US20020177904A1 - Removable stent for body lumens - Google Patents

Removable stent for body lumens Download PDF

Info

Publication number
US20020177904A1
US20020177904A1 US10/196,845 US19684502A US2002177904A1 US 20020177904 A1 US20020177904 A1 US 20020177904A1 US 19684502 A US19684502 A US 19684502A US 2002177904 A1 US2002177904 A1 US 2002177904A1
Authority
US
United States
Prior art keywords
stent
coating
filament
polymer
suture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/196,845
Inventor
Shawn Huxel
Arindam Datta
Yufu Li
Dennis Jamiolkowski
E. Skula
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/196,845 priority Critical patent/US20020177904A1/en
Publication of US20020177904A1 publication Critical patent/US20020177904A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable

Definitions

  • the field of art to which this invention relates is medical devices, in particular, removable stent devices having bioabsorbable or biodegradable polymer coatings.
  • stent medical devices or other types of endoluminal mechanical support devices, to keep a duct, vessel or other body lumen open in the human body has developed into a primary therapy for lumen stenosis or obstruction.
  • the use of stents in various surgical procedures has quickly become accepted as experience with stent devices accumulates, and the number of surgical procedures employing them increases as their advantages become more widely recognized.
  • a permanent stent is designed to be maintained in a body lumen for an indeterminate amount of time.
  • Temporary stents are designed to be maintained in a body lumen for a limited period of time in order to maintain the patency of the body lumen, for example, after trauma to a lumen caused by a surgical procedure or an injury.
  • Permanent stents are typically designed to provide long term support for damaged or traumatized wall tissues of the lumen.
  • There are numerous conventional applications for permanent stents including cardiovascular, urological, gastrointestinal, and gynecological applications.
  • Temporary stents may advantageously be eliminated from body lumens after a predetermined, clinically appropriate period of time, for example, after the traumatized tissues of the lumen have healed and a stent is no longer needed to maintain the patency of the lumen.
  • temporary stents can be used as substitutes for in-dwelling catheters for applications in the treatment of prostatic obstruction or other urethral stricture diseases.
  • Another indication for temporary stents in a body lumen is after energy ablation, such as laser or thermal ablation, or irradiation of prostatic tissue, in order to control post-operative acute urinary retention or other body fluid retention.
  • metal stents may become encrusted, encapsulated, epithelialized or ingrown with body tissue.
  • the stents are known to migrate on occasion from their initial insertion location.
  • Such stents are known to cause irritation to the surrounding tissues in a lumen.
  • metals are typically much harder and stiffer than the surrounding tissues in a lumen, this may result in an anatomical or physiological mismatch, thereby damaging tissue or eliciting unwanted biologic responses.
  • permanent metal stents are designed to be implanted for an indefinite period of time, it is sometimes necessary to remove permanent metal stents. For example, if there is a biological response requiring surgical intervention, often the stent must be removed through a secondary procedure. If the metal stent is a temporary stent, it will also have to be removed after a clinically appropriate period of time. Regardless of whether the metal stent is categorized as permanent or temporary, if the stent has been encapsulated, epithelialized, etc., the surgical removal of the stent will resultingly cause undesirable pain and discomfort to the patient and possibly additional trauma to the lumen tissue. In addition to the pain and discomfort, the patient must be subjected to an additional time consuming and complicated surgical procedure with the attendant risks of surgery, in order to remove the metal stent.
  • bioabsorbable and biodegradable materials for manufacturing temporary stents.
  • the conventional bioabsorbable or bioresorbable materials from which such stents are made are selected to absorb or degrade over time, thereby eliminating the need for subsequent surgical procedures to remove the stent from the body lumen.
  • bioabsorbable and biodegradable materials tend to have excellent biocompatibility characteristics, especially in comparison to most conventionally used biocompatible metals in certain sensitive patients.
  • stents made from bioabsorbable and biodegradable materials are made from bioabsorbable and biodegradable materials.
  • the mechanical properties can be designed to substantially eliminate or reduce the stiffness and hardness that is often associated with metal stents, which can contribute to the propensity of a stent to damage a vessel or lumen.
  • the temporary stent readily passes out of the body, or is removed as, a limp, flexible string-like member, and irritation, obstruction, pain or discomfort to the patient is either eliminated, or if present, is minimal.
  • a stent for insertion into a body lumen which is manufactured from a flexible filament member, such as a suture, and then coated with a biodegradable or bioabsorbale polymer such that the member is formed into a relatively rigid stent, and when in the body, softens back into a flexible filament member which is easily passed or removed from the body lumen after a specific therapeutic period of time.
  • an implantable stent for use in body lumens, wherein such lumens exist as part of the natural anatomy or are made surgically.
  • the stent is an elongate, hollow member having a helical or coiled structure, and in a preferred embodiment has a helical structure having a plurality of coils.
  • the structure has a longitudinal axis and a longitudinal passage.
  • the coils have a pitch.
  • the structure is made from a flexible, limp filament or fiber, such as a surgical suture, having an exterior polymeric coating.
  • the polymeric coating is a bioabsorbable or biodegradable polymer, or blend thereof.
  • the coating is solid, and of sufficient thickness to effectively cause the flexible, limp member to be maintained in a substantially rigid, fixed state as a structure.
  • the rate of degradation or absorption of the coating in vivo is sufficient to effectively soften or be removed from the outer surface of the filament within the desired therapeutic period. This effectively provides that as the coating degrades, softens or is absorbed in vivo, it loses its mechanical integrity. This allows the filament to revert to its natural, flexible limp state, causing the stent structure to effectively collapse, and the filament may be removed or eliminated from the lumen.
  • the progressively degrading and/or absorbing coating causes the stent to soften and collapse into a flexible filament that can readily pass out of the body lumen, either by manipulation or through natural expulsion with body fluids, thereby minimizing the possibility of causing obstruction, pain or discomfort.
  • Yet another aspect of the present invention is the above-described stent made from a fiber which is radio-opaque.
  • a stent of the present invention is provided.
  • the stent is an elongate, hollow member and in a preferred embodiment has a helical structure having a plurality of coils.
  • the member has a longitudinal axis.
  • the coils have a pitch.
  • the structure is made from a flexible, limp filament or a fiber, having an outer surface and an exterior polymeric coating.
  • the stent is inserted into a body lumen. The exposure to in vivo body fluids causes the exterior coating to absorb and/or degrade and soften, thereby causing the stent structure to collapse and return to a limp, flexible filament that can then be either eliminated by the passage of body fluids or manually removed.
  • FIG. 1 is a perspective view of a preferred embodiment of a stent device of the present invention mounted to the distal end of an applicator instrument.
  • FIG. 2 is a perspective view of the stent and applicator of FIG. 1, prior to loading the stent onto the applicator instrument.
  • FIG. 3 is a side view of a stent device of the present invention, having a helical configuration.
  • FIG. 4 is a cross-sectional view of the fiber used to make the stent of FIG. 3 taken along View Line 4 - 4 illustrating a circular cross-section.
  • FIG. 5 is a side view of the stent and applicator device of FIG. 1, where the device is shown in the ready position, prior to application.
  • FIG. 6 is a side view of the stent and applicator device of FIG. 5, illustrating the position of the stent relative to the applicator when the stent is partially deployed by engaging the applicator trigger.
  • FIG. 7 illustrates the relative positions of the stent to the applicator of FIG. 6 when the stent is fully deployed by fully engaging the applicator trigger.
  • FIG. 8 illustrates the stent of the present invention fully deployed in the urethra and prostate of a patient, providing for a patent lumen.
  • FIG. 9 illustrates a stent of the present invention emplaced in the urethra of a patient after the coating has degraded, been absorbed or otherwise broken down or softened; showing the stent being removed from the body as an elongated, soft, flexible filament.
  • FIG. 10 is a schematic of a mandrel used to manufacture stents in Example 3.
  • the stent 10 is seen to be a helical structure having a series of connected coils 20 .
  • the coils are made from filament 100 .
  • the term filament as used herein is defined to include not only filaments but fibers as well, and is used interchangeably with the term fiber. It is preferred that filament 100 be a continuous filament, however, it is possible to make stent 10 from two or more sections of filament which are subsequently connected or hinged together.
  • the filament 100 is seen to have inner flexible member 110 and outer coating 130 .
  • the inner flexible member 110 is seen to have outer surface 115 .
  • Outer coating 130 is seen to have inner surface 135 and exterior surface 140 .
  • inner surface 135 is in contact with, and affixed to, the outer surface 115 .
  • the stent is seen to have a longitudinal axis 70 , and internal passageway 11 .
  • the stent 10 is seen to have a first distal section 30 of coils 20 connected to a second section 50 of coils 20 , wherein the sections 30 and 50 are connected by hinged connecting fiber 60 .
  • the distal section 30 of coils adjacent to hinged connecting fiber 60 forms an anchoring section which is inserted distal to the external sphincter.
  • the proximal section 50 of the stent 10 is maintained within the prostatic urethra.
  • Proximal section 50 is seen to have coils 20 having diameter 24 , and also has passageway 51 .
  • the distal section 30 of stent 10 has coils 20 having a diameter 22 .
  • Distal section 30 also has a passageway 31 .
  • Passage ways 31 and 51 are in communication to form passageway 11 of stent 10 .
  • one preferred embodiment of the stent 10 of the present invention has a filament 100 having a circular cross-sectional configuration.
  • the filament 100 may have various configurations depending upon the application including round, square, polygonal, curved, oval, and combinations thereof and equivalents thereof.
  • the advantages of fiber of the present invention having a round cross-section include ease of the stent manufacturing process due to a possible on-line, one-step transition from the fiber to the stent in future manufacturing processes, flexibility during the stent deployment by being able to tailor the length of the stent during a surgical procedure to fit a particular patient's anatomy, and the use of commercially available filaments such as sutures.
  • the stent 10 is preferably manufactured from a flexible, polymeric filament 100 having a desired cross-sectional configuration.
  • the length and overall diameter of the stent 10 will depend upon a number of factors including the anatomy of the patient, the size of the anatomy and the type of surgical procedure which has effected the urethral lumen.
  • the overall length of a stent 10 useful in the practice of the present invention will be sufficient to effectively maintain the lumen passage open.
  • the length for urethral applications in and adult male the length will be about 10 mm to about 200 mm, more typically about 20 mm to about 100 mm, and preferably about 40 mm to about 80 mm.
  • the diameter of a stent 10 of the present invention will be sufficient to effectively maintain patency of the lumen.
  • the diameter in the prostatic urethra will typically be about 2 mm to about 25 mm, more typically about 4 mm to about 15 mm, and preferably about 6 mm to about 10 mm.
  • the diameter of the section used to anchor distal to the external sphincter will be about 2 mm to about 25 mm, more typically about 4 mm to about 15 mm, and preferably about 6 mm to about 10 mm.
  • the major cross-sectional dimension of a fiber used to manufacture a stent of the present invention will be sufficient to provide effective support and flexibility.
  • the diameter for urethral applications will be about 0.1 mm to about 4 mm, more typically about 0.5 mm to about 3 mm, and preferably about 1 mm to about 2 mm.
  • the pitch, length, diameter and fiber diameter of the stents of the present invention will be sufficient to effectively provide sufficient support in response to radial stress of the urethral vessel walls, while providing for ease of insertion and stability while inserted in the urethral lumen, as well as desired flexibility and lumen patency.
  • the pitch of the stent is defined to be the number of coils per unit length. In this patent application specification, for this example, pitch is defined as the number of coils per centimeter of stent length.
  • the pitch will be about 2.5 to about 100, more typically about 3 to about 20, and preferably about 5 to about 10.
  • the stents of the present invention may have spaces between adjacent coils.
  • the flexible members 110 coated with coatings 130 to form filaments 100 of the present invention will preferably be selected to have sufficient flexibility and softness and limpness to effectively provide for a stent that will collapse and be easily removed from a body lumen.
  • the materials useful for the flexible member include flexible, limp monofilament and braided string-like members. It is particularly preferred to use conventional nonabsorbable sutures, such as monofilament or braided polypropylene, silk, polyester, nylon and the like and equivalents thereof.
  • the flexible members may also be conventional absorbable sutures, monofilament or braided, including 95/5 lactide/glycolide, and polydioxanone, and the like.
  • the flexible member 110 may also be made from yarn type materials made from biocompatible fibers that are “spun” together to form the yarn.
  • the outer coatings useful for the stents and filaments of the present invention will be conventional biodegradable or bioabsorbable polymers, and blends thereof, including polymers made from monomers selected from the group consisting of lactide, glycolide, para-dioxanone, caprolactone, and trimethylene carbonate, caprolactone, blends thereof and copolymers thereof.
  • the effect of the degradation or absorption of the polymeric coating is to convert the filament back into a soft, flexible member after a predetermined time period, such that the stent effectively collapses, and the flexible member can then be easily removed or passed from the lumen.
  • the progressively degrading stent can readily pass through the body or be removed from the lumen without causing obstruction.
  • the types of polymeric coatings that can advantageously provide stiffness to form a filament 100 include polymers with glass transition temperatures above room temperature and preferably above 55° C., and most preferably above about 120° C. These materials may be amorphous, that is, not display crystallinity. Polymers that have glass transition temperatures that are low, especially below room temperature, will generally require some crystallinity to provide the dimensional stability and stiffness to function in the present application. These can be described as semicrystalline.
  • water soluble polymers for the coating there are two general classes of water soluble polymers: ionic and non-ionic.
  • polyacrylamides In general of use are polyacrylamides, polyacrylic acid polymers, polyethers (especially the polyethylene glycols or polyethylene oxides), vinyl polymers such as some polyvinyl alcohols and some poly(N-vinyl pyrrolidone)s.
  • Certain polysaccharide gums may also be useful; certain hydroxy celluloses, such as hydroxy methyl cellulose or certain hydroxy isopropyl cellulose are also useful.
  • Polyamide nylon
  • Polyamide may be used as a component to advantage because it can provide mechanical strength, absorbs some water, etc.
  • a possible preferred blend component is polyethylene glycol (PEG or polyethylene oxide, PEO), especially those higher molecular weight resins that are semicrystalline.
  • the melting point of PEG is about 60° C., which is high enough to meet requirements of a coating useful in the present invention.
  • the PEO may be blended with nylon.
  • biodegradable polymers made from poly glycolide/lactide copolymers, polycaprolactone, and the like may be used for the outer coating of the filament 100 .
  • polyoxaesters can be utilized which are water soluble and degrade by hydrolysis. Other suitable polymers are found in U.S. Pat. No. 5,980,551, which is incorporated by reference.
  • a stent must be designed to withstand radial stresses in order to perform its function of maintaining a passage through a lumen open.
  • the mechanical capability of the stents of the present invention to withstand radial stresses when the stent is emplaced in the body lumen is provided primarily by the biodegradable/bioabsorbable material in the outer coating.
  • the strength and stiffness and thickness of this material in the outer coating is sufficient to be effectively withstand the loads necessary to keep the stent functional.
  • the coating can be designed to fulfill the mechanical requirements of keeping the body lumen patent or open for the specific therapeutic time period.
  • the remaining filament After the coating has degraded/absorbed and effectively been removed from the stent structure by body fluids, the remaining filament returns to its soft, pliable, fibrillar state as a flexible member. The remaining soft filament is readily excreted or removed from the lumen.
  • the coated filaments of the present invention may be made by conventional processes including co-extrusion, melt coating, solution coating or powder coating followed by spreading the coating by melting, etc., and the like.
  • the inner flexible member can be a mono-filament extruded material or can be made from a multi-filament braid.
  • the outer coating can be added on top of the flexible member either by melt coating or solution coating by passing the inner core through a bath, through coating rollers, brushes, spraying and/or a die.
  • the polymers and blends that are used to form the coating can be used as a drug delivery matrix.
  • the coating material would be mixed with a therapeutic agent.
  • therapeutic agents which may be administered via the pharmaceutical compositions of the invention include, without limitation: anti-infectives such as antibiotics and anti-viral agents; analgesics and analgesic combinations; anti-inflammatory agents; hormones such as steroids; bone regenerating growth factors; and naturally derived or genetically engineered proteins, polysaccharides, glycoproteins, or lipoproteins.
  • Matrix formulations may be formulated by mixing one or more therapeutic agents with the polymer.
  • the therapeutic agent may be present as a liquid, a finely divided solid, or any other appropriate physical form.
  • the matrix will include one or more additives, such as diluents, carriers, excipients, stabilizers or the like.
  • the amount of therapeutic agent will depend on the particular drug being employed and medical condition being treated. Typically, the amount of drug represents about 0.001 percent to about 70 percent, more typically about 0.001 percent to about 50 percent, most typically about 0.001 percent to about 20 percent by weight of the matrix. The quantity and type of polymer incorporated into the drug delivery matrix will vary depending on the release profile desired and the amount of drug employed.
  • the polymer coating Upon contact with body fluids, the polymer coating undergoes gradual degradation (mainly through hydrolysis) or absorption with concomitant release of the dispersed drug for a sustained or extended period. This can result in prolonged delivery (over, say 1 to 5,000 hours, preferably 2 to 800 hours) of effective amounts (say, 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug.
  • This dosage form can be administered as is necessary depending on the subject being treated, the severity of the affliction, the judgment of the prescribing physician, and the like. Following this or similar procedures, those skilled in the art will be able to prepare a variety of formulations.
  • the stents 10 of the present invention when made from the coated filament 100 may be manufactured in the following manner using a winding process.
  • a filament 100 is wound about a mandrel by heating the filament 100 and then coiling it around the mandrel. The assembly of the mandrel and the coil are annealed under constraint and then the mandrel is removed. The pitch and diameter of the coils are selected to provide the desired size and shape of stent.
  • the filament 100 may be wound about the mandrel without heat, for example immediately upon entering a coating bath or melt bath, or the uncoated flexible member 110 can be wound about a mandrel, and then the coating can be applied in a conventional manner, and cured as necessary.
  • the stents of the present invention may be utilized in the following manner in urethral stent placement procedures as illustrated in FIGS. 1, 2, 5 , 6 , 7 and 8 .
  • a stent 10 is placed upon the distal end of an applicator instrument 200 .
  • Instrument 200 is seen to have handle 250 having grip 255 .
  • the shaft retention member 290 At the top 257 of the handle 250 is mounted the shaft retention member 290 .
  • Retention member 290 is seen to have longitudinal passageway 292 , front 295 and back 296 .
  • the mounting tube 240 is seen to have distal end 242 and proximal end 244 .
  • Mounting tube 240 is seen to have passage 248 .
  • the proximal end 244 of tube 240 is seen to be mounted in passage way 292 such that the inner passageway 248 is in communication with passageway 292 .
  • Slidably mounted in passageway 248 is the applicator tube 220 .
  • Tube 220 has distal end 222 , proximal end 224 , and passageway 226 .
  • Mounted to the proximal end 224 of tube 220 is the mounting block 300 , which is affixed to end 224 by pin 309 .
  • Mounted to the bottom of block 300 is rack gear member 330 having gear teeth 335 .
  • Contained in handle 250 is the cavity 350 for receiving pinion gear member 270 , having teeth 275 .
  • Pinion gear member 270 is pivotally mounted in cavity 350 by pivot pins 265 . Teeth 275 mesh with and are engaged by teeth 335 . Extending out from pinion gear member 270 on the opposite side of pins 265 is the actuation trigger 280 . Actuation of trigger 280 will move tube 220 proximally and distally with respect to tube 240 . Actuating the trigger 280 will allow the stent 10 to be released from the tubes 220 and 240 .
  • the stent and distal end of the instrument 200 are inserted into the urethra 410 through the meatus 400 of the patient's penis as seen in FIGS. 8 and 9.
  • the distal end of the instrument 200 and the stent 10 are manipulated through the urethra 410 such that the prostatic section of the stent is located within the prostatic urethra 411 and the distal end of the stent is distal to the external sphincter 430 , thereby providing an open passage for urine from bladder 450 through the lumen of the urethra.
  • the application instrument 200 is withdrawn from the urethra 410 by engaging trigger 260 and pulling distally on the instrument, thereby completing the procedure and providing for an implanted stent 10 which allows for patency of the urethral lumen 410 .
  • the stent 10 after having been in place for the appropriate period of time has been converted into a state wherein it is substantially a soft, flexible filament, and is readily passed from the urethra 410 out of the patient's body with the urine flow, or is manually pulled out of the lumen. It will be appreciated by those skilled in the art that placement for other types of body lumens could be done in a similar manner, with modification as required by the unique characteristics of the lumen or of the surgical emplacement procedure.
  • a polydioxanone homopolymer was added to a nitrogen purged hopper of a 3 ⁇ 4′′ vertical single screw extruder with a 24:1 L:D standard screw.
  • the temperature profile of the extruder was 250°, 260°, 270° and 275° F. from rear zone to die.
  • the screw speed was 6.5 RPM and the adapt pressure was 1345 psi.
  • a B&H 25 cross head was employed with a 20 mil diameter guider (pressure tip) and a 48 mil diameter die.
  • a spool of Vicryl brand suture, available from Ethicon, Inc., Somerville, N.J., with 18 mil diameter on a pay-off was guided through the guider inside the cross head, then coated by polydioxanone molt, chilled in a water trough, dried by a air wiper, took off and spooled sequentially.
  • the temperature of the water trough was 8° C.
  • the take-off speed was 2.1 M/min.
  • the fiber with the O.D. of 44 mil was made and stored in nitrogen environment.
  • Example 1 The coated suture of Example 1 was tied so that it created a small loop through the first hole C of the mandrel (see FIG. 10). Two metal posts ( ⁇ 2 ⁇ 15 mm length) are inserted into the holes A and B.
  • a post was located at hole A and B. Clamp the C-side end of the mandrel to a winding motor. The 5-foot long fiber was cut from the spool and passed through the loop. The two free ends were held together and the folded fiber was stretched loosely so that the loop was positioned to be in the approximate center of the fiber. The fiber was loosely hold by two figures as a guide to make sure that the coils are packed closely together. A winder was run between 20-30 RPM for the length of the Prostatic Section.
  • the coiling start from point C. Once the first post (B) was reached, the fiber was then bent over the post at an angle toward the distal section. Winding 180° more to form the connector, the fiber reached toward the second post (A), and then past it. The fiber is pulled back to a perpendicular position to the mandrel and the distal loop is then coiled. A wire tie was used to secure the fiber onto the mandrel. The assembly was stored under vacuum for 48 hours to allow it to dry prior to annealing.
  • the posts Prior to annealing, the posts were removed from the mandrel. The entire assembly was hanged in annealing over and annealed at 80° C. for 10 hours. The stent was removed from the mandrel and stored in nitrogen box.
  • a male patient is appropriately anesthetized and undergoes a prostrate thermal ablation procedure using conventional laser treatment devices.
  • a stent 10 of the present invention is inserted into the patient's urethra and bladder in the following manner using an applicator 200 .
  • the surgeon trims the stent to size.
  • the stent is placed at the end of the applicator.
  • a conventional scope is inserted into the lumen of the applicator.
  • the stent and applicator are lubricated with a water soluble medical grade lubricant.
  • a fluid reservoir is attached to the applier as in any standard cystoscopy procedure.
  • the stent is placed in the prostatic urethra under direct visualization using a scope.
  • the applier is removed, leaving behind the stent in the prostatic urethra.
  • the outer coating absorbs and or degrades, thereby converting the stent into a soft, flexible filamentary structure that is removed from the urinary tract by grasping the end of the filament and pulling it from the lumen.
  • the stents of the present invention provide many advantages over the stents of the prior art.
  • the advantages include: rigidity (lumen patency) for a prescribed time; a degradation/absorption softening mechanism, whereby the stent softens into a readily passable/removable filament; biocompatibility; means to prevent migration; means to non-invasively monitor the stent and its position by X-ray. etc.

Abstract

A removable stent for implantation into a lumen in a human body. The stent is made from a soft, flexible fiber having an outer surface. An outer bioabsorbable/degradable coating is applied to the outer surface of the filament causing it to become rigid. The coating softens in vivo through absorption and/or degradation such that the stent is readily passed or removed from the lumen as a softened filament after a pre-determined period of time through normal flow of body fluids passing through the lumen or by manual removal.

Description

    FIELD OF THE INVENTION
  • The field of art to which this invention relates is medical devices, in particular, removable stent devices having bioabsorbable or biodegradable polymer coatings. [0001]
  • BACKGROUND OF THE INVENTION
  • The use of stent medical devices, or other types of endoluminal mechanical support devices, to keep a duct, vessel or other body lumen open in the human body has developed into a primary therapy for lumen stenosis or obstruction. The use of stents in various surgical procedures has quickly become accepted as experience with stent devices accumulates, and the number of surgical procedures employing them increases as their advantages become more widely recognized. For example, it is known to use stents in body lumens in order to maintain open passageways such as the prostatic urethra, the esophagus, the biliary tract, intestines, and various coronary arteries and veins, as well as more remote cardiovascular vessels such as the femoral artery, etc. There are two types of stents that are presently utilized: permanent stents and temporary stents. A permanent stent is designed to be maintained in a body lumen for an indeterminate amount of time. Temporary stents are designed to be maintained in a body lumen for a limited period of time in order to maintain the patency of the body lumen, for example, after trauma to a lumen caused by a surgical procedure or an injury. Permanent stents are typically designed to provide long term support for damaged or traumatized wall tissues of the lumen. There are numerous conventional applications for permanent stents including cardiovascular, urological, gastrointestinal, and gynecological applications. [0002]
  • It is known that permanent stents, over time, become encapsulated and covered with endothelium tissues, for example, in cardiovascular applications. Similarly, permanent stents are known to become covered by epithelium, for example, in urethral applications. Temporary stents, on the other hand are designed to maintain the passageway of a lumen open for a specific, limited period of time, and preferably do not become incorporated into the walls of the lumen by tissue ingrowth or encapsulation. Temporary stents may advantageously be eliminated from body lumens after a predetermined, clinically appropriate period of time, for example, after the traumatized tissues of the lumen have healed and a stent is no longer needed to maintain the patency of the lumen. For example, temporary stents can be used as substitutes for in-dwelling catheters for applications in the treatment of prostatic obstruction or other urethral stricture diseases. Another indication for temporary stents in a body lumen is after energy ablation, such as laser or thermal ablation, or irradiation of prostatic tissue, in order to control post-operative acute urinary retention or other body fluid retention. [0003]
  • It is known in the art to make both permanent and temporary stents from various conventional, biocompatible metals. However, there are several disadvantages that may be associated with the use of metal stents. For example, it is known that the metal stents may become encrusted, encapsulated, epithelialized or ingrown with body tissue. The stents are known to migrate on occasion from their initial insertion location. Such stents are known to cause irritation to the surrounding tissues in a lumen. Also, since metals are typically much harder and stiffer than the surrounding tissues in a lumen, this may result in an anatomical or physiological mismatch, thereby damaging tissue or eliciting unwanted biologic responses. Although permanent metal stents are designed to be implanted for an indefinite period of time, it is sometimes necessary to remove permanent metal stents. For example, if there is a biological response requiring surgical intervention, often the stent must be removed through a secondary procedure. If the metal stent is a temporary stent, it will also have to be removed after a clinically appropriate period of time. Regardless of whether the metal stent is categorized as permanent or temporary, if the stent has been encapsulated, epithelialized, etc., the surgical removal of the stent will resultingly cause undesirable pain and discomfort to the patient and possibly additional trauma to the lumen tissue. In addition to the pain and discomfort, the patient must be subjected to an additional time consuming and complicated surgical procedure with the attendant risks of surgery, in order to remove the metal stent. [0004]
  • Similar complications and problems, as in the case of metal stents, may well result when using permanent stents made from non-absorbable biocompatible polymer or polymer-composites although these materials may offer certain benefits such as reduction in stiffness. [0005]
  • It is known to use bioabsorbable and biodegradable materials for manufacturing temporary stents. The conventional bioabsorbable or bioresorbable materials from which such stents are made are selected to absorb or degrade over time, thereby eliminating the need for subsequent surgical procedures to remove the stent from the body lumen. In addition to the advantages attendant with not having to surgically remove such stents, it is known that bioabsorbable and biodegradable materials tend to have excellent biocompatibility characteristics, especially in comparison to most conventionally used biocompatible metals in certain sensitive patients. Another advantage of stents made from bioabsorbable and biodegradable materials is that the mechanical properties can be designed to substantially eliminate or reduce the stiffness and hardness that is often associated with metal stents, which can contribute to the propensity of a stent to damage a vessel or lumen. [0006]
  • However, there are disadvantages and limitations known to be associated with the use of bioabsorbable or biodegradable stents. The limitations arise from the characteristics of the materials from which such stents are made. One of the problems associated with the current stents is that the materials break down too quickly. This improper breakdown or degradation of a stent into large, rigid fragments in the interior of a lumen, such as the urethra, may cause obstruction to normal flow, such as voiding, thereby interfering with the primary purpose of the stent in providing lumen patency. Alternatively, they take a long time to breakdown and stay in the target lumen for a considerable period of time after their therapeutic use has been accomplished. There is thus a long-term risk associated with these materials to form stones when uretheral stents made from longer degrading biodegradable polymers. [0007]
  • Accordingly, there is a need in this art for novel, temporary stents, wherein the stents remain functional in a body lumen for the duration of a prescribed, clinically appropriate period of time to accomplish the appropriate therapeutical purpose, and, then soften and are removable as an elongated string-like member without producing fragments, which may cause irritation, obstruction, pain or discomfort to the patient, and without the need for a surgical procedure. [0008]
  • In a preferred embodiment of the present invention, the temporary stent readily passes out of the body, or is removed as, a limp, flexible string-like member, and irritation, obstruction, pain or discomfort to the patient is either eliminated, or if present, is minimal. [0009]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a stent for insertion into a body lumen which is manufactured from a flexible filament member, such as a suture, and then coated with a biodegradable or bioabsorbale polymer such that the member is formed into a relatively rigid stent, and when in the body, softens back into a flexible filament member which is easily passed or removed from the body lumen after a specific therapeutic period of time. [0010]
  • Therefore, an implantable stent is disclosed for use in body lumens, wherein such lumens exist as part of the natural anatomy or are made surgically. The stent is an elongate, hollow member having a helical or coiled structure, and in a preferred embodiment has a helical structure having a plurality of coils. The structure has a longitudinal axis and a longitudinal passage. The coils have a pitch. The structure is made from a flexible, limp filament or fiber, such as a surgical suture, having an exterior polymeric coating. The polymeric coating is a bioabsorbable or biodegradable polymer, or blend thereof. At body temperature, the coating is solid, and of sufficient thickness to effectively cause the flexible, limp member to be maintained in a substantially rigid, fixed state as a structure. The rate of degradation or absorption of the coating in vivo is sufficient to effectively soften or be removed from the outer surface of the filament within the desired therapeutic period. This effectively provides that as the coating degrades, softens or is absorbed in vivo, it loses its mechanical integrity. This allows the filament to revert to its natural, flexible limp state, causing the stent structure to effectively collapse, and the filament may be removed or eliminated from the lumen. [0011]
  • Upon in vivo exposure to body fluids, the progressively degrading and/or absorbing coating causes the stent to soften and collapse into a flexible filament that can readily pass out of the body lumen, either by manipulation or through natural expulsion with body fluids, thereby minimizing the possibility of causing obstruction, pain or discomfort. [0012]
  • Yet another aspect of the present invention is the above-described stent made from a fiber which is radio-opaque. [0013]
  • Yet another aspect of the present invention is a method of using the stents of the present invention in a surgical procedure to maintain the patency of a body lumen. A stent of the present invention is provided. The stent is an elongate, hollow member and in a preferred embodiment has a helical structure having a plurality of coils. The member has a longitudinal axis. The coils have a pitch. The structure is made from a flexible, limp filament or a fiber, having an outer surface and an exterior polymeric coating. The stent is inserted into a body lumen. The exposure to in vivo body fluids causes the exterior coating to absorb and/or degrade and soften, thereby causing the stent structure to collapse and return to a limp, flexible filament that can then be either eliminated by the passage of body fluids or manually removed. [0014]
  • These and other aspects of the present invention will become more apparent from the following description and examples, and accompanying drawings.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a preferred embodiment of a stent device of the present invention mounted to the distal end of an applicator instrument. [0016]
  • FIG. 2 is a perspective view of the stent and applicator of FIG. 1, prior to loading the stent onto the applicator instrument. [0017]
  • FIG. 3 is a side view of a stent device of the present invention, having a helical configuration. [0018]
  • FIG. 4 is a cross-sectional view of the fiber used to make the stent of FIG. 3 taken along View Line [0019] 4-4 illustrating a circular cross-section.
  • FIG. 5 is a side view of the stent and applicator device of FIG. 1, where the device is shown in the ready position, prior to application. [0020]
  • FIG. 6 is a side view of the stent and applicator device of FIG. 5, illustrating the position of the stent relative to the applicator when the stent is partially deployed by engaging the applicator trigger. [0021]
  • FIG. 7 illustrates the relative positions of the stent to the applicator of FIG. 6 when the stent is fully deployed by fully engaging the applicator trigger. [0022]
  • FIG. 8 illustrates the stent of the present invention fully deployed in the urethra and prostate of a patient, providing for a patent lumen. [0023]
  • FIG. 9 illustrates a stent of the present invention emplaced in the urethra of a patient after the coating has degraded, been absorbed or otherwise broken down or softened; showing the stent being removed from the body as an elongated, soft, flexible filament. [0024]
  • FIG. 10 is a schematic of a mandrel used to manufacture stents in Example 3.[0025]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. [0026] 1-9, a preferred embodiment of a stent of the present invention is illustrated. As seen in FIG. 3, the stent 10 is seen to be a helical structure having a series of connected coils 20. The coils are made from filament 100. The term filament as used herein is defined to include not only filaments but fibers as well, and is used interchangeably with the term fiber. It is preferred that filament 100 be a continuous filament, however, it is possible to make stent 10 from two or more sections of filament which are subsequently connected or hinged together. As seen in FIG. 4, the filament 100 is seen to have inner flexible member 110 and outer coating 130. The inner flexible member 110 is seen to have outer surface 115. Covering the outer surface 115 of flexible member 110 is the outer coating 130. Outer coating 130 is seen to have inner surface 135 and exterior surface 140. Preferably, inner surface 135 is in contact with, and affixed to, the outer surface 115. The stent is seen to have a longitudinal axis 70, and internal passageway 11. The stent 10 is seen to have a first distal section 30 of coils 20 connected to a second section 50 of coils 20, wherein the sections 30 and 50 are connected by hinged connecting fiber 60. The distal section 30 of coils adjacent to hinged connecting fiber 60 forms an anchoring section which is inserted distal to the external sphincter. The proximal section 50 of the stent 10 is maintained within the prostatic urethra. Proximal section 50 is seen to have coils 20 having diameter 24, and also has passageway 51. The distal section 30 of stent 10 has coils 20 having a diameter 22. Distal section 30 also has a passageway 31. Passage ways 31 and 51 are in communication to form passageway 11 of stent 10. As seen in FIG. 4, one preferred embodiment of the stent 10 of the present invention has a filament 100 having a circular cross-sectional configuration. The filament 100 may have various configurations depending upon the application including round, square, polygonal, curved, oval, and combinations thereof and equivalents thereof. Those skilled in the art will appreciate that certain cross-sectional configurations will provide different advantages in the stent. For example, the advantages of fiber of the present invention having a round cross-section include ease of the stent manufacturing process due to a possible on-line, one-step transition from the fiber to the stent in future manufacturing processes, flexibility during the stent deployment by being able to tailor the length of the stent during a surgical procedure to fit a particular patient's anatomy, and the use of commercially available filaments such as sutures.
  • The [0027] stent 10 is preferably manufactured from a flexible, polymeric filament 100 having a desired cross-sectional configuration. The length and overall diameter of the stent 10 will depend upon a number of factors including the anatomy of the patient, the size of the anatomy and the type of surgical procedure which has effected the urethral lumen. For example, the overall length of a stent 10 useful in the practice of the present invention will be sufficient to effectively maintain the lumen passage open. Typically the length for urethral applications in and adult male, the length will be about 10 mm to about 200 mm, more typically about 20 mm to about 100 mm, and preferably about 40 mm to about 80 mm. The diameter of a stent 10 of the present invention will be sufficient to effectively maintain patency of the lumen. For prostatic urethral applications, where the stent has two sections having different diameters, typically the diameter in the prostatic urethra will typically be about 2 mm to about 25 mm, more typically about 4 mm to about 15 mm, and preferably about 6 mm to about 10 mm. The diameter of the section used to anchor distal to the external sphincter will be about 2 mm to about 25 mm, more typically about 4 mm to about 15 mm, and preferably about 6 mm to about 10 mm. The major cross-sectional dimension of a fiber used to manufacture a stent of the present invention will be sufficient to provide effective support and flexibility. Typically, when utilizing a circular cross-section, the diameter for urethral applications will be about 0.1 mm to about 4 mm, more typically about 0.5 mm to about 3 mm, and preferably about 1 mm to about 2 mm. The pitch, length, diameter and fiber diameter of the stents of the present invention will be sufficient to effectively provide sufficient support in response to radial stress of the urethral vessel walls, while providing for ease of insertion and stability while inserted in the urethral lumen, as well as desired flexibility and lumen patency. The pitch of the stent is defined to be the number of coils per unit length. In this patent application specification, for this example, pitch is defined as the number of coils per centimeter of stent length. Typically, for urethral applications, the pitch will be about 2.5 to about 100, more typically about 3 to about 20, and preferably about 5 to about 10. Although it is preferred for urethral applications that there be no space between adjacent coils, the stents of the present invention may have spaces between adjacent coils.
  • The [0028] flexible members 110 coated with coatings 130 to form filaments 100 of the present invention will preferably be selected to have sufficient flexibility and softness and limpness to effectively provide for a stent that will collapse and be easily removed from a body lumen. The materials useful for the flexible member include flexible, limp monofilament and braided string-like members. It is particularly preferred to use conventional nonabsorbable sutures, such as monofilament or braided polypropylene, silk, polyester, nylon and the like and equivalents thereof. The flexible members may also be conventional absorbable sutures, monofilament or braided, including 95/5 lactide/glycolide, and polydioxanone, and the like. The flexible member 110 may also be made from yarn type materials made from biocompatible fibers that are “spun” together to form the yarn.
  • The outer coatings useful for the stents and filaments of the present invention will be conventional biodegradable or bioabsorbable polymers, and blends thereof, including polymers made from monomers selected from the group consisting of lactide, glycolide, para-dioxanone, caprolactone, and trimethylene carbonate, caprolactone, blends thereof and copolymers thereof. The effect of the degradation or absorption of the polymeric coating is to convert the filament back into a soft, flexible member after a predetermined time period, such that the stent effectively collapses, and the flexible member can then be easily removed or passed from the lumen. In a flow environment, the progressively degrading stent can readily pass through the body or be removed from the lumen without causing obstruction. The types of polymeric coatings that can advantageously provide stiffness to form a [0029] filament 100 include polymers with glass transition temperatures above room temperature and preferably above 55° C., and most preferably above about 120° C. These materials may be amorphous, that is, not display crystallinity. Polymers that have glass transition temperatures that are low, especially below room temperature, will generally require some crystallinity to provide the dimensional stability and stiffness to function in the present application. These can be described as semicrystalline. Regarding water soluble polymers for the coating, there are two general classes of water soluble polymers: ionic and non-ionic. In general of use are polyacrylamides, polyacrylic acid polymers, polyethers (especially the polyethylene glycols or polyethylene oxides), vinyl polymers such as some polyvinyl alcohols and some poly(N-vinyl pyrrolidone)s. Certain polysaccharide gums may also be useful; certain hydroxy celluloses, such as hydroxy methyl cellulose or certain hydroxy isopropyl cellulose are also useful.
  • One can control the dissolution process by material selection. Altering molecular weight of the water soluble resin also provides a means of control. [0030]
  • One can control the dissolution process by material selection. Altering molecular weight of the water soluble resin also provides a means of control. [0031]
  • Utilization of polymer blending is particularly advantageous to achieve the necessary rates of dissolution. Polyamide (nylon) may be used as a component to advantage because it can provide mechanical strength, absorbs some water, etc. [0032]
  • A possible preferred blend component is polyethylene glycol (PEG or polyethylene oxide, PEO), especially those higher molecular weight resins that are semicrystalline. The melting point of PEG is about 60° C., which is high enough to meet requirements of a coating useful in the present invention. Optionally, the PEO may be blended with nylon. In addition, biodegradable polymers made from poly glycolide/lactide copolymers, polycaprolactone, and the like may be used for the outer coating of the [0033] filament 100. In addition, polyoxaesters can be utilized which are water soluble and degrade by hydrolysis. Other suitable polymers are found in U.S. Pat. No. 5,980,551, which is incorporated by reference.
  • A stent must be designed to withstand radial stresses in order to perform its function of maintaining a passage through a lumen open. The mechanical capability of the stents of the present invention to withstand radial stresses when the stent is emplaced in the body lumen is provided primarily by the biodegradable/bioabsorbable material in the outer coating. The strength and stiffness and thickness of this material in the outer coating is sufficient to be effectively withstand the loads necessary to keep the stent functional. As the coating degrades and breaks down, it will have a sufficient thickness of properly selected biodegradable material to effectively be able to withstand the load necessary for the time period required to keep the lumen patent. In essence then, the coating can be designed to fulfill the mechanical requirements of keeping the body lumen patent or open for the specific therapeutic time period. [0034]
  • After the coating has degraded/absorbed and effectively been removed from the stent structure by body fluids, the remaining filament returns to its soft, pliable, fibrillar state as a flexible member. The remaining soft filament is readily excreted or removed from the lumen. [0035]
  • The coated filaments of the present invention may be made by conventional processes including co-extrusion, melt coating, solution coating or powder coating followed by spreading the coating by melting, etc., and the like. For example, when using a coating process, the inner flexible member can be a mono-filament extruded material or can be made from a multi-filament braid. The outer coating can be added on top of the flexible member either by melt coating or solution coating by passing the inner core through a bath, through coating rollers, brushes, spraying and/or a die. [0036]
  • In another embodiment of the present invention, the polymers and blends that are used to form the coating can be used as a drug delivery matrix. To form this matrix, the coating material would be mixed with a therapeutic agent. The variety of different therapeutic agents that can be used in conjunction with the polymers of the present invention is vast. In general, therapeutic agents which may be administered via the pharmaceutical compositions of the invention include, without limitation: anti-infectives such as antibiotics and anti-viral agents; analgesics and analgesic combinations; anti-inflammatory agents; hormones such as steroids; bone regenerating growth factors; and naturally derived or genetically engineered proteins, polysaccharides, glycoproteins, or lipoproteins. [0037]
  • Matrix formulations may be formulated by mixing one or more therapeutic agents with the polymer. The therapeutic agent, may be present as a liquid, a finely divided solid, or any other appropriate physical form. Typically, but optionally, the matrix will include one or more additives, such as diluents, carriers, excipients, stabilizers or the like. [0038]
  • The amount of therapeutic agent will depend on the particular drug being employed and medical condition being treated. Typically, the amount of drug represents about 0.001 percent to about 70 percent, more typically about 0.001 percent to about 50 percent, most typically about 0.001 percent to about 20 percent by weight of the matrix. The quantity and type of polymer incorporated into the drug delivery matrix will vary depending on the release profile desired and the amount of drug employed. [0039]
  • Upon contact with body fluids, the polymer coating undergoes gradual degradation (mainly through hydrolysis) or absorption with concomitant release of the dispersed drug for a sustained or extended period. This can result in prolonged delivery (over, say 1 to 5,000 hours, preferably 2 to 800 hours) of effective amounts (say, 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug. This dosage form can be administered as is necessary depending on the subject being treated, the severity of the affliction, the judgment of the prescribing physician, and the like. Following this or similar procedures, those skilled in the art will be able to prepare a variety of formulations. [0040]
  • The [0041] stents 10 of the present invention when made from the coated filament 100 may be manufactured in the following manner using a winding process. A filament 100 is wound about a mandrel by heating the filament 100 and then coiling it around the mandrel. The assembly of the mandrel and the coil are annealed under constraint and then the mandrel is removed. The pitch and diameter of the coils are selected to provide the desired size and shape of stent. If desired, the filament 100 may be wound about the mandrel without heat, for example immediately upon entering a coating bath or melt bath, or the uncoated flexible member 110 can be wound about a mandrel, and then the coating can be applied in a conventional manner, and cured as necessary.
  • The stents of the present invention may be utilized in the following manner in urethral stent placement procedures as illustrated in FIGS. 1, 2, [0042] 5, 6, 7 and 8. Initially a stent 10 is placed upon the distal end of an applicator instrument 200. Instrument 200 is seen to have handle 250 having grip 255. At the top 257 of the handle 250 is mounted the shaft retention member 290. Retention member 290 is seen to have longitudinal passageway 292, front 295 and back 296. The mounting tube 240 is seen to have distal end 242 and proximal end 244. Mounting tube 240 is seen to have passage 248. The proximal end 244 of tube 240 is seen to be mounted in passage way 292 such that the inner passageway 248 is in communication with passageway 292. Slidably mounted in passageway 248 is the applicator tube 220. Tube 220 has distal end 222, proximal end 224, and passageway 226. Mounted to the proximal end 224 of tube 220 is the mounting block 300, which is affixed to end 224 by pin 309. Mounted to the bottom of block 300 is rack gear member 330 having gear teeth 335. Contained in handle 250 is the cavity 350 for receiving pinion gear member 270, having teeth 275. Pinion gear member 270 is pivotally mounted in cavity 350 by pivot pins 265. Teeth 275 mesh with and are engaged by teeth 335. Extending out from pinion gear member 270 on the opposite side of pins 265 is the actuation trigger 280. Actuation of trigger 280 will move tube 220 proximally and distally with respect to tube 240. Actuating the trigger 280 will allow the stent 10 to be released from the tubes 220 and 240.
  • The stent and distal end of the [0043] instrument 200 are inserted into the urethra 410 through the meatus 400 of the patient's penis as seen in FIGS. 8 and 9. The distal end of the instrument 200 and the stent 10 are manipulated through the urethra 410 such that the prostatic section of the stent is located within the prostatic urethra 411 and the distal end of the stent is distal to the external sphincter 430, thereby providing an open passage for urine from bladder 450 through the lumen of the urethra. Then, the application instrument 200 is withdrawn from the urethra 410 by engaging trigger 260 and pulling distally on the instrument, thereby completing the procedure and providing for an implanted stent 10 which allows for patency of the urethral lumen 410. As seen in FIG. 9, the stent 10 after having been in place for the appropriate period of time has been converted into a state wherein it is substantially a soft, flexible filament, and is readily passed from the urethra 410 out of the patient's body with the urine flow, or is manually pulled out of the lumen. It will be appreciated by those skilled in the art that placement for other types of body lumens could be done in a similar manner, with modification as required by the unique characteristics of the lumen or of the surgical emplacement procedure.
  • The following examples are illustrative of the principles and practice of the present invention, although not limited thereto. [0044]
  • EXAMPLE 1
  • Manufacture of Filament Having Absorbable Coating by Extrusion Coating Process. [0045]
  • A polydioxanone homopolymer was added to a nitrogen purged hopper of a ¾″ vertical single screw extruder with a 24:1 L:D standard screw. The temperature profile of the extruder was 250°, 260°, 270° and 275° F. from rear zone to die. The screw speed was 6.5 RPM and the adapt pressure was 1345 psi. A B&H [0046] 25 cross head was employed with a 20 mil diameter guider (pressure tip) and a 48 mil diameter die. A spool of Vicryl brand suture, available from Ethicon, Inc., Somerville, N.J., with 18 mil diameter on a pay-off was guided through the guider inside the cross head, then coated by polydioxanone molt, chilled in a water trough, dried by a air wiper, took off and spooled sequentially. The temperature of the water trough was 8° C. The take-off speed was 2.1 M/min. The fiber with the O.D. of 44 mil was made and stored in nitrogen environment.
  • EXAMPLE 2
  • Manufacture of Stent Using the Coated Filament [0047]
  • The coated suture of Example 1 was tied so that it created a small loop through the first hole C of the mandrel (see FIG. 10). Two metal posts (φ2×15 mm length) are inserted into the holes A and B. [0048]
  • A post was located at hole A and B. Clamp the C-side end of the mandrel to a winding motor. The 5-foot long fiber was cut from the spool and passed through the loop. The two free ends were held together and the folded fiber was stretched loosely so that the loop was positioned to be in the approximate center of the fiber. The fiber was loosely hold by two figures as a guide to make sure that the coils are packed closely together. A winder was run between 20-30 RPM for the length of the Prostatic Section. [0049]
  • The coiling start from point C. Once the first post (B) was reached, the fiber was then bent over the post at an angle toward the distal section. Winding 180° more to form the connector, the fiber reached toward the second post (A), and then past it. The fiber is pulled back to a perpendicular position to the mandrel and the distal loop is then coiled. A wire tie was used to secure the fiber onto the mandrel. The assembly was stored under vacuum for 48 hours to allow it to dry prior to annealing. [0050]
  • Prior to annealing, the posts were removed from the mandrel. The entire assembly was hanged in annealing over and annealed at 80° C. for 10 hours. The stent was removed from the mandrel and stored in nitrogen box. [0051]
  • EXAMPLE 3
  • A male patient is appropriately anesthetized and undergoes a prostrate thermal ablation procedure using conventional laser treatment devices. After successful completion of the surgical procedure, a [0052] stent 10 of the present invention is inserted into the patient's urethra and bladder in the following manner using an applicator 200. The surgeon trims the stent to size. The stent is placed at the end of the applicator. A conventional scope is inserted into the lumen of the applicator. The stent and applicator are lubricated with a water soluble medical grade lubricant. A fluid reservoir is attached to the applier as in any standard cystoscopy procedure. The stent is placed in the prostatic urethra under direct visualization using a scope. Once positioned correctly, the applier is removed, leaving behind the stent in the prostatic urethra. In approximately 28 days after implantation, the outer coating absorbs and or degrades, thereby converting the stent into a soft, flexible filamentary structure that is removed from the urinary tract by grasping the end of the filament and pulling it from the lumen.
  • The stents of the present invention provide many advantages over the stents of the prior art. The advantages include: rigidity (lumen patency) for a prescribed time; a degradation/absorption softening mechanism, whereby the stent softens into a readily passable/removable filament; biocompatibility; means to prevent migration; means to non-invasively monitor the stent and its position by X-ray. etc. [0053]
  • Although this invention has been shown and described with respect to detailed embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the claimed invention. [0054]

Claims (27)

We claim:
1. A stent, comprising:
a helical structure having a plurality of coils, said structure having a longitudinal axis and said coils having a pitch, said structure having an internal longitudinal passage wherein said structure is made from a filament having a cross-section and an outer surface, said filament comprising:
a soft flexible elongated member having an outer surface; and
a bioabsorbable or biodegradable polymeric outer coating on the outer surface of the member;
wherein, the polymeric coating has sufficient mechanical integrity to effectively maintain the flexible member in a helical configuration, until the coating has sufficiently been degraded or absorbed in vivo to effectively convert the helical structure back into a soft, elongated member.
2. The stent of claim 1 wherein the coating comprises a melt polymer.
3. The stent of claim 1, wherein the coating comprises a solution polymer.
4. The stent of claim 1 wherein the filament comprises a surgical suture.
5. The stent of claim 4, wherein the suture comprises a monofilament.
6. The stent of claim 4, wherein the suture comprises a multifilament.
7. The stent of claim 4, wherein the suture comprises a non-absorbable suture.
8. The stent of claim 4 wherein the suture comprises an absorbable suture.
9. The stent of claim 1, wherein the coating comprises a polymer made from monomers selected from the group consisting of lactide, glycolide, para-dioxanone, caprolactone, and trimethylene carbonate, caprolactone, blends thereof and copolymers thereof
10. The stent of claim 1, wherein the polymer of the coating has a glass transition temperature above 55 C.
11. The stent of claim 1 wherein the polymer of the coating has a glass transition temperature above 120 C.
12. The stent of claim 1, wherein the polymeric coating comprise a polymer selected from the group consisting of polyacrylamides, polyethylene glycols, polyethylene oxide, vinyl alcohols, and poly(N-vinyl pyrrolidones.
13. The stent of claim 1, wherein the polymeric coating additionally comprises polyamide.
14. A biodegradable filament, the filament comprising:
an elongated, flexible member having a cross-section, and an outer surface; and,
a polymeric coating on said outer surface, said coating comprising a biodegradable or bioabsorbable polymer,
wherein, the polymeric coating has sufficient mechanical integrity to effectively maintain the flexible member in a substantially fixed configuration, until the coating has sufficiently been degraded or absorbed in vivo to effectively convert the structure back into a soft, elongated member.
15. The stent of claim 9 wherein the coating comprises a melt polymer.
16. The stent of claim 9, wherein the coating comprises a solution polymer.
17. The stent of claim 9 wherein the filament comprises a surgical suture.
18. The stent of claim 12, wherein the suture comprises a monofilament.
19. The stent of claim 12, wherein the suture comprises a multifilament.
20. The stent of claim 12, wherein the suture comprises a non-absorbable suture.
21. The stent of claim 12 wherein the suture comprises an absorbable suture.
22. The stent of claim 1, wherein the coating comprises a polymer made from monomers selected from the group consisting of lactide, glycolide, para-dioxanone, caprolactone, and trimethylene carbonate, caprolactone, blends thereof and copolymers thereof
23. The stent of claim 1, wherein the polymer of the coating has a glass transition temperature above 55 C.
24. The stent of claim 1 wherein the polymer of the coating has a glass transition temperature above 120 C.
25. The stent of claim 1, wherein the polymeric coating comprise a polymer selected from the group consisting of polyacrylamides, polyethylene glycols, polyethylene oxide, vinyl alochols, and poly(N-vinyl pyrrolidones.
26. The stent of claim 1, wherein the polymeric coating additionally comprises polyamide.
27. A method of maintaining a passageway of a body lumen substantially open, comprising the steps of:
providing a stent, said stent comprising:
a helical structure having a plurality of coils, said structure having a longitudinal axis and a longitudinal passage, and said coils having a pitch, wherein said structure is made from a fiber, said fiber having a cross-section and said filament comprising:
an elongated flexible, filament member, having an external surface and a cross-section; and,
a, polymeric outer coating on the surface of the member, wherein, the polymeric coating has sufficient mechanical integrity to effectively maintain the flexible member in a helical configuration; and,
implanting said stent in a body lumen and maintaining the stent in the body lumen for a sufficient period of time to effectively maintain the passageway of the lumen substantially open for a desired period of time until the exterior coating softens, thereby converting the stent structure into a soft, flexible filamentary structure.
US10/196,845 1999-12-22 2002-07-16 Removable stent for body lumens Abandoned US20020177904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/196,845 US20020177904A1 (en) 1999-12-22 2002-07-16 Removable stent for body lumens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/470,620 US6494908B1 (en) 1999-12-22 1999-12-22 Removable stent for body lumens
US10/196,845 US20020177904A1 (en) 1999-12-22 2002-07-16 Removable stent for body lumens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/470,620 Division US6494908B1 (en) 1999-12-22 1999-12-22 Removable stent for body lumens

Publications (1)

Publication Number Publication Date
US20020177904A1 true US20020177904A1 (en) 2002-11-28

Family

ID=23868333

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/470,620 Expired - Lifetime US6494908B1 (en) 1999-12-22 1999-12-22 Removable stent for body lumens
US10/196,845 Abandoned US20020177904A1 (en) 1999-12-22 2002-07-16 Removable stent for body lumens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/470,620 Expired - Lifetime US6494908B1 (en) 1999-12-22 1999-12-22 Removable stent for body lumens

Country Status (4)

Country Link
US (2) US6494908B1 (en)
EP (1) EP1112724B1 (en)
JP (1) JP4790116B2 (en)
DE (1) DE60009020T2 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002399A1 (en) * 1999-12-22 2002-01-03 Huxel Shawn Thayer Removable stent for body lumens
US6733536B1 (en) * 2002-10-22 2004-05-11 Scimed Life Systems Male urethral stent device
US20050137716A1 (en) * 2003-12-17 2005-06-23 Yosef Gross Implant and delivery tool therefor
WO2006044396A2 (en) 2004-10-13 2006-04-27 Scimed Life Systems, Inc. Composite stent with inner and outer stent elements and method of using the same
US20080262609A1 (en) * 2006-12-05 2008-10-23 Valtech Cardio, Ltd. Segmented ring placement
US7651529B2 (en) 2003-05-09 2010-01-26 Boston Scientific Scimed, Inc. Stricture retractor
US7691078B2 (en) 2001-05-22 2010-04-06 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
US20100130815A1 (en) * 2007-05-18 2010-05-27 Prostaplant Ltd. Intraurethral and extraurethral apparatus
US20100161043A1 (en) * 2008-12-22 2010-06-24 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US20100280604A1 (en) * 2009-05-04 2010-11-04 Valtech Cardio, Ltd. Over-wire rotation tool
US8092415B2 (en) 2007-11-01 2012-01-10 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US8206371B2 (en) 2003-05-27 2012-06-26 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
WO2013006298A3 (en) * 2011-07-07 2013-03-28 The Regents Of The University Of California A bioactive spiral coil coating
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US8500939B2 (en) 2007-10-17 2013-08-06 Bard Access Systems, Inc. Manufacture of split tip catheters
US8690939B2 (en) 2009-10-29 2014-04-08 Valtech Cardio, Ltd. Method for guide-wire based advancement of a rotation assembly
US8696614B2 (en) 2007-10-26 2014-04-15 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8734467B2 (en) 2009-12-02 2014-05-27 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8808227B2 (en) 2003-02-21 2014-08-19 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
US8961596B2 (en) 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US8992454B2 (en) * 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US9108017B2 (en) 2011-03-22 2015-08-18 Applied Medical Resources Corporation Method of making tubing have drainage holes
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9241702B2 (en) 2010-01-22 2016-01-26 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US9351830B2 (en) 2006-12-05 2016-05-31 Valtech Cardio, Ltd. Implant and anchor placement
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9693865B2 (en) 2013-01-09 2017-07-04 4 Tech Inc. Soft tissue depth-finding tool
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9801720B2 (en) 2014-06-19 2017-10-31 4Tech Inc. Cardiac tissue cinching
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9907681B2 (en) 2013-03-14 2018-03-06 4Tech Inc. Stent with tether interface
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US10258768B2 (en) 2014-07-14 2019-04-16 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10806579B2 (en) 2017-10-20 2020-10-20 Boston Scientific Scimed, Inc. Heart valve repair implant for treating tricuspid regurgitation
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US11857417B2 (en) 2020-08-16 2024-01-02 Trilio Medical Ltd. Leaflet support
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US20070093889A1 (en) * 1999-01-27 2007-04-26 Wu Benjamin M Non-Fragmenting Low Friction Bioactive Absorbable Coils for Brain Aneurysm Therapy
US7169187B2 (en) * 1999-12-22 2007-01-30 Ethicon, Inc. Biodegradable stent
US6338739B1 (en) 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8460367B2 (en) 2000-03-15 2013-06-11 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US6743210B2 (en) * 2001-02-15 2004-06-01 Scimed Life Systems, Inc. Stent delivery catheter positioning device
US6685745B2 (en) * 2001-05-15 2004-02-03 Scimed Life Systems, Inc. Delivering an agent to a patient's body
US6585754B2 (en) * 2001-05-29 2003-07-01 Scimed Life Systems, Inc. Absorbable implantable vaso-occlusive member
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20030153971A1 (en) * 2002-02-14 2003-08-14 Chandru Chandrasekaran Metal reinforced biodegradable intraluminal stents
US20030153972A1 (en) * 2002-02-14 2003-08-14 Michael Helmus Biodegradable implantable or insertable medical devices with controlled change of physical properties leading to biomechanical compatibility
US8764775B2 (en) 2002-08-22 2014-07-01 Ams Research Corporation Anastomosis device and related methods
US9307991B2 (en) 2002-08-22 2016-04-12 Ams Research, Llc Anastomosis device and related methods
US8551126B2 (en) 2002-08-22 2013-10-08 Ams Research Corporation Anastomosis device and related methods
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20040199246A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Expandable stent
US7757691B2 (en) 2003-08-07 2010-07-20 Merit Medical Systems, Inc. Therapeutic medical appliance delivery and method of use
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7368169B2 (en) * 2003-12-01 2008-05-06 Rutgers, The State University Of New Jersey Hydrazide compounds with angiogenic activity
US20050131515A1 (en) * 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US20050245938A1 (en) * 2004-04-28 2005-11-03 Kochan Jeffrey P Method and apparatus for minimally invasive repair of intervertebral discs and articular joints
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US20070292478A1 (en) 2004-08-30 2007-12-20 Popowski Youri Medical Implant Provided with Inhibitors of Atp Synthesis
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7632307B2 (en) * 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US8636756B2 (en) 2005-02-18 2014-01-28 Ams Research Corporation Anastomosis device and surgical tool actuation mechanism configurations
DE102005016103B4 (en) * 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
DE102005019649A1 (en) * 2005-04-26 2006-11-02 Alveolus Inc. Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube
US7771443B2 (en) 2005-05-20 2010-08-10 Ams Research Corporation Anastomosis device approximating structure configurations
US7717928B2 (en) * 2005-05-20 2010-05-18 Ams Research Corporation Anastomosis device configurations and methods
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8066725B2 (en) * 2006-10-17 2011-11-29 Ams Research Corporation Anastomosis device having improved safety features
US7993264B2 (en) * 2006-11-09 2011-08-09 Ams Research Corporation Orientation adapter for injection tube in flexible endoscope
DE102006053752A1 (en) * 2006-11-13 2008-05-15 Aesculap Ag & Co. Kg Textile vascular prosthesis with coating
US8277466B2 (en) * 2006-11-14 2012-10-02 Ams Research Corporation Anastomosis device and method
US20080140098A1 (en) * 2006-11-15 2008-06-12 Monica Kumar Anastomosis Balloon Configurations and device
US8491525B2 (en) * 2006-11-17 2013-07-23 Ams Research Corporation Systems, apparatus and associated methods for needleless delivery of therapeutic fluids
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US20080167526A1 (en) * 2007-01-08 2008-07-10 Crank Justin M Non-Occlusive, Laterally-Constrained Injection Device
US20080249608A1 (en) * 2007-04-04 2008-10-09 Vipul Dave Bioabsorbable Polymer, Bioabsorbable Composite Stents
US20080249605A1 (en) * 2007-04-04 2008-10-09 Vipul Dave Bioabsorbable Polymer, Non-Bioabsorbable Metal Composite Stents
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US20100070020A1 (en) * 2008-06-11 2010-03-18 Nanovasc, Inc. Implantable Medical Device
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US20090004243A1 (en) 2007-06-29 2009-01-01 Pacetti Stephen D Biodegradable triblock copolymers for implantable devices
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US8661630B2 (en) 2008-05-21 2014-03-04 Abbott Cardiovascular Systems Inc. Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer
US7850649B2 (en) 2007-11-09 2010-12-14 Ams Research Corporation Mechanical volume control for injection devices
US9820746B2 (en) 2008-07-28 2017-11-21 Incube Laboratories LLC System and method for scaffolding anastomoses
US20100030139A1 (en) * 2008-07-30 2010-02-04 Copa Vincent G Anastomosis Devices and Methods Utilizing Colored Bands
US8388349B2 (en) * 2009-01-14 2013-03-05 Ams Research Corporation Anastomosis deployment force training tool
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9173978B2 (en) 2010-09-22 2015-11-03 Ethicon, Inc. Bioabsorbable polymeric compositions, processing methods, and medical devices therefrom
US8747386B2 (en) 2010-12-16 2014-06-10 Ams Research Corporation Anastomosis device and related methods
US8465551B1 (en) * 2011-07-09 2013-06-18 Bandula Wijay Temporary prostatic stent for benign prostatic hyperplasia
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9381335B2 (en) 2012-03-21 2016-07-05 Ams Research Corporation Bladder wall drug delivery system
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357990A (en) * 1991-08-01 1994-10-25 Gillette Canada Inc. Flavored dental floss and process

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598051A (en) 1898-01-25 Godfried laube
US4889119A (en) 1985-07-17 1989-12-26 Ethicon, Inc. Surgical fastener made from glycolide-rich polymer blends
US4741337A (en) 1985-07-17 1988-05-03 Ethicon, Inc. Surgical fastener made from glycolide-rich polymer blends
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5185408A (en) 1987-12-17 1993-02-09 Allied-Signal Inc. Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
FI85223C (en) 1988-11-10 1992-03-25 Biocon Oy BIODEGRADERANDE SURGICAL IMPLANT OCH MEDEL.
JP3299742B2 (en) * 1990-05-14 2002-07-08 テルモ株式会社 Vascular repair material
US5160341A (en) 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
IL102279A (en) 1991-07-18 1996-12-05 Ethicon Inc Sterilized bicomponent fiber braids
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5443458A (en) 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
US5346501A (en) 1993-02-05 1994-09-13 Ethicon, Inc. Laparoscopic absorbable anastomosic fastener and means for applying
FI942170A (en) 1993-06-15 1994-12-16 Esa Viherkoski Tubular device for holding the urethra open
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US5629077A (en) * 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
AU716005B2 (en) 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5676685A (en) * 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5728135A (en) 1996-02-09 1998-03-17 Ethicon, Inc. Stiffened suture for use in a suturing device
JP3709239B2 (en) 1996-04-26 2005-10-26 ファナック株式会社 Magnetic saturation correction method for AC servo motor
AU2821597A (en) * 1996-05-03 1997-11-26 Emed Corporation Combined coronary stent deployment and local delivery of an agent
US6117168A (en) 1996-12-31 2000-09-12 Scimed Life Systems, Inc. Multilayer liquid absorption and deformation devices
WO1998056312A1 (en) * 1997-06-13 1998-12-17 Scimed Life Systems, Inc. Stents having multiple layers of biodegradable polymeric composition
US5980564A (en) * 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
JPH11137694A (en) * 1997-11-13 1999-05-25 Takiron Co Ltd In-vivo decomposable and absorbable shape memory stent
US6511748B1 (en) * 1998-01-06 2003-01-28 Aderans Research Institute, Inc. Bioabsorbable fibers and reinforced composites produced therefrom
US6001117A (en) 1998-03-19 1999-12-14 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6120847A (en) 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6156373A (en) 1999-05-03 2000-12-05 Scimed Life Systems, Inc. Medical device coating methods and devices
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6338739B1 (en) * 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357990A (en) * 1991-08-01 1994-10-25 Gillette Canada Inc. Flavored dental floss and process

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002399A1 (en) * 1999-12-22 2002-01-03 Huxel Shawn Thayer Removable stent for body lumens
US6981987B2 (en) 1999-12-22 2006-01-03 Ethicon, Inc. Removable stent for body lumens
US7691078B2 (en) 2001-05-22 2010-04-06 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
US7918815B2 (en) 2001-05-22 2011-04-05 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
US6733536B1 (en) * 2002-10-22 2004-05-11 Scimed Life Systems Male urethral stent device
US9387304B2 (en) 2003-02-21 2016-07-12 C.R. Bard, Inc. Multi-lumen catheter with separate distal tips
US8808227B2 (en) 2003-02-21 2014-08-19 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US7651529B2 (en) 2003-05-09 2010-01-26 Boston Scientific Scimed, Inc. Stricture retractor
US10806895B2 (en) 2003-05-27 2020-10-20 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US9572956B2 (en) 2003-05-27 2017-02-21 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8597275B2 (en) 2003-05-27 2013-12-03 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US10105514B2 (en) 2003-05-27 2018-10-23 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US8206371B2 (en) 2003-05-27 2012-06-26 Bard Access Systems, Inc. Methods and apparatus for inserting multi-lumen split-tip catheters into a blood vessel
US7004965B2 (en) * 2003-12-17 2006-02-28 Yosef Gross Implant and delivery tool therefor
US7632297B2 (en) 2003-12-17 2009-12-15 Prostaplant Ltd. Implant and delivery tool therefor
US20060173517A1 (en) * 2003-12-17 2006-08-03 Yosef Gross Implant and delivery tool therefor
US8145321B2 (en) 2003-12-17 2012-03-27 Yossi Gross Implant and delivery tool therefor
US20050137716A1 (en) * 2003-12-17 2005-06-23 Yosef Gross Implant and delivery tool therefor
US9669149B2 (en) 2004-06-09 2017-06-06 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US8992454B2 (en) * 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US9782535B2 (en) 2004-06-09 2017-10-10 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
WO2006044396A2 (en) 2004-10-13 2006-04-27 Scimed Life Systems, Inc. Composite stent with inner and outer stent elements and method of using the same
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US10561498B2 (en) 2005-03-17 2020-02-18 Valtech Cardio, Ltd. Mitral valve treatment techniques
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US9351830B2 (en) 2006-12-05 2016-05-31 Valtech Cardio, Ltd. Implant and anchor placement
US20080262609A1 (en) * 2006-12-05 2008-10-23 Valtech Cardio, Ltd. Segmented ring placement
US10357366B2 (en) 2006-12-05 2019-07-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10363137B2 (en) 2006-12-05 2019-07-30 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9872769B2 (en) 2006-12-05 2018-01-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US20100130815A1 (en) * 2007-05-18 2010-05-27 Prostaplant Ltd. Intraurethral and extraurethral apparatus
US8500939B2 (en) 2007-10-17 2013-08-06 Bard Access Systems, Inc. Manufacture of split tip catheters
US9174019B2 (en) 2007-10-26 2015-11-03 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US8540661B2 (en) 2007-10-26 2013-09-24 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US11338075B2 (en) 2007-10-26 2022-05-24 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8696614B2 (en) 2007-10-26 2014-04-15 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US10258732B2 (en) 2007-10-26 2019-04-16 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US9233200B2 (en) 2007-10-26 2016-01-12 C.R. Bard, Inc. Split-tip catheter including lateral distal openings
US11260161B2 (en) 2007-10-26 2022-03-01 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US10207043B2 (en) 2007-10-26 2019-02-19 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US8092415B2 (en) 2007-11-01 2012-01-10 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US10518064B2 (en) 2007-11-01 2019-12-31 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US9610422B2 (en) 2007-11-01 2017-04-04 C. R. Bard, Inc. Catheter assembly
US11918758B2 (en) 2007-11-01 2024-03-05 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
US8894601B2 (en) 2007-11-01 2014-11-25 C. R. Bard, Inc. Catheter assembly including triple lumen tip
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US9636224B2 (en) 2008-12-22 2017-05-02 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US9713530B2 (en) 2008-12-22 2017-07-25 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US20100161043A1 (en) * 2008-12-22 2010-06-24 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8252050B2 (en) 2008-12-22 2012-08-28 Valtech Cardio Ltd. Implantation of repair chords in the heart
US9662209B2 (en) 2008-12-22 2017-05-30 Valtech Cardio, Ltd. Contractible annuloplasty structures
US10350068B2 (en) 2009-02-17 2019-07-16 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9561104B2 (en) 2009-02-17 2017-02-07 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US10548729B2 (en) 2009-05-04 2020-02-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US20100280604A1 (en) * 2009-05-04 2010-11-04 Valtech Cardio, Ltd. Over-wire rotation tool
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US11844665B2 (en) 2009-05-04 2023-12-19 Edwards Lifesciences Innovation (Israel) Ltd. Deployment techniques for annuloplasty structure
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US11723774B2 (en) 2009-05-07 2023-08-15 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
US9937042B2 (en) 2009-05-07 2018-04-10 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9592122B2 (en) 2009-05-07 2017-03-14 Valtech Cardio, Ltd Annuloplasty ring with intra-ring anchoring
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9414921B2 (en) 2009-10-29 2016-08-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10751184B2 (en) 2009-10-29 2020-08-25 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US9968454B2 (en) 2009-10-29 2018-05-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of artificial chordae
US8690939B2 (en) 2009-10-29 2014-04-08 Valtech Cardio, Ltd. Method for guide-wire based advancement of a rotation assembly
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US8734467B2 (en) 2009-12-02 2014-05-27 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US10492909B2 (en) 2009-12-02 2019-12-03 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US10660751B2 (en) 2009-12-08 2020-05-26 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US8961596B2 (en) 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US10238491B2 (en) 2010-01-22 2019-03-26 4Tech Inc. Tricuspid valve repair using tension
US9241702B2 (en) 2010-01-22 2016-01-26 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US10405978B2 (en) 2010-01-22 2019-09-10 4Tech Inc. Tricuspid valve repair using tension
US10433963B2 (en) 2010-01-22 2019-10-08 4Tech Inc. Tissue anchor and delivery tool
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9108017B2 (en) 2011-03-22 2015-08-18 Applied Medical Resources Corporation Method of making tubing have drainage holes
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
WO2013006298A3 (en) * 2011-07-07 2013-03-28 The Regents Of The University Of California A bioactive spiral coil coating
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US9265608B2 (en) 2011-11-04 2016-02-23 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US9775709B2 (en) 2011-11-04 2017-10-03 Valtech Cardio, Ltd. Implant having multiple adjustable mechanisms
US10363136B2 (en) 2011-11-04 2019-07-30 Valtech Cardio, Ltd. Implant having multiple adjustment mechanisms
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US10568738B2 (en) 2011-11-08 2020-02-25 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
US10206673B2 (en) 2012-05-31 2019-02-19 4Tech, Inc. Suture-securing for cardiac valve repair
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11890190B2 (en) 2012-10-23 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Location indication system for implant-delivery tool
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10610360B2 (en) 2012-12-06 2020-04-07 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US10449050B2 (en) 2013-01-09 2019-10-22 4 Tech Inc. Soft tissue depth-finding tool
US9788948B2 (en) 2013-01-09 2017-10-17 4 Tech Inc. Soft tissue anchors and implantation techniques
US9693865B2 (en) 2013-01-09 2017-07-04 4 Tech Inc. Soft tissue depth-finding tool
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US11793505B2 (en) 2013-02-26 2023-10-24 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US9907681B2 (en) 2013-03-14 2018-03-06 4Tech Inc. Stent with tether interface
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11744573B2 (en) 2013-08-31 2023-09-05 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11766263B2 (en) 2013-10-23 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Anchor magazine
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10265170B2 (en) 2013-12-26 2019-04-23 Valtech Cardio, Ltd. Implantation of flexible implant
US10973637B2 (en) 2013-12-26 2021-04-13 Valtech Cardio, Ltd. Implantation of flexible implant
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9801720B2 (en) 2014-06-19 2017-10-31 4Tech Inc. Cardiac tissue cinching
US10258768B2 (en) 2014-07-14 2019-04-16 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US10857330B2 (en) 2014-07-14 2020-12-08 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11071628B2 (en) 2014-10-14 2021-07-27 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11389152B2 (en) 2014-12-02 2022-07-19 4Tech Inc. Off-center tissue anchors with tension members
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11660192B2 (en) 2015-12-30 2023-05-30 Edwards Lifesciences Corporation System and method for reshaping heart
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11883611B2 (en) 2017-04-18 2024-01-30 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10806579B2 (en) 2017-10-20 2020-10-20 Boston Scientific Scimed, Inc. Heart valve repair implant for treating tricuspid regurgitation
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11890191B2 (en) 2018-07-12 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Fastener and techniques therefor
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11857417B2 (en) 2020-08-16 2024-01-02 Trilio Medical Ltd. Leaflet support

Also Published As

Publication number Publication date
DE60009020D1 (en) 2004-04-22
JP2001299932A (en) 2001-10-30
US6494908B1 (en) 2002-12-17
EP1112724A2 (en) 2001-07-04
EP1112724B1 (en) 2004-03-17
DE60009020T2 (en) 2005-03-10
JP4790116B2 (en) 2011-10-12
EP1112724A3 (en) 2002-06-12

Similar Documents

Publication Publication Date Title
US6494908B1 (en) Removable stent for body lumens
US6981987B2 (en) Removable stent for body lumens
US6537312B2 (en) Biodegradable stent
US7169187B2 (en) Biodegradable stent
AU781199B2 (en) Bioresorbable stent
EP0789602B1 (en) Polymeric medical device systems having shape memory
US8388676B2 (en) Disintegrating stent and method of making same
US20070106371A1 (en) Biodegradable stent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION