Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030050696 A1
Publication typeApplication
Application numberUS 10/242,977
Publication date13 Mar 2003
Filing date13 Sep 2002
Priority date9 Aug 1999
Also published asCA2378621A1, EP1210035A1, EP1210035A4, US6451056, WO2001010354A1
Publication number10242977, 242977, US 2003/0050696 A1, US 2003/050696 A1, US 20030050696 A1, US 20030050696A1, US 2003050696 A1, US 2003050696A1, US-A1-20030050696, US-A1-2003050696, US2003/0050696A1, US2003/050696A1, US20030050696 A1, US20030050696A1, US2003050696 A1, US2003050696A1
InventorsJ. Cumming
Original AssigneeCumming J. Stuart
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lens for increased depth of focus
US 20030050696 A1
Abstract
An intraocular lens provides substantially increased depth of focus for accurate near and far vision with an optic much thinner than a natural lens, and the lens being rigid vaulted posteriorly and adapted for posterior positioning in the capsular bag. The optic is positioned substantially farther from the cornea than a natural lens, so that a cone of light exiting the optic to impinge upon the retina is much smaller than a cone of light from a natural lens. Typically, the optic may be about 1.0 mm thick and its distance from the cornea 7.0-8.0 mm.
Images(3)
Previous page
Next page
Claims(23)
The inventor claims:
1. An intraocular lens for increased depth of focus, comprising:
an optic having a thickness substantially less than a natural human lens, and
at least two haptics connected with the optic,
said lens being adapted to be posteriorly positioned in the capsular bag of the eye,
whereby light refracted by the cornea travels substantially farther to the optic than with a natural optic and a substantially smaller cone of light passes from the optic to the retina to provide substantially increased depth of focus.
2. A lens according to claim 1, wherein the optic is about 1.0 mm in thickness.
3. A lens according to claim 1, wherein the optic has a thickness between 0.05 mm and 1.5 mm.
4. A lens according to claim 1, wherein the lens is rigid and the haptics are rigidly connected with the optic and extend therefrom.
5. A lens according to claim 1, wherein the lens is configurated to vault posteriorly in the capsular bag of the eye.
6. A lens according to claim 4, wherein the lens is configurated to vault posteriorly in the capsular bag.
7. A lens according to claim 4, wherein the optic has a thickness between 0.50 mm and 1.5 mm.
8. A lens according to claim 5, wherein the optic has a thickness between 0.60 mm and 1.5 mm.
9. A lens according to claim 4, wherein:
the rigid lens is moved anteriorly for near vision and posteriorly for far vision by changes in ciliary muscle configuration during contraction.
10. A lens according to claim 9, wherein:
a peripheral equator of the capsular bag and the rigid lens therein are moved about 1.0 mm between their far and near vision positions, whereby the optic is positioned about 1.0 mm further anteriorly than posteriorly to provide improved near vision.
11. A lens according to claim 9, wherein:
redistribution of ciliary muscle mass upon constriction of the muscle for near vision causes encroachment thereof on the vitreous cavity and an increase of pressure therein to aid in urging the rigid lens anteriorly to enhance near vision.
12. An intraocular lens for increased depth of focus, comprising:
an optic having a thickness substantially less than the thickness of a natural human lens, and
two haptics rigidly connected to the optic and extending therefrom,
said lens being configurated to vault posteriorly in the capsular bag to position the optic farther from the cornea of the eye,
whereby light refracted by the cornea travels substantially farther to the optic than with a natural optic and a substantially smaller cone of light passes from the optic to the retina to provide substantially increased depth of focus.
13. A lens according to claim 12, wherein the optic has a thickness between 0.05 mm and 1.5 mm.
14. A lens according to claim 12, wherein:
the rigid lens is moved anteriorly for near vision and posteriorly for far vision by changes in ciliary muscle configuration during contraction.
15. A lens according to claim 13, wherein:
the rigid lens is moved anteriorly for near vision and posteriorly for far vision by changes in ciliary muscle configuration during contraction.
16. A lens according to claim 14, wherein:
redistribution of ciliary muscle mass upon constriction of the muscle for near vision causes encroachment thereof on the vitreous cavity and an increase of pressure therein to aid in urging the rigid lens anteriorly to enhance near vision.
17. A lens according to claim 14, wherein:
a peripheral equator of the capsular bag and the rigid lens therein are moved about 1.0 mm between their far and near vision positions, whereby the optic is positioned about 1.0 mm further anteriorly than posteriorly to provide improved near vision.
18. A lens according to claim 12, wherein:
a peripheral equator of the capsular bag and the rigid lens therein are moved about 1.0 mm between their far and near vision positions, whereby the optic is positioned about 1.0 mm further anteriorly than posteriorly to provide improved near vision.
19. A lens according to claim 4, and further comprising at least one rigid bar secured to and extending longitudinally of the lens to provide rigidity.
20. A lens according to claim 19, wherein said lens is longitudinally flexible for bending for insertion into an eye.
21. A lens according to claim 12, and further comprising at least one rigid bar secured to and extending longitudinally of the lens to provide rigidity.
22. A lens according to claim 21, wherein said lens is longitudinally flexible for bending for insertion into an eye.
23. A lens according to claim 21, wherein two rigid bars are disposed in spaced relation and extend longitudinally of the lens.
Description
    BACKGROUND AND SUMMARY OF THE INVENTION
  • [0001]
    A natural human optic typically has a thickness of about 5.0 mm. Light rays entering the cornea and passing to the optic typically travel about 7.0 to 8.0 mm. Light rays pass from the optic in a cone of light with its apex at the retina. The natural lens provides only a limited degree of depth of focus with clear vision over a limited range of distances.
  • [0002]
    The present invention provides an optic which is only a fraction the thickness of the natural lens. Whereas the natural lens is about 5.0 mm thick, the lens of the invention may typically be 1.0 mm and may range from about 0.5 mm to 1.5 mm. The distance from the cornea to the optic of the invention is about 7.0-8.0 mm, whereas with a natural lens, the light rays travel only about 3.5 mm from cornea to optic. Light rays refracted by and exiting the optic define a cone of light much smaller in cross-sectional area than the natural lens, and therefore impinge on the retina in a smaller area. The much smaller cone provides greatly increased depth of focus in comparison with a natural lens, and thus enables clear vision over a long range of distances. In effect, the invention provides effective accommodation as between near and far vision, and a person is enabled to view accurately over a wide range of distances. The optic is positioned much farther from the cornea than a natural lens, and this increase of distance minimizes the distance optical power change. The further posterior the optic, the higher the power of the optic and the less movement required for a given power change. The lens according to the invention is rigid, the haptics being rigidly connected to the optic, and the lens is vaulted posteriorly. Thus, the distance between the cornea and the optic is maximized and the distance of travel of light rays between cornea and optic is increased.
  • [0003]
    The rigid lens causes the optic to move with the periphery of the capsular bag in response to ciliary muscle changes, particularly for near vision.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0004]
    [0004]FIG. 1 is a cross-sectional view of a frontal portion of a human eye with a lens according to the invention disposed therein;
  • [0005]
    [0005]FIG. 2 is a partial sectional view of an eye showing light rays entering the cornea and exiting the optic in a cone of light from a natural lens to the retina;
  • [0006]
    [0006]FIG. 3 is a view similar to that of FIG. 2, showing an optic according to the invention, and light rays exiting the optic in a cone of light of smaller size than with the natural lens of FIG. 2;
  • [0007]
    [0007]FIGS. 4 and 5 are sectional views taken respectively at line 4-4 and line 5-5 in FIG. 1, showing a capsular bag and haptic in relation to the ciliary muscle in near and far vision positions of the capsular bag and haptic;
  • [0008]
    [0008]FIG. 6 is a diagrammatic sectional view of the ciliary muscle and capsular bag showing in solid lines their near vision positions, and showing in broken lines their far vision positions;
  • [0009]
    [0009]FIG. 7 is an elevational view of a preferred embodiment of lens and haptic according to the invention;
  • [0010]
    [0010]FIG. 8 is a side elevational view of the lens of FIG. 7;
  • [0011]
    [0011]FIG. 9 is an elevational view of another preferred embodiment of lens according to the invention; and
  • [0012]
    [0012]FIG. 10 is a side elevational view of the lens of FIG. 9.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0013]
    The present invention provides substantially increased depth of focus, for effective near and far accurate vision by providing a thin optic which is only a fraction the thickness of a natural lens or a conventional artificial lens optic, and by providing a rigid lens adapted to be positioned posteriorly in the natural capsular bag.
  • [0014]
    Referring to the drawings, FIG. 1 is a cross-sectional view of an eye 10 with a cornea 12, with a lens 14 according to the invention disposed in the capsular bag 16 of the eye. As indicated in FIG. 2, light rays entering at the cornea are refracted and impact a natural lens 14 which refracts the rays to define a cone of light which impacts the retina. FIG. 3 is a partial sectional view showing a thin optic 18 of the invention disposed substantially farther posteriorly than the natural lens 14 (or a conventional artificial lens) of 5 mm thickness (d2 in FIG. 2). The light rays passing from the cornea to the optic 18 must travel a distance of about 7.0 to 8.0 mm from the cornea to the optic, whereas with the natural lens 14 light rays travel only about 3.5 mm. The light rays refracted by and exiting the optic 18 define a cone of light of much smaller cross-sectional area (FIG. 3A) impact the retina in a smaller area, in comparison with the much larger cone of light and its much larger cross section (FIGS. 2 and 2A). An optic according to the invention may typically be 1.0 mm thick (d1 in FIG. 3), and may range from about 0.5 to about 1.5 mm in thickness.
  • [0015]
    The much smaller cone of light provides greatly increased depth of focus, thus enabling clear vision over a long range of distances, in comparison with the much larger cone of light produced by the natural human lens or conventional artificial intraocular lens. The much improved depth of focus provides effective accommodation or “pseudo accommodation”, as between near and far vision, so that a person is enabled to view accurately over a wide range of distances. The increase of distance which light rays must travel between the cornea and the optic minimizes the distance optical power change—i.e., the further posterior the optic, the higher the power of the optic and the less movement required for significant power change.
  • [0016]
    The lens 14 according to the invention is rigid, with the haptics thereof rigidly connected with the optic. The lens is vaulted posteriorly, as shown in FIGS. 1 and 8, in order to maximize the posterior positioning of the optic to increase the distance of travel of light rays between the cornea and the optic. Additional rigidity may be provided by rigid bars 20 secured along the edges of the lens (FIG. 7) or as shown in FIG. 9, a lens 22 may have rigid bars 24 disposed inwardly of the lens edges with arcuate portions extending about the optic, as shown. The haptics are preferably flexible to enable folding for insertion of the lens into the human eye via a slot therein of relatively short length. Lenses according to the invention may preferably embody upper and lower flexible loop portions 26, 26 (FIG. 7) which extend oppositely to facilitate lens rotation during insertion into an eye, without interfering engagement with the capsular bag.
  • [0017]
    The outer peripheral equator portion of the capsular bag is moved in response to configurational changes in the ciliary muscle as between near and far vision, thereby causing the lens and its optic to move with the periphery of the capsular bag in response to such muscle changes, particularly with respect to near vision. That is, upon contraction of the ciliary muscle, anterior displacement of the capsular bag equator effects corresponding anterior movement of the optic. The lens and optic are free to move anteriorly because of the relative stiffness of the anterior bag resulting from leather-like fibrosis or dead tissue arising from conventional surgical cutting to remove the anterior portion of the bag. The lens is moved posteriorly only when the muscle acts thereon.
  • [0018]
    [0018]FIGS. 4, 5 and 6 are diagrammatic cross-sectional views of the ciliary muscle 28 of the eye in relation to the peripheral or equator portion of the capsular bag with the lens 14 of the invention therein. FIG. 6 shows in broken lines the configuration 30 of the muscle 28 and the relative position of the haptic 14, in a far vision position, and showing in solid lines 32, the muscle configuration 30 and relative position of the haptic for near vision. Muscle configuration indicated at 30 extends into vitreous cavity, thus increasing pressure to a limited degree to further aid in moving the lens anteriorly. Muscle constriction moves the rigid lens forward to a limited degree at the bag periphery, the whole lens moving forwardly.
  • [0019]
    Thus there has been shown and described a lens for increased depth of focus which fulfills all the objects and advantages sought therefor. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification together with the accompanying drawings and claims. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US777608828 Feb 200517 Aug 2010Powervision, Inc.Intraocular lens system and method for power adjustment
US77807295 Oct 200424 Aug 2010Visiogen, Inc.Intraocular lens
US787143721 Dec 200718 Jan 2011Amo Groningen B.V.Accommodating intraocular lenses and associated systems, frames, and methods
US79557169 Jun 20047 Jun 2011Hitachi Chemical Co., Ltd.Metal coordination compound, polymer composition, and organic electroluminescent device employing same
US800841818 Jun 200430 Aug 2011Hitachi Chemical Co., Ltd.High-molecular copolymer containing metal coordination compound and organic electroluminescence element using the same
US802582319 Apr 200627 Sep 2011Visiogen, Inc.Single-piece accommodating intraocular lens system
US80481553 Feb 20031 Nov 2011Powervision, Inc.Intraocular implant devices
US80623611 Aug 200522 Nov 2011Visiogen, Inc.Accommodating intraocular lens system with aberration-enhanced performance
US815871221 Feb 200817 Apr 2012Powervision, Inc.Polymeric materials suitable for ophthalmic devices and methods of manufacture
US818253114 Jan 201122 May 2012Amo Groningen B.V.Accommodating intraocular lenses and associated systems, frames, and methods
US818732519 Apr 200629 May 2012Visiogen, Inc.Materials for use in accommodating intraocular lens system
US824667923 Aug 201021 Aug 2012Visiogen, Inc.Intraocular lens
US83036564 Sep 20076 Nov 2012Powervision, Inc.Adaptive optic lens and method of making
US831492723 Jul 200820 Nov 2012Powervision, Inc.Systems and methods for testing intraocular lenses
US832886922 Jul 200811 Dec 2012Powervision, Inc.Accommodating intraocular lenses and methods of use
US836114519 Dec 200629 Jan 2013Powervision, Inc.Accommodating intraocular lens system having circumferential haptic support and method
US837712310 Nov 200419 Feb 2013Visiogen, Inc.Method of implanting an intraocular lens
US842559918 Nov 201123 Apr 2013Powervision, Inc.Accommodating intraocular lenses and methods of use
US844708631 Aug 201021 May 2013Powervision, Inc.Lens capsule size estimation
US845468810 Aug 20104 Jun 2013Powervision, Inc.Accommodating intraocular lens having peripherally actuated deflectable surface and method
US849670118 May 201230 Jul 2013Amo Groningen B.V.Accommodating intraocular lenses and associated systems, frames, and methods
US866873411 Jul 201111 Mar 2014Powervision, Inc.Intraocular lens delivery devices and methods of use
US890029823 Feb 20112 Dec 2014Powervision, Inc.Fluid for accommodating intraocular lenses
US895640823 Jul 200817 Feb 2015Powervision, Inc.Lens delivery system
US896839615 Mar 20133 Mar 2015Powervision, Inc.Intraocular lens delivery systems and methods of use
US89926099 Aug 201031 Mar 2015Powervision, Inc.Intraocular lens system and method for power adjustment
US900528317 Aug 201214 Apr 2015Visiogen Inc.Intraocular lens
US901153215 Jul 201321 Apr 2015Abbott Medical Optics Inc.Accommodating intraocular lenses
US90397602 Oct 201226 May 2015Abbott Medical Optics Inc.Pre-stressed haptic for accommodating intraocular lens
US904431724 Jan 20142 Jun 2015Powervision, Inc.Intraocular lens delivery devices and methods of use
US91987527 Jul 20061 Dec 2015Abbott Medical Optics Inc.Intraocular lens implant having posterior bendable optic
US927183016 Feb 20101 Mar 2016Abbott Medical Optics Inc.Accommodating intraocular lens and method of manufacture thereof
US927798729 Jul 20118 Mar 2016Powervision, Inc.Accommodating intraocular lenses
US945689515 May 20144 Oct 2016Powervision, Inc.Accommodating intraocular lens
US950456021 Dec 201229 Nov 2016Abbott Medical Optics Inc.Accommodating intraocular lens with outer support structure
US960370321 Dec 201228 Mar 2017Abbott Medical Optics Inc.Intraocular lens and methods for providing accommodative vision
US961015522 Mar 20124 Apr 2017Powervision, Inc.Intraocular lens loading systems and methods of use
US963621330 Sep 20052 May 2017Abbott Medical Optics Inc.Deformable intraocular lenses and lens systems
US96938582 Jun 20154 Jul 2017Powervision, Inc.Intraocular lens delivery devices and methods of use
US97954738 Mar 201624 Oct 2017Powervision, Inc.Accommodating intraocular lenses
US981457021 Jan 201414 Nov 2017Abbott Medical Optics Inc.Ophthalmic lens combinations
US20030149480 *3 Feb 20037 Aug 2003Shadduck John H.Intraocular implant devices
US20040190153 *12 Dec 200330 Sep 2004PowervisionLens system and method for power adjustment using externally actuated micropumps
US20050021139 *7 Oct 200427 Jan 2005Shadduck John H.Ophthalmic devices, methods of use and methods of fabrication
US20050267575 *1 Aug 20051 Dec 2005Nguyen Tuan AAccommodating intraocular lens system with aberration-enhanced performance
US20060184244 *14 Feb 200517 Aug 2006Nguyen Tuan ABiasing system for intraocular lens
US20060287498 *18 Jun 200421 Dec 2006Hitachi Chemical Co LtdHigh-molecular copolymer containing metal coordination compound and organic electroluminescence element using the same
US20070010880 *12 Sep 200611 Jan 2007Powervision, Inc.Methods of adjusting the power of an intraocular lens
US20070088433 *17 Oct 200519 Apr 2007PowervisionAccommodating intraocular lens system utilizing direct force transfer from zonules and method of use
US20070100445 *21 Aug 20063 May 2007Shadduck John HIntraocular lenses and business methods
US20070106377 *27 Dec 200610 May 2007Powervision, Inc.Accommodating intraocular lens system having spherical aberration compensation and method
US20070108643 *19 Apr 200617 May 2007Gholam-Reza Zadno-AziziSingle-piece accommodating intraocular lens system
US20070128466 *9 Jun 20047 Jun 2007Hitachi Chemical Co., Ltd.Metal coordination compound, polymer composition, and organic electroluminescent device employing same
US20070203578 *19 Dec 200630 Aug 2007Powervision, Inc.Accommodating intraocular lens system having circumferential haptic support and method
US20070213817 *6 Mar 200713 Sep 2007Victor EschAccommodating intraocular lens having peripherally actuated deflectable surface and method
US20070299487 *4 Sep 200727 Dec 2007Shadduck John HAdaptive Optic Lens and Method of Making
US20080015689 *24 Jul 200717 Jan 2008Victor EschAccommodating Intraocular Lens System and Method
US20080046074 *23 Aug 200721 Feb 2008Smith David JAccommodating Intraocular Lens System Having Spherical Aberration Compensation and Method
US20080046075 *23 Aug 200721 Feb 2008Esch Victor CAccommodating Intraocular Lens System and Method
US20080200982 *21 Feb 200821 Aug 2008Jingjong YourPolymeric Materials Suitable for Ophthalmic Devices and Methods of Manufacture
US20080221676 *21 Jul 200511 Sep 2008Cornell Research Foundation, Inc.Accommodating Intraocular Lens and Methods of Use
US20080306587 *22 Jul 200811 Dec 2008Jingjong YourLens Material and Methods of Curing with UV Light
US20080306588 *22 Jul 200811 Dec 2008Terah Whiting SmileyAccommodating Intraocular Lenses and Methods of Use
US20090005865 *23 Jul 20081 Jan 2009Smiley Terry WPost-Implant Accommodating Lens Modification
US20090149952 *31 Dec 200811 Jun 2009Shadduck John HIntraocular Lenses and Business Methods
US20100131058 *26 Jan 201027 May 2010Shadduck John HIntraocular Lenses and Business Methods
US20100179653 *11 Jan 201015 Jul 2010Claudio ArgentoIntraocular Lenses and Methods of Accounting for Capsule Size Variability and Post-Implant Changes in the Eye
US20100228344 *18 May 20109 Sep 2010Shadduck John HAccommodating Intraocular Lens
US20100324672 *10 Aug 201023 Dec 2010Powervision, Inc.Accommodating Intraocular Lens Having Peripherally Actuated Deflectable Surface and Method
US20100324673 *23 Aug 201023 Dec 2010Visiogen, Inc.Intraocular lens
US20110112638 *14 Jan 201112 May 2011Amo Groningen BvAccommodating intraocular lenses and associated systems, frames, and methods
US20110208301 *23 Feb 201125 Aug 2011David AnvarFluid for Accommodating Intraocular Lenses
Classifications
U.S. Classification623/6.37, 623/6.4
International ClassificationA61F2/16
Cooperative ClassificationA61F2/1629, A61F2002/1699, A61F2002/1689
European ClassificationA61F2/16B4L