Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020118457 A1
Publication typeApplication
Application numberUS 09/747,788
Publication date29 Aug 2002
Filing date22 Dec 2000
Priority date22 Dec 2000
Also published asEP1346251A2, US6940649, US7106510, US7554731, US7554732, US20040004766, US20050264886, US20060291058, US20070076296, WO2002052331A2, WO2002052331A3
Publication number09747788, 747788, US 2002/0118457 A1, US 2002/118457 A1, US 20020118457 A1, US 20020118457A1, US 2002118457 A1, US 2002118457A1, US-A1-20020118457, US-A1-2002118457, US2002/0118457A1, US2002/118457A1, US20020118457 A1, US20020118457A1, US2002118457 A1, US2002118457A1
InventorsEdward Dowski
Original AssigneeDowski Edward Raymond
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Wavefront coded imaging systems
US 20020118457 A1
Abstract
The present invention provides improved Wavefront Coding imaging apparatus and methods composed of optics, detector, and processing of the detected image. The optics are constructed and arranged to have the characteristic that the transverse ray intercept curves form substantially straight, sloped lines. The wavefront coding corrects for known or unknown amounts of “misfocus-like” aberrations by altering the optical transfer function of the imaging apparatus in such a way that the altered optical transfer function is substantially insensitive to aberrations. Post processing then removes the effect of the coding, except for the invariance with regard to aberrations, producing clear images.
Images(19)
Previous page
Next page
Claims(20)
What is claimed is:
1. Imaging apparatus for imaging an object onto a detector comprising:
a lens structure;
the lens structure constructed and arranged to produce transverse ray intercept curves which are sloped substantially straight lines;
a wavefront coding element positioned between the object and the detector;
the coding element being constructed and arranged to alter the optical transfer function of the imaging apparatus in such a way that the altered optical transfer function is substantially insensitive to focus-related aberrations over a greater range of aberrations than was provided by the unaltered optical transfer function; and
means for post processing;
wherein the coding element affects said alteration to the optical transfer function substantially by affecting the phase of light transmitted by said wavefront coding element.
2. The apparatus of claim 1 wherein the aberrations include one or more of the following:
misfocus;
spherical aberration;
petzval curvature;
astigmatism;
field curvature;
chromatic aberration;
temperature induced misfocus aberration;
pressure induced misfocus aberration;
mechanical induced misfocus aberrations.
3. The apparatus of claim 1 wherein the coding element is formed substantially at an aperture stop of the imaging system.
4. The apparatus of claim 1 wherein the lens structure comprises an IR imaging system.
5. The apparatus of claim 1 wherein the post processing means comprises a digital filter.
6. The apparatus of claim 1 wherein the lens structure comprises a microscope objective.
7. The apparatus of claim 1 wherein the lens structure comprises a single lens.
8. The apparatus of claim 7 wherein the coding element is formed on the single lens.
9. The apparatus of claim 1 wherein the detector is an analog detector.
10. The apparatus of claim 1 wherein the detector is a digital detector.
11. A single lens imaging system for imaging an object onto a detector comprising:
a lens constructed and arranged to produce transverse ray intercept curves which are sloped substantially straight lines;
a wavefront coding element formed on a surface of the lens; the coding element being constructed and arranged to alter the optical transfer function of the imaging system in such a way that the altered optical transfer function is substantially insensitive to focus-related aberrations over a greater range of aberrations than was provided by the unaltered optical transfer function; and
a post processing element;
wherein the coding element affects said alteration to the optical transfer function substantially by affecting the phase of light transmitted by said wavefront coding element.
12. The system of claim 11, wherein the post processing element comprises a digital filter.
13. The system of claim 12, wherein the digital filter comprises a rectangularly separable filter.
14. The system of claim 11, wherein the wavefront coding element is formed on the surface of the lens furthest from the object.
15. The system of claim 11, wherein the lens length is under 10 mm.
16. The system of claim 11, wherein the lens length is under 5 mm.
17. A microscope objective for imaging an object onto a detector comprising:
an element with optical power;
the element with optical power being constructed and arranged to produce transverse ray intercept curves which are sloped substantially straight lines;
a wavefront coding element;
the coding element being constructed and arranged to alter the optical transfer function of the microscope objective in such a way that the altered optical transfer function is substantially insensitive to focus-related aberrations over a greater range of aberrations than was provided by the unaltered optical transfer function; and
a post processing element;
wherein the coding element affects said alteration to the optical transfer function substantially by affecting the phase of light transmitted by said wavefront coding element.
18. The microscope objective of claim 17, wherein the post processing element comprises a digital filter.
19. The microscope objective of claim 17, wherein the element with optical power comprises a single lens.
20. The microscope objective of claim 19, wherein the lens is aspheric.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] U.S. Pat. No. 5,748,371, issued May 5, 1998 and entitled “Extended Depth of Field Optical Systems,” is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to apparatus and methods for optical design based on wavefront coding combined with post processing of images.

[0004] 2. Description of the Prior Art

[0005] Traditional optical design is based on the premise that the only major components of the imaging system are the optics and detector. The detector can be analog (e.g. film) or a digital ( e.g. CCD, CMOS etc.) detector. Traditional image processing techniques performed on an image are performed after the image is formed. Examples of traditional image processing include edge sharpening and color filter array (CFA) color interpolation. Traditional optics are therefore designed to form images at the detector that are sharp and clear over a range of field angles, illumination wavelengths, temperatures, and focus positions. Consequently, a trade off is made between forming good images, which requires optical designs that are larger, heavier, and contain more optical elements than are desirable, and modifying the design in order to reduce size, weight, or the number of optical elements, which results in loss of image quality.

[0006] A need remains in the art for improved optical designs which produce good images with systems that are smaller, lighter, and contain fewer elements then those based on traditional optics.

SUMMARY OF THE INVENTION

[0007] Optical design based on Wavefront Coding enables systems that can be smaller, lighter, and contain fewer optical elements than those based on traditional optics. Wavefront Coding systems share the task of image formation between optics and digital processing. Instead of the imaging system being primarily composed of optics and the detector, Wavefront Coding imaging systems are composed of optics, detector, and importantly, processing of the detected image. The detector can in general be analog, such as film, or a digital detector. Since processing of the detected image is an integral part of the total system, the optics of Wavefront Coded imaging systems do not need to form sharp and clear images at the plane of the detector. It is only the images after processing that need to be sharp and clear.

[0008] Wavefront Coding, in general, corrects for known or unknown amounts of “misfocus-like” aberrations. These aberrations include misfocus, spherical aberration, petzval curvature, astigmatism, and chromatic aberration. System sensitivities to environmental parameters such as temperature and pressure induced aberrations, and mechanical focus related aberrations related to fabrication error, assembly error, drift, wear, etc., are also reduced with Wavefront Coding. Optical designs based on Wavefront Coding can reduce the effects of these aberrations and result in simpler designs that produce good images.

[0009] Optical system designs according to the present invention are improved in that they have the characteristic that the transverse ray intercept curves are substantially straight lines. Unlike traditional optical designs, the transverse ray intercept curves for wavefront coded systems need not have a near zero slope; the slope, which indicates misfocus, may be substantial, because wavefront coding allows the effects due to misfocus to be removed. In actual systems the transverse ray intercept curves should vary mainly in slope over wavelength, field angles, temperature, etc. but need not be exactly straight lines. Some ripple is acceptable. With wavefront coding optical surfaces and post processing, good images can be produced.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010]FIG. 1 shows a single-lens miniature imaging system according to the present invention.

[0011]FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 1 with wavefront coding removed.

[0012]FIG. 3 illustrates distortion curves for the system of FIG. 1 with wavefront coding removed.

[0013]FIG. 4 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding removed.

[0014]FIG. 5 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding, but without post processing.

[0015]FIG. 6 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding, both before and after filtering.

[0016]FIGS. 7a and 7 b illustrates sampled point spread functions (PSF) for the system of FIG. 1, with wavefront coding and after filtering, for two object distances.

[0017]FIG. 8 shows a low cost microscope objective according to the present invention.

[0018]FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 8 with wavefront coding removed.

[0019]FIG. 10 illustrates modulation transfer functions (MTF) for the system of FIG. 8, without wavefront coding; with wavefront coding; and with both wavefront coding and filtering.

[0020]FIG. 11 shows a passive athermalized IR imaging system according to the present invention.

[0021]FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 11, without wavefront coding.

[0022]FIG. 13 illustrates modulation transfer functions (MTF) for the system of FIG. 11, without wavefront coding.

[0023]FIG. 14 illustrates modulation transfer functions (MTF) for the system of FIG. 11, with wavefront coding, both with and without filtering.

[0024]FIG. 15a illustrates transverse ray intercept curves as typically implemented in traditional imaging systems.

[0025]FIG. 15b shows MTFs for the system of FIG. 15a.

[0026]FIG. 16 illustrates an example of a one dimensional separable filter for use as a post processing element in the present invention.

[0027]FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0028]FIG. 1 shows a single-lens miniature imaging system 100 according to the present invention. Lens 102 includes wavefront coding element 104 formed on its second surface. Detector 106 is preceded by an IR filter 108 and cover glass 110. Post processor 112 performs processing on the images captured by detector 106.

[0029] The example single-lens imaging system (singlet) 100 is designed to meet the following specifications:

[0030] f=2.5 mm

[0031] F/#=2.6

[0032] Length<4.5 mm

[0033] Material: PMMA

[0034] FOV=50°

[0035] Focus: ∞−30 cm

[0036] pixel size=6 μm

[0037] Bayer CFA/100% fill factor

[0038] MTF>40% at 40 lp/mm

[0039] The example singlet 100, without Wavefront Coding 104, was designed so that the aberrations that are not corrected by the optical surfaces, namely petzval curvature and axial chromatic aberration, are a type of misfocus. Specifically, petzval curvature is a type of misfocus with field angle, and axial chromatic aberration is misfocus with illumination wavelength. The effect of these aberrations could hypothetically be corrected within small regions of the image plane by changing the focus position. By adding a Wavefront Coding surface, the resulting modulation transfer functions (MTFs) and point spread functions (PSFs) will be insensitive to the focus-like aberrations. However, the MTFs and PSFs will not be the same as an ideal in-focus MTF or PSF from a traditional imaging system. Image processing is required to restore the spatial character of the image and produce a sharp and clear image.

[0040] The form of the Wavefront Coding surface used in this example is:

S(x,y)=Σaisign(x)|x/r n| b i+aisign(y)|y/r n| b i

[0041] where the sum is over the index i. Sign(x)=−1 for x<0, +1 for x≧0. The parameter rn is a normalized radius value. This particular Wavefront Coding surface is rectangularly separable and allows for fast processing. Other forms of Wavefront Coding surfaces are non-separable, and the sum of rectangularly separable forms. One non-separable form is defined as:

S(r,θ)=Σra i cos(b lθ+φi)

[0042] where the sum is again over the subscript i.

[0043] There are an infinite number of Wavefront Coding surface forms. The Wavefront Coding surface for singlet 100 in this example is placed at the stop surface (surface 104) and has the parameterized equation:

S(x,y)=Σa isign(x)|x/r n| b i +a isign(y)|y/r n| b i

[0044] and the parameter values for i=1,2,3 are:

[0045] a1=17.4171, b1=2.9911

[0046] a2=10.8895, b2=6

[0047] a3=3.8845, b3=20.1909

[0048] rn=0.459

[0049] FIGS. 2-4 illustrate the performance of system 100 with wavefront coding element 104 removed, in order to illustrate design requirements and performance. FIG. 5 illustrates the performance of system 100 with wavefront coding element 104 in place, but without post processing filter 112. FIG. 6 illustrates the performance improvement with post processing 112. FIGS. 7a and 7 b shows point spread functions for system 100 with both wavefront coding and post processing.

[0050]FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 1 with wavefront coding surface 104 removed for illustrative purposes. Curves are shown for system 100 at half field angles of 0°, 10°, 20°, and 25° off axis, and for illumination wavelengths of 450 nm, 550 nm, and 650 nm. A slope of zero indicates an in-focus condition. Thus on-axis rays are nearly in focus. But, for off axis field angles, the slopes of the transverse ray intercept curves increase dramatically.

[0051] There are numerous traditional methods of designing lenses. Most methods try to balance aberrations in order to improve the off-axis imaging at the expense of on-axis imaging or system simplicity. Traditional design methodologies do not attempt to make the transverse ray intercept curves straight lines. Instead, the traditional goal is to try to minimize the distance of a substantial portion of the transverse ray intercept curves from the horizontal axis. In most traditional systems the ray intercept curves are very different from straight lines, but in general lie closer to the horizontal axis than the off-axis curves shown in FIG. 2. In other words, in traditional systems the variation from a straight horizontal line is mainly in the straightness of the line, rather than in its slope.

[0052]FIG. 15a (prior art) illustrates traditional transverse ray plots. These plots are taken from “Practical Computer Aided Lens Design”, Gregory Hallick Smith, William Bell, Inc., Richmond 1998. Note that the plot for near on axis rays do look similar to straight horizontal lines, and thus produce an in focus image. Refer also to FIG. 15b which shows associated MTFs for this system. The MTFs for near on axis rays are good.

[0053] But as the rays move further off axis, the plots in FIG. 15a quickly deviate from being straight lines. Their associated MTFs in 15 b also quickly degrade.

[0054] The transverse ray intercept curves of FIG. 2 are essentially straight lines, both on and off axis, and this is a deliberate design goal, because the use of wavefront coding 104 and image processing 112 can bring the captured images into focus, so long as the curves without wavefront coding are essentially straight lines through the origin, even if the lines are significantly sloped. The effect of the slope is removed by adding wavefront coding and post processing.

[0055] The aberration petzval curvature gives rise to transverse ray intercept curves, with slopes that are a function of field angle. Axial chromatic aberration gives rise to ray intercept curves with slopes that are a function of illumination wavelength. From FIG. 2, both of these features are part of the transverse ray intercept curves in this example design.

[0056]FIG. 3 illustrates distortion curves for system 100 of FIG. 1, with wavefront coding element 104 removed. The distortion is less than 0.2%. If distortion was large enough then additional digital processing might be required to reposition image points into a non-distorted image. Table 1 lists the optical prescription of this lens, again without the Wavefront Coding surface. Units are in mm, and the total length is 4.1 mm. Aspheric terms describe rotationally symmetric forms of rorder with order equal to 4, 6, 8, etc.

TABLE 1
Surface Radius Thickness Material Diameter
Obj Inf Inf 0  
1 2.077 1.7133 PMMA 2  
Stop −2.236   0.6498 1.4
3 Inf 1.1   BK7 3.4
4 Inf 0.55  BK7 3.4
Img 0.1   3.4
Surface Conic 4th Asph. 6th Asph. 8th Asph.
Obj  0  
1 −1.299 −.000375 −.010932 −.00603
Stop −3.140 −.01049 
3  0  
4  0  
Img

[0057]FIG. 4 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, without wavefront coding element 104. These MTFs correspond to the transverse ray aberration curves of FIG. 2. The MTFs are for half field angles 0, 15, and 25 degrees with wavelengths of 550 nm. The MTFs include the pixel MTF due to the Bayer color filter array detector with six micron pixels and 100% fill factor. The on-axis MTF is essentially diffraction limited. The large drop in MTF off-axis is due to the large amount of petzval curvature that is unavoidable in traditional single lens designs with a large field of view. This singlet without wavefront coding 104 does not meet the MTF specification of greater than 40% modulation at 40 lp/mm for all field angles. But, due to its design for Wavefront Coding, modifying the second surface with a Wavefront Coding surface form 104 will lead to acceptable MTF modulation values when combined with digital processing. By changing the wavefront coding element 104 either more or less sensitivity to misfocus aberrations can be formed.

[0058]FIG. 5 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, with wavefront coding element 104 in place, but without post processing 112. The system is focused at infinity. The half field angles shown are 0, 15, and 25 degrees. The wavelength is 550 nm. These MTFs have very little variation with field angle due to the addition of the Wavefront Coding surface, as compared to FIG. 4. Pixel MTF due to the Bayer CFA has again been included. The Bayer CFA with 6 μm 100% fill factor pixels has a Nyquist spatial frequency of about 42 lp/mm. Note that there are purposely no zeros in the MTFs below the detector's Nyquist spatial frequency.

[0059] Since the MTFs of FIG. 5 do not match a diffraction-limited MTF curve, a blurred image will be directly formed at the detector by this singlet 102. Post processing is needed to correct this.

[0060]FIG. 6 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, with wavefront coding 104 and after processing 112. Applying a single digital filter in processing block 112 gives the optical/digital MTFs shown in FIG. 6. The MTFs before filtering are as shown in FIG. 5. The MTFs after processing 112 at the spatial frequency of 40 lp/mm are all above 40% as specified by the design specifications. The level of the MTFs after processing could further be increased beyond that of the traditional diffraction-limited case, but possibly at the expense of a lower signal to noise ratio of the final image.

[0061]FIGS. 7a and 7 b illustrate sampled two-dimensional PSFs for system 100 of FIG. 1, with wavefront coding 104 and after processing 112. FIG. 7a shows the processed PSFs when the object is at infinity. FIG. 7b shows the processed PSFs when the object is at 30 cm. These PSFs are for 550 nm wavelength and half field angles of 0, 15, and 25 degrees. After filtering, these PSFs have nearly ideal shapes. This singlet 100 when combined with wavefront coding and digital filtering thus easily meets the system specifications.

[0062] In the preferred embodiment, processor 112 is a rectangularly separable digital filter. Rectangularly separable filters are more computationally efficient (counting the number of multiply and additions) than full 2D kernel filters. Separable filtering consists of first filtering each row of the image with the 1D row filter and forming an intermediate image. The columns of the intermediate image are then filtered with the 1D column filter to provide the final in-focus image. The separable filter used for this example singlet has the same filters for rows and columns.

[0063]FIG. 16 illustrates an example of a one dimensional separable filter 112. Coefficients are represented as real values, but can be quantified into integer values for fixed point computations. The sum of the filter coefficients equals approximately 1. The coefficients were determined with a least squares algorithm by minimizing the squared difference between the filtered wavefront coded OTFs and a desired MTF with a value greater than 40% at 40 lp/mm. The width of the filtered PSFs of FIGS. 7a and 7 b are also minimized with the least squares algorithm. Changes in the filtered PSFs are minimized in regions away from their central peaks. FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16. The zero spatial frequency value is 1.

[0064]FIG. 8 shows a low cost microscope objective 800 according to the present invention. The magnification of objective 800 is 10X, with numerical aperture (N.A.)=0.15. Lens 802 is aspheric and has focussing power. Aperture stop 804 includes wavefront coding element 806. Processing is accomplished by processing block 810.

[0065] Wavefront coding microscope objective 800 is designed to meet the following objectives:

[0066] magnification=10X

[0067] N.A.=0.15

[0068] Distortion<1%

[0069] 7 micron square pixels with 100% fill factor

[0070] VGA grayscale detector

[0071] Optical material: PMMA

[0072] The depth of field of traditional microscope objectives is described by the numerical aperture (NA) and the imaging wavelength. The wavefront coding objective can have a depth of field that is independent of the NA of the objective. The depth of field can be large enough to introduce prospective distortion to the final images. Regions of the object that are farther from the objective will appear smaller then regions of the object closer to the objective. Both near and far regions can image clearly with a large depth of field. Since the depth of field of traditional objectives is small prospective distortion is not common with traditional objectives, especially with high NA. Prospective distortion can be reduced or eliminating by designing wavefront coding objectives that are telecentric. In telecentric imaging systems the magnification of the object is independent of the distance to the object.

[0073]FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 800 of FIG. 8, with wavefront coding element 806 removed. The ray intercept curves of FIG. 9 describe the performance of the system at wavelengths 450, 550, and 650 nm for the image field heights of on-axis (0.0 mm), 1.2 mm, and 2.8 mm. Full scale is +/−100 microns. Notice that each of these ray intercept curves vary mainly in slope, as required by the present invention. I.e., the shape of the curves are essentially the same when the slope components of the curves are not considered. While these plots are not quite as close to perfectly straight lines as those in FIG. 2, they can still be considered to be sloped substantially straight lines.

[0074] The major aberration apparent in this design is axial chromatic aberration, with a smaller amount of petzval curvature and lateral chromatic aberration. Without Wavefront Coding this lens would image poorly in white light, although it might produce a reasonable image in a single color. Tables 2 and 3 give the optical prescription for this system. Table 3 gives rotationally symmetric aspheric terms for the system.

TABLE 2
Radius
Surface of curv Thickness Material Diameter Conic
Obj Inf 2.45906 0.6357861 0
1 1.973107 1.415926 Acrylic 1.2 −1.680295
2 −2.882275 0.7648311 1.2 −1.029351
Stop Inf 0.1 Acrylic 0.841 0
4 Inf 25.83517 0.841 0
Img 6.173922

[0075]

TABLE 3
Surface 4th 6th 8th 10th 12th 14th
1 0.013191 −0.22886 0.139609 −0.250285 −0.18807 0.193763
2 −0.008797 0.017236 0.007808 −0.223224 0.160689 −0.274339
Stop −0.018549 −0.010249 −0.303999 1.369745 11.245778 −59.7839958

[0076] Wavefront coding element 806 is placed at aperture stop 804, and is given by the rectangularly separable form of:

S(x,y)=Σa isign(x)|x/r n| b i +a isign(y)|y/r n| b i

[0077] and the parameter values for i=1,2 are:

[0078] a1=1.486852, b1=3.0

[0079] a2=3.221235, b2=10.0

[0080] rn=0.419

[0081]FIG. 10 illustrates modulation transfer functions (MTF) for system 800 of FIG. 8, without wavefront coding, with wavefront coding, and with both wavefront coding and post processing filtering, for illumination at 450 nm. Image field heights are 0.0 mm, 1.2 mm, and 2.8 mm.

[0082]FIG. 11 shows a passive athermalized IR imaging system 1100 according to the present invention. Lens 1102 is composed of silicon. Lens 1104 is composed of germanium. Lens 1106 is composed of silicon. The aperture stop 1108 is at the back surface of lens 1106. Wavefront coding surface 1110 is on the back surface of lens 1106 (at aperture stop 1108). Processing block 1112 processes the image.

[0083] Design goals are as follows:

[0084] F/2

[0085] f=100 mm

[0086] 3 deg half field of view

[0087] Illumination wavelength=10 microns

[0088] 20 micron square pixels, 100% fill factor

[0089] Silicon & germanium optics

[0090] Aluminum mounts

[0091] Temperature range of −20° C. to +70° C.

[0092] Combined constraints of low F/#, inexpensive mounting material, and wide operating temperature make this design very difficult for traditional optics. Table 4 gives the optical prescription of system 1100.

TABLE 4
Radius
Surface of curv. Thickness Material Diameter Conic
Obj Inf Inf 0.6357861 0
1 58.6656 5.707297 Silicon 60 0
2 100.9934 22.39862 57.6 0
3 447.046 8.000028 Germanium 32.4 0
4 50.88434 17.54754 32.4 0
5 455.597 7.999977 Silicon 29.5 0
Stop −115.6064 57.9967 29.5 0
Img 6.173922

[0093] The Wavefront Coding surface for IR system 100 of this example has the parameterized equation:

S(x,y)=Σa isign(x)|x/r n| b i +a isign(y)|y/r n| b i

[0094] and the parameter values for i=1,2 are:

[0095] a1=16.196742, b1=3.172720

[0096] a2=−311.005659, b2=20.033486

[0097] rn=18.314428

[0098]FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 1100 of FIG. 11, with wavefront coding element 1110 removed. The ray intercept curves of FIG. 11 describe the performance of system 1100 at a wavelength of 10 microns, on axis field points for ambient temperatures of +20° C., −20° C., and +70° C. Full scale is +/−100 microns. Again these plots can be considered to be substantially straight lines. While they have more “wiggle” than the plots of FIGS. 2 and 9, in each case, if the plot were fitted to the closest straight line, the wiggles would not stray far from the line.

[0099]FIG. 13 illustrates on-axis MTF curves for system 1100 without wavefront coding at three temperatures +20° C. −20° C., and +70° C.). Performance is nearly diffraction limited at +20°, but drops dramatically with changes in temperature.

[0100]FIG. 14 illustrates MTFs for system 1100 of FIG. 11, with wavefront coding, both with and without filtering by processing block 1112. The illumination wavelength is 10 microns. The MTFs without filtering are significantly different from diffraction limited MTFs, but vary little with temperature. Thus, processing block 1112 is able to correct the images. The MTFs after filtering are near diffraction limited for all three temperatures (+20°, −20°, and +70°). Filtered MTFs extend only to the Nyquist frequency of the 20 micron detector, or 25 lp/mm.

[0101] The best way to define what constitutes a transverse ray intercept curve which is a “substantially straight line” is to look at the MTFs over the entire useful range of the system with wavefront coding applied. These curves must be very close to each other, in order for the post processing to be able to move all the the MTFs to the desired performance level. Compare the MTFs of FIG. 4 (no wavefront coding) to those of FIG. 5 (wavefront coding) The FIG. 5 MTF curves are very close together. In FIG. 6, post processing has moved the MTFs to an acceptable level (more sophisticated post processing could improve the MTFs much further, to nearly diffraction limited performance, so long as the preprocessing curves are close enough together). Post processing could not accomplish this goal with the curves of FIG. 4, because they are not at all close together.

[0102]FIG. 10 also illustrates this concept. The MTF curves without wavefront coding do not track each other. The curves with wavefront coding are very close together. Thus, the the curves with wavefront coding after post processing are very good.

[0103] Finally, in FIGS. 13 and 14, the MTF curves without wavefront coding are far apart, but the MTF curves with wavefront coding are so close together that the post processing curves are nearly all diffraction limited.

[0104] In FIG. 13, it can be seen that the on-axis MTF (at +20° C., meaning essentially no temperature related misfocus) is essentially diffraction limited. This is the best case traditional MTF for this system. The MTFs at other temperatures, though, have greatly reduced performance due to temperature related effects.

[0105] Now consider the upper set of MTFs of FIG. 14, with wavefront coding and after processing. The MTFs are nearly identical. Thus the associated transverse ray intercept curves can be considered to be substantially straight lines, since they are close enough to straight to give essentially ideal MTFs.

[0106] For other systems, a lower level of performance may be acceptable, and consequently the deviation of the transverse ray intercept curves from a straight line may be larger. Such a situation would result if a fast lens (say F/2) is used with a digital detector, with, say, 10 micron pixels. In 500 nm illumination, the diffraction limited MTF for the optical system would extend to 1000 lp/mm, but the highest spatial frequency that could be measured by the detector would be only 50 lp/mm. Thus, aberrations that alter the highest spatial frequencies of the optics are of no consequence, because they will not be measured by the detector. Note that while the transverse ray intercept curves may have noticeable deviations from a straight line (corresponding to the higher spatial frequencies), the transverse ray intercept curves are still “substantially straight lines” according to our definition, because the MTFs with wavefront coding are very close together. The MTFs under consideration are those that correspond to the useful range of the particular system being considered.

[0107] Compare the MTFs of FIGS. 6, 10, and 14 with wavefront coding (useful range MTFs for embodiments of the present invention) with the MTFs resulting from traditional design of FIG. 15b. These traditional MTFs are quite far apart, so post processing could never give adequate performance. These curves are generally 50% or more apart, whereas the wavefront coding curves in FIGS. 6, 10, and 14, are within an average of 20% of each other over the useful range of the system, and in the case of FIG. 10, are within an average of 10% of each other over the useful range of the system.

[0108] The major aberration apparent in the design of FIG. 11 is temperature related misfocus. Without Wavefront Coding, this lens would image poorly over a range of temperatures, although it would image well at a single temperature.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6707603 *28 Jun 200116 Mar 2004Raytheon CompanyApparatus and method to distort an optical beam to avoid ionization at an intermediate focus
US70310549 Oct 200318 Apr 2006The Regent Of The University Of ColoradoMethods and systems for reducing depth of field of hybrid imaging systems
US70884191 Jun 20048 Aug 2006Cdm Optics, Inc.Lithographic systems and methods with extended depth of focus
US711584931 Jan 20033 Oct 2006The Regents Of The University Of ColoradoWavefront coding interference contrast imaging systems
US718067325 Mar 200420 Feb 2007Cdm Optics, Inc.Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US74692021 Dec 200423 Dec 2008Omnivision Cdm Optics, Inc.System and method for optimizing optical and digital system designs
US761684117 Jun 200510 Nov 2009Ricoh Co., Ltd.End-to-end design of electro-optic imaging systems
US761684213 Jan 200610 Nov 2009Ricoh Co., Ltd.End-to-end design of electro-optic imaging systems with constrained digital filters
US762719315 Jan 20041 Dec 2009Tessera International, Inc.Camera with image enhancement functions
US76798305 Feb 200716 Mar 2010The Regents Of The University Of ColoradoOptical systems utilizing multiple phase filters to increase misfocus tolerance
US769270912 May 20066 Apr 2010Ricoh Co., Ltd.End-to-end design of electro-optic imaging systems with adjustable optical cutoff frequency
US77327501 Sep 20068 Jun 2010The Regents Of The University Of ColoradoWavefront coding interference contrast imaging systems
US77733169 Nov 200610 Aug 2010Tessera International, Inc.Optics for an extended depth of field
US786069922 Dec 200828 Dec 2010Omnivision Technologies, Inc.System and method for optimizing optical and digital system designs
US787641721 Jul 200625 Jan 2011Omnivision Technologies, Inc.Lithographic systems and methods with extended depth of focus
US788926412 May 200615 Feb 2011Ricoh Co., Ltd.End-to-end design of superresolution electro-optic imaging systems
US7916194 *5 Jul 200729 Mar 2011Kyocera CorporationImage pickup apparatus
US79243415 Jun 200612 Apr 2011Ricoh Co., Ltd.Optical subsystem with descriptors of its image quality
US794446719 Sep 200617 May 2011Omnivision Technologies, Inc.Task-based imaging systems
US794449030 May 200717 May 2011Kyocera CorporationImage pickup apparatus and method and apparatus for manufacturing the same
US794855027 Jun 200824 May 2011Ricoh Co., Ltd.Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
US801408430 Jul 20106 Sep 2011DigitalOptics Corporation InternationalOptics for an extended depth of field
US804433118 Feb 200925 Oct 2011Kyocera CorporationImage pickup apparatus and method for manufacturing the same
US8059955 *25 Sep 200715 Nov 2011Kyocera CorporationImage pickup apparatus and method and apparatus for manufacturing the same
US80772474 Dec 200813 Dec 2011Fujinon CorporationImaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US80774013 Oct 200713 Dec 2011Ricoh Co., Ltd.Catadioptric imaging system
US8094207 *13 Nov 200810 Jan 2012Fujifilm CorporationImaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, and medical apparatus, and method of manufacturing the imaging system
US81113184 Dec 20087 Feb 2012Fujinon CorporationImaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8111937 *30 Oct 20077 Feb 2012Omnivision Technologies, Inc.Optimized image processing for wavefront coded imaging systems
US812143922 May 200921 Feb 2012Ricoh Co., Ltd.End-to-end design of electro-optic imaging systems using the nonequidistant discrete Fourier transform
US812553727 Jun 200828 Feb 2012Kyocera CorporationImage processing method and imaging apparatus using the same
US81262876 Nov 200928 Feb 2012DigitalOptics Corporation InternationalCamera with image enhancement functions
US8134609 *13 Nov 200813 Mar 2012Fujinon CorporationImaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US81442082 Jul 201027 Mar 2012Omnivision Technologies, Inc.Task-based imaging systems
US814928713 Nov 20083 Apr 2012Fujinon CorporationImaging system using restoration processing, imaging apparatus, portable terminal apparatus, onboard apparatus and medical apparatus having the imaging system
US814929825 Jun 20093 Apr 2012Kyocera CorporationImaging device and method
US819924629 May 200812 Jun 2012Fujifilm CorporationImage capturing apparatus, image capturing method, and computer readable media
US824868426 Aug 200821 Aug 2012Ricoh Co., Ltd.Control of adaptive optics based on post-processing metrics
US8254714 *16 Sep 200428 Aug 2012Wake Forest UniversityMethods and systems for designing electromagnetic wave filters and electromagnetic wave filters designed using same
US82949992 Aug 201123 Oct 2012DigitalOptics Corporation InternationalOptics for an extended depth of field
US831058328 Sep 200913 Nov 2012Kyocera CorporationLens unit, image pickup apparatus, electronic device and an image aberration control method
US833450025 Jun 200918 Dec 2012Kyocera CorporationSystem for reducing defocusing of an object image due to temperature changes
US835521110 Aug 200615 Jan 2013FM-Assets Pty LtdOptical lens systems
US836312924 Nov 201029 Jan 2013Kyocera CorporationImaging device with aberration control and method therefor
US850287728 Aug 20096 Aug 2013Kyocera CorporationImage pickup apparatus electronic device and image aberration control method
US856767830 Jan 200829 Oct 2013Kyocera CorporationImaging device, method of production of imaging device, and information code-reading device
US861103024 Sep 201217 Dec 2013DigitalOptics Corporation InternationalOptics for an extended depth of field
US87605161 Apr 201124 Jun 2014Omnivision Technologies, Inc.Task-based imaging systems
CN100520496C25 May 200629 Jul 2009豪威科技有限公司Multi-matrix depth of field wavefront-coding system and method
EP1672912A215 Jan 200421 Jun 2006D-blur Technologies LTD. C/o Yossi Haimov CPAMethod for producing an optical system including an electronic image enhancement processor
EP1726984A1 *25 May 200629 Nov 2006OmniVision Technologies, Inc.Multi-matrix depth of field image sensor
WO2005054927A2 *1 Dec 200416 Jun 2005Cdm Optics IncSystem and method for optimizing optical and digital system designs
WO2007134119A1 *9 May 200722 Nov 2007Cdm Optics IncAberration-tolerant far infrared imaging system
Classifications
U.S. Classification359/558, 359/368, 359/362, 430/5
International ClassificationG02B5/00, G02B27/46, A61B3/10, G02B27/00
Cooperative ClassificationG02B27/46, G02B27/0012, G02B27/0025, G02B5/00
European ClassificationG02B27/46, G02B27/00D, G02B5/00, G02B27/00K
Legal Events
DateCodeEventDescription
15 Jan 2003ASAssignment
Owner name: REGENTS OF THE UNIVERSITY OF COLORADO, THE, COLORA
Free format text: QUITCLAIM;ASSIGNOR:DOWSKI, EDWARD RAYMOND;REEL/FRAME:013711/0752
Effective date: 20021210
22 Dec 2000ASAssignment
Owner name: CDM OPTICS, INCORPORATED, COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOWSKI, EDWARD RAYMOND JR.;REEL/FRAME:011424/0892
Effective date: 20001221