US20020117122A1 - Gas water heater - Google Patents

Gas water heater Download PDF

Info

Publication number
US20020117122A1
US20020117122A1 US09/875,024 US87502401A US2002117122A1 US 20020117122 A1 US20020117122 A1 US 20020117122A1 US 87502401 A US87502401 A US 87502401A US 2002117122 A1 US2002117122 A1 US 2002117122A1
Authority
US
United States
Prior art keywords
water
tank
pressure
heat exchange
lower portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/875,024
Inventor
David Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquabeat Pty Ltd
Original Assignee
Aquabeat Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquabeat Pty Ltd filed Critical Aquabeat Pty Ltd
Assigned to AQUABEAT PTY LTD reassignment AQUABEAT PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINDNER, DAVID
Publication of US20020117122A1 publication Critical patent/US20020117122A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86348Tank with internally extending flow guide, pipe or conduit
    • Y10T137/86372Inlet internally extending

Definitions

  • Gas water heaters that are commercially available and deliver mains pressure water are characterized as having a stainless steel tank or a vitreous enamel lined mild steel tank with a high rating gas burner. These heaters don't have a large capacity water storage but can heat the water quickly.
  • U.S. Pat. No. 4,503,810 discloses a combustion gas water heater in which the hot combustion gases do not exchange heat with the stored water but rather a small volume of water is quickly heated in direct exchange with the combustion gases in an external heat exchanger. Cold water is drawn from the bottom of the storage tank heated in the external heat exchanger and then returned to the upper or middle portion of the storage tank by convection.
  • the present invention provides a combustion water heater which includes
  • a non-pressurised water storage tank having a cold water inlet in the lower portion of said tank and a heated water outlet in the upper portion of said tank
  • a plastic tank By using a non-pressurised tank a plastic tank can be utilised with the resultant advantages of longer service life due to less corrosion.
  • temperature stratification of the water in the tank is established. This has the benefit that water extracted from the upper portion of the tank is always the hottest water in the tank.
  • the plastic used can be any structural polymer that is heat resistant and suitable for the application. Stratification of heated layers of water is achieved by introducing the hot water to the top portion of the tank and separating any hotwater being heated in the bottom of the tank from cold water by using a separate chamber or a shroud.
  • the use of a low joule burner in combination with a heat stratified tank means that the stored water can be cost effectively heated over a longer period of time. Because the hottest layers are adjacent the outlet there is little risk that the supply of hot water will be interrupted.
  • the low joule burner is preferably rated at 1 to 2 kw.
  • the pump adjacent the outlet ensures the that the water pressure from the hot water taps will be at a pressure equivalent to mains pressure.
  • the pump is a multi compartment pressure transfer module that utilises the mains particularly high density polypropylene.
  • the tank can be formed by any suitable moulding technique although for high density poly propylene blow moulding is preferred.
  • the storage volume of the tank may be greater than that which is conventional for gas heaters but equivalent to that of electric storage heaters intended to supply similar daily volumes.
  • a domestic size tank would be 315 litres storage capacity but smaller or larger sizes are feasible.
  • a large tank is required when the power rating of the combustion chamber is selected to provide a time to heat the whole tank of about 12 to 20 hours.
  • the dimensions of such a tank are typically about 660 mm diameter and 1700 mm height. For smaller tanks a higher rating burner could be used to provide a larger proportion of the tank with hot water.
  • the tank 1 is provided with an outer skin 2 and a layer 3 of insulation to limit heat losses from the tank.
  • the outer skin is preferably of a hard wearing, tear resistant and weather resistant plastic such as high density polyethylene, low density polyethylene, ABA, ABS or even sheet metal.
  • Sheet metal has the advantage of having lower thermal expansion characteristics and may also be less expensive.
  • the insulation material can be any suitable material with low heat conductivity with polyurethane foam being the preferred material.
  • the removable lid 4 also has an insulation layer between an inner and outer skin. Because the tank is not intended to operate at mains water pressure the seal between the tank and the lid need not be particularly strong. This means that access to the interior of the tank for manufacturing and maintenance purposes is much easier than for mains pressure tanks.
  • the lid 4 is arranged to seat on the tank above the operating water level 9 of the tank.
  • the pressure transfer module 5 is of the type described in WO97/46805. The contents of that patent are incorporated herein by reference. Cold water passes into the module through mains pressure cold water inlet 10 and after being reduced in pressure the water flows through cold water outlet 12 into the lower portion of the tank.
  • the PTM is either positioned in the top of the tank or draws hot water from the top layer of water in the tank. Hot water is drawn into the PTM 5 and exits at mains pressure through the hot water outlet 11 .
  • cold water from the bottom of the tank is drawn into the heat exchanger 7 and passes up the heated water delivery pipe into the upper section of the tank.
  • the external heat exchanger 7 comprises a gas flame 6 mounted in a chamber with an associated air inlet.
  • the hot combustion gases are caused to circulate around pipes or water walls in the heat exchanger and then to exit via the flue outlet 8 .
  • the flue is shown as balanced with the flue outlet 8 being adjacent the air inlet for gas flame 6 .
  • FIG. 2 is a first version of a tank with the gas flame 6 and heat exchanger 7 disposed in the lower portion of the tank.
  • a shroud or convection flume 13 confines the cold water entering the bottom of the tank through inlet 12 so that it is in heat exchange relation ship with the external surface of the heat exchanger 7 .
  • the arrangement of heat exchanger 7 within the shroud 13 may be in accordance with the well known principals of heat exchangers in increasing the heat transfer surface area without impeding the flow of flue gases from the flame 6 to the flue outlet 8 .
  • the flue outlet 8 is disposed in the lid 4 of the tank.
  • the hot water delivery pipe 14 surrounds the vertical flue 16 up into the upper portion of the tank to terminate just below the water level 9 .
  • FIG. 3 which is a variation of the embodiment of FIG. 2 the flue is balanced with the flue outlet 8 being adjacent the air inlet for flame 6 .
  • the heat exchanger 7 provides a path for the flue gases which traverses the base of the tank and then doubles back .
  • the arrangement of heat exchanger 7 can be designed to provide maximum heat transfer area between the conduits for the combustion gases and the water contained within shroud 13 .
  • the hot water delivery tube 14 can be of smaller diameter.
  • the operation of the gas flame may be fan assisted to ensure complete combustion of the fuel and to assist in the positive flow of the flue gases to the outlet 8 .
  • the fan and gas mixing valve may be situated on the top of the tank to avoid having them attached to the external wall of the unit which would increase the floor imprint of the unit. This has the additional advantage of keeping the fan away from dust accumulation near the bottom of the unit.
  • the fan and gas valve can be a unit in which the speed of the fan controls the gas inlet valve to maintain the correct air/gas mixture required for clean combustion.
  • a pre-mix burner with a DC fan is preferred.
  • a one speed fan would be suitable.
  • a two speed fan would need two temperature sensors one higher than the other.
  • the burner used with a 315 litre tank in accordance with any of the above 3 embodiments is rated at 5-6 Mega-joules/hour which given the efficiency of the stratification in the tank and the insulation on the tank gives a heating out put of about 1.1-1.3 Kw.
  • the efficiency rating is about 80%.
  • the burner may be a simple flame into the heat exchanger or may be a flame supported on a thimble like mesh shroud or even a longer mesh burner to extend within the tank for the embodiments of FIGS. 2 and 3.
  • the burner can be controlled by a control unit which includes one or more temperature sensors within the tank. With one sensor placed near the bottom of the tank a temperature above the set temperature for the tank would trigger the switching off of the burner. With two sensors one near the top and one near the bottom variable heating rates can be utilised. A low temperature at the upper sensor would trigger a higher input rate for the fan to increase the heat out put until the upper sensor exceeded the set temperature.
  • the water heater of this invention provides an uninterrupted supply of mains pressure hot water at low energy cost and low green house emissions.
  • the tank has a longer useful life than conventional gas water heaters of equivalent capital cost.

Abstract

A domestic gas storage water heater utilizes a plastic non pressure tank to deliver mains pressure hot water. The heater may be external or internal of the tank and has a heat out put of about 4-10 Mega joules per hour. A pressure transfer module uses the mains pressure of the incoming cold water to deliver hot water from the tank at mains pressure. The tank may be of larger storage capacity than conventional gas heaters and the arrangement ensures that the heated water in the tank is stratified into layers of different temperature. This enables an uninterrupted supply of hot water to be achieved.

Description

    BACKGROUND TO INVENTION
  • Gas water heaters that are commercially available and deliver mains pressure water are characterized as having a stainless steel tank or a vitreous enamel lined mild steel tank with a high rating gas burner. These heaters don't have a large capacity water storage but can heat the water quickly. [0001]
  • The heat efficiency of such heaters is not high and the output of Carbon dioxide, a green house gas, is quite high. Usually the heat exchange is achieved by passing the hot combustion gases up a flue through the centre of the tank or over the external surface of the tank. Australian patent 720062 is an example of this approach. This has the disadvantage of having to heat the total volume of water in the storage tank to the desired temperature. [0002]
  • U.S. Pat. No. 4,503,810 discloses a combustion gas water heater in which the hot combustion gases do not exchange heat with the stored water but rather a small volume of water is quickly heated in direct exchange with the combustion gases in an external heat exchanger. Cold water is drawn from the bottom of the storage tank heated in the external heat exchanger and then returned to the upper or middle portion of the storage tank by convection. [0003]
  • Another problem with water heater storage tanks is corrosion of the tank which occurs with unlined and also vitreous enamel lined tanks. The use of non-corrodible stainless steel tanks is an expensive solution to the problem. Plastic tanks are cheaper but these are unsuitable for storing mains pressure hot water. [0004]
  • One proposal has been to use plastic lined metal tanks as proposed in U.S. Pat. No. 4,338,888. The combustion chamber has water walls for heat exchange. Water from the bottom of the tank is heated in the water walled combustion chamber and the heated water is returned to the lower portion of the tank. [0005]
  • Another approach for electric heated tanks is USA patent [0006] 4437484 which uses an un-pressurised plastic tank and a pump.
  • It is an object of this invention to provide a storage water heater which overcomes these problems. [0007]
  • BRIEF DESCRIPTION OF THE INVENTION
  • To this end the present invention provides a combustion water heater which includes [0008]
  • a) a non-pressurised water storage tank having a cold water inlet in the lower portion of said tank and a heated water outlet in the upper portion of said tank [0009]
  • b) a low heat output combustion chamber having a flue for the egress of combustion gases [0010]
  • c) a heat exchange surface associated with said flue [0011]
  • d) means for contacting water from the lower portion of said water storage tank with said heat exchange surface [0012]
  • e) means for conducting water heated at the heat exchange surface to the upper portion of said water storage tank [0013]
  • f) pump means associated with the heated water outlet to increase the pressure of water from the non pressurised tank. [0014]
  • By using a non-pressurised tank a plastic tank can be utilised with the resultant advantages of longer service life due to less corrosion. By returning the heated water from the heat exchanger to the upper portion of the tank, temperature stratification of the water in the tank is established. This has the benefit that water extracted from the upper portion of the tank is always the hottest water in the tank. The plastic used can be any structural polymer that is heat resistant and suitable for the application. Stratification of heated layers of water is achieved by introducing the hot water to the top portion of the tank and separating any hotwater being heated in the bottom of the tank from cold water by using a separate chamber or a shroud. [0015]
  • The use of a low joule burner in combination with a heat stratified tank means that the stored water can be cost effectively heated over a longer period of time. Because the hottest layers are adjacent the outlet there is little risk that the supply of hot water will be interrupted. The low joule burner is preferably rated at 1 to 2 kw. [0016]
  • The pump adjacent the outlet ensures the that the water pressure from the hot water taps will be at a pressure equivalent to mains pressure. Preferably the pump is a multi compartment pressure transfer module that utilises the mains particularly high density polypropylene. The tank can be formed by any suitable moulding technique although for high density poly propylene blow moulding is preferred. The storage volume of the tank may be greater than that which is conventional for gas heaters but equivalent to that of electric storage heaters intended to supply similar daily volumes. A domestic size tank would be 315 litres storage capacity but smaller or larger sizes are feasible. A large tank is required when the power rating of the combustion chamber is selected to provide a time to heat the whole tank of about 12 to 20 hours. The dimensions of such a tank are typically about 660 mm diameter and 1700 mm height. For smaller tanks a higher rating burner could be used to provide a larger proportion of the tank with hot water. [0017]
  • The tank [0018] 1 is provided with an outer skin 2 and a layer 3 of insulation to limit heat losses from the tank. The outer skin is preferably of a hard wearing, tear resistant and weather resistant plastic such as high density polyethylene, low density polyethylene, ABA, ABS or even sheet metal. Sheet metal has the advantage of having lower thermal expansion characteristics and may also be less expensive. The insulation material can be any suitable material with low heat conductivity with polyurethane foam being the preferred material.
  • The [0019] removable lid 4 also has an insulation layer between an inner and outer skin. Because the tank is not intended to operate at mains water pressure the seal between the tank and the lid need not be particularly strong. This means that access to the interior of the tank for manufacturing and maintenance purposes is much easier than for mains pressure tanks. The lid 4 is arranged to seat on the tank above the operating water level 9 of the tank.
  • The [0020] pressure transfer module 5 is of the type described in WO97/46805. The contents of that patent are incorporated herein by reference. Cold water passes into the module through mains pressure cold water inlet 10 and after being reduced in pressure the water flows through cold water outlet 12 into the lower portion of the tank.
  • The PTM is either positioned in the top of the tank or draws hot water from the top layer of water in the tank. Hot water is drawn into the [0021] PTM 5 and exits at mains pressure through the hot water outlet 11.
  • In the embodiment shown in FIG. 1 cold water from the bottom of the tank is drawn into the [0022] heat exchanger 7 and passes up the heated water delivery pipe into the upper section of the tank. The external heat exchanger 7 comprises a gas flame 6 mounted in a chamber with an associated air inlet. The hot combustion gases are caused to circulate around pipes or water walls in the heat exchanger and then to exit via the flue outlet 8. In FIG. 1 the flue is shown as balanced with the flue outlet 8 being adjacent the air inlet for gas flame 6.
  • The embodiment of FIG. 2 is a first version of a tank with the [0023] gas flame 6 and heat exchanger 7 disposed in the lower portion of the tank. A shroud or convection flume 13 confines the cold water entering the bottom of the tank through inlet 12 so that it is in heat exchange relation ship with the external surface of the heat exchanger 7. The arrangement of heat exchanger 7 within the shroud 13 may be in accordance with the well known principals of heat exchangers in increasing the heat transfer surface area without impeding the flow of flue gases from the flame 6 to the flue outlet 8. In FIG. 2 the flue outlet 8 is disposed in the lid 4 of the tank. To maximise the heat transfer the hot water delivery pipe 14 surrounds the vertical flue 16 up into the upper portion of the tank to terminate just below the water level 9.
  • In the embodiment of FIG. 3 which is a variation of the embodiment of FIG. 2 the flue is balanced with the [0024] flue outlet 8 being adjacent the air inlet for flame 6. As shown in FIG. 3 the heat exchanger 7 provides a path for the flue gases which traverses the base of the tank and then doubles back . The arrangement of heat exchanger 7 can be designed to provide maximum heat transfer area between the conduits for the combustion gases and the water contained within shroud 13. In the embodiment of FIG. 3 the hot water delivery tube 14 can be of smaller diameter.
  • In all three embodiments the operation of the gas flame may be fan assisted to ensure complete combustion of the fuel and to assist in the positive flow of the flue gases to the [0025] outlet 8. In the embodiment of FIGS. 2 and 3 the fan and gas mixing valve may be situated on the top of the tank to avoid having them attached to the external wall of the unit which would increase the floor imprint of the unit. This has the additional advantage of keeping the fan away from dust accumulation near the bottom of the unit. The fan and gas valve can be a unit in which the speed of the fan controls the gas inlet valve to maintain the correct air/gas mixture required for clean combustion. A pre-mix burner with a DC fan is preferred. In a simple unit with on temperature sensor a one speed fan would be suitable. A two speed fan would need two temperature sensors one higher than the other.
  • The burner used with a 315 litre tank in accordance with any of the above 3 embodiments is rated at 5-6 Mega-joules/hour which given the efficiency of the stratification in the tank and the insulation on the tank gives a heating out put of about 1.1-1.3 Kw. The efficiency rating is about 80%. The burner may be a simple flame into the heat exchanger or may be a flame supported on a thimble like mesh shroud or even a longer mesh burner to extend within the tank for the embodiments of FIGS. 2 and 3. [0026]
  • The burner can be controlled by a control unit which includes one or more temperature sensors within the tank. With one sensor placed near the bottom of the tank a temperature above the set temperature for the tank would trigger the switching off of the burner. With two sensors one near the top and one near the bottom variable heating rates can be utilised. A low temperature at the upper sensor would trigger a higher input rate for the fan to increase the heat out put until the upper sensor exceeded the set temperature. [0027]
  • For domestic dwellings, the water heater of this invention provides an uninterrupted supply of mains pressure hot water at low energy cost and low green house emissions. In addition the tank has a longer useful life than conventional gas water heaters of equivalent capital cost. [0028]

Claims (6)

1. a combustion water heater which includes
a) a non-pressurised water storage tank having a cold water inlet in the lower portion of said tank and a heated water outlet in the upper portion of said tank
b) a low heat output combustion chamber having a flue for the egress of combustion gases
c) a heat exchange surface associated with said flue
d) means for contacting water from the lower portion of said water storage tank with said heat exchange surface
e) means for conducting water heated at the heat exchange surface to the upper portion of said water storage tank
f) pump means associated with the heated water outlet to increase the pressure of water exiting from the non pressurised tank.
2. A water heater as claimed in claim 1 in which the water in the tank is stratified by temperature with the hottest water adjacent the hot water outlet.
3. A water heater as claimed in claim 1 wherein the heat exchange surface is disposed within the water storage tank.
4. A water heater as claimed in claim one wherein the pump means is a multi compartmented pressure transfer module adapted to release hot water at near mains pressure by utilising the existing mains pressure of the cold water inlet.
5. A water heater as claimed in claim 1 wherein the heat exchange surface is disposed within the lower portion of the tank and the tank incorporates a shroud which separates the water in the lower portion of the tank, which surrounds the heat exchanger, from the water in the remainder of the tank, and a water outlet allows water from within the lower portion to rise to the upper section of the tank.
6. A water heater as claimed in claim 1 or 2 in which the energy out put of the combustion unit is 1 to 2 kilowatts.
US09/875,024 2000-06-19 2001-06-07 Gas water heater Abandoned US20020117122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPQ8218 2000-06-19
AUPQ8218A AUPQ821800A0 (en) 2000-06-19 2000-06-19 Gas water heater

Publications (1)

Publication Number Publication Date
US20020117122A1 true US20020117122A1 (en) 2002-08-29

Family

ID=3822285

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/875,024 Abandoned US20020117122A1 (en) 2000-06-19 2001-06-07 Gas water heater

Country Status (3)

Country Link
US (1) US20020117122A1 (en)
AU (1) AUPQ821800A0 (en)
CA (1) CA2349634A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538397A1 (en) * 2003-12-03 2005-06-08 Minebea Co., Ltd. Pump module for a hot water supply system
US20080017724A1 (en) * 2006-07-19 2008-01-24 Aos Holding Company Water heating distribution system
US20100025486A1 (en) * 2008-07-29 2010-02-04 Sanger Jeremy J Liquid heat generator with integral heat exchanger
US7690395B2 (en) 2004-01-12 2010-04-06 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US8089473B2 (en) 2006-04-20 2012-01-03 Masco Corporation Of Indiana Touch sensor
US8118240B2 (en) 2006-04-20 2012-02-21 Masco Corporation Of Indiana Pull-out wand
US8162236B2 (en) 2006-04-20 2012-04-24 Masco Corporation Of Indiana Electronic user interface for electronic mixing of water for residential faucets
US8365767B2 (en) 2006-04-20 2013-02-05 Masco Corporation Of Indiana User interface for a faucet
US8376313B2 (en) 2007-03-28 2013-02-19 Masco Corporation Of Indiana Capacitive touch sensor
US8469056B2 (en) 2007-01-31 2013-06-25 Masco Corporation Of Indiana Mixing valve including a molded waterway assembly
US8561626B2 (en) 2010-04-20 2013-10-22 Masco Corporation Of Indiana Capacitive sensing system and method for operating a faucet
US8613419B2 (en) 2007-12-11 2013-12-24 Masco Corporation Of Indiana Capacitive coupling arrangement for a faucet
WO2014003526A1 (en) * 2012-06-29 2014-01-03 Essaid Raoui Water heater with a tank made from a synthetic material
US8776817B2 (en) 2010-04-20 2014-07-15 Masco Corporation Of Indiana Electronic faucet with a capacitive sensing system and a method therefor
US8944105B2 (en) 2007-01-31 2015-02-03 Masco Corporation Of Indiana Capacitive sensing apparatus and method for faucets
US20150226452A1 (en) * 2012-08-13 2015-08-13 N&W Global Vending S.P.A. Storage boiler
US9175458B2 (en) 2012-04-20 2015-11-03 Delta Faucet Company Faucet including a pullout wand with a capacitive sensing
US9243756B2 (en) 2006-04-20 2016-01-26 Delta Faucet Company Capacitive user interface for a faucet and method of forming
US9243392B2 (en) 2006-12-19 2016-01-26 Delta Faucet Company Resistive coupling for an automatic faucet
US20190309986A1 (en) * 2018-04-04 2019-10-10 Guo Qiang Tu Water heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130929A1 (en) * 2005-06-09 2006-12-14 Ollin Sustainable Technologies Pty. Ltd. Compact water heating apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538397A1 (en) * 2003-12-03 2005-06-08 Minebea Co., Ltd. Pump module for a hot water supply system
US7690395B2 (en) 2004-01-12 2010-04-06 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US9243391B2 (en) 2004-01-12 2016-01-26 Delta Faucet Company Multi-mode hands free automatic faucet
US8528579B2 (en) 2004-01-12 2013-09-10 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US8162236B2 (en) 2006-04-20 2012-04-24 Masco Corporation Of Indiana Electronic user interface for electronic mixing of water for residential faucets
US9856634B2 (en) 2006-04-20 2018-01-02 Delta Faucet Company Fluid delivery device with an in-water capacitive sensor
US8089473B2 (en) 2006-04-20 2012-01-03 Masco Corporation Of Indiana Touch sensor
US8118240B2 (en) 2006-04-20 2012-02-21 Masco Corporation Of Indiana Pull-out wand
US9228329B2 (en) 2006-04-20 2016-01-05 Delta Faucet Company Pull-out wand
US11886208B2 (en) 2006-04-20 2024-01-30 Delta Faucet Company Electronic user interface for electronic mixing of water for residential faucets
US8243040B2 (en) 2006-04-20 2012-08-14 Masco Corporation Of Indiana Touch sensor
US8365767B2 (en) 2006-04-20 2013-02-05 Masco Corporation Of Indiana User interface for a faucet
US9285807B2 (en) 2006-04-20 2016-03-15 Delta Faucet Company Electronic user interface for electronic mixing of water for residential faucets
US10698429B2 (en) 2006-04-20 2020-06-30 Delta Faucet Company Electronic user interface for electronic mixing of water for residential faucets
US9715238B2 (en) 2006-04-20 2017-07-25 Delta Faucet Company Electronic user interface for electronic mixing of water for residential faucets
US9243756B2 (en) 2006-04-20 2016-01-26 Delta Faucet Company Capacitive user interface for a faucet and method of forming
US7644686B2 (en) 2006-07-19 2010-01-12 Aos Holding Company Water heating distribution system
US20100077969A1 (en) * 2006-07-19 2010-04-01 Aos Holding Company Method of water heating and distribution
US20080017724A1 (en) * 2006-07-19 2008-01-24 Aos Holding Company Water heating distribution system
US8844564B2 (en) 2006-12-19 2014-09-30 Masco Corporation Of Indiana Multi-mode hands free automatic faucet
US9243392B2 (en) 2006-12-19 2016-01-26 Delta Faucet Company Resistive coupling for an automatic faucet
US8127782B2 (en) 2006-12-19 2012-03-06 Jonte Patrick B Multi-mode hands free automatic faucet
US8469056B2 (en) 2007-01-31 2013-06-25 Masco Corporation Of Indiana Mixing valve including a molded waterway assembly
US8944105B2 (en) 2007-01-31 2015-02-03 Masco Corporation Of Indiana Capacitive sensing apparatus and method for faucets
US8376313B2 (en) 2007-03-28 2013-02-19 Masco Corporation Of Indiana Capacitive touch sensor
US9315976B2 (en) 2007-12-11 2016-04-19 Delta Faucet Company Capacitive coupling arrangement for a faucet
US8613419B2 (en) 2007-12-11 2013-12-24 Masco Corporation Of Indiana Capacitive coupling arrangement for a faucet
US8469283B2 (en) * 2008-07-29 2013-06-25 Ventech, Llc Liquid heat generator with integral heat exchanger
US20100025486A1 (en) * 2008-07-29 2010-02-04 Sanger Jeremy J Liquid heat generator with integral heat exchanger
US8776817B2 (en) 2010-04-20 2014-07-15 Masco Corporation Of Indiana Electronic faucet with a capacitive sensing system and a method therefor
US9394675B2 (en) 2010-04-20 2016-07-19 Delta Faucet Company Capacitive sensing system and method for operating a faucet
US8561626B2 (en) 2010-04-20 2013-10-22 Masco Corporation Of Indiana Capacitive sensing system and method for operating a faucet
US9175458B2 (en) 2012-04-20 2015-11-03 Delta Faucet Company Faucet including a pullout wand with a capacitive sensing
WO2014003526A1 (en) * 2012-06-29 2014-01-03 Essaid Raoui Water heater with a tank made from a synthetic material
US20150226452A1 (en) * 2012-08-13 2015-08-13 N&W Global Vending S.P.A. Storage boiler
US10077919B2 (en) * 2012-08-13 2018-09-18 N&W Global Vending S.P.A. Storage boiler
US20190309986A1 (en) * 2018-04-04 2019-10-10 Guo Qiang Tu Water heater

Also Published As

Publication number Publication date
CA2349634A1 (en) 2001-12-19
AUPQ821800A0 (en) 2000-07-13

Similar Documents

Publication Publication Date Title
US20020117122A1 (en) Gas water heater
CN111148948B (en) Water heater and method for heating water
US6612267B1 (en) Combined heating and hot water system
JP2013515944A (en) Accumulator tank with partition wall
CN102401422A (en) Gas hot water heating device and system
US20050235984A1 (en) Water heating apparatus
AU5189801A (en) Gas water heater
WO1998020287A1 (en) Heating apparatus and method for operation thereof
EP1650505A1 (en) Condensing Boiler
CN113757773A (en) Heating stove and control method thereof
KR20110127933A (en) Boiler
CN101285571B (en) Vapor circulated and gravity force hot pipe double-acting heater
KR102369983B1 (en) Heat exchanger with high efficiency
JP6570908B2 (en) Hot water system
CA2823597C (en) Downfired high efficiency gas-fired water heater
CN216347088U (en) Inner container for electric water heater
JPS6142020Y2 (en)
KR101712018B1 (en) heat exchange boiler by step-momentary heat
KR100607025B1 (en) Boiler
AU662456B2 (en) A thermal oil heater
CN107300253B (en) Constant temperature gas water heater
CN206362011U (en) A kind of Trans-critical cycle CO2Water earth source heat pump refrigerating and heating systems
BG109978A (en) Water-heater using solid and liquid fuel for direct water heating
CN105423542A (en) Energy-saving gas water heater
AU2003260171A1 (en) Water heating apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: AQUABEAT PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LINDNER, DAVID;REEL/FRAME:011900/0092

Effective date: 20010508

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION