US20020111587A1 - Injection device for injecting fluid - Google Patents

Injection device for injecting fluid Download PDF

Info

Publication number
US20020111587A1
US20020111587A1 US09/784,661 US78466101A US2002111587A1 US 20020111587 A1 US20020111587 A1 US 20020111587A1 US 78466101 A US78466101 A US 78466101A US 2002111587 A1 US2002111587 A1 US 2002111587A1
Authority
US
United States
Prior art keywords
injection device
counter component
bushing
driven member
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/784,661
Other versions
US6673049B2 (en
Inventor
Edgar Hommann
Stefan Jost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecpharma Licensing AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/784,661 priority Critical patent/US6673049B2/en
Assigned to DISETRONIC LICENSING AG reassignment DISETRONIC LICENSING AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOMMANN, EDGAR, JOST, STEFAN
Publication of US20020111587A1 publication Critical patent/US20020111587A1/en
Assigned to TECPHARMA LICENSING AG reassignment TECPHARMA LICENSING AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DISETRONIC SERVICES AG
Assigned to DISETRONIC SERVICES AG reassignment DISETRONIC SERVICES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISETRONIC LICENSING AG
Application granted granted Critical
Publication of US6673049B2 publication Critical patent/US6673049B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • A61M5/31553Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe without axial movement of dose setting member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31501Means for blocking or restricting the movement of the rod or piston
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M2005/14573Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir for quick connection/disconnection with a driving system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M2005/2403Ampoule inserted into the ampoule holder
    • A61M2005/2407Ampoule inserted into the ampoule holder from the rear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M2005/2485Ampoule holder connected to rest of syringe
    • A61M2005/2488Ampoule holder connected to rest of syringe via rotation, e.g. threads or bayonet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31525Dosing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/31563Mechanically operated dose setting member interacting with a displaceable stop member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31578Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod
    • A61M5/3158Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod performed by axially moving actuator operated by user, e.g. an injection button

Definitions

  • the present invention relates to an injection device for injecting fluid from a fluid container. It also relates to an actuator for such an injection device.
  • Syringe-shaped injection devices for injecting fluids have been known for some time. They contain a bushing-shaped main body which can be screwed together at approximately the centre and can be divided into two main sections:
  • a distal section (facing away from the patient) containing the discharge mechanism and comprising at least one rod-shaped driven member having a structured surface (e.g. a screw rod), a hollow cylindrical counter component corresponding to the driven member, provided with a structured internal sleeve (e.g. a screw nut); and
  • a proximal section (facing the patient) containing the fluid to be administered and a movable piston.
  • a needle and a needle holder are attached, allowing the fluid to be discharged from the device; known needles of this type are for instance needles as described in WO95/01812.
  • the connecting member between the proximal and the distal section of the main body is the driven member, shifting the piston by the required dose in proximal direction and discharging the fluid through the needle.
  • the fluid to be injected is not directly contained in the main body but in an ampoule or container, with the fluid being stored between a piercable membrane and a piston displaceable by sliding.
  • the threaded nut is spread due to the release of the distal section from the proximal section of the main body, allowing the threaded rod to move freely without any conscious operation by the patient, with screwing together of both sections of the main body after replacement of the ampoule easily causing a premature unintentional discharge of fluid.
  • this could also result in an incorrect dosing which, in case of certain medication, could be extremely hazardous to the patient's health.
  • the injection device comprises a bushing-shaped main body 1 which can be divided into a rear (distal) section 3 containing the tubular actuating device or discharge mechanism 7 and a front (proximal) section 2 containing a replaceable ampoule 4 and a piston 5 .
  • a needle 6 with its distal end connected to the fluid to be administered can be screwed to the proximal end of the main body 1 .
  • the actuating device 7 comprises a control button 8 , a threaded rod 9 with a flange 19 , a guide member 24 and a driving member 11 .
  • the tubular driving member 11 is rigidly connected to the control button 8 to prevent twisting. At the proximal end, the driving member 11 surrounds two threaded flanges 27 , 27 ′ engaging in the thread of the threaded rod 9 .
  • FIG. 18 shows that the threaded rod 9 comprises two level surfaces 12 , 12 ′ and apart from that is of a circular cross section, with the circular surfaces 13 , 13 ′ being threaded.
  • the guide member 24 is rigidly connected to the distal section 3 of the main body 1 , thus preventing rotation or axial movement and is positioned in front of the driving member 11 .
  • the aperture in the guide member 24 through which the threaded rod 9 passes (FIG. 19) is of the same cross section as the threaded rod 9 —although enlarged by certain tolerances.
  • the threaded rod 9 can be shifted through the opening of the guide member in axial direction. A rotational movement of the threaded rod 9 is therefore not possible as the guide member 24 does not allow this.
  • the control button 8 may be moved in axial direction or may be rotated. Where the control button is activated by being pushed in proximal direction, it will simultaneously shift the driving member 11 until its front face 14 pushes against the rear face 14 ′ of the guide member.
  • the threaded rod 9 is connected to the driving member 11 by threaded flanges 27 , 27 ′ thus allowing any axial movement of the control button 8 to be transferred. See detailed description of threaded flanges 27 , 27 ′ below.
  • the driving member 11 When turning the control button 8 to adjust an injection dose, the driving member 11 is also turned. This rotating movement can, however, not be transferred to the threaded rod 9 as the rod is rigidly seated in the guide member 24 . As a result of the rotating threaded flanges 27 , 27 ′ in driving member 11 , the threaded rod 9 is rigidly driven forward via the threaded sections of the circular surfaces 13 , 13 ′ (or backward, when reversing the rotation direction of the control button), thus bringing the flange 19 into the position required for the next injection dose to be discharged, i.e. the distance of the flange 19 from the piston 5 is respectively reduced.
  • the actuating device 7 By pressing the control button 8 , the actuating device 7 is moved from its home position to the end position.
  • the flange 19 pushes thereby against the piston 5 during this operation, carrying it along the set piston travel and thus discharging the pre-set volume of injection fluid through injection needle 6 .
  • the travel of the flange 19 from the home position to the end position of the actuating device 7 always remains the same and corresponds to a constant distance by which the flange 19 is separated from the piston 5 before setting the injection dose. This process is described in detail in WO 93/16740.
  • the threaded rod 9 When the fluid container 4 is empty and the threaded rod 9 is therefore in the extreme proximal position, the threaded rod must be returned to the extreme distal position.
  • the injection device according to the invention allows the threaded rod 9 to be returned by activation of an unlocking slide 32 .
  • FIGS. 17 and 18 show that both threaded flanges 27 , 27 ′ of the driving member 11 are designed as two half-shell threaded nut sections, each provided with two cams 28 , 28 ′, 29 , 29 ′.
  • the unlocking slide 32 attached to the rear section 3 is connected to an internal spreader bushing 35 in the rear section 3 , with shifting of the unlocking slide 32 in distal direction causing the spreader bushing 35 to be shifted in distal direction.
  • the spreader bushing 35 surrounds the driving member 11 and comprises four vertical tracks 30 , 30 ′, 31 , 31 ′ (FIG. 16), which extend towards the proximal end of the spreader bushing 35 outwardly at an angle.
  • the tracks 30 , 30 ′, 31 , 31 ′ serve to accommodate the cams 28 , 28 ′, 29 , 29 ′ of the threaded flanges 27 , 27 ′.
  • the spreader bushing 35 When the spreader bushing 35 is in the proximal position (FIG. 14), the threaded flanges 27 , 27 ′ surround the threaded rod 9 .
  • the spreader bushing 35 is moved to its distal position (FIG.
  • a notched surface 33 of the unlocking slide 32 arranged on the main body fits into a counter notched surface 34 on the proximal part of the spreader bushing 35 .
  • the spreader bushing 35 is retained in its proximal position by the spring 16 .
  • the user In order to release the threaded flange 27 , 27 ′ the user must actively shift the unlocking slide 32 into its distal position by simultaneous pushing it down. During this process, the notched surface 33 of the unlocking slide 32 engages in the counter notched surface 34 of the spreader bushing 35 , moving it backwards. Because of this movement, the cams 28 , 28 ′, 29 , 29 ′ must run over corresponding outwardly extending tracks 30 , 30 ′, 31 , 31 ′ of the spreader bushing 35 (FIGS. 16 - 18 ). This forced movement causes the threaded flanges 27 , 27 ′ to open (FIG.
  • the threaded flanges 27 , 27 ′ can only be released from the threaded rod 9 with the actuating device 7 in its proximal position (FIG. 15).
  • the tracks 30 , 30 ′, 31 , 31 ′ are of such a dimension that activation of the unlocking slide 32 in the operating position of the actuating device 7 (FIGS. 14 and 16) only causes the cams 28 , 28 ′, 29 , 29 ′ to slide in the vertical tracks 30 , 30 ′, 31 , 31 ′ without reaching their angled section at the proximal end of the spreader bushing 35 .
  • the actuating device In order for the cams 28 , 28 ′, 29 , 29 ′ to reach the angled section of the tracks 30 , 30 ′, 31 , 31 ′ and to release themselves from the threaded rod 9 , the actuating device must also be in its proximal position (FIG. 15).
  • the present invention provides an injection device and an actuator wherein the actuator comprises a first actuator component which is adapted to permit a second actuator component to be selectively moved when the first actuator component is manipulated by a third actuator component.
  • the present invention provides an injection device and an actuator for the injection device wherein the actuator comprises a first actuator component comprising a counter component which is adapted to permit a second actuator component comprising a driven member to be selectively moved when the counter component is manipulated by a third actuator component.
  • the present invention provides an injection device and an actuator for an injection device wherein the actuator comprises a first actuator component comprising a counter component which is adapted to permit a second actuator component comprising a driven member to be selectively moved when the counter component is manipulated by a third actuator component comprising a bushing which is selectively movable with and relative to the counter component.
  • the present invention provides an actuator for an injection device, wherein the actuator comprises a generally rod-shaped driven member having a structured surface portion, a counter component having a structured surface portion engaging with the structured surface portion of the driven member, whereby the driven member is movable by the counter component, and a spreader bushing for spreading open the counter component by a movement relative to the counter component, thereby allowing the driven member to shift freely, wherein the spreader bushing is selectively movable with and relative to the counter component.
  • a driven member can be shifted freely in an axial direction by forcibly opening the counter component upon actuation of a single element.
  • FIG. 1 shows a first embodiment of an injection device according to the invention with the threaded rod in a distal position and a blocked unlocking slide;
  • FIG. 2 shows a first embodiment of an injection device according to the invention with a pushed control button and a blocked unlocking slide;
  • FIG. 3 shows a first embodiment of an injection device according to the invention with a released threaded rod and a pushed unlocking slide, the control button not being pushed;
  • FIG. 4 shows a cross sectional view along line A-A of FIG. 1;
  • FIG. 5 shows a perspective view of a spreader bushing surrounding a threaded flange according to the invention
  • FIG. 6 shows a second embodiment of an injection device according to the invention with the container not being inserted
  • FIG. 7 shows the injection device of FIG. 6 with the inserted container
  • FIG. 8 shows the injection device of FIG. 7 with the control button being pushed
  • FIG. 9 shows the injection device of FIG. 7 with the threaded rod being released
  • FIG. 10 shows the injection device of FIG. 7 in a cross-sectional view perpendicular to the view of FIG. 7;
  • FIG. 11 shows a cross sectional view along line B-B of FIG. 9;
  • FIG. 12 shows a cross sectional view along line A-A of FIG. 8;
  • FIG. 13 shows a cross sectional view along line C-C of FIG. 9;
  • FIG. 14 shows an injection device of the prior art with a retained threaded rod
  • FIG. 15 shows an injection device of the prior art with a free threaded rod
  • FIG. 16 shows an injection device of the prior art in which the actuating device has been removed
  • FIG. 17 shows a cross section along line A-A of FIG. 14;
  • FIG. 18 shows a cross section along line B-B of FIG. 15.
  • FIG. 19 shows a cross section along line C-C of FIG. 15.
  • the actuating device 7 comprises a control button 8 , a threaded rod 9 with a flange 19 , a guide member 24 and a driving member 11 .
  • the tubular driving member 11 is rigidly connected to the control button 8 .
  • the control button 8 When the control button 8 is actuated, for example rotated or pushed, the corresponding movement is transferred to the driving member 11 , the spreader bushing 37 and the threaded flanges 27 , 27 ′.
  • the threaded flanges 27 , 27 ′ engage with the threaded rod 9 during normal operation.
  • the spreader bushing 37 surrounds both the driving member 11 and the threaded flanges 27 , 27 ′ and moves with them during normal operation.
  • the driving member 11 When turning the control button 8 to adjust an injection dose, the driving member 11 is also turned. This rotating movement can, however, not directly be transferred to the threaded rod 9 as the rod 9 is rigidly seated in the guide member 24 .
  • projections of the driving member 11 (not shown) or of any other suitable element to transfer a movement of the driving member engage with recesses 37 a , 37 b of the spreader bushing 37 to rotate the spreader bushing 37 when the driving member 11 is turned.
  • Projections 37 c , 37 d of the spreader bushing 37 engage with projections 27 a or 27 b of a first flange 27 shown in FIG.
  • the spreader bushing 37 is also moved in the proximal direction when pressing control button 8 to remain basically in the same relative position to the flanges 27 , 27 ′.
  • the threaded rod 9 When the fluid container 4 is empty and the threaded rod 9 is therefore in an extreme proximal position, the threaded rod must be returned to an extreme distal position.
  • the injection device according to the invention allows the threaded rod 9 to be returned only by activation of the unlocking slide 32 , as shown in FIG. 3.
  • the blocking element 36 a is moved to a proximal position, thereby allowing the unlocking slide 32 to be moved in a direction to engage with a recess 37 e of the spreader bushing 37 , which either directly causes a movement of the spreader bushing in the distal direction, relative to the flanges 27 , 27 ′, thus spreading flanges 27 , 27 ′ open.
  • This movement can be effected by the provision of tilted surfaces effecting an axial movement of spreader bushing 37 when moving unlocking slide 32 in radial direction. It is also possible to effect this movement by simply engaging unlocking slide 32 with spreader bushing 37 and subsequent axial movement of slide 32 .
  • spreader bushing 37 Since the spreader bushing 37 is moved together with the flanges 27 , 27 ′ during normal operation, spreader bushing 37 can always be in a position close to the flanges 27 , 27 ′ so that only a short relative movement of the spreader bushing 37 is required to spread flanges 27 , 27 ′ open. Thus, control button 8 does not have to be pressed to unlock rod 9 .
  • FIGS. 4 and 5 show that both threaded flanges 27 , 27 ′ are designed as two half-shelf threaded nut sections which surround the rod 9 having circular surfaces 13 , 13 ′ being threaded which engage with the threaded surface 27 c on the inner side of flanges 27 , 27 ′.
  • the outer diameter of the threaded flanges 27 , 27 ′ becomes smaller in distal direction.
  • Projections 27 a , 27 b , 27 ′ a , 27 ′ b of the flanges 27 , 27 ′ are positioned to form grooves G between the respective projections 27 a and 27 ′ a or 27 b and 27 ′ b which become smaller in the distal direction.
  • Projections 37 c , 37 d of the spreader bushing 37 form a wedge-shaped part 37 g having a width gradually decreasing in the distal direction, so that if the spreader bushing 37 is moved relative to the flanges 27 , 27 ′, the flanges 27 , 27 ′ are guided by grooves 37 h , 37 i adjacent the wedge-shaped part 37 g to thereby open or close the flanges 27 , 27 ′.
  • Recesses can be provided at a variety of positions along bushing 37 , so that more than the shown recesses 37 e and 37 f can be provided.
  • the recesses can either be formed around bushing 37 or only at district portions, as shown in FIG. 5.
  • Notches can be provided to allow rotations of bushing 37 only with a predefined angle in the end position.
  • FIGS. 6 to 13 A second embodiment of the invention is described with reference to FIGS. 6 to 13 .
  • FIG. 6 shows an injection device according to a second embodiment of the invention.
  • the container 4 is not inserted.
  • spreader bushing 37 has two recesses 37 e , 37 f surrounding the spreader bushing 37 .
  • Unlocking slide 32 can engage with spreader bushing 37 using either of the recesses 37 e , 37 f so that spreader bushing 37 can be moved relative to the flanges 27 , 27 ′ in two positions of the injection device, namely with control button 8 being in the normal position, as shown in FIG.
  • the flanges 27 , 27 ′ can be spread open starting from two positions of the injection device, namely with control button 8 being in the normal position, or control button 8 being pressed.
  • only one element, namely unlocking slide 32 has to be actuated by the user to unlock rod 9 to allow it to be moved to the distal position, when the injection device is held with the distal end facing downwards.
  • the engaging portion of unlocking slide 32 can be tilted with respect to the axial direction of the injection device to cause an immediate movement of spreader bushing 37 , when unlocking slide 32 is pressed down, as shown schematically in FIG. 3 of the first embodiment.
  • it is also possible to provide the possibility for engagement of unlocking slide 32 with spreader bushing 37 so that the user first has to perform an engaging operation, for example by pressing down unlocking slide 32 of FIG. 6, and then has to perform a shifting operation by moving unlocking slide 32 coupled with spreader bushing 37 in the distal direction, thus effecting a movement of spreader bushing 37 in the distal direction relative to flanges 27 , 27 ′, thus spreading flanges 27 , 27 ′ open.
  • it is also possible to provide a mechanism which will open the flanges 27 , 27 ′ by any other movement of unlocking slide 32 e.g. in the proximal direction.
  • control button 8 is turned to adjust a dose to be injected, as described above, and is then pressed to move rod 9 in a proximal direction, thereby injecting the preset dose.
  • Spreader bushing 37 is moved together with driving member 11 during normal operation and remains thus in a basical fixed relative relationship.
  • unlocking slide 32 can be released, thus effecting that spring 38 pushes spreader bushing 37 back to its normal position, thereby again engaging the threaded flanges 27 , 27 ′ with the threaded surfaces 13 , 13 ′ of rod 9 .
  • FIG. 10 again shows the basic concept of the inventive injection device with a cross-sectional view in a plane turned by 90° with respect to the cross-sectional views described above.
  • FIG. 11 shows a cross-sectional view along line B-B of FIG. 9.
  • Flanges 27 , 27 ′ are spread open by the wedge-shaped elements 37 g of spreader bushing 37 , which engage with the projection 27 a , 27 b of flange 27 which are shown and described with reference to FIG. 5, and the corresponding projections of flange 27 ′.
  • FIG. 12 shows the flanges 27 , 27 ′ in a closed condition being engaged with rod 9 , seen in the cross-sectional view along line A-A in FIG. 8.
  • spreader bushing 37 is in a more proximal position relative to the flanges 27 , 27 ′, as compared to the state shown in FIG. 11.
  • FIG. 13 is a cross-sectional view along line C-C in FIG. 9 and shows the coaxial arrangement of the inventive injection device.

Abstract

The present invention provides an injection device and an actuator for an injection device, wherein the actuator comprises a generally rod-shaped driven member having a structured surface portion, a counter component having a structured surface portion engaging the structured surface portion of the driven member, whereby the driven member is movable by the counter component, and a spreader bushing for spreading open the counter component by a movement relative to the counter component, thereby allowing the driven member to shift freely, wherein the spreader bushing is selectively movable with and relative to the counter component.

Description

    BACKGROUND
  • The present invention relates to an injection device for injecting fluid from a fluid container. It also relates to an actuator for such an injection device. [0001]
  • Syringe-shaped injection devices for injecting fluids have been known for some time. They contain a bushing-shaped main body which can be screwed together at approximately the centre and can be divided into two main sections: [0002]
  • a distal section (facing away from the patient) containing the discharge mechanism and comprising at least one rod-shaped driven member having a structured surface (e.g. a screw rod), a hollow cylindrical counter component corresponding to the driven member, provided with a structured internal sleeve (e.g. a screw nut); and [0003]
  • a control button; and [0004]
  • a proximal section (facing the patient) containing the fluid to be administered and a movable piston. [0005]
  • At the proximal end of the main body, a needle and a needle holder are attached, allowing the fluid to be discharged from the device; known needles of this type are for instance needles as described in WO95/01812. [0006]
  • The connecting member between the proximal and the distal section of the main body is the driven member, shifting the piston by the required dose in proximal direction and discharging the fluid through the needle. [0007]
  • Often the fluid to be injected is not directly contained in the main body but in an ampoule or container, with the fluid being stored between a piercable membrane and a piston displaceable by sliding. [0008]
  • Depending on the injection device, various features are expected from the discharge mechanism. There are devices allowing only a single discharge, devices allowing several discharges of the same dose and devices allowing freely selectable discharges. [0009]
  • For patients using injection devices allowing a change of ampoules, it is—irrespective of the complexity of the discharge mechanism—extremely difficult to wind back the driven member to the initial position in order to make the device ready for operation after the ampoule has been changed. Devices requiring the driven member to be rewound by the control button are known from WO93/16740. Devices allowing the threaded rod to be pushed back, as in publications U.S. Pat. No. 4,592,745 and EP-A-0 554 995, are more easily operated by patients. According to these prior art devices the threaded nut is spread due to the release of the distal section from the proximal section of the main body, allowing the threaded rod to move freely without any conscious operation by the patient, with screwing together of both sections of the main body after replacement of the ampoule easily causing a premature unintentional discharge of fluid. Depending on the injection device, this could also result in an incorrect dosing which, in case of certain medication, could be extremely hazardous to the patient's health. [0010]
  • An injection device to remedy this situation is known from applicants patent U.S. Pat. No. 6,090,080, the disclosure thereof is incorporated herein by reference. Such a known injection device is described with reference to FIGS. [0011] 14 to 19.
  • In the subsequent description, the terms proximal and distal are used in their usual medical sense, i.e. proximal=facing the patient and distal=facing away from the patient. [0012]
  • As shown in FIG. 14, the injection device comprises a bushing-shaped main body [0013] 1 which can be divided into a rear (distal) section 3 containing the tubular actuating device or discharge mechanism 7 and a front (proximal) section 2 containing a replaceable ampoule 4 and a piston 5. A needle 6 with its distal end connected to the fluid to be administered can be screwed to the proximal end of the main body 1. The actuating device 7 comprises a control button 8, a threaded rod 9 with a flange 19, a guide member 24 and a driving member 11.
  • The [0014] tubular driving member 11 is rigidly connected to the control button 8 to prevent twisting. At the proximal end, the driving member 11 surrounds two threaded flanges 27, 27′ engaging in the thread of the threaded rod 9.
  • FIG. 18 shows that the threaded [0015] rod 9 comprises two level surfaces 12, 12′ and apart from that is of a circular cross section, with the circular surfaces 13, 13′ being threaded.
  • The [0016] guide member 24 is rigidly connected to the distal section 3 of the main body 1, thus preventing rotation or axial movement and is positioned in front of the driving member 11. The aperture in the guide member 24, through which the threaded rod 9 passes (FIG. 19) is of the same cross section as the threaded rod 9—although enlarged by certain tolerances. As the guide member 24, in contrast to the driving member 11, is not threaded, the threaded rod 9 can be shifted through the opening of the guide member in axial direction. A rotational movement of the threaded rod 9 is therefore not possible as the guide member 24 does not allow this.
  • The [0017] control button 8 may be moved in axial direction or may be rotated. Where the control button is activated by being pushed in proximal direction, it will simultaneously shift the driving member 11 until its front face 14 pushes against the rear face 14′ of the guide member.
  • The threaded [0018] rod 9 is connected to the driving member 11 by threaded flanges 27, 27′ thus allowing any axial movement of the control button 8 to be transferred. See detailed description of threaded flanges 27, 27′ below.
  • The axial movement is effected against the bias of a [0019] spring 16, returning the actuating device 7 to its home position (FIG. 14).
  • When turning the [0020] control button 8 to adjust an injection dose, the driving member 11 is also turned. This rotating movement can, however, not be transferred to the threaded rod 9 as the rod is rigidly seated in the guide member 24. As a result of the rotating threaded flanges 27, 27′ in driving member 11, the threaded rod 9 is rigidly driven forward via the threaded sections of the circular surfaces 13, 13′ (or backward, when reversing the rotation direction of the control button), thus bringing the flange 19 into the position required for the next injection dose to be discharged, i.e. the distance of the flange 19 from the piston 5 is respectively reduced.
  • By pressing the [0021] control button 8, the actuating device 7 is moved from its home position to the end position. The flange 19 pushes thereby against the piston 5 during this operation, carrying it along the set piston travel and thus discharging the pre-set volume of injection fluid through injection needle 6. The travel of the flange 19 from the home position to the end position of the actuating device 7 always remains the same and corresponds to a constant distance by which the flange 19 is separated from the piston 5 before setting the injection dose. This process is described in detail in WO 93/16740.
  • When the [0022] fluid container 4 is empty and the threaded rod 9 is therefore in the extreme proximal position, the threaded rod must be returned to the extreme distal position. The injection device according to the invention allows the threaded rod 9 to be returned by activation of an unlocking slide 32.
  • FIGS. 17 and 18 show that both threaded [0023] flanges 27, 27′ of the driving member 11 are designed as two half-shell threaded nut sections, each provided with two cams 28, 28′, 29, 29′.
  • The [0024] unlocking slide 32 attached to the rear section 3 is connected to an internal spreader bushing 35 in the rear section 3, with shifting of the unlocking slide 32 in distal direction causing the spreader bushing 35 to be shifted in distal direction.
  • The spreader bushing [0025] 35 surrounds the driving member 11 and comprises four vertical tracks 30, 30′, 31, 31′ (FIG. 16), which extend towards the proximal end of the spreader bushing 35 outwardly at an angle. The tracks 30, 30′, 31, 31 ′ serve to accommodate the cams 28, 28′, 29, 29′ of the threaded flanges 27, 27′. When the spreader bushing 35 is in the proximal position (FIG. 14), the threaded flanges 27, 27′ surround the threaded rod 9. When the spreader bushing 35 is moved to its distal position (FIG. 15) with the unlocking slide 32, the threaded flanges 27, 27′ open as soon as their cams 28, 28′, 29, 29′ move over the angled section of the tracks 30, 30′, 31, 31′ and the threaded rod 9 can be freely shifted in axial direction.
  • A [0026] notched surface 33 of the unlocking slide 32 arranged on the main body fits into a counter notched surface 34 on the proximal part of the spreader bushing 35.
  • In principle, the [0027] spreader bushing 35 is retained in its proximal position by the spring 16. In order to release the threaded flange 27, 27′ the user must actively shift the unlocking slide 32 into its distal position by simultaneous pushing it down. During this process, the notched surface 33 of the unlocking slide 32 engages in the counter notched surface 34 of the spreader bushing 35, moving it backwards. Because of this movement, the cams 28, 28′, 29, 29′ must run over corresponding outwardly extending tracks 30, 30′, 31, 31 ′ of the spreader bushing 35 (FIGS. 16-18). This forced movement causes the threaded flanges 27, 27′ to open (FIG. 18) and releases the threaded rod 9. When at the same time the injection device is held with the dosing button 8 down, gravity causes the threaded rod 9 to automatically fall back into its distal position. Upon releasing the unlocking slide 32, the spreader bushing 35 slides forward again. At the same time the cams 28, 28′, 29, 29′ slide back in the tracks 30, 30′, 31, 31 to their stop position in which the threaded flange 27, 27′ is closed. The unlocking slide 32 is moved into the proximal position by means that are not shown.
  • For safety reasons, the threaded [0028] flanges 27, 27′ can only be released from the threaded rod 9 with the actuating device 7 in its proximal position (FIG. 15). For this reason the tracks 30, 30′, 31, 31 ′ are of such a dimension that activation of the unlocking slide 32 in the operating position of the actuating device 7 (FIGS. 14 and 16) only causes the cams 28, 28′, 29, 29′ to slide in the vertical tracks 30, 30′, 31, 31′ without reaching their angled section at the proximal end of the spreader bushing 35. In order for the cams 28, 28′, 29, 29′ to reach the angled section of the tracks 30, 30′, 31, 31 ′ and to release themselves from the threaded rod 9, the actuating device must also be in its proximal position (FIG. 15).
  • To release the threaded [0029] rod 9 the control button 8 has to be pressed, as shown in FIG. 15, so that the flanges 27, 27′ are moved from the distal position shown in FIG. 16 to the proximal position along the vertical tracks 30′, 31′ to the point where the tracks 30′, 31′ spread outwards. Then, after actuating the unlocking slide 32, the spreader bushing 35 which is during normal operation in a fixed and stationary relationship, is moved in the distal direction, thereby spreading the flanges 27, 27′ open to release the rod 9. Thus, two elements have to be actuated by the user at the same time to slide back the rod 9, namely the control button 8 and the unlocking slide 32.
  • SUMMARY
  • In one embodiment, the present invention provides an injection device and an actuator wherein the actuator comprises a first actuator component which is adapted to permit a second actuator component to be selectively moved when the first actuator component is manipulated by a third actuator component. [0030]
  • In one embodiment, the present invention provides an injection device and an actuator for the injection device wherein the actuator comprises a first actuator component comprising a counter component which is adapted to permit a second actuator component comprising a driven member to be selectively moved when the counter component is manipulated by a third actuator component. [0031]
  • In one embodiment, the present invention provides an injection device and an actuator for an injection device wherein the actuator comprises a first actuator component comprising a counter component which is adapted to permit a second actuator component comprising a driven member to be selectively moved when the counter component is manipulated by a third actuator component comprising a bushing which is selectively movable with and relative to the counter component. [0032]
  • In one embodiment, the present invention provides an actuator for an injection device, wherein the actuator comprises a generally rod-shaped driven member having a structured surface portion, a counter component having a structured surface portion engaging with the structured surface portion of the driven member, whereby the driven member is movable by the counter component, and a spreader bushing for spreading open the counter component by a movement relative to the counter component, thereby allowing the driven member to shift freely, wherein the spreader bushing is selectively movable with and relative to the counter component. [0033]
  • According to the present invention, a driven member can be shifted freely in an axial direction by forcibly opening the counter component upon actuation of a single element.[0034]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is described with reference to the enclosed drawings showing embodiments of the invention, where: [0035]
  • FIG. 1 shows a first embodiment of an injection device according to the invention with the threaded rod in a distal position and a blocked unlocking slide; [0036]
  • FIG. 2 shows a first embodiment of an injection device according to the invention with a pushed control button and a blocked unlocking slide; [0037]
  • FIG. 3 shows a first embodiment of an injection device according to the invention with a released threaded rod and a pushed unlocking slide, the control button not being pushed; [0038]
  • FIG. 4 shows a cross sectional view along line A-A of FIG. 1; [0039]
  • FIG. 5 shows a perspective view of a spreader bushing surrounding a threaded flange according to the invention; [0040]
  • FIG. 6 shows a second embodiment of an injection device according to the invention with the container not being inserted; [0041]
  • FIG. 7 shows the injection device of FIG. 6 with the inserted container; [0042]
  • FIG. 8 shows the injection device of FIG. 7 with the control button being pushed; [0043]
  • FIG. 9 shows the injection device of FIG. 7 with the threaded rod being released; [0044]
  • FIG. 10 shows the injection device of FIG. 7 in a cross-sectional view perpendicular to the view of FIG. 7; [0045]
  • FIG. 11 shows a cross sectional view along line B-B of FIG. 9; [0046]
  • FIG. 12 shows a cross sectional view along line A-A of FIG. 8; [0047]
  • FIG. 13 shows a cross sectional view along line C-C of FIG. 9; [0048]
  • FIG. 14 shows an injection device of the prior art with a retained threaded rod; [0049]
  • FIG. 15 shows an injection device of the prior art with a free threaded rod; [0050]
  • FIG. 16 shows an injection device of the prior art in which the actuating device has been removed; [0051]
  • FIG. 17 shows a cross section along line A-A of FIG. 14; [0052]
  • FIG. 18 shows a cross section along line B-B of FIG. 15; and [0053]
  • FIG. 19 shows a cross section along line C-C of FIG. 15.[0054]
  • DESCRIPTION
  • Reference is made to the above description of FIGS. [0055] 14 to 19 for the general function of the inventive injection device, except the function of the unlocking slide 32, spreader bushing 37 and flanges 27 and 27′.
  • Referring to FIG. 1, the [0056] actuating device 7 comprises a control button 8, a threaded rod 9 with a flange 19, a guide member 24 and a driving member 11.
  • The [0057] tubular driving member 11 is rigidly connected to the control button 8. When the control button 8 is actuated, for example rotated or pushed, the corresponding movement is transferred to the driving member 11, the spreader bushing 37 and the threaded flanges 27, 27′. The threaded flanges 27, 27 ′ engage with the threaded rod 9 during normal operation. The spreader bushing 37 surrounds both the driving member 11 and the threaded flanges 27, 27′ and moves with them during normal operation.
  • When turning the [0058] control button 8 to adjust an injection dose, the driving member 11 is also turned. This rotating movement can, however, not directly be transferred to the threaded rod 9 as the rod 9 is rigidly seated in the guide member 24. Referring to FIG. 5, projections of the driving member 11 (not shown) or of any other suitable element to transfer a movement of the driving member engage with recesses 37 a, 37 b of the spreader bushing 37 to rotate the spreader bushing 37 when the driving member 11 is turned. Projections 37 c, 37 d of the spreader bushing 37 engage with projections 27 a or 27 b of a first flange 27 shown in FIG. 5 and a second flange 27′ (not shown) to transfer the rotational movement of spreader bushing 37 to the flanges 27 and 27′. By this rotational movement of the threaded flanges 27, 27′ the threaded rod 9 seated in the guide member 24 preventing rotational movement of the rod 9, as described above, is driven forward via the threaded sections on rod 9 (or backward, when reversing the rotation direction of the control button 8), thus bringing the flange 19 into the position required for the next injection dose to be discharged, i.e. the distance of the flange 19 from the piston 5 is respectively increased or reduced.
  • When pressing the [0059] control button 8 against the force of spring 16, as shown in FIG. 2, the actuating device is moved in the proximal direction. Flange 19 pushes thereby against piston 5 during this operation, carrying it along the set piston travel and thus discharging the pre-set volume of injection fluid through injection needle 6.
  • According to the invention the [0060] spreader bushing 37 is also moved in the proximal direction when pressing control button 8 to remain basically in the same relative position to the flanges 27, 27′.
  • The axial movement is effected against the bias of a [0061] spring 16, returning the actuating device 7 to its home position after injection, as shown in FIG. 1.
  • When the [0062] fluid container 4 is empty and the threaded rod 9 is therefore in an extreme proximal position, the threaded rod must be returned to an extreme distal position. The injection device according to the invention allows the threaded rod 9 to be returned only by activation of the unlocking slide 32, as shown in FIG. 3.
  • When the [0063] fluid container 4 is removed from the injection device, as shown in FIG. 3, the blocking element 36 a is moved to a proximal position, thereby allowing the unlocking slide 32 to be moved in a direction to engage with a recess 37 e of the spreader bushing 37, which either directly causes a movement of the spreader bushing in the distal direction, relative to the flanges 27, 27′, thus spreading flanges 27, 27′ open. This movement can be effected by the provision of tilted surfaces effecting an axial movement of spreader bushing 37 when moving unlocking slide 32 in radial direction. It is also possible to effect this movement by simply engaging unlocking slide 32 with spreader bushing 37 and subsequent axial movement of slide 32. Since the spreader bushing 37 is moved together with the flanges 27, 27′ during normal operation, spreader bushing 37 can always be in a position close to the flanges 27, 27′ so that only a short relative movement of the spreader bushing 37 is required to spread flanges 27, 27′ open. Thus, control button 8 does not have to be pressed to unlock rod 9.
  • FIGS. 4 and 5 show that both threaded [0064] flanges 27, 27′ are designed as two half-shelf threaded nut sections which surround the rod 9 having circular surfaces 13, 13′ being threaded which engage with the threaded surface 27 c on the inner side of flanges 27, 27′. The outer diameter of the threaded flanges 27,27′ becomes smaller in distal direction.
  • [0065] Projections 27 a, 27 b, 27a, 27b of the flanges 27, 27′ are positioned to form grooves G between the respective projections 27 a and 27a or 27 b and 27b which become smaller in the distal direction. Projections 37 c, 37 d of the spreader bushing 37 form a wedge-shaped part 37 g having a width gradually decreasing in the distal direction, so that if the spreader bushing 37 is moved relative to the flanges 27, 27′, the flanges 27, 27′ are guided by grooves 37 h, 37 i adjacent the wedge-shaped part 37 g to thereby open or close the flanges 27, 27′.
  • Recesses can be provided at a variety of positions along [0066] bushing 37, so that more than the shown recesses 37 e and 37 f can be provided. The recesses can either be formed around bushing 37 or only at district portions, as shown in FIG. 5. Notches can be provided to allow rotations of bushing 37 only with a predefined angle in the end position.
  • A second embodiment of the invention is described with reference to FIGS. [0067] 6 to 13.
  • FIG. 6 shows an injection device according to a second embodiment of the invention. The [0068] container 4 is not inserted. According to the second embodiment spreader bushing 37 has two recesses 37 e, 37 f surrounding the spreader bushing 37. Unlocking slide 32 can engage with spreader bushing 37 using either of the recesses 37 e, 37 f so that spreader bushing 37 can be moved relative to the flanges 27, 27′ in two positions of the injection device, namely with control button 8 being in the normal position, as shown in FIG. 6, so that unlocking slide 32 engages with the proximal recess 37 e of spreader bushing 37, or with control button 8 being pressed, so that unlocking slide 32 engages with the distal recess 37 f of spreader bushing 37, as shown in FIGS. 8 and 9. Thus, according to the second embodiment, the flanges 27, 27′ can be spread open starting from two positions of the injection device, namely with control button 8 being in the normal position, or control button 8 being pressed. According to the invention only one element, namely unlocking slide 32, has to be actuated by the user to unlock rod 9 to allow it to be moved to the distal position, when the injection device is held with the distal end facing downwards.
  • In general it is possible according to the invention that more than only two [0069] recesses 37 e, 37 f are provided in the spreader bushing 37. Any other element or structure can be used for the invention which allows an engagement of unlocking slide 32 with spreader bushing 37, as for example a structured or notched surface of the unlocking slide 32, which can engage with the respective counter element on spreader bushing 37.
  • The engaging portion of unlocking [0070] slide 32 can be tilted with respect to the axial direction of the injection device to cause an immediate movement of spreader bushing 37, when unlocking slide 32 is pressed down, as shown schematically in FIG. 3 of the first embodiment. However, it is also possible to provide the possibility for engagement of unlocking slide 32 with spreader bushing 37, so that the user first has to perform an engaging operation, for example by pressing down unlocking slide 32 of FIG. 6, and then has to perform a shifting operation by moving unlocking slide 32 coupled with spreader bushing 37 in the distal direction, thus effecting a movement of spreader bushing 37 in the distal direction relative to flanges 27, 27′, thus spreading flanges 27, 27′ open. In general it is also possible to provide a mechanism which will open the flanges 27, 27′ by any other movement of unlocking slide 32, e.g. in the proximal direction.
  • After inserting the [0071] container 4, as shown in FIG. 7, control button 8 is turned to adjust a dose to be injected, as described above, and is then pressed to move rod 9 in a proximal direction, thereby injecting the preset dose. Spreader bushing 37 is moved together with driving member 11 during normal operation and remains thus in a basical fixed relative relationship.
  • When the [0072] rod 9 is in a proximal position after performing one or more injection operations, container 4 is removed as shown in FIG. 8 and unlocking slide 32 is pressed to engage with the distal recess 37 f of spreader bushing 37 as shown in FIG. 9. After this engagement unlocking slide 32 is moved in the distal direction of the injection device, thus moving spreader bushing 37 in the distal direction, which biases spring 38 located between driving member 11 and spreader bushing 37. This movement of spreader bushing 37 in axial direction causes a movement of the flanges 27, 27′ in a radial direction of the injection device, thus spreading flanges 27, 27′ open, as shown in FIG. 9. Rod 9 is now movable inside the injection device and can be brought to the distal position by simply holding the injection device with the distal side facing downwards, causing rod 9 to fall into an extreme distal position.
  • After [0073] rod 9 is brought into its distal position unlocking slide 32 can be released, thus effecting that spring 38 pushes spreader bushing 37 back to its normal position, thereby again engaging the threaded flanges 27, 27′ with the threaded surfaces 13, 13′ of rod 9.
  • FIG. 10 again shows the basic concept of the inventive injection device with a cross-sectional view in a plane turned by 90° with respect to the cross-sectional views described above. [0074]
  • FIG. 11 shows a cross-sectional view along line B-B of FIG. 9. [0075] Flanges 27, 27′ are spread open by the wedge-shaped elements 37 g of spreader bushing 37, which engage with the projection 27 a, 27 b of flange 27 which are shown and described with reference to FIG. 5, and the corresponding projections of flange 27′.
  • FIG. 12 shows the [0076] flanges 27, 27′ in a closed condition being engaged with rod 9, seen in the cross-sectional view along line A-A in FIG. 8. In this state spreader bushing 37 is in a more proximal position relative to the flanges 27, 27′, as compared to the state shown in FIG. 11.
  • FIG. 13 is a cross-sectional view along line C-C in FIG. 9 and shows the coaxial arrangement of the inventive injection device. [0077]
  • In general, it is not intended that the invention described herein be restricted to the described embodiments. Reference should be made to the appended claims to ascertain the spirit and scope of the invention. [0078]

Claims (19)

What is claimed is:
1. An injection device for injecting fluid from a fluid container comprising an actuating device having:
a rod-shaped driven member having a structured surface, the driven member effecting the injection of the fluid;
a counter component having a structured surface, said structured surface engaging with said structured surface of the rod-shaped driven member, wherein said driven member is advanceable by said counter component;
a spreader bushing spreading open the counter component by a movement relative to the counter component allowing the driven member to shift freely, wherein
the spreader bushing is movable with the counter component during normal operation, and the spreader bushing is movable relative to the counter component, when the counter component should be spread open.
2. The injection device according to claim 1, wherein the fluid container is equipped with a piston which is driven by the driven member.
3. The injection device according to claim 1, wherein a control button is provided which can be moved at least in an axial direction to move the counter component.
4. The injection device according to claim 1, wherein the counter component has a hollow cylindrical shape and the structured surface is provided on an internal sleeve thereof.
5. The injection device according to claim 1, wherein the driven member is coaxially arranged in relation to the counter component.
6. The injection device according to claim 1, wherein the counter component is spread open by an axial movement of the spreader bushing.
7. The injection device according to claim 1, wherein the counter component comprises at least two elements, each element having at least one projection.
8. The injection device according to claim 7, wherein a groove formed by the projections of two elements of the counter component has a width continually decreasing in one direction.
9. The injection device according to claim 7, wherein the spreader bushing has at least one projection being able to engage with at least one projection of an element of the counter component.
10. The injection device according to claim 7, wherein the projection of an element of the counter component is tilted with respect to the axial direction of the injection device.
11. The injection device according to claim 1, wherein the spreader bushing can be moved relative to the counter component by actuating an unlocking slide.
12. The injection device according to claim 11, wherein the unlocking slide can engage with the spreader bushing in at least one of a proximal and a distal position of the spreader bushing.
13. The injection device according to claim 11, wherein the unlocking slide is blocked by a blocking element, if a fluid container is connected to the injection device.
14. An actuator for an injection device, said actuator comprising:
a generally rod-shaped driven member having a structured surface portion;
a counter component having a structured surface portion, said structured surface portion of the counter component engaging said structured surface portion of the driven member, whereby said driven member is movable by said counter component; and
a spreader bushing for spreading open the counter component by a movement relative to the counter component, thereby allowing the driven member to shift freely, wherein the spreader bushing is selectively movable with and relative to the counter component.
15. An actuator for an injection device, the actuator comprising a first actuator component comprising a counter component which is adapted to permit a second actuator component comprising a driven member to be selectively moved when the counter component is manipulated by a third actuator component comprising a bushing which is selectively movable relative to the counter component by an unlocking slide.
16. The actuator according to claim 15, wherein the unlocking slide can engage with the bushing in one of a proximal position and a distal position of the bushing.
17. The actuator according to claim 15, wherein the unlocking slide is blocked by a blocking element if a fluid container is connected to the injection device.
18. An injection device for injecting a fluid comprising an actuator comprising first means for injecting, second means for permitting the first means to be selectively moved when the second means is manipulated by third means for manipulating the second means, said third means comprising an means for unlocking, wherein the third means can be moved relative to the second means by actuating the means for unlocking, and wherein the means for unlocking can engage with the third means in one of a proximal position and a distal position of the third means.
19. The injection device according to claim 18, further comprising a blocking element for releaseably blocking the means for unlocking.
US09/784,661 2001-02-15 2001-02-15 Injection device for injecting fluid Expired - Fee Related US6673049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/784,661 US6673049B2 (en) 2001-02-15 2001-02-15 Injection device for injecting fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/784,661 US6673049B2 (en) 2001-02-15 2001-02-15 Injection device for injecting fluid

Publications (2)

Publication Number Publication Date
US20020111587A1 true US20020111587A1 (en) 2002-08-15
US6673049B2 US6673049B2 (en) 2004-01-06

Family

ID=25133136

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/784,661 Expired - Fee Related US6673049B2 (en) 2001-02-15 2001-02-15 Injection device for injecting fluid

Country Status (1)

Country Link
US (1) US6673049B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065477A1 (en) * 2003-09-19 2005-03-24 Stefan Jost Device for dispensing an injectable product in doses
US20070233167A1 (en) * 2004-09-04 2007-10-04 Thomas Weiss Lancing apparatus for producing a puncture wound
WO2011045385A1 (en) * 2009-10-16 2011-04-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
WO2011154484A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2011154482A3 (en) * 2010-06-11 2012-02-02 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US8162887B2 (en) 2004-06-23 2012-04-24 Abbott Biotechnology Ltd. Automatic injection devices
WO2012062718A1 (en) * 2010-11-08 2012-05-18 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device, drug delivery system and drug delivery device
US8535268B2 (en) 2010-12-22 2013-09-17 Alcon Research, Ltd. Device for at least one of injection or aspiration
US8636704B2 (en) 2009-04-29 2014-01-28 Abbvie Biotechnology Ltd Automatic injection device
US8679061B2 (en) 2006-06-30 2014-03-25 Abbvie Biotechnology Ltd Automatic injection device
US8708968B2 (en) 2011-01-24 2014-04-29 Abbvie Biotechnology Ltd. Removal of needle shields from syringes and automatic injection devices
US8758301B2 (en) 2009-12-15 2014-06-24 Abbvie Biotechnology Ltd Firing button for automatic injection device
US20140364813A1 (en) * 2004-12-08 2014-12-11 Roche Diagnostics International Ag Adapter for injection appliance
US9180244B2 (en) 2010-04-21 2015-11-10 Abbvie Biotechnology Ltd Wearable automatic injection device for controlled delivery of therapeutic agents
US9265887B2 (en) 2011-01-24 2016-02-23 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
US10806867B2 (en) 2011-01-24 2020-10-20 E3D Agricultural Cooperative Association Ltd. Injector

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829690B1 (en) * 2001-09-19 2003-12-19 Inoteb DEVICE FOR PLACING A BIOMATERIAL
IL157981A (en) 2003-09-17 2014-01-30 Elcam Medical Agricultural Cooperative Ass Ltd Auto-injector
IL157984A (en) * 2003-09-17 2015-02-26 Dali Medical Devices Ltd Autoneedle
EP1684824B1 (en) 2003-11-20 2015-08-12 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Portable hand pump for evacuation of fluids
IL160891A0 (en) 2004-03-16 2004-08-31 Auto-mix needle
GB2414403B (en) * 2004-05-28 2009-01-07 Cilag Ag Int Injection device
GB2414404B (en) 2004-05-28 2009-06-03 Cilag Ag Int Injection device
GB2414399B (en) * 2004-05-28 2008-12-31 Cilag Ag Int Injection device
GB2414401B (en) 2004-05-28 2009-06-17 Cilag Ag Int Injection device
GB2414405B (en) * 2004-05-28 2009-01-14 Cilag Ag Int Injection device
GB2414406B (en) 2004-05-28 2009-03-18 Cilag Ag Int Injection device
GB2414402B (en) * 2004-05-28 2009-04-22 Cilag Ag Int Injection device
GB2414409B (en) * 2004-05-28 2009-11-18 Cilag Ag Int Injection device
GB2414775B (en) * 2004-05-28 2008-05-21 Cilag Ag Int Releasable coupling and injection device
GB2414400B (en) * 2004-05-28 2009-01-14 Cilag Ag Int Injection device
US8337475B2 (en) 2004-10-12 2012-12-25 C. R. Bard, Inc. Corporeal drainage system
DE102004063648A1 (en) * 2004-12-31 2006-07-20 Tecpharma Licensing Ag Injection or infusion device with life-determining device
CA2594764C (en) 2005-01-21 2014-01-14 Novo Nordisk A/S An automatic injection device with a top release mechanism
GB2425062B (en) * 2005-04-06 2010-07-21 Cilag Ag Int Injection device
GB2424838B (en) * 2005-04-06 2011-02-23 Cilag Ag Int Injection device (adaptable drive)
GB2424837B (en) * 2005-04-06 2010-10-06 Cilag Ag Int Injection device
GB2424835B (en) * 2005-04-06 2010-06-09 Cilag Ag Int Injection device (modified trigger)
GB2427826B (en) 2005-04-06 2010-08-25 Cilag Ag Int Injection device comprising a locking mechanism associated with integrally formed biasing means
GB2424836B (en) * 2005-04-06 2010-09-22 Cilag Ag Int Injection device (bayonet cap removal)
DE602005018480D1 (en) 2005-08-30 2010-02-04 Cilag Gmbh Int Needle device for a prefilled syringe
US8177772B2 (en) 2005-09-26 2012-05-15 C. R. Bard, Inc. Catheter connection systems
US20110098656A1 (en) * 2005-09-27 2011-04-28 Burnell Rosie L Auto-injection device with needle protecting cap having outer and inner sleeves
GB2438593B (en) 2006-06-01 2011-03-30 Cilag Gmbh Int Injection device (cap removal feature)
GB2438590B (en) 2006-06-01 2011-02-09 Cilag Gmbh Int Injection device
GB2438591B (en) * 2006-06-01 2011-07-13 Cilag Gmbh Int Injection device
WO2008047372A2 (en) * 2006-10-19 2008-04-24 Elcam Medical Agricultural Cooperative Association Ltd. Automatic injection device
GB2461086B (en) * 2008-06-19 2012-12-05 Cilag Gmbh Int Injection device
GB2461087B (en) * 2008-06-19 2012-09-26 Cilag Gmbh Int Injection device
GB2461084B (en) * 2008-06-19 2012-09-26 Cilag Gmbh Int Fluid transfer assembly
GB2461088B (en) * 2008-06-19 2012-09-26 Cilag Gmbh Int Injection device
GB2461085B (en) 2008-06-19 2012-08-29 Cilag Gmbh Int Injection device
GB2461089B (en) * 2008-06-19 2012-09-19 Cilag Gmbh Int Injection device
GB2517896B (en) 2013-06-11 2015-07-08 Cilag Gmbh Int Injection device
GB2515039B (en) 2013-06-11 2015-05-27 Cilag Gmbh Int Injection Device
GB2515032A (en) 2013-06-11 2014-12-17 Cilag Gmbh Int Guide for an injection device
GB2515038A (en) 2013-06-11 2014-12-17 Cilag Gmbh Int Injection device
JP6810031B2 (en) * 2014-10-29 2021-01-06 ウォックハート リミテッドWockhardt Limited Drug delivery device for delivering two or more independently user-selectable multiple doses of drug with a user-operable variable dose locking mechanism
AU2017299466B2 (en) 2016-07-18 2022-07-14 Merit Medical Systems, Inc. Inflatable radial artery compression device

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531267A (en) 1947-10-16 1950-11-21 Harnisch Fritz Hypodermic syringe operating device
US3605744A (en) 1969-04-22 1971-09-20 Edward M Dwyer Injection apparatus and method of injecting
DE3163728D1 (en) 1980-04-08 1984-06-28 Greater Glasgow Health Board Dispensing device
DE3468173D1 (en) 1983-09-07 1988-02-04 Disetronic Ag Portable infusion apparatus
US4592745A (en) 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
AU4357485A (en) 1984-05-12 1985-12-13 Lucas, D. Injektionsspritze
DE3670768D1 (en) 1985-11-08 1990-06-07 Disetronic Ag INJECTION DEVICE.
DE3645245C2 (en) 1986-11-14 1994-01-27 Haselmeier Wilhelm Fa Injection appliance
DE3715258C2 (en) 1987-05-08 1996-10-31 Haselmeier Wilhelm Fa Injection device
DE3900926C2 (en) 1988-02-08 1999-05-12 Disetronic Licensing Ag Syringe-shaped injection device and injection device kit
GB8809115D0 (en) 1988-04-18 1988-05-18 Turner R C Syringes
CH680904A5 (en) 1988-10-19 1992-12-15 Disetronic Ag
US5244465A (en) 1988-10-19 1993-09-14 Byk Gulden Lomberg Chemische Fabrik Gmbh Reusable injection device for distributing a preselected dose
DK17890A (en) 1990-01-22 1991-07-23 Novo Nordisk As METHOD AND APPARATUS FOR MIXTURE AND INJECTION OF A MEDICINE
US5226896A (en) 1990-04-04 1993-07-13 Eli Lilly And Company Dose indicating injection pen
DE4013769A1 (en) 1990-04-28 1991-10-31 Adamaszek Franz Heinz Automatic insulin injection device - includes rotating knob to allow vol. of insulin to be accurately chosen
DE4112259A1 (en) 1991-04-15 1992-10-22 Medico Dev Investment Co INJECTION DEVICE
EP0518416A1 (en) 1991-06-13 1992-12-16 Duphar International Research B.V Injection device
ES2074771T3 (en) 1991-07-24 1995-09-16 Medico Dev Investment Co INJECTOR.
US5279586A (en) 1992-02-04 1994-01-18 Becton, Dickinson And Company Reusable medication delivery pen
CH682806A5 (en) 1992-02-21 1993-11-30 Medimpex Ets Injection device.
SE9201247D0 (en) 1992-04-21 1992-04-21 Kabi Pharmacia Ab INJECTION DEVICE
FR2701211B1 (en) 1993-02-08 1995-05-24 Aguettant Lab DOSING INSTRUMENT, ESPECIALLY INJECTION
US5584815A (en) 1993-04-02 1996-12-17 Eli Lilly And Company Multi-cartridge medication injection device
CH688225A5 (en) 1993-06-04 1997-06-30 Medimpex Ets Feeding device for an injection device.
GB9310163D0 (en) * 1993-05-18 1993-06-30 Owen Mumford Ltd Improvements relating to injection devices
US5540664A (en) 1993-05-27 1996-07-30 Washington Biotech Corporation Reloadable automatic or manual emergency injection system
CH685677A5 (en) 1993-07-09 1995-09-15 Disetronic Ag Attachment mechanism for needle systems.
US5338311A (en) 1993-08-23 1994-08-16 Mahurkar Sakharam D Hypodermic needle assembly
SE9303568D0 (en) 1993-10-29 1993-10-29 Kabi Pharmacia Ab Improvements in injection devices
FR2715071B1 (en) 1994-01-17 1996-03-01 Aguettant Lab Automatic drug injector.
US5514097A (en) 1994-02-14 1996-05-07 Genentech, Inc. Self administered injection pen apparatus and method
JP4201345B2 (en) 1994-05-30 2008-12-24 ビィ ディ メディコ ソシエタ ア レスポンサビリタ リミタータ Injection device
GB9418122D0 (en) 1994-09-08 1994-10-26 Owen Mumford Ltd Improvements relating to injection devices
AU696439B2 (en) 1995-03-07 1998-09-10 Eli Lilly And Company Recyclable medication dispensing device
US5658259A (en) * 1995-10-19 1997-08-19 Meridian Medical Technologies, Inc. Dental cartridge assembly auto-injector with protective needle cover
US6059755A (en) 1995-11-09 2000-05-09 Disetronic Licensing Ag Injection device for a liquid medicament
AU3769595A (en) 1995-11-09 1997-05-29 Disetronic Medical Systems Ag Injection device
PT828527E (en) 1996-04-02 2002-12-31 Disetronic Licensing Ag INJECTION DEVICE
KR100383477B1 (en) 1996-07-01 2003-09-22 파마시아 에이비 Injection device and how it works
ATE307628T1 (en) * 1996-07-05 2005-11-15 Tecpharma Licensing Ag INJECTION DEVICE FOR INJECTING LIQUID
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US5851197A (en) 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US6096010A (en) 1998-02-20 2000-08-01 Becton, Dickinson And Company Repeat-dose medication delivery pen
DE19822031C2 (en) 1998-05-15 2000-03-23 Disetronic Licensing Ag Auto injection device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254045A1 (en) * 2003-09-19 2009-10-08 Tecpharma Licensing Ag. Device for dispensing an injectable product in doses
JP2005087739A (en) * 2003-09-19 2005-04-07 Tecpharma Licensing Ag Apparatus for dispensing injectable product in doses
US20050065477A1 (en) * 2003-09-19 2005-03-24 Stefan Jost Device for dispensing an injectable product in doses
US7513889B2 (en) * 2003-09-19 2009-04-07 Tecpharma Licensing Ag Device for dispensing an injectable product in doses
US8162887B2 (en) 2004-06-23 2012-04-24 Abbott Biotechnology Ltd. Automatic injection devices
US9764090B2 (en) 2004-06-23 2017-09-19 Abbvie Biotechnology Ltd Relating to automatic injection devices
US8668670B2 (en) 2004-06-23 2014-03-11 Abbvie Biotechnology Ltd Automatic injection devices
US9017287B2 (en) 2004-06-23 2015-04-28 Abbvie Biotechnology Ltd Automatic injection devices
US8002785B2 (en) * 2004-09-04 2011-08-23 Roche Diagnostics Operations, Inc. Lancing apparatus for producing a puncture wound
US20070233167A1 (en) * 2004-09-04 2007-10-04 Thomas Weiss Lancing apparatus for producing a puncture wound
US10888664B2 (en) * 2004-12-08 2021-01-12 Roche Diabetes Care, Inc. Adapter for an injection appliance
US20140364813A1 (en) * 2004-12-08 2014-12-11 Roche Diagnostics International Ag Adapter for injection appliance
US9486584B2 (en) 2006-06-30 2016-11-08 Abbvie Biotechnology Ltd. Automatic injection device
US8679061B2 (en) 2006-06-30 2014-03-25 Abbvie Biotechnology Ltd Automatic injection device
US9561328B2 (en) 2009-04-29 2017-02-07 Abbvie Biotechnology Ltd Automatic injection device
US8636704B2 (en) 2009-04-29 2014-01-28 Abbvie Biotechnology Ltd Automatic injection device
US9108003B2 (en) 2009-10-16 2015-08-18 Sanofi-Aventis Deutschland Gmbh Drug delivery device
WO2011045385A1 (en) * 2009-10-16 2011-04-21 Sanofi-Aventis Deutschland Gmbh Drug delivery device
US8758301B2 (en) 2009-12-15 2014-06-24 Abbvie Biotechnology Ltd Firing button for automatic injection device
US9821117B2 (en) 2010-04-21 2017-11-21 Abbvie Biotechnology Ltd Wearable automatic injection device for controlled delivery of therapeutic agents
US9180244B2 (en) 2010-04-21 2015-11-10 Abbvie Biotechnology Ltd Wearable automatic injection device for controlled delivery of therapeutic agents
WO2011154484A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
JP2013528088A (en) * 2010-06-11 2013-07-08 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drive mechanism for a drug delivery device
US20130190697A1 (en) * 2010-06-11 2013-07-25 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9623185B2 (en) 2010-06-11 2017-04-18 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
US9498576B2 (en) * 2010-06-11 2016-11-22 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
WO2011154482A3 (en) * 2010-06-11 2012-02-02 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
WO2012062718A1 (en) * 2010-11-08 2012-05-18 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device, drug delivery system and drug delivery device
US9592337B2 (en) 2010-12-22 2017-03-14 Alcon Research, Ltd. Device for at least one of injection or aspiration
US8535268B2 (en) 2010-12-22 2013-09-17 Alcon Research, Ltd. Device for at least one of injection or aspiration
US9339610B2 (en) 2011-01-24 2016-05-17 Abbvie Biotechnology Ltd Removal of needle shield from syringes and automatic injection devices
US9265887B2 (en) 2011-01-24 2016-02-23 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
US8708968B2 (en) 2011-01-24 2014-04-29 Abbvie Biotechnology Ltd. Removal of needle shields from syringes and automatic injection devices
US9878102B2 (en) 2011-01-24 2018-01-30 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces
US10022503B2 (en) 2011-01-24 2018-07-17 Abbvie Biotechnology Ltd Removal of needle shield from syringes and automatic injection devices
US10806867B2 (en) 2011-01-24 2020-10-20 E3D Agricultural Cooperative Association Ltd. Injector
US11565048B2 (en) 2011-01-24 2023-01-31 Abbvie Biotechnology Ltd. Automatic injection devices having overmolded gripping surfaces

Also Published As

Publication number Publication date
US6673049B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US6673049B2 (en) Injection device for injecting fluid
US6090080A (en) Injection device for injection of liquid
JP4601522B2 (en) Automatic pen for 2-chamber ampoule
EP0692988B1 (en) Manifold medication injection apparatus and method
JP5431241B2 (en) Automatic syringe with reset characteristics
JP4306873B2 (en) Automatic injection device
EP2750739B1 (en) Medical delivery device with an initial locked state, intermediate priming state and a medicament delivery state
RU2556965C2 (en) Device for injection of set liquid medication dose
JP4011543B2 (en) Latching device for connecting the housing part of the administration device
JP5066177B2 (en) Injection device with tension spring and tension element
JP4302627B2 (en) Product supply device with quick reset function of piston rod
US7396347B2 (en) Injector device and method for its operation
US8012131B2 (en) Extractable dose setting knob
JP4934051B2 (en) Injection device
JP2010506603A (en) Block element for dosing mechanism
US9199039B2 (en) Pusher with a coupling element
JPH11347122A (en) Device for administering injection possible composition by adjusted quantity
US6413242B1 (en) Injection device for injection of liquid
RU2143929C1 (en) Injection device for unlimited varied dosing and introduction of liquid preparation
US11623050B2 (en) Drive-control system for an injection device
RU2575549C2 (en) Preset liquid drug dose injector (versions)
NZ299722A (en) Injection device having single cartridge with manually operated dosage metering mechanism and actuator

Legal Events

Date Code Title Description
AS Assignment

Owner name: DISETRONIC LICENSING AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOMMANN, EDGAR;JOST, STEFAN;REEL/FRAME:011773/0327

Effective date: 20010409

AS Assignment

Owner name: TECPHARMA LICENSING AG, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:DISETRONIC SERVICES AG;REEL/FRAME:015401/0884

Effective date: 20031113

Owner name: TECPHARMA LICENSING AG,SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:DISETRONIC SERVICES AG;REEL/FRAME:015401/0884

Effective date: 20031113

AS Assignment

Owner name: DISETRONIC SERVICES AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DISETRONIC LICENSING AG;REEL/FRAME:014243/0598

Effective date: 20031112

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362