US20020121689A1 - Flip chip type semiconductor device and method for manufacturing the same - Google Patents

Flip chip type semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
US20020121689A1
US20020121689A1 US10/131,486 US13148602A US2002121689A1 US 20020121689 A1 US20020121689 A1 US 20020121689A1 US 13148602 A US13148602 A US 13148602A US 2002121689 A1 US2002121689 A1 US 2002121689A1
Authority
US
United States
Prior art keywords
substrate
multilayer wiring
layer
flip chip
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/131,486
Inventor
Hirokazu Honda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to US10/131,486 priority Critical patent/US20020121689A1/en
Publication of US20020121689A1 publication Critical patent/US20020121689A1/en
Assigned to NEC ELECTRONICS CORPORATION reassignment NEC ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEC CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0152Temporary metallic carrier, e.g. for transferring material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1581Treating the backside of the PCB, e.g. for heating during soldering or providing a liquid coating on the backside
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates

Definitions

  • the present invention relates to a flip chip type semiconductor device wherein semiconductor chips are mounted on a multilayer wiring substrate and a method for manufacturing the same.
  • the present invention relates to a flip chip type semiconductor device which can be manufactured at low cost and set the wiring pattern pitch of the multilayer wiring substrate at 10 ⁇ m or less and a manufacturing method thereof.
  • FIGS. 1A and 1B show a conventional flip chip type semiconductor device 101 .
  • external terminals (not shown) are formed in the peripheral sections of a semiconductor chip 102 or an active region on the semiconductor chip 102 in an area array arrangement.
  • Protruding bumps 103 are formed out of a metal material such as a solder, Au, an Sn—Ag alloy or the like on the external terminals, respectively.
  • This flip chip type semiconductor device 101 is mounted on a multilayer wiring mounted substrate 104 as shown in FIG. 1B. Electrode pads are formed on the multilayer wiring mounted substrate 104 to have the same pattern as the bump array pattern of the flip chip type semiconductor device 101 .
  • An end user mounts the flip chip type semiconductor device 101 on the multilayer wiring mounted substrate 104 while the bumps 103 of the device 101 aligned to the electrode pads of the multilayer wiring mounted substrate 104 , respectively. If a solder is used as a bump material, the flip chip type semiconductor device 101 is mounted on the multilayer wiring mounted substrate 104 by an IR reflow step using flux.
  • the conventional flip chip type semiconductor device 101 has a disadvantage in that after mounting the semiconductor device 101 on the multilayer wiring mounted substrate 104 , a temperature cycle characteristic, in particular, among mounting reliability factors deteriorates due to mismatch in the linear expansion coefficient between the multilayer wiring mounted substrate 104 and the flip chip type semiconductor device 101 .
  • the following measures have been conventionally taken.
  • a multilayer wiring substrate referred to as a buildup substrate is normally employed for a multilayer wiring substrate made of an organic material for a flip chip type semiconductor device because of the shortest pitch of a bump array pattern and the number of pins. A method of manufacturing this buildup substrate will be described with reference to FIGS. 2A to 2 F.
  • a Cu foil layer 111 having a predetermined thickness of 10 to 40 ⁇ m is bonded to each surface of a core substrate 110 made of an insulating glass epoxy material and patterning is conducted to the Cu foil layer 111 .
  • the through holes are subjected to a plating processing, thereby forming penetrating through hole sections 112 to electrically connect the Cu foil layers 111 on the both surfaces of the core substrate 110 to each other.
  • an insulating resin layer 113 is usually filled in the penetrating through hole section 112 in light of the process stability of later steps and the quality stability of the substrate.
  • an insulating resin layer 114 is arranged on the Cu wiring pattern existing on the front and rear surfaces of the core substrate 110 , respectively and openings 115 are thereby formed at predetermined positions of the insulating resin layer 114 by a chemical etching method utilizing a photoresist technique, a laser processing technique or the like.
  • metal thin layers 16 are formed by sputtering metal such as Ti or Cu, or by electroless plating Cu on the insulating resin layer 114 so as to secure the electrical connection between a feed layer for electrolytic plating of Cu and the Cu wiring pattern on the core substrate.
  • a photo-resist 117 or a dry film having a thickness of about 20 to 40 ⁇ m is arranged on each surface of the metal thin film layer 116 , and exposure and development processing is conducted thereto.
  • the metal thin film layers 116 are removed by wet etching and the wiring pattern sections 118 are made electrically independent.
  • an ordinary buildup substrate manufacturing method adopts manufacturing steps of creating products altogether on a large panel of about 500 mm ⁇ 600 mm and cutting the panel in a final step to thereby take out a plurality of multilayer wiring substrates. Due to this, if it is possible to make the outer dimension of a single multilayer wiring substrate small, the number of multilayer wiring substrates per panel can be increased. According to the conventional buildup substrate manufacturing method, however, the wiring pattern pitch described above can be shortened to a minimum of about 30 ⁇ m. It is, therefore, impossible to shorten the outer dimension of a single multilayer wiring substrate and difficult to greatly reduce multilayer wiring substrate cost.
  • the above-stated multilayer wiring substrate manufacturing method is also encountered by a warpage problem. Namely, the core substrate 110 warps. In exposure and development steps for forming buildup wiring patterns, the misalignment of resist patterns occurs due to the warp of the core substrate 110 . This misalignment causes the deterioration of manufacturing yield.
  • the first substrate (Base substrate) having flatness and high rigidity is selectively etched away to thereby form external electrode column sections.
  • a solder ball is formed as an external terminal.
  • solder ball sections used to be mounted on a substrate by an end user's side are formed on the external electrode column sections surrounded by the insulating stress buffer resin layer. Due to this, it is possible to increase the standoff height of each solder ball. Besides, since the stress buffer effect of the insulating stress buffer resin layer is added, a flip chip type semiconductor device excellent in mounting reliability can be obtained.
  • a metal thin film wiring thick of about 10 to 30 ⁇ m unlike a buildup substrate according to the conventional technique and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized.
  • by making the wiring pattern smaller in size it is possible to increase the density of the organic multilayer wiring substrate, to decrease the outside dimensions of a single multilayer wiring substrate and to thereby considerably reduce cost.
  • each package can be manufactured by a wafer level processing, so that the number of steps can be advantageously, greatly reduced compared with a packaging method for manufacturing packages from a single piece and cost can be advantageously, considerably reduced.
  • the etching-away step there are two methods, i.e., a wet etching method and a dry etching method.
  • the first substrate is etched isotropically, i.e., etching is conducted simultaneously in a thickness direction and a lateral direction. Due to this, if the thickness of the first substrate (Base substrate) is quite large at least 1.0 mm, in particular, it is difficult to ensure the stability of the shapes of the external electrode column sections, to minimize the irregularity of the shapes thereof, and to ensure product quality.
  • the first substrate is etched anisotropically, i.e., etching is conducted in a thickness direction.
  • etching is conducted in a thickness direction.
  • the normal etching rate of the dry etching method is as slow as 10 nm/minute to 100 ⁇ /minute. If the thickness of the first substrate (Base substrate) is as large as at least 1.0 mm, it takes longer to complete etching, which makes manufacturing time longer to thereby cause cost increase.
  • a flip chip type semiconductor device comprises a multilayer wiring layer having a multilayer wiring structure; a substrate consisting of one of an insulating substrate and a multilayer wiring substrate having penetrating holes embedded with a conductive material; a bonding agent film interposed between the multilayer wiring layer and said substrate, and bonding the multilayer wiring layer to said substrate; and a semiconductor chip mounted on said multilayer wiring layer.
  • the conductive material is a conductive bonding agent.
  • terminal balls may be coupled to the conductive bonding agent on a surface of the substrate.
  • the flip chip type semiconductor device has an external electrode pad formed on an uppermost layer of the multilayer wiring layer; and a bump electrode provided on the semiconductor chip and connected to the external electrode pad.
  • the flip chip type semiconductor device may comprise an insulating resin layer for embedding side of the semiconductor chip; and a radiating heat spreader coupled to the semiconductor chip.
  • the flip chip type semiconductor device according to the present invention may comprise a radiating heat spreader coupled to the semiconductor chip; and a stiffener arranged on each side of the semiconductor chip and interposed between the heat spreader and the multilayer wiring layer.
  • a flip chip type semiconductor device manufacturing method comprises the steps of: forming a multilayer wiring structure on a first substrate consisting of a flat metal plate; etching away the first substrate to form a second substrate consisting of a multilayer wiring layer; coupling a third substrate to the second substrate consisting of the multilayer wiring layer to obtain a multilayer wiring substrate; and mounting a semiconductor chip on the second substrate.
  • the third substrate can be one of an insulating substrate and a multilayer substrate provided with holes.
  • the second substrate can be manufactured by the steps of: forming an external electrode pad on the first substrate; forming an insulating thin film layer on an entire surface of the external electrode pad, and etching away the insulating thin film on the external electrode pad to form an opening; forming a metal thin layer on an entire surface, and patterning a resultant substrate to form a metal thin film wiring section connected to the external electrode pad in the opening; repeating formation of the insulating thin film layer and formation of the metal thin film wiring section; and forming an insulating resin thin film layer on an entire surface, forming an opening on the metal thin film wiring section below the insulating resin thin film layer and forming a pad electrode in the opening.
  • the semiconductor chip has a bump electrode; and in a step of mounting the semiconductor chip, the bump electrode is coupled to the external electrode pad of the second substrate.
  • the present invention it is possible to maintain high flatness in the multilayer wiring substrate manufacturing steps, and to suppress the occurrence of an internal stress to the multilayer wiring layer. Further, after bonding the insulating substrate to this multilayer wiring layer, the semiconductor chip is mounted. Thus, semiconductor devices can be manufactured with high yield. Further, it is possible to employ an insulating substrate made of a material having a similar linear expansion coefficient as that of a mounting substrate employed by an end user side, on the lower layer of the multilayer wiring layer. In addition, since the solder ball is formed on the conductive bonding agent filled into the through hole in the insulating substrate, it is possible to facilitate enhancing a standoff height during mounting easily. Besides, since it is possible to minimize mismatch in the linear expansion coefficient, a flip chip type semiconductor device excellent in mounting reliability can be easily manufactured.
  • the present invention it is not necessary to form the metal thin film wiring section thick or about 10 to 30 ⁇ m unlike the conventional case, and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of a photoresist and that of the metal thin film wiring section can be processed in a thin range of 1 ⁇ m or less, so that a finer wiring pattern can be easily obtained. Besides, by promoting a finer wiring pattern, it is possible to increase the density of an organic multilayer wiring substrate, to reduce the outer dimension of the single multilayer wiring substrate and to thereby greatly reduce manufacturing cost.
  • the Base substrate having high flatness is entirely removed. Thus, it is not necessary to selectively etch away this substrate, thereby making the manufacturing process quite simple.
  • each package by a wafer level processing.
  • a packaging method of manufacturing respective packages from individual pieces it is possible to greatly reduce the number of steps and to thereby greatly reduce cost.
  • FIGS. 1A and 1B are cross-sectional views of a conventional flip chip type semiconductor device
  • FIGS. 2A to 2 F are cross-sectional views showing a method of manufacturing a conventional buildup substrate in the order of manufacturing steps
  • FIGS. 3A to 3 U are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the first embodiment according to the present invention in the order of manufacturing steps;
  • FIG. 4 is a cross-sectional view of a flip chip type semiconductor device manufactured by the second embodiment according to the present invention.
  • FIG. 5 is a cross-sectional view of a flip chip type semiconductor device manufactured by the third embodiment according to the present invention.
  • FIGS. 6A to 6 H are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the fourth embodiment according to the present invention in the order of manufacturing steps.
  • FIG. 7A is a cross-sectional, enlarged view of a twosided wiring substrate in the fourth embodiment, and FIG. 7B is a plan view thereof.
  • FIGS. 3A to 3 U are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the first embodiment according to the present invention.
  • a metal plate 1 having high flatness is prepared.
  • the metal plate 1 is made of metal or an alloy mainly consisting of Cu, Ni, Al or the like.
  • the metal plate 1 having high flatness may have a wafer shape used in a semiconductor manufacturing step.
  • Ti, Cr, Mo, a W alloy or the like is sputtered onto the metal plate 1 so as to serve as a bonding metal layer relative to the metal plate 1 to thereby form a thin film made of the above metal or alloy.
  • a material such as Cu, Al, Ni or the like is sputtered as an electrode material, thereby forming a thin film serving as an electrode metal layer following the formation of the bonding metal layer.
  • exposure and development processings are conducted to pattern the resist.
  • the bonding metal layer and the electrode layer thin film are patterned by a wet etching technique or a dry etching technique which utilizes a plasma surface processing technique.
  • a wet etching technique or a dry etching technique which utilizes a plasma surface processing technique.
  • external electrode pads 2 each consisting of a multilayer of the bonding metal layer and the electrode metal layer are formed.
  • an insulating resin thin film layer 3 is arranged on the sections of the metal plate 1 on which the external electrode pads 2 are formed.
  • This insulating resin thin film layer 3 is formed out of a liquid insulating material by spin coating or by the CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) method utilizing the plasma surface processing technique.
  • the insulating resin thin film layer 3 on the external electrode pads 2 is partially removed and openings 4 are formed in the insulating resin thin film layer 3 .
  • openings 4 are formed in the insulating resin thin film layer 3 .
  • the insulating resin thin film layer 3 is etched to thereby form the openings 4 .
  • the wet etching method can be used if the insulating resin thin film layer 3 is made of a material which can be subjected to chemical etching, or the dry etching method utilizing the plasma surface processing technique can be used if the insulating resin thin film layer 3 is made of a material which cannot be subjected to chemical etching.
  • a metal thin film layer 5 is formed on the entire surface of the insulating resin thin film layer 3 .
  • a thin film made of Ti, Cr, Mo or W alloy by sputtering or the like as the bonding metal layer relative to the external electrode pads 2 .
  • a thin film made of an electrode material such as Cu, Al or Ni is formed by the sputtering method, the CVD method, the electroless plating method or the like consecutively with the formation of the former thin film, thereby forming the metal thin film layer 5 .
  • a photoresist is coated on the metal thin film layer 5 and exposure and development processings are conducted to thereby form a resist pattern.
  • the metal thin film layer 5 is etched by either the wet etching method or the dry etching method utilizing the plasma surface processing technique, thereby forming metal thin film wiring sections 6 .
  • the metal thin film wiring sections 6 it is not always necessary to form the metal thin film wiring sections 6 to have a large thickness of about 10 to 30 ⁇ m unlike the buildup substrate, and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of the photoresist and those of the metal thin film wiring sections 6 can be made small, i.e., 1 ⁇ m or less. As a result, the metal thin film wiring sections 6 can be easily processed and the fine wiring pattern can be easily provided.
  • the metal thin film wiring sections 6 may be formed by forming the metal thin film layer 5 on the entire surface of the insulating resin thin film layer 3 , coating a photoresist and conducting exposure and development processings to thereby pattern the resist, forming a wiring pattern consisting of the metal thin film while using this resist as a mask, forming a wiring pattern by electroless plating using Cu or the like, separating the photoresist and etching the metal thin film layer 5 while using the wiring pattern as a mask.
  • FIGS. 3G, 3H, 3 I, 3 J and 3 K by repeating the steps from the formation of the insulating resin thin film layer 3 (FIG. 3C) to the formation of the metal thin film wiring sections 6 in a predetermined pattern, a multilayer wiring structure having a predetermined number of layers is formed.
  • FIGS. 3G, 3I and 3 K show that the insulating resin thin film layer 3 and the openings 4 thereof have been formed
  • FIGS. 3H and 3J show that the metal thin film wiring sections 6 to be embedded in the respective openings 4 have been formed.
  • pad electrodes 7 are formed on the uppermost layer of the multilayer wiring structure at positions corresponding to the bump electrode patterns of the flip chip type semiconductor chip, respectively.
  • solder resist films 8 are formed to protect the multilayer wiring structure and the pad electrodes 7 and openings 8 a are provided in the solder resist films 8 on the pad electrodes 7 . If the solder resist films 8 are made of a non-photosensitive material, photoresists are coated on the films 8 , respectively and exposure and development processings are conducted. Then, the openings 8 a are formed in the solder resist films 8 , respectively, by means of either the wet etching method or the dry etching technique utilizing the plasma surface processing technique.
  • solder resist films 8 are made of a photosensitive material, exposure and development processings may be directly conducted to the films 8 to form the openings 8 a in the respectively solder resist films 8 . It is noted that if the insulating resin thin film layer in the multilayer wiring structure has quite high reliability in resisting mechanical and chemical stresses, there is no need to form the solder resist films 8 .
  • the metal plate 1 having high flatness and existing below the multilayer wiring structure is removed by etching the entire surface of the plate 1 to thereby leave only the multilayer wiring layer 9 .
  • the metal plate 1 having high flatness is made of Cu, it is possible to easily remove the plate 1 by etching the entire surface of the plate 1 using an etching solution of cupric chloride, ferrous chloride or the like.
  • an insulating substrate 11 onto which a bonding agent 10 is attached is prepared and through holes 12 are formed in the insulating substrate 11 at positions at which the external electrode pads 2 existing on the lowermost layer of the multilayer wiring layer 9 are exposed, respectively.
  • the perforated insulating substrate 11 to which the bonding agent is attached is aligned with the predetermined position of the multilayer wiring layer 9 and bonded to the multilayer wiring layer 9 so as to expose the external electrode pads 2 .
  • a conductive bonding agent 13 is filled in the through holes 12 provided in the adhesive agent attached-insulating substrate 11 bonded to the multilayer wiring layer 9 , whereby a multilayer wiring substrate is completed.
  • the substrate having the through holes 12 provided in the adhesive agent attached-insulating substrate 11 and filled with the conductive material may be bonded to the multilayer wiring layer 9 in advance.
  • flip chip type semiconductor chips 14 are mounted on the pad electrodes 7 , respectively while the surface of the chips on which surface the bump electrodes 15 are provided are directed downward, and a flip chip mounting processing is conducted.
  • the bump electrode 15 for each flip chip type semiconductor chip 14 is a solder mainly consisting of a metal material such as Sn, Pb or the like
  • the flip chip mounting can be conducted by heating reflow step using flex.
  • the bump electrode 15 for each flip chip type semiconductor ship 14 is a solder mainly consisting of a metal material such as Au, In or the like, the flip chip mounting can be conducted by thermal pressing.
  • an insulating resin layer 16 is filled in the side surfaces of the flip chip semiconductor chips 14 , flip chip junctions and regions in which the multilayer wiring layer 9 is exposed so as to protect the flip chip semiconductor chips 14 , the flip chip junctions and the multilayer wiring layer 9 .
  • an injection resin introduction technique or a transfer sealing technique including a vacuum sealing technique can be employed.
  • solder balls 17 each mainly consisting of a metal material such as Sn or Pb are attached, as external terminals, onto the conductive bonding agent 13 filled in the through holes 12 provided in the bonding agent-attached insulating substrate 11 .
  • the solder balls 17 are put on the bonding agent 13 and a heat processing is conducted by an IR reflow step, thereby mounting the solder balls 17 .
  • the resultant substrate is cut into a plurality of pieces by a cut and separation technique using a dicing blade or the like, thereby completing flip chip type semiconductor devices.
  • the multilayer wiring substrate manufacturing method it is possible to maintain high flatness and to suppress the occurrence of an internal stress to the multilayer wiring layer 9 .
  • the multilayer wiring structure multilayer wiring layer 9
  • the multilayer wiring layer 9 since the multilayer wiring structure (multilayer wiring layer 9 ) is formed on the metal plate 1 having high flatness, the multilayer wiring layer 9 has also high flatness, less warps and a low internal stress. Therefore, if the semiconductor chips 14 are mounted after bonding the insulating substrate 11 to this multilayer wiring layer 9 , it is possible to manufacture semiconductor devices with high yield.
  • the solder balls 17 are provided so that an end user mounts the semiconductor device of the present invention on the substrate of the end user. Since the through holes 12 provided in the insulating substrate 11 are filled with the conductive bonding agent 13 and the solder balls 17 are bonded onto the conductive bonding agent sections 13 , respectively, the conductive bonding agent sections 13 function as external electrode column sections and allow increasing the standoff heights of the solder balls 17 . Further, if the resin substrate is used as the insulating substrate 11 , the stress buffer effect of the insulating resin is also added, a flip chip type semiconductor device having excellent mounting reliability can be obtained.
  • such a material as to have a similar linear expansion coefficient to that of the mounting substrate prepared by the end user can be easily used for the insulating substrate 11 .
  • a material for this insulating substrate 11 depends on a material for the mounting substrate used by the end user.
  • polyimide, glass epoxy, alumina, mullite or the like may be employed as a material for the insulating substrate 11 . Since a material for the insulating substrate 11 can be selected from a wide range of materials, it is possible to prevent mismatch in the linear expansion coefficient after the end user mounts the flip chip type semiconductor device on the mounting substrate and to particularly enhance temperature cycle characteristic among mounting reliability factors.
  • the flip chip type semiconductor device of the present invention it is possible to easily enhance a standoff height during mounting and to minimize mismatch in the linear expansion coefficient.
  • a flip chip type semiconductor device excellent in mounting reliability can be easily manufactured.
  • the standoff height of each solder ball is large and a stress can be absorbed by the solder balls. Due to this, unlike the conventional device, it is not necessary to absorb a stress by providing a thick wiring.
  • the step of forming the wiring pattern of the multilayer wiring substrate of the present invention it is not always necessary to form the metal thin film wirings thick or about 10 to 30 ⁇ m unlike the buildup substrate according to the conventional technique and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of each photoresist and that of the metal thin film wiring section can be processed in a region as thin as 1 ⁇ m or less and the wiring pattern can be, therefore, easily made smaller in size. Besides, by promoting a finer wiring pattern, it is possible to increase the density of an organic multilayer wiring substrate and to decrease the outer dimension of a single multilayer wiring substrate, thereby greatly reducing manufacturing cost.
  • the insulating resin used for the insulating resin thin film layer 3 mainly consists of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and naphthalene resin.
  • a flip chip type semiconductor chip is often applied to a multiple-pin, high-speed logic device. In this respect, it matters how to efficiently radiate the heat of the semiconductor chip.
  • the second embodiment enhances the thermal characteristic of the flip chip type semiconductor device according to the present invention.
  • a flip chip type semiconductor device manufacturing method in the second embodiment is exactly the same as that in the first embodiment until the step shown in FIG. 3U.
  • a step shown in FIG. 4 is further added. Namely, using a radiating bonding agent 18 , a heat spreader 19 is attached to the reverse surface of the flip chip type semiconductor chip 14 . By providing this heat spreader 19 , the radiation effect of the semiconductor chips 14 can be obtained.
  • the radiating heat spreader 19 mainly consisting of a metal material such as Cu, Al, W, Mo, Fe, Ni, Cr or the like can be formed.
  • the heat spreader 19 can be also formed out of a ceramic material such as alumina, AlN, SiC, mullite or the like.
  • the radiating bonding agent 18 mainly consists of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and a naphthalene resin.
  • the bonding agent 18 contains a ceramic material such as Ag, Pd, Cu, Al, Au, Mo, W, diamond, alumina, AlN, mullite, BN, SiC or the like in addition to the main component.
  • an under-fill resin 20 is provided between the flip chip type semiconductor chip 14 and the multilayer wiring substrate. Then, using a bonding agent 21 , a stiffener 22 made of metal or ceramic is attached so as to secure the flatness of the multilayer wiring substrate. Thereafter, using a radiating bonding agent 18 , a radiating heat spreader 19 is attached to the reverse surface of the flip chip type semiconductor chip 14 .
  • the under-fill resin 20 which is mainly utilized in the conventional flip chip type semiconductor device manufacturing technique is employed without utilizing a method of arranging the insulating resin layer 16 by means of the injection method or the transfer sealing method utilized in the first and second embodiments. It is, therefore, possible to manufacture a flip chip type semiconductor device having the multilayer wiring substrate of the present invention without the need to employ a special manufacturing apparatus.
  • the under-fill resin 20 may be constituted to mainly consist of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and naphthalene resin.
  • the fourth embodiment is intended to obtain a patterned, two-sided wiring substrate 31 is employed instead of the insulating substrate 11 employed in the first embodiment, whereby a flip flop type semiconductor device capable of further realizing high performance and cost reduction.
  • the multilayer wiring layer 9 employed in the first embodiment on which the logic flip chip type semiconductor chips are mounted has a strip line conductor channel constitution for putting an Sig layer between GND plane layers such as, for example, a GND plane layer/an Sig layer/a GND plane layer/a power supply plane layer/a GND plane layer.
  • GND plane layers such as, for example, a GND plane layer/an Sig layer/a GND plane layer/a power supply plane layer/a GND plane layer.
  • the flip chip type semiconductor device in the fourth embodiment is constituted such that after the formation of a minimum multilayer wiring layer 9 , a two-sided wiring substrate 31 on both surfaces of which have been patterned and which is provided with a power supply plane function and a GND plane function is bonded to the multilayer wiring layer 9 .
  • the multilayer wiring layer 9 formed on a metal plate 1 having excellent flatness can be constituted by reduced-number of layers such as, for example, a GND plane layer/an Sig layer/a GND plane layer. As a result, it is possible to easily reduce the number of steps, to easily enhance manufacturing yield and to thereby reduce overall cost.
  • a flip chip type semiconductor device manufacturing method in the fourth embodiment is exactly the same as that in the first embodiment until a step shown in FIG. 6A. It is noted that the following description is intended to give an example of steps and does not limit the scope of the present invention in respect of structure, constitution, material and the like.
  • the entire surface of a metal plate 1 having high flatness and existing below a multilayer wiring layer is etched away to thereby leave only the multilayer wiring layer 9 .
  • the metal plate 1 having high flatness is made of, for example, Cu
  • the entire surface of the metal plate 1 can be easily etched away by using an etching solution of cupric chloride, ferrous chloride or the like.
  • a bonding layer 32 and a perforated two-sided wiring substrate 31 so as to expose external electrode pads 2 existing on the lowermost layer of the multilayer wiring structure are prepared.
  • FIG. 7A is a cross-sectional view of the enlarged two-sided wiring substrate 31 and FIG. 7B is a plane view thereof seen from a power supply plane 29 .
  • a conductor pattern layer 24 made of a metal material such as Cu is formed on each surface of the insulating resin core substrate 23 of the two-sided wiring substrate 31 .
  • Through hole processed sections 25 are formed in the insulating resin core substrate 23 at positions corresponding to external electrode pads 2 , respectively.
  • the side surfaces of the through hole processed sections 25 are subjected to a through hole plating processing by a metal material such as Cu.
  • signal (Sig) terminals 26 , power supply terminals 27 , GND terminals 28 and a power supply plane 29 are formed on the front surface of the insulating resin core substrate 23 by the conductor pattern layer 24 .
  • Sig terminals 26 , power supply terminals 27 , GND terminals 28 and a GND plane 30 are formed on the reverse surface of the substrate 23 by the conductor pattern layer 24 .
  • the front surface of the insulating resin core substrate 23 is mainly covered with the power supply plane 29 , and the Sig terminals 26 and the GND terminals 28 are electrically disconnected from the power supply plane 28 by ring-shaped grooves.
  • the reverse surface of the insulating resin core substrate 23 is mainly covered with the GND plane 30 , and the Sig terminals 26 and the power supply terminals 27 are electrically disconnected from the GND plane 30 by ring-shaped grooves.
  • the Sig terminals 26 , the power supply terminals 27 , the GND terminals 28 at the front surface side of the substrate 23 and the Sig terminals 26 , the power supply terminals 27 and the GND terminals 28 at the reverse surface side thereof are mutually connected by a Cu film or the like formed on the inner surface of each through hole by the through hole plating processing.
  • the both surfaces of the two-sided wiring substrate 31 constituted as stated above is designed in a predetermined pattern so that the Sig terminals 26 , the power supply terminals 27 and the GND terminals 28 are formed so as to correspond to the pin functions of the external electrode pads 2 of the multilayer wiring layer 9 , that the upper conductor pattern layer 24 on the upper surface of the two-sided wiring substrate 31 functions as the power supply plane 29 and that the lower conductor pattern layer 24 of the two-sided wiring substrate 31 functions as the GND plane 30 .
  • the two-sided wiring substrate 31 constituted as stated above can be easily manufactured at low cost if a two-sided Cu foil bonded substrate employing a glass epoxy material used for an ordinary circuit substrate. While the two-sided wiring substrate 31 shown in FIGS. 7A and 7B consists of two layers, the two-sided wiring substrate should not be limited thereto and may have a multilayer structure having four layers or six layers.
  • the two-sided wiring substrate 31 is aligned with the predetermined position of the multilayer wiring layer 9 so as to expose the external electrode pads 2 .
  • a perforated, sheet-like bonding layer 32 is interposed between the two-sided wiring substrate 31 and the multilayer wiring layer 9 and the two-sided wiring substrate 31 is bonded to the multilayer wiring layer 9 by this bonding layer 32 .
  • the through hole processed sections 25 provided in the two-sided wiring substrate 31 bonded to the multilayer wiring layer 9 are filled with a conductive bonding agent 13 .
  • a material for the conductive bonding agent 13 may be a solder paste containing solder powder flux or a mixture of metal powder, such as Cu, Ni or the like, having excellent wettability and an organic insulating bonding agent. Further, the conductive bonding agent 13 can be provided and filled in the through hole processed sections 25 by screen printing or the like.
  • the substrate 31 may be bonded to the multilayer wiring layer 9 .
  • flip chip type semiconductor chips 14 are mounted on the pad electrodes 7 formed on the uppermost layer of the multilayer wiring layer 9 while the surfaces of the semiconductor chips 14 on which surfaces the bump electrodes 15 are provided, are directed downward.
  • the flip chip semiconductor chips 14 can be mounted on the pad electrodes 7 by a thermal reflow step employing flux. If the bump electrode 15 mainly consists of a metal material such as Au, In or the like, the flip chip semiconductor chips 14 can be mounted on the pad electrodes 7 by thermal pressing.
  • an insulating resin layer 16 is provided on the side surfaces of the flip chip semiconductor chips 14 , flip chip junctions and regions in which the multilayer wiring layer 9 is exposed so as to protect the flip chip semiconductor chips 14 , the flip chip junctions and the multilayer wiring layer 9 .
  • an injection resin introduction technique or a transfer sealing technique incorporating a vacuum sealing technique may be employed.
  • solder balls 17 mainly consisting of Sn, Pb or the like are formed, as external terminals, on the conductive bonding agent 13 filled in the through hole processed sections 25 provided in the two-sided wiring substrate 31 .
  • the solder balls 17 are put on the agent 13 and a heat processing is performed by an IR reflow step, whereby the solder balls 17 can be mounted on the conductive bonding agent 13 .
  • the resultant substrate is cut into a plurality of pieces by a cut and separation technique employing a dicing blade or the like, whereby flip chip type semiconductor device is manufactured.
  • the patterned two-sided wiring substrate 31 is employed instead of the insulating substrate 11 employed in the first embodiment.
  • This embodiment therefore, ensures an enhanced power supply plane function and an enhanced GND plane function compared with the first embodiment. Accordingly, it is possible to further ensure high performance, to advantageously reduce the number of layers as constituent elements of the multilayer wiring layer and to thereby reduce cost.

Abstract

A multilayer wiring structure is formed on a flat metal plate and then an entire surface of the metal plate is etched away to thereby leave only a multilayer wiring layer. An insulating substrate having through hole sections is bonded to the multilayer wiring layer, a conductive bonding agent is embedded into the through hole section, a semiconductor chip is mounted and a solder ball is coupled.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a flip chip type semiconductor device wherein semiconductor chips are mounted on a multilayer wiring substrate and a method for manufacturing the same. Particularly, the present invention relates to a flip chip type semiconductor device which can be manufactured at low cost and set the wiring pattern pitch of the multilayer wiring substrate at 10 μm or less and a manufacturing method thereof. [0002]
  • 2. Description of the Related Art [0003]
  • FIGS. 1A and 1B show a conventional flip chip [0004] type semiconductor device 101. In the flip chip type semiconductor device shown in FIG. 1A, external terminals (not shown) are formed in the peripheral sections of a semiconductor chip 102 or an active region on the semiconductor chip 102 in an area array arrangement. Protruding bumps 103 are formed out of a metal material such as a solder, Au, an Sn—Ag alloy or the like on the external terminals, respectively.
  • This flip chip [0005] type semiconductor device 101 is mounted on a multilayer wiring mounted substrate 104 as shown in FIG. 1B. Electrode pads are formed on the multilayer wiring mounted substrate 104 to have the same pattern as the bump array pattern of the flip chip type semiconductor device 101. An end user mounts the flip chip type semiconductor device 101 on the multilayer wiring mounted substrate 104 while the bumps 103 of the device 101 aligned to the electrode pads of the multilayer wiring mounted substrate 104, respectively. If a solder is used as a bump material, the flip chip type semiconductor device 101 is mounted on the multilayer wiring mounted substrate 104 by an IR reflow step using flux.
  • However, the conventional flip chip [0006] type semiconductor device 101 has a disadvantage in that after mounting the semiconductor device 101 on the multilayer wiring mounted substrate 104, a temperature cycle characteristic, in particular, among mounting reliability factors deteriorates due to mismatch in the linear expansion coefficient between the multilayer wiring mounted substrate 104 and the flip chip type semiconductor device 101. To solve this disadvantage, the following measures have been conventionally taken.
  • First, with a view to making the linear expansion coefficient of the multilayer wiring mounted [0007] substrate 104 closer to that of silicon, a ceramic material such as AlN, mullite or glass ceramic, which is expensive as a material, has been used to minimize mismatch in the linear expansion coefficient, to thereby enhance mounting reliability. Although this attempt was effective for enhancing mounting reliability, it is applicable only to high-end super computers, large computers or the like because an expensive ceramic material is used for the multilayer wiring substrate.
  • In recent years, there is proposed a technique capable of enhancing mounting reliability by mounting a flip chip semiconductor device while arranging an under-fill resin between a multilayer wiring substrate made of an organic material, which is inexpensive and has a high linear expansion coefficient, and a semiconductor chip. By arranging the under-fill resin between the semiconductor chip and the multilayer wiring substrate made of an organic material, it is possible to disperse a shearing force exerted on a bump connection portion existing between the semiconductor chip and the multilayer wiring substrate made of an organic material and to thereby enhance mounting reliability. In this way, it is possible to employ a multilayer wiring substrate made of an inexpensive organic material by interposing an under-fill resin between the semiconductor chip and the multilayer wiring substrate made of the organic material. [0008]
  • Nevertheless, with this conventional technique, if voids exist in the under-fill resin, or the bonding characteristic at the interface between the under-fill resin and the semiconductor chip and the interface between the under-fill resin and the multilayer wiring substrate made of an organic material are not good, a separation of the bonding portion occurs at the interfaces in a step of reflow absorbing the moisture to a product to thereby disadvantageously make the product defective. For that reason, the above-stated conventional technique does not ensure reducing the cost of a flip chip type semiconductor device. [0009]
  • Further, a multilayer wiring substrate referred to as a buildup substrate is normally employed for a multilayer wiring substrate made of an organic material for a flip chip type semiconductor device because of the shortest pitch of a bump array pattern and the number of pins. A method of manufacturing this buildup substrate will be described with reference to FIGS. 2A to [0010] 2F.
  • First, as shown in FIG. 2A, a Cu foil layer [0011] 111 having a predetermined thickness of 10 to 40 μm is bonded to each surface of a core substrate 110 made of an insulating glass epoxy material and patterning is conducted to the Cu foil layer 111. After forming holes in the core substrate 110 by drilling or the like, the through holes are subjected to a plating processing, thereby forming penetrating through hole sections 112 to electrically connect the Cu foil layers 111 on the both surfaces of the core substrate 110 to each other. In that case, an insulating resin layer 113 is usually filled in the penetrating through hole section 112 in light of the process stability of later steps and the quality stability of the substrate.
  • Next, as shown in FIG. 2B, an [0012] insulating resin layer 114 is arranged on the Cu wiring pattern existing on the front and rear surfaces of the core substrate 110, respectively and openings 115 are thereby formed at predetermined positions of the insulating resin layer 114 by a chemical etching method utilizing a photoresist technique, a laser processing technique or the like.
  • Then, as shown in FIG. 2C, metal [0013] thin layers 16 are formed by sputtering metal such as Ti or Cu, or by electroless plating Cu on the insulating resin layer 114 so as to secure the electrical connection between a feed layer for electrolytic plating of Cu and the Cu wiring pattern on the core substrate.
  • Thereafter, as shown in FIG. 2D, to form a wiring pattern by electrolytic plating of Cu, a photo-[0014] resist 117 or a dry film having a thickness of about 20 to 40 μm is arranged on each surface of the metal thin film layer 116, and exposure and development processing is conducted thereto.
  • As shown in FIG. 2E, using the exposed metal [0015] thin film layers 116 as feed layers, an electrolytic plating of Cu is conducted to thereby form wiring pattern sections 118.
  • Then, as shown in FIG. 2F, after separating the [0016] photoresists 117 or dry films, using the wiring pattern sections 118 as a mask, the metal thin film layers 116 are removed by wet etching and the wiring pattern sections 118 are made electrically independent.
  • By repeating the steps shown in FIGS. 2B to [0017] 2F, it is possible to form a multilayer wiring substrate having six or eight metal layers according to necessity.
  • However, in the above-stated buildup substrate manufacturing method, it is necessary to employ [0018] photoresists 117 or dry films each having a thickness of about 20 to 40 μm so as to secure the thickness of the buildup layer wiring pattern sections in view of the relax of a stress caused by the difference in the thermal expansion coefficient between the core substrate 110 and the buildup substrate and the reliability of the multilayer wiring substrate such as the reliability of connection via hole sections and the like. Due to this, it is necessary to use photoresists 117 or dry films each having a thickness of 20 to 40 μm. Pattern formation characteristic which can be realized, is only about 30 μm at the shortest pitch in exposure and development steps accordingly. As a result, the wiring pattern pitch becomes 30 μm at the shortest and it is impossible to promote making the multilayer wiring substrate high in density and the outer shape of the substrate small in size. Further, an ordinary buildup substrate manufacturing method adopts manufacturing steps of creating products altogether on a large panel of about 500 mm×600 mm and cutting the panel in a final step to thereby take out a plurality of multilayer wiring substrates. Due to this, if it is possible to make the outer dimension of a single multilayer wiring substrate small, the number of multilayer wiring substrates per panel can be increased. According to the conventional buildup substrate manufacturing method, however, the wiring pattern pitch described above can be shortened to a minimum of about 30 μm. It is, therefore, impossible to shorten the outer dimension of a single multilayer wiring substrate and difficult to greatly reduce multilayer wiring substrate cost.
  • The above-stated multilayer wiring substrate manufacturing method is also encountered by a warpage problem. Namely, the core substrate [0019] 110 warps. In exposure and development steps for forming buildup wiring patterns, the misalignment of resist patterns occurs due to the warp of the core substrate 110. This misalignment causes the deterioration of manufacturing yield.
  • Moreover, it is necessary to form buildup layers on the front and rear surfaces of the core substrate [0020] 110, respectively, which are not essentially required, so as to suppress the core substrate 110 from warping. As a result, an organic multilayer wiring substrate is forced to include more layers than necessary, which deteriorates manufacturing yield and thereby hampers the reduction of manufacturing cost.
  • As means for solving the above-stated disadvantages, the inventors of the present application proposed a technique disclosed in Japanese Patent Application No. 11-284566 (filed in the Japanese Patent Office on 1999). According to this prior application, there is provided a constitution in which a buildup wiring layer serving as the second substrate layer is formed on the first substrate (Base substrate) having flatness and high rigidity. It is noted that this prior application is not published for public inspection at the time of filing the present application and it does not, therefore, become a prior art. [0021]
  • Then, the first substrate (Base substrate) having flatness and high rigidity is selectively etched away to thereby form external electrode column sections. After forming an insulating stress buffer resin layer around each external electrode column section, a solder ball is formed as an external terminal. [0022]
  • By this constitution, wiring layers or, in particular, multilayer wirings which are dynamically restricted by either a material or a base layer capable of maintaining high flatness are formed. As a result, the occurrence of an internal stress to the multilayer wiring layer is suppressed, thereby making it possible to enhance yield in semiconductor device manufacturing steps. [0023]
  • Furthermore, the solder ball sections used to be mounted on a substrate by an end user's side are formed on the external electrode column sections surrounded by the insulating stress buffer resin layer. Due to this, it is possible to increase the standoff height of each solder ball. Besides, since the stress buffer effect of the insulating stress buffer resin layer is added, a flip chip type semiconductor device excellent in mounting reliability can be obtained. [0024]
  • Moreover, it is not always necessary to form a metal thin film wiring thick of about 10 to 30 μm unlike a buildup substrate according to the conventional technique and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Thus, it is possible to easily process the thickness of each photoresist and that of a metal thin film wiring section in a region as thin as 1 μm or less and to easily form a smaller-sized wiring pattern. Additionally, by making the wiring pattern smaller in size, it is possible to increase the density of the organic multilayer wiring substrate, to decrease the outside dimensions of a single multilayer wiring substrate and to thereby considerably reduce cost. [0025]
  • Further, each package can be manufactured by a wafer level processing, so that the number of steps can be advantageously, greatly reduced compared with a packaging method for manufacturing packages from a single piece and cost can be advantageously, considerably reduced. [0026]
  • Nevertheless, with the structure proposed by Japanese Patent Application No. 11-284566, in a step of selectively etching away the first substrate (Base substrate) layer having flatness and high rigidity to thereby form external electrode column sections, if the thickness of the first substrate (Base substrate) is quite large at least 1.0 mm, the etching-away step for forming the external electrode column sections is disadvantageously made quite difficult to execute accordingly. [0027]
  • To execute the etching-away step, there are two methods, i.e., a wet etching method and a dry etching method. In case of the wet etching method using chemicals, the first substrate is etched isotropically, i.e., etching is conducted simultaneously in a thickness direction and a lateral direction. Due to this, if the thickness of the first substrate (Base substrate) is quite large at least 1.0 mm, in particular, it is difficult to ensure the stability of the shapes of the external electrode column sections, to minimize the irregularity of the shapes thereof, and to ensure product quality. [0028]
  • On the other hand, according to the dry etching method utilizing a plasma technique, the first substrate is etched anisotropically, i.e., etching is conducted in a thickness direction. This facilitates ensuring the stability of the shapes of the external electrode column sections and suppressing the irregularity of the shapes thereof. However, the normal etching rate of the dry etching method is as slow as 10 nm/minute to 100 Å/minute. If the thickness of the first substrate (Base substrate) is as large as at least 1.0 mm, it takes longer to complete etching, which makes manufacturing time longer to thereby cause cost increase. [0029]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a flip chip type semiconductor device and a method for manufacturing the same capable of manufacturing a multilayer wiring substrate having a fine wiring pattern pitch of less than 10 μm or low at low cost, preventing the occurrence of misalignment in a photolithographic step due to warpage of the substrate and avoiding disadvantages of longer etching time and longer-manufacturing time. [0030]
  • A flip chip type semiconductor device according to the present invention comprises a multilayer wiring layer having a multilayer wiring structure; a substrate consisting of one of an insulating substrate and a multilayer wiring substrate having penetrating holes embedded with a conductive material; a bonding agent film interposed between the multilayer wiring layer and said substrate, and bonding the multilayer wiring layer to said substrate; and a semiconductor chip mounted on said multilayer wiring layer. [0031]
  • In this flip chip type semiconductor device, for example, the conductive material is a conductive bonding agent. And terminal balls may be coupled to the conductive bonding agent on a surface of the substrate. Also, for example, the flip chip type semiconductor device has an external electrode pad formed on an uppermost layer of the multilayer wiring layer; and a bump electrode provided on the semiconductor chip and connected to the external electrode pad. [0032]
  • Further, the flip chip type semiconductor device according the present invention may comprise an insulating resin layer for embedding side of the semiconductor chip; and a radiating heat spreader coupled to the semiconductor chip. Alternatively, the flip chip type semiconductor device according to the present invention may comprise a radiating heat spreader coupled to the semiconductor chip; and a stiffener arranged on each side of the semiconductor chip and interposed between the heat spreader and the multilayer wiring layer. [0033]
  • Meanwhile, a flip chip type semiconductor device manufacturing method according to the present invention comprises the steps of: forming a multilayer wiring structure on a first substrate consisting of a flat metal plate; etching away the first substrate to form a second substrate consisting of a multilayer wiring layer; coupling a third substrate to the second substrate consisting of the multilayer wiring layer to obtain a multilayer wiring substrate; and mounting a semiconductor chip on the second substrate. [0034]
  • In this flip chip type semiconductor device manufacturing method, the third substrate can be one of an insulating substrate and a multilayer substrate provided with holes. [0035]
  • Further, the second substrate can be manufactured by the steps of: forming an external electrode pad on the first substrate; forming an insulating thin film layer on an entire surface of the external electrode pad, and etching away the insulating thin film on the external electrode pad to form an opening; forming a metal thin layer on an entire surface, and patterning a resultant substrate to form a metal thin film wiring section connected to the external electrode pad in the opening; repeating formation of the insulating thin film layer and formation of the metal thin film wiring section; and forming an insulating resin thin film layer on an entire surface, forming an opening on the metal thin film wiring section below the insulating resin thin film layer and forming a pad electrode in the opening. [0036]
  • Moreover, it is possible to provide the step of embedding a conductive bonding agent into the hole of the third substrate and the step of coupling a solder ball onto the conductive bonding agent. [0037]
  • The semiconductor chip has a bump electrode; and in a step of mounting the semiconductor chip, the bump electrode is coupled to the external electrode pad of the second substrate. [0038]
  • Moreover, it is possible to provide the step of coupling a radiator to a reverse surface of the semiconductor chip through a heat transfer bonding agent. In this case, there are provided the steps of: coupling a stiffener on the second substrate at a position putting the semiconductor chip between the stiffener and the second substrate; and mounting the radiator on the semiconductor chip and the stiffener. Thus, it is possible to constitute a flip chip type semiconductor device to obtain the flatness of the multilayer wiring substrate. [0039]
  • According to the present invention, it is possible to maintain high flatness in the multilayer wiring substrate manufacturing steps, and to suppress the occurrence of an internal stress to the multilayer wiring layer. Further, after bonding the insulating substrate to this multilayer wiring layer, the semiconductor chip is mounted. Thus, semiconductor devices can be manufactured with high yield. Further, it is possible to employ an insulating substrate made of a material having a similar linear expansion coefficient as that of a mounting substrate employed by an end user side, on the lower layer of the multilayer wiring layer. In addition, since the solder ball is formed on the conductive bonding agent filled into the through hole in the insulating substrate, it is possible to facilitate enhancing a standoff height during mounting easily. Besides, since it is possible to minimize mismatch in the linear expansion coefficient, a flip chip type semiconductor device excellent in mounting reliability can be easily manufactured. [0040]
  • Furthermore, according to the present invention, it is not necessary to form the metal thin film wiring section thick or about 10 to 30 μm unlike the conventional case, and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of a photoresist and that of the metal thin film wiring section can be processed in a thin range of 1 μm or less, so that a finer wiring pattern can be easily obtained. Besides, by promoting a finer wiring pattern, it is possible to increase the density of an organic multilayer wiring substrate, to reduce the outer dimension of the single multilayer wiring substrate and to thereby greatly reduce manufacturing cost. [0041]
  • Moreover, according to the present invention, the Base substrate having high flatness is entirely removed. Thus, it is not necessary to selectively etch away this substrate, thereby making the manufacturing process quite simple. [0042]
  • Additionally, according to the present invention, it is possible to manufacture each package by a wafer level processing. Thus, compared with a packaging method of manufacturing respective packages from individual pieces, it is possible to greatly reduce the number of steps and to thereby greatly reduce cost.[0043]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B are cross-sectional views of a conventional flip chip type semiconductor device; [0044]
  • FIGS. 2A to [0045] 2F are cross-sectional views showing a method of manufacturing a conventional buildup substrate in the order of manufacturing steps;
  • FIGS. 3A to [0046] 3U are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the first embodiment according to the present invention in the order of manufacturing steps;
  • FIG. 4 is a cross-sectional view of a flip chip type semiconductor device manufactured by the second embodiment according to the present invention; [0047]
  • FIG. 5 is a cross-sectional view of a flip chip type semiconductor device manufactured by the third embodiment according to the present invention; [0048]
  • FIGS. 6A to [0049] 6H are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the fourth embodiment according to the present invention in the order of manufacturing steps; and
  • FIG. 7A is a cross-sectional, enlarged view of a twosided wiring substrate in the fourth embodiment, and FIG. 7B is a plan view thereof.[0050]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The embodiments of the present invention will be concretely described hereinafter with reference to the accompanying drawings. FIGS. 3A to [0051] 3U are cross-sectional views showing a method of manufacturing a flip chip type semiconductor device in the first embodiment according to the present invention. First, as shown in FIG. 3A, a metal plate 1 having high flatness is prepared. The metal plate 1 is made of metal or an alloy mainly consisting of Cu, Ni, Al or the like. The metal plate 1 having high flatness may have a wafer shape used in a semiconductor manufacturing step.
  • Next, as shown in FIG. 3B, Ti, Cr, Mo, a W alloy or the like is sputtered onto the [0052] metal plate 1 so as to serve as a bonding metal layer relative to the metal plate 1 to thereby form a thin film made of the above metal or alloy. Thereafter, a material such as Cu, Al, Ni or the like is sputtered as an electrode material, thereby forming a thin film serving as an electrode metal layer following the formation of the bonding metal layer. Then, after a photoresist is coated on the resultant substrate, exposure and development processings are conducted to pattern the resist. Using the resist film as a mask, the bonding metal layer and the electrode layer thin film are patterned by a wet etching technique or a dry etching technique which utilizes a plasma surface processing technique. As a result, as shown in FIG. 3B, external electrode pads 2 each consisting of a multilayer of the bonding metal layer and the electrode metal layer are formed.
  • Next, as shown in FIG. 3C, an insulating resin [0053] thin film layer 3 is arranged on the sections of the metal plate 1 on which the external electrode pads 2 are formed. This insulating resin thin film layer 3 is formed out of a liquid insulating material by spin coating or by the CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) method utilizing the plasma surface processing technique.
  • Next, as shown in FIG. 3D, the insulating resin [0054] thin film layer 3 on the external electrode pads 2 is partially removed and openings 4 are formed in the insulating resin thin film layer 3. In this case, after coating a photoresist, exposure and development processing are conducted to thereby form a resist pattern. Then, using this resist as a mask, the insulating resin thin film layer 3 is etched to thereby form the openings 4. To etch the insulating resin thin film layer 3, the wet etching method can be used if the insulating resin thin film layer 3 is made of a material which can be subjected to chemical etching, or the dry etching method utilizing the plasma surface processing technique can be used if the insulating resin thin film layer 3 is made of a material which cannot be subjected to chemical etching.
  • As shown in FIG. 3E, a metal [0055] thin film layer 5 is formed on the entire surface of the insulating resin thin film layer 3. In this case, following the formation of a thin film made of Ti, Cr, Mo or W alloy by sputtering or the like as the bonding metal layer relative to the external electrode pads 2, a thin film made of an electrode material such as Cu, Al or Ni is formed by the sputtering method, the CVD method, the electroless plating method or the like consecutively with the formation of the former thin film, thereby forming the metal thin film layer 5.
  • Thereafter, as shown in FIG. 3F, a photoresist is coated on the metal [0056] thin film layer 5 and exposure and development processings are conducted to thereby form a resist pattern. Using this resist as a mask, the metal thin film layer 5 is etched by either the wet etching method or the dry etching method utilizing the plasma surface processing technique, thereby forming metal thin film wiring sections 6.
  • In the wiring pattern formation step of the present invention, it is not always necessary to form the metal thin [0057] film wiring sections 6 to have a large thickness of about 10 to 30 μm unlike the buildup substrate, and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of the photoresist and those of the metal thin film wiring sections 6 can be made small, i.e., 1 μm or less. As a result, the metal thin film wiring sections 6 can be easily processed and the fine wiring pattern can be easily provided.
  • In addition, if the metal thin [0058] film wiring section 6 may have a wide pattern pitch, the metal thin film wiring sections 6 may be formed by forming the metal thin film layer 5 on the entire surface of the insulating resin thin film layer 3, coating a photoresist and conducting exposure and development processings to thereby pattern the resist, forming a wiring pattern consisting of the metal thin film while using this resist as a mask, forming a wiring pattern by electroless plating using Cu or the like, separating the photoresist and etching the metal thin film layer 5 while using the wiring pattern as a mask.
  • Next, as shown in FIGS. 3G, 3H, [0059] 3I, 3J and 3K, by repeating the steps from the formation of the insulating resin thin film layer 3 (FIG. 3C) to the formation of the metal thin film wiring sections 6 in a predetermined pattern, a multilayer wiring structure having a predetermined number of layers is formed. For example, FIGS. 3G, 3I and 3K show that the insulating resin thin film layer 3 and the openings 4 thereof have been formed, and FIGS. 3H and 3J show that the metal thin film wiring sections 6 to be embedded in the respective openings 4 have been formed.
  • Next, as shown in FIG. 3L, using the technique for forming the metal thin [0060] film wiring sections 6, pad electrodes 7 are formed on the uppermost layer of the multilayer wiring structure at positions corresponding to the bump electrode patterns of the flip chip type semiconductor chip, respectively.
  • Thereafter, as shown in FIG. 3M, solder resist [0061] films 8 are formed to protect the multilayer wiring structure and the pad electrodes 7 and openings 8 a are provided in the solder resist films 8 on the pad electrodes 7. If the solder resist films 8 are made of a non-photosensitive material, photoresists are coated on the films 8, respectively and exposure and development processings are conducted. Then, the openings 8 a are formed in the solder resist films 8, respectively, by means of either the wet etching method or the dry etching technique utilizing the plasma surface processing technique. If the solder resist films 8 are made of a photosensitive material, exposure and development processings may be directly conducted to the films 8 to form the openings 8 a in the respectively solder resist films 8. It is noted that if the insulating resin thin film layer in the multilayer wiring structure has quite high reliability in resisting mechanical and chemical stresses, there is no need to form the solder resist films 8.
  • Next, as shown in FIG. 3N, the [0062] metal plate 1 having high flatness and existing below the multilayer wiring structure is removed by etching the entire surface of the plate 1 to thereby leave only the multilayer wiring layer 9. In this case, if the metal plate 1 having high flatness is made of Cu, it is possible to easily remove the plate 1 by etching the entire surface of the plate 1 using an etching solution of cupric chloride, ferrous chloride or the like.
  • Thereafter, as shown in FIG. 30, an insulating [0063] substrate 11 onto which a bonding agent 10 is attached is prepared and through holes 12 are formed in the insulating substrate 11 at positions at which the external electrode pads 2 existing on the lowermost layer of the multilayer wiring layer 9 are exposed, respectively.
  • Next, as shown in FIG. 3P, the perforated insulating [0064] substrate 11 to which the bonding agent is attached is aligned with the predetermined position of the multilayer wiring layer 9 and bonded to the multilayer wiring layer 9 so as to expose the external electrode pads 2.
  • As shown in FIG. 3Q, a [0065] conductive bonding agent 13 is filled in the through holes 12 provided in the adhesive agent attached-insulating substrate 11 bonded to the multilayer wiring layer 9, whereby a multilayer wiring substrate is completed.
  • In the above case, to shorten the steps, the substrate having the through holes [0066] 12 provided in the adhesive agent attached-insulating substrate 11 and filled with the conductive material may be bonded to the multilayer wiring layer 9 in advance.
  • If an electrical characteristic test is conducted only to the single multilayer wiring substrate after the completion of the above-stated steps, good flip chip type semiconductor chips may be mounted only to the sections determined to be electrically good in a later flip chip mounting step. [0067]
  • Next, as shown in FIG. 3R, flip chip [0068] type semiconductor chips 14 are mounted on the pad electrodes 7, respectively while the surface of the chips on which surface the bump electrodes 15 are provided are directed downward, and a flip chip mounting processing is conducted. In this case, if the bump electrode 15 for each flip chip type semiconductor chip 14 is a solder mainly consisting of a metal material such as Sn, Pb or the like, the flip chip mounting can be conducted by heating reflow step using flex. Further, if the bump electrode 15 for each flip chip type semiconductor ship 14 is a solder mainly consisting of a metal material such as Au, In or the like, the flip chip mounting can be conducted by thermal pressing.
  • Thereafter, as shown in FIG. 3S, an insulating [0069] resin layer 16 is filled in the side surfaces of the flip chip semiconductor chips 14, flip chip junctions and regions in which the multilayer wiring layer 9 is exposed so as to protect the flip chip semiconductor chips 14, the flip chip junctions and the multilayer wiring layer 9.
  • In this case, to provide the insulating [0070] resin layer 16, an injection resin introduction technique or a transfer sealing technique including a vacuum sealing technique can be employed.
  • Then, as shown in FIG. 3T, [0071] solder balls 17 each mainly consisting of a metal material such as Sn or Pb are attached, as external terminals, onto the conductive bonding agent 13 filled in the through holes 12 provided in the bonding agent-attached insulating substrate 11. In this case, after selectively applying flux onto the conductive bonding agent 13 filled in the through holes 12, the solder balls 17 are put on the bonding agent 13 and a heat processing is conducted by an IR reflow step, thereby mounting the solder balls 17.
  • Thereafter, as shown in FIG. 3U, the resultant substrate is cut into a plurality of pieces by a cut and separation technique using a dicing blade or the like, thereby completing flip chip type semiconductor devices. [0072]
  • With the multilayer wiring substrate manufacturing method according to the present invention, it is possible to maintain high flatness and to suppress the occurrence of an internal stress to the [0073] multilayer wiring layer 9. Namely, according to the present invention, since the multilayer wiring structure (multilayer wiring layer 9) is formed on the metal plate 1 having high flatness, the multilayer wiring layer 9 has also high flatness, less warps and a low internal stress. Therefore, if the semiconductor chips 14 are mounted after bonding the insulating substrate 11 to this multilayer wiring layer 9, it is possible to manufacture semiconductor devices with high yield.
  • Further, according to the semiconductor device of the present invention, the [0074] solder balls 17 are provided so that an end user mounts the semiconductor device of the present invention on the substrate of the end user. Since the through holes 12 provided in the insulating substrate 11 are filled with the conductive bonding agent 13 and the solder balls 17 are bonded onto the conductive bonding agent sections 13, respectively, the conductive bonding agent sections 13 function as external electrode column sections and allow increasing the standoff heights of the solder balls 17. Further, if the resin substrate is used as the insulating substrate 11, the stress buffer effect of the insulating resin is also added, a flip chip type semiconductor device having excellent mounting reliability can be obtained. Moreover, such a material as to have a similar linear expansion coefficient to that of the mounting substrate prepared by the end user can be easily used for the insulating substrate 11. A material for this insulating substrate 11 depends on a material for the mounting substrate used by the end user. For example, polyimide, glass epoxy, alumina, mullite or the like may be employed as a material for the insulating substrate 11. Since a material for the insulating substrate 11 can be selected from a wide range of materials, it is possible to prevent mismatch in the linear expansion coefficient after the end user mounts the flip chip type semiconductor device on the mounting substrate and to particularly enhance temperature cycle characteristic among mounting reliability factors.
  • As can be understood from the above, according to the flip chip type semiconductor device of the present invention, it is possible to easily enhance a standoff height during mounting and to minimize mismatch in the linear expansion coefficient. Thus, a flip chip type semiconductor device excellent in mounting reliability can be easily manufactured. Further, according to the flip chip type semiconductor device of the present invention, the standoff height of each solder ball is large and a stress can be absorbed by the solder balls. Due to this, unlike the conventional device, it is not necessary to absorb a stress by providing a thick wiring. [0075]
  • Moreover, in the step of forming the wiring pattern of the multilayer wiring substrate of the present invention, it is not always necessary to form the metal thin film wirings thick or about 10 to 30 μm unlike the buildup substrate according to the conventional technique and a semiconductor wafer metalization manufacturing method and a manufacturing apparatus therefor can be utilized. Due to this, the thickness of each photoresist and that of the metal thin film wiring section can be processed in a region as thin as 1 μm or less and the wiring pattern can be, therefore, easily made smaller in size. Besides, by promoting a finer wiring pattern, it is possible to increase the density of an organic multilayer wiring substrate and to decrease the outer dimension of a single multilayer wiring substrate, thereby greatly reducing manufacturing cost. [0076]
  • Furthermore, with the structure proposed by Japanese Patent Application No. 11-284566, in the step of selectively etching away the first substrate having flatness and high rigidity (Base substrate having high flatness) to thereby form external electrode column sections, the problem that the etching-away step for forming the external electrode column sections is difficult to execute, arises particularly if the thickness of the first substrate (Base substrate) is quite large or 1.0 mm or more. According to the present invention, by contrast, since the entire surface of the Base substrate having high flatness is removed, it is not required to selectively etch away the Base substrate unlike Japanese Patent Application No. 11-284566, thereby quite facilitating manufacturing process. [0077]
  • Additionally, according to the present invention, it is possible to manufacture respective packages by the wafer level processing. Thus, compared with a packaging method for manufacturing respective packages from single pieces, it is possible to greatly reduce the number of steps and to thereby greatly reduce cost. [0078]
  • As for the flip chip type semiconductor device manufacturing method, it is preferable that the insulating resin used for the insulating resin [0079] thin film layer 3 mainly consists of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and naphthalene resin.
  • Next, the second embodiment of the present invention will be described hereinafter with reference to FIG. 4. A flip chip type semiconductor chip is often applied to a multiple-pin, high-speed logic device. In this respect, it matters how to efficiently radiate the heat of the semiconductor chip. The second embodiment enhances the thermal characteristic of the flip chip type semiconductor device according to the present invention. [0080]
  • A flip chip type semiconductor device manufacturing method in the second embodiment is exactly the same as that in the first embodiment until the step shown in FIG. 3U. In the second embodiment, a step shown in FIG. 4 is further added. Namely, using a radiating [0081] bonding agent 18, a heat spreader 19 is attached to the reverse surface of the flip chip type semiconductor chip 14. By providing this heat spreader 19, the radiation effect of the semiconductor chips 14 can be obtained.
  • The radiating [0082] heat spreader 19 mainly consisting of a metal material such as Cu, Al, W, Mo, Fe, Ni, Cr or the like can be formed. The heat spreader 19 can be also formed out of a ceramic material such as alumina, AlN, SiC, mullite or the like.
  • The radiating [0083] bonding agent 18 mainly consists of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and a naphthalene resin. The bonding agent 18 contains a ceramic material such as Ag, Pd, Cu, Al, Au, Mo, W, diamond, alumina, AlN, mullite, BN, SiC or the like in addition to the main component.
  • Next, the third embodiment of the present invention will be described hereinafter with reference to FIG. 5. In the third embodiment, an under-[0084] fill resin 20 is provided between the flip chip type semiconductor chip 14 and the multilayer wiring substrate. Then, using a bonding agent 21, a stiffener 22 made of metal or ceramic is attached so as to secure the flatness of the multilayer wiring substrate. Thereafter, using a radiating bonding agent 18, a radiating heat spreader 19 is attached to the reverse surface of the flip chip type semiconductor chip 14.
  • In the flip chip type semiconductor device in the third embodiment constituted as stated above, the under-[0085] fill resin 20 which is mainly utilized in the conventional flip chip type semiconductor device manufacturing technique is employed without utilizing a method of arranging the insulating resin layer 16 by means of the injection method or the transfer sealing method utilized in the first and second embodiments. It is, therefore, possible to manufacture a flip chip type semiconductor device having the multilayer wiring substrate of the present invention without the need to employ a special manufacturing apparatus.
  • Furthermore, the under-[0086] fill resin 20 may be constituted to mainly consist of one of an epoxy resin, a silicon resin, a polyimide resin, a polyolefin resin, a cyanate ester resin, a phenol resin and naphthalene resin.
  • Next, the fourth embodiment will be described with reference to FIGS. 6A to [0087] 6EH. The fourth embodiment is intended to obtain a patterned, two-sided wiring substrate 31 is employed instead of the insulating substrate 11 employed in the first embodiment, whereby a flip flop type semiconductor device capable of further realizing high performance and cost reduction.
  • Normally, the [0088] multilayer wiring layer 9 employed in the first embodiment on which the logic flip chip type semiconductor chips are mounted, has a strip line conductor channel constitution for putting an Sig layer between GND plane layers such as, for example, a GND plane layer/an Sig layer/a GND plane layer/a power supply plane layer/a GND plane layer. This makes it possible to enhance electrical characteristic including controlling the impedance of an Sig wiring, reducing inductance and reducing cross talk noise.
  • Meanwhile, it is essential to form stable power supply wiring layers, i.e., a power supply plane layer and a GND plane layer so as to stabilize respective circuit operations and many layers are normally added below the Sig layer. However, if the number of layers is repeatedly increased by the buildup method as described in the first embodiment, it causes the increase of the number of steps and the deterioration of manufacturing yield. Consequently, cost is disadvantageously pushed up. [0089]
  • Considering the above, the fourth embodiment of the present invention is intended to solve the disadvantages of the first embodiment. The flip chip type semiconductor device in the fourth embodiment is constituted such that after the formation of a minimum [0090] multilayer wiring layer 9, a two-sided wiring substrate 31 on both surfaces of which have been patterned and which is provided with a power supply plane function and a GND plane function is bonded to the multilayer wiring layer 9.
  • In other words, since the power supply plane function and the GND plane function are added to the two-[0091] sided wiring substrate 31, the multilayer wiring layer 9 formed on a metal plate 1 having excellent flatness can be constituted by reduced-number of layers such as, for example, a GND plane layer/an Sig layer/a GND plane layer. As a result, it is possible to easily reduce the number of steps, to easily enhance manufacturing yield and to thereby reduce overall cost.
  • Hereinafter, the fourth embodiment of the present invention will be described concretely. A flip chip type semiconductor device manufacturing method in the fourth embodiment is exactly the same as that in the first embodiment until a step shown in FIG. 6A. It is noted that the following description is intended to give an example of steps and does not limit the scope of the present invention in respect of structure, constitution, material and the like. [0092]
  • First, as shown in FIG. 6A, the entire surface of a [0093] metal plate 1 having high flatness and existing below a multilayer wiring layer is etched away to thereby leave only the multilayer wiring layer 9. In this case, if the metal plate 1 having high flatness is made of, for example, Cu, the entire surface of the metal plate 1 can be easily etched away by using an etching solution of cupric chloride, ferrous chloride or the like.
  • Next, as shown in FIG. 6B, a [0094] bonding layer 32 and a perforated two-sided wiring substrate 31 so as to expose external electrode pads 2 existing on the lowermost layer of the multilayer wiring structure are prepared.
  • FIG. 7A is a cross-sectional view of the enlarged two-[0095] sided wiring substrate 31 and FIG. 7B is a plane view thereof seen from a power supply plane 29. A conductor pattern layer 24 made of a metal material such as Cu is formed on each surface of the insulating resin core substrate 23 of the two-sided wiring substrate 31. Through hole processed sections 25 are formed in the insulating resin core substrate 23 at positions corresponding to external electrode pads 2, respectively. The side surfaces of the through hole processed sections 25 are subjected to a through hole plating processing by a metal material such as Cu. Also, signal (Sig) terminals 26, power supply terminals 27, GND terminals 28 and a power supply plane 29 are formed on the front surface of the insulating resin core substrate 23 by the conductor pattern layer 24. Likewise, Sig terminals 26, power supply terminals 27, GND terminals 28 and a GND plane 30 are formed on the reverse surface of the substrate 23 by the conductor pattern layer 24. Namely, the front surface of the insulating resin core substrate 23 is mainly covered with the power supply plane 29, and the Sig terminals 26 and the GND terminals 28 are electrically disconnected from the power supply plane 28 by ring-shaped grooves. Likewise, the reverse surface of the insulating resin core substrate 23 is mainly covered with the GND plane 30, and the Sig terminals 26 and the power supply terminals 27 are electrically disconnected from the GND plane 30 by ring-shaped grooves. The Sig terminals 26, the power supply terminals 27, the GND terminals 28 at the front surface side of the substrate 23 and the Sig terminals 26, the power supply terminals 27 and the GND terminals 28 at the reverse surface side thereof are mutually connected by a Cu film or the like formed on the inner surface of each through hole by the through hole plating processing.
  • The both surfaces of the two-[0096] sided wiring substrate 31 constituted as stated above is designed in a predetermined pattern so that the Sig terminals 26, the power supply terminals 27 and the GND terminals 28 are formed so as to correspond to the pin functions of the external electrode pads 2 of the multilayer wiring layer 9, that the upper conductor pattern layer 24 on the upper surface of the two-sided wiring substrate 31 functions as the power supply plane 29 and that the lower conductor pattern layer 24 of the two-sided wiring substrate 31 functions as the GND plane 30.
  • In addition, the two-[0097] sided wiring substrate 31 constituted as stated above can be easily manufactured at low cost if a two-sided Cu foil bonded substrate employing a glass epoxy material used for an ordinary circuit substrate. While the two-sided wiring substrate 31 shown in FIGS. 7A and 7B consists of two layers, the two-sided wiring substrate should not be limited thereto and may have a multilayer structure having four layers or six layers.
  • Thereafter, as shown in FIG. 6C, the two-[0098] sided wiring substrate 31 is aligned with the predetermined position of the multilayer wiring layer 9 so as to expose the external electrode pads 2. A perforated, sheet-like bonding layer 32 is interposed between the two-sided wiring substrate 31 and the multilayer wiring layer 9 and the two-sided wiring substrate 31 is bonded to the multilayer wiring layer 9 by this bonding layer 32.
  • In this case, if a vacuum lamination unit or a vacuum presser employed in an ordinary circuit substrate manufacturing process is employed, the processing for bonding the two-[0099] sided wiring substrate 31 to the multilayer wiring layer 9 as stated above can be easily carried out.
  • Further, if a material having a similar linear expansion coefficient as that of the mounting substrate used by an end user can be easily employed for the two-[0100] sided wiring substrate 31. By doing so, it is possible to easily solve the disadvantage in that the temperature cycle characteristic is particularly inferior among the mounting reliability factors due to mismatch in the linear expansion coefficient after the end user mounts the flip chip type semiconductor device onto the mounting substrate.
  • Next, as shown in FIG. 6D, the through hole processed [0101] sections 25 provided in the two-sided wiring substrate 31 bonded to the multilayer wiring layer 9 are filled with a conductive bonding agent 13. A material for the conductive bonding agent 13 may be a solder paste containing solder powder flux or a mixture of metal powder, such as Cu, Ni or the like, having excellent wettability and an organic insulating bonding agent. Further, the conductive bonding agent 13 can be provided and filled in the through hole processed sections 25 by screen printing or the like.
  • In this case, with a view to shortening steps, after filling the through hole processed [0102] sections 25 provided in the two-sided wiring substrate 31 with the conductive material, the substrate 31 may be bonded to the multilayer wiring layer 9.
  • Furthermore, if an electrical characteristic test is executed to a single multilayer wiring substrate after the completion of the overall steps, it suffices to mount good flip chip type semiconductor chips only to the sections which have been determined to be electrically good in a later flip chip mounting step. [0103]
  • Next, as shown in FIG. 6E, flip chip [0104] type semiconductor chips 14 are mounted on the pad electrodes 7 formed on the uppermost layer of the multilayer wiring layer 9 while the surfaces of the semiconductor chips 14 on which surfaces the bump electrodes 15 are provided, are directed downward. In this case, if each bump electrode 15 of the flip chip type semiconductor chips 14 is formed out of a solder mainly consisting of a metal material such as Sn, Pb or the like, the flip chip semiconductor chips 14 can be mounted on the pad electrodes 7 by a thermal reflow step employing flux. If the bump electrode 15 mainly consists of a metal material such as Au, In or the like, the flip chip semiconductor chips 14 can be mounted on the pad electrodes 7 by thermal pressing.
  • Thereafter, as shown in FIG. 6F, an insulating [0105] resin layer 16 is provided on the side surfaces of the flip chip semiconductor chips 14, flip chip junctions and regions in which the multilayer wiring layer 9 is exposed so as to protect the flip chip semiconductor chips 14, the flip chip junctions and the multilayer wiring layer 9.
  • In this case, to provide the insulating [0106] resin layer 16, an injection resin introduction technique or a transfer sealing technique incorporating a vacuum sealing technique may be employed.
  • Then, as shown in FIG. 6G, [0107] solder balls 17 mainly consisting of Sn, Pb or the like are formed, as external terminals, on the conductive bonding agent 13 filled in the through hole processed sections 25 provided in the two-sided wiring substrate 31. In this case, after selectively applying flux onto the conductive bonding agent 13 filled in the through hole processed sections 25, the solder balls 17 are put on the agent 13 and a heat processing is performed by an IR reflow step, whereby the solder balls 17 can be mounted on the conductive bonding agent 13.
  • It is also possible to use a two-[0108] sided wiring substrate 31 having such a design specification (spiral Via structure) as to displace the surfaces on which the solder balls 17 are mounted from the through hole processed sections 25 provided in the two-sided wiring substrate 31 and to form solder ball mounting land sections on the GND planes 30 within the conductor pattern layer 24.
  • Thereafter, as shown in FIG. 6H, the resultant substrate is cut into a plurality of pieces by a cut and separation technique employing a dicing blade or the like, whereby flip chip type semiconductor device is manufactured. [0109]
  • With the above-stated constitution, the patterned two-[0110] sided wiring substrate 31 is employed instead of the insulating substrate 11 employed in the first embodiment. This embodiment, therefore, ensures an enhanced power supply plane function and an enhanced GND plane function compared with the first embodiment. Accordingly, it is possible to further ensure high performance, to advantageously reduce the number of layers as constituent elements of the multilayer wiring layer and to thereby reduce cost.

Claims (5)

What is claimed is:
1. A flip chip type semiconductor device comprising:
a multilayer wiring layer having a multilayer wiring structure;
a substrate consisting of one of an insulating substrate or a multilayer wiring substrate having penetrating holes embedded with a conductive material;
a bonding agent film interposed between said multilayer wiring layer and said substrate, and bonding said multilayer wiring layer to said substrate; and
a semiconductor chip mounted on said multilayer wiring layer.
2. A flip chip type semiconductor device according to claim 1, wherein
said conductive material is a conductive bonding agent; and
said device further comprising:
terminal balls coupled to said conductive bonding agent on a surface of said substrate.
3. A flip chip type semiconductor device according to claim 1, comprising:
an external electrode pad formed on an uppermost layer of said multilayer wiring layer; and
a bump electrode provided on said semiconductor chip and connected to said external electrode pad.
4. A flip chip type semiconductor device according to claim 1, comprising:
an insulating resin layer for embedding side of said semiconductor chip; and
a radiating heat spreader coupled to said semiconductor chip.
5. A flip chip type semiconductor device according to claim 1, comprising:
a radiating heat spreader coupled to said semiconductor chip; and
a stiffener arranged on each side of said semiconductor chip and interposed between said heat spreader and said multilayer wiring layer.
US10/131,486 2000-03-09 2002-04-25 Flip chip type semiconductor device and method for manufacturing the same Abandoned US20020121689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/131,486 US20020121689A1 (en) 2000-03-09 2002-04-25 Flip chip type semiconductor device and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000065792A JP3677429B2 (en) 2000-03-09 2000-03-09 Method of manufacturing flip chip type semiconductor device
JP2000-065792 2000-03-09
US09/801,901 US6406942B2 (en) 2000-03-09 2001-03-09 Flip chip type semiconductor device and method for manufacturing the same
US10/131,486 US20020121689A1 (en) 2000-03-09 2002-04-25 Flip chip type semiconductor device and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/801,901 Division US6406942B2 (en) 2000-03-09 2001-03-09 Flip chip type semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20020121689A1 true US20020121689A1 (en) 2002-09-05

Family

ID=18585260

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/801,901 Expired - Lifetime US6406942B2 (en) 2000-03-09 2001-03-09 Flip chip type semiconductor device and method for manufacturing the same
US10/131,486 Abandoned US20020121689A1 (en) 2000-03-09 2002-04-25 Flip chip type semiconductor device and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/801,901 Expired - Lifetime US6406942B2 (en) 2000-03-09 2001-03-09 Flip chip type semiconductor device and method for manufacturing the same

Country Status (4)

Country Link
US (2) US6406942B2 (en)
JP (1) JP3677429B2 (en)
KR (1) KR100395862B1 (en)
TW (1) TW558929B (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639322B1 (en) * 2001-09-17 2003-10-28 Applied Micro Circuits Corporation Flip-chip transition interface structure
US20030205808A1 (en) * 2002-04-03 2003-11-06 Makoto Terui Semiconductor device
US20040140556A1 (en) * 2001-12-31 2004-07-22 Mou-Shiung Lin Integrated chip package structure using silicon substrate and method of manufacturing the same
US20040176924A1 (en) * 2003-03-07 2004-09-09 Salmon Peter C. Apparatus and method for testing electronic systems
US20050040513A1 (en) * 2003-08-20 2005-02-24 Salmon Peter C. Copper-faced modules, imprinted copper circuits, and their application to supercomputers
US20050184376A1 (en) * 2004-02-19 2005-08-25 Salmon Peter C. System in package
US20050255722A1 (en) * 2004-05-07 2005-11-17 Salmon Peter C Micro blade assembly
US20050287828A1 (en) * 2004-06-28 2005-12-29 Stone Brent S Tilted land grid array package and socket, systems, and methods
US20050285255A1 (en) * 2004-06-28 2005-12-29 Walk Michael J Device and method for tilted land grid array interconnects on a coreless substrate package
US20060081999A1 (en) * 2004-10-18 2006-04-20 Tomohiko Iwane Connection structure for connecting semiconductor element and wiring board, and semiconductor device
US20060131728A1 (en) * 2004-12-16 2006-06-22 Salmon Peter C Repairable three-dimensional semiconductor subsystem
US20060278970A1 (en) * 2005-06-10 2006-12-14 Sharp Kabushiki Kaisha Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
US20070007983A1 (en) * 2005-01-06 2007-01-11 Salmon Peter C Semiconductor wafer tester
US20070023923A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Flip chip interface including a mixed array of heat bumps and signal bumps
US20070023904A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Electro-optic interconnection apparatus and method
US20070023889A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Copper substrate with feedthroughs and interconnection circuits
US20070096292A1 (en) * 2005-10-27 2007-05-03 Shinko Electric Industries Co., Ltd. Electronic-part built-in substrate and manufacturing method therefor
US7217999B1 (en) * 1999-10-05 2007-05-15 Nec Electronics Corporation Multilayer interconnection board, semiconductor device having the same, and method of forming the same as well as method of mounting the semiconductor chip on the interconnection board
US20080128885A1 (en) * 2006-11-30 2008-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Stress decoupling structures for flip-chip assembly
US20090193652A1 (en) * 2005-08-01 2009-08-06 Salmon Peter C Scalable subsystem architecture having integrated cooling channels
US20100263923A1 (en) * 2009-04-16 2010-10-21 Shinko Electric Industries Co., Ltd. Wiring substrate having columnar protruding part
US20120181708A1 (en) * 2010-11-23 2012-07-19 Ibiden Co., Ltd. Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US8426982B2 (en) 2001-03-30 2013-04-23 Megica Corporation Structure and manufacturing method of chip scale package
US8471361B2 (en) 2001-12-31 2013-06-25 Megica Corporation Integrated chip package structure using organic substrate and method of manufacturing the same
US8492870B2 (en) 2002-01-19 2013-07-23 Megica Corporation Semiconductor package with interconnect layers
US8535976B2 (en) 2001-12-31 2013-09-17 Megica Corporation Method for fabricating chip package with die and substrate
US11502029B2 (en) * 2019-07-19 2022-11-15 Stmicroelectronics Pte Ltd Thin semiconductor chip using a dummy sidewall layer

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050716A (en) * 2000-08-02 2002-02-15 Dainippon Printing Co Ltd Semiconductor device and manufacturing method thereof
US6528892B2 (en) * 2001-06-05 2003-03-04 International Business Machines Corporation Land grid array stiffener use with flexible chip carriers
US7334326B1 (en) 2001-06-19 2008-02-26 Amkor Technology, Inc. Method for making an integrated circuit substrate having embedded passive components
US6930256B1 (en) 2002-05-01 2005-08-16 Amkor Technology, Inc. Integrated circuit substrate having laser-embedded conductive patterns and method therefor
US6753199B2 (en) * 2001-06-29 2004-06-22 Xanoptix, Inc. Topside active optical device apparatus and method
US6633421B2 (en) 2001-06-29 2003-10-14 Xanoptrix, Inc. Integrated arrays of modulators and lasers on electronics
US7831151B2 (en) 2001-06-29 2010-11-09 John Trezza Redundant optical device array
US6620642B2 (en) * 2001-06-29 2003-09-16 Xanoptix, Inc. Opto-electronic device integration
US6731665B2 (en) 2001-06-29 2004-05-04 Xanoptix Inc. Laser arrays for high power fiber amplifier pumps
US6903278B2 (en) * 2001-06-29 2005-06-07 Intel Corporation Arrangements to provide mechanical stiffening elements to a thin-core or coreless substrate
US6724794B2 (en) 2001-06-29 2004-04-20 Xanoptix, Inc. Opto-electronic device integration
US6812560B2 (en) * 2001-07-21 2004-11-02 International Business Machines Corporation Press-fit chip package
JP5092191B2 (en) * 2001-09-26 2012-12-05 イビデン株式会社 IC chip mounting substrate
JP3908157B2 (en) * 2002-01-24 2007-04-25 Necエレクトロニクス株式会社 Method of manufacturing flip chip type semiconductor device
JP3773896B2 (en) 2002-02-15 2006-05-10 Necエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2003258189A (en) * 2002-03-01 2003-09-12 Toshiba Corp Semiconductor device and method of manufacturing the same
US7399661B2 (en) * 2002-05-01 2008-07-15 Amkor Technology, Inc. Method for making an integrated circuit substrate having embedded back-side access conductors and vias
US20080043447A1 (en) * 2002-05-01 2008-02-21 Amkor Technology, Inc. Semiconductor package having laser-embedded terminals
US6930257B1 (en) 2002-05-01 2005-08-16 Amkor Technology, Inc. Integrated circuit substrate having laminated laser-embedded circuit layers
US7548430B1 (en) 2002-05-01 2009-06-16 Amkor Technology, Inc. Buildup dielectric and metallization process and semiconductor package
US9691635B1 (en) 2002-05-01 2017-06-27 Amkor Technology, Inc. Buildup dielectric layer having metallization pattern semiconductor package fabrication method
US7670962B2 (en) 2002-05-01 2010-03-02 Amkor Technology, Inc. Substrate having stiffener fabrication method
US7633765B1 (en) 2004-03-23 2009-12-15 Amkor Technology, Inc. Semiconductor package including a top-surface metal layer for implementing circuit features
JP2003324183A (en) * 2002-05-07 2003-11-14 Mitsubishi Electric Corp Semiconductor device
JP3591524B2 (en) * 2002-05-27 2004-11-24 日本電気株式会社 Semiconductor device mounting board, method of manufacturing the same, board inspection method thereof, and semiconductor package
US7474538B2 (en) 2002-05-27 2009-01-06 Nec Corporation Semiconductor device mounting board, method of manufacturing the same, method of inspecting the same, and semiconductor package
DE10234951B4 (en) * 2002-07-31 2009-01-02 Qimonda Ag Process for the production of semiconductor circuit modules
US6951778B2 (en) * 2002-10-31 2005-10-04 Hewlett-Packard Development Company, L.P. Edge-sealed substrates and methods for effecting the same
JP2005026364A (en) * 2003-06-30 2005-01-27 Sanyo Electric Co Ltd Hybrid integrated circuit
US8084866B2 (en) 2003-12-10 2011-12-27 Micron Technology, Inc. Microelectronic devices and methods for filling vias in microelectronic devices
US7091124B2 (en) 2003-11-13 2006-08-15 Micron Technology, Inc. Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices
US11081370B2 (en) 2004-03-23 2021-08-03 Amkor Technology Singapore Holding Pte. Ltd. Methods of manufacturing an encapsulated semiconductor device
US10811277B2 (en) 2004-03-23 2020-10-20 Amkor Technology, Inc. Encapsulated semiconductor package
US20050247894A1 (en) 2004-05-05 2005-11-10 Watkins Charles M Systems and methods for forming apertures in microfeature workpieces
US7145238B1 (en) 2004-05-05 2006-12-05 Amkor Technology, Inc. Semiconductor package and substrate having multi-level vias
TWI272683B (en) 2004-05-24 2007-02-01 Sanyo Electric Co Semiconductor device and manufacturing method thereof
US7232754B2 (en) 2004-06-29 2007-06-19 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
SG120200A1 (en) 2004-08-27 2006-03-28 Micron Technology Inc Slanted vias for electrical circuits on circuit boards and other substrates
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
US7271482B2 (en) 2004-12-30 2007-09-18 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US8049293B2 (en) * 2005-03-07 2011-11-01 Sony Corporation Solid-state image pickup device, electronic apparatus using such solid-state image pickup device and method of manufacturing solid-state image pickup device
US8826531B1 (en) 2005-04-05 2014-09-09 Amkor Technology, Inc. Method for making an integrated circuit substrate having laminated laser-embedded circuit layers
JP4790297B2 (en) * 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4534062B2 (en) * 2005-04-19 2010-09-01 ルネサスエレクトロニクス株式会社 Semiconductor device
JP4146864B2 (en) * 2005-05-31 2008-09-10 新光電気工業株式会社 WIRING BOARD AND MANUFACTURING METHOD THEREOF, SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7863187B2 (en) 2005-09-01 2011-01-04 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7622377B2 (en) * 2005-09-01 2009-11-24 Micron Technology, Inc. Microfeature workpiece substrates having through-substrate vias, and associated methods of formation
US7262134B2 (en) 2005-09-01 2007-08-28 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
SG135066A1 (en) 2006-02-20 2007-09-28 Micron Technology Inc Semiconductor device assemblies including face-to-face semiconductor dice, systems including such assemblies, and methods for fabricating such assemblies
US7353591B2 (en) * 2006-04-18 2008-04-08 Kinsus Interconnect Technology Corp. Method of manufacturing coreless substrate
US7749899B2 (en) 2006-06-01 2010-07-06 Micron Technology, Inc. Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces
JP4155999B2 (en) 2006-06-02 2008-09-24 株式会社ソニー・コンピュータエンタテインメント Semiconductor device and manufacturing method of semiconductor device
US7629249B2 (en) 2006-08-28 2009-12-08 Micron Technology, Inc. Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
US7902643B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods
JP2008091639A (en) * 2006-10-02 2008-04-17 Nec Electronics Corp Electronic equipment, and manufacturing method thereof
US7589398B1 (en) 2006-10-04 2009-09-15 Amkor Technology, Inc. Embedded metal features structure
US7550857B1 (en) 2006-11-16 2009-06-23 Amkor Technology, Inc. Stacked redistribution layer (RDL) die assembly package
US7750250B1 (en) 2006-12-22 2010-07-06 Amkor Technology, Inc. Blind via capture pad structure
US7752752B1 (en) 2007-01-09 2010-07-13 Amkor Technology, Inc. Method of fabricating an embedded circuit pattern
US8323771B1 (en) 2007-08-15 2012-12-04 Amkor Technology, Inc. Straight conductor blind via capture pad structure and fabrication method
SG150410A1 (en) 2007-08-31 2009-03-30 Micron Technology Inc Partitioned through-layer via and associated systems and methods
US7884015B2 (en) 2007-12-06 2011-02-08 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
TW200930173A (en) * 2007-12-31 2009-07-01 Phoenix Prec Technology Corp Package substrate having embedded semiconductor element and fabrication method thereof
US8513810B2 (en) * 2008-07-31 2013-08-20 Nec Corporation Semiconductor device and method of manufacturing same
US8872329B1 (en) 2009-01-09 2014-10-28 Amkor Technology, Inc. Extended landing pad substrate package structure and method
US7960827B1 (en) 2009-04-09 2011-06-14 Amkor Technology, Inc. Thermal via heat spreader package and method
US8623753B1 (en) 2009-05-28 2014-01-07 Amkor Technology, Inc. Stackable protruding via package and method
US8222538B1 (en) 2009-06-12 2012-07-17 Amkor Technology, Inc. Stackable via package and method
US8471154B1 (en) 2009-08-06 2013-06-25 Amkor Technology, Inc. Stackable variable height via package and method
US8796561B1 (en) 2009-10-05 2014-08-05 Amkor Technology, Inc. Fan out build up substrate stackable package and method
US8937381B1 (en) 2009-12-03 2015-01-20 Amkor Technology, Inc. Thin stackable package and method
US9691734B1 (en) 2009-12-07 2017-06-27 Amkor Technology, Inc. Method of forming a plurality of electronic component packages
US8742561B2 (en) * 2009-12-29 2014-06-03 Intel Corporation Recessed and embedded die coreless package
US8536462B1 (en) 2010-01-22 2013-09-17 Amkor Technology, Inc. Flex circuit package and method
US8300423B1 (en) 2010-05-25 2012-10-30 Amkor Technology, Inc. Stackable treated via package and method
US8294276B1 (en) 2010-05-27 2012-10-23 Amkor Technology, Inc. Semiconductor device and fabricating method thereof
US8338229B1 (en) 2010-07-30 2012-12-25 Amkor Technology, Inc. Stackable plasma cleaned via package and method
US8717775B1 (en) 2010-08-02 2014-05-06 Amkor Technology, Inc. Fingerprint sensor package and method
US20120098129A1 (en) 2010-10-22 2012-04-26 Harris Corporation Method of making a multi-chip module having a reduced thickness and related devices
US8337657B1 (en) 2010-10-27 2012-12-25 Amkor Technology, Inc. Mechanical tape separation package and method
US8482134B1 (en) 2010-11-01 2013-07-09 Amkor Technology, Inc. Stackable package and method
US9748154B1 (en) 2010-11-04 2017-08-29 Amkor Technology, Inc. Wafer level fan out semiconductor device and manufacturing method thereof
US8525318B1 (en) 2010-11-10 2013-09-03 Amkor Technology, Inc. Semiconductor device and fabricating method thereof
US8557629B1 (en) 2010-12-03 2013-10-15 Amkor Technology, Inc. Semiconductor device having overlapped via apertures
US8508037B2 (en) * 2010-12-07 2013-08-13 Intel Corporation Bumpless build-up layer and laminated core hybrid structures and methods of assembling same
US8535961B1 (en) 2010-12-09 2013-09-17 Amkor Technology, Inc. Light emitting diode (LED) package and method
US9721872B1 (en) 2011-02-18 2017-08-01 Amkor Technology, Inc. Methods and structures for increasing the allowable die size in TMV packages
US9013011B1 (en) 2011-03-11 2015-04-21 Amkor Technology, Inc. Stacked and staggered die MEMS package and method
US9324677B2 (en) 2011-04-04 2016-04-26 Rohm Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR101140113B1 (en) 2011-04-26 2012-04-30 앰코 테크놀로지 코리아 주식회사 Semiconductor device
US8653674B1 (en) 2011-09-15 2014-02-18 Amkor Technology, Inc. Electronic component package fabrication method and structure
US8633598B1 (en) 2011-09-20 2014-01-21 Amkor Technology, Inc. Underfill contacting stacking balls package fabrication method and structure
US9029962B1 (en) 2011-10-12 2015-05-12 Amkor Technology, Inc. Molded cavity substrate MEMS package fabrication method and structure
TWI442852B (en) * 2012-07-02 2014-06-21 Subtron Technology Co Ltd Manufacturing method of substrate structure
KR101366461B1 (en) 2012-11-20 2014-02-26 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
US9799592B2 (en) 2013-11-19 2017-10-24 Amkor Technology, Inc. Semicondutor device with through-silicon via-less deep wells
KR101488590B1 (en) 2013-03-29 2015-01-30 앰코 테크놀로지 코리아 주식회사 Semiconductor device and manufacturing method thereof
TWI508157B (en) * 2013-07-24 2015-11-11 矽品精密工業股份有限公司 Semiconductor structure and method of manufacture
KR101607981B1 (en) 2013-11-04 2016-03-31 앰코 테크놀로지 코리아 주식회사 Interposer and method for manufacturing the same, and semiconductor package using the same
US9953908B2 (en) 2015-10-30 2018-04-24 International Business Machines Corporation Method for forming solder bumps using sacrificial layer
US9960328B2 (en) 2016-09-06 2018-05-01 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US10679919B2 (en) * 2018-06-25 2020-06-09 Qualcomm Incorporated High thermal release interposer
US10622292B2 (en) * 2018-07-06 2020-04-14 Qualcomm Incorporated High density interconnects in an embedded trace substrate (ETS) comprising a core layer
JP7140969B2 (en) * 2018-10-22 2022-09-22 富士通株式会社 Antenna integrated amplifier and communication device
US20210217707A1 (en) * 2020-01-10 2021-07-15 Mediatek Inc. Semiconductor package having re-distribution layer structure on substrate component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565706A (en) * 1994-03-18 1996-10-15 Hitachi, Ltd. LSI package board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803603B2 (en) * 1995-09-18 1998-09-24 日本電気株式会社 Multi-chip package structure
JPH09283925A (en) * 1996-04-16 1997-10-31 Toppan Printing Co Ltd Semiconductor device and manufacture thereof
US6036809A (en) * 1999-02-16 2000-03-14 International Business Machines Corporation Process for releasing a thin-film structure from a substrate
JP3495300B2 (en) * 1999-12-10 2004-02-09 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565706A (en) * 1994-03-18 1996-10-15 Hitachi, Ltd. LSI package board

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217999B1 (en) * 1999-10-05 2007-05-15 Nec Electronics Corporation Multilayer interconnection board, semiconductor device having the same, and method of forming the same as well as method of mounting the semiconductor chip on the interconnection board
US8008130B2 (en) 1999-10-05 2011-08-30 Renesas Electronics Corporation Multilayer interconnection board, semiconductor device having the same, and method of forming the same as well as method of mounting the semicondutor chip on the interconnection board
US8748227B2 (en) 2001-03-30 2014-06-10 Megit Acquisition Corp. Method of fabricating chip package
US8426982B2 (en) 2001-03-30 2013-04-23 Megica Corporation Structure and manufacturing method of chip scale package
US9018774B2 (en) 2001-03-30 2015-04-28 Qualcomm Incorporated Chip package
US8912666B2 (en) 2001-03-30 2014-12-16 Qualcomm Incorporated Structure and manufacturing method of chip scale package
US6639322B1 (en) * 2001-09-17 2003-10-28 Applied Micro Circuits Corporation Flip-chip transition interface structure
US8835221B2 (en) 2001-12-31 2014-09-16 Qualcomm Incorporated Integrated chip package structure using ceramic substrate and method of manufacturing the same
US8535976B2 (en) 2001-12-31 2013-09-17 Megica Corporation Method for fabricating chip package with die and substrate
US8471361B2 (en) 2001-12-31 2013-06-25 Megica Corporation Integrated chip package structure using organic substrate and method of manufacturing the same
US9030029B2 (en) 2001-12-31 2015-05-12 Qualcomm Incorporated Chip package with die and substrate
US20040140556A1 (en) * 2001-12-31 2004-07-22 Mou-Shiung Lin Integrated chip package structure using silicon substrate and method of manufacturing the same
US9136246B2 (en) * 2001-12-31 2015-09-15 Qualcomm Incorporated Integrated chip package structure using silicon substrate and method of manufacturing the same
US8492870B2 (en) 2002-01-19 2013-07-23 Megica Corporation Semiconductor package with interconnect layers
US20070021089A1 (en) * 2002-04-03 2007-01-25 Makoto Terui Semiconductor device that suppresses variations in high frequency characteristics of circuit elements
US20030205808A1 (en) * 2002-04-03 2003-11-06 Makoto Terui Semiconductor device
US7157794B2 (en) * 2002-04-03 2007-01-02 Oki Electric Industry Co., Ltd. Semiconductor device that suppresses variations in high frequency characteristics of circuit elements
US7545036B2 (en) 2002-04-03 2009-06-09 Oki Semiconductor Co., Ltd. Semiconductor device that suppresses variations in high frequency characteristics of circuit elements
US7505862B2 (en) 2003-03-07 2009-03-17 Salmon Technologies, Llc Apparatus and method for testing electronic systems
US20040176924A1 (en) * 2003-03-07 2004-09-09 Salmon Peter C. Apparatus and method for testing electronic systems
US20090192753A1 (en) * 2003-03-07 2009-07-30 Salmon Peter C Apparatus and method for testing electronic systems
US20050040513A1 (en) * 2003-08-20 2005-02-24 Salmon Peter C. Copper-faced modules, imprinted copper circuits, and their application to supercomputers
US7408258B2 (en) * 2003-08-20 2008-08-05 Salmon Technologies, Llc Interconnection circuit and electronic module utilizing same
US20050184376A1 (en) * 2004-02-19 2005-08-25 Salmon Peter C. System in package
US20050255722A1 (en) * 2004-05-07 2005-11-17 Salmon Peter C Micro blade assembly
US7335979B2 (en) * 2004-06-28 2008-02-26 Intel Corporation Device and method for tilted land grid array interconnects on a coreless substrate package
US20050285255A1 (en) * 2004-06-28 2005-12-29 Walk Michael J Device and method for tilted land grid array interconnects on a coreless substrate package
US20050287828A1 (en) * 2004-06-28 2005-12-29 Stone Brent S Tilted land grid array package and socket, systems, and methods
US7220132B2 (en) 2004-06-28 2007-05-22 Intel Corporation Tilted land grid array package and socket, systems, and methods
US7420282B2 (en) * 2004-10-18 2008-09-02 Sharp Kabushiki Kaisha Connection structure for connecting semiconductor element and wiring board, and semiconductor device
US20060081999A1 (en) * 2004-10-18 2006-04-20 Tomohiko Iwane Connection structure for connecting semiconductor element and wiring board, and semiconductor device
US20060131728A1 (en) * 2004-12-16 2006-06-22 Salmon Peter C Repairable three-dimensional semiconductor subsystem
US7427809B2 (en) 2004-12-16 2008-09-23 Salmon Technologies, Llc Repairable three-dimensional semiconductor subsystem
US20070007983A1 (en) * 2005-01-06 2007-01-11 Salmon Peter C Semiconductor wafer tester
US20060278970A1 (en) * 2005-06-10 2006-12-14 Sharp Kabushiki Kaisha Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
US7723839B2 (en) 2005-06-10 2010-05-25 Sharp Kabushiki Kaisha Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
US20070023923A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Flip chip interface including a mixed array of heat bumps and signal bumps
US20070023904A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Electro-optic interconnection apparatus and method
US20070023889A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Copper substrate with feedthroughs and interconnection circuits
US20090193652A1 (en) * 2005-08-01 2009-08-06 Salmon Peter C Scalable subsystem architecture having integrated cooling channels
US7586747B2 (en) 2005-08-01 2009-09-08 Salmon Technologies, Llc. Scalable subsystem architecture having integrated cooling channels
US20070096292A1 (en) * 2005-10-27 2007-05-03 Shinko Electric Industries Co., Ltd. Electronic-part built-in substrate and manufacturing method therefor
US20080128885A1 (en) * 2006-11-30 2008-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Stress decoupling structures for flip-chip assembly
US7573138B2 (en) * 2006-11-30 2009-08-11 Taiwan Semiconductor Manufacturing Co., Ltd. Stress decoupling structures for flip-chip assembly
US20100263923A1 (en) * 2009-04-16 2010-10-21 Shinko Electric Industries Co., Ltd. Wiring substrate having columnar protruding part
US9018538B2 (en) 2009-04-16 2015-04-28 Shinko Electric Industries Co., Ltd. Wiring substrate having columnar protruding part
US8458900B2 (en) * 2009-04-16 2013-06-11 Shinko Electric Industries Co., Ltd. Wiring substrate having columnar protruding part
US8698303B2 (en) * 2010-11-23 2014-04-15 Ibiden Co., Ltd. Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US8785255B2 (en) 2010-11-23 2014-07-22 Ibiden Co., Ltd. Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US20120181708A1 (en) * 2010-11-23 2012-07-19 Ibiden Co., Ltd. Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US9338886B2 (en) 2010-11-23 2016-05-10 Ibiden Co., Ltd. Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
US11502029B2 (en) * 2019-07-19 2022-11-15 Stmicroelectronics Pte Ltd Thin semiconductor chip using a dummy sidewall layer

Also Published As

Publication number Publication date
US20010020739A1 (en) 2001-09-13
JP2001257288A (en) 2001-09-21
US6406942B2 (en) 2002-06-18
TW558929B (en) 2003-10-21
JP3677429B2 (en) 2005-08-03
KR100395862B1 (en) 2003-08-27
KR20010089209A (en) 2001-09-29

Similar Documents

Publication Publication Date Title
US6406942B2 (en) Flip chip type semiconductor device and method for manufacturing the same
JP3973340B2 (en) Semiconductor device, wiring board, and manufacturing method thereof
US6239496B1 (en) Package having very thin semiconductor chip, multichip module assembled by the package, and method for manufacturing the same
US7034401B2 (en) Packaging substrates for integrated circuits and soldering methods
US7553698B2 (en) Semiconductor package having semiconductor constructing body and method of manufacturing the same
US7186586B2 (en) Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities
US7115483B2 (en) Stacked chip package having upper chip provided with trenches and method of manufacturing the same
KR101103857B1 (en) Printed wiring board and method for manufacturing the same
US8535976B2 (en) Method for fabricating chip package with die and substrate
KR100371282B1 (en) Semiconductor device and method of manufacturing the same
US20060087037A1 (en) Substrate structure with embedded chip of semiconductor package and method for fabricating the same
EP2006908B1 (en) Electronic device and method of manufacturing the same
US11476204B2 (en) Flip-chip packaging substrate and method for fabricating the same
US20050035464A1 (en) [electrical package and manufacturing method thereof]
JP3651346B2 (en) Semiconductor device and manufacturing method thereof
JP2000299408A (en) Semiconductor structural body and semiconductor device
KR20020086000A (en) Manufacturing method of PCB and PCB thereby
JP3834305B2 (en) Manufacturing method of multilayer wiring board
US20240096838A1 (en) Component-embedded packaging structure
TWI405311B (en) Semiconductor device, packaging substrate having electronic component embedded therein, and method for manufacturing the same
JP2001267486A (en) Semiconductor device and semiconductor module
JPH0864757A (en) Multichip module and manufacture thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013809/0086

Effective date: 20021101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION