US20030003469A1 - Ribozyme treatment of diseases or conditions related to levels of NF-kappaB - Google Patents

Ribozyme treatment of diseases or conditions related to levels of NF-kappaB Download PDF

Info

Publication number
US20030003469A1
US20030003469A1 US10/056,414 US5641402A US2003003469A1 US 20030003469 A1 US20030003469 A1 US 20030003469A1 US 5641402 A US5641402 A US 5641402A US 2003003469 A1 US2003003469 A1 US 2003003469A1
Authority
US
United States
Prior art keywords
nucleic acid
base pairs
single linear
acid single
pairs nucleic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/056,414
Inventor
Dan Stinchcomb
Kenneth Draper
James McSwiggen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirna Therapeutics Inc
Original Assignee
Ribozyme Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1993/006316 external-priority patent/WO1994002595A1/en
Application filed by Ribozyme Pharmaceuticals Inc filed Critical Ribozyme Pharmaceuticals Inc
Priority to US10/056,414 priority Critical patent/US20030003469A1/en
Publication of US20030003469A1 publication Critical patent/US20030003469A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/121Hammerhead
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/122Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/123Hepatitis delta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/124Type of nucleic acid catalytic nucleic acids, e.g. ribozymes based on group I or II introns
    • C12N2310/1241Tetrahymena
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/126Type of nucleic acid catalytic nucleic acids, e.g. ribozymes involving RNAse P
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/127DNAzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/317Chemical structure of the backbone with an inverted bond, e.g. a cap structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/332Abasic residue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/333Modified A
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3517Marker; Tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3523Allyl
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3527Other alkyl chain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3533Halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3535Nitrogen

Definitions

  • the present invention relates to therapeutic compositions and methods for the treatment or diagnosis of diseases or conditions related to NF- ⁇ B levels, such as restenosis, rheumatoid arthritis, asthma, inflammatory or autoimmune disorders and transplant rejection.
  • NF- ⁇ B nuclear DNA-binding activity
  • NF- ⁇ B The activity first described as NF- ⁇ B is a heterodimer of p49 or p50 with p65.
  • the p49 and p50 subunits of NF- ⁇ B (encoded by the nf- ⁇ B2 or nf- ⁇ B1 genes, respectively) are generated from the precursors NF- ⁇ B1 (p105) or NF- ⁇ B2 (p100).
  • the p65 subunit of NF- ⁇ B (now termed Rel A) is encoded by the rel A locus.
  • heterodimers of NF- ⁇ B2/RelA act with Tat-I to activate transcription of the HIV genome, while NF- ⁇ B1/RelA (p50/p65) heterodimers have little effect (J. Liu, N. D. Perkins, R. M. Schmid, G. J. Nabel, J. Virol. 1992 66, 3883-3887).
  • blocking rel A gene expression with antisense oligonucleotides specifically blocks embryonic stem cell adhesion; blocking NF- ⁇ B1 gene expression with antisense oligonucleotides had no effect on cellular adhesion (Narayanan et al., 1993 Mol. Cell. Biol. 13, 3802-3810).
  • NF- ⁇ B A number of specific inhibitors of NF- ⁇ B function in cells exist, including treatment with phosphorothioate antisense oliogonucleotide, treatment with double-stranded NF- ⁇ B binding sites, and over expression of the natural inhibitor MAD-3 (an I ⁇ B family member). These agents have been used to show that NF- ⁇ B is required for induction of a number of molecules involved in inflammation, as described below.
  • NF- ⁇ B is required for phorbol ester-mediated induction of IL-6 (I. Kitajima, et al., Science 258, 1792-5 (1992)) and IL-8 (Kunsch and Rosen, 1993 Mol. Cell. Biol. 13, 6137-46).
  • NF- ⁇ B is required for induction of the adhesion molecules ICAM-1 (Eck, et al., 1993 Mol. Cell. Biol. 13, 6530-6536), VCAM-1 (Shu et al., supra), and E-selectin (Read, et al., 1994 J. Exp. Med. 179, 503-512) on endothelial cells.
  • NF- ⁇ B is involved in the induction of the integrin subunit, CD18, and other adhesive properties of leukocytes (Eck et al., 1993 supra).
  • glucocorticoids may exert their anti-inflammatory effects by inhibiting NF- ⁇ B.
  • the glucocorticoid receptor and p65 both act at NF- ⁇ B binding sites in the ICAM-1 promoter (van de Stolpe, et al., 1994 J. Biol. Chem. 269, 6185-6192).
  • Glucocorticoid receptor inhibits NF- ⁇ B-mediated induction of IL-6 (Ray and Prefontaine, 1994 Proc. Natl Acad. Sci USA 91, 752-756).
  • This invention relates to ribozymes, or enzymatic RNA molecules, directed to cleave mRNA species encoding Rel A protein (p65).
  • ribozymes capable of cleaving this RNA and their use to reduce activity of NF- ⁇ B in various tissues to treat the diseases discussed herein.
  • Such ribozymes are also useful for diagnostic applications.
  • Ribozymes that cleave rel A mRNA represent a novel therapeutic approach to inflammatory or autoimmune disorders.
  • Antisense DNA molecules have been described that block NF- ⁇ B activity. See Narayanan et al., supra.
  • ribozymes may show greater perdurance or lower effective doses than antisense molecules due to their catalytic properties and their inherent secondary and tertiary structures.
  • enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA.
  • the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.
  • ribozyme The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide.
  • This advantage reflects the ability of the ribozyme to act enzymatically.
  • a single ribozyme molecule is able to cleave many molecules of target RNA.
  • the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage.
  • the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA.
  • hammerhead motifs are described by Rossi et al., 1992, Aids Research and Human Retroviruses, 8, 183, of hairpin motifs by Hampel et al., “RNA Catalyst for Cleaving Specific RNA Sequences,” filed Sep. 20, 1989, which is a continuation-in-part of U.S. Ser. No. 07/247,100 filed Sep.
  • the invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target.
  • the enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target Rel A encoding mRNA such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids.
  • Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required.
  • the ribozymes can be expressed from DNA vectors that are delivered to specific cells.
  • nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive.
  • small enzymatic nucleic acid motifs e.g., of the hammerhead or the hairpin structure
  • the simple structure of these molecules increases the ability of the enzymatic nucleic acid to invade targeted regions of the mRNA structure.
  • these catalytic RNA molecules can also be expressed within cells from eukaryotic promoters (e.g., Scanlon, K. J., et al., 1991, Proc. Natl. Acad. Sci.
  • any ribozyme can be expressed in eukaryotic cells from the appropriate DNA vector.
  • the activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Draper et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa, J., et al., 1992, Nucleic Acids Symp. Ser., 27, 15-6; Taira, K., et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura, M., et al., 1993, Nucleic Acids Res., 21, 3249-55).
  • Inflammatory mediators such as lipopolysaccharide (LPS), interleukin-1 (IL-1) or tumor necrosis factor-a (TNF- ⁇ ) act on cells by inducing transcription of a number of secondary mediators, including other cytokines and adhesion molecules. In many cases, this gene activation is known to be mediated by the transcriptional regulator, NF- ⁇ B.
  • NF- ⁇ B transcriptional regulator
  • One subunit of NF- ⁇ B, the relA gene product (termed RelA or p65) is implicated specifically in the induction of inflammatory responses.
  • Ribozyme therapy due to its vibrant specificity, is particularly well-suited to target intracellular factors that contribute to disease pathology. Thus, ribozymes that cleave mRNA encoded by rel A may represent novel therapeutics for the treatment of inflammatory and autoimmune disorders.
  • the invention features ribozymes that inhibit RelA production.
  • RNA molecules contain substrate binding domains that bind to accessible regions of their target mRNAs.
  • the RNA molecules also contain domains that catalyze the cleavage of RNA.
  • the RNA molecules are preferably ribozymes of the hammerhead or hairpin motif. Upon binding, the ribozymes cleave the target RelA encoding mRNAs, preventing translation and p65 protein accumulation. In the absence of the expression of the target gene, a therapeutic effect may be observed.
  • inhibitor is meant that the activity or level of RelA encoding mRNA is reduced below that observed in the absense of the ribozyme, and preferably is below that level observed in the presence of an inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA.
  • Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the level of NF- ⁇ B activity in a cell or tissue.
  • related is meant that the inhibition of relA mRNA and thus reduction in the level of NF- ⁇ B activity will relieve to some extent the symptoms of the disease or condition.
  • Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells.
  • the RNA or RNA complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection or the use of a catheter, infusion pump or stent, with or without their incorporation in biopolymers.
  • the ribozymes have binding arms which are complementary to the sequences in Tables II, III, VI-VII. Examples of such ribozymes are shown in Tables IV-VII. Examples of such ribozymes consist essentially of sequences defined in these Tables.
  • consists essentially of is meant that the active ribozyme contains an enzymatic center equivalent to those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.
  • ribozymes that cleave target molecules and inhibit NF- ⁇ B activity are expressed from transcription units inserted into DNA, RNA, or viral vectors.
  • the recombinant vectors capable of expressing the ribozymes are locally delivered as described above, and transiently persist in target cells. Once expressed, the ribozymes cleave the target mRNA.
  • the recombinant vectors are preferably DNA plasmids or adenovirus vectors. However, other mammalian cell vectors that direct the expression of RNA may be used for this purpose.
  • FIG. 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art.
  • FIG. 2 a is a diagrammatic representation of the hammerhead ribozyme domain known in the art
  • FIG. 2 b is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, Nature, 327, 596-600) into a substrate and enzyme portion;
  • FIG. 2 c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, Nature, 334, 585-591) into two portions;
  • FIG. 2 d is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989, Nucl. Acids. Res., 17, 1371-1371) into two portions.
  • FIG. 3 is a representation of the general structure of the hairpin ribozyme domain known in the art.
  • FIG. 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art.
  • FIG. 5 is a representation of the general structure of the VS RNA ribozyme domain known in the art.
  • FIG. 6 is a schematic representation of an RNAseH accessibility assay. Specifically, the left side of FIG. 6 is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA. Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of FIG. 6 is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target RNA; the bands unique to each lane represent the cleaved products.
  • Ribozymes of this invention block to some extent NF- ⁇ B expression and can be used to treat disease or diagnose such disease. Ribozymes will be delivered to cells in culture and to cells or tissues in animal models of restenosis, transplant rejection and rheumatoid arthritis. Ribozyme cleavage of relA mRNA in these systems may prevent inflammatory cell function and alleviate disease symptoms.
  • Targets for useful ribozymes can be determined as disclosed in Draper et al supra, Sullivan et al., supra, as well as by Draper et al., “Method and reagent for treatment of arthritic conditions U.S. Ser. No. 08/152,487, filed Nov. 12, 1993, and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. Such ribozymes can also be optimized and delivered as described therein.
  • RNA targets described can be used as described below.
  • binding arms suitable for targeting human RNA sequences are present in the ribozyme.
  • Such targets may also be selected as described below.
  • the sequence of human and mouse relA mRNA can be screened for accessible sites using a computer folding algorithm. Potential hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables II, III, and VI-VII. (All sequences are 5′ to 3′ in the tables.) While mouse and human sequences can be screened and ribozymes thereafter designed, the human targetted sequences are of most utility. However, as discussed in Stinchcomb et al. supra, mouse targetted ribozmes are useful to test efficacy of action of the ribozyme prior to testing in humans. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. (In Table II, lower case letters indicate positions that are not conserved between the Human and the Mouse relA sequences.)
  • Hammerhead ribozymes are designed that could bind and are individually analyzed by computer folding (Jaeger, J. A., et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 7706-7710) to assess whether, the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.
  • RNA is screened for accessible cleavage sites by the method described generally in Draper et al., WO/US93/04020 hereby incorporated by reference herein. Briefly, DNA oligonucleotides representing potential hammerhead ribozyme cleavage sites are synthesized. A polymerase chain reaction is used to generate a substrate for T7 RNA polymerase transcription from human or murine rel A cDNA clones. Labeled RNA transcripts are synthesized in vitro from the two templates. The oligonucleotides and the labeled transcripts are annealed, RNAseH is added and the mixtures are incubated for the designated times at 37° C.
  • RNA separation is stopped and RNA separated on sequencing polyacrylamide gels.
  • the percentage of the substrate cleaved is determined by autoradiographic quantitation using a phosphor imaging system. From these data, hammerhead ribozyme sites are chosen as the most accessible.
  • Ribozymes of the hammerhead motif are designed to anneal to various sites in the mRNA message.
  • the binding arms are complementary to the target site sequences described above.
  • the ribozymes are chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman, N.; Ogilvie, K. K.; Jiang, M. -Y.; Cedergren, R. J. 1987, J. Am. Chem. Soc., 109, 7845-7854 and in Scaringe, S.
  • ribozymes are modified to enhance stability by modification of five ribonucleotides at both the 5′ and 3′ ends with 2′-O-methyl groups.
  • Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Usman et al., Synthesis, deprotection, analysis and purification of RNA and ribozymes, filed May, 18, 1994, U.S. Ser. No. 08/245,736 the totality of which is hereby incorporated herein by reference.) and are resuspended in water.
  • Ribozyme activity can be optimized as described by Stinchcomb et al., supra. The details will not be repeated here, but include altering the length of the ribozyme binding arms (stems I and III, see FIG. 2 c ), or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., Nature 1990, 344:565; Pieken et al., Science 1991, 253:314; Usman and Cedergren, Trends in Biochem. Sci.
  • Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.
  • ribozymes may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles.
  • the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent.
  • routes of delivery include, but are not limited to, intrvascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan, et al., supra and Draper, et al., supra which have been incorporated by reference herein.
  • RNA polymerase I RNA polymerase I
  • RNA polymerase II RNA polymerase II
  • RNA polymerase III RNA polymerase III
  • Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby.
  • Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein, O. and Moss, B., 1990, Proc. Natl. Acad. Sci. USA, 87, 6743-7; Gao, X. and Huang, L., 1993, Nucleic Acids Res., 21, 2867-72; Lieber, A., et al., 1993, Methods Enzymol., 217, 47-66; Zhou, Y., et al., 1990, Mol. Cell. Biol., 10, 4529-37).
  • ribozymes expressed from such promoters can function in mammalian cells (e.g.
  • ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral vectors).
  • plasmid DNA vectors such as adenovirus or adeno-associated vectors
  • viral RNA vectors such as retroviral vectors
  • a transcription unit expressing a ribozyme that cleaves relA RNA is inserted into a plasmid DNA vector or an adenovirus DNA viral vector. Both vectors have been used to transfer genes to the intact vasculature or to joints of live animals (Willard, J. E., et al., 1992, Circulation, 86, 1-473.; Nabel, E. G., et al., 1990, Science, 249, 1285-1288.) and both vectors lead to transient gene expression.
  • the adenovirus vector is delivered as recombinant adenoviral particles. DNA may be delivered alone or complexed with vehicles (as described for RNA above).
  • the DNA, DNA/vehicle complexes, or the recombinant adenovirus particles are locally administered to the site of treatment, e.g., through the use of an injection catheter, stent or infusion pump or are directly added to cells or tissues ex vivo.
  • ribozyme motifs By engineering ribozyme motifs we have designed several ribozymes directed against relA mRNA sequences. These ribozymes are synthesized with modifications that improve their nuclease resistance. The ability of ribozymes to cleave relA target sequences in vitro is evaluated.
  • the ribozymes will be tested for function in vivo by analyzing cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression levels. Ribozymes will be delivered to cells by incorporation into liposomes, by complexing with cationic lipids, by microinjection, or by expression from DNA vectors. Cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression will be monitored by ELISA, by indirect immunofluoresence, and/or by FACS analysis. Rel A mRNA levels will be assessed by Northern analysis, RNAse protection or primer extension analysis or quantitative RT-PCR. Activity of NF- ⁇ B will be monitored by gel-retardation assays. Ribozymes that block the induction of NF- ⁇ B activity and/or rel A mRNA by more than 50% will be identified.
  • RNA ribozymes and/or genes encoding them will be locally delivered to transplant tissue ex vivo in animal models. Expression of the ribozyme will be monitored by its ability to block ex vivo induction of VCAM-1, ICAM-1, IL-6 and IL-8 mRNA and protein. The effect of the anti-rel A ribozymes on graft rejection will then be assessed. Similarly, ribozymes will be introduced into joints of mice with collagen-induced arthritis or rabbits with Streptococcal cell wall-induced arthritis. Liposome delivery, cationic lipid delivery, or adeno-associated virus vector delivery can be used. One dose (or a few infrequent doses) of a stable anti-relA ribozyme or a gene construct that constitutively expresses the ribozyme may abrogate inflammatory and immune responses in these diseases.
  • a therapeutic agent that inhibits cytokine gene expression, inhibits adhesion molecule expression, and mimics the anti-inflammatory effects of glucocorticoids (without inducing steroid-responsive genes) is ideal for the treatment of inflammatory and autoimmune disorders.
  • Disease targets for such a drug are numerous. Target indications and the delivery options each entails are summarized below. In all cases, because of the potential immunosuppressive properties of a ribozyme that cleaves rel A mRNA, uses are limited to local delivery, acute indications, or ex vivo treatment.
  • a gene therapy approach is logical. Delivery of a ribozyme to inflamed joints is mediated by adenovirus, retrovirus, or adeno-associated virus vectors.
  • the appropriate adenovirus vector can be administered by direct injection into the synovium: high efficiency of gene transfer and expression for several months would be expected (B. J. Roessler, E. D. Allen, J. M. Wilson, J. W. Hartman, B. L. Davidson, J. Clin. Invest. 92, 1085-1092 (1993)). It is unlikely that the course of the disease could be reversed by the transient, local administration of an anti-inflammatory agent. Multiple administrations may be necessary. Retrovirus and adeno-associated virus vectors would lead to permanent gene transfer and expression in the joint. However, permanent expression of a potent anti-inflammatory agent may lead to local immune deficiency.
  • NF- ⁇ B in the vessel wall of pigs causes a narrowing of the luminal space due to excessive deposition of extracellular matrix components. This phenotype is similar to matrix deposition that occurs subsequent to coronary angioplasty.
  • NF- ⁇ B is required for the expression of the oncogene c-myb (F. A. La Rosa, J. W. Pierce, G. E. Soneneshein, Mol. Cell. Biol. 14, 1039-44 (1994)).
  • NF- ⁇ B induces smooth muscle proliferation and the expression of excess matrix components: both processes are thought to contribute to reocclusion of vessels after coronary angioplasty.
  • NF- ⁇ B is required for the induction of adhesion molecules (Eck et al., supra, K. O'Brien, et al., J. Clin. Invest. 92, 945-951 (1993)) that function in immune recognition and inflammatory responses.
  • adhesion molecules Eck et al., supra, K. O'Brien, et al., J. Clin. Invest. 92, 945-951 (1993)
  • At least two potential modes of treatment are possible.
  • transplanted organs are treated ex vivo with ribozymes or ribozyme expression vectors.
  • Transient inhibition of NF- ⁇ B in the transplanted endothelium may be sufficient to prevent transplant-associated vasculitis and may significantly modulate graft rejection.
  • donor B cells are treated ex vivo with ribozymes or ribozyme expression vectors.
  • Recipients would receive the treatment prior to transplant.
  • Treatment of a recipient with B cells that do not express T cell co-stimulatory molecules can induce antigen-specific anergy. Tolerance to the donor's histocompatibility antigens could result; potentially, any donor could be used for any transplantation procedure.
  • Granulocyte macrophage colony stimulating factor (GM-CSF) is thought to play a major role in recruitment of eosinophils and other inflammatory cells during the late phase reaction to asthmatic trauma. Again, blocking the local induction of GM-CSF and other inflammatory mediators is likely to reduce the persistent inflammation observed in chronic asthmatics. Aerosol delivery of ribozymes or adenovirus ribozyme expression vectors is a feasible treatment.
  • Cells transfected with retrovirus vectors have short lifetimes in immune competent individuals.
  • the length of expression of adenovirus vectors in terminally differentiated cells is longer in neonatal or immune-compromised animals. Insertion of a small ribozyme expression cassette that modulates inflammatory and immune responses into existing adenovirus or retrovirus constructs will greatly enhance their potential.
  • ribozymes of the present invention that cleave rel A mRNA and thereby NF- ⁇ B activity have many potential therapeutic uses, and there are reasonable modes of delivering the ribozymes in a number of the possible indications.
  • Development of an effective ribozyme that inhibits NF- ⁇ B function is described above; available cellular and activity assays are number, reproducible, and accurate.
  • Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells.
  • the close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA.
  • ribozymes described in this invention one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease.
  • ribozymes of this invention include detection of the presence of mRNA associated with an NF- ⁇ B related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.
  • ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay.
  • the first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the sample.
  • synthetic substrates of both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species.
  • the cleavage products from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population.
  • each analysis will require two ribozymes, two substrates and one unknown sample which will be combined into six reactions.
  • the presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells.
  • the expression of mRNA whose protein product is implicated in the development of the phenotype i.e., NF- ⁇ B
  • a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.
  • RNAseP RNA (M1 RNA) Size ⁇ 290 to 400 nucleotides. RNA portion of a ribonucleoprotein enzyme. Cleaves tRNA precursors to form mature tRNA.
  • Hammerhead Ribozyme Size ⁇ 13 to 40 nucleotides. Requires the target sequence UH immediately 5′ of the cleavage site. Binds a variable number nucleotides on both sides of the cleavage site. 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious agent (FIGS. 1 and 2 show examples of various manifestations as used in the art). Hairpin Ribozyme Size: ⁇ 50 nucleotides. Requires the target sequence GUC immediately 3′ of the cleavage site.
  • Neurospora VS RNA Ribozyme Size ⁇ 144 nucleotides (at present) Cleavage of target RNAs recently demonstrated. Sequence requirements not fully determined. Binding sites and structural requirements not fully determined. Only 1 known member of this class. Found in Neurospora VS RNA (FIG. 5).
  • N stands for any base.
  • H represents nucleotide C, A, or U.
  • NNNNUHNNNN N 11 32 nucleic acid single linear
  • the letter “N” stands for any base.
  • 2 NNNNNCUGAN GAGNNNNNNN NNNCGAAANN NN 32 14 nucleic acid single linear
  • the letter “N” stands for any base.
  • 3 NNNNNGUCNN NNNN 14 50 nucleic acid single linear
  • N stands for any base.

Abstract

Enzymatic RNA molecules which cleave rel A mRNA.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of Stinchcomb et al., “Method and Composition for Treatment of Restenosis and Cancer Using Ribozymes,” filed May 18, 1994, U.S. Ser. No. 08/245,466 which is a continuation-in-part of Draper, “Method and Reagent for Treatment of a Stenotic Condition”, filed Dec. 7, 1992, U.S. Ser. No. 07/987,132, both hereby incorporated by reference herein.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to therapeutic compositions and methods for the treatment or diagnosis of diseases or conditions related to NF-κB levels, such as restenosis, rheumatoid arthritis, asthma, inflammatory or autoimmune disorders and transplant rejection. [0002]
  • BACKGROUND OF THE INVENTION
  • The following is a brief description of the physiological role of NF-κB. The discussion is not meant to be complete and is provided only for understanding of the invention that follows. This summary is not an admission that any of the work described below is prior art to the claimed invention. [0003]
  • The nuclear DNA-binding activity, NF-κB, was first identified as a factor that binds and activates the immunoglobulin K light chain enhancer in B cells. NF-κB now is known to activate transcription of a variety of other cellular genes (e.g., cytokines, adhesion proteins, oncogenes and viral proteins) in response to a variety of stimuli (e.g., phorbol esters, mitogens, cytokines and oxidative stress). In addition, molecular and biochemical characterization of NF-κB has shown that the activity is due to a homodimer or heterodimer of a family of DNA binding subunits. Each subunit bears a stretch of 300 amino acids that is homologous to the oncogene, v-rel. The activity first described as NF-κB is a heterodimer of p49 or p50 with p65. The p49 and p50 subunits of NF-κB (encoded by the nf-κB2 or nf-κB1 genes, respectively) are generated from the precursors NF-κB1 (p105) or NF-κB2 (p100). The p65 subunit of NF-κB (now termed Rel A) is encoded by the rel A locus. [0004]
  • The roles of each specific transcription-activating complex now are being elucidated in cells (N. D. Perkins, et al., 1992 [0005] Proc. Natl. Acad. Sci USA 89, 1529-1533). For instance, the heterodimer of NF-κB1 and Rel A (p50/p65) activates transcription of the promoter for the adhesion molecule, VCAM-1, while NF-κB2/RelA heterodimers (p49/p65) actually inhibit transcription (H. B. Shu, et al., Mol. Cell. Biol. 13, 6283-6289 (1993)). Conversely, heterodimers of NF-κB2/RelA (p49/p65) act with Tat-I to activate transcription of the HIV genome, while NF-κB1/RelA (p50/p65) heterodimers have little effect (J. Liu, N. D. Perkins, R. M. Schmid, G. J. Nabel, J. Virol. 1992 66, 3883-3887). Similarly, blocking rel A gene expression with antisense oligonucleotides specifically blocks embryonic stem cell adhesion; blocking NF-κB1 gene expression with antisense oligonucleotides had no effect on cellular adhesion (Narayanan et al., 1993 Mol. Cell. Biol. 13, 3802-3810). Thus, the promiscuous role initially assigned to NF-κB in transcriptional activation (M. J. Lenardo, D. Baltimore, 1989 Cell 58, 227-229) represents the sum of the activities of the rel family of DNA-binding proteins. This conclusion is supported by recent transgenic “knock-out” mice of individual members of the rel family. Such “knock-outs” show few developmental defects, suggesting that essential transcriptional activation functions can be performed by more than one member of the rel family.
  • A number of specific inhibitors of NF-κB function in cells exist, including treatment with phosphorothioate antisense oliogonucleotide, treatment with double-stranded NF-κB binding sites, and over expression of the natural inhibitor MAD-3 (an IκB family member). These agents have been used to show that NF-κB is required for induction of a number of molecules involved in inflammation, as described below. [0006]
  • NF-κB is required for phorbol ester-mediated induction of IL-6 (I. Kitajima, et al., Science 258, 1792-5 (1992)) and IL-8 (Kunsch and Rosen, 1993 [0007] Mol. Cell. Biol. 13, 6137-46).
  • NF-κB is required for induction of the adhesion molecules ICAM-1 (Eck, et al., 1993 [0008] Mol. Cell. Biol. 13, 6530-6536), VCAM-1 (Shu et al., supra), and E-selectin (Read, et al., 1994 J. Exp. Med. 179, 503-512) on endothelial cells.
  • NF-κB is involved in the induction of the integrin subunit, CD18, and other adhesive properties of leukocytes (Eck et al., 1993 supra). [0009]
  • The above studies suggest that NF-κB is integrally involved in the induction of cytokines and adhesion molecules by inflammatory mediators. Two recent papers point to another connection between NF-κB and inflammation: glucocorticoids may exert their anti-inflammatory effects by inhibiting NF-κB. The glucocorticoid receptor and p65 both act at NF-κB binding sites in the ICAM-1 promoter (van de Stolpe, et al., 1994 [0010] J. Biol. Chem. 269, 6185-6192). Glucocorticoid receptor inhibits NF-κB-mediated induction of IL-6 (Ray and Prefontaine, 1994 Proc. Natl Acad. Sci USA 91, 752-756). Conversely, overexpression of p65 inhibits glucocorticoid induction of the mouse mammary tumor virus promoter. Finally, protein cross-linking and co-immunoprecipitation experiments demonstrated direct physical interaction between p65 and the glucocorticoid receptor (Id.).
  • SUMMARY OF THE INVENTION
  • This invention relates to ribozymes, or enzymatic RNA molecules, directed to cleave mRNA species encoding Rel A protein (p65). In particular, applicant describes the selection and function of ribozymes capable of cleaving this RNA and their use to reduce activity of NF-κB in various tissues to treat the diseases discussed herein. Such ribozymes are also useful for diagnostic applications. [0011]
  • Ribozymes that cleave rel A mRNA represent a novel therapeutic approach to inflammatory or autoimmune disorders. Antisense DNA molecules have been described that block NF-κB activity. See Narayanan et al., supra. However, ribozymes may show greater perdurance or lower effective doses than antisense molecules due to their catalytic properties and their inherent secondary and tertiary structures. Such ribozymes, with their catalytic activity and increased site specificity (as described below), represent more potent and safe therapeutic molecules than antisense oligonucleotides. [0012]
  • Applicant indicates that these ribozymes are able to inhibit the activity of NF-κB and that the catalytic activity of the ribozymes is required for their inhibitory effect. Those of ordinary skill in the art, will find that it is clear from the examples described that other ribozymes that cleave rel A encoding mRNAs may be readily designed and are within the invention. [0013]
  • Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. [0014]
  • The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf, T. M., et al., 1992, [0015] Proc. Natl. Acad. Sci. USA, 89, 7305-7309). Thus, the specificity of action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.
  • In preferred embodiments of this invention, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA. Examples of such hammerhead motifs are described by Rossi et al., 1992, [0016] Aids Research and Human Retroviruses, 8, 183, of hairpin motifs by Hampel et al., “RNA Catalyst for Cleaving Specific RNA Sequences,” filed Sep. 20, 1989, which is a continuation-in-part of U.S. Ser. No. 07/247,100 filed Sep. 20, 1988, Hampel and Tritz, 1989, Biochemistry, 28, 4929, and Hampel et al., 1990, Nucleic Acids Res.earch, 18,299, and an example of the hepatitis delta virus motif is described by Perrotta and Been, 1992, Biochemistry, 31, 16, of the RNaseP motif by Guerrier-Takada et al., 1983, Cell, 35, 849, Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799) and of the Group I intron by Cech et al., U.S. Pat. No. 4,987,071. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.
  • The invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target Rel A encoding mRNA such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the ribozymes can be expressed from DNA vectors that are delivered to specific cells. [0017]
  • Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small enzymatic nucleic acid motifs (e.g., of the hammerhead or the hairpin structure) are used for exogenous delivery. The simple structure of these molecules increases the ability of the enzymatic nucleic acid to invade targeted regions of the mRNA structure. However, these catalytic RNA molecules can also be expressed within cells from eukaryotic promoters (e.g., Scanlon, K. J., et al., 1991, [0018] Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet, M., et al., 1992, Antisense Res. Dev., 2, 3-15; Dropulic, B., et al., 1992, J. Virol, 66, 1432-41; Weerasinghe, M., et al., 1991, J. Virol, 65, 5531-4; Ojwang, J. O., et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen, C. J., et al., 1992, Nucleic Acids Res., 20, 4581-9; Sarver, H., et al., 1990, Science, 247, 1222-1225)). Those skilled in the art realize that any ribozyme can be expressed in eukaryotic cells from the appropriate DNA vector. The activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Draper et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa, J., et al., 1992, Nucleic Acids Symp. Ser., 27, 15-6; Taira, K., et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura, M., et al., 1993, Nucleic Acids Res., 21, 3249-55).
  • Inflammatory mediators such as lipopolysaccharide (LPS), interleukin-1 (IL-1) or tumor necrosis factor-a (TNF-α) act on cells by inducing transcription of a number of secondary mediators, including other cytokines and adhesion molecules. In many cases, this gene activation is known to be mediated by the transcriptional regulator, NF-κB. One subunit of NF-κB, the relA gene product (termed RelA or p65) is implicated specifically in the induction of inflammatory responses. Ribozyme therapy, due to its exquisite specificity, is particularly well-suited to target intracellular factors that contribute to disease pathology. Thus, ribozymes that cleave mRNA encoded by rel A may represent novel therapeutics for the treatment of inflammatory and autoimmune disorders. [0019]
  • Thus, in a first aspect, the invention features ribozymes that inhibit RelA production. These chemically or enzymatically synthesized RNA molecules contain substrate binding domains that bind to accessible regions of their target mRNAs. The RNA molecules also contain domains that catalyze the cleavage of RNA. The RNA molecules are preferably ribozymes of the hammerhead or hairpin motif. Upon binding, the ribozymes cleave the target RelA encoding mRNAs, preventing translation and p65 protein accumulation. In the absence of the expression of the target gene, a therapeutic effect may be observed. [0020]
  • By “inhibit” is meant that the activity or level of RelA encoding mRNA is reduced below that observed in the absense of the ribozyme, and preferably is below that level observed in the presence of an inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA. [0021]
  • Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the level of NF-κB activity in a cell or tissue. By “related” is meant that the inhibition of relA mRNA and thus reduction in the level of NF-κB activity will relieve to some extent the symptoms of the disease or condition. [0022]
  • Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells. The RNA or RNA complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection or the use of a catheter, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in Tables II, III, VI-VII. Examples of such ribozymes are shown in Tables IV-VII. Examples of such ribozymes consist essentially of sequences defined in these Tables. By “consists essentially of” is meant that the active ribozyme contains an enzymatic center equivalent to those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage. [0023]
  • In another aspect of the invention, ribozymes that cleave target molecules and inhibit NF-κB activity are expressed from transcription units inserted into DNA, RNA, or viral vectors. Preferably, the recombinant vectors capable of expressing the ribozymes are locally delivered as described above, and transiently persist in target cells. Once expressed, the ribozymes cleave the target mRNA. The recombinant vectors are preferably DNA plasmids or adenovirus vectors. However, other mammalian cell vectors that direct the expression of RNA may be used for this purpose. [0024]
  • Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. [0025]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The drawings will first briefly be described.[0026]
  • DRAWINGS
  • FIG. 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art. [0027]
  • FIG. 2[0028] a is a diagrammatic representation of the hammerhead ribozyme domain known in the art;
  • FIG. 2[0029] b is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, Nature, 327, 596-600) into a substrate and enzyme portion;
  • FIG. 2[0030] c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, Nature, 334, 585-591) into two portions; and
  • FIG. 2[0031] d is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989, Nucl. Acids. Res., 17, 1371-1371) into two portions.
  • FIG. 3 is a representation of the general structure of the hairpin ribozyme domain known in the art. [0032]
  • FIG. 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art. [0033]
  • FIG. 5 is a representation of the general structure of the VS RNA ribozyme domain known in the art. [0034]
  • FIG. 6 is a schematic representation of an RNAseH accessibility assay. Specifically, the left side of FIG. 6 is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA. Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of FIG. 6 is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target RNA; the bands unique to each lane represent the cleaved products.[0035]
  • Ribozymes [0036]
  • Ribozymes of this invention block to some extent NF-κB expression and can be used to treat disease or diagnose such disease. Ribozymes will be delivered to cells in culture and to cells or tissues in animal models of restenosis, transplant rejection and rheumatoid arthritis. Ribozyme cleavage of relA mRNA in these systems may prevent inflammatory cell function and alleviate disease symptoms. [0037]
  • Target Sites [0038]
  • Targets for useful ribozymes can be determined as disclosed in Draper et al supra, Sullivan et al., supra, as well as by Draper et al., “Method and reagent for treatment of arthritic conditions U.S. Ser. No. 08/152,487, filed Nov. 12, 1993, and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. Such ribozymes can also be optimized and delivered as described therein. While specific examples to mouse and human RNA are provided, those in the art will recognize that the equivalent human RNA targets described can be used as described below. Thus, the same target may be used, but binding arms suitable for targeting human RNA sequences are present in the ribozyme. Such targets may also be selected as described below. [0039]
  • The sequence of human and mouse relA mRNA can be screened for accessible sites using a computer folding algorithm. Potential hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables II, III, and VI-VII. (All sequences are 5′ to 3′ in the tables.) While mouse and human sequences can be screened and ribozymes thereafter designed, the human targetted sequences are of most utility. However, as discussed in Stinchcomb et al. supra, mouse targetted ribozmes are useful to test efficacy of action of the ribozyme prior to testing in humans. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. (In Table II, lower case letters indicate positions that are not conserved between the Human and the Mouse relA sequences.) [0040]
  • Hammerhead ribozymes are designed that could bind and are individually analyzed by computer folding (Jaeger, J. A., et al., 1989, [0041] Proc. Natl. Acad. Sci. USA, 86, 7706-7710) to assess whether, the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.
  • Referring to FIG. 6, mRNA is screened for accessible cleavage sites by the method described generally in Draper et al., WO/US93/04020 hereby incorporated by reference herein. Briefly, DNA oligonucleotides representing potential hammerhead ribozyme cleavage sites are synthesized. A polymerase chain reaction is used to generate a substrate for T7 RNA polymerase transcription from human or murine rel A cDNA clones. Labeled RNA transcripts are synthesized in vitro from the two templates. The oligonucleotides and the labeled transcripts are annealed, RNAseH is added and the mixtures are incubated for the designated times at 37° C. Reactions are stopped and RNA separated on sequencing polyacrylamide gels. The percentage of the substrate cleaved is determined by autoradiographic quantitation using a phosphor imaging system. From these data, hammerhead ribozyme sites are chosen as the most accessible. [0042]
  • Ribozymes of the hammerhead motif are designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes are chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman, N.; Ogilvie, K. K.; Jiang, M. -Y.; Cedergren, R. J. 1987, [0043] J. Am. Chem. Soc., 109, 7845-7854 and in Scaringe, S. A.; Franklyn, C.; Usman, N., 1990, Nucleic Acids Res., 18, 5433-5441 and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. The average stepwise coupling yields were >98%. Inactive ribozymes were synthesized by substituting a U for G5 and a U for A14 (numbering from (Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252)). Hairpin ribozymes are synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira, B. M. and Burke, J. M., 1992, Nucleic Acids Res., 20, 2835-2840). All ribozymes are modified to enhance stability by modification of five ribonucleotides at both the 5′ and 3′ ends with 2′-O-methyl groups. Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Usman et al., Synthesis, deprotection, analysis and purification of RNA and ribozymes, filed May, 18, 1994, U.S. Ser. No. 08/245,736 the totality of which is hereby incorporated herein by reference.) and are resuspended in water.
  • The sequences of the chemically synthesized ribozymes useful in this study are shown in Tables IV-VII. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity and may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes are equivalent to the ribozymes described specifically in the Tables. [0044]
  • Optimizing Ribozyme Activity [0045]
  • Ribozyme activity can be optimized as described by Stinchcomb et al., supra. The details will not be repeated here, but include altering the length of the ribozyme binding arms (stems I and III, see FIG. 2[0046] c), or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., Nature 1990, 344:565; Pieken et al., Science 1991, 253:314; Usman and Cedergren, Trends in Biochem. Sci. 1992, 17:334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162, as well as Usman, N. et al. U.S. patent application Ser. No. 07/829,729, and Sproat, B. European Patent Application 92110298.4 which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules. All these publications are hereby incorporated by reference herein.), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.
  • Sullivan, et al., supra, describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intrvascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan, et al., supra and Draper, et al., supra which have been incorporated by reference herein. [0047]
  • Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein, O. and Moss, B., 1990, [0048] Proc. Natl. Acad. Sci. USA, 87, 6743-7; Gao, X. and Huang, L., 1993, Nucleic Acids Res., 21, 2867-72; Lieber, A., et al., 1993, Methods Enzymol., 217, 47-66; Zhou, Y., et al., 1990, Mol. Cell. Biol., 10, 4529-37). Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. (Kashani-Sabet, M., et al., 1992, Antisense Res. Dev., 2, 3-15; Ojwang, J. O., et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen, C. J., et al., 1992, Nucleic Acids Res., 20, 4581-9; Yu, M., et al., 1993, Proc. Natl. Acad. Sci. USA, 96, 6340-4; L'Huillier, P. J., et al., 1992, Embo J., 11, 4411-8; Lisziewicz, J., et al., 1993, Proc. Natl. Acad. Sci. U.S.A., 90, 8000-4)). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral vectors).
  • In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves relA RNA is inserted into a plasmid DNA vector or an adenovirus DNA viral vector. Both vectors have been used to transfer genes to the intact vasculature or to joints of live animals (Willard, J. E., et al., 1992, [0049] Circulation, 86, 1-473.; Nabel, E. G., et al., 1990, Science, 249, 1285-1288.) and both vectors lead to transient gene expression. The adenovirus vector is delivered as recombinant adenoviral particles. DNA may be delivered alone or complexed with vehicles (as described for RNA above). The DNA, DNA/vehicle complexes, or the recombinant adenovirus particles are locally administered to the site of treatment, e.g., through the use of an injection catheter, stent or infusion pump or are directly added to cells or tissues ex vivo.
  • EXAMPLE 1 NF-κB Hammerhead Ribozymes
  • By engineering ribozyme motifs we have designed several ribozymes directed against relA mRNA sequences. These ribozymes are synthesized with modifications that improve their nuclease resistance. The ability of ribozymes to cleave relA target sequences in vitro is evaluated. [0050]
  • The ribozymes will be tested for function in vivo by analyzing cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression levels. Ribozymes will be delivered to cells by incorporation into liposomes, by complexing with cationic lipids, by microinjection, or by expression from DNA vectors. Cytokine-induced VCAM-1, ICAM-1, IL-6 and IL-8 expression will be monitored by ELISA, by indirect immunofluoresence, and/or by FACS analysis. Rel A mRNA levels will be assessed by Northern analysis, RNAse protection or primer extension analysis or quantitative RT-PCR. Activity of NF-κB will be monitored by gel-retardation assays. Ribozymes that block the induction of NF-κB activity and/or rel A mRNA by more than 50% will be identified. [0051]
  • RNA ribozymes and/or genes encoding them will be locally delivered to transplant tissue ex vivo in animal models. Expression of the ribozyme will be monitored by its ability to block ex vivo induction of VCAM-1, ICAM-1, IL-6 and IL-8 mRNA and protein. The effect of the anti-rel A ribozymes on graft rejection will then be assessed. Similarly, ribozymes will be introduced into joints of mice with collagen-induced arthritis or rabbits with Streptococcal cell wall-induced arthritis. Liposome delivery, cationic lipid delivery, or adeno-associated virus vector delivery can be used. One dose (or a few infrequent doses) of a stable anti-relA ribozyme or a gene construct that constitutively expresses the ribozyme may abrogate inflammatory and immune responses in these diseases. [0052]
  • Uses [0053]
  • A therapeutic agent that inhibits cytokine gene expression, inhibits adhesion molecule expression, and mimics the anti-inflammatory effects of glucocorticoids (without inducing steroid-responsive genes) is ideal for the treatment of inflammatory and autoimmune disorders. Disease targets for such a drug are numerous. Target indications and the delivery options each entails are summarized below. In all cases, because of the potential immunosuppressive properties of a ribozyme that cleaves rel A mRNA, uses are limited to local delivery, acute indications, or ex vivo treatment. [0054]
  • *Rheumatoid Arthritis (RA). [0055]
  • Due to the chronic nature of RA, a gene therapy approach is logical. Delivery of a ribozyme to inflamed joints is mediated by adenovirus, retrovirus, or adeno-associated virus vectors. For instance, the appropriate adenovirus vector can be administered by direct injection into the synovium: high efficiency of gene transfer and expression for several months would be expected (B. J. Roessler, E. D. Allen, J. M. Wilson, J. W. Hartman, B. L. Davidson, J. Clin. Invest. 92, 1085-1092 (1993)). It is unlikely that the course of the disease could be reversed by the transient, local administration of an anti-inflammatory agent. Multiple administrations may be necessary. Retrovirus and adeno-associated virus vectors would lead to permanent gene transfer and expression in the joint. However, permanent expression of a potent anti-inflammatory agent may lead to local immune deficiency. [0056]
  • Restenosis. [0057]
  • Expression of NF-κB in the vessel wall of pigs causes a narrowing of the luminal space due to excessive deposition of extracellular matrix components. This phenotype is similar to matrix deposition that occurs subsequent to coronary angioplasty. In addition, NF-κB is required for the expression of the oncogene c-myb (F. A. La Rosa, J. W. Pierce, G. E. Soneneshein, Mol. Cell. Biol. 14, 1039-44 (1994)). Thus NF-κB induces smooth muscle proliferation and the expression of excess matrix components: both processes are thought to contribute to reocclusion of vessels after coronary angioplasty. [0058]
  • *Transplantation. [0059]
  • NF-κB is required for the induction of adhesion molecules (Eck et al., supra, K. O'Brien, et al., J. Clin. Invest. 92, 945-951 (1993)) that function in immune recognition and inflammatory responses. At least two potential modes of treatment are possible. In the first, transplanted organs are treated ex vivo with ribozymes or ribozyme expression vectors. Transient inhibition of NF-κB in the transplanted endothelium may be sufficient to prevent transplant-associated vasculitis and may significantly modulate graft rejection. In the second, donor B cells are treated ex vivo with ribozymes or ribozyme expression vectors. Recipients would receive the treatment prior to transplant. Treatment of a recipient with B cells that do not express T cell co-stimulatory molecules (such as ICAM-1, VCAM-1, and/or B7 an B7-2) can induce antigen-specific anergy. Tolerance to the donor's histocompatibility antigens could result; potentially, any donor could be used for any transplantation procedure. [0060]
  • *Asthma. [0061]
  • Granulocyte macrophage colony stimulating factor (GM-CSF) is thought to play a major role in recruitment of eosinophils and other inflammatory cells during the late phase reaction to asthmatic trauma. Again, blocking the local induction of GM-CSF and other inflammatory mediators is likely to reduce the persistent inflammation observed in chronic asthmatics. Aerosol delivery of ribozymes or adenovirus ribozyme expression vectors is a feasible treatment. [0062]
  • Gene Therapy. [0063]
  • Immune responses limit the efficacy of many gene transfer techniques. Cells transfected with retrovirus vectors have short lifetimes in immune competent individuals. The length of expression of adenovirus vectors in terminally differentiated cells is longer in neonatal or immune-compromised animals. Insertion of a small ribozyme expression cassette that modulates inflammatory and immune responses into existing adenovirus or retrovirus constructs will greatly enhance their potential. [0064]
  • Thus, ribozymes of the present invention that cleave rel A mRNA and thereby NF-κB activity have many potential therapeutic uses, and there are reasonable modes of delivering the ribozymes in a number of the possible indications. Development of an effective ribozyme that inhibits NF-κB function is described above; available cellular and activity assays are number, reproducible, and accurate. Animal models for NF-κB function (Kitajima, et al., supra) and for each of the suggested disease targets exist and can be used to optimize activity. [0065]
  • Diagnostic Uses [0066]
  • Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this invention, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNA associated with an NF-κB related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology. [0067]
  • In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species. The cleavage products from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis will require two ribozymes, two substrates and one unknown sample which will be combined into six reactions. The presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., NF-κB) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively. [0068]
  • Other embodiments are within the following claims. [0069]
    TABLE I
    Characteristics of Ribozymes
    Group I Introns
    Size: ˜200 to >1000 nucleotides.
    Requires a U in the target sequence immediately 5′ of the cleavage
    site.
    Binds 4-6 nucleotides at 5′ side of cleavage site.
    Over 75 known members of this class. Found in Tetrahymena
    thermophila rRNA, fungal mitochondria, chloroplasts, phage T4,
    blue-green algae, and others.
    RNAseP RNA (M1 RNA)
    Size: ˜290 to 400 nucleotides.
    RNA portion of a ribonucleoprotein enzyme. Cleaves tRNA
    precursors to form mature tRNA.
    Roughly 10 known members of this group all are bacterial in origin.
    Hammerhead Ribozyme
    Size: ˜13 to 40 nucleotides.
    Requires the target sequence UH immediately 5′ of the cleavage
    site.
    Binds a variable number nucleotides on both sides of the cleavage
    site.
    14 known members of this class. Found in a number of plant
    pathogens (virusoids) that use RNA as the infectious agent
    (FIGS. 1 and 2 show examples of various manifestations as used
    in the art).
    Hairpin Ribozyme
    Size: ˜50 nucleotides.
    Requires the target sequence GUC immediately 3′ of the cleavage
    site.
    Binds 4-6 nucleotides at 5′ side of the cleavage site and a variable
    number to the 3′ side of the cleavage site.
    Only 3 known member of this class. Found in three plant
    pathogen (satellite RNAs of the tobacco ringspot virus, arabis
    mosaic virus and chicory yellow mottle virus) which uses
    RNA as the infectious agent (FIG. 3).
    Hepatitis Delta Virus (HDV) Ribozyme
    Size: 50-60 nucleotides (at present).
    Cleavage of target RNAs recently demonstrated.
    Sequence requirements not fully determined.
    Binding sites and structural requirements not fully determined,
    although no sequences 5′ of cleavage site are required.
    Only 1 known member of this class. Found in human HDV (FIG.
    4).
    Neurospora VS RNA Ribozyme
    Size: ˜144 nucleotides (at present)
    Cleavage of target RNAs recently demonstrated.
    Sequence requirements not fully determined.
    Binding sites and structural requirements not fully determined. Only
    1 known member of this class. Found in Neurospora VS RNA
    (FIG. 5).
  • [0070]
    TABLE II
    Mouse rel A HH Target sequence
    nt. HH Target Seq. ID nt. HH Target Seq.
    Pos. Sequence No. Pos. Sequence ID No.
    19 AAUGGCU a caCaGgA 7 467 cCAGGCU c cuguUCg 108
    22 aGCUCcU a cGUgGUG 8 469 AaGCcAU u AGcCAGC 109
    26 CcUCcaU u GcGgACa 9 473 UuUgAGU C AGauCAg 110
    93 GAuCUGU U uCCCCUC 10 481 AGCGaAU C CAGACCA 111
    94 AuCUGUU u CCCCUCA 11 501 AACCCCU U uCAcGUU 112
    100 UuCCCCU C AUCUUuC 12 502 ACCCCUU u CAcGUUC 113
    103 CCCUCAU C UuuCCcu 13 508 UuCAcGU U CCUAUAG 114
    105 CUCAUCU U uCCcuCA 14 509 uCAcGUU C CUAUAGA 115
    106 UCAUCUU u CccuCAG 15 512 cGUUCCU A UAGAgGA 116
    129 CAGGCuU C UGGgCCu 16 514 UUCCUAU A GAgGAGC 117
    138 GGgCCuU A UGUGGAG 17 534 GGGGACU A uGACuUG 118
    148 UGGAGAU C AucGAaC 18 556 UGCGcCU C UGCUUCC 119
    151 AGAUCAU c GaaCAGC 19 561 CUCUGCU U CCAGGUG 120
    180 AUGCGaU U CCGCUAu 20 562 UCUGCUU C CAGGUGA 121
    181 UGCGaUU C CGCUAuA 21 585 aAgCCAU u AGcCAGc 122
    186 UUCCGCU A uAAaUGC 22 598 GGCCCCU C CuCCUGa 123
    204 GGGCGCU C aGCGGGC 23 613 CcCCUGU C CUcuCaC 124
    217 GCAGuAU U CcuGGCG 24 616 CUGUCCU c uCaCAUC 125
    239 CACAGAU A CCACCAA 25 617 gucCCUU C CUCAgCC 126
    262 CCACCAU C AAGAUCA 26 620 CCUUCCU C AgCCaug 127
    268 UCAAGAU C AAUGGCU 27 623 UCCUgcU u CCAUCUc 128
    276 AAUGGCU A CACAGGA 28 628 AUCCGAU U UUUGAUA 129
    301 UuCGaAU C UCCCUGG 29 630 CCgAUuU U UGAuAAc 130
    303 CGaAUCU C CCUGGUC 30 631 CgAUuUU U GAuAAcC 131
    310 CCCUGGU C ACCAAGG 31 638 UGgCcAU u GUGuuCC 132
    323 GGcCCCU C CUCcuga 32 661 CCGAGCU C AAGAUCU 133
    326 uCCaCCU C ACCGGCC 33 667 UCAAGAU C UGCCGAG 134
    335 CCGGCCU C AuCCaCA 34 687 CGgAACU C UGGgAGC 135
    349 AuGAaCU U GugGGgA 35 700 GCUGCCU C GGUGGGG 136
    352 AGaUcaU c GaAcAGc 36 715 AUGAGAU C UUCuUgC 137
    375 GAUGGCU a CUAUGAG 37 717 GAGAUCU U CuUgCUG 138
    376 AUGGucU C UccGgaG 38 718 AGAUCUU C uUgCUGU 139
    378 GGCUaCU A UGAGGCU 39 721 UucUCCU c CauUGcG 140
    391 CUGAcCU C UGCCCaG 40 751 AaGACAU U GAGGUGU 141
    409 GCaGuAU C CauAGcU 41 759 GAGGUGU A UUUCACG 142
    416 CCgCAGU a UCCAuAg 42 761 GGUGUAU U UCACGGG 143
    417 CAuAGcU U CCAGAAC 43 762 GUGUAUU U CACGGGA 144
    418 AuAGcUU C CAGAACC 44 763 UGUAUUU C ACGGGAC 145
    433 UGGGgAU C CAGUGUG 45 792 CGAGGCU C CUUUUCu 146
    795 GGCUCCU U UUCuCAA 46 1167 GAUGAGU U UuCCcCC 147
    796 GCUCCUU U UcuCAAG 47 1168 AUGAGUU U uCCcCCA 148
    797 CUCCUUU U CuCAAGC 48 1169 UGAGUUU u CCcCCAU 149
    798 UCCUUUU C uCAAGCU 49 1182 AUGcUGU U aCCaUCa 150
    829 UGGCCAU U GUGUUCC 50 1183 UGcUGUU a CCaUCaG 151
    834 AUUGUGU U CCGGACu 51 1184 GGccccU C CUcCUGa 152
    835 UUGUGUU C CGGACuC 52 1187 GUccCuU c CUcAGCc 153
    845 GACuCCU C CgUACGC 53 1188 UUaCCaU C aGGGCAG 154
    849 CCUCCgU A CGCcGAC 54 1198 GGgAGuU u AGuCuGa 155
    872 cCAGGCU C CUGUuCG 55 1209 CAGcCCU a caCCUUc 156
    883 UuCGaGU C UCCAUGC 56 1215 cuGGCCU U aGCaCCG 157
    885 CGaGUCU C CAUGCAG 57 1229 GGuCCCU u CCucAGc 158
    905 GCGGCCU U CuGAuCG 58 1237 CCCAgcU C CUGCCCC 159
    906 CGGCCUU C uGAuCGc 59 1250 CCAGcCU C CAGgCUC 160
    919 GcGAGCU C AGUGAGC 60 1268 CCCaGCU C CuGCCcc 161
    936 AUGGAgU U CCAGUAC 61 1279 CCAUGGU c cCuuCcu 162
    937 UGGAgUU C CAGUACu 62 1281 gUGGgcU C AGCUgcG 163
    942 UUCCAGU A CuUGCCA 63 1286 AUgAGuU u UccCCCA 164
    953 GCCucAU c CacAuGA 64 1309 CuCCUGU u CgAGUCu 165
    962 AGAuGAU C GcCACCG 65 1315 cCCCAGU u CUAaCCC 166
    965 CagUacU u gCCaGAc 66 1318 CAGUuCA A aCCCCgG 167
    973 ACCGGAU U GaaGAGA 67 1331 gGGuCCU C CcCAGuC 168
    986 GAgACcU u cAAGagu 68 1334 CuuUuCU C AaGCUGa 169
    996 AGGACcU A UGAGACC 69 1389 ACGCUGU C gGAaGCC 170
    1005 GAGACCU U CAAGAGu 70 1413 CUGCAGU U UGAUGcU 171
    1006 AGACCUU C AAGAGuA 71 1414 UGCAGUU U GAUGcUG 172
    1015 AGAGuAU C AUGAAGA 72 1437 GGGGCCU U GCUUGGC 173
    1028 GAAGAGU C CUUUCAa 73 1441 CCUUGCU U GGCAACA 174
    1031 GAGUCCU U UCAauGG 74 1467 GgaGUGU U CACAGAC 175
    1032 AGUCCUU U CaauGGA 75 1468 gaGUGUU C ACAGACC 176
    1033 GUCCUUU C AauGGAC 76 1482 CUGGCAU C uGUgGAC 177
    1058 CCGGCCU C CaaCcCG 77 1486 CuUCgGU a GggAACU 178
    1064 UaCACCU u GaucCAa 78 1494 GACAACU C aGAGUUU 179
    1072 GgCGuAU U GCUGUGC 79 1500 UCaGAGU U UCAGCAG 180
    1082 UGUGCCU a CCCGaAa 80 1501 CaGAGUU U CAGCAGC 181
    1083 aaGCCUU C CCGaAGu 81 1502 aGAGUUU C AGCAGCU 182
    1092 CGaAaCU C AaCUUCU 82 1525 gGuGCAU c CCUGUGu 183
    1097 CUCAaCU U CUGUCCC 83 1566 AUGGAGU A CCCUGAa 184
    1098 UCAaCUU C UGUCCCC 84 1577 UGAaGCU A UAACUCG 185
    1102 CUUCUGU C CCCAAGC 85 1579 AaGCUAU A ACUCGCC 186
    1125 CAGCCCU A caCCUUc 86 1583 UAUAACU C GCCUgGU 187
    1127 GCCaUAU a gCcUUAC 87 1588 CUCuCCU A GaGAggG 188
    1131 cAUCCCU c agCacCA 88 1622 CCCAGCU C CUGCcCC 189
    1132 AcaCCUU c cCagCAU 89 1628 UCCUGCU u CggUaGG 190
    1133 UCCaUcU c CagCuUC 90 1648 CGGGGCU u CCCAAUG 191
    1137 UUUACuU u AgCgCgc 91 1660 cUGaCCU C ugccCAG 192
    1140 cCagCAU C CCUcAGC 92 1663 cuCUgCU U cCAGGuG 193
    1153 GCACCAU C AACUuUG 93 1664 uCUgCUU c CAGGuGA 194
    1158 AUCAACU u UGAUGAG 94 1665 CUCgcUU u cGGAGgU 195
    1680 GAAGACU U CUCCUCC 95
    1681 AAGACUU C UCCUCCA 96
    1683 GACUUCU C CUCCAUU 97
    1686 UUCUCCU C CAUUGCG 98
    1690 CCUCCAU U GCGGACA 99
    1704 AUGGACU U CUCuGCu 100
    1705 UGGACUU C UCuGCuC 101
    1707 GACUUCU C uGCuCUu 102
    1721 uuUGAGU C AGAUCAG 103
    1726 GUCAGAU C AGCUCCU 104
    1731 AUCAGCU C CUAAGGu 105
    1734 AGCUCCU A AGGuGcU 106
    1754 CaGugCU C CCaAGAG 107
  • [0071]
    TABLE III
    Human rel A HH Target Sequences
    nt. HH Target Seq. ID nt. HH Target Seq. ID
    Pos. Sequence No. Pos. Sequence No.
    19 AAUGGCU C GUCUGUA 196 467 GCAGGCU A UCAGUCA 297
    22 GGCUCGU C UGUAGUG 197 469 AGGCUAU C AGUCAGC 298
    26 CGUCUGU A GUGCACG 198 473 UAUCAGU C AGCGCAU 299
    93 GAACUGU U CCCCCUC 199 481 AGCGCAU C CAGACCA 300
    94 AACUGUU C CCCCUCA 200 501 AACCCCU U CCAAGUU 301
    100 UCCCCCU C AUCUUCC 201 502 ACCCCUU C CAAGUUC 302
    103 CCCUCAU C UUCCCGG 202 508 UCCAAGU U CCUAUAG 303
    105 CUCAUCU U CCCGGCA 203 509 CCAAGUU C CUAUAGA 304
    106 UCAUCUU C CCGGCAG 204 512 AGUUCCU A UAGAAGA 305
    129 CAGGCCU C UGGCCCC 205 514 UUCCUAU A GAAGAGC 306
    138 GGCCCCU A UGUGGAG 206 534 GGGGACU A CGACCUG 307
    148 UGGAGAU C AUUGAGC 207 556 UGCGGCU C UGCUUCC 308
    151 AGAUCAU U GAGCAGC 208 561 CUCUGCU U CCAGGUG 309
    180 AUGCGCU U CCGCUAC 209 562 UCUGCUU C CAGGUGA 310
    181 UGCGCUU C CGCUACA 210 585 GACCCAU C AGGCAGG 311
    186 UUCCGCU A CAAGUGC 211 598 GGCCCCU C CGCCUGC 312
    204 GGGCGCU C CGCGGGC 212 613 CGCCUGU C CUUCCUC 313
    217 GCAGCAU C CCAGGCG 213 616 CUGUCCU U CCUCAUC 314
    239 CACAGAU A CCACCAA 214 617 UGUCCUU C CUCAUCC 315
    262 CCACCAU C AAGAUCA 215 620 CCUUCCU C AUCCCAU 316
    268 UCAAGAU C AAUGGCU 216 623 UCCUCAU C CCAUCUU 317
    276 AAUGGCU A CACAGGA 217 628 AUCCCAU C UUUGACA 318
    301 UGCGCAU C UCCCUGG 218 630 CCCAUCU U UGACAAU 319
    303 CGCAUCU C CCUGGUC 219 631 CCAUCUU U GACAAUC 320
    310 CCCUGGU C ACCAAGG 220 638 UGACAAU C GUGCCCC 321
    323 GGACCCU C CUCACCG 221 661 CCGAGCU C AAGAUCU 322
    326 CCCUCCU C ACCGGCC 222 667 UCAAGAU C UGCCGAG 323
    335 CCGGCCU C ACCCCCA 223 687 CGAAACU C UGGCAGC 324
    349 ACGAGCU U GUAGGAA 224 700 GCUGCCU C GGUGGGG 325
    352 AGCUUGU A GGAAAGG 225 715 AUGAGAU C UUCCUAC 326
    375 GAUGGCU U CUAUGAG 226 717 GAGAUCU U CCUACUG 327
    376 AUGGCUU C UAUGAGG 227 718 AGAUCUU C CUACUGU 328
    378 GGCUUCU A UGAGGCU 228 721 UCUUCCU A CUGUGUG 329
    391 CUGAGCU C UGCCCGG 229 751 AGGACAU U GAGGUGU 330
    409 GCUGCAU C CACAGUU 230 759 GAGGUGU A UUUCACG 331
    416 CCACAGU U UCCAGAA 231 761 GGUGUAU U UCACGGG 332
    417 CACAGUU U CCAGAAC 232 762 GUGUAUU U CACGGGA 333
    418 ACAGUUU C CAGAACC 233 763 UGUAUUU C ACGGGAC 334
    433 UGGGAAU C CAGUGUG 234 792 CGAGGCU C CUUUUCG 335
    795 GGCUCCU U UUCGCAA 235 1167 GAUGAGU U UCCCACC 336
    796 GCUCCUU U UCGCAAG 236 1168 AUGAGUU U CCCACCA 337
    797 CUCCUUU U CGCAAGC 237 1169 UGAGUUU C CCACCAU 338
    798 UCCUUUU C GCAAGCU 238 1182 AUGGUGU U UCCUUCU 339
    829 UGGCCAU U GUGUUCC 239 1183 UGGUGUU U CCUUCUG 340
    834 AUUGUGU U CCGGACC 240 1184 GGUGUUU C CUUCUGG 341
    835 UUGUGUU C CGGACCC 241 1187 GUUUCCU U CUGGGCA 342
    845 GACCCCU C CCUACGC 242 1188 UUUCCUU C UGGGCAG 343
    849 CCUCCCU A CGCAGAC 243 1198 GGCAGAU C AGCCAGG 344
    872 GCAGGCU C CUGUGCG 244 1209 CAGGCCU C GGCCUUG 345
    883 UGCGUGU C UCCAUGC 245 1215 UCGGCCU U GGCCCCG 346
    885 CGUGUCU C CAUGCAG 246 1229 GGCCCCU C CCCAAGU 347
    905 GCGGCCU U CCGACCG 247 1237 CCCAAGU C CUGCCCC 348
    906 CGGCCUU C CGACCGG 248 1250 CCAGGCU C CAGCCCC 349
    919 GGGAGCU C AGUGAGC 249 1268 CCCUGCU C CAGCCAU 350
    936 AUGGAAU U CCAGUAC 250 1279 CCAUGGU A UCAGGUC 351
    937 UGGAAUU C CAGUACC 251 1281 AUGGUAU C AGCUCUG 352
    942 UUCCAGU A CCUGCCA 252 1286 AUCAGCU C UGGCCCA 353
    953 GCCAGAU A CAGACGA 253 1309 CCCCUGU C CCAGUCC 354
    962 AGACGAU C GUCACCG 254 1315 UCCCAGU C CUAGCCC 355
    965 CGAUCGU C ACCGGAU 255 1318 CAGUCCU A GCCCCAG 356
    973 ACCGGAU U GAGGAGA 256 1331 AGGCCCU C CUCAGGC 357
    986 GAAACGU A AAAGGAC 257 1334 CCCUCCU C AGGCUGU 358
    996 AGGACAU A UGAGACC 258 1389 ACGCUGU C AGAGGCC 359
    1005 GAGACCU U CAAGAGC 259 1413 CUGCAGU U UGAUGAU 360
    1006 AGACCUU C AAGAGCA 260 1414 UGCAGUU U GAUGAUG 361
    1015 AGAGCAU C AUGAAGA 261 1437 GGGGCCU U GCUUGGC 362
    1028 GAAGAGU C CUUUCAG 262 1441 CCUUGCU U GGCAACA 363
    1031 GAGUCCU U UCAGCGG 263 1467 GCUGUGU U CACAGAC 364
    1032 AGUCCUU U CAGCGGA 264 1468 CUGUGUU C ACAGACC 365
    1033 GUCCUUU C AGCGGAC 265 1482 CUGGCAU C CGUCGAC 366
    1058 CCGGCCU C CACCUCG 266 1486 CAUCCGU C GACAACU 367
    1064 UCCACCU C GACGCAU 267 1494 GACAACU C CGAGUUU 368
    1072 GACGCAU U GCUGUGC 268 1500 UCCGAGU U UCAGCAG 369
    1082 UGUGCCU U CCCGCAG 269 1501 CCGAGUU U CAGCAGC 370
    1083 GUGCCUU C CCGCAGC 270 1502 CGAGUUU C AGCAGCU 371
    1092 CGCAGCU C AGCUUCU 271 1525 AGGGCAU A CCUGUGG 372
    1097 CUCAGCU U CUGUCCC 272 1566 AUGGAGU A CCCUGAG 373
    1098 UCAGCUU C UGUCCCC 273 1577 UGAGGCU A UAACUCG 374
    1102 CUUCUGU C CCCAAGC 274 1579 AGGCUAU A ACUCGCC 375
    1125 CAGCCCU A UCCCUUU 275 1583 UAUAACU C GCCUAGU 376
    1127 GCCCUAU C CCUUUAC 276 1588 CUCGCCU A GUGACAG 377
    1131 UAUCCCU U UACGUCA 277 1622 CCCAGCU C CUGCUCC 378
    1132 AUCCCUU U ACGUCAU 278 1628 UCCUGCU C CACUGGG 379
    1133 UCCCUUU A CGUCAUC 279 1648 CGGGGCU C CCCAAUG 380
    1137 UUUACGU C AUCCCUG 280 1660 AUGGCCU C CUUUCAG 381
    1140 ACGUCAU C CCUGAGC 281 1663 GCCUCCU U UCAGGAG 382
    1153 GCACCAU C AACUAUG 282 1664 CCUCCUU U CAGGAGA 383
    1158 AUCAACU A UGAUGAG 283 1665 CUCCUUU C AGGAGAU 384
    1680 GAAGACU U CUCCUCC 284
    1681 AAGACUU C UCCUCCA 285
    1683 GACUUCU C CUCCAUU 286
    1686 UUCUCCU C CAUUGCG 287
    1690 CCUCCAU U GCGGACA 288
    1704 AUGGACU U CUCAGCC 289
    1705 UGGACUU C UCAGCCC 290
    1707 GACUUCU C AGCCCUG 291
    1721 GCUGAGU C AGAUCAG 292
    1726 GUCAGAU C AGCUCCU 293
    1731 AUCAGCU C CUAAGGG 294
    1734 AGCUCCU A AGGGGGU 295
    1754 CUGCCCU C CCCAGAG 296
  • [0072]
    TABLE IV
    Mouse rel A HH Ribozyme Sequences
    nt. Seq. HH Ribozyme Sequence Seq. ID No.
    19 UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU 385
    22 CACCACG CUGAUGAGGCCGAAAGGCCGAA AGGAGCU 386
    26 UGUCCGC CUGAUGAGGCCGAAAGGCCGAA AUGGAGG 387
    93 GAGGGGA CUGAUGAGGCCGAAAGGCCGAA ACAGAUC 388
    94 UGAGGGG CUGAUGAGGCCGAAAGGCCGAA AACAGAU 389
    100 GAAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGGGAA 390
    103 AGGGAAA CUGAUGAGGCCGAAAGGCCGAA AUGAGGG 391
    105 UGAGGGA CUGAUGAGGCCGAAAGGCCGAA AGAUGAG 392
    106 CUGAGGG CUGAUGAGGCCGAAAGGCCGAA AAGAUGA 393
    129 AGGCCCA CUGAUGAGGCCGAAAGGCCGAA AAGCCUG 394
    138 CUCCACA CUGAUGAGGCCGAAAGGCCGAA AAGGCCC 395
    148 GUUCGAU CUGAUGAGGCCGAAAGGCCGAA AUCUCCA 396
    151 GCUGUUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU 397
    180 AUAGCGG CUGAUGAGGCCGAAAGGCCGAA AUCGCAU 398
    181 UAUAGCG CUGAUGAGGCCGAAAGGCCGAA AAUCGCA 399
    186 GCAUUUA CUGAUGAGGCCGAAAGGCCGAA AGCGGAA 400
    204 GCCCGCU CUGAUGAGGCCGAAAGGCCGAA AGCGCCC 401
    217 CGCCAGG CUGAUGAGGCCGAAAGGCCGAA AUACUGC 402
    239 UUGGUGG CUGAUGAGGCCGAAAGGCCGAA AUCUGUG 403
    262 UGAUCUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGG 404
    268 AGCCAUU CUGAUGAGGCCGAAAGGCCGAA AUCUUGA 405
    276 UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU 406
    301 CCAGGGA CUGAUGAGGCCGAAAGGCCGAA AUUCGAA 407
    303 GACCAGG CUGAUGAGGCCGAAAGGCCGAA AGAUUCG 408
    310 CCUUGGU CUGAUGAGGCCGAAAGGCCGAA ACCAGGG 409
    323 UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 410
    326 GGCCGGU CUGAUGAGGCCGAAAGGCCGAA AGGUGGA 411
    335 UGUGGAU CUGAUGAGGCCGAAAGGCCGAA AGGCCGG 412
    349 UCCCCAC CUGAUGAGGCCGAAAGGCCGAA AGUUCAU 413
    352 GCUGUUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU 414
    375 CUCAUAG CUGAUGAGGCCGAAAGGCCGAA AGCCAUC 415
    376 CUCCGGA CUGAUGAGGCCGAAAGGCCGAA AGACCAU 416
    378 AGCCUCA CUGAUGAGGCCGAAAGGCCGAA AGUAGCC 417
    391 CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGGUCAG 418
    391 CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGGUCAG 428
    409 AGCUAUG CUGAUGAGGCCGAAAGGCCGAA AUACUGC 419
    416 CUAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUGCGG 420
    417 GUUCUGG CUGAUGAGGCCGAAAGGCCGAA AGCUAUG 421
    418 GGUUCUG CUGAUGAGGCCGAAAGGCCGAA AAGCUAU 422
    433 CACACUG CUGAUGAGGCCGAAAGGCCGAA AUCCCCA 423
    467 CGAACAG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG 424
    469 GCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUGGCUU 425
    473 CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAAA 426
    481 UGGUCUG CUGAUGAGGCCGAAAGGCCGAA AUUCGCU 427
    501 AACGUGA CUGAUGAGGCCGAAAGGCCGAA AGGGGUU 428
    502 GAACGUG CUGAUGAGGCCGAAAGGCCGAA AAGGGGU 429
    508 CUAUAGG CUGAUGAGGCCGAAAGGCCGAA ACGUGAA 430
    509 UCUAUAG CUGAUGAGGCCGAAAGGCCGAA AACGUGA 431
    512 UCCUCUA CUGAUGAGGCCGAAAGGCCGAA AGGAACG 432
    514 GCUCCUC CUGAUGAGGCCGAAAGGCCGAA AUAGGAA 433
    534 CAAGUCA CUGAUGAGGCCGAAAGGCCGAA AGUCCCC 434
    556 GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGGCGCA 435
    561 CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGGAGAG 436
    562 UCACCUG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA 437
    585 GCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUGGCUU 438
    598 UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 439
    613 GUGAGAG CUGAUGAGGCCGAAAGGCCGAA ACAGGGG 440
    616 GAUGUGA CUGAUGAGGCCGAAAGGCCGAA AGGACAG 441
    617 GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AAGGGAC 442
    620 CAUGGCU CUGAUGAGGCCGAAAGGCCGAA AGGAAGG 443
    623 GAGAUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA 444
    628 UAUCAAA CUGAUGAGGCCGAAAGGCCGAA AUCGGAU 445
    630 GUUAUCA CUGAUGAGGCCGAAAGGCCGAA AAAUCGG 446
    631 GGUUAUC CUGAUGAGGCCGAAAGGCCGAA AAAAUCG 447
    638 GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA 448
    661 AGAUCUU CUGAUGAGGCCGAAAGGCCGAA AGCUCGG 449
    667 CUCGGCA CUGAUGAGGCCGAAAGGCCGAA AUCUUGA 450
    687 GCUCCCA CUGAUGAGGCCGAAAGGCCGAA AGUUCCG 451
    700 CCCCACC CUGAUGAGGCCGAAAGGCCGAA AGGCAGC 452
    715 GCAAGAA CUGAUGAGGCCGAAAGGCCGAA AUCUCAU 453
    717 CAGCAAG CUGAUGAGGCCGAAAGGCCGAA AGAUCUC 454
    718 ACAGCAA CUGAUGAGGCCGAAAGGCCGAA AAGAUCU 455
    721 CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA 456
    751 ACACCUC CUGAUGAGGCCGAAAGGCCGAA AUGUCUU 457
    759 CGUGAAA CUGAUGAGGCCGAAAGGCCGAA ACACCUC 458
    761 CCCGUGA CUGAUGAGGCCGAAAGGCCGAA AUACACC 459
    762 UCCCGUG CUGAUGAGGCCGAAAGGCCGAA AAUACAC 460
    763 GUCCCGU CUGAUGAGGCCGAAAGGCCGAA AAAUACA 461
    792 AGAAAAG CUGAUGAGGCCGAAAGGCCGAA AGCCUCG 462
    795 UUGAGAA CUGAUGAGGCCGAAAGGCCGAA AGGAGCC 463
    796 CUUGAGA CUGAUGAGGCCGAAAGGCCGAA AAGGAGC 464
    797 GCUUGAG CUGAUGAGGCCGAAAGGCCGAA AAAGGAG 465
    798 AGCUUGA CUGAUGAGGCCGAAAGGCCGAA AAAAGGA 466
    829 GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA 467
    834 AGUCCGG CUGAUGAGGCCGAAAGGCCGAA ACACAAU 468
    835 GAGUCCG CUGAUGAGGCCGAAAGGCCGAA AACACAA 469
    845 GCGUACG CUGAUGAGGCCGAAAGGCCGAA AGGAGUC 470
    849 GUCGGCG CUGAUGAGGCCGAAAGGCCGAA ACGGAGG 471
    872 CGAACAG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG 472
    883 GCAUGGA CUGAUGAGGCCGAAAGGCCGAA ACUCGAA 473
    885 CUGCAUG CUGAUGAGGCCGAAAGGCCGAA AGACUCG 474
    905 CGAUCAG CUGAUGAGGCCGAAAGGCCGAA AGGCCGC 475
    906 GCGAUCA CUGAUGAGGCCGAAAGGCCGAA AAGGCCG 476
    919 GCUCACU CUGAUGAGGCCGAAAGGCCGAA AGCUCGC 477
    936 GUACUGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU 478
    937 AGUACUG CUGAUGAGGCCGAAAGGCCGAA AACUCCA 479
    942 UGGCAAG CUGAUGAGGCCGAAAGGCCGAA ACUGGAA 480
    953 UCAUGUG CUGAUGAGGCCGAAAGGCCGAA AUGAGGC 481
    962 CGGUGGC CUGAUGAGGCCGAAAGGCCGAA AUCAUCU 482
    965 GUCUGGC CUGAUGAGGCCGAAAGGCCGAA AGUACUG 483
    973 UCUCUUC CUGAUGAGGCCGAAAGGCCGAA AUCCGGU 484
    986 ACUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC 485
    1005 ACUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC 486
    1006 UACUCUU CUGAUGAGGCCGAAAGGCCGAA AAGGUCU 487
    1015 UCUUCAU CUGAUGAGGCCGAAAGGCCGAA AUACUCU 488
    1028 UUGAAAG CUGAUGAGGCCGAAAGGCCGAA ACUCUUC 490
    1031 CCAUUGA CUGAUGAGGCCGAAAGGCCGAA AGGACUC 491
    1032 UCCAUGG CUGAUGAGGCCGAAAGGCCGAA AAGGACU 492
    1033 GUCCAUU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC 493
    1058 CGGGUUG CUGAUGAGGCCGAAAGGCCGAA AGGCCGG 494
    1064 UUGGAUC CUGAUGAGGCCGAAAGGCCGAA AGGUGUA 495
    1072 GCACAGC CUGAUGAGGCCGAAAGGCCGAA AUACGCC 496
    1082 UUUCGGG CUGAUGAGGCCGAAAGGCCGAA AGGCACA 497
    1083 ACUUCGG CUGAUGAGGCCGAAAGGCCGAA AAGGCUU 498
    1092 AGAAGUU CUGAUGAGGCCGAAAGGCCGAA AGUUUCG 499
    1097 GGGACAG CUGAUGAGGCCGAAAGGCCGAA AGUUGAG 500
    1098 GGGGACA CUGAUGAGGCCGAAAGGCCGAA AAGUUGA 501
    1102 GCUUGGG CUGAUGAGGCCGAAAGGCCGAA ACAGAAG 502
    1125 GAAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGGCUG 503
    1127 GUAAGGC CUGAUGAGGCCGAAAGGCCGAA AUAUGGC 504
    1131 UGGUGCU CUGAUGAGGCCGAAAGGCCGAA AGGGAUG 505
    1132 AUGCUGG CUGAUGAGGCCGAAAGGCCGAA AAGGUGU 506
    1133 GAAGCUG CUGAUGAGGCCGAAAGGCCGAA AGAUGGA 507
    1137 GCGCGCU CUGAUGAGGCCGAAAGGCCGAA AAGUAAA 508
    1140 GCUGAGG CUGAUGAGGCCGAAAGGCCGAA AUGCUGG 509
    1153 CAAAGUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGC 510
    1158 CUCAUCA CUGAUGAGGCCGAAAGGCCGAA AGUUGAU 511
    1167 GGGGGAA CUGAUGAGGCCGAAAGGCCGAA ACUCAUC 512
    1168 UGGGGGA CUGAUGAGGCCGAAAGGCCGAA AACUCAU 513
    1169 AUGGGGG CUGAUGAGGCCGAAAGGCCGAA AAACUCA 514
    1182 UGAUGGU CUGAUGAGGCCGAAAGGCCGAA ACAGCAU 515
    1183 CUGAUGG CUGAUGAGGCCGAAAGGCCGAA AACAGCA 516
    1184 UCAGGAG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 517
    1187 GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AAGGGAC 518
    1188 CUGCCCU CUGAUGAGGCCGAAAGGCCGAA AUGGUAA 519
    1198 UCAGACU CUGAUGAGGCCGAAAGGCCGAA AACUCCC 520
    1209 GAAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGGCUG 521
    1215 CGGUGCU CUGAUGAGGCCGAAAGGCCGAA AGGCCAG 522
    1229 GCUGAGG CUGAUGAGGCCGAAAGGCCGAA AGGGACC 523
    1237 GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG 524
    1250 GAGCCUG CUGAUGAGGCCGAAAGGCCGAA AGGCUGG 525
    1268 GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG 526
    1279 AGGAAGG CUGAUGAGGCCGAAAGGCCGAA ACCAUGG 527
    1281 CGCAGCU CUGAUGAGGCCGAAAGGCCGAA AGCCCAC 528
    1286 UGGGGGA CUGAUGAGGCCGAAAGGCCGAA AACUCAU 529
    1309 AGACUCG CUGAUGAGGCCGAAAGGCCGAA ACAGGAG 530
    1315 GGGUUAG CUGAUGAGGCCGAAAGGCCGAA ACUGGGG 531
    1318 CCGGGGU CUGAUGAGGCCGAAAGGCCGAA AGAACUG 532
    1331 GACUGGG CUGAUGAGGCCGAAAGGCCGAA AGGACCC 533
    1334 UCAGCUU CUGAUGAGGCCGAAAGGCCGAA AGAAAAG 534
    1389 GGCUUCC CUGAUGAGGCCGAAAGGCCGAA ACAGCGU 535
    1413 AGCAUCA CUGAUGAGGCCGAAAGGCCGAA ACUGGAG 536
    1414 CAGCAUC CUGAUGAGGCCGAAAGGCCGAA AACUGCA 537
    1437 GCCAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCCCC 538
    1441 UGUUGCC CUGAUGAGGCCGAAAGGCCGAA AGCAAGG 539
    1467 GUCUGUG CUGAUGAGGCCGAAAGGCCGAA ACACUCC 540
    1468 GGUCUGU CUGAUGAGGCCGAAAGGCCGAA AACACUC 541
    1482 GUCCACA CUGAUGAGGCCGAAAGGCCGAA AUGCCAG 542
    1486 AGUUCCC CUGAUGAGGCCGAAAGGCCGAA ACCGAAG 543
    1494 AAACUCU CUGAUGAGGCCGAAAGGCCGAA AGUUGUC 544
    1500 CUGCUGA CUGAUGAGGCCGAAAGGCCGAA ACUCUGA 545
    1501 GCUGCUG CUGAUGAGGCCGAAAGGCCGAA AACUCUG 546
    1502 AGCUGCU CUGAUGAGGCCGAAAGGCCGAA AAACUCU 547
    1525 ACACAGG CUGAUGAGGCCGAAAGGCCGAA AUGCACC 548
    1566 UUCAGGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU 549
    1577 CGAGUUA CUGAUGAGGCCGAAAGGCCGAA AGCUUCA 550
    1579 GGCGAGU CUGAUGAGGCCGAAAGGCCGAA AUAGCUU 551
    1583 ACCAGGC CUGAUGAGGCCGAAAGGCCGAA AGUUAUA 552
    1588 CCCUCUC CUGAUGAGGCCGAAAGGCCGAA AGGAGAG 553
    1622 GGGGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG 554
    1628 CCUACCG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA 555
    1648 CAUUGGG CUGAUGAGGCCGAAAGGCCGAA AGCCCCG 556
    1660 CUGGGCA CUGAUGAGGCCGAAAGGCCGAA AGGUCAG 557
    1663 CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGAG 558
    1664 UCACCUG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA 559
    1665 ACCUCCG CUGAUGAGGCCGAAAGGCCGAA AAGCGAG 560
    1680 GGAGGAG CUGAUGAGGCCGAAAGGCCGAA AGUCUUC 561
    1681 UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AAGUCUU 562
    1683 AAUGGAG CUGAUGAGGCCGAAAGGCCGAA AGAAGUC 563
    1686 CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA 564
    1690 UGUCCGC CUGAUGAGGCCGAAAGGCCGAA AUGGAGG 565
    1704 AGCAGAG CUGAUGAGGCCGAAAGGCCGAA AGUCCAU 566
    1705 GAGCAGA CUGAUGAGGCCGAAAGGCCGAA AAGUCCA 567
    1707 AAGAGCA CUGAUGAGGCCGAAAGGCCGAA AGAAGUC 568
    1721 CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAAA 569
    1726 AGGAGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGAC 570
    1731 ACCUUAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAU 571
    1734 AGCACCU CUGAUGAGGCCGAAAGGCCGAA AGGAGCU 572
    1754 CUCUUGG CUGAUGAGGCCGAAAGGCCGAA AGCACUG 573
  • [0073]
    TABLE V
    Human rel A HH Ribozyme Sequences
    nt.
    Sequence HH Ribozyme Sequence SEQ ID NO.
    19 UACAGAC CUGAUGAGGCCGAAAGGCCGAA AGCCAUU 574
    22 CACUACA CUGAUGAGGCCGAAAGGCCGAA ACGAGCC 575
    26 CGUGCAC CUGAUGAGGCCGAAAGGCCGAA ACAGACG 576
    93 GAGGGGG CUGAUGAGGCCGAAAGGCCGAA ACAGUUC 577
    94 UGAGGGG CUGAUGAGGCCGAAAGGCCGAA AACAGUU 578
    100 GGAAGAU CUGAUGAGGCCGAAAGGCCGAA AGGGGGA 579
    103 CCGGGAA CUGAUGAGGCCGAAAGGCCGAA AUGAGGG 580
    105 UGCCGGG CUGAUGAGGCCGAAAGGCCGAA AGAUGAG 581
    106 CUGCCGG CUGAUGAGGCCGAAAGGCCGAA AAGAUGA 582
    129 GGGGCCA CUGAUGAGGCCGAAAGGCCGAA AGGCCUG 583
    138 CUCCACA CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 584
    148 GCUCAAU CUGAUGAGGCCGAAAGGCCGAA AUCUCCA 585
    151 GCUGCUC CUGAUGAGGCCGAAAGGCCGAA AUGAUCU 586
    180 GUAGCGG CUGAUGAGGCCGAAAGGCCGAA AGCGCAU 587
    181 UGUAGCG CUGAUGAGGCCGAAAGGCCGAA AAGCGCA 588
    186 GCACUUG CUGAUGAGGCCGAAAGGCCGAA AGCGGAA 589
    204 GCCCGCG CUGAUGAGGCCGAAAGGCCGAA AGCGCCC 590
    217 CGCCUGG CUGAUGAGGCCGAAAGGCCGAA AUGCUGC 591
    239 UUGGUGG CUGAUGAGGCCGAAAGGCCGAA AUCUGUG 592
    262 UGAUCUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGG 593
    268 AGCCAUU CUGAUGAGGCCGAAAGGCCGAA AUCUUGA 594
    276 UCCUGUG CUGAUGAGGCCGAAAGGCCGAA AGCCAUU 595
    301 CCAGGGA CUGAUGAGGCCGAAAGGCCGAA AUGCGCA 596
    303 GACCAGG CUGAUGAGGCCGAAAGGCCGAA AGAUGCG 597
    310 CCUUGGU CUGAUGAGGCCGAAAGGCCGAA ACCAGGG 598
    323 CGGUGAG CUGAUGAGGCCGAAAGGCCGAA AGGGUCC 599
    326 GGCCGGU CUGAUGAGGCCGAAAGGCCGAA AGGAGGG 600
    335 UGGGGGU CUGAUGAGGCCGAAAGGCCGAA AGGCCGG 601
    349 UUCCUAC CUGAUGAGGCCGAAAGGCCGAA AGCUCGU 602
    352 CCUUUCC CUGAUGAGGCCGAAAGGCCGAA ACAAGCU 603
    375 CUCAUAG CUGAUGAGGCCGAAAGGCCGAA AGCCAUC 604
    376 CCUCAUA CUGAUGAGGCCGAAAGGCCGAA AAGCCAU 605
    378 AGCCUCA CUGAUGAGGCCGAAAGGCCGAA AGAAGCC 606
    391 CCGGGCA CUGAUGAGGCCGAAAGGCCGAA AGCUCAG 607
    409 AACUGUG CUGAUGAGGCCGAAAGGCCGAA AUGCAGC 608
    416 UUCUGGA CUGAUGAGGCCGAAAGGCCGAA ACUGUGG 609
    417 GUUCUGG CUGAUGAGGCCGAAAGGCCGAA AACUGUG 610
    418 GGUUCUG CUGAUGAGGCCGAAAGGCCGAA AAACUGU 611
    433 CACACUG CUGAUGAGGCCGAAAGGCCGAA AUUCCCA 612
    467 UGACUGA CUGAUGAGGCCGAAAGGCCGAA AGCCUGC 613
    469 GCUGACU CUGAUGAGGCCGAAAGGCCGAA AUAGCCU 614
    473 AUGCGCU CUGAUGAGGCCGAAAGGCCGAA ACUGAUA 615
    481 UGGUCUG CUGAUGAGGCCGAAAGGCCGAA AUGCGCU 616
    501 AACUUGG CUGAUGAGGCCGAAAGGCCGAA AGGGGUU 617
    502 GAACUUG CUGAUGAGGCCGAAAGGCCGAA AAGGGGU 618
    508 CUAUAGG CUGAUGAGGCCGAAAGGCCGAA ACUUGAA 619
    509 UCUAUAG CUGAUGAGGCCGAAAGGCCGAA AACUUGG 620
    512 UCUUCUA CUGAUGAGGCCGAAAGGCCGAA AGGAACU 621
    514 GCUCUUC CUGAUGAGGCCGAAAGGCCGAA AUAGGAA 622
    534 CAGGUCG CUGAUGAGGCCGAAAGGCCGAA AGUCCCC 623
    556 GGAAGCA CUGAUGAGGCCGAAAGGCCGAA AGCCGCA 624
    561 CACCUGG CUGAUGAGGCCGAAAGGCCGAA AGCAGAG 625
    562 UCACCUG CUGAUGAGGCCGAAAGGCCGAA AAGCAGA 626
    585 CCUGCCU CUGAUGAGGCCGAAAGGCCGAA AUGGGUC 627
    598 GCAGGCG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 628
    613 GAGGAAG CUGAUGAGGCCGAAAGGCCGAA ACAGGCG 629
    616 GAUGAGG CUGAUGAGGCCGAAAGGCCGAA AGGACAG 630
    617 GGAUGAG CUGAUGAGGCCGAAAGGCCGAA AAGGACA 631
    620 AUGGGAU CUGAUGAGGCCGAAAGGCCGAA AGGAAGG 632
    623 AAGAUGG CUGAUGAGGCCGAAAGGCCGAA AUGAGGA 633
    628 UGUCAAA CUGAUGAGGCCGAAAGGCCGAA AUCGGAU 634
    630 AUUGUCA CUGAUGAGGCCGAAAGGCCGAA AGAUGGG 635
    631 GAUUGUC CUGAUGAGGCCGAAAGGCCGAA AAGAUGG 636
    638 GGGGCAC CUGAUGAGGCCGAAAGGCCGAA AUUGUCA 637
    661 AGAUCUU CUGAUGAGGCCGAAAGGCCGAA AGCUCGG 638
    667 CUCGGCA CUGAUGAGGCCGAAAGGCCGAA AUCUUGA 639
    687 GCUGCCA CUGAUGAGGCCGAAAGGCCGAA AGUUUCG 640
    700 CCCCACC CUGAUGAGGCCGAAAGGCCGAA AGGCAGC 641
    715 GUAGGAA CUGAUGAGGCCGAAAGGCCGAA AUCUCAU 642
    717 CAGUAAG CUGAUGAGGCCGAAAGGCCGAA AGAUCUC 643
    718 ACAGUAG CUGAUGAGGCCGAAAGGCCGAA AAGAUCU 644
    721 CACACAG CUGAUGAGGCCGAAAGGCCGAA AGGAAGA 645
    751 ACACCUC CUGAUGAGGCCGAAAGGCCGAA AUGUCCU 646
    759 CGUGAAA CUGAUGAGGCCGAAAGGCCGAA ACACCUC 647
    761 CCCGUGA CUGAUGAGGCCGAAAGGCCGAA AUACACC 648
    762 UCCCGUG CUGAUGAGGCCGAAAGGCCGAA AAUACAC 649
    763 GUCCCGU CUGAUGAGGCCGAAAGGCCGAA AAAUACA 650
    792 CGAAAAG CUGAUGAGGCCGAAAGGCCGAA AGCCUCG 651
    795 UUGCGAA CUGAUGAGGCCGAAAGGCCGAA AGGAGCC 652
    796 CUUGCGA CUGAUGAGGCCGAAAGGCCGAA AAGGAGC 653
    797 GCUUGCG CUGAUGAGGCCGAAAGGCCGAA AAAGGAG 654
    798 AGCUUGC CUGAUGAGGCCGAAAGGCCGAA AAAAGGA 655
    829 GGAACAC CUGAUGAGGCCGAAAGGCCGAA AUGGCCA 656
    834 GGUCCGG CUGAUGAGGCCGAAAGGCCGAA ACACAAU 657
    835 GGGUCCG CUGAUGAGGCCGAAAGGCCGAA AACACAA 658
    845 GCGUAGG CUGAUGAGGCCGAAAGGCCGAA AGGGGUC 659
    849 GUCUGCG CUGAUGAGGCCGAAAGGCCGAA AGGGAGG 660
    872 CGCACAG CUGAUGAGGCCGAAAGGCCGAA AGCCUGC 661
    883 GCAUGGA CUGAUGAGGCCGAAAGGCCGAA ACACGCA 662
    885 CUGCAUG CUGAUGAGGCCGAAAGGCCGAA AGACACG 662
    905 CGGUCGG CUGAUGAGGCCGAAAGGCCGAA AGGCCGC 664
    906 CCGGUCG CUGAUGAGGCCGAAAGGCCGAA AAGGCCG 665
    919 GCUCAGU CUGAUGAGGCCGAAAGGCCGAA AGCUCCC 666
    936 GUACUGG CUGAUGAGGCCGAAAGGCCGAA AUUCCAU 667
    937 GGUACUG CUGAUGAGGCCGAAAGGCCGAA AAUUCCA 668
    942 UGGCAGG CUGAUGAGGCCGAAAGGCCGAA ACUGGAA 669
    953 UCGUCUG CUGAUGAGGCCGAAAGGCCGAA AUCUGGC 670
    962 CGGUGAC CUGAUGAGGCCGAAAGGCCGAA AUCGUCU 671
    965 AUCCGGU CUGAUGAGGCCGAAAGGCCGAA ACGAUCG 672
    973 UCUCCUC CUGAUGAGGCCGAAAGGCCGAA AUCCGGU 673
    986 GUCCUUU CUGAUGAGGCCGAAAGGCCGAA AGGUUUC 674
    996 GGUCUCA CUGAUGAGGCCGAAAGGCCGAA AUGUCCU 675
    1005 GCUCUUG CUGAUGAGGCCGAAAGGCCGAA AGGUCUC 676
    1006 UGCUCUU CUGAUGAGGCCGAAAGGCCGAA AAGGUCU 677
    1015 UCUUCAU CUGAUGAGGCCGAAAGGCCGAA AUGCUCU 678
    1028 CUGAAAG CUGAUGAGGCCGAAAGGCCGAA ACUCUUC 679
    1031 CCGCUGA CUGAUGAGGCCGAAAGGCCGAA AGGACUC 680
    1032 UCCGCUG CUGAUGAGGCCGAAAGGCCGAA AAGGACU 681
    1033 GUCCGCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAC 682
    1058 CGAGGUG CUGAUGAGGCCGAAAGGCCGAA AGGCCGG 683
    1064 AUGCGUC CUGAUGAGGCCGAAAGGCCGAA AGGUGGA 684
    1072 GCACAGC CUGAUGAGGCCGAAAGGCCGAA AUGCGUC 685
    1082 CUGCGGG CUGAUGAGGCCGAAAGGCCGAA AGGCACA 686
    1083 GCUGCGG CUGAUGAGGCCGAAAGGCCGAA AAGGCAC 687
    1092 AGAAGCU CUGAUGAGGCCGAAAGGCCGAA AGCUGCG 688
    1097 GGGACAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAG 689
    1098 GGGGACA CUGAUGAGGCCGAAAGGCCGAA AAGCUGA 690
    1102 GCUUGGG CUGAUGAGGCCGAAAGGCCGAA ACAGAAG 691
    1125 AAAGGGA CUGAUGAGGCCGAAAGGCCGAA AGGGCUG 692
    1127 GUAAAGG CUGAUGAGGCCGAAAGGCCGAA AUAGGGC 693
    1131 UGACGUA CUGAUGAGGCCGAAAGGCCGAA AGGGAUA 694
    1132 AUGACGU CUGAUGAGGCCGAAAGGCCGAA AAGGGAU 695
    1133 GAUGACG CUGAUGAGGCCGAAAGGCCGAA AAAGGGA 696
    1137 CAGGGAU CUGAUGAGGCCGAAAGGCCGAA ACGUAAA 697
    1140 GCUCAGG CUGAUGAGGCCGAAAGGCCGAA AUGACGU 698
    1153 CAUAGUU CUGAUGAGGCCGAAAGGCCGAA AUGGUGC 699
    1158 CUCAUCA CUGAUGAGGCCGAAAGGCCGAA AGUUGAU 700
    1167 GGUGGGA CUGAUGAGGCCGAAAGGCCGAA ACUCAUC 701
    1168 UGGUGGG CUGAUGAGGCCGAAAGGCCGAA AACUCAU 702
    1169 AUGGUGG CUGAUGAGGCCGAAAGGCCGAA AAACUCA 703
    1182 AGAAGGA CUGAUGAGGCCGAAAGGCCGAA ACACCAU 704
    1183 CAGAAGG CUGAUGAGGCCGAAAGGCCGAA AACACCA 705
    1184 CCAGAAG CUGAUGAGGCCGAAAGGCCGAA AAACACC 706
    1187 UGCCCAG CUGAUGAGGCCGAAAGGCCGAA AAGAAAC 707
    1188 CUGCCCA CUGAUGAGGCCGAAAGGCCGAA AAGGAAA 708
    1198 CCUGGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGCC 709
    1209 GAAGGCC CUGAUGAGGCCGAAAGGCCGAA AGGCCUG 710
    1215 CGGGGCC CUGAUGAGGCCGAAAGGCCGAA AGGCCGA 711
    1229 ACUUGGG CUGAUGAGGCCGAAAGGCCGAA AGGGGCC 712
    1237 GGGGCAG CUGAUGAGGCCGAAAGGCCGAA ACUUGGG 713
    1250 GGGGCUG CUGAUGAGGCCGAAAGGCCGAA AGCCUGG 714
    1268 AUGGCUG CUGAUGAGGCCGAAAGGCCGAA AGCAGGG 715
    1279 GAGCUGA CUGAUGAGGCCGAAAGGCCGAA ACCAUGG 716
    1281 CAGAGCU CUGAUGAGGCCGAAAGGCCGAA AUACCAU 717
    1286 UGGGCCA CUGAUGAGGCCGAAAGGCCGAA AGCUGAU 718
    1309 GGACUGG CUGAUGAGGCCGAAAGGCCGAA ACAGGGG 719
    1315 GGGCUAG CUGAUGAGGCCGAAAGGCCGAA ACUGGGA 720
    1318 CUGGGGC CUGAUGAGGCCGAAAGGCCGAA AGGACUG 721
    1331 GCCUGAG CUGAUGAGGCCGAAAGGCCGAA AGGGCCU 722
    1334 ACAGCCU CUGAUGAGGCCGAAAGGCCGAA AGGAGGG 723
    1389 GGCCUCU CUGAUGAGGCCGAAAGGCCGAA ACAGCGU 724
    1413 AUCAUCA CUGAUGAGGCCGAAAGGCCGAA ACUGCAG 725
    1414 CAUCAUC CUGAUGAGGCCGAAAGGCCGAA AACUGCA 726
    1437 GCCAAGC CUGAUGAGGCCGAAAGGCCGAA AGGCCCC 727
    1441 UGUUGCC CUGAUGAGGCCGAAAGGCCGAA AGCAAGG 728
    1467 GUCUGUG CUGAUGAGGCCGAAAGGCCGAA ACACAGC 729
    1468 GGUCUGU CUGAUGAGGCCGAAAGGCCGAA AACACAG 730
    1482 GUCGACG CUGAUGAGGCCGAAAGGCCGAA AUGCCAG 731
    1486 AGUUGUC CUGAUGAGGCCGAAAGGCCGAA ACGGAUG 732
    1494 AAACUCG CUGAUGAGGCCGAAAGGCCGAA AGUUGUC 733
    1500 CUGCUGA CUGAUGAGGCCGAAAGGCCGAA ACUCGGA 734
    1501 GCUGCUG CUGAUGAGGCCGAAAGGCCGAA AACUCGG 735
    1502 AGCUGCU CUGAUGAGGCCGAAAGGCCGAA AAACUCG 736
    1525 CCACAGG CUGAUGAGGCCGAAAGGCCGAA AUGCCCU 737
    1566 CACAGGG CUGAUGAGGCCGAAAGGCCGAA ACUCCAU 738
    1577 CGAGUUA CUGAUGAGGCCGAAAGGCCGAA AGCCUCA 739
    1579 GGCGAGU CUGAUGAGGCCGAAAGGCCGAA AUAGCCU 740
    1583 ACCAGGC CUGAUGAGGCCGAAAGGCCGAA AGUUAUA 741
    1588 CUGUCAC CUGAUGAGGCCGAAAGGCCGAA AGGCGAG 742
    1622 GGAGCAG CUGAUGAGGCCGAAAGGCCGAA AGCUGGG 743
    1628 CCCAGUG CUGAUGAGGCCGAAAGGCCGAA AGCAGGA 744
    1648 CAUUGGG CUGAUGAGGCCGAAAGGCCGAA AGCCCCG 745
    1660 CUGAAAG CUGAUGAGGCCGAAAGGCCGAA AGGCCAU 746
    1663 CUCCUGA CUGAUGAGGCCGAAAGGCCGAA AGGAGGC 747
    1664 UCUCCUG CUGAUGAGGCCGAAAGGCCGAA AAGGAGG 748
    1665 AUCUCCU CUGAUGAGGCCGAAAGGCCGAA AAAGGAG 749
    1680 GGAGGAG CUGAUGAGGCCGAAAGGCCGAA AGUCUUC 750
    1681 UGGAGGA CUGAUGAGGCCGAAAGGCCGAA AAGUGUU 751
    1683 AAUGGAG CUGAUGAGGCCGAAAGGCCGAA AGAAGUC 752
    1686 CGCAAUG CUGAUGAGGCCGAAAGGCCGAA AGGAGAA 753
    1690 UGUCCGC CUGAUGAGGCCGAAAGGCCGAA AUGGAGG 754
    1704 GGCUGAG CUGAUGAGGCCGAAAGGCCGAA AGUCCAU 755
    1705 GGGCUGA CUGAUGAGGCCGAAAGGCCGAA AAGUCCA 756
    1707 CAGGGCU CUGAUGAGGCCGAAAGGCCGAA AGAAGUC 757
    1721 CUGAUCU CUGAUGAGGCCGAAAGGCCGAA ACUCAGC 758
    1726 AGGAGCU CUGAUGAGGCCGAAAGGCCGAA AUCUGAC 759
    1731 CCCUUAG CUGAUGAGGCCGAAAGGCCGAA AGCUGAU 760
    1734 ACCCCCU CUGAUGAGGCCGAAAGGCCGAA AGGAGCU 761
    1754 CUCUGGG CUGAUGAGGCCGAAAGGCCGAA AGGGCAG 762
  • [0074]
    TABLE VI
    Human rel A Hairpin Ribozyme/Target Sequences
    nt. Seq ID Seq ID
    Position Hairpin Ribozyme sequence No. Substrate No.
    90 UGAGGGGG AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 763 GAACU GUU CCCCCUCA 778
    156 GCUGCUUG AGAA GCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 764 GAGCA GCC CAAGCAGC 779
    362 GCCAUCCC AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 765 GGACU GCC GGGAUGGC 780
    413 GUUCUGGA AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 766 CCACA GUU UCCAGAAC 781
    606 GAAGGACA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 767 CUGCC GCC UGUCCUUC 782
    652 UUGAGCUC AGAA GUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 768 ACACU GCC GAGCUCAA 783
    695 CCCACCGA AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 769 CAGCU GCC UCGGUGGG 784
    853 AGGCUGGG AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 770 ACGCA GAC CCCAGCCU 785
    900 GGUCGGAA AGAA GCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 771 CGGCG GCC UUCCGACC 786
    955 UGACGAUC AGAA GUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 772 AUACA GAC GAUCGUCA 787
    1037 GUCGGUGG AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 773 CAGCG GAC CCACCGAC 788
    1045 GGCCGGGG AGAA GUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 774 CCACC GAC CCCCGGCC 789
    1410 CAUCAUCA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 775 CUGCA GUU UGAUGAUG 790
    1453 ACAGCUGG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 776 GCACA GAC CCAGCUGU 791
    1471 GAUGCCAG AGAA GUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 777 UCACA GAC CUGGCAUC 792
  • [0075]
    TABLE VII
    Mouse rel A Hairpin Ribozyme/Target Sequences
    nt. Seq. ID Seq. ID
    Position Hairpin Ribozyme sequence No. Substrate No.
    137 GUUGCUUC AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 793 GAACA GCC GAAGCAAC 812
    273 GAGAUUCG AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 794 GAACA GUU CGAAUCUC 813
    343 GCCAUCCC AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 795 GGACU GCC GGGAUGGC 814
    366 GGGCAGAG AGAA GCCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 796 AGGCU GAC CUCUGCCC 815
    633 UUGAGCUC AGAA GUGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 797 ACACU GCC GAGCUCAA 816
    676 CCCACCGA AGAA GCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 798 GAGCU GCC UCGGUGGG 817
    834 AGGCUGGG AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 799 ACGCC GAC CCCAGCCU 818
    881 GAUCAGAA AGAA GCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 800 CGGCG GCC UUCUGAUC 819
    1100 AGGUGUAG AGAA GCGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 801 CCGCA GCC CUACACCU 820
    1205 GGGCAGAG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 802 GCACC GUC CUCUGCCC 821
    1361 GGGCUUCC AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 803 ACGCU GUC GGAAGCCC 822
    1385 CAGCAUCA AGAA GCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 804 CUGCA GUU UGAUGCUG 823
    1431 ACUCCUGG AGAA GUGC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 805 GCACA GAC CCAGGAGU 824
    1449 GAUGCCAG AGAA GUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 806 UCACA GAC CUGGCAUC 825
    1802 AAGUCGGG AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 807 CAGCU GCC CCCGACUU 826
    2009 UGGCUCCA AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 808 GGACA GAC UGGAGCCA 827
    2124 UGGUGUCG AGAA GCAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 809 GUGCU GCC CGACACCA 828
    2233 AUUCUGAA AGAA GCCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 810 UGGCC GCC UUCAGAAU 829
    2354 UCAGUAAA AGAA GUCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA 811 AGACA GCC UUUACUGA 830
  • [0076]
  • 1 830 11 nucleic acid single linear The letter “N” stands for any base. “H” represents nucleotide C, A, or U. 1 NNNNUHNNNN N 11 32 nucleic acid single linear The letter “N” stands for any base. 2 NNNNNCUGAN GAGNNNNNNN NNNCGAAANN NN 32 14 nucleic acid single linear The letter “N” stands for any base. 3 NNNNNGUCNN NNNN 14 50 nucleic acid single linear The letter “N” stands for any base. 4 NNNNNNAGAA NNNNACCAGA GAAACACACG UUGUGGUAUA UUACCUGGUA 50 85 nucleic acid single linear 5 UGGCCGGCAU GGUCCCAGCC UCCUCGCUGG CGCCGGCUGG GCAACAUUCC GAGGGGACCG 60 UCCCCUCGGU AAUGGCGAAU GGGAC 85 176 nucleic acid single linear 6 GGGAAAGCUU GCGAAGGGCG UCGUCGCCCC GAGCGGUAGU AAGCAGGGAA CUCACCUCCA 60 AUUUCAGUAC UGAAAUUGUC GUAGCAGUUG ACUACUGUUA UGUGAUUGGU AGAGGCUAAG 120 UGACGGUAUU GGCGUAAGUC AGUAUUGCAG CACAGCACAA GCCCGCUUGC GAGAAU 176 15 base pairs nucleic acid single linear 7 AAUGGCUACA CAGGA 15 15 base pairs nucleic acid single linear 8 AGCUCCUACG UGGUG 15 15 base pairs nucleic acid single linear 9 CCUCCAUUGC GGACA 15 15 base pairs nucleic acid single linear 10 GAUCUGUUUC CCCUC 15 15 base pairs nucleic acid single linear 11 AUCUGUUUCC CCUCA 15 15 base pairs nucleic acid single linear 12 UUCCCCUCAU CUUUC 15 15 base pairs nucleic acid single linear 13 CCCUCAUCUU UCCCU 15 15 base pairs nucleic acid single linear 14 CUCAUCUUUC CCUCA 15 15 base pairs nucleic acid single linear 15 UCAUCUUUCC CUCAG 15 15 base pairs nucleic acid single linear 16 CAGGCUUCUG GGCCU 15 15 base pairs nucleic acid single linear 17 GGGCCUUAUG UGGAG 15 15 base pairs nucleic acid single linear 18 UGGAGAUCAU CGAAC 15 15 base pairs nucleic acid single linear 19 AGAUCAUCGA ACAGC 15 15 base pairs nucleic acid single linear 20 AUGCGAUUCC GCUAU 15 15 base pairs nucleic acid single linear 21 UGCGAUUCCG CUAUA 15 15 base pairs nucleic acid single linear 22 UUCCGCUAUA AAUGC 15 15 base pairs nucleic acid single linear 23 GGGCGCUCAG CGGGC 15 15 base pairs nucleic acid single linear 24 GCAGUAUUCC UGGCG 15 15 base pairs nucleic acid single linear 25 CACAGAUACC ACCAA 15 15 base pairs nucleic acid single linear 26 CCACCAUCAA GAUCA 15 15 base pairs nucleic acid single linear 27 UCAAGAUCAA UGGCU 15 15 base pairs nucleic acid single linear 28 AAUGGCUACA CAGGA 15 15 base pairs nucleic acid single linear 29 UUCGAAUCUC CCUGG 15 15 base pairs nucleic acid single linear 30 CGAAUCUCCC UGGUC 15 15 base pairs nucleic acid single linear 31 CCCUGGUCAC CAAGG 15 15 base pairs nucleic acid single linear 32 GGCCCCUCCU CCUGA 15 15 base pairs nucleic acid single linear 33 UCCACCUCAC CGGCC 15 15 base pairs nucleic acid single linear 34 CCGGCCUCAU CCACA 15 15 base pairs nucleic acid single linear 35 AUGAACUUGU GGGGA 15 15 base pairs nucleic acid single linear 36 AGAUCAUCGA ACAGC 15 15 base pairs nucleic acid single linear 37 GAUGGCUACU AUGAG 15 15 base pairs nucleic acid single linear 38 AUGGUCUCUC CGGAG 15 15 base pairs nucleic acid single linear 39 GGCUACUAUG AGGCU 15 15 base pairs nucleic acid single linear 40 CUGACCUCUG CCCAG 15 15 base pairs nucleic acid single linear 41 GCAGUAUCCA UAGCU 15 15 base pairs nucleic acid single linear 42 CCGCAGUAUC CAUAG 15 15 base pairs nucleic acid single linear 43 CAUAGCUUCC AGAAC 15 15 base pairs nucleic acid single linear 44 AUAGCUUCCA GAACC 15 15 base pairs nucleic acid single linear 45 UGGGGAUCCA GUGUG 15 15 base pairs nucleic acid single linear 46 GGCUCCUUUU CUCAA 15 15 base pairs nucleic acid single linear 47 GCUCCUUUUC UCAAG 15 15 base pairs nucleic acid single linear 48 CUCCUUUUCU CAAGC 15 15 base pairs nucleic acid single linear 49 UCCUUUUCUC AAGCU 15 15 base pairs nucleic acid single linear 50 UGGCCAUUGU GUUCC 15 15 base pairs nucleic acid single linear 51 AUUGUGUUCC GGACU 15 15 base pairs nucleic acid single linear 52 UUGUGUUCCG GACUC 15 15 base pairs nucleic acid single linear 53 GACUCCUCCG UACGC 15 15 base pairs nucleic acid single linear 54 CCUCCGUACG CCGAC 15 15 base pairs nucleic acid single linear 55 CCAGGCUCCU GUUCG 15 15 base pairs nucleic acid single linear 56 UUCGAGUCUC CAUGC 15 15 base pairs nucleic acid single linear 57 CGAGUCUCCA UGCAG 15 15 base pairs nucleic acid single linear 58 GCGGCCUUCU GAUCG 15 15 base pairs nucleic acid single linear 59 CGGCCUUCUG AUCGC 15 15 base pairs nucleic acid single linear 60 GCGAGCUCAG UGAGC 15 15 base pairs nucleic acid single linear 61 AUGGAGUUCC AGUAC 15 15 base pairs nucleic acid single linear 62 UGGAGUUCCA GUACU 15 15 base pairs nucleic acid single linear 63 UUCCAGUACU UGCCA 15 15 base pairs nucleic acid single linear 64 GCCUCAUCCA CAUGA 15 15 base pairs nucleic acid single linear 65 AGAUGAUCGC CACCG 15 15 base pairs nucleic acid single linear 66 CAGUACUUGC CAGAC 15 15 base pairs nucleic acid single linear 67 ACCGGAUUGA AGAGA 15 15 base pairs nucleic acid single linear 68 GAGACCUUCA AGAGU 15 15 base pairs nucleic acid single linear 69 AGGACCUAUG AGACC 15 15 base pairs nucleic acid single linear 70 GAGACCUUCA AGAGU 15 15 base pairs nucleic acid single linear 71 AGACCUUCAA GAGUA 15 15 base pairs nucleic acid single linear 72 AGAGUAUCAU GAAGA 15 15 base pairs nucleic acid single linear 73 GAAGAGUCCU UUCAA 15 15 base pairs nucleic acid single linear 74 GAGUCCUUUC AAUGG 15 15 base pairs nucleic acid single linear 75 AGUCCUUUCA AUGGA 15 15 base pairs nucleic acid single linear 76 GUCCUUUCAA UGGAC 15 15 base pairs nucleic acid single linear 77 CCGGCCUCCA ACCCG 15 15 base pairs nucleic acid single linear 78 UACACCUUGA UCCAA 15 15 base pairs nucleic acid single linear 79 GGCGUAUUGC UGUGC 15 15 base pairs nucleic acid single linear 80 UGUGCCUACC CGAAA 15 15 base pairs nucleic acid single linear 81 AAGCCUUCCC GAAGU 15 15 base pairs nucleic acid single linear 82 CGAAACUCAA CUUCU 15 15 base pairs nucleic acid single linear 83 CUCAACUUCU GUCCC 15 15 base pairs nucleic acid single linear 84 UCAACUUCUG UCCCC 15 15 base pairs nucleic acid single linear 85 CUUCUGUCCC CAAGC 15 15 base pairs nucleic acid single linear 86 CAGCCCUACA CCUUC 15 15 base pairs nucleic acid single linear 87 GCCAUAUAGC CUUAC 15 15 base pairs nucleic acid single linear 88 CAUCCCUCAG CACCA 15 15 base pairs nucleic acid single linear 89 ACACCUUCCC AGCAU 15 15 base pairs nucleic acid single linear 90 UCCAUCUCCA GCUUC 15 15 base pairs nucleic acid single linear 91 UUUACUUUAG CGCGC 15 15 base pairs nucleic acid single linear 92 CCAGCAUCCC UCAGC 15 15 base pairs nucleic acid single linear 93 GCACCAUCAA CUUUG 15 15 base pairs nucleic acid single linear 94 AUCAACUUUG AUGAG 15 15 base pairs nucleic acid single linear 95 GAAGACUUCU CCUCC 15 15 base pairs nucleic acid single linear 96 AAGACUUCUC CUCCA 15 15 base pairs nucleic acid single linear 97 GACUUCUCCU CCAUU 15 15 base pairs nucleic acid single linear 98 UUCUCCUCCA UUGCG 15 15 base pairs nucleic acid single linear 99 CCUCCAUUGC GGACA 15 15 base pairs nucleic acid single linear 100 AUGGACUUCU CUGCU 15 15 base pairs nucleic acid single linear 101 UGGACUUCUC UGCUC 15 15 base pairs nucleic acid single linear 102 GACUUCUCUG CUCUU 15 15 base pairs nucleic acid single linear 103 UUUGAGUCAG AUCAG 15 15 base pairs nucleic acid single linear 104 GUCAGAUCAG CUCCU 15 15 base pairs nucleic acid single linear 105 AUCAGCUCCU AAGGU 15 15 base pairs nucleic acid single linear 106 AGCUCCUAAG GUGCU 15 15 base pairs nucleic acid single linear 107 CAGUGCUCCC AAGAG 15 15 base pairs nucleic acid single linear 108 CCAGGCUCCU GUUCG 15 15 base pairs nucleic acid single linear 109 AAGCCAUUAG CCAGC 15 15 base pairs nucleic acid single linear 110 UUUGAGUCAG AUCAG 15 15 base pairs nucleic acid single linear 111 AGCGAAUCCA GACCA 15 15 base pairs nucleic acid single linear 112 AACCCCUUUC ACGUU 15 15 base pairs nucleic acid single linear 113 ACCCCUUUCA CGUUC 15 15 base pairs nucleic acid single linear 114 UUCACGUUCC UAUAG 15 15 base pairs nucleic acid single linear 115 UCACGUUCCU AUAGA 15 15 base pairs nucleic acid single linear 116 CGUUCCUAUA GAGGA 15 15 base pairs nucleic acid single linear 117 UUCCUAUAGA GGAGC 15 15 base pairs nucleic acid single linear 118 GGGGACUAUG ACUUG 15 15 base pairs nucleic acid single linear 119 UGCGCCUCUG CUUCC 15 15 base pairs nucleic acid single linear 120 CUCUGCUUCC AGGUG 15 15 base pairs nucleic acid single linear 121 UCUGCUUCCA GGUGA 15 15 base pairs nucleic acid single linear 122 AAGCCAUUAG CCAGC 15 15 base pairs nucleic acid single linear 123 GGCCCCUCCU CCUGA 15 15 base pairs nucleic acid single linear 124 CCCCUGUCCU CUCAC 15 15 base pairs nucleic acid single linear 125 CUGUCCUCUC ACAUC 15 15 base pairs nucleic acid single linear 126 GUCCCUUCCU CAGCC 15 15 base pairs nucleic acid single linear 127 CCUUCCUCAG CCAUG 15 15 base pairs nucleic acid single linear 128 UCCUGCUUCC AUCUC 15 15 base pairs nucleic acid single linear 129 AUCCGAUUUU UGAUA 15 15 base pairs nucleic acid single linear 130 CCGAUUUUUG AUAAC 15 15 base pairs nucleic acid single linear 131 CGAUUUUUGA UAACC 15 15 base pairs nucleic acid single linear 132 UGGCCAUUGU GUUCC 15 15 base pairs nucleic acid single linear 133 CCGAGCUCAA GAUCU 15 15 base pairs nucleic acid single linear 134 UCAAGAUCUG CCGAG 15 15 base pairs nucleic acid single linear 135 CGGAACUCUG GGAGC 15 15 base pairs nucleic acid single linear 136 GCUGCCUCGG UGGGG 15 15 base pairs nucleic acid single linear 137 AUGAGAUCUU CUUGC 15 15 base pairs nucleic acid single linear 138 GAGAUCUUCU UGCUG 15 15 base pairs nucleic acid single linear 139 AGAUCUUCUU GCUGU 15 15 base pairs nucleic acid single linear 140 UUCUCCUCCA UUGCG 15 15 base pairs nucleic acid single linear 141 AAGACAUUGA GGUGU 15 15 base pairs nucleic acid single linear 142 GAGGUGUAUU UCACG 15 15 base pairs nucleic acid single linear 143 GGUGUAUUUC ACGGG 15 15 base pairs nucleic acid single linear 144 GUGUAUUUCA CGGGA 15 15 base pairs nucleic acid single linear 145 UGUAUUUCAC GGGAC 15 15 base pairs nucleic acid single linear 146 CGAGGCUCCU UUUCU 15 15 base pairs nucleic acid single linear 147 GAUGAGUUUU CCCCC 15 15 base pairs nucleic acid single linear 148 AUGAGUUUUC CCCCA 15 15 base pairs nucleic acid single linear 149 UGAGUUUUCC CCCAU 15 15 base pairs nucleic acid single linear 150 AUGCUGUUAC CAUCA 15 15 base pairs nucleic acid single linear 151 UGCUGUUACC AUCAG 15 15 base pairs nucleic acid single linear 152 GGCCCCUCCU CCUGA 15 15 base pairs nucleic acid single linear 153 GUCCCUUCCU CAGCC 15 15 base pairs nucleic acid single linear 154 UUACCAUCAG GGCAG 15 15 base pairs nucleic acid single linear 155 GGGAGUUUAG UCUGA 15 15 base pairs nucleic acid single linear 156 CAGCCCUACA CCUUC 15 15 base pairs nucleic acid single linear 157 CUGGCCUUAG CACCG 15 15 base pairs nucleic acid single linear 158 GGUCCCUUCC UCAGC 15 15 base pairs nucleic acid single linear 159 CCCAGCUCCU GCCCC 15 15 base pairs nucleic acid single linear 160 CCAGCCUCCA GGCUC 15 15 base pairs nucleic acid single linear 161 CCCAGCUCCU GCCCC 15 15 base pairs nucleic acid single linear 162 CCAUGGUCCC UUCCU 15 15 base pairs nucleic acid single linear 163 GUGGGCUCAG CUGCG 15 15 base pairs nucleic acid single linear 164 AUGAGUUUUC CCCCA 15 15 base pairs nucleic acid single linear 165 CUCCUGUUCG AGUCU 15 15 base pairs nucleic acid single linear 166 CCCCAGUUCU AACCC 15 15 base pairs nucleic acid single linear 167 CAGUUCUAAC CCCGG 15 15 base pairs nucleic acid single linear 168 GGGUCCUCCC CAGUC 15 15 base pairs nucleic acid single linear 169 CUUUUCUCAA GCUGA 15 15 base pairs nucleic acid single linear 170 ACGCUGUCGG AAGCC 15 15 base pairs nucleic acid single linear 171 CUGCAGUUUG AUGCU 15 15 base pairs nucleic acid single linear 172 UGCAGUUUGA UGCUG 15 15 base pairs nucleic acid single linear 173 GGGGCCUUGC UUGGC 15 15 base pairs nucleic acid single linear 174 CCUUGCUUGG CAACA 15 15 base pairs nucleic acid single linear 175 GGAGUGUUCA CAGAC 15 15 base pairs nucleic acid single linear 176 GAGUGUUCAC AGACC 15 15 base pairs nucleic acid single linear 177 CUGGCAUCUG UGGAC 15 15 base pairs nucleic acid single linear 178 CUUCGGUAGG GAACU 15 15 base pairs nucleic acid single linear 179 GACAACUCAG AGUUU 15 15 base pairs nucleic acid single linear 180 UCAGAGUUUC AGCAG 15 15 base pairs nucleic acid single linear 181 CAGAGUUUCA GCAGC 15 15 base pairs nucleic acid single linear 182 AGAGUUUCAG CAGCU 15 15 base pairs nucleic acid single linear 183 GGUGCAUCCC UGUGU 15 15 base pairs nucleic acid single linear 184 AUGGAGUACC CUGAA 15 15 base pairs nucleic acid single linear 185 UGAAGCUAUA ACUCG 15 15 base pairs nucleic acid single linear 186 AAGCUAUAAC UCGCC 15 15 base pairs nucleic acid single linear 187 UAUAACUCGC CUGGU 15 15 base pairs nucleic acid single linear 188 CUCUCCUAGA GAGGG 15 15 base pairs nucleic acid single linear 189 CCCAGCUCCU GCCCC 15 15 base pairs nucleic acid single linear 190 UCCUGCUUCG GUAGG 15 15 base pairs nucleic acid single linear 191 CGGGGCUUCC CAAUG 15 15 base pairs nucleic acid single linear 192 CUGACCUCUG CCCAG 15 15 base pairs nucleic acid single linear 193 CUCUGCUUCC AGGUG 15 15 base pairs nucleic acid single linear 194 UCUGCUUCCA GGUGA 15 15 base pairs nucleic acid single linear 195 CUCGCUUUCG GAGGU 15 15 base pairs nucleic acid single linear 196 AAUGGCUCGU CUGUA 15 15 base pairs nucleic acid single linear 197 GGCUCGUCUG UAGUG 15 15 base pairs nucleic acid single linear 198 CGUCUGUAGU GCACG 15 15 base pairs nucleic acid single linear 199 GAACUGUUCC CCCUC 15 15 base pairs nucleic acid single linear 200 AACUGUUCCC CCUCA 15 15 base pairs nucleic acid single linear 201 UCCCCCUCAU CUUCC 15 15 base pairs nucleic acid single linear 202 CCCUCAUCUU CCCGG 15 15 base pairs nucleic acid single linear 203 CUCAUCUUCC CGGCA 15 15 base pairs nucleic acid single linear 204 UCAUCUUCCC GGCAG 15 15 base pairs nucleic acid single linear 205 CAGGCCUCUG GCCCC 15 15 base pairs nucleic acid single linear 206 GGCCCCUAUG UGGAG 15 15 base pairs nucleic acid single linear 207 UGGAGAUCAU UGAGC 15 15 base pairs nucleic acid single linear 208 AGAUCAUUGA GCAGC 15 15 base pairs nucleic acid single linear 209 AUGCGCUUCC GCUAC 15 15 base pairs nucleic acid single linear 210 UGCGCUUCCG CUACA 15 15 base pairs nucleic acid single linear 211 UUCCGCUACA AGUGC 15 15 base pairs nucleic acid single linear 212 GGGCGCUCCG CGGGC 15 15 base pairs nucleic acid single linear 213 GCAGCAUCCC AGGCG 15 15 base pairs nucleic acid single linear 214 CACAGAUACC ACCAA 15 15 base pairs nucleic acid single linear 215 CCACCAUCAA GAUCA 15 15 base pairs nucleic acid single linear 216 UCAAGAUCAA UGGCU 15 15 base pairs nucleic acid single linear 217 AAUGGCUACA CAGGA 15 15 base pairs nucleic acid single linear 218 UGCGCAUCUC CCUGG 15 15 base pairs nucleic acid single linear 219 CGCAUCUCCC UGGUC 15 15 base pairs nucleic acid single linear 220 CCCUGGUCAC CAAGG 15 15 base pairs nucleic acid single linear 221 GGACCCUCCU CACCG 15 15 base pairs nucleic acid single linear 222 CCCUCCUCAC CGGCC 15 15 base pairs nucleic acid single linear 223 CCGGCCUCAC CCCCA 15 15 base pairs nucleic acid single linear 224 ACGAGCUUGU AGGAA 15 15 base pairs nucleic acid single linear 225 AGCUUGUAGG AAAGG 15 15 base pairs nucleic acid single linear 226 GAUGGCUUCU AUGAG 15 15 base pairs nucleic acid single linear 227 AUGGCUUCUA UGAGG 15 15 base pairs nucleic acid single linear 228 GGCUUCUAUG AGGCU 15 15 base pairs nucleic acid single linear 229 CUGAGCUCUG CCCGG 15 15 base pairs nucleic acid single linear 230 GCUGCAUCCA CAGUU 15 15 base pairs nucleic acid single linear 231 CCACAGUUUC CAGAA 15 15 base pairs nucleic acid single linear 232 CACAGUUUCC AGAAC 15 15 base pairs nucleic acid single linear 233 ACAGUUUCCA GAACC 15 15 base pairs nucleic acid single linear 234 UGGGAAUCCA GUGUG 15 15 base pairs nucleic acid single linear 235 GGCUCCUUUU CGCAA 15 15 base pairs nucleic acid single linear 236 GCUCCUUUUC GCAAG 15 15 base pairs nucleic acid single linear 237 CUCCUUUUCG CAAGC 15 15 base pairs nucleic acid single linear 238 UCCUUUUCGC AAGCU 15 15 base pairs nucleic acid single linear 239 UGGCCAUUGU GUUCC 15 15 base pairs nucleic acid single linear 240 AUUGUGUUCC GGACC 15 15 base pairs nucleic acid single linear 241 UUGUGUUCCG GACCC 15 15 base pairs nucleic acid single linear 242 GACCCCUCCC UACGC 15 15 base pairs nucleic acid single linear 243 CCUCCCUACG CAGAC 15 15 base pairs nucleic acid single linear 244 GCAGGCUCCU GUGCG 15 15 base pairs nucleic acid single linear 245 UGCGUGUCUC CAUGC 15 15 base pairs nucleic acid single linear 246 CGUGUCUCCA UGCAG 15 15 base pairs nucleic acid single linear 247 GCGGCCUUCC GACCG 15 15 base pairs nucleic acid single linear 248 CGGCCUUCCG ACCGG 15 15 base pairs nucleic acid single linear 249 GGGAGCUCAG UGAGC 15 15 base pairs nucleic acid single linear 250 AUGGAAUUCC AGUAC 15 15 base pairs nucleic acid single linear 251 UGGAAUUCCA GUACC 15 15 base pairs nucleic acid single linear 252 UUCCAGUACC UGCCA 15 15 base pairs nucleic acid single linear 253 GCCAGAUACA GACGA 15 15 base pairs nucleic acid single linear 254 AGACGAUCGU CACCG 15 15 base pairs nucleic acid single linear 255 CGAUCGUCAC CGGAU 15 15 base pairs nucleic acid single linear 256 ACCGGAUUGA GGAGA 15 15 base pairs nucleic acid single linear 257 GAAACGUAAA AGGAC 15 15 base pairs nucleic acid single linear 258 AGGACAUAUG AGACC 15 15 base pairs nucleic acid single linear 259 GAGACCUUCA AGAGC 15 15 base pairs nucleic acid single linear 260 AGACCUUCAA GAGCA 15 15 base pairs nucleic acid single linear 261 AGAGCAUCAU GAAGA 15 15 base pairs nucleic acid single linear 262 GAAGAGUCCU UUCAG 15 15 base pairs nucleic acid single linear 263 GAGUCCUUUC AGCGG 15 15 base pairs nucleic acid single linear 264 AGUCCUUUCA GCGGA 15 15 base pairs nucleic acid single linear 265 GUCCUUUCAG CGGAC 15 15 base pairs nucleic acid single linear 266 CCGGCCUCCA CCUCG 15 15 base pairs nucleic acid single linear 267 UCCACCUCGA CGCAU 15 15 base pairs nucleic acid single linear 268 GACGCAUUGC UGUGC 15 15 base pairs nucleic acid single linear 269 UGUGCCUUCC CGCAG 15 15 base pairs nucleic acid single linear 270 GUGCCUUCCC GCAGC 15 15 base pairs nucleic acid single linear 271 CGCAGCUCAG CUUCU 15 15 base pairs nucleic acid single linear 272 CUCAGCUUCU GUCCC 15 15 base pairs nucleic acid single linear 273 UCAGCUUCUG UCCCC 15 15 base pairs nucleic acid single linear 274 CUUCUGUCCC CAAGC 15 15 base pairs nucleic acid single linear 275 CAGCCCUAUC CCUUU 15 15 base pairs nucleic acid single linear 276 GCCCUAUCCC UUUAC 15 15 base pairs nucleic acid single linear 277 UAUCCCUUUA CGUCA 15 15 base pairs nucleic acid single linear 278 AUCCCUUUAC GUCAU 15 15 base pairs nucleic acid single linear 279 UCCCUUUACG UCAUC 15 15 base pairs nucleic acid single linear 280 UUUACGUCAU CCCUG 15 15 base pairs nucleic acid single linear 281 ACGUCAUCCC UGAGC 15 15 base pairs nucleic acid single linear 282 GCACCAUCAA CUAUG 15 15 base pairs nucleic acid single linear 283 AUCAACUAUG AUGAG 15 15 base pairs nucleic acid single linear 284 GAAGACUUCU CCUCC 15 15 base pairs nucleic acid single linear 285 AAGACUUCUC CUCCA 15 15 base pairs nucleic acid single linear 286 GACUUCUCCU CCAUU 15 15 base pairs nucleic acid single linear 287 UUCUCCUCCA UUGCG 15 15 base pairs nucleic acid single linear 288 CCUCCAUUGC GGACA 15 15 base pairs nucleic acid single linear 289 AUGGACUUCU CAGCC 15 15 base pairs nucleic acid single linear 290 UGGACUUCUC AGCCC 15 15 base pairs nucleic acid single linear 291 GACUUCUCAG CCCUG 15 15 base pairs nucleic acid single linear 292 GCUGAGUCAG AUCAG 15 15 base pairs nucleic acid single linear 293 GUCAGAUCAG CUCCU 15 15 base pairs nucleic acid single linear 294 AUCAGCUCCU AAGGG 15 15 base pairs nucleic acid single linear 295 AGCUCCUAAG GGGGU 15 15 base pairs nucleic acid single linear 296 CUGCCCUCCC CAGAG 15 15 base pairs nucleic acid single linear 297 GCAGGCUAUC AGUCA 15 15 base pairs nucleic acid single linear 298 AGGCUAUCAG UCAGC 15 15 base pairs nucleic acid single linear 299 UAUCAGUCAG CGCAU 15 15 base pairs nucleic acid single linear 300 AGCGCAUCCA GACCA 15 15 base pairs nucleic acid single linear 301 AACCCCUUCC AAGUU 15 15 base pairs nucleic acid single linear 302 ACCCCUUCCA AGUUC 15 15 base pairs nucleic acid single linear 303 UCCAAGUUCC UAUAG 15 15 base pairs nucleic acid single linear 304 CCAAGUUCCU AUAGA 15 15 base pairs nucleic acid single linear 305 AGUUCCUAUA GAAGA 15 15 base pairs nucleic acid single linear 306 UUCCUAUAGA AGAGC 15 15 base pairs nucleic acid single linear 307 GGGGACUACG ACCUG 15 15 base pairs nucleic acid single linear 308 UGCGGCUCUG CUUCC 15 15 base pairs nucleic acid single linear 309 CUCUGCUUCC AGGUG 15 15 base pairs nucleic acid single linear 310 UCUGCUUCCA GGUGA 15 15 base pairs nucleic acid single linear 311 GACCCAUCAG GCAGG 15 15 base pairs nucleic acid single linear 312 GGCCCCUCCG CCUGC 15 15 base pairs nucleic acid single linear 313 CGCCUGUCCU UCCUC 15 15 base pairs nucleic acid single linear 314 CUGUCCUUCC UCAUC 15 15 base pairs nucleic acid single linear 315 UGUCCUUCCU CAUCC 15 15 base pairs nucleic acid single linear 316 CCUUCCUCAU CCCAU 15 15 base pairs nucleic acid single linear 317 UCCUCAUCCC AUCUU 15 15 base pairs nucleic acid single linear 318 AUCCCAUCUU UGACA 15 15 base pairs nucleic acid single linear 319 CCCAUCUUUG ACAAU 15 15 base pairs nucleic acid single linear 320 CCAUCUUUGA CAAUC 15 15 base pairs nucleic acid single linear 321 UGACAAUCGU GCCCC 15 15 base pairs nucleic acid single linear 322 CCGAGCUCAA GAUCU 15 15 base pairs nucleic acid single linear 323 UCAAGAUCUG CCGAG 15 15 base pairs nucleic acid single linear 324 CGAAACUCUG GCAGC 15 15 base pairs nucleic acid single linear 325 GCUGCCUCGG UGGGG 15 15 base pairs nucleic acid single linear 326 AUGAGAUCUU CCUAC 15 15 base pairs nucleic acid single linear 327 GAGAUCUUCC UACUG 15 15 base pairs nucleic acid single linear 328 AGAUCUUCCU ACUGU 15 15 base pairs nucleic acid single linear 329 UCUUCCUACU GUGUG 15 15 base pairs nucleic acid single linear 330 AGGACAUUGA GGUGU 15 15 base pairs nucleic acid single linear 331 GAGGUGUAUU UCACG 15 15 base pairs nucleic acid single linear 332 GGUGUAUUUC ACGGG 15 15 base pairs nucleic acid single linear 333 GUGUAUUUCA CGGGA 15 15 base pairs nucleic acid single linear 334 UGUAUUUCAC GGGAC 15 15 base pairs nucleic acid single linear 335 CGAGGCUCCU UUUCG 15 15 base pairs nucleic acid single linear 336 GAUGAGUUUC CCACC 15 15 base pairs nucleic acid single linear 337 AUGAGUUUCC CACCA 15 15 base pairs nucleic acid single linear 338 UGAGUUUCCC ACCAU 15 15 base pairs nucleic acid single linear 339 AUGGUGUUUC CUUCU 15 15 base pairs nucleic acid single linear 340 UGGUGUUUCC UUCUG 15 15 base pairs nucleic acid single linear 341 GGUGUUUCCU UCUGG 15 15 base pairs nucleic acid single linear 342 GUUUCCUUCU GGGCA 15 15 base pairs nucleic acid single linear 343 UUUCCUUCUG GGCAG 15 15 base pairs nucleic acid single linear 344 GGCAGAUCAG CCAGG 15 15 base pairs nucleic acid single linear 345 CAGGCCUCGG CCUUG 15 15 base pairs nucleic acid single linear 346 UCGGCCUUGG CCCCG 15 15 base pairs nucleic acid single linear 347 GGCCCCUCCC CAAGU 15 15 base pairs nucleic acid single linear 348 CCCAAGUCCU GCCCC 15 15 base pairs nucleic acid single linear 349 CCAGGCUCCA GCCCC 15 15 base pairs nucleic acid single linear 350 CCCUGCUCCA GCCAU 15 15 base pairs nucleic acid single linear 351 CCAUGGUAUC AGCUC 15 15 base pairs nucleic acid single linear 352 AUGGUAUCAG CUCUG 15 15 base pairs nucleic acid single linear 353 AUCAGCUCUG GCCCA 15 15 base pairs nucleic acid single linear 354 CCCCUGUCCC AGUCC 15 15 base pairs nucleic acid single linear 355 UCCCAGUCCU AGCCC 15 15 base pairs nucleic acid single linear 356 CAGUCCUAGC CCCAG 15 15 base pairs nucleic acid single linear 357 AGGCCCUCCU CAGGC 15 15 base pairs nucleic acid single linear 358 CCCUCCUCAG GCUGU 15 15 base pairs nucleic acid single linear 359 ACGCUGUCAG AGGCC 15 15 base pairs nucleic acid single linear 360 CUGCAGUUUG AUGAU 15 15 base pairs nucleic acid single linear 361 UGCAGUUUGA UGAUG 15 15 base pairs nucleic acid single linear 362 GGGGCCUUGC UUGGC 15 15 base pairs nucleic acid single linear 363 CCUUGCUUGG CAACA 15 15 base pairs nucleic acid single linear 364 GCUGUGUUCA CAGAC 15 15 base pairs nucleic acid single linear 365 CUGUGUUCAC AGACC 15 15 base pairs nucleic acid single linear 366 CUGGCAUCCG UCGAC 15 15 base pairs nucleic acid single linear 367 CAUCCGUCGA CAACU 15 15 base pairs nucleic acid single linear 368 GACAACUCCG AGUUU 15 15 base pairs nucleic acid single linear 369 UCCGAGUUUC AGCAG 15 15 base pairs nucleic acid single linear 370 CCGAGUUUCA GCAGC 15 15 base pairs nucleic acid single linear 371 CGAGUUUCAG CAGCU 15 15 base pairs nucleic acid single linear 372 AGGGCAUACC UGUGG 15 15 base pairs nucleic acid single linear 373 AUGGAGUACC CUGAG 15 15 base pairs nucleic acid single linear 374 UGAGGCUAUA ACUCG 15 15 base pairs nucleic acid single linear 375 AGGCUAUAAC UCGCC 15 15 base pairs nucleic acid single linear 376 UAUAACUCGC CUAGU 15 15 base pairs nucleic acid single linear 377 CUCGCCUAGU GACAG 15 15 base pairs nucleic acid single linear 378 CCCAGCUCCU GCUCC 15 15 base pairs nucleic acid single linear 379 UCCUGCUCCA CUGGG 15 15 base pairs nucleic acid single linear 380 CGGGGCUCCC CAAUG 15 15 base pairs nucleic acid single linear 381 AUGGCCUCCU UUCAG 15 15 base pairs nucleic acid single linear 382 GCCUCCUUUC AGGAG 15 15 base pairs nucleic acid single linear 383 CCUCCUUUCA GGAGA 15 15 base pairs nucleic acid single linear 384 CUCCUUUCAG GAGAU 15 36 base pairs nucleic acid single linear 385 UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36 36 base pairs nucleic acid single linear 386 CACCACGCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36 36 base pairs nucleic acid single linear 387 UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36 36 base pairs nucleic acid single linear 388 GAGGGGACUG AUGAGGCCGA AAGGCCGAAA CAGAUC 36 36 base pairs nucleic acid single linear 389 UGAGGGGCUG AUGAGGCCGA AAGGCCGAAA ACAGAU 36 36 base pairs nucleic acid single linear 390 GAAAGAUCUG AUGAGGCCGA AAGGCCGAAA GGGGAA 36 36 base pairs nucleic acid single linear 391 AGGGAAACUG AUGAGGCCGA AAGGCCGAAA UGAGGG 36 36 base pairs nucleic acid single linear 392 UGAGGGACUG AUGAGGCCGA AAGGCCGAAA GAUGAG 36 36 base pairs nucleic acid single linear 393 CUGAGGGCUG AUGAGGCCGA AAGGCCGAAA AGAUGA 36 36 base pairs nucleic acid single linear 394 AGGCCCACUG AUGAGGCCGA AAGGCCGAAA AGCCUG 36 36 base pairs nucleic acid single linear 395 CUCCACACUG AUGAGGCCGA AAGGCCGAAA AGGCCC 36 36 base pairs nucleic acid single linear 396 GUUCGAUCUG AUGAGGCCGA AAGGCCGAAA UCUCCA 36 36 base pairs nucleic acid single linear 397 GCUGUUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36 36 base pairs nucleic acid single linear 398 AUAGCGGCUG AUGAGGCCGA AAGGCCGAAA UCGCAU 36 36 base pairs nucleic acid single linear 399 UAUAGCGCUG AUGAGGCCGA AAGGCCGAAA AUCGCA 36 36 base pairs nucleic acid single linear 400 GCAUUUACUG AUGAGGCCGA AAGGCCGAAA GCGGAA 36 36 base pairs nucleic acid single linear 401 GCCCGCUCUG AUGAGGCCGA AAGGCCGAAA GCGCCC 36 36 base pairs nucleic acid single linear 402 CGCCAGGCUG AUGAGGCCGA AAGGCCGAAA UACUGC 36 36 base pairs nucleic acid single linear 403 UUGGUGGCUG AUGAGGCCGA AAGGCCGAAA UCUGUG 36 36 base pairs nucleic acid single linear 404 UGAUCUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGG 36 36 base pairs nucleic acid single linear 405 AGCCAUUCUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36 36 base pairs nucleic acid single linear 406 UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36 36 base pairs nucleic acid single linear 407 CCAGGGACUG AUGAGGCCGA AAGGCCGAAA UUCGAA 36 36 base pairs nucleic acid single linear 408 GACCAGGCUG AUGAGGCCGA AAGGCCGAAA GAUUCG 36 36 base pairs nucleic acid single linear 409 CCUUGGUCUG AUGAGGCCGA AAGGCCGAAA CCAGGG 36 36 base pairs nucleic acid single linear 410 UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 411 GGCCGGUCUG AUGAGGCCGA AAGGCCGAAA GGUGGA 36 36 base pairs nucleic acid single linear 412 UGUGGAUCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36 36 base pairs nucleic acid single linear 413 UCCCCACCUG AUGAGGCCGA AAGGCCGAAA GUUCAU 36 36 base pairs nucleic acid single linear 414 GCUGUUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36 36 base pairs nucleic acid single linear 415 CUCAUAGCUG AUGAGGCCGA AAGGCCGAAA GCCAUC 36 36 base pairs nucleic acid single linear 416 CUCCGGACUG AUGAGGCCGA AAGGCCGAAA GACCAU 36 36 base pairs nucleic acid single linear 417 AGCCUCACUG AUGAGGCCGA AAGGCCGAAA GUAGCC 36 36 base pairs nucleic acid single linear 418 CUGGGCACUG AUGAGGCCGA AAGGCCGAAA GGUCAG 36 36 base pairs nucleic acid single linear 419 AGCUAUGCUG AUGAGGCCGA AAGGCCGAAA UACUGC 36 36 base pairs nucleic acid single linear 420 CUAUGGACUG AUGAGGCCGA AAGGCCGAAA CUGCGG 36 36 base pairs nucleic acid single linear 421 GUUCUGGCUG AUGAGGCCGA AAGGCCGAAA GCUAUG 36 36 base pairs nucleic acid single linear 422 GGUUCUGCUG AUGAGGCCGA AAGGCCGAAA AGCUAU 36 36 base pairs nucleic acid single linear 423 CACACUGCUG AUGAGGCCGA AAGGCCGAAA UCCCCA 36 36 base pairs nucleic acid single linear 424 CGAACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36 36 base pairs nucleic acid single linear 425 GCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UGGCUU 36 36 base pairs nucleic acid single linear 426 CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAAA 36 36 base pairs nucleic acid single linear 427 UGGUCUGCUG AUGAGGCCGA AAGGCCGAAA UUCGCU 36 36 base pairs nucleic acid single linear 428 AACGUGACUG AUGAGGCCGA AAGGCCGAAA GGGGUU 36 36 base pairs nucleic acid single linear 429 GAACGUGCUG AUGAGGCCGA AAGGCCGAAA AGGGGU 36 36 base pairs nucleic acid single linear 430 CUAUAGGCUG AUGAGGCCGA AAGGCCGAAA CGUGAA 36 36 base pairs nucleic acid single linear 431 UCUAUAGCUG AUGAGGCCGA AAGGCCGAAA ACGUGA 36 36 base pairs nucleic acid single linear 432 UCCUCUACUG AUGAGGCCGA AAGGCCGAAA GGAACG 36 36 base pairs nucleic acid single linear 433 GCUCCUCCUG AUGAGGCCGA AAGGCCGAAA UAGGAA 36 36 base pairs nucleic acid single linear 434 CAAGUCACUG AUGAGGCCGA AAGGCCGAAA GUCCCC 36 36 base pairs nucleic acid single linear 435 GGAAGCACUG AUGAGGCCGA AAGGCCGAAA GGCGCA 36 36 base pairs nucleic acid single linear 436 CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36 36 base pairs nucleic acid single linear 437 UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36 36 base pairs nucleic acid single linear 438 GCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UGGCUU 36 36 base pairs nucleic acid single linear 439 UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 440 GUGAGAGCUG AUGAGGCCGA AAGGCCGAAA CAGGGG 36 36 base pairs nucleic acid single linear 441 GAUGUGACUG AUGAGGCCGA AAGGCCGAAA GGACAG 36 36 base pairs nucleic acid single linear 442 GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGGAC 36 36 base pairs nucleic acid single linear 443 CAUGGCUCUG AUGAGGCCGA AAGGCCGAAA GGAAGG 36 36 base pairs nucleic acid single linear 444 GAGAUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36 36 base pairs nucleic acid single linear 445 UAUCAAACUG AUGAGGCCGA AAGGCCGAAA UCGGAU 36 36 base pairs nucleic acid single linear 446 GUUAUCACUG AUGAGGCCGA AAGGCCGAAA AAUCGG 36 36 base pairs nucleic acid single linear 447 GGUUAUCCUG AUGAGGCCGA AAGGCCGAAA AAAUCG 36 36 base pairs nucleic acid single linear 448 GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36 36 base pairs nucleic acid single linear 449 AGAUCUUCUG AUGAGGCCGA AAGGCCGAAA GCUCGG 36 36 base pairs nucleic acid single linear 450 CUCGGCACUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36 36 base pairs nucleic acid single linear 451 GCUCCCACUG AUGAGGCCGA AAGGCCGAAA GUUCCG 36 36 base pairs nucleic acid single linear 452 CCCCACCCUG AUGAGGCCGA AAGGCCGAAA GGCAGC 36 36 base pairs nucleic acid single linear 453 GCAAGAACUG AUGAGGCCGA AAGGCCGAAA UCUCAU 36 36 base pairs nucleic acid single linear 454 CAGCAAGCUG AUGAGGCCGA AAGGCCGAAA GAUCUC 36 36 base pairs nucleic acid single linear 455 ACAGCAACUG AUGAGGCCGA AAGGCCGAAA AGAUCU 36 36 base pairs nucleic acid single linear 456 CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36 36 base pairs nucleic acid single linear 457 ACACCUCCUG AUGAGGCCGA AAGGCCGAAA UGUCUU 36 36 base pairs nucleic acid single linear 458 CGUGAAACUG AUGAGGCCGA AAGGCCGAAA CACCUC 36 36 base pairs nucleic acid single linear 459 CCCGUGACUG AUGAGGCCGA AAGGCCGAAA UACACC 36 36 base pairs nucleic acid single linear 460 UCCCGUGCUG AUGAGGCCGA AAGGCCGAAA AUACAC 36 36 base pairs nucleic acid single linear 461 GUCCCGUCUG AUGAGGCCGA AAGGCCGAAA AAUACA 36 36 base pairs nucleic acid single linear 462 AGAAAAGCUG AUGAGGCCGA AAGGCCGAAA GCCUCG 36 36 base pairs nucleic acid single linear 463 UUGAGAACUG AUGAGGCCGA AAGGCCGAAA GGAGCC 36 36 base pairs nucleic acid single linear 464 CUUGAGACUG AUGAGGCCGA AAGGCCGAAA AGGAGC 36 36 base pairs nucleic acid single linear 465 GCUUGAGCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36 36 base pairs nucleic acid single linear 466 AGCUUGACUG AUGAGGCCGA AAGGCCGAAA AAAGGA 36 36 base pairs nucleic acid single linear 467 GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36 36 base pairs nucleic acid single linear 468 AGUCCGGCUG AUGAGGCCGA AAGGCCGAAA CACAAU 36 36 base pairs nucleic acid single linear 469 GAGUCCGCUG AUGAGGCCGA AAGGCCGAAA ACACAA 36 36 base pairs nucleic acid single linear 470 GCGUACGCUG AUGAGGCCGA AAGGCCGAAA GGAGUC 36 36 base pairs nucleic acid single linear 471 GUCGGCGCUG AUGAGGCCGA AAGGCCGAAA CGGAGG 36 36 base pairs nucleic acid single linear 472 CGAACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36 36 base pairs nucleic acid single linear 473 GCAUGGACUG AUGAGGCCGA AAGGCCGAAA CUCGAA 36 36 base pairs nucleic acid single linear 474 CUGCAUGCUG AUGAGGCCGA AAGGCCGAAA GACUCG 36 36 base pairs nucleic acid single linear 475 CGAUCAGCUG AUGAGGCCGA AAGGCCGAAA GGCCGC 36 36 base pairs nucleic acid single linear 476 GCGAUCACUG AUGAGGCCGA AAGGCCGAAA AGGCCG 36 36 base pairs nucleic acid single linear 477 GCUCACUCUG AUGAGGCCGA AAGGCCGAAA GCUCGC 36 36 base pairs nucleic acid single linear 478 GUACUGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36 36 base pairs nucleic acid single linear 479 AGUACUGCUG AUGAGGCCGA AAGGCCGAAA ACUCCA 36 36 base pairs nucleic acid single linear 480 UGGCAAGCUG AUGAGGCCGA AAGGCCGAAA CUGGAA 36 36 base pairs nucleic acid single linear 481 UCAUGUGCUG AUGAGGCCGA AAGGCCGAAA UGAGGC 36 36 base pairs nucleic acid single linear 482 CGGUGGCCUG AUGAGGCCGA AAGGCCGAAA UCAUCU 36 36 base pairs nucleic acid single linear 483 GUCUGGCCUG AUGAGGCCGA AAGGCCGAAA GUACUG 36 36 base pairs nucleic acid single linear 484 UCUCUUCCUG AUGAGGCCGA AAGGCCGAAA UCCGGU 36 36 base pairs nucleic acid single linear 485 ACUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36 36 base pairs nucleic acid single linear 486 GGUCUCACUG AUGAGGCCGA AAGGCCGAAA GGUCCU 36 36 base pairs nucleic acid single linear 487 ACUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36 36 base pairs nucleic acid single linear 488 UACUCUUCUG AUGAGGCCGA AAGGCCGAAA AGGUCU 36 36 base pairs nucleic acid single linear 489 UCUUCAUCUG AUGAGGCCGA AAGGCCGAAA UACUCU 36 36 base pairs nucleic acid single linear 490 UUGAAAGCUG AUGAGGCCGA AAGGCCGAAA CUCUUC 36 36 base pairs nucleic acid single linear 491 CCAUUGACUG AUGAGGCCGA AAGGCCGAAA GGACUC 36 36 base pairs nucleic acid single linear 492 UCCAUUGCUG AUGAGGCCGA AAGGCCGAAA AGGACU 36 36 base pairs nucleic acid single linear 493 GUCCAUUCUG AUGAGGCCGA AAGGCCGAAA AAGGAC 36 36 base pairs nucleic acid single linear 494 CGGGUUGCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36 36 base pairs nucleic acid single linear 495 UUGGAUCCUG AUGAGGCCGA AAGGCCGAAA GGUGUA 36 36 base pairs nucleic acid single linear 496 GCACAGCCUG AUGAGGCCGA AAGGCCGAAA UACGCC 36 36 base pairs nucleic acid single linear 497 UUUCGGGCUG AUGAGGCCGA AAGGCCGAAA GGCACA 36 36 base pairs nucleic acid single linear 498 ACUUCGGCUG AUGAGGCCGA AAGGCCGAAA AGGCUU 36 36 base pairs nucleic acid single linear 499 AGAAGUUCUG AUGAGGCCGA AAGGCCGAAA GUUUCG 36 36 base pairs nucleic acid single linear 500 GGGACAGCUG AUGAGGCCGA AAGGCCGAAA GUUGAG 36 36 base pairs nucleic acid single linear 501 GGGGACACUG AUGAGGCCGA AAGGCCGAAA AGUUGA 36 36 base pairs nucleic acid single linear 502 GCUUGGGCUG AUGAGGCCGA AAGGCCGAAA CAGAAG 36 36 base pairs nucleic acid single linear 503 GAAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36 36 base pairs nucleic acid single linear 504 GUAAGGCCUG AUGAGGCCGA AAGGCCGAAA UAUGGC 36 36 base pairs nucleic acid single linear 505 UGGUGCUCUG AUGAGGCCGA AAGGCCGAAA GGGAUG 36 36 base pairs nucleic acid single linear 506 AUGCUGGCUG AUGAGGCCGA AAGGCCGAAA AGGUGU 36 36 base pairs nucleic acid single linear 507 GAAGCUGCUG AUGAGGCCGA AAGGCCGAAA GAUGGA 36 36 base pairs nucleic acid single linear 508 GCGCGCUCUG AUGAGGCCGA AAGGCCGAAA AGUAAA 36 36 base pairs nucleic acid single linear 509 GCUGAGGCUG AUGAGGCCGA AAGGCCGAAA UGCUGG 36 36 base pairs nucleic acid single linear 510 CAAAGUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGC 36 36 base pairs nucleic acid single linear 511 CUCAUCACUG AUGAGGCCGA AAGGCCGAAA GUUGAU 36 36 base pairs nucleic acid single linear 512 GGGGGAACUG AUGAGGCCGA AAGGCCGAAA CUCAUC 36 36 base pairs nucleic acid single linear 513 UGGGGGACUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36 36 base pairs nucleic acid single linear 514 AUGGGGGCUG AUGAGGCCGA AAGGCCGAAA AACUCA 36 36 base pairs nucleic acid single linear 515 UGAUGGUCUG AUGAGGCCGA AAGGCCGAAA CAGCAU 36 36 base pairs nucleic acid single linear 516 CUGAUGGCUG AUGAGGCCGA AAGGCCGAAA ACAGCA 36 36 base pairs nucleic acid single linear 517 UCAGGAGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 518 GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGGAC 36 36 base pairs nucleic acid single linear 519 CUGCCCUCUG AUGAGGCCGA AAGGCCGAAA UGGUAA 36 36 base pairs nucleic acid single linear 520 UCAGACUCUG AUGAGGCCGA AAGGCCGAAA ACUCCC 36 36 base pairs nucleic acid single linear 521 GAAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36 36 base pairs nucleic acid single linear 522 CGGUGCUCUG AUGAGGCCGA AAGGCCGAAA GGCCAG 36 36 base pairs nucleic acid single linear 523 GCUGAGGCUG AUGAGGCCGA AAGGCCGAAA GGGACC 36 36 base pairs nucleic acid single linear 524 GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36 36 base pairs nucleic acid single linear 525 GAGCCUGCUG AUGAGGCCGA AAGGCCGAAA GGCUGG 36 36 base pairs nucleic acid single linear 526 GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36 36 base pairs nucleic acid single linear 527 AGGAAGGCUG AUGAGGCCGA AAGGCCGAAA CCAUGG 36 36 base pairs nucleic acid single linear 528 CGCAGCUCUG AUGAGGCCGA AAGGCCGAAA GCCCAC 36 36 base pairs nucleic acid single linear 529 UGGGGGACUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36 36 base pairs nucleic acid single linear 530 AGACUCGCUG AUGAGGCCGA AAGGCCGAAA CAGGAG 36 36 base pairs nucleic acid single linear 531 GGGUUAGCUG AUGAGGCCGA AAGGCCGAAA CUGGGG 36 36 base pairs nucleic acid single linear 532 CCGGGGUCUG AUGAGGCCGA AAGGCCGAAA GAACUG 36 36 base pairs nucleic acid single linear 533 GACUGGGCUG AUGAGGCCGA AAGGCCGAAA GGACCC 36 36 base pairs nucleic acid single linear 534 UCAGCUUCUG AUGAGGCCGA AAGGCCGAAA GAAAAG 36 36 base pairs nucleic acid single linear 535 GGCUUCCCUG AUGAGGCCGA AAGGCCGAAA CAGCGU 36 36 base pairs nucleic acid single linear 536 AGCAUCACUG AUGAGGCCGA AAGGCCGAAA CUGCAG 36 36 base pairs nucleic acid single linear 537 CAGCAUCCUG AUGAGGCCGA AAGGCCGAAA ACUGCA 36 36 base pairs nucleic acid single linear 538 GCCAAGCCUG AUGAGGCCGA AAGGCCGAAA GGCCCC 36 36 base pairs nucleic acid single linear 539 UGUUGCCCUG AUGAGGCCGA AAGGCCGAAA GCAAGG 36 36 base pairs nucleic acid single linear 540 GUCUGUGCUG AUGAGGCCGA AAGGCCGAAA CACUCC 36 36 base pairs nucleic acid single linear 541 GGUCUGUCUG AUGAGGCCGA AAGGCCGAAA ACACUC 36 36 base pairs nucleic acid single linear 542 GUCCACACUG AUGAGGCCGA AAGGCCGAAA UGCCAG 36 36 base pairs nucleic acid single linear 543 AGUUCCCCUG AUGAGGCCGA AAGGCCGAAA CCGAAG 36 36 base pairs nucleic acid single linear 544 AAACUCUCUG AUGAGGCCGA AAGGCCGAAA GUUGUC 36 36 base pairs nucleic acid single linear 545 CUGCUGACUG AUGAGGCCGA AAGGCCGAAA CUCUGA 36 36 base pairs nucleic acid single linear 546 GCUGCUGCUG AUGAGGCCGA AAGGCCGAAA ACUCUG 36 36 base pairs nucleic acid single linear 547 AGCUGCUCUG AUGAGGCCGA AAGGCCGAAA AACUCU 36 36 base pairs nucleic acid single linear 548 ACACAGGCUG AUGAGGCCGA AAGGCCGAAA UGCACC 36 36 base pairs nucleic acid single linear 549 UUCAGGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36 36 base pairs nucleic acid single linear 550 CGAGUUACUG AUGAGGCCGA AAGGCCGAAA GCUUCA 36 36 base pairs nucleic acid single linear 551 GGCGAGUCUG AUGAGGCCGA AAGGCCGAAA UAGCUU 36 36 base pairs nucleic acid single linear 552 ACCAGGCCUG AUGAGGCCGA AAGGCCGAAA GUUAUA 36 36 base pairs nucleic acid single linear 553 CCCUCUCCUG AUGAGGCCGA AAGGCCGAAA GGAGAG 36 36 base pairs nucleic acid single linear 554 GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36 36 base pairs nucleic acid single linear 555 CCUACCGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36 36 base pairs nucleic acid single linear 556 CAUUGGGCUG AUGAGGCCGA AAGGCCGAAA GCCCCG 36 36 base pairs nucleic acid single linear 557 CUGGGCACUG AUGAGGCCGA AAGGCCGAAA GGUCAG 36 36 base pairs nucleic acid single linear 558 CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36 36 base pairs nucleic acid single linear 559 UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36 36 base pairs nucleic acid single linear 560 ACCUCCGCUG AUGAGGCCGA AAGGCCGAAA AGCGAG 36 36 base pairs nucleic acid single linear 561 GGAGGAGCUG AUGAGGCCGA AAGGCCGAAA GUCUUC 36 36 base pairs nucleic acid single linear 562 UGGAGGACUG AUGAGGCCGA AAGGCCGAAA AGUCUU 36 36 base pairs nucleic acid single linear 563 AAUGGAGCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36 36 base pairs nucleic acid single linear 564 CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36 36 base pairs nucleic acid single linear 565 UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36 36 base pairs nucleic acid single linear 566 AGCAGAGCUG AUGAGGCCGA AAGGCCGAAA GUCCAU 36 36 base pairs nucleic acid single linear 567 GAGCAGACUG AUGAGGCCGA AAGGCCGAAA AGUCCA 36 36 base pairs nucleic acid single linear 568 AAGAGCACUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36 36 base pairs nucleic acid single linear 569 CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAAA 36 36 base pairs nucleic acid single linear 570 AGGAGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGAC 36 36 base pairs nucleic acid single linear 571 ACCUUAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36 36 base pairs nucleic acid single linear 572 AGCACCUCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36 36 base pairs nucleic acid single linear 573 CUCUUGGCUG AUGAGGCCGA AAGGCCGAAA GCACUG 36 36 base pairs nucleic acid single linear 574 UACAGACCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36 36 base pairs nucleic acid single linear 575 CACUACACUG AUGAGGCCGA AAGGCCGAAA CGAGCC 36 36 base pairs nucleic acid single linear 576 CGUGCACCUG AUGAGGCCGA AAGGCCGAAA CAGACG 36 36 base pairs nucleic acid single linear 577 GAGGGGGCUG AUGAGGCCGA AAGGCCGAAA CAGUUC 36 36 base pairs nucleic acid single linear 578 UGAGGGGCUG AUGAGGCCGA AAGGCCGAAA ACAGUU 36 36 base pairs nucleic acid single linear 579 GGAAGAUCUG AUGAGGCCGA AAGGCCGAAA GGGGGA 36 36 base pairs nucleic acid single linear 580 CCGGGAACUG AUGAGGCCGA AAGGCCGAAA UGAGGG 36 36 base pairs nucleic acid single linear 581 UGCCGGGCUG AUGAGGCCGA AAGGCCGAAA GAUGAG 36 36 base pairs nucleic acid single linear 582 CUGCCGGCUG AUGAGGCCGA AAGGCCGAAA AGAUGA 36 36 base pairs nucleic acid single linear 583 GGGGCCACUG AUGAGGCCGA AAGGCCGAAA GGCCUG 36 36 base pairs nucleic acid single linear 584 CUCCACACUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 585 GCUCAAUCUG AUGAGGCCGA AAGGCCGAAA UCUCCA 36 36 base pairs nucleic acid single linear 586 GCUGCUCCUG AUGAGGCCGA AAGGCCGAAA UGAUCU 36 36 base pairs nucleic acid single linear 587 GUAGCGGCUG AUGAGGCCGA AAGGCCGAAA GCGCAU 36 36 base pairs nucleic acid single linear 588 UGUAGCGCUG AUGAGGCCGA AAGGCCGAAA AGCGCA 36 36 base pairs nucleic acid single linear 589 GCACUUGCUG AUGAGGCCGA AAGGCCGAAA GCGGAA 36 36 base pairs nucleic acid single linear 590 GCCCGCGCUG AUGAGGCCGA AAGGCCGAAA GCGCCC 36 36 base pairs nucleic acid single linear 591 CGCCUGGCUG AUGAGGCCGA AAGGCCGAAA UGCUGC 36 36 base pairs nucleic acid single linear 592 UUGGUGGCUG AUGAGGCCGA AAGGCCGAAA UCUGUG 36 36 base pairs nucleic acid single linear 593 UGAUCUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGG 36 36 base pairs nucleic acid single linear 594 AGCCAUUCUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36 36 base pairs nucleic acid single linear 595 UCCUGUGCUG AUGAGGCCGA AAGGCCGAAA GCCAUU 36 36 base pairs nucleic acid single linear 596 CCAGGGACUG AUGAGGCCGA AAGGCCGAAA UGCGCA 36 36 base pairs nucleic acid single linear 597 GACCAGGCUG AUGAGGCCGA AAGGCCGAAA GAUGCG 36 36 base pairs nucleic acid single linear 598 CCUUGGUCUG AUGAGGCCGA AAGGCCGAAA CCAGGG 36 36 base pairs nucleic acid single linear 599 CGGUGAGCUG AUGAGGCCGA AAGGCCGAAA GGGUCC 36 36 base pairs nucleic acid single linear 600 GGCCGGUCUG AUGAGGCCGA AAGGCCGAAA GGAGGG 36 36 base pairs nucleic acid single linear 601 UGGGGGUCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36 36 base pairs nucleic acid single linear 602 UUCCUACCUG AUGAGGCCGA AAGGCCGAAA GCUCGU 36 36 base pairs nucleic acid single linear 603 CCUUUCCCUG AUGAGGCCGA AAGGCCGAAA CAAGCU 36 36 base pairs nucleic acid single linear 604 CUCAUAGCUG AUGAGGCCGA AAGGCCGAAA GCCAUC 36 36 base pairs nucleic acid single linear 605 CCUCAUACUG AUGAGGCCGA AAGGCCGAAA AGCCAU 36 36 base pairs nucleic acid single linear 606 AGCCUCACUG AUGAGGCCGA AAGGCCGAAA GAAGCC 36 36 base pairs nucleic acid single linear 607 CCGGGCACUG AUGAGGCCGA AAGGCCGAAA GCUCAG 36 36 base pairs nucleic acid single linear 608 AACUGUGCUG AUGAGGCCGA AAGGCCGAAA UGCAGC 36 36 base pairs nucleic acid single linear 609 UUCUGGACUG AUGAGGCCGA AAGGCCGAAA CUGUGG 36 36 base pairs nucleic acid single linear 610 GUUCUGGCUG AUGAGGCCGA AAGGCCGAAA ACUGUG 36 36 base pairs nucleic acid single linear 611 GGUUCUGCUG AUGAGGCCGA AAGGCCGAAA AACUGU 36 36 base pairs nucleic acid single linear 612 CACACUGCUG AUGAGGCCGA AAGGCCGAAA UUCCCA 36 36 base pairs nucleic acid single linear 613 UGACUGACUG AUGAGGCCGA AAGGCCGAAA GCCUGC 36 36 base pairs nucleic acid single linear 614 GCUGACUCUG AUGAGGCCGA AAGGCCGAAA UAGCCU 36 36 base pairs nucleic acid single linear 615 AUGCGCUCUG AUGAGGCCGA AAGGCCGAAA CUGAUA 36 36 base pairs nucleic acid single linear 616 UGGUCUGCUG AUGAGGCCGA AAGGCCGAAA UGCGCU 36 36 base pairs nucleic acid single linear 617 AACUUGGCUG AUGAGGCCGA AAGGCCGAAA GGGGUU 36 36 base pairs nucleic acid single linear 618 GAACUUGCUG AUGAGGCCGA AAGGCCGAAA AGGGGU 36 36 base pairs nucleic acid single linear 619 CUAUAGGCUG AUGAGGCCGA AAGGCCGAAA CUUGGA 36 36 base pairs nucleic acid single linear 620 UCUAUAGCUG AUGAGGCCGA AAGGCCGAAA ACUUGG 36 36 base pairs nucleic acid single linear 621 UCUUCUACUG AUGAGGCCGA AAGGCCGAAA GGAACU 36 36 base pairs nucleic acid single linear 622 GCUCUUCCUG AUGAGGCCGA AAGGCCGAAA UAGGAA 36 36 base pairs nucleic acid single linear 623 CAGGUCGCUG AUGAGGCCGA AAGGCCGAAA GUCCCC 36 36 base pairs nucleic acid single linear 624 GGAAGCACUG AUGAGGCCGA AAGGCCGAAA GCCGCA 36 36 base pairs nucleic acid single linear 625 CACCUGGCUG AUGAGGCCGA AAGGCCGAAA GCAGAG 36 36 base pairs nucleic acid single linear 626 UCACCUGCUG AUGAGGCCGA AAGGCCGAAA AGCAGA 36 36 base pairs nucleic acid single linear 627 CCUGCCUCUG AUGAGGCCGA AAGGCCGAAA UGGGUC 36 36 base pairs nucleic acid single linear 628 GCAGGCGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 629 GAGGAAGCUG AUGAGGCCGA AAGGCCGAAA CAGGCG 36 36 base pairs nucleic acid single linear 630 GAUGAGGCUG AUGAGGCCGA AAGGCCGAAA GGACAG 36 36 base pairs nucleic acid single linear 631 GGAUGAGCUG AUGAGGCCGA AAGGCCGAAA AGGACA 36 36 base pairs nucleic acid single linear 632 AUGGGAUCUG AUGAGGCCGA AAGGCCGAAA GGAAGG 36 36 base pairs nucleic acid single linear 633 AAGAUGGCUG AUGAGGCCGA AAGGCCGAAA UGAGGA 36 36 base pairs nucleic acid single linear 634 UGUCAAACUG AUGAGGCCGA AAGGCCGAAA UGGGAU 36 36 base pairs nucleic acid single linear 635 AUUGUCACUG AUGAGGCCGA AAGGCCGAAA GAUGGG 36 36 base pairs nucleic acid single linear 636 GAUUGUCCUG AUGAGGCCGA AAGGCCGAAA AGAUGG 36 36 base pairs nucleic acid single linear 637 GGGGCACCUG AUGAGGCCGA AAGGCCGAAA UUGUCA 36 36 base pairs nucleic acid single linear 638 AGAUCUUCUG AUGAGGCCGA AAGGCCGAAA GCUCGG 36 36 base pairs nucleic acid single linear 639 CUCGGCACUG AUGAGGCCGA AAGGCCGAAA UCUUGA 36 36 base pairs nucleic acid single linear 640 GCUGCCACUG AUGAGGCCGA AAGGCCGAAA GUUUCG 36 36 base pairs nucleic acid single linear 641 CCCCACCCUG AUGAGGCCGA AAGGCCGAAA GGCAGC 36 36 base pairs nucleic acid single linear 642 GUAGGAACUG AUGAGGCCGA AAGGCCGAAA UCUCAU 36 36 base pairs nucleic acid single linear 643 CAGUAGGCUG AUGAGGCCGA AAGGCCGAAA GAUCUC 36 36 base pairs nucleic acid single linear 644 ACAGUAGCUG AUGAGGCCGA AAGGCCGAAA AGAUCU 36 36 base pairs nucleic acid single linear 645 CACACAGCUG AUGAGGCCGA AAGGCCGAAA GGAAGA 36 36 base pairs nucleic acid single linear 646 ACACCUCCUG AUGAGGCCGA AAGGCCGAAA UGUCCU 36 36 base pairs nucleic acid single linear 647 CGUGAAACUG AUGAGGCCGA AAGGCCGAAA CACCUC 36 36 base pairs nucleic acid single linear 648 CCCGUGACUG AUGAGGCCGA AAGGCCGAAA UACACC 36 36 base pairs nucleic acid single linear 649 UCCCGUGCUG AUGAGGCCGA AAGGCCGAAA AUACAC 36 36 base pairs nucleic acid single linear 650 GUCCCGUCUG AUGAGGCCGA AAGGCCGAAA AAUACA 36 36 base pairs nucleic acid single linear 651 CGAAAAGCUG AUGAGGCCGA AAGGCCGAAA GCCUCG 36 36 base pairs nucleic acid single linear 652 UUGCGAACUG AUGAGGCCGA AAGGCCGAAA GGAGCC 36 36 base pairs nucleic acid single linear 653 CUUGCGACUG AUGAGGCCGA AAGGCCGAAA AGGAGC 36 36 base pairs nucleic acid single linear 654 GCUUGCGCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36 36 base pairs nucleic acid single linear 655 AGCUUGCCUG AUGAGGCCGA AAGGCCGAAA AAAGGA 36 36 base pairs nucleic acid single linear 656 GGAACACCUG AUGAGGCCGA AAGGCCGAAA UGGCCA 36 36 base pairs nucleic acid single linear 657 GGUCCGGCUG AUGAGGCCGA AAGGCCGAAA CACAAU 36 36 base pairs nucleic acid single linear 658 GGGUCCGCUG AUGAGGCCGA AAGGCCGAAA ACACAA 36 36 base pairs nucleic acid single linear 659 GCGUAGGCUG AUGAGGCCGA AAGGCCGAAA GGGGUC 36 36 base pairs nucleic acid single linear 660 GUCUGCGCUG AUGAGGCCGA AAGGCCGAAA GGGAGG 36 36 base pairs nucleic acid single linear 661 CGCACAGCUG AUGAGGCCGA AAGGCCGAAA GCCUGC 36 36 base pairs nucleic acid single linear 662 GCAUGGACUG AUGAGGCCGA AAGGCCGAAA CACGCA 36 36 base pairs nucleic acid single linear 663 CUGCAUGCUG AUGAGGCCGA AAGGCCGAAA GACACG 36 36 base pairs nucleic acid single linear 664 CGGUCGGCUG AUGAGGCCGA AAGGCCGAAA GGCCGC 36 36 base pairs nucleic acid single linear 665 CCGGUCGCUG AUGAGGCCGA AAGGCCGAAA AGGCCG 36 36 base pairs nucleic acid single linear 666 GCUCACUCUG AUGAGGCCGA AAGGCCGAAA GCUCCC 36 36 base pairs nucleic acid single linear 667 GUACUGGCUG AUGAGGCCGA AAGGCCGAAA UUCCAU 36 36 base pairs nucleic acid single linear 668 GGUACUGCUG AUGAGGCCGA AAGGCCGAAA AUUCCA 36 36 base pairs nucleic acid single linear 669 UGGCAGGCUG AUGAGGCCGA AAGGCCGAAA CUGGAA 36 36 base pairs nucleic acid single linear 670 UCGUCUGCUG AUGAGGCCGA AAGGCCGAAA UCUGGC 36 36 base pairs nucleic acid single linear 671 CGGUGACCUG AUGAGGCCGA AAGGCCGAAA UCGUCU 36 36 base pairs nucleic acid single linear 672 AUCCGGUCUG AUGAGGCCGA AAGGCCGAAA CGAUCG 36 36 base pairs nucleic acid single linear 673 UCUCCUCCUG AUGAGGCCGA AAGGCCGAAA UCCGGU 36 36 base pairs nucleic acid single linear 674 GUCCUUUCUG AUGAGGCCGA AAGGCCGAAA CGUUUC 36 36 base pairs nucleic acid single linear 675 GGUCUCACUG AUGAGGCCGA AAGGCCGAAA UGUCCU 36 36 base pairs nucleic acid single linear 676 GCUCUUGCUG AUGAGGCCGA AAGGCCGAAA GGUCUC 36 36 base pairs nucleic acid single linear 677 UGCUCUUCUG AUGAGGCCGA AAGGCCGAAA AGGUCU 36 36 base pairs nucleic acid single linear 678 UCUUCAUCUG AUGAGGCCGA AAGGCCGAAA UGCUCU 36 36 base pairs nucleic acid single linear 679 CUGAAAGCUG AUGAGGCCGA AAGGCCGAAA CUCUUC 36 36 base pairs nucleic acid single linear 680 CCGCUGACUG AUGAGGCCGA AAGGCCGAAA GGACUC 36 36 base pairs nucleic acid single linear 681 UCCGCUGCUG AUGAGGCCGA AAGGCCGAAA AGGACU 36 36 base pairs nucleic acid single linear 682 GUCCGCUCUG AUGAGGCCGA AAGGCCGAAA AAGGAC 36 36 base pairs nucleic acid single linear 683 CGAGGUGCUG AUGAGGCCGA AAGGCCGAAA GGCCGG 36 36 base pairs nucleic acid single linear 684 AUGCGUCCUG AUGAGGCCGA AAGGCCGAAA GGUGGA 36 36 base pairs nucleic acid single linear 685 GCACAGCCUG AUGAGGCCGA AAGGCCGAAA UGCGUC 36 36 base pairs nucleic acid single linear 686 CUGCGGGCUG AUGAGGCCGA AAGGCCGAAA GGCACA 36 36 base pairs nucleic acid single linear 687 GCUGCGGCUG AUGAGGCCGA AAGGCCGAAA AGGCAC 36 36 base pairs nucleic acid single linear 688 AGAAGCUCUG AUGAGGCCGA AAGGCCGAAA GCUGCG 36 36 base pairs nucleic acid single linear 689 GGGACAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAG 36 36 base pairs nucleic acid single linear 690 GGGGACACUG AUGAGGCCGA AAGGCCGAAA AGCUGA 36 36 base pairs nucleic acid single linear 691 GCUUGGGCUG AUGAGGCCGA AAGGCCGAAA CAGAAG 36 36 base pairs nucleic acid single linear 692 AAAGGGACUG AUGAGGCCGA AAGGCCGAAA GGGCUG 36 36 base pairs nucleic acid single linear 693 GUAAAGGCUG AUGAGGCCGA AAGGCCGAAA UAGGGC 36 36 base pairs nucleic acid single linear 694 UGACGUACUG AUGAGGCCGA AAGGCCGAAA GGGAUA 36 36 base pairs nucleic acid single linear 695 AUGACGUCUG AUGAGGCCGA AAGGCCGAAA AGGGAU 36 36 base pairs nucleic acid single linear 696 GAUGACGCUG AUGAGGCCGA AAGGCCGAAA AAGGGA 36 36 base pairs nucleic acid single linear 697 CAGGGAUCUG AUGAGGCCGA AAGGCCGAAA CGUAAA 36 36 base pairs nucleic acid single linear 698 GCUCAGGCUG AUGAGGCCGA AAGGCCGAAA UGACGU 36 36 base pairs nucleic acid single linear 699 CAUAGUUCUG AUGAGGCCGA AAGGCCGAAA UGGUGC 36 36 base pairs nucleic acid single linear 700 CUCAUCACUG AUGAGGCCGA AAGGCCGAAA GUUGAU 36 36 base pairs nucleic acid single linear 701 GGUGGGACUG AUGAGGCCGA AAGGCCGAAA CUCAUC 36 36 base pairs nucleic acid single linear 702 UGGUGGGCUG AUGAGGCCGA AAGGCCGAAA ACUCAU 36 36 base pairs nucleic acid single linear 703 AUGGUGGCUG AUGAGGCCGA AAGGCCGAAA AACUCA 36 36 base pairs nucleic acid single linear 704 AGAAGGACUG AUGAGGCCGA AAGGCCGAAA CACCAU 36 36 base pairs nucleic acid single linear 705 CAGAAGGCUG AUGAGGCCGA AAGGCCGAAA ACACCA 36 36 base pairs nucleic acid single linear 706 CCAGAAGCUG AUGAGGCCGA AAGGCCGAAA AACACC 36 36 base pairs nucleic acid single linear 707 UGCCCAGCUG AUGAGGCCGA AAGGCCGAAA GGAAAC 36 36 base pairs nucleic acid single linear 708 CUGCCCACUG AUGAGGCCGA AAGGCCGAAA AGGAAA 36 36 base pairs nucleic acid single linear 709 CCUGGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGCC 36 36 base pairs nucleic acid single linear 710 CAAGGCCCUG AUGAGGCCGA AAGGCCGAAA GGCCUG 36 36 base pairs nucleic acid single linear 711 CGGGGCCCUG AUGAGGCCGA AAGGCCGAAA GGCCGA 36 36 base pairs nucleic acid single linear 712 ACUUGGGCUG AUGAGGCCGA AAGGCCGAAA GGGGCC 36 36 base pairs nucleic acid single linear 713 GGGGCAGCUG AUGAGGCCGA AAGGCCGAAA CUUGGG 36 36 base pairs nucleic acid single linear 714 GGGGCUGCUG AUGAGGCCGA AAGGCCGAAA GCCUGG 36 36 base pairs nucleic acid single linear 715 AUGGCUGCUG AUGAGGCCGA AAGGCCGAAA GCAGGG 36 36 base pairs nucleic acid single linear 716 GAGCUGACUG AUGAGGCCGA AAGGCCGAAA CCAUGG 36 36 base pairs nucleic acid single linear 717 CAGAGCUCUG AUGAGGCCGA AAGGCCGAAA UACCAU 36 36 base pairs nucleic acid single linear 718 UGGGCCACUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36 36 base pairs nucleic acid single linear 719 GGACUGGCUG AUGAGGCCGA AAGGCCGAAA CAGGGG 36 36 base pairs nucleic acid single linear 720 GGGCUAGCUG AUGAGGCCGA AAGGCCGAAA CUGGGA 36 36 base pairs nucleic acid single linear 721 CUGGGGCCUG AUGAGGCCGA AAGGCCGAAA GGACUG 36 36 base pairs nucleic acid single linear 722 GCCUGAGCUG AUGAGGCCGA AAGGCCGAAA GGGCCU 36 36 base pairs nucleic acid single linear 723 ACAGCCUCUG AUGAGGCCGA AAGGCCGAAA GGAGGG 36 36 base pairs nucleic acid single linear 724 GGCCUCUCUG AUGAGGCCGA AAGGCCGAAA CAGCGU 36 36 base pairs nucleic acid single linear 725 AUCAUCACUG AUGAGGCCGA AAGGCCGAAA CUGCAG 36 36 base pairs nucleic acid single linear 726 CAUCAUCCUG AUGAGGCCGA AAGGCCGAAA ACUGCA 36 36 base pairs nucleic acid single linear 727 GCCAAGCCUG AUGAGGCCGA AAGGCCGAAA GGCCCC 36 36 base pairs nucleic acid single linear 728 UGUUGCCCUG AUGAGGCCGA AAGGCCGAAA GCAAGG 36 36 base pairs nucleic acid single linear 729 GUCUGUGCUG AUGAGGCCGA AAGGCCGAAA CACAGC 36 36 base pairs nucleic acid single linear 730 GGUCUGUCUG AUGAGGCCGA AAGGCCGAAA ACACAG 36 36 base pairs nucleic acid single linear 731 GUCGACGCUG AUGAGGCCGA AAGGCCGAAA UGCCAG 36 36 base pairs nucleic acid single linear 732 AGUUGUCCUG AUGAGGCCGA AAGGCCGAAA CGGAUG 36 36 base pairs nucleic acid single linear 733 AAACUCGCUG AUGAGGCCGA AAGGCCGAAA GUUGUC 36 36 base pairs nucleic acid single linear 734 CUGCUGACUG AUGAGGCCGA AAGGCCGAAA CUCGGA 36 36 base pairs nucleic acid single linear 735 GCUGCUGCUG AUGAGGCCGA AAGGCCGAAA ACUCGG 36 36 base pairs nucleic acid single linear 736 AGCUGCUCUG AUGAGGCCGA AAGGCCGAAA AACUCG 36 36 base pairs nucleic acid single linear 737 CCACAGGCUG AUGAGGCCGA AAGGCCGAAA UGCCCU 36 36 base pairs nucleic acid single linear 738 CUCAGGGCUG AUGAGGCCGA AAGGCCGAAA CUCCAU 36 36 base pairs nucleic acid single linear 739 CGAGUUACUG AUGAGGCCGA AAGGCCGAAA GCCUCA 36 36 base pairs nucleic acid single linear 740 GGCGAGUCUG AUGAGGCCGA AAGGCCGAAA UAGCCU 36 36 base pairs nucleic acid single linear 741 ACUAGGCCUG AUGAGGCCGA AAGGCCGAAA GUUAUA 36 36 base pairs nucleic acid single linear 742 CUGUCACCUG AUGAGGCCGA AAGGCCGAAA GGCGAG 36 36 base pairs nucleic acid single linear 743 GGAGCAGCUG AUGAGGCCGA AAGGCCGAAA GCUGGG 36 36 base pairs nucleic acid single linear 744 CCCAGUGCUG AUGAGGCCGA AAGGCCGAAA GCAGGA 36 36 base pairs nucleic acid single linear 745 CAUUGGGCUG AUGAGGCCGA AAGGCCGAAA GCCCCG 36 36 base pairs nucleic acid single linear 746 CUGAAAGCUG AUGAGGCCGA AAGGCCGAAA GGCCAU 36 36 base pairs nucleic acid single linear 747 CUCCUGACUG AUGAGGCCGA AAGGCCGAAA GGAGGC 36 36 base pairs nucleic acid single linear 748 UCUCCUGCUG AUGAGGCCGA AAGGCCGAAA AGGAGG 36 36 base pairs nucleic acid single linear 749 AUCUCCUCUG AUGAGGCCGA AAGGCCGAAA AAGGAG 36 36 base pairs nucleic acid single linear 750 GGAGGAGCUG AUGAGGCCGA AAGGCCGAAA GUCUUC 36 36 base pairs nucleic acid single linear 751 UGGAGGACUG AUGAGGCCGA AAGGCCGAAA AGUCUU 36 36 base pairs nucleic acid single linear 752 AAUGGAGCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36 36 base pairs nucleic acid single linear 753 CGCAAUGCUG AUGAGGCCGA AAGGCCGAAA GGAGAA 36 36 base pairs nucleic acid single linear 754 UGUCCGCCUG AUGAGGCCGA AAGGCCGAAA UGGAGG 36 36 base pairs nucleic acid single linear 755 GGCUGAGCUG AUGAGGCCGA AAGGCCGAAA GUCCAU 36 36 base pairs nucleic acid single linear 756 GGGCUGACUG AUGAGGCCGA AAGGCCGAAA AGUCCA 36 36 base pairs nucleic acid single linear 757 CAGGGCUCUG AUGAGGCCGA AAGGCCGAAA GAAGUC 36 36 base pairs nucleic acid single linear 758 CUGAUCUCUG AUGAGGCCGA AAGGCCGAAA CUCAGC 36 36 base pairs nucleic acid single linear 759 AGGAGCUCUG AUGAGGCCGA AAGGCCGAAA UCUGAC 36 36 base pairs nucleic acid single linear 760 CCCUUAGCUG AUGAGGCCGA AAGGCCGAAA GCUGAU 36 36 base pairs nucleic acid single linear 761 ACCCCCUCUG AUGAGGCCGA AAGGCCGAAA GGAGCU 36 36 base pairs nucleic acid single linear 762 CUCUGGGCUG AUGAGGCCGA AAGGCCGAAA GGGCAG 36 52 base pairs nucleic acid single linear 763 UGAGGGGGAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 764 GCUGCUUGAG AAGCUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 765 GCCAUCCCAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 766 GUUCUGGAAG AAGUGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 767 GAAGGACAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 768 UUGAGCUCAG AAGUGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 769 CCCACCGAAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 770 AGGCUGGGAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 771 GGUCGGAAAG AAGCCGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 772 UGACGAUCAG AAGUAUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 773 GUCGGUGGAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 774 GGCCGGGGAG AAGUGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 775 CAUCAUCAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 776 ACAGCUGGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 777 GAUGCCAGAG AAGUGAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 16 base pairs nucleic acid single linear 778 GAACUGUUCC CCCUCA 16 16 base pairs nucleic acid single linear 779 GAGCAGCCCA AGCAGC 16 16 base pairs nucleic acid single linear 780 GGACUGCCGG GAUGGC 16 16 base pairs nucleic acid single linear 781 CCACAGUUUC CAGAAC 16 16 base pairs nucleic acid single linear 782 CUGCCGCCUG UCCUUC 16 16 base pairs nucleic acid single linear 783 ACACUGCCGA GCUCAA 16 16 base pairs nucleic acid single linear 784 CAGCUGCCUC GGUGGG 16 16 base pairs nucleic acid single linear 785 ACGCAGACCC CAGCCU 16 16 base pairs nucleic acid single linear 786 CGGCGGCCUU CCGACC 16 16 base pairs nucleic acid single linear 787 AUACAGACGA UCGUCA 16 16 base pairs nucleic acid single linear 788 CAGCGGACCC ACCGAC 16 16 base pairs nucleic acid single linear 789 CCACCGACCC CCGGCC 16 16 base pairs nucleic acid single linear 790 CUGCAGUUUG AUGAUG 16 16 base pairs nucleic acid single linear 791 GCACAGACCC AGCUGU 16 16 base pairs nucleic acid single linear 792 UCACAGACCU GGCAUC 16 52 base pairs nucleic acid single linear 793 GUUGCUUCAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 794 GAGAUUCGAG AAGUUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 795 GCCAUCCCAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 796 GGGCAGAGAG AAGCCUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 797 UUGAGCUCAG AAGUGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 798 CCCACCGAAG AAGCUCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 799 AGGCUGGGAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 800 GAUCAGAAAG AAGCCGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 801 AGGUGUAGAG AAGCGGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 802 GGGCAGAGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 803 GGGCUUCCAG AAGCGUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 804 CAGCAUCAAG AAGCAGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 805 ACUCCUGGAG AAGUGCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 806 GAUGCCAGAG AAGUGAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 807 AAGUCGGGAG AAGCUGACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 808 UGGCUCCAAG AAGUCCACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 809 UGGUGUCGAG AAGCACACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 810 AUUCUGAAAG AAGCCAACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 52 base pairs nucleic acid single linear 811 UCAGUAAAAG AAGUCUACCA GAGAAACACA CGUUGUGGUA CAUUACCUGG UA 52 16 base pairs nucleic acid single linear 812 GAACAGCCGA AGCAAC 16 16 base pairs nucleic acid single linear 813 GAACAGUUCG AAUCUC 16 16 base pairs nucleic acid single linear 814 GGACUGCCGG GAUGGC 16 16 base pairs nucleic acid single linear 815 AGGCUGACCU CUGCCC 16 16 base pairs nucleic acid single linear 816 ACACUGCCGA GCUCAA 16 16 base pairs nucleic acid single linear 817 GAGCUGCCUC GGUGGG 16 16 base pairs nucleic acid single linear 818 ACGCCGACCC CAGCCU 16 16 base pairs nucleic acid single linear 819 CGGCGGCCUU CUGAUC 16 16 base pairs nucleic acid single linear 820 CCGCAGCCCU ACACCU 16 16 base pairs nucleic acid single linear 821 GCACCGUCCU CUGCCC 16 16 base pairs nucleic acid single linear 822 ACGCUGUCGG AAGCCC 16 16 base pairs nucleic acid single linear 823 CUGCAGUUUG AUGCUG 16 16 base pairs nucleic acid single linear 824 GCACAGACCC AGGAGU 16 16 base pairs nucleic acid single linear 825 UCACAGACCU GGCAUC 16 16 base pairs nucleic acid single linear 826 CAGCUGCCCC CGACUU 16 16 base pairs nucleic acid single linear 827 GGACAGACUG GAGCCA 16 16 base pairs nucleic acid single linear 828 GUGCUGCCCG ACACCA 16 16 base pairs nucleic acid single linear 829 UGGCCGCCUU CAGAAU 16 16 base pairs nucleic acid single linear 830 AGACAGCCUU UACUGA 16

Claims (18)

1. An enzymatic RNA molecule which cleaves rel A mRNA.
2. An enzymatic RNA molecule of claim 1, the binding arms of which contain sequences complementary to the sequences defined in Table II.
3. The enzymatic RNA molecule of claim 1, the binding arms of which contain sequences complementary to the sequences defined in any one of Tables III, and IV-VII
4. The enzymatic RNA molecule of claim 1, 2, or 3, wherein said RNA molecule is in a hammerhead motif.
5. The enzymatic RNA molecule of claim 1, 2, or 3, wherein said RNA molecule is in a hairpin, hepatitis delta virus, group 1 intron, VS RNA or RNAseP RNA motif.
6. The enzymatic RNA molecule of claim 6, wherein said ribozyme comprises between 12 and 100 bases complementary to said mRNA.
7. The enzymatic RNA molecule of claim 6, wherein said ribozyme comprises between 14 and 24 bases complementary to said mRNA.
8. Enzymatic RNA molecule consisting essentially of any sequence selected from the group of those shown in Tables IV, V, VI, and VII.
9. A mammalian cell including an enzymatic RNA molecule of claim 1, 2, or 3.
10. The cell of claim 8, wherein said cell is a human cell.
11. An expression vector including nucleic acid encoding an enzymatic RNA molecule or multiple enzymatic molecules of claim 1, 2, or 3 in a manner which allows expression of that enzymatic RNA molecule(s) within a mammalian cell.
12. A mammalian cell including an expression vector of claim 11.
13. The cell of claim 13, wherein said cell is a human cell.
14. A method for treatment of a condition related to the level of NF-κB activity by administering to a patient an enzymatic nucleic acid molecule of claim 1, 2, or 3,
15. A method for treatment of a condition related to the level of NF-κB activity by administering to a patient an expression vector of claim 11.
16. The method of claim 14 or 15, wherein said patient is a human.
17. The method of claim 14 wherein said condition is selected from the group consisting of restenosis, rheumatoid arthritis, asthma, inflammatory or autoimmune disorders, and transplant rejection.
18. The method of claim 15 wherein said condition is selected from the group consisting of restenosis, rheumatoid arthritis, asthma, inflammatory or autoimmune disorders, and transplant rejection.
US10/056,414 1992-12-07 2002-01-23 Ribozyme treatment of diseases or conditions related to levels of NF-kappaB Abandoned US20030003469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/056,414 US20030003469A1 (en) 1992-12-07 2002-01-23 Ribozyme treatment of diseases or conditions related to levels of NF-kappaB

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US98713292A 1992-12-07 1992-12-07
USPCT/US93/06313 1993-02-07
PCT/US1993/006316 WO1994002595A1 (en) 1992-07-17 1993-07-02 Method and reagent for treatment of animal diseases
US24546694A 1994-05-18 1994-05-18
US08/291,932 US5658780A (en) 1992-12-07 1994-08-15 Rel a targeted ribozymes
US08/777,916 US6410224B1 (en) 1992-12-07 1996-12-23 Ribozyme treatment of diseases or conditions related to levels of NF-κB
US10/056,414 US20030003469A1 (en) 1992-12-07 2002-01-23 Ribozyme treatment of diseases or conditions related to levels of NF-kappaB

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/777,916 Continuation US6410224B1 (en) 1992-12-07 1996-12-23 Ribozyme treatment of diseases or conditions related to levels of NF-κB

Publications (1)

Publication Number Publication Date
US20030003469A1 true US20030003469A1 (en) 2003-01-02

Family

ID=27399854

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/291,932 Expired - Fee Related US5658780A (en) 1992-12-07 1994-08-15 Rel a targeted ribozymes
US08/777,916 Expired - Fee Related US6410224B1 (en) 1992-12-07 1996-12-23 Ribozyme treatment of diseases or conditions related to levels of NF-κB
US10/056,414 Abandoned US20030003469A1 (en) 1992-12-07 2002-01-23 Ribozyme treatment of diseases or conditions related to levels of NF-kappaB

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/291,932 Expired - Fee Related US5658780A (en) 1992-12-07 1994-08-15 Rel a targeted ribozymes
US08/777,916 Expired - Fee Related US6410224B1 (en) 1992-12-07 1996-12-23 Ribozyme treatment of diseases or conditions related to levels of NF-κB

Country Status (1)

Country Link
US (3) US5658780A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133022A2 (en) 2005-06-03 2006-12-14 The Johns Hopkins University Compositions and methods for decreasing microrna expression for the treatment of neoplasia
WO2011143651A1 (en) 2010-05-14 2011-11-17 Dana-Farber Cancer Institute, Inc. Compositions and methods for modulating metabolism
WO2011143660A2 (en) 2010-05-14 2011-11-17 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating leukemia
WO2013075132A1 (en) 2011-11-17 2013-05-23 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Therapeutic rna switches compositions and methods of use
WO2013075140A1 (en) 2011-11-17 2013-05-23 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Auto -recognizing therapeutic rna/dna chimeric nanoparticles (np)
EP2639316A1 (en) 2007-05-11 2013-09-18 The Johns Hopkins University Biomarkers for melanoma
WO2015042101A1 (en) 2013-09-17 2015-03-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Multifunctional rna nanoparticles and methods of use
WO2015176010A1 (en) 2014-05-15 2015-11-19 The United States Of America, As Represented By The Secretary, Departmentof Health & Human Services Treatment or prevention of an intestinal disease or disorder
WO2017099829A1 (en) 2015-12-11 2017-06-15 The General Hospital Corporation Compositions and methods for treating drug-tolerant glioblastoma
WO2018187373A1 (en) 2017-04-03 2018-10-11 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Functionally-interdependent shape switching nucleic acid nanoparticles
US10329617B2 (en) 2008-05-08 2019-06-25 The Johns Hopkins University Compositions and methods for modulating an immune response
WO2019195738A1 (en) 2018-04-06 2019-10-10 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
US10517890B2 (en) 2014-05-06 2019-12-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Triggering RNA interference with RNA-DNA and DNA-RNA nanoparticles
EP3798308A1 (en) 2014-12-26 2021-03-31 Nitto Denko Corporation Rna interference compositions and methods for malignant tumors
WO2021248052A1 (en) 2020-06-05 2021-12-09 The Broad Institute, Inc. Compositions and methods for treating neoplasia
EP3971571A2 (en) 2012-05-25 2022-03-23 The University of Vermont and State Agriculture College Compositions and methods for assaying platelet reactivity and treatment selection

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329741B2 (en) * 1996-06-05 2008-02-12 Chiron Corporation Polynucleotides that hybridize to DP-75 and their use
US6069008A (en) * 1998-11-25 2000-05-30 Isis Pharmaceuticals Inc. Antisense modulation of NF-kappa-B p65 subunit expression
US6770633B1 (en) 1999-10-26 2004-08-03 Immusol, Inc. Ribozyme therapy for the treatment of proliferative skin and eye diseases
US6667300B2 (en) * 2000-04-25 2003-12-23 Icos Corporation Inhibitors of human phosphatidylinositol 3-kinase delta
US20050054614A1 (en) * 2003-08-14 2005-03-10 Diacovo Thomas G. Methods of inhibiting leukocyte accumulation
US20050043239A1 (en) * 2003-08-14 2005-02-24 Jason Douangpanya Methods of inhibiting immune responses stimulated by an endogenous factor
ES2607804T3 (en) 2004-05-13 2017-04-04 Icos Corporation Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta
JP2008500338A (en) * 2004-05-25 2008-01-10 イコス・コーポレイション Method for treating and / or preventing abnormal proliferation of hematopoietic cells
CA2598409A1 (en) * 2005-02-17 2006-08-24 Icos Corporation Phosphoinositide 3-kinase inhibitors for inhibiting leukocyte accumulation
US9492449B2 (en) 2008-11-13 2016-11-15 Gilead Calistoga Llc Therapies for hematologic malignancies
WO2010057048A1 (en) 2008-11-13 2010-05-20 Calistoga Pharmaceuticals Inc. Therapies for hematologic malignancies
EP2411391A1 (en) 2009-03-24 2012-02-01 Gilead Calistoga LLC Atropisomers of2-purinyl-3-tolyl-quinazolinone derivatives and methods of use
WO2010123931A1 (en) * 2009-04-20 2010-10-28 Calistoga Pharmaceuticals Inc. Methods of treatment for solid tumors
EP2456443A1 (en) 2009-07-21 2012-05-30 Gilead Calistoga LLC Treatment of liver disorders with pi3k inhibitors
JP6012605B2 (en) 2010-09-22 2016-10-25 アリオス バイオファーマ インク. Substituted nucleotide analogs
AU2012358804B2 (en) 2011-12-22 2018-04-19 Alios Biopharma, Inc. Substituted phosphorothioate nucleotide analogs
EA201690461A1 (en) 2012-03-05 2016-11-30 Джилид Калистога Ллс POLYMORPHIC FORMS (S) -2- (1- (9H-PURIN-6-ILAMINO) PROPYL) -5-FTOR-3-PHENYL-CHINAZOLIN-4 (3H) -OH
NZ631601A (en) 2012-03-21 2016-06-24 Alios Biopharma Inc Solid forms of a thiophosphoramidate nucleotide prodrug
NZ630805A (en) 2012-03-22 2016-01-29 Alios Biopharma Inc Pharmaceutical combinations comprising a thionucleotide analog
JP2017500319A (en) 2013-12-20 2017-01-05 ギリアード カリストガ エルエルシー Polymorphic form of the hydrochloride salt of (S) -2- (1- (9H-purin-6-ylamino) propyl) -5-fluoro-3-phenylquinazolin-4 (3H) -one
AU2014364410B2 (en) 2013-12-20 2017-11-16 Gilead Calistoga Llc Process methods for phosphatidylinositol 3-kinase inhibitors
MX2016016530A (en) 2014-06-13 2017-03-27 Gilead Sciences Inc Phosphatidylinositol 3-kinase inhibitors.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987071A (en) * 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US5168053A (en) * 1989-03-24 1992-12-01 Yale University Cleavage of targeted RNA by RNAase P
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5328470A (en) * 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5496598A (en) * 1993-09-02 1996-03-05 Delisle; France Insulating multiple layer sealed units and insulating spacer and assembly
US5525468A (en) * 1992-05-14 1996-06-11 Ribozyme Pharmaceuticals, Inc. Assay for Ribozyme target site

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058686B2 (en) * 1989-08-31 2000-07-04 シティ・オブ・ホープ Chimeric DNA-RNA catalytically active sequence
IE20010427A1 (en) * 1990-04-10 2003-03-05 Canji Inc Gene therapy for cell proliferative diseases
WO1991018913A1 (en) * 1990-06-07 1991-12-12 City Of Hope Ribozyme mediated reversal of transformation by cleavage of the hras oncogene rna
AU7152191A (en) * 1990-06-07 1991-12-31 City Of Hope Ribozyme mediated reversal of transformation by cleavage of the hras oncogene rna
CA2086105A1 (en) * 1990-06-26 1991-12-27 Premkumar Reddy Method for treating leukemias
AU649074B2 (en) * 1990-10-12 1994-05-12 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Modified ribozymes
CA2098911A1 (en) 1990-12-21 1992-06-22 Graham M. Chapman Photodegradable plastic composition
JPH06508130A (en) * 1991-05-23 1994-09-14 テンプル ユニバーシティ−オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション Treatment of colorectal cancer with antisense oligonucleotides against the c-myb proto-oncogene
WO1993002654A2 (en) * 1991-08-09 1993-02-18 New England Deaconess Hospital A method of inducing hemoglobin synthesis in red blood cells and uses therefor
WO1993008845A1 (en) * 1991-11-08 1993-05-13 Massachusetts Institute Of Technology Localized oligonucleotide therapy
WO1993009789A1 (en) * 1991-11-15 1993-05-27 Temple University - Of The Commonwealth System Of Higher Education Treatment of melanoma with antisense oligonucleotides to c-myb proto-oncogene
US5652094A (en) * 1992-01-31 1997-07-29 University Of Montreal Nucleozymes
US5496698A (en) * 1992-08-26 1996-03-05 Ribozyme Pharmaceuticals, Inc. Method of isolating ribozyme targets
JPH08500481A (en) * 1992-05-11 1996-01-23 リボザイム・ファーマシューティカルズ・インコーポレーテッド Methods and agents for inhibiting viral replication
EP0654077A4 (en) * 1992-07-17 1996-03-13 Ribozyme Pharm Inc Method and reagent for treatment of animal diseases.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987071A (en) * 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5168053A (en) * 1989-03-24 1992-12-01 Yale University Cleavage of targeted RNA by RNAase P
US5328470A (en) * 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5525468A (en) * 1992-05-14 1996-06-11 Ribozyme Pharmaceuticals, Inc. Assay for Ribozyme target site
US5496598A (en) * 1993-09-02 1996-03-05 Delisle; France Insulating multiple layer sealed units and insulating spacer and assembly

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133022A2 (en) 2005-06-03 2006-12-14 The Johns Hopkins University Compositions and methods for decreasing microrna expression for the treatment of neoplasia
EP2639316A1 (en) 2007-05-11 2013-09-18 The Johns Hopkins University Biomarkers for melanoma
US10329617B2 (en) 2008-05-08 2019-06-25 The Johns Hopkins University Compositions and methods for modulating an immune response
WO2011143651A1 (en) 2010-05-14 2011-11-17 Dana-Farber Cancer Institute, Inc. Compositions and methods for modulating metabolism
WO2011143660A2 (en) 2010-05-14 2011-11-17 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating leukemia
WO2013075132A1 (en) 2011-11-17 2013-05-23 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Therapeutic rna switches compositions and methods of use
WO2013075140A1 (en) 2011-11-17 2013-05-23 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Auto -recognizing therapeutic rna/dna chimeric nanoparticles (np)
EP3971571A2 (en) 2012-05-25 2022-03-23 The University of Vermont and State Agriculture College Compositions and methods for assaying platelet reactivity and treatment selection
WO2015042101A1 (en) 2013-09-17 2015-03-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Multifunctional rna nanoparticles and methods of use
US10517890B2 (en) 2014-05-06 2019-12-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Triggering RNA interference with RNA-DNA and DNA-RNA nanoparticles
US10058559B2 (en) 2014-05-15 2018-08-28 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Treatment or prevention of an intestinal disease or disorder
WO2015176010A1 (en) 2014-05-15 2015-11-19 The United States Of America, As Represented By The Secretary, Departmentof Health & Human Services Treatment or prevention of an intestinal disease or disorder
EP3798308A1 (en) 2014-12-26 2021-03-31 Nitto Denko Corporation Rna interference compositions and methods for malignant tumors
WO2017099829A1 (en) 2015-12-11 2017-06-15 The General Hospital Corporation Compositions and methods for treating drug-tolerant glioblastoma
WO2018187373A1 (en) 2017-04-03 2018-10-11 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Functionally-interdependent shape switching nucleic acid nanoparticles
US11512313B2 (en) 2017-04-03 2022-11-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Functionally-interdependent shape switching nucleic acid nanoparticles
WO2019195738A1 (en) 2018-04-06 2019-10-10 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
WO2021248052A1 (en) 2020-06-05 2021-12-09 The Broad Institute, Inc. Compositions and methods for treating neoplasia

Also Published As

Publication number Publication date
US6410224B1 (en) 2002-06-25
US5658780A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
US6410224B1 (en) Ribozyme treatment of diseases or conditions related to levels of NF-κB
US5599706A (en) Ribozymes targeted to apo(a) mRNA
US5811300A (en) TNF-α ribozymes
US6194150B1 (en) Nucleic acid based inhibition of CD40
US5731295A (en) Method of reducing stromelysin RNA via ribozymes
US6818447B1 (en) Method and reagent for the treatment of diseases or conditions related to levels of vascular endothelial growth factor receptor
US6022962A (en) Hairpin ribozymes
US5817796A (en) C-myb ribozymes having 2'-5'-linked adenylate residues
MXPA97002204A (en) RIBOZYME TREATMENT OF DISEASES OR CONDITIONS RELATED TO LEVELS OF PLASMA LIPOPROTEIN (a) [Lp(a)] BY INHIBITING APOLIPOPROTEIN (a) [APO(a)]
WO1996018736A2 (en) Method and reagent for treatment of arthritic conditions, induction of graft tolerance and reversal of immune responses
US5616488A (en) IL-5 targeted ribozymes
US5693532A (en) Respiratory syncytial virus ribozymes
US20020192685A1 (en) Method for target site selection and discovery
US6103890A (en) Enzymatic nucleic acids that cleave C-fos
US6132967A (en) Ribozyme treatment of diseases or conditions related to levels of intercellular adhesion molecule-1 (ICAM-1)
US5807743A (en) Interleukin-2 receptor gamma-chain ribozymes
US5705388A (en) CETP Ribozymes
US5714383A (en) Method and reagent for treating chronic myelogenous leukemia
US6656731B1 (en) Nucleic acid catalysts with endonuclease activity
US20030207837A1 (en) Method and reagent for the induction of graft tolerance and reversal of immune responses
AU5661700A (en) Method and reagent for treatment of animal diseases
AU6879501A (en) Methods and compositions for treatment of restenosis and cancer using ribozymes
AU3918899A (en) Methods and compositions for treatment of restenosis and cancer using ribozymes
AU5661600A (en) Method and reagent for the treatment of diseases or conditions related to levels of vascular endothelial growth factor receptor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION