otherwise mechanically degraded device comprising both matrix and osteogenic protein and, in addition, one or more components which serve to bind the particles into a paste-like or gel-like substance. Binding materials which characterized in the art include, for example, carboxymethylcellulose, glycerol, polyethylene-glycol and the like. Alternatively, the device can comprise osteogenic protein dispersed in a synthetic matrix which provides the desired physical properties. As an example, a synthetic matrix having tissue specificity for cartilage and bone is described in WO91/18558, published Dec. 21, 1991 and herein below. Briefly, the matrix comprises a porous crosslinked structural polymer of biocompatible, biodegradable collagen and appropriate, tissue-specific glycosaminoglycans as tissue-specific cell attachment factors. Collagen derived from a number of sources can be used, including insoluble collagen, acid-soluble collagen, collagen soluble in neutral or basic aqueous solutions, as well as those collagens which are commercially available. [0076]
  • Glycosaminoglycans (GAGs) or mucopolysaccharides are hexosamine-containig polysaccharides of animal origin that have a tissue specific distribution, and therefore may be used to help determine the tissue specificity of the morphogen-stimulated differentiating cells. Reaction with the GAGs also provides collagen with another valuable property, i.e., inability to provoke an immune reaction (foreign body ion) from an animal host. [0077]
  • Chemically, GAGs are made up of residues of hexoamines glycosidically bound and alternating in a more-or-less regular manner with either hexouronic acid or hexose moieties (see, e.g., Dodgson et al. in [0078] Carbohydrate Metabolism and its Disorders (Dickens et al., eds.) Vol. 1, Academic Press (1968)). Useful GAGs include hyaluronic acid, heparin, heparin sulfate, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan sulfate, and keratin sulfate. Other GAGs also can be used for forming the matrix described herein, and those skilled in the art will either know or be able to ascertain other suitable GAGs using no more than routine experimentation. For a more detailed description of mucopolysaccharides, see Aspinall, Polysaccharides, Pergamon Press, Oxford (1970).
  • Collagen can be reacted with a GAG in aqueous acidic solutions, preferably in diluted acetic acid solutions. By adding the GAG dropwise into the aqueous collagen dispersion, coprecipitates of tangled collagen fibrils coated with GAG results. This tangled mass of fibers then can be homogenized to form a homogeneous dispersion of fine fibers and then filtered and dried. [0079]
  • Insolubility of the collagen-GAG products can be raised to the desired degree by covalently cross-linking these materials, which also serves to, raise the resistance to resorption of these materials. In general, any covalent cross-linking method suitable for cross-linking collagen also is suitable for cross-linking these composite materials, although crosslinking by a dehydrothermal process is preferred [0080]
  • Formulation Considerations [0081]
  • The devices of the invention can be formulated using any of the methods described in the art for formulating ostegenic devices. See, for example, U.S. Pat. No. 5,266,683, the disclosure of which is incorporated herein by reference. Briefly, osteogenic protein typically is dissolved in a suitable solvent and combined with the matrix. The components are allowed to associate. Typically, the combined material then is lyophilized, with the result that the osteogenic protein is disposed on, or adsorbed to the surfaces of the matrix. Useful solubilizing solvents include, without limitation, an ethanoltrifluoroacetic acid solution, e.g., 47.5% EtOH/0.01% TFA, and acetonitrile/TFA solution, ethanol or ethanol in water, and physiologically buffered saline solutions. Formulations in an acidic buffer can faciliate adsorption of OP1 onto the matrix surface. For the replacement body part devices of the invention, the currently preferred formulation protocol is incubation of matrix and osteogenic protein in an ethanol/TFA solution (e.g., 30-40% EtOH/0.01-0.1% TFA) for 24 hours, followed by lyophilization. This procedure is sufficient to adsorb or precipitate 70-90% of the protein onto the matrix surface. [0082]
  • The quantity of osteogenic protein used will depend on the size of replacement device to be used and on the specific activity of the osteogenic protein. Typically, 0.5 mg-100 mg/10 g of matrix, dry weight, can be used to advantage. [0083]
  • In addition to osteogenic proteins, various growth factors, hormones, enzymes, therapeutic compositions, antibiotics, or other bioactive agents also can be adsorbed onto, or impregnated within, a substrate and released over time when implanted and the matrix slowly is absorbed Thus, various known growth factors such as EGF, PDGF, IGF, FGF, TGF-a, and TF-B can be released in vivo. The matrix can also be used to release chemotherapeutic agents, insulin, enzymes, enzyme inhibitors or chemotactic-chemoattractant factors. [0084]
  • Protein Considerations [0085]
  • As defined herein, the osteogenic proteins useful in the composition and methods of the invention include the family of dimeric proteins having endochondral bone activity when implanted in a mammal in association with a matrix and which comprise a subclass of the “super family” of “TGFβ-like” proteins. [0086]
  • The natural-sourced osteogenic protein in its mature, native form is a glycosylated diner typically having an apparent molecular weight of about 30-36 kDa as determined by SDS-PAGE. When reduced, the 30 kDa protein gives rise to two glycosylated peptide subunits having apparent molecular weights of about 16 kDa and 18 kDa In the reduced state, the protein has no detectable osteogenic activity. The unglycosylated protein, which also has osteogenic activity, has an apparent molecular weight of about 27 kDa When reduced, the 27 kDa protein gives rise to two unglycosylated polypeptides having molecular weights of about 14 kDa to 16 kDa capable of inducing endochondral bone formation in a mammal. Useful sequences include those comprising the C-terminal 102 amino acid sequences of DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse), the OP1 and OP2 proteins, proteins (see U.S. Pat. No. 5,011,691 and Oppermann et al., as well as the proteins referred to as BMP2, BMP3, BMP4 (see WO88/00205, U.S. Pat. No. 5,013,649 and WO91/18098), BMP5 and BMP6 (see WO90/11366, PCT/US90/01630 and BMP8 and 9. [0087]
  • The members of this family of proteins share a conserved six or seven cysteine skeleton in the C-terminal region. See, for example, 335-431 of Seq. ID No. 1 and whose sequence defines the six cysteine skeleton residues referred to herein as “OPS”, or residues 330-431 of Seq. ID No. 1, comprising 102 amino acids and whose sequence defines the seven cysteine skeleton. [0088]
  • This family of proteins includes longer forms of a given protein, as well as phylogenetic, e.g., species and allelic variants and biosynthetic mutants, including addition and deletion mutants and variants, such as those which may alter the conserved C-terminal cysteine skeleton, provided hat the alteration still allows the protein to form a dimeric species having a conformation capable of inducing bone formation in a mammal when implanted in the mammal in association with a matrix. In addition, the osteogenic proteins useful in devices of this invention may include forms having varying glycosylation patterns and varying N-termini, may be naturally occurring or biosynthetically derived, and may be produced by expression of recombinant DNA in procaryotic or eucaryotic host cells. The proteins are active as a single species (e.g., as homodimers), or combined as a mixed species, including heterodimers. [0089]
  • In one embodiment, the osteogenic protein contemplated herein comprises OP1 or an OP1-related sequence. Useful OP1 sequences are recited in U.S. Pat. Nos. 5,011,691; 5,018,753 and 5,266,683; in Ozkaynak et al. (1990) [0090] EMBO J. 2:2085-2093; and Sampath et al. (1993) PNAS 90: 6004-6008. OP-1 related sequences include xenogenic homologs, e.g.; 60A, from Drosophila, Wharton et al. (1991) PNAS 88 9214-9218; and proteins sharing greater than 60% identity with OP1 in the C-terminal seven cysteine domain, preferably at least 65% identity. Examples of OP-1 related sequences includes BMP5, BMP6 (and its species homolog Vgr-1, Lyons et al. (1989) PNAS .86:4554-4558), Celeste, et al. (1990) PNAS 87:9843-9847 and PCT international application WO93/00432; OP-2 (Ozkayna et al. (1992) J. Biol. Chem. 267:13198-13205) As will be appreciated by those having ordinary skill in the art, chimeric constructs readily can be created using standard molecular biology and mutagenesis techniques combining various portions of different morphogenic protein sequences to create a novel sequence, and these forms of the protein also are contemplated herein
  • In another preferred aspect, the invention contemplates osteogenic proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as “OPX” which accommodates the homologies between the various identified species of the osteogenic OP1 and OP2proteins, and which is described by the amino acid sequence presented below and in Sequence ID No. 3. [0091]
    Cys Xaa Xaa His Glu Leu Tyr Val Ser Phe
     1        5           10
    Xaa Asp Leu Gly Trp Xaa Asp Trp Xaa Ile
             15          20
    Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys
             25          30
    Glu Gly Glu Cys Xaa Phe Pro Leu Xaa Ser
             35          40
    Xaa Met Asn Ala Thr Asn His Ala Ile Xaa
             45          50
    Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa
             55          60
    Xaa Val Pro Lys Xaa Cys Cys Ala Pro Thr
             65          70
    Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa
             75          80
    Asp Xaa Ser Xaa Asn Val Ile Leu Xaa Lys
             85          90
    Xaa Arg Asn Met Val Val Xaa Ala Cys Gly
             95          100
         Cys His,
  • and wherein Xaa at res. 2=(Lys or Arg); Xaa at res. 3=(Lys or Arg); Xaa at res. 11 =(Arg or Gln); Xaa at res. 16=(Gln or Leu); Xaa at res. 19=(Ile or Val); Xaa at res. 23=(Glu or Gln); Xaa at res. 26=(Ala or Ser); Xaa at res. 35=(Ala or Ser); Xaa at res. 39=(Asn or Asp); Xaa at res. 57=(Phe or Leu); Xaa at res. 39=(Asn or Asp); Xaa at res. 41=(Tyr or Cys); Xaa at res. 50=(Val or Leu); Xaa at res. 52=(Ser or Thr); Xaa at res. 56=(Phe or Leu); Xaa at res. 57=(Ile or Met); Xaa at res. 58 (Asn or Lys); Xaa at res. 60=(Glu, Asp or Asn); Xaa at res. 61=(Thr, Ala or Val); Xaa at res. 65=(Pro or Ala); Xaa at res. 71=(Gln or Lys); Xaa at res. 73=(Asn or Ser); Xaa at res. 75=(Ile or The); Xaa at res. 80=(Phe or Tyr); Xaa at res. 82=(Asp or Ser); Xaa at res. 84=(Ser or Asn); Xaa at res. 89=(Lys or Arg); Xaa at res. 91=(Tyr or His); and Xaa at res. 97=(Arg or Lys). [0092]
  • In still another preferred aspect, one or both of the polypeptide chain subunits of the osteogenerically active dimer is encoded by nucleic acids which hybridize to DNA or RNA sequences encoding the active region of OP1 under stringent hybridization conditions. As used herein, stringent hybridization conditions are defined as hybridization in 40% formamide, 5× SSPE, 5× Denhardt's Solution and 0.1% SDS at 37° C. overnight, and washing in 0.1× SSPE, 0.1% SDS at 50° C. [0093]
  • Given the foregoing amino acid and DNA sequence information, the level of skill in the art, and the disclosures of numerous publications on osteogenic proteins, including U.S. Pat. No. 5,011,691 and published PCT specification U.S. patent application Ser. No. 89/01469, published Oct. 19, 1989, various DNAs can be constructed which encode at least the active domain of an osteogenic protein useful in the devices of this invention, and various analogs thereof (including species and allelic variants and those containing genetically engineered mutations), as well as fusion proteins, truncated forms of the mature proteins, deletion and addition mutants, and similar constructs which can be used in the devices and methods of the invention. Moreover, DNA hybridization probes can be constructed from fragments of any of these proteins, or designed de novo from the generic sequence. These probes then can be used to screen different genomic and cDNA libraries to identify additional osteogenic proteins useful in the prosthetic devices of this invention. [0094]
  • The DNAs can be produced by those skilled in the art using well known DNA manipulation techniques involving genomic and cDNA isolation, construction of synthetic DNA from synthesized oligonucleotides, and cassette mutagenesis techniques. 15-100 mer oligonucleotides may be synthesized on a DNA synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer. The DNA then may be electroeluted from the gel. Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified by PAGE. [0095]
  • The DNA from appropriately identified clones then can be isolated, subcloned (preferably into an expression vector), and sequenced. Plasmids containing sequences of interest then can be transfected into an appropriate host cell for protein expression and further characterization. The host may be a procaryotic or eucaryotic cell since the former's inability to glycosylate protein will not destroy the protein's morphogenic activity. Useful host cells include [0096] E. coli, Saccharomyces, the insect/baculovirus cell system, myeloma cells, CHO cells and various other mammalian cells. The vectors additionally may encode various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred signal sequences for protein secretion and the like.
  • The DNA sequence encoding the gene of interest also may be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation The recombinant osteogenic protein also may be expressed as a fusion protein. After being translated, the protein may be purified from the cells themselves or recovered from the culture medium. All biologically active protein forms comprise dimeric species joined by disulfide bonds or otherwise associated, produced by folding and oxidizing one or more of the various recombinant polypeptide chains within an appropriate eucaryotic cell or in vitro after expression of individual subunits. A detailed description of osteogenic proteins expressed from recombinant DNA in [0097] E. coli and in numerous different mammalian cells is disclosed in U.S. Pat. No. 5,266,963, the disclosure of which is hereby incorporated by reference.
  • Alternatively, osteogenic polypeptide chains can be synthesized chemically using conventional peptide synthesis techniques well known to those having ordinary skill in the art For example, the proteins may be synthesized intact or in parts on a solid phase peptide synthesizer, using standard operating procedures. Completed chains then are deprotected and purified by HPLC (high pressure liquid chromatography). If the protein is synthesized in parts, the parts may be peptide bonded using standard methodologies to form the intact protein. In general, the manner in which the osteogenic proteins are made can be conventional and does not form a part of this invention. [0098]
  • Exemplification [0099]
  • The means for making and using the matrices and devices of the invention, as well as other material aspects concerning the nature and utility of these compositions, including how to make and how to use the subject matter claimed, will be further understood from the following, which constitutes the best mode currently contemplated for practicing the invention. It will be appreciated that the invention is not limited to such exemplary work or to the specific details set forth in these examples. [0100]
  • In the exemplification, a hemi-joint reconstruction of an articulating synovial joint is resected into an existing joint locus. As will be appreciated by those having ordinary skill in the art, the methods and compositions of the invention equally can be applied to the formation of replacement body parts other than skeletal joints, as well as to skeletal joints other than articulating or synovial joints. Moreover, if desired, a replacement autogenous joint can be constructed in the recipient first by placing the device of the invention at another convenient locus distal to the defect site, for a time sufficient to induce formation of the replacement body part, and the autogenous body part thus formed then sutured into the joint locus for use. [0101]
  • EXAMPLE 1 Reconstruction of a Mammalian Hemi-Joint
  • New Zealand white rabbits were used as the experimental model. Standard orthopedic surgical equipment and procedures were used. [0102]
  • As depicted in FIG. 2A, joint defects were created in a recipient by surgically resecting the entire gleno-humeral hemiarticular complex with the proximal two-thirds of the humerus. Allografts for implantation were prepared from hemi-joints excised from a donor animal with the articular surface of the glenohumoral joint. All allografts were extracted in ethanol and lyophilized using standard procedures, and as described herein above, to destroy the pathogenicity and antigenicity of the material. Specifically, intact joint complexes were excised, demarraowed and ethanol treated by exposure to 200ml-500ml of 200 proof ethanol for 72 hours at 40 C. Fresh ethanol was provided every 6-8 hours. Following ethanol treatment, the matrix was lyophilized and rehydrated in ethano/TFA, with or without osteogenic protein The treated hemi-joints comprised devitalized bone, articular cartilage, ligament, tendon, synovialcapsule and synovial membrane tissue. [0103]
  • As illustrated in FIG. 2B, all lyophilized, osteogenic protein-treated allografts were coated with OP-1 as described in U.S. Pat. No. 5,011,691. Specifically, mature, dimeric recombinant OP-1 (rhOP1) was solubilized in an acetonitrile trifluoro-acetic acid solution, combined with the lyophilized allograft, and implanted. 15-20 mg protein/8-10 g matrix, dry weight, was used. The distal bone portions of all allografts were secured in place with a four hole titanium miniplate. A meticulous surgical reconstruction of the joint capsule was performed by suturing the lyophilized capsule ends to the endogenous capsule using standard surgical procedures well established in the art using standard surgical procedures well established in the art This recreated an intact capsule and synovial lining, thereby restoring the synovial milieu of the grafted articular surface. Motion was permitted almost immediately after surgery, again to restore normal joint conditions. [0104]
  • In some animals, local muscle flaps (cutaneous maximus muscle; FIG. 2C) were incorporated into the region of the defect by threading muscle into the marrow cavity of the allograft as depicted in FIG. 2D, using the method of Khouri as described in U.S. Pat. No. 5,067,963 the disclosure of which is incorporated herein by reference. Briefly, vascularized and convenient muscle flaps were dissected using standard procedures well known to the practitioner in reconstructive surgery, so as to maintain a perfusing blood supply, and threaded inside the bone marrow cavities of the allografts. [0105]
  • Preliminary evaluations of the reconstructed hemi-joints were obtained by serial weekly radiographs using X-ray. and/or magnetic resonance imaging (MRI). Histological and mechanical confirmatory evaluations were conducted upon sacrifice at 5 weeks and 6 months after surgery. [0106]
  • Mechanical evaluations involved standard range of motion (ROM) measurements obtained serially until sacrifice. Histological evaluations involved staining sagital sections through the harvested allografts using standard techniques. [0107]
  • Briefly, identification of bona fide articular cartilage can be accomplished using ultrastructural and/or biochemical parameters. For example, articular cartilage forms a continuous layer of cartilage tissue possessing identifiable zones. The superficial zone is characterized by chondrocytes having a flattened morphology and an extracellular network which does not stain, or stains poorly, with toluidine blue, indicating the relative absence of sulphated proteoglycans. Chondrocytes in the mid and deep zones have a spherical appearance and the matrix contains abundant sulphated proteoglycans, as evidenced by staining with toluidine blue. Collagen fibers are present diffusely throughout the matrix. The chondrocytes possess abundant rough endoplasmic reticulum and are surrounded by extracellular network. The pericellular network contains numerous thin non-banded collagen fibers. The collagen in the interterritorial network is less compacted and embedded in electron translucent amorphous material, similar to articular cartilage. Collagen fibers in the interterritorial region of the network exhibit the periodic banding characteristic of collagen fibers in the interterritorial zone of cartilage tissue. [0108]
  • Biochemically, the presence of Type II and Type IX collagen in the cartilage tissue is indicative of the differentiated phenotype of chondrocytes. The presence of Type II and/or Type IX collagen can be determined by standard gel electrophoresis, Western blot analysis and/or immuno histo-chemical staining using, for example, commercially available antibody. Other biochemical markers include hematoxylin, eosin, Goldner's Thichrome and Safranin-O. [0109]
  • Articular cartilage regeneration was evaluated histologically in the examples described herein using glycosaminoglycan-specific stains and techniques well-known in the art. For the initial histologic evaluation, the defect sites were bisected lengthwise through the center of the defect The resulting halves and surrounding tissue were embedded in paraffin and sectioned across the center of the defect. One half of each defect was utilized for histological staining with toluidine blue and/or hematoxlin and eosin, Goldner's Trichrome and Safranin-O. The other half was used in preparing sections for immunostaining. Histological evaluations involved assessment of: glycosaminoglycan content in the repair cartilage; cartilage and chondrocyte morphology; and, structural integrity and morphology at the defect interface. The morphology of the repair cartilage was exhibited for the type of cartilage formed: articular vs. fibrotic by evaluating glysaminoglycan content, degree of cartilage deposition, and the like. [0110]
  • Histological evaluations using standard methodologies well characterized in the art also allows assessment of new bone and bone marrow formation. See, for example, U.S. Pat. No. 5,266,683, the disclosure of which is incorporated hereinabove by reference. Similarly, ligament and synovial capsule integrity can be monitored by MRI, as well as by histology upon sacrifice. [0111]
  • EXAMPLE 2 Five Weeks Duration (Short Term)
  • For the 5 week study, four groups with 10 rabbits per group were implanted with lyophilized allografts. See FIGS. 3A, 3B, [0112] 3C, and 3D. In Group 1, control lyophilized allograft 30 free of osteogenic protein, was implanted (FIG. 3A). In Group 2, experimental lyophilized allograft 31 was impregnated with OP-1 prior to implantation (FIG. 3B). In Group 3, control lyophilized allograft 30 free of osteogenic protein, was implanted, with muscle flap 32 threaded into marrow cavity 33 (FIG. 3C). In Group 4, experimental lyophilized allograft 31 was impregnated with OP-1 prior to implantation, and muscle flap 32 was threaded within the marrow cavity 33 (FIG. 3D).
  • As stated above, graft healing was followed non-invasively with serial X-rays and standard MRI (magnetic resonance imaging). By X-ray assessment, allografts treated with osteongic protein had a noticeably thickened cortex by 1 week post-operative, as compared with control allografts (Groups 1, 3) which evidenced only a thin egg-shell-like cortex. By four weeks the majority control allografts had fractured and were unstable. In contrast, OP-1 treated allografts (Groups 2, 4) remained stable. [0113]
  • MRI also was used as a non-invasive means for following reformation of articular cartilage in the allografts. A dark signal produced by MRI represents absent or nonviable cartilage, while a bright signal indicates live, viable cartilage. Control allografts produced only a dark signal, when tested at 1, 3 and 5 weeks post-operative. These MRI findings were confirmed by histological analysis performed at 5 weeks post-operative. Sagital sectioning through control allografts showed a degenerated articular surface with no live cells. [0114]
  • By contrast the MRI findings of the articular caps from OP-1-treated allografts showed a bright signal by week 3 post-operative, indicating regeneration of viable articular cartilage. Histological analysis of the OP-1-treated allografts at week 5 revealed a layer of newly generated articular cartilage on top of the allograft matrix The allografts of Group 4 showed somewhat thicker cartilage layers than those of Group 2, suggesting that the addition of the muscle flap may further enhance the rate of joint regeneration. [0115]
  • Additionally, joints regeneracy with the OP-1-treated allografts regained near normal range of motion by the time they were harvested at 5 weeks post-reconstruction. The near normal range of motion also is indicative of the presence of lubricating synovial fluid. By contrast, the harvested control allografts were stiff and contracted at harvest Thus, hemi-joint replacement devices of the invention succeeded in forming mechanically and functionally viable replacement joints, with an intact capsule, and synovium, and functioning ligament, bone and articular cartilage tissue. In the absence of osteogenic protein, the allografts, while not rejected by the donor, are insufficient on their own to generate a functional, weight bearing joint. [0116]
  • EXAMPLE 3 Six Months Duration—(Long Term)
  • For the 6 month study, the variable of shaving off the old cartilaginous cap in the lyophilized allografts was introduced. Briefly, this was accomplished by mechanically sharing the articular cartilage cap of the joint surface. [0117]
  • The following groups were used with 4 rabbits per group: in Group 5, [0118] lyophilized allograft 34 with shaved articular surface, and muscle flap 32 were implanted (see FIG. 4A); in Group 6, control lyophilized allograft 30 with non-shaved articular surface, and muscle flap 32 were implanted (see FIG. 4B); in Group 7, lyophilized allograft 35 with shaved articular surface and OP-1, and muscle flap 36 treated with OP-1 were implanted (see FIG. 4C); and, in Group 8, lyophilized allograft 37 with a non-shaved articular surface and OP-1, and muscle flap 36 treated with OP-1 were implanted (see FIG. 4D). Grafts in Groups 5-8 were harvested at 6 months after surgery.
  • Based upon pre-harvest imaging studies, the results collected by 3 months post-operative are consistent with the above described results collected at 5 weeks. Intact allografts treated with OP-1 (Group 8) regenerated a live cartilaginous articular surface by 3 weeks when evaluated using MRI. This articular cap is still present and even better developed at 3 months. Without OP-1 treatment of the allograft, (Group 6) there was negligible cartilage regeneration relative to the OP-1 treated groups. [0119]
  • Similarly, Group 8 rabbits (allograft+OP1, non-shaved) regained near normal range of motion (greater than 80%) in the reconstructed [0120] joint Group 7 rabbits (allograft+OP1, shaved) achieved only 50% range of motion, and Groups 5 and 6 (no OP1) achieved less than 30%.
  • As determined by histology, the devices of the invention were competent to induce and maintain both bone and articular cartilage formation in the appropriate context to one another in a long term study (greater than 6 months). Specifically, the rabbits of Group 8, demonstrated articular cartilage formation on the surface of bone, as evidenced morphologically by the presence of resting, central and deeper zone chondrocytes. By contrast, in groups treated only with muscle flap, (Group 5 and 6) muscle was replaced with scar issue. In the groups treated with shaved bone matrices, no significant cartilage regeneration was identified, demonstrating the requirement for cartilage-specific residues in articular cartilage formation in a non-vascularized mileiu. [0121]
  • In both the short term and long term study, mechanically and functionally viable synovial joints resulted from the reconstructed hemijoints treated with osteogenic protein, as evidenced by morphology and biochemistry. In addition, new tissue formed, including articular cartilage, corresponding in shape, kind and structural relationship to the residues in the devitalized tissue which formed the matrix of the device. Collectively, these examples demonstrate that a device comprising osteogenic protein and an off-the-shelf, non-viable lyophilized, devitalized matrix can be transformed into aviable, mechanically and structurally functional replacement body part structure comprising plural distinct newly formed tissues which assume the shape and function of the original tissue. The device can restore normal function to a destroyed body part, including a destroyed skeletal joint, restoring mechanically and functionally viable plural distinct tissues, including bone and bone marrow, articular cartilage, ligament, tendon, synovial capsule and synovial membrane tissue. Moreover, these tissues are restored under substantially physiological conditions including, for example, from responding cells present in a synovial environment, and without exposure to avascularized muscle flap. [0122]
  • A device comprising osteogenic protein-treated matrices, including lyophilized allografts or xenografts as disclosed herein can lead to the formation of a new, mechanically, structurally and functionally viable replacement tissue, and to replacement body parts comprising plural distinct tissues, populated by the host cells, and without any of the limitations of prosthetic materials. [0123]
  • Those skilled in the art will know, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. These and all other equivalents are intended to be encompassed by the following claims. [0124]
  • 1 3 1822 base pairs nucleic acid single linear cDNA NO NO HOMO SAPIENS HIPPOCAMPUS CDS 49..1341 experimental /function= “OSTEOGENIC PROTEIN” /product= “OP1” /evidence= EXPERIMENTAL /standard_name= “OP1” 1 GGTGCGGGCC CGGAGCCCGG AGCCCGGGTA GCGCGTAGAG CCGGCGCG ATG CAC GTG 57 Met His Val 1 CGC TCA CTG CGA GCT GCG GCG CCG CAC AGC TTC GTG GCG CTC TGG GCA 105 Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala Leu Trp Ala 5 10 15 CCC CTG TTC CTG CTG CGC TCC GCC CTG GCC GAC TTC AGC CTG GAC AAC 153 Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser Leu Asp Asn 20 25 30 35 GAG GTG CAC TCG AGC TTC ATC CAC CGG CGC CTC CGC AGC CAG GAG CGG 201 Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser Gln Glu Arg 40 45 50 CGG GAG ATG CAG CGC GAG ATC CTC TCC ATT TTG GGC TTG CCC CAC CGC 249 Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg 55 60 65 CCG CGC CCG CAC CTC CAG GGC AAG CAC AAC TCG GCA CCC ATG TTC ATG 297 Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro Met Phe Met 70 75 80 CTG GAC CTG TAC AAC GCC ATG GCG GTG GAG GAG GGC GGC GGG CCC GGC 345 Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly Gly Pro Gly 85 90 95 GGC CAG GGC TTC TCC TAC CCC TAC AAG GCC GTC TTC AGT ACC CAG GGC 393 Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr Gln Gly 100 105 110 115 CCC CCT CTG GCC AGC CTG CAA GAT AGC CAT TTC CTC ACC GAC GCC GAC 441 Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr Asp Ala Asp 120 125 130 ATG GTC ATG AGC TTC GTC AAC CTC GTG GAA CAT GAC AAG GAA TTC TTC 489 Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys Glu Phe Phe 135 140 145 CAC CCA CGC TAC CAC CAT CGA GAG TTC CGG TTT GAT CTT TCC AAG ATC 537 His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu Ser Lys Ile 150 155 160 CCA GAA GGG GAA GCT GTC ACG GCA GCC GAA TTC CGG ATC TAC AAG GAC 585 Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr Lys Asp 165 170 175 TAC ATC CGG GAA CGC TTC GAC AAT GAG ACG TTC CGG ATC AGC GTT TAT 633 Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile Ser Val Tyr 180 185 190 195 CAG GTG CTC CAG GAG CAC TTG GGC AGG GAA TCG GAT CTC TTC CTG CTC 681 Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu Phe Leu Leu 200 205 210 GAC AGC CGT ACC CTC TGG GCC TCG GAG GAG GGC TGG CTG GTG TTT GAC 729 Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu Val Phe Asp 215 220 225 ATC ACA GCC ACC AGC AAC CAC TGG GTG GTC AAT CCG CGG CAC AAC CTG 777 Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg His Asn Leu 230 235 240 GGC CTG CAG CTC TCG GTG GAG ACG CTG GAT GGG CAG AGC ATC AAC CCC 825 Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser Ile Asn Pro 245 250 255 AAG TTG GCG GGC CTG ATT GGG CGG CAC GGG CCC CAG AAC AAG CAG CCC 873 Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn Lys Gln Pro 260 265 270 275 TTC ATG GTG GCT TTC TTC AAG GCC ACG GAG GTC CAC TTC CGC AGC ATC 921 Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe Arg Ser Ile 280 285 290 CGG TCC ACG GGG AGC AAA CAG CGC AGC CAG AAC CGC TCC AAG ACG CCC 969 Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser Lys Thr Pro 295 300 305 AAG AAC CAG GAA GCC CTG CGG ATG GCC AAC GTG GCA GAG AAC AGC AGC 1017 Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu Asn Ser Ser 310 315 320 AGC GAC CAG AGG CAG GCC TGT AAG AAG CAC GAG CTG TAT GTC AGC TTC 1065 Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr Val Ser Phe 325 330 335 CGA GAC CTG GGC TGG CAG GAC TGG ATC ATC GCG CCT GAA GGC TAC GCC 1113 Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala 340 345 350 355 GCC TAC TAC TGT GAG GGG GAG TGT GCC TTC CCT CTG AAC TCC TAC ATG 1161 Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met 360 365 370 AAC GCC ACC AAC CAC GCC ATC GTG CAG ACG CTG GTC CAC TTC ATC AAC 1209 Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn 375 380 385 CCG GAA ACG GTG CCC AAG CCC TGC TGT GCG CCC ACG CAG CTC AAT GCC 1257 Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala 390 395 400 ATC TCC GTC CTC TAC TTC GAT GAC AGC TCC AAC GTC ATC CTG AAG AAA 1305 Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys 405 410 415 TAC AGA AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCCTCC 1351 Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 425 430 GAGAATTCAG ACCCTTTGGG GCCAAGTTTT TCTGGATCCT CCATTGCTCG CCTTGGCCAG 1411 GAACCAGCAG ACCAACTGCC TTTTGTGAGA CCTTCCCCTC CCTATCCCCA ACTTTAAAGG 1471 TGTGAGAGTA TTAGGAAACA TGAGCAGCAT ATGGCTTTTG ATCAGTTTTT CAGTGGCAGC 1531 ATCCAATGAA CAAGATCCTA CAAGCTGTGC AGGCAAAACC TAGCAGGAAA AAAAAACAAC 1591 GCATAAAGAA AAATGGCCGG GCCAGGTCAT TGGCTGGGAA GTCTCAGCCA TGCACGGACT 1651 CGTTTCCAGA GGTAATTATG AGCGCCTACC AGCCAGGCCA CCCAGCCGTG GGAGGAAGGG 1711 GGCGTGGCAA GGGGTGGGCA CATTGGTGTC TGTGCGAAAG GAAAATTGAC CCGGAAGTTC 1771 CTGTAATAAA TGTCACAATA AAACGAATGA ATGAAAAAAA AAAAAAAAAA A 1822 431 amino acids amino acid linear protein 2 Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15 Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30 Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45 Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60 Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80 Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly 85 90 95 Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser 100 105 110 Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr 115 120 125 Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys 130 135 140 Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu 145 150 155 160 Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile 165 170 175 Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile 180 185 190 Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu 195 200 205 Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu 210 215 220 Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg 225 230 235 240 His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser 245 250 255 Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn 260 265 270 Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe 275 280 285 Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser 290 295 300 Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu 305 310 315 320 Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr 325 330 335 Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu 340 345 350 Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn 355 360 365 Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His 370 375 380 Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln 385 390 395 400 Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile 405 410 415 Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 425 430 102 amino acids amino acid linear protein Protein 1..102 /label= OPX /note= “WHEREIN EACH XAA IS INDEPENDENTLY SELECTED FROM A GROUP OF ONE OR MORE SPECIFIED AMINO ACIDS AS DEFINED IN THE SPECIFICATION” 3 Cys Xaa Xaa His Glu Leu Tyr Val Xaa Phe Xaa Asp Leu Gly Trp Xaa 1 5 10 15 Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly 20 25 30 Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Met Asn Ala Thr Asn His Ala 35 40 45 Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys 50 55 60 Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa 65 70 75 80 Asp Xaa Ser Xaa Asn Val Xaa Leu Xaa Lys Xaa Arg Asn Met Val Val 85 90 95 Xaa Ala Cys Gly Cys His 100

Claims (33)

What is claimed is:
1. A device for implantation in a mammal which serves as a template to form in vivo a functional replacement body part comprising plural distinct tissues, the device comprising:
a) a biocompatible, biodegradable matrix
defining a structure which allows the attachment of infiltrating cells,
comprising residues having specificity for, or derived from, said plural distinct tissues; and,
having dimensions and shape which mimic that of the body part to be replaced; and disposed on the surface of said matrix,
b) an osteogenic protein in an amount sufficient to induce formation of new said plural distinct tissues thereby to permit regeneration of tissues corresponding in shape and kind to said residues within a mammal.
2. The device of claim 1 wherein one of said plural distinct replacement tissues is a non-mineralized tissue.
3. The device of claim 1 wherein said matrix comprises devitalized tissue from a mammalian donor.
4. The device of claim 1 wherein said matrix comprises residues of articular cartilage and of bone.
5. The device of claim 1 wherein said matrix comprises at least a portion of a skeletal joint
6. The device of claim 1 or 5 wherein the matrix comprises dehydrated mammalian tissue.
7. The device of claim 2 wherein said replacement non-mineralized tissue is selected from the group consisting of articular cartilage, ligament, tendon, synovial capsule and synovial membrane tissue.
8. The device of claim 5 wherein said skeletal joint defines a synovial or articulating joint
9. The device of claim 5 or 8 wherein said device defines a devitalized intact skeletal joint structure.
10. A device for implantation in a mammal forming in vivo articular cartilage replacement tissue in a skeletal joint, the device comprising:
osteogenic protein disposed on the surface of a biocompatible, bioresorbable matrix
said matrix defining a structure which allows the attachment of infiltrating cells and which comprises residues specific for, or derived from, articular cartilage tissue.
11. A device for implantation in a mammal for forming in vivo replacement non-mineralized tissue in a skeletal joint, the device comprising:
osteogenic protein disposed on the surface of a biocompatible, bioresorbable matrix,
said matrix defining a structure which allows the attachment of infiltrating cells and which comprises residues specific for, or derived from, non-mineralized skeletal joint tissue corresponding in kind to said tissue to be replaced.
12. The device of claim 11 wherein said non-mineralized tissue is an avascular tissue.
13. The device of claim 10 wherein said non-mineralized tissue is selected from the group consisting of articular cartilage, ligament, synovial membrane and synovial capsule tissue.
14. The device of claim 10 or 11 wherein said matrix comprises devitalized allogenic or xenogenic tissue.
15. The device of claim 10 or 11 wherein said matrix comprises a material selected from the group consisting of: collagen, polymers comprising monomers of lactic acid, glycolic acid, butyric acid and combinations thereof, hydroxyapatite, tricalcium phosphate, and mixtures thereof.
16. The device of claim 10 or 11 further comprising a material suitable for binding particulate matter to form a moldable solid.
17. The device of claim 1, 10 or 11 wherein said osteogenic protein comprises homodimers or heterodimers of OP-1, OP-2, BMP2, BMP3, BMP4, BMP5, BMP6, OPX, or functional equivalents thereof.
18. A method for inducing in a mammal the formation of an autologous replacement body part comprising plural distinct tissues, said method comprising the steps of:
a) providing a device comprising osteogenic protein disposed on the surface of a bioresorbable, biocompatible matrix, said matrix
defining a structure which allows the attachment of infiltrating cells,
comprising residues having specificity for, or derived from, said plural distinct tissues, and
having dimensions and shape which mimic that of the body part to be replaced; and
b) implanting said device at a locus in a mammal, thereby to induce formation of tissues corresponding in shape and kind to said residues.
19. The method of claim 18 wherein said locus in said mammal defines an endogenous body part to be replaced.
20. The method of claim 18 wherein said matrix further comprises residues which are dimensioned to correspond in shape and structural relation to said plural distinct tissues to be replaced.
21. The method of claim 18 wherein the plural distinct tissues comprise bone and cartilage.
22. The method of claim 18 wherein said matrix comprises devitalized allogenic or xenogenic tissue.
23. The method of claim 18 wherein one of said plural distinct tissues is an avascular tissue.
24. A method for repairing in vivo articular cartilage on the surface of a bone, the method comprising the step of:
providing to said bone surface at a locus in a mammal a device comprising an osteogenic protein disposed on the surface of a biocompatible, bioresorbable matrix, said matrix comprising residues specific for, or derived from, cartilage, and defining a structure which allows the attachment of infiltrating cells.
25. The method of claim 24 wherein said locus occurs in a synovial cavity.
26. A method for restoring in a mammal a non-mineralized tissue in a skeletal joint, the method comprising the step of:
providing to said skeletal joint in a mammal a device comprising an osteogenic protein disposed on the surface of a biocompatible, bioresorbable matrix,
said matrix comprising residues specific for, or derived from, tissue corresponding in kind to said non-mineralized tissue to be replaced, and defining a structure which allows the attachment of infiltrating cells.
27. The method of claim 26 wherein said non-mineralized tissue to be restored comprises avascular tissue.
28. The method of claim 26 wherein said non-mineralized tissue to be restored is selected from the group consisting of articular cartilage, tendon, ligament, synovial capsule and synovial membrane tissue.
29. The method of claim 24 or 26 wherein said matrix is derived from allogenic or xenogenic articular cartilage.
30. The method of claim 24 or 26 wherein said device comprises a moldable solid.
31. The method of claim 24 or 26 wherein said device comprises a flexible sheet
32. The method of claim 24 or 26 wherein said device comprises collagen, polymers comprising lactic acid, butyric glycolic acid or mixtures thereof; hydroxyapatite and combinations thereof.
33. The method of claim 18, 24 or 26 wherein said osteogenic protein comprises homodimers or heterodimers of OP-1, OP-2, BMP2, BMP3, BMP4, BMP5, BMP6, OPX, or functional equivalents thereof.
US10/083,825 1994-06-03 2002-02-27 Manufacture of autogenous replacement body parts Abandoned US20030064090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/083,825 US20030064090A1 (en) 1994-06-03 2002-02-27 Manufacture of autogenous replacement body parts
US10/995,979 US20050089544A1 (en) 1994-06-03 2004-11-23 Manufacture of autogenous replacement body parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/253,398 US5906827A (en) 1994-06-03 1994-06-03 Matrix for the manufacture of autogenous replacement body parts
US08/459,129 US6110482A (en) 1994-06-03 1995-06-02 Manufacture of autogenous replacement body parts
US54760100A 2000-04-13 2000-04-13
US10/083,825 US20030064090A1 (en) 1994-06-03 2002-02-27 Manufacture of autogenous replacement body parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US54760100A Continuation 1994-06-03 2000-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/995,979 Continuation US20050089544A1 (en) 1994-06-03 2004-11-23 Manufacture of autogenous replacement body parts

Publications (1)

Publication Number Publication Date
US20030064090A1 true US20030064090A1 (en) 2003-04-03

Family

ID=22960109

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/253,398 Expired - Lifetime US5906827A (en) 1994-06-03 1994-06-03 Matrix for the manufacture of autogenous replacement body parts
US08/459,129 Expired - Lifetime US6110482A (en) 1994-06-03 1995-06-02 Manufacture of autogenous replacement body parts
US08/458,811 Expired - Lifetime US6027743A (en) 1994-06-03 1995-06-02 Manufacture of autogenous replacement body parts
US10/083,825 Abandoned US20030064090A1 (en) 1994-06-03 2002-02-27 Manufacture of autogenous replacement body parts
US10/995,979 Abandoned US20050089544A1 (en) 1994-06-03 2004-11-23 Manufacture of autogenous replacement body parts

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/253,398 Expired - Lifetime US5906827A (en) 1994-06-03 1994-06-03 Matrix for the manufacture of autogenous replacement body parts
US08/459,129 Expired - Lifetime US6110482A (en) 1994-06-03 1995-06-02 Manufacture of autogenous replacement body parts
US08/458,811 Expired - Lifetime US6027743A (en) 1994-06-03 1995-06-02 Manufacture of autogenous replacement body parts

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/995,979 Abandoned US20050089544A1 (en) 1994-06-03 2004-11-23 Manufacture of autogenous replacement body parts

Country Status (8)

Country Link
US (5) US5906827A (en)
EP (1) EP0762903B2 (en)
JP (1) JP3504950B2 (en)
AT (1) ATE249849T1 (en)
AU (1) AU702220C (en)
CA (1) CA2191584C (en)
DE (1) DE69531779T3 (en)
WO (1) WO1995033502A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054825A1 (en) * 1988-04-08 2005-03-10 Stryker Biotech Corporation Osteogenic devices
US7758896B2 (en) 2004-04-16 2010-07-20 University Of Massachusetts Porous calcium phosphate networks for synthetic bone material
US20110125003A1 (en) * 2008-05-29 2011-05-26 Yale University Systems, Devices and Methods For Cartilage and Bone Grafting
USRE43714E1 (en) 1999-12-15 2012-10-02 Zimmer Orthobiologics, Inc. Preparation for repairing cartilage defects or cartilage/bone defects in human or animal joints
US8753406B2 (en) 2010-08-31 2014-06-17 Zimmer Inc. Osteochondral graft delivery device and uses thereof

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586388B2 (en) 1988-04-08 2003-07-01 Stryker Corporation Method of using recombinant osteogenic protein to repair bone or cartilage defects
US5266683A (en) * 1988-04-08 1993-11-30 Stryker Corporation Osteogenic proteins
US20070166353A1 (en) * 1988-04-08 2007-07-19 Stryker Corporation Osteogenic proteins
US6919308B2 (en) * 1988-04-08 2005-07-19 Stryker Corporation Osteogenic devices
US7056882B2 (en) * 1991-03-11 2006-06-06 Curis, Inc. Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US20080233170A1 (en) * 1992-02-21 2008-09-25 Stryker Corporation Osteogenic Proteins
US5906827A (en) * 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US6123727A (en) * 1995-05-01 2000-09-26 Massachusetts Institute Of Technology Tissue engineered tendons and ligaments
DK0831884T3 (en) * 1995-06-05 2003-11-03 Inst Genetics Llc Use of bone morphogenetic proteins for healing and repair of connective tissue binding
US5674292A (en) 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
US6083522A (en) * 1997-01-09 2000-07-04 Neucoll, Inc. Devices for tissue repair and methods for preparation and use thereof
JP4388602B2 (en) 1997-02-07 2009-12-24 ストライカー コーポレイション Bone-forming device not containing matrix, graft, and method of use thereof
AU779278B2 (en) * 1997-02-07 2005-01-13 Stryker Corporation Matrix-free osteogenic devices, implants and methods of use thereof
CA2285382C (en) * 1997-04-04 2008-03-25 Barnes-Jewish Hospital Neocartilage and methods of use
US20030032586A1 (en) * 1997-05-15 2003-02-13 David C. Rueger Compositions for morphogen-induced osteogenesis
US6482584B1 (en) * 1998-11-13 2002-11-19 Regeneration Technologies, Inc. Cyclic implant perfusion cleaning and passivation process
US20010031254A1 (en) * 1998-11-13 2001-10-18 Bianchi John R. Assembled implant
EP1037910A2 (en) * 1997-12-04 2000-09-27 Curis, Inc. Maintenance of smooth muscle integrity by morphogenic proteins
WO1999031136A2 (en) * 1997-12-17 1999-06-24 Creative Biomolecules, Inc. Methods for maintaining or restoring tissue-appropriate phenotype of soft tissue cells
US6371992B1 (en) * 1997-12-19 2002-04-16 The Regents Of The University Of California Acellular matrix grafts: preparation and use
DE19803673A1 (en) 1998-01-30 1999-08-05 Norbert M Dr Meenen Biohybrid joint replacement
US6933326B1 (en) * 1998-06-19 2005-08-23 Lifecell Coporation Particulate acellular tissue matrix
US7572440B2 (en) 1999-07-30 2009-08-11 Stryker Corporation Method for repairing a defect in an intervertebral disc
EP1649865B1 (en) * 1998-10-06 2012-06-13 Stryker Corporation GDF-5 for use in repairing a nonarticular cartilage defect in an intervertebral disc
MXPA01003538A (en) * 1998-10-06 2005-09-08 Rush Presbyterian St Luke Method for the treatment of chemonucleolysis.
US6958149B2 (en) 1998-10-06 2005-10-25 Stryker Corporation Repair of larynx, trachea, and other fibrocartilaginous tissues
US6727224B1 (en) * 1999-02-01 2004-04-27 Genetics Institute, Llc. Methods and compositions for healing and repair of articular cartilage
US6793677B2 (en) * 1999-08-13 2004-09-21 Bret A. Ferree Method of providing cells and other biologic materials for transplantation
AR027685A1 (en) * 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
ITVI20000025U1 (en) * 2000-04-07 2001-10-07 Tecres Spa TEMPORARY SPACER DEVICE FOR SURGICAL TREATMENT OF THE KNEE
US7726319B1 (en) * 2000-08-24 2010-06-01 Osteotech, Inc. Method for removal of water associated with bone while diminishing the dimensional changes associated with lyophilization
AU2003222427B8 (en) 2000-11-17 2010-04-29 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same
US20100282634A1 (en) * 2000-11-17 2010-11-11 Dror Harats Promoters Exhibiting Endothelial Cell Specificity and Methods of Using Same for Regulation of Angiogenesis
US20070286845A1 (en) * 2000-11-17 2007-12-13 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US8071740B2 (en) * 2000-11-17 2011-12-06 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US8039261B2 (en) * 2000-11-17 2011-10-18 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US6838452B2 (en) 2000-11-24 2005-01-04 Vascular Biogenics Ltd. Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis
US20020114795A1 (en) 2000-12-22 2002-08-22 Thorne Kevin J. Composition and process for bone growth and repair
CZ20031828A3 (en) * 2000-12-28 2003-11-12 Fidia Advanced Biopolymers S. P. A. Use of biological material containing cells
AU2002247044B2 (en) * 2001-01-30 2006-11-16 Orthogene, Inc. Compositions and methods for the treatment and repair of defects or lesions in articular cartilage using synovial-derived tissue or cells
US6855169B2 (en) 2001-02-28 2005-02-15 Synthes (Usa) Demineralized bone-derived implants
US20050136038A1 (en) * 2001-10-02 2005-06-23 Isotis N.V. Injectable calcium salt bone filler comprising cells
EP2223932A1 (en) * 2001-10-19 2010-09-01 Vascular Biogenics Ltd. Polynucleotide constructs, pharmaceutical compositions and methods for targeted downregulation of angiogenesis and anticancer therapy
JP2005516972A (en) * 2002-01-22 2005-06-09 ファイザー・インク 3- (imidazolyl) -2-aminopropionic acid used as TAFI-A inhibitor for the treatment of thrombotic diseases
AR038680A1 (en) * 2002-02-19 2005-01-26 Synthes Ag INTERVERTEBRAL IMPLANT
US20040023322A1 (en) * 2002-08-01 2004-02-05 Goodheart Clyde R. Method of producing non-recombinant BMP-2 and use thereof
US20040054414A1 (en) 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US7744651B2 (en) * 2002-09-18 2010-06-29 Warsaw Orthopedic, Inc Compositions and methods for treating intervertebral discs with collagen-based materials
US7309361B2 (en) * 2002-10-23 2007-12-18 Wasielewski Ray C Biologic modular tibial and femoral component augments for use with total knee arthroplasty
CN100394989C (en) * 2002-11-15 2008-06-18 华沙整形外科股份有限公司 Collagen-based materials and methods for augmenting intervertebral discs
US20040186471A1 (en) * 2002-12-07 2004-09-23 Sdgi Holdings, Inc. Method and apparatus for intervertebral disc expansion
EP2457541A1 (en) 2003-02-06 2012-05-30 Synthes GmbH Implant between vertebrae
US7819903B2 (en) 2003-03-31 2010-10-26 Depuy Spine, Inc. Spinal fixation plate
US7067123B2 (en) * 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US20050064042A1 (en) * 2003-04-29 2005-03-24 Musculoskeletal Transplant Foundation Cartilage implant plug with fibrin glue and method for implantation
US20050222687A1 (en) * 2004-04-02 2005-10-06 Gordana Vunjak-Novakovic Cartilage implant assembly and method for implantation
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7488348B2 (en) * 2003-05-16 2009-02-10 Musculoskeletal Transplant Foundation Cartilage allograft plug
US20090291112A1 (en) * 2003-05-16 2009-11-26 Truncale Katherine G Allograft osteochondral plug combined with cartilage particle mixture
US20050013870A1 (en) * 2003-07-17 2005-01-20 Toby Freyman Decellularized extracellular matrix of conditioned body tissues and uses thereof
US7226482B2 (en) 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
WO2005058207A1 (en) 2003-12-11 2005-06-30 Isto Technologies, Inc. Particulate cartilage system
ES2760995T3 (en) 2004-06-23 2020-05-18 Bioprotect Ltd Tissue displacement or separation device
US20050288796A1 (en) * 2004-06-23 2005-12-29 Hani Awad Native soft tissue matrix for therapeutic applications
US20080220044A1 (en) * 2007-03-06 2008-09-11 Semler Eric J Cancellous construct with support ring for repair of osteochondral defects
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
EP1916964A4 (en) 2005-08-26 2015-11-04 Zimmer Inc Implants and methods for repair, replacement and treatment of joint disease
EP1931401A2 (en) * 2005-09-09 2008-06-18 University of Arkansas at Little Rock System and method for tissue generation and bone regeneration
US9763788B2 (en) 2005-09-09 2017-09-19 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US8936805B2 (en) 2005-09-09 2015-01-20 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
WO2007035778A2 (en) 2005-09-19 2007-03-29 Histogenics Corporation Cell-support matrix and a method for preparation thereof
US20070178137A1 (en) * 2006-02-01 2007-08-02 Toby Freyman Local control of inflammation
EP1988855A2 (en) 2006-02-27 2008-11-12 Synthes GmbH Intervertebral implant with fixation geometry
US8399619B2 (en) * 2006-06-30 2013-03-19 Warsaw Orthopedic, Inc. Injectable collagen material
US8118779B2 (en) * 2006-06-30 2012-02-21 Warsaw Orthopedic, Inc. Collagen delivery device
EP2076220A2 (en) 2006-07-25 2009-07-08 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US8043377B2 (en) 2006-09-02 2011-10-25 Osprey Biomedical, Inc. Implantable intervertebral fusion device
US8852192B2 (en) * 2006-11-13 2014-10-07 Warsaw Orthopedic, Inc. Method and apparatus for osteochondral autograft transplantation
US8163549B2 (en) 2006-12-20 2012-04-24 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
PL2124831T3 (en) * 2007-03-15 2017-03-31 Ortho-Space Ltd. Prosthetic devices
AU2008240191B2 (en) 2007-04-12 2013-09-19 Zimmer, Inc. Compositions and methods for tissue repair
ATE487441T1 (en) * 2007-06-01 2010-11-15 Allergan Inc DEVICE FOR GENERATING TENSILE-INDUCED GROWTH OF BIOLOGICAL TISSUE
EP2217179A1 (en) 2007-11-16 2010-08-18 Synthes GmbH Low profile intervertebral implant
CA2708147A1 (en) * 2007-12-05 2009-06-18 Musculoskeletal Transplant Foundation Cancellous bone implant for cartilage repair
US20090181104A1 (en) * 2007-12-14 2009-07-16 Gino Rigotti Breast reconstruction or augmentation using computer-modeled deposition of processed adipose tissue
WO2009111069A1 (en) 2008-03-05 2009-09-11 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
EP2143451A1 (en) 2008-07-11 2010-01-13 Nobel Biocare Services AG Bone implant application
BRPI0921486A2 (en) 2008-11-07 2019-09-10 Synthes Gmbh vertebral intercorporeal unit of spacer and coupled plate
US8469779B1 (en) 2009-01-02 2013-06-25 Lifecell Corporation Method for debristling animal skin
US8556972B2 (en) * 2009-04-02 2013-10-15 Sevika Holding AG Monolithic orthopedic implant with an articular finished surface
US20100256758A1 (en) * 2009-04-02 2010-10-07 Synvasive Technology, Inc. Monolithic orthopedic implant with an articular finished surface
JP2013506681A (en) 2009-10-02 2013-02-28 バクスター・インターナショナル・インコーポレイテッド Hematopoietic stem cells for use in the treatment of kidney injury
EP2521586A4 (en) 2010-01-07 2013-06-19 Bioprotect Ltd Controlled tissue dissection systems and methods
US20130116794A1 (en) 2010-08-04 2013-05-09 Shaul Shohat Shoulder implant
US9677042B2 (en) 2010-10-08 2017-06-13 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
AU2011329054B2 (en) 2010-11-15 2015-05-28 Zimmer Orthobiologics, Inc. Bone void fillers
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
EP2654626B1 (en) 2010-12-21 2016-02-24 Synthes GmbH Intervertebral implants and systems
CA2832838C (en) 2011-04-14 2019-08-13 Lifecell Corporation Regenerative tissue matrix flakes
US9089523B2 (en) 2011-07-28 2015-07-28 Lifecell Corporation Natural tissue scaffolds as tissue fillers
WO2013057566A2 (en) 2011-10-18 2013-04-25 Ortho-Space Ltd. Prosthetic devices and methods for using same
AU2012355463C1 (en) 2011-12-20 2016-09-22 Lifecell Corporation Sheet tissue products
ES2860464T3 (en) 2011-12-20 2021-10-05 Lifecell Corp Fluidizable Tissue Products
CA2861048C (en) 2012-01-24 2021-01-12 Lifecell Corporation Elongated tissue matrices
WO2013126590A2 (en) 2012-02-21 2013-08-29 Baxter International Inc. Pharmaceutical composition comprising cd34+ cells
WO2013163186A1 (en) 2012-04-24 2013-10-31 Lifecell Corporation Flowable tissue matrices
WO2014011402A1 (en) 2012-07-13 2014-01-16 Lifecell Corporation Methods for improved treatment of adipose tissue
BR112015006393A2 (en) 2012-09-26 2017-07-04 Lifecell Corp method for producing a fabric product, fabric product produced by a process, and treatment method
US20140178343A1 (en) 2012-12-21 2014-06-26 Jian Q. Yao Supports and methods for promoting integration of cartilage tissue explants
US9592254B2 (en) 2013-02-06 2017-03-14 Lifecell Corporation Methods for localized modification of tissue products
WO2015073918A1 (en) 2013-11-16 2015-05-21 Terumo Bct, Inc. Expanding cells in a bioreactor
EP3613841B1 (en) 2014-03-25 2022-04-20 Terumo BCT, Inc. Passive replacement of media
JP6830059B2 (en) 2014-09-26 2021-02-17 テルモ ビーシーティー、インコーポレーテッド Scheduled cell feeding
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
WO2016109555A1 (en) 2014-12-29 2016-07-07 Bioventus, Llc Systems and methods for improved delivery of osteoinductive molecules in bone repair
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
US10792394B2 (en) 2016-06-03 2020-10-06 Lifecell Corporation Methods for localized modification of tissue products
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
AU2017382173A1 (en) 2016-12-22 2019-06-06 Lifecell Corporation Devices and methods for tissue cryomilling
US10537661B2 (en) 2017-03-28 2020-01-21 DePuy Synthes Products, Inc. Orthopedic implant having a crystalline calcium phosphate coating and methods for making the same
US10537658B2 (en) 2017-03-28 2020-01-21 DePuy Synthes Products, Inc. Orthopedic implant having a crystalline gallium-containing hydroxyapatite coating and methods for making the same
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US11123375B2 (en) 2017-10-18 2021-09-21 Lifecell Corporation Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products
US10821205B2 (en) 2017-10-18 2020-11-03 Lifecell Corporation Adipose tissue products and methods of production
CA3075106A1 (en) 2017-10-19 2019-04-25 Lifecell Corporation Flowable acellular tissue matrix products and methods of production
US11246994B2 (en) 2017-10-19 2022-02-15 Lifecell Corporation Methods for introduction of flowable acellular tissue matrix products into a hand
WO2020243497A1 (en) 2019-05-30 2020-12-03 Lifecell Corporation Biologic breast implant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5855620A (en) * 1995-04-19 1999-01-05 St. Jude Medical, Inc. Matrix substrate for a viable body tissue-derived prosthesis and method for making the same
US5899936A (en) * 1994-03-14 1999-05-04 Cryolife, Inc. Treated tissue for implantation and methods of preparation

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE4440T1 (en) * 1980-02-21 1983-08-15 J. & P. Coats, Limited DEVICE FOR TREATMENT OF DAMAGED SURFACES OF HUMAN JOINTS.
JPH0662679B2 (en) * 1985-06-21 1994-08-17 新田ゼラチン株式会社 Tissue-friendly collagen and its manufacturing method
US5543394A (en) 1986-07-01 1996-08-06 Genetics Institute, Inc. Bone morphogenetic protein 5(BMP-5) compositions
IL83003A (en) * 1986-07-01 1995-07-31 Genetics Inst Osteoinductive factors
US5459047A (en) 1986-07-01 1995-10-17 Genetics Institute, Inc. BMP-6 proteins
US5013649A (en) * 1986-07-01 1991-05-07 Genetics Institute, Inc. DNA sequences encoding osteoinductive products
US4877864A (en) * 1987-03-26 1989-10-31 Genetics Institute, Inc. Osteoinductive factors
US5067940A (en) * 1988-03-23 1991-11-26 Life Resonances, Inc. Method and apparatus for controlling the growth of cartilage
US5041138A (en) * 1986-11-20 1991-08-20 Massachusetts Institute Of Technology Neomorphogenesis of cartilage in vivo from cell culture
US4846835A (en) 1987-06-15 1989-07-11 Grande Daniel A Technique for healing lesions in cartilage
US4880429A (en) * 1987-07-20 1989-11-14 Stone Kevin R Prosthetic meniscus
US6020313A (en) * 1987-10-09 2000-02-01 University Of Kansas Method for inducing bone formation using an extract of human osteosarcoma cell line SAOS-2
US4975526A (en) * 1989-02-23 1990-12-04 Creative Biomolecules, Inc. Bone collagen matrix for zenogenic implants
US4968590A (en) * 1988-04-08 1990-11-06 Stryker Corporation Osteogenic proteins and polypeptides
AU628050B2 (en) * 1988-04-08 1992-09-10 Stryker Corporation Biosynthetic osteogenic proteins and osteogenic devices containing them
US5258494A (en) * 1988-04-08 1993-11-02 Stryker Corporation Osteogenic proteins
US5354557A (en) * 1988-04-08 1994-10-11 Stryker Corporation Osteogenic devices
US5011691A (en) * 1988-08-15 1991-04-30 Stryker Corporation Osteogenic devices
US5344654A (en) * 1988-04-08 1994-09-06 Stryker Corporation Prosthetic devices having enhanced osteogenic properties
US5266683A (en) * 1988-04-08 1993-11-30 Stryker Corporation Osteogenic proteins
US5108753A (en) * 1988-04-08 1992-04-28 Creative Biomolecules Osteogenic devices
US5154189A (en) * 1988-06-03 1992-10-13 Oberlander Michael A Method for repairing a torn meniscus
ATE162223T1 (en) 1989-03-28 1998-01-15 Genetics Inst OSTEOINDUCTIVE COMPOSITIONS
US5067962A (en) * 1989-04-18 1991-11-26 Baxter International Inc. Bioprosthetic ligament
US5061286A (en) * 1989-08-18 1991-10-29 Osteotech, Inc. Osteoprosthetic implant
DE69032424T2 (en) * 1989-10-17 1999-02-04 Stryker Corp OSTEOGENIC DEVICES
US5126323A (en) * 1989-11-16 1992-06-30 Genetics Institute, Inc. Homogeneous purified k-fgf and compositions containing the same
US5067964A (en) * 1989-12-13 1991-11-26 Stryker Corporation Articular surface repair
DK0593445T3 (en) * 1990-02-02 1995-07-17 Johnson & Son Inc S C Sealed bag with upright spout
US5492697A (en) * 1990-03-05 1996-02-20 Board Of Regents, Univ. Of Texas System Biodegradable implant for fracture nonunions
ATE209251T1 (en) * 1990-05-16 2001-12-15 Genetics Inst PROTEINS PRODUCING BONE AND CARTILAGE FORMATION
US5645591A (en) * 1990-05-29 1997-07-08 Stryker Corporation Synthetic bone matrix
US5067963A (en) * 1990-08-21 1991-11-26 Washington University Method of making live autogenous skeletal replacement parts
US5206023A (en) * 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
US5208219A (en) * 1991-02-14 1993-05-04 Celtrix Pharmaceuticals Inc. Method for inducing bone growth
EP0575555B1 (en) 1991-03-11 2001-07-18 Curis, Inc. Protein-induced morphogenesis
US5652118A (en) * 1991-03-11 1997-07-29 Creative Biomolecules, Inc. Nucleic acid encoding a novel morphogenic protein, OP-3
KR100255415B1 (en) * 1991-06-25 2000-05-01 브루스 엠. 에이센 Bone morphogenetic protein-9 compositions
US5356629A (en) 1991-07-12 1994-10-18 United States Surgical Corporation Composition for effecting bone repair
US5270300A (en) * 1991-09-06 1993-12-14 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone
ATE238417T1 (en) 1991-11-04 2003-05-15 Inst Genetics Llc RECOMBINANT BONE MORPHOGENETIC PROTEIN HETERODIMERS, COMPOSITIONS AND METHODS OF USE
US5326357A (en) * 1992-03-18 1994-07-05 Mount Sinai Hospital Corporation Reconstituted cartridge tissue
CA2093836A1 (en) * 1992-04-24 1993-10-25 Wayne Gombotz Biodegradable tgf-.beta. delivery system for bone regeneration
US5190547A (en) * 1992-05-15 1993-03-02 Midas Rex Pneumatic Tools, Inc. Replicator for resecting bone to match a pattern
AU677849B2 (en) * 1993-05-12 1997-05-08 Genetics Institute, Llc BMP-10 compositions
WO1994026892A1 (en) * 1993-05-12 1994-11-24 Genetics Institute, Inc. Bmp-11 compositions
US5368051A (en) * 1993-06-30 1994-11-29 Dunn; Allan R. Method of regenerating articular cartilage
US6764994B1 (en) 1993-08-10 2004-07-20 Biopharm Gesellschaft Zur Biotechnologischen Entwicklung Von Pharmaka Mbh Growth/differential factor of the TGF-B family
JP3717930B2 (en) * 1993-12-07 2005-11-16 ジェネティックス・インスチチュート・リミテッド・ライアビリティ・カンパニー BMP-12, BMP-13 and their tendon-derived compositions
US5906827A (en) * 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
JPH10509715A (en) * 1994-11-21 1998-09-22 ウィスコンシン・アルムニ・リサーチ・ファウンデーション 18,19-dinor-vitamin D compounds
US5635372A (en) * 1995-05-18 1997-06-03 Genetics Institute, Inc. BMP-15 compositions
DK0831884T3 (en) * 1995-06-05 2003-11-03 Inst Genetics Llc Use of bone morphogenetic proteins for healing and repair of connective tissue binding
US5700774A (en) * 1996-03-26 1997-12-23 Genetics Institute, Inc. Compositions comprising bone morphogenic proteins and truncated parathyroid hormone related peptide, and methods of inducing cartilage by administration of same
EP1370287A2 (en) 2000-12-01 2003-12-17 Wyeth Method and composition for modulating bone growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336616A (en) * 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5899936A (en) * 1994-03-14 1999-05-04 Cryolife, Inc. Treated tissue for implantation and methods of preparation
US5855620A (en) * 1995-04-19 1999-01-05 St. Jude Medical, Inc. Matrix substrate for a viable body tissue-derived prosthesis and method for making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054825A1 (en) * 1988-04-08 2005-03-10 Stryker Biotech Corporation Osteogenic devices
USRE43714E1 (en) 1999-12-15 2012-10-02 Zimmer Orthobiologics, Inc. Preparation for repairing cartilage defects or cartilage/bone defects in human or animal joints
US7758896B2 (en) 2004-04-16 2010-07-20 University Of Massachusetts Porous calcium phosphate networks for synthetic bone material
US20110125003A1 (en) * 2008-05-29 2011-05-26 Yale University Systems, Devices and Methods For Cartilage and Bone Grafting
US9020577B2 (en) * 2008-05-29 2015-04-28 Yale University Systems, devices and methods for cartilage and bone grafting
US8753406B2 (en) 2010-08-31 2014-06-17 Zimmer Inc. Osteochondral graft delivery device and uses thereof

Also Published As

Publication number Publication date
AU702220C (en) 2001-10-18
AU702220B2 (en) 1999-02-18
JP3504950B2 (en) 2004-03-08
ATE249849T1 (en) 2003-10-15
US5906827A (en) 1999-05-25
US20050089544A1 (en) 2005-04-28
US6110482A (en) 2000-08-29
DE69531779D1 (en) 2003-10-23
AU2691995A (en) 1996-01-04
JPH10504202A (en) 1998-04-28
DE69531779T2 (en) 2004-07-15
CA2191584A1 (en) 1995-12-14
US6027743A (en) 2000-02-22
CA2191584C (en) 2002-05-28
WO1995033502A1 (en) 1995-12-14
EP0762903B1 (en) 2003-09-17
EP0762903B2 (en) 2007-08-22
EP0762903A1 (en) 1997-03-19
DE69531779T3 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
AU702220C (en) Manufacture of autogenous replacement body parts
AU751451B2 (en) Osteogenic devices and methods of use thereof for repair of bone
US8372805B1 (en) Osteogenic devices and methods of use thereof for repair of endochondral bone, osteochondral and chondral defects
AU772479B2 (en) Repair of larynx, trachea, and other fibrocartilaginous tissues
US20010024823A1 (en) Repair of larynx, trachea, and other fibrocartilaginous tissues
JP2015227366A (en) Matrix-free osteogenic devices, implants, and use methods thereof
AU735534B2 (en) Manufacture of autogenous replacement body parts and components therefor
CA2372690A1 (en) Manufacture of autogenous replacement body parts
EP1649865A1 (en) Use of osteogenic proteins for the preparation of a pharmaceutical composition for repairing a defect locus in a non articular cartilage tissue of a mammal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION