US20020111448A1 - Continuous polymerization process and products therefrom - Google Patents

Continuous polymerization process and products therefrom Download PDF

Info

Publication number
US20020111448A1
US20020111448A1 US10/025,637 US2563701A US2002111448A1 US 20020111448 A1 US20020111448 A1 US 20020111448A1 US 2563701 A US2563701 A US 2563701A US 2002111448 A1 US2002111448 A1 US 2002111448A1
Authority
US
United States
Prior art keywords
meth
chain
reaction mixture
straight
acrylates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/025,637
Inventor
Gary Greenblatt
Barry Lange
Michael Bowe
Richard Merritt
Robert Wilczynski
Gary Larson
Lori Petrovich
David Whitman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/025,637 priority Critical patent/US20020111448A1/en
Publication of US20020111448A1 publication Critical patent/US20020111448A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/196Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/046Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings
    • C07C2603/68Dicyclopentadienes; Hydrogenated dicyclopentadienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate

Definitions

  • This invention relates to a continuous polymerization process and products therefrom.
  • this invention relates to a high temperature, high pressure, continuous polymerization process to produce oligomers.
  • this invention relates to a high temperature, high pressure, continuous polymerization process to produce terminally unsaturated and fully saturated oligomers.
  • Oligomers refers to polymers having a degree of polymerization (“dP”) of less than 50.
  • Another way of lowering the molecular weight of the polymers is by increasing the amount of initiator.
  • This approach adds considerably to the cost of production and may result in polymer chain degradation, crosslinking, and high levels of unreacted initiator remaining in the product.
  • high levels of initiator may also result in high levels of salt by-products in the polymer mixture which are known to be detrimental to performance in many applications.
  • chain stopping agents such as sodium metabisulfite.
  • chain stopping agents such as sodium metabisulfite.
  • chain stopping agents such as sodium metabisulfite.
  • the preferred free-radical initiators for aqueous polymerization is hydrogen peroxide. It is relatively inexpensive, has low toxicity, and does not produce detrimental salt by-products. However, hydrogen peroxide does not generally decompose efficiently at conventional polymerization temperatures and large amounts must normally be used to generate enough radicals to carry out a polymerization.
  • U.S. Pat. No. 4,680,352 and U.S. Pat. No. 4,694,054 disclose processes for preparing low molecular weight terminally-unsaturated oligomers employing metal chelate chain transfer agents to control molecular weight. These processes suffer from the same problems as those processes employing high level of metal ions, as described above. In addition, because the methods employing the metal chelate chain transfer agents undergo ⁇ -scission reactions, they are limited to producing oligomers having homomethacrylate backbones.
  • Feit describes a multistep synthesis technique for preparing terminally-unsaturated oligomers and co-oligomers of vinyl monomers having electronegative groups.
  • the process described therein requires a base-catalyzed addition of an acetic acid ester derivative to an activated olefin, followed by hydrolysis of one ester group, followed by a Mannich reaction to introduce a terminal double bond.
  • This three step process is repeated to prepare a terminally-unsaturated oligomer with one additional mer.
  • This process suffers the drawback of being fairly complex, expensive and time-consuming.
  • U.S. Pat. No. 5,710,227 discloses a high temperature, continuous polymerization process for preparing terminally unsaturated oligomers which are formed from acrylic acid and its salts, and acrylic acid and its salts with other ethylenically unsaturated monomers.
  • the high temperature, continuous polymerization process solves many of the problems associated with previously known methods for preparing terminally-unsaturated oligomers formed from acrylic acid.
  • the neat form of many of the acrylic acid products are solid and, thus, require the addition of a solvent to handle and use the products.
  • U.S. Pat. No. 4,356,288 discloses the preparation of terminally-unsaturated oligomers formed from esters of acrylic acid having a degree of polymerization of about 6-30 by an anionic polymerization reaction carried out in the presence of a catalytic amount of an alkoxide anion.
  • the method is relatively complex. Because the method is inhibited by the presence of moisture (lowering yield and uniformity of the final product), it is not a viable commercial process.
  • Metzger et al. disclose the dimerization and trimerization of methyl acrylate in benzene at a pressure of 200 bars and temperatures of 340-420° C. in a flow reactor with a residence time of 5 minutes.
  • the present invention seeks to overcome the problems associated with the previously known methods for preparing oligomers by providing a polymerization process that is not limited to forming oligomers having only a homomethacrylate backbone or a carboxylic acid-containing monomer residue backbone and that does not require water or other solvent in the manufacture or use of the oligomer.
  • the present invention also provides an oligomer free of metal, salt and surfactant contaminants, that, due to its purity and composition, is not water sensitive or discolored and is liquid when provided neat.
  • the invention is directed to a continuous process for preparing terminally-unsaturated and fully saturated oligomers which do not contain, as polymerized units, carboxylic acid-containing monomers, including the steps of:
  • the invention is directed to a process for preparing fully saturated oligomers including the further step of hydrogenating the terminally unsaturated oligomer.
  • the invention is also directed to processes for forming oligomers of vinyl acetate and oligomers of vinyl alcohol.
  • A, A 1 and A 2 independently selected from —H;
  • a 3 , A 4 independently selected from —H, —F, —Cl, —Br, R 1 ;
  • E 1 , E 2 independently selected from —H,
  • G 1 , G 2 independently selected from —H, —CH 3 , —(CH 2 ) m CO 2 R 1 , —F, —Cl, —Br, —I;
  • M 1 , M 2 independently selected from —H, —C ⁇ N, —(C ⁇ O)OR 1 , —F, —Cl, —Br, —I;
  • Q C 1 -C 8 straight-chain or branched alkyl, —OR 3 , residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R 4 ) 2 C ⁇ N;
  • R C 1 -C 50 straight-chain or branched alkyl, C 2 -C 50 straight-chain or branched alkenyl containing 1-5 double bonds;
  • R 1 independently selected from C 1 -C 8 straight chain or branched alkyl where (R 1 ) 2 may constitute a C 5 -C 8 cycloalkyl group; phenyl, —CH 2 phenyl;
  • R 2 C 1 -C 6 straight chain or branched alkyl, C 1 -C 6 straight chain or branched alkoxy, —CHO, —(C ⁇ O)OR 1 , —N(R 1 ) 2 , —NO 2 , —(C ⁇ O)N(R 1 ) 2 , —CF 3 , —(C ⁇ O)R 1 ;
  • R 3 —H, C 1 -C 8 straight chain or branched alkyl, —R 1 (C ⁇ O), —R 1 (C ⁇ O)O;
  • R 4 C 1 -C 8 straight-chain alkyl, C 5 -C 8 cycloalkyl wherein the two adjacent R 4 groups may together form a 5-8 membered ring, C 1 -C 4 alkoxy-substituted straight-chain or branched C 1 -C 8 alkyl groups;
  • X (31) —F ( ⁇ ), —Cl ( ⁇ ) , —Br ( ⁇ ) , —I ( ⁇ ), —HSO 4 ( ⁇ ), —H 2 PO 3 ( ⁇ ) ;
  • Y —OH, —F, —Cl, —Br, —I, —NH 2 , —N(R 1 ) 2 ;
  • the invention is also directed to a mixture that contains:
  • the term “(meth)acrylate” refers to methacrylate and acrylate
  • the term “(meth)acrylic” refers to methacrylic and acrylic
  • the term “(meth)acrylamide” refers to methacrylamide and acrylamide.
  • the term “substantially free” means less than 0.5% by weight.
  • the term “ambient conditions” means at a temperature of 20° C.-40° C. and at a pressure of 1 bar.
  • the term “homooligomer” means an oligomer containing the same monomer units and the term “co-oligomer” means an oligomer containing at least two different monomer units.
  • the term “neat” means a composition that contains only the oligomer and is substantially free of solvent and other additives.
  • carboxylic-acid containing monomers and their salts means monoethylenically unsaturated monocarboxylic acids, and the alkali metal, alkaline earth metal, and ammonium salts thereof, and monoethylenically unsaturated dicarboxylic acids, and the alkali metal, alkaline earth metal, and ammonium salts thereof, and the anhydrides of the cis-dicarboxylic acids.
  • the first step of the process of the invention is forming a reaction mixture, substantially free of carboxylic acid-containing monomers and their salts, containing:
  • the reaction mixture contains 10% to 99.9% by weight, and most preferably, 50% to 98% by weight, based on the weight of the reaction mixture, of at least one ethylenically unsaturated monomer.
  • the reaction mixture contains 0.1% to 5% by weight, and most preferably, 1% to 2% by weight, based on the weight of the ethylenically unsaturated monomer, of at least one free-radical initiator.
  • the process of the invention is suitable for polymerizing any ethylenically unsaturated monomer, except carboxylic acid-containing monomers and their salts.
  • Suitable monomers include, but are not limited to,
  • n-alkyl(meth)acrylates such as methyl acrylate, butyl methacrylate, octadecyl acrylate;
  • branched alkyl(meth)acrylates such as isopropyl methacrylate, 2-ethyl hexyl acrylate, isobornyl methacrylate;
  • cycloalkyl(meth)acrylates such as cyclopentyl methyl acrylate, cyclohexyl methacrylate
  • straight chain or branched haloalkyl(meth)acrylates such as 2,2,2-trifluoroethyl acrylate, hexafluoroisopropyl methacrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate;
  • aromatic alkyl(meth)acrylates such as benzyl acrylate, 4-chlorophenethyl methacrylate;
  • aromatic (meth)acrylates such as phenyl acrylate, 4-benzoyl phenyl acrylate;
  • hydroxyalkyl(meth)acrylates such as 2-hydroxyethyl acrylate, 4-hydroxybutyl methacrylate;
  • heterocyclyl(meth)acrylates such as 3-oxazolidinyl ethyl methacrylate, N-ethyl-ethylene ureido methacrylate;
  • aminoalkyl(meth)acrylates such as N,N-dimethyl aminoethyl acrylate and acid salts of 2-aminoethyl acrylate, N,N-diethyl aminopropyl methacrylate;
  • ether-containing (meth)acrylates such as ethoxyethoxyethyl acrylate, 2-tetrahydrofuranyl acrylate, ethyl ether of a polyalkoxylated ester of methacrylic acid;
  • silicon-containing (meth)acrylates such as trimethoxysilylpropyl acrylate, diethoxymethylsilylpropyl methacrylate, isopropoxydimethylsilylpropyl acrylate;
  • (meth)acrylamides such as N-methyl acrylamide, N,N-dimethylaminopropyl methacrylamide;
  • epoxide-containing (meth)acrylates such as glycidyl (meth)acrylate, (meth)acrylates derived from partially or completely epoxidized (poly)unsaturated vegetable oils;
  • unsaturated alkyl(meth)acrylates such as vinyl acrylate, allyl methacrylate, 2,4 hexadienyl methacrylate;
  • (meth)acrylate esters derived from (poly)unsaturated vegetable oils; terminal alkenes, such as ethylene, 1-hexene, 3-vinyl cyclohexene; aralkenes, such as styrene, 4-methyl styrene, ⁇ c-methyl styrene, 4-methoxy styrene, 4-benzoyl styrene, 4-N,N-dimethylaminostyrene;
  • heterocyclyl alkenes such as 2,-3,or 4-vinyl pyridines and N-vinyl imidazole;
  • dienes such as butadiene, isoprene, vinylidene chloride, vinyl fluoride;
  • vinyl halides such as vinyl chloride, tetrafluoroethylene
  • vinyl esters such as vinyl acetate, vinyl benzoate
  • aldehyde containing vinyl functionality such as (meth)acrolein and their acetal derivatives
  • epoxyalkenes such as 3,4-epoxybut-1-ene
  • vinyl monomers such as (meth)acrylonitrile, N-vinyl formamide, N-vinyl acetamide, fumaronitrile;
  • vinylsilanes and alkoxyvinylsilanes such as vinyltrimethylsilane, vinyltrimethoxy silane, vinyldiethoxymethylsilane;
  • unsaturated diesters such as dimethylmaleate, dibutylfumarate, diethyl itaconate;
  • Preferred ethylenically unsaturated monomers include those monomers whose neat homooligomer of a degree of polymerization of about 5 to about 10 is a liquid under ambient conditions.
  • Suitable initiators for carrying out the processes of the present invention are any conventional free-radical initiators including, but are not limited to, hydrogen peroxide, certain alkyl hydroperoxides, dialkyl peroxides, peresters, percarbonates, persulfates, peracids, oxygen, ketone peroxides, azo initiators and combinations thereof.
  • Specific examples of some suitable initiators include hydrogen peroxide, oxygen, t-butyl hydroperoxide, di-tertiary butyl peroxide, tertiary-amyl hydroperoxide, methylethyl ketone peroxide and combinations thereof.
  • the monomers may be polymerized as dilute solutions, although the process does not require solvent, nor is the use of solvents preferred.
  • the reaction mixture may contain one or more solvents at a level of from 0% to 99.5% by weight of the reaction mixture, preferably from 30% to 97% by weight of the reaction mixture, and most preferably from 50% to 95% by weight of the reaction mixture. As the relative amount of one or more solvents in the reaction mixture decreases, particularly below 60%, the molecular weight and the polydispersity of the resulting oligomer mixture increases.
  • Suitable solvents for the process of the present invention are capable of dissolving the one or more monomers, especially under the supercritical fluid conditions of the process, and the oligomers formed therefrom.
  • Suitable solvents for the present invention include, for example, ethers such as tetrahydrofuran, ketones such as acetone; esters such as ethyl acetate; alcohols such as methyl alcohol and butyl alcohol; alkanes such as hexane and heptane; aromatic hydrocarbons such as benzene, toluene and xylene; supercritical fluids such as carbon dioxide; water; and mixtures thereof.
  • supercritical fluids such as carbon dioxide are particularly useful because the solvent readily is stripped from the product and may be recycled.
  • the reaction mixture is continuously passed through a heated zone, wherein the reaction mixture is maintained at a temperature of at least 150° C. under elevated pressure.
  • the passing reaction mixture reach the polymerization temperature as rapidly as possible.
  • the reaction mixture reaches the polymerization temperature within 2 minutes, more preferably within 1 minute, most preferably within 30 seconds.
  • the reaction mixture may be at any suitable temperature, preferably at a temperature of from room temperature to 450° C., most preferably from a temperature of from room temperature to 60° C. to 400° C.
  • the oligomerization is conducted at a temperature of at least 150° C., and is preferably conducted at a temperature in the range of from 200° C. to 500° C., and most preferably at a temperature in the range of from 275° C. to 450° C. At temperatures below 150° C., the molecular weight of the oligomer increases and the relative amount of by-products, a particularly non-terminally unsaturated compounds, increases.
  • the oligomerization at the elevated temperatures of the process of the invention is rapid.
  • the reaction mixture can be maintained at the polymerization temperature for as little as 0.1 seconds up to 4 minutes, preferably from 0.5 seconds to 2 minutes, most preferably from 1 second to 1 minute.
  • the yield of terminally unsaturated oligomer decreases.
  • extended periods at the polymerization temperature have been found to have little effect on both the conversion of monomer and the molecular weight of the products formed.
  • the elevated temperatures of the polymerization require that the polymerization reactor be equipped to operate at elevated pressure of at least 30 bars to maintain the contents of the reactor as a fluid at the reaction temperature. In general, it is preferred to conduct the polymerization at from 70 bars to 350 bars, and more preferably at from 200 bars to 300 bars.
  • the ethylenically unsaturated monomers, initiator and, optionally, solvent are combined to form a reaction mixture.
  • the order of combining the components of the reaction mixture is not critical to the process of the present invention.
  • the reaction mixture can be formed at a temperature below, at or above the oligomerization temperature.
  • Reactors suitable for use in the process of invention include tubular reactors having no moving parts and of any cross-sectional shape that permit continuous, steady state flow and that may operate under elevated temperatures and pressures.
  • Such reactors are typically made from inert materials, such as stainless steel or titanium.
  • the reactor may be of any length and cross-sectional dimension that permits effective temperature and pressure control.
  • reaction mixture may optionally contain metal ions, such as copper, nickel or iron ions or combinations thereof. However, their presence is not preferred.
  • the process of the present invention generally results in a relative conversion of the monomers into oligomer product of from 10% to greater than 95% relative to the initial amount of the one or more monomers present in the reaction mixture. If residual monomer levels in the oligomer mixture are unacceptably high for a particular application, their levels can be reduced by any of several techniques known to those skilled in the art, including rotary evaporation, distillation, and vacuum distillation. Preferably, any residual monomers which may be present in the oligomer mixture are distilled or “stripped” and recycled for later use.
  • the process of the present invention results in oligomers having low molecular weights and narrow polydispersities. Furthermore, embodiments of the process result in products that do not require the removal of organic solvents (if none were used in the process) and are not contaminated with high levels of salt.
  • the process of the present invention may be used to produce oligomers having number average molecular weights below 5,000, preferably below 3,000, and most preferably from 200 to 1,000.
  • the process of the invention may contain an optional third step wherein the terminal unsaturation of the terminally unsaturated oligomers is removed by hydrogenation under conditions known to those skilled in the art, with or without solvent.
  • the hydrogenation may be carried out utilizing a wide variety of hydrogenation catalysts on an alkaline metal salt support.
  • Preferred metal catalysts include those comprising metals selected from groups 3, 4, 5, 6 , 7, 8, 9, 10, 11 or 12 of the Periodic Table of Elements as published in Chemical and Engineering News 63(5), 27, 1985, is preferably present in the reaction at a ratio of 0.01 to 5.0, and preferably 0.02 to 2.0 grams of catalyst per gram of unsaturated oligomer.
  • the degree of hydrogenation is determined from proton NMR measurements at 25° C.
  • A, A 1 and A 2 independently selected from —H;
  • a 3 , A 4 independently selected from —H, —F, —Cl, —Br, R 1 ;
  • E 1 , E 2 independently selected from —H,
  • G 1 , G 2 independently selected from —H, —CH 3 , —(CH 2 ) m CO 2 R 1 , —F, —Cl, —Br, —I;
  • M 1 , M 2 independently selected from —H, —C ⁇ N, —(C ⁇ O)OR 1 , —F, —Cl, —Br, —I;
  • Q C 1 -C 8 straight-chain or branched alkyl, —OR 3 , residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R 4 ) 2 C ⁇ N;
  • R C 1 -C 50 straight-chain or branched alkyl, C 2 -C 50 straight-chain or branched alkenyl containing 1-5 double bonds;
  • R 1 independently selected from C 1 -C 8 straight chain or branched alkyl where (R 1 ) 2 may constitute a C 5 -C 8 cycloalkyl group; phenyl, —CH 2 phenyl;
  • R 2 C 1 -C 6 straight chain or branched alkyl, C 1 -C 6 straight chain or branched alkoxy, —CHO, —(C ⁇ O)OR1, —N(R 1 ) 2 , —NO 2 , —(C ⁇ O)N(R 1 ) 2 , —CF 3 , —(C ⁇ O)R 1 ;
  • R 3 —H, C 1 -C 8 straight chain or branched alkyl, —R 1 (C ⁇ O), —R 1 (C ⁇ O)O;
  • R 4 C 1 -C 18 straight-chain alkyl, C 5 -C 8 cycloalkyl wherein the two adjacent R 4 groups may together form a 5-8 membered ring, C 1 -C 4 alkoxy-substituted straight-chain or branched C 1 -C 8 alkyl groups;
  • X ( ⁇ ) —F ( ⁇ ) , —Cl ( ⁇ ) , —Br ( ⁇ ) , —I ( ⁇ ), —HSO 4 ( ⁇ ) , —H 2 PO 3 ( ⁇ ) ;
  • Y —OH, —F, —Cl, —Br, —I, —NH 2 , —N(R 1 ) 2 ;
  • the residues of the monomers, Z 1 , Z 2 and Z 3 , in the oligomers of Formula (I) above may be randomly arranged to form alternating, random or block polymer structures. It is also understood that, not only are homooligomers and co-oligomers contemplated, but oligomers formed from more than two different types of monomers, such as low molecular weight terpolymers or “ter-oligomers”, are also contemplated. In the broadest sense, it is understood that in the oligomer where there are up to 49 possible residues of monomers (whether of Z 1 , Z 2 or Z 3 structure) the monomers are each independently selected such that it would be possible to form an oligomer from 49 different monomers.
  • the process of the present invention is useful for producing a mixture of oligomers containing:
  • the mixture may optionally contain an oligomer formed by a chain-chain termination reaction.
  • Terminal unsaturation may be detected and measured by conventional techniques, including 1 H NMR spectroscopy, 13 C NMR spectroscopy, and bromine titration.
  • the endgroups may be identified by conventional techniques, including MALDI-MS.
  • the terminally-unsaturated oligomers, fully saturated oligomers and mixtures of the invention may be supplied neat and flow under ambient conditions.
  • the consistency of the products ranges from a thin, water-like fluid to a viscous, taffy-like fluid.
  • they do not require the use of water or other solvents in the preparation or use and are substantially free of contaminants, including, salts, surfactants, metals and the like.
  • the oligomers of the invention may be used neat, provided in solvent or provided emulsified in water with at least one surfactant.
  • the emulsified oligomer in water is preferred if the neat form of the oligomer is too viscous for use in an application.
  • Suitable surfactants include conventional anionic, cationic, nonionic, amphoteric surfactants and mixtures thereof.
  • the surfactant may be added at a level of at least 0.1% solids based on the weight of the oligomer.
  • the emulsified composition may be prepared by mixing at least one surfactant, at least one oligomer, water and mixing vigorously. Other minor components, such as wetting agent, may be added to the emulsified composition.
  • the emulsified composition may be prepared by adding the surfactant to the reaction mixture containing the ethylenically unsaturated monomer and initiator prior to oligomerization.
  • the oligomers of the invention are useful in many applications, including, for example, in binders and additives (surfactants, emulsifiers, rheology modifiers) for architectural coatings (paints, primers, lacquers, varnishes, stains, EIFS); in industrial coatings (including automotive finishes, metal finishes, printing inks and resins); in building products (wood coatings and binders, caulks, sealants, concrete modifiers and coatings, impregnants, polishes) in coatings and additives for paper, textiles, and nonwovens; in adhesives; in leather chemicals; in formulation chemicals (including detergents, dispersants, water treatment, scale inhibitors, suspension aids); in plastics and plastic additives (plasticizers, processing aids); in rubber and rubber additives (plasticizers, processing aids); in biocides and adjuvants; in agricultural chemicals and adjuvants; in electronic chemicals; in ion exchange resins (adsorbents and adsorbent
  • a 10 foot long section of stainless steel tubing having an inner diameter of ⁇ fraction (1/16) ⁇ th inch and a wall thickness of 0.050 inch was connected at one end to a high pressure pump (Hewlett Packard Model HP 1050 TI) and at another end to a back-pressure control device. Between the two ends, the section of tubing was coiled about a torus-shaped metal mandrel. The mandrel was situated above a primary coil of a transformer so that the coils of tubing and the mandrel functioned as secondary coils of the transformer. The coils of tubing were further equipped with one end of a temperature probe. The other end of the temperature probe was connected to a temperature controlling device. The temperature controlling device regulated the current supplied to the primary coil of the transformer which had the effect of regulating the heat of inductance imparted to the coiled steel tubing.
  • a high pressure pump Hewlett Packard Model HP 1050 TI
  • a reaction mixture was prepared by mixing solvent (if present), monomers, comonomers (if present) and initiator. Nitrogen was bubbled through the mixture while stirring. Under solvent-free conditions, the initiator and monomers/comonomers were separately fed into the reactor.
  • Solvent was pumped through the tubing via the high pressure pump at a rate of from 0.05 to 10 milliliters per minute (“ml/min”). The pressure was maintained at a level of from 200 bars to 350 bars. Current was supplied to the primary coil of the transformer to increase the temperature within the tubing to the desired polymerization temperature. After about 15 minutes, the solvent being pumped through the tubing was replaced by the reaction mixture which was continuously pumped through the tubing at the same rate, temperature and pressure. After allowing a suitable amount of time for the solvent to be cleared from the tubing, product was collected as the effluent from the back-pressure control device. When the reaction mixture was nearly gone, solvent was pumped through the tubing at the same rate, pressure and temperature as the reaction mixture. Solvent and residual monomer were removed on a rotary evaporator.
  • Terminal unsaturation was detected and measured by both 1 H NMR spectroscopy and 13 C NMR spectroscopy; endgroups were identified by MALDI-MS.
  • Examples 1-103 are oligomerizations conducted according to the general procedure outlined above. The reaction conditions and final properties of the oligomers are shown in Table 1.
  • TABLE 1 Viscosity Ethylenically Reactor of neat Unsaturated Initiator Solvent Temperature oligomer T g 7
  • Example Monomer (BOM) 1 (w/w) 2 (° C.) % Conversion 3 M w /M n 4 dp 5 (cps) 6 (° C.) 1 EA 1% dTBP 50% in acetone 375 99 —/— ⁇ 7 — — 2
  • EA 1% dTBP 50% in acetone 250 97 2900/1080 10.9 — — 4 BA 2% dTBP none 300 82 2800/1000 — — ⁇ 72 5 BA 1% dTBP 50% in 350 93-98 — —

Abstract

A continuous process for oligomers which do not contain, as polymerized units, carboxylic acid-containing monomers and their salts, including the steps of:
(1) forming a reaction mixture, substantially free of carboxylic acid-containing monomers and their salts, containing:
(i) 0.5 to 99.95% by weight of the reaction mixture of at least one ethylenically unsaturated monomer; and
(ii) 0.05 to 25% by weight, based on the weight of the ethylenically unsaturated monomer, of at least one free-radical initiator; and
(2) continuously passing the reaction mixture through a heated zone wherein the reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form terminally-unsaturated oligomers.
In addition, processes for forming oligomers of vinyl acetate and oligomers of vinyl alcohol are disclosed. Mixtures of fully saturated and terminally unsaturated oligomers are also disclosed.

Description

  • This invention relates to a continuous polymerization process and products therefrom. In particular, this invention relates to a high temperature, high pressure, continuous polymerization process to produce oligomers. More particularly, this invention relates to a high temperature, high pressure, continuous polymerization process to produce terminally unsaturated and fully saturated oligomers. “Oligomers,” as used herein and in the appended claims, refers to polymers having a degree of polymerization (“dP”) of less than 50. [0001]
  • The art has long sought an inexpensive, efficient and environmentally sound way to produce low molecular weight polymers. However, production of these low molecular weight polymers has proven to be difficult. [0002]
  • One method of achieving low molecular weight polymers is through the use of efficient chain transfer agents, but this approach has several drawbacks. First, this approach incorporates the structure of the chain transfer agent into the polymer chain. This can be undesirable since that structure will have an increasing effect on the properties of the polymer as molecular weight decreases. Furthermore, the chain transfer agents commonly employed are mercaptans. These materials are expensive and have objectionable odors associated with their presence. Other common chain transfer agents are hypophosphites, bisulfites and alcohols. These also add to the cost of the process, impart functionality to the polymer, may introduce salts into the product, and may necessitate a product separation step. [0003]
  • Another way of lowering the molecular weight of the polymers is by increasing the amount of initiator. This approach adds considerably to the cost of production and may result in polymer chain degradation, crosslinking, and high levels of unreacted initiator remaining in the product. In addition, high levels of initiator may also result in high levels of salt by-products in the polymer mixture which are known to be detrimental to performance in many applications. The same is true for chain stopping agents, such as sodium metabisulfite. Among the preferred free-radical initiators for aqueous polymerization is hydrogen peroxide. It is relatively inexpensive, has low toxicity, and does not produce detrimental salt by-products. However, hydrogen peroxide does not generally decompose efficiently at conventional polymerization temperatures and large amounts must normally be used to generate enough radicals to carry out a polymerization. [0004]
  • High levels of metal ions, alone or together with high levels of initiator, have also been tried as a means for controlling molecular weight. Such an approach is unsuitable for some products that cannot tolerate metal ion contaminants in the polymer product, such as pharmaceutical, medical and electronic applications. In addition, depending on the metal ions used, the product may be discolored due to the presence of the metal ions. [0005]
  • U.S. Pat. No. 4,680,352 and U.S. Pat. No. 4,694,054 disclose processes for preparing low molecular weight terminally-unsaturated oligomers employing metal chelate chain transfer agents to control molecular weight. These processes suffer from the same problems as those processes employing high level of metal ions, as described above. In addition, because the methods employing the metal chelate chain transfer agents undergo β-scission reactions, they are limited to producing oligomers having homomethacrylate backbones. [0006]
  • In the [0007] European Polymer Journal, Volume 8, pages 321-328 (1972), Feit describes a multistep synthesis technique for preparing terminally-unsaturated oligomers and co-oligomers of vinyl monomers having electronegative groups. The process described therein requires a base-catalyzed addition of an acetic acid ester derivative to an activated olefin, followed by hydrolysis of one ester group, followed by a Mannich reaction to introduce a terminal double bond. This three step process is repeated to prepare a terminally-unsaturated oligomer with one additional mer. This process suffers the drawback of being fairly complex, expensive and time-consuming.
  • U.S. Pat. No. 5,710,227 discloses a high temperature, continuous polymerization process for preparing terminally unsaturated oligomers which are formed from acrylic acid and its salts, and acrylic acid and its salts with other ethylenically unsaturated monomers. The high temperature, continuous polymerization process solves many of the problems associated with previously known methods for preparing terminally-unsaturated oligomers formed from acrylic acid. However, the neat form of many of the acrylic acid products are solid and, thus, require the addition of a solvent to handle and use the products. [0008]
  • U.S. Pat. No. 4,356,288 discloses the preparation of terminally-unsaturated oligomers formed from esters of acrylic acid having a degree of polymerization of about 6-30 by an anionic polymerization reaction carried out in the presence of a catalytic amount of an alkoxide anion. The method is relatively complex. Because the method is inhibited by the presence of moisture (lowering yield and uniformity of the final product), it is not a viable commercial process. [0009]
  • In [0010] Chemical Engineering at Supercritical Fluid Conditions, pages 515-533 (1983), Metzger et al. disclose the dimerization and trimerization of methyl acrylate in benzene at a pressure of 200 bars and temperatures of 340-420° C. in a flow reactor with a residence time of 5 minutes.
  • The present invention seeks to overcome the problems associated with the previously known methods for preparing oligomers by providing a polymerization process that is not limited to forming oligomers having only a homomethacrylate backbone or a carboxylic acid-containing monomer residue backbone and that does not require water or other solvent in the manufacture or use of the oligomer. The present invention also provides an oligomer free of metal, salt and surfactant contaminants, that, due to its purity and composition, is not water sensitive or discolored and is liquid when provided neat. [0011]
  • STATEMENT OF THE INVENTION
  • The invention is directed to a continuous process for preparing terminally-unsaturated and fully saturated oligomers which do not contain, as polymerized units, carboxylic acid-containing monomers, including the steps of: [0012]
  • (1) forming a reaction mixture, substantially free of carboxylic-acid monomers and their salts, containing: [0013]
  • (i) 0.5 to 99.95% by weight of the reaction mixture of at least one ethylenically unsaturated monomer; and [0014]
  • (ii) 0.05 to 25% by weight, based on the weight of the monomer, of at least one free-radical initiator; and [0015]
  • (2) continuously passing the reaction mixture through a heated zone wherein the reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form terminally-unsaturated oligomers. [0016]
  • In addition, the invention is directed to a process for preparing fully saturated oligomers including the further step of hydrogenating the terminally unsaturated oligomer. The invention is also directed to processes for forming oligomers of vinyl acetate and oligomers of vinyl alcohol. [0017]
  • The process of the invention is useful for preparing oligomers of the formula: [0018]
    Figure US20020111448A1-20020815-C00001
  • (I) [0019]
  • where [0020]
  • A, A[0021] 1 and A2=independently selected from —H;
  • C[0022] 1-C50 straight-chain or branched alkyl, optionally substituted with a Y group;
  • C[0023] 2-C50 straight-chain or branched alkenyl containing 1-5 double bonds, optionally substituted with 1-2 Y groups;
  • C[0024] 5-C8 cycloalkyl, C5-C8 cycloalkenyl;
  • phenyl, (CH[0025] 2)m-phenyl, 1- or 2-naphthyl;
  • —(C═O)H; [0026]
  • —C(OR[0027] 1)2H;
  • —(C═O)R[0028] 1, —(C═O)CF3;
  • —C(OR[0029] 1)2R1;
  • —(C═O)OR, —O(C═O)R[0030] 1;
  • —(C═O)Cl; [0031]
  • —O(C═O)OR[0032] 1;
  • —OR; [0033]
  • —(C═O)NH[0034] 2, —(C═O)NHR1, —(C═O)N(R1)2, —NH(C═O)R1, —NH(C═O)H, —(C═O)NH(CH2)m(NH3)(+)(X)(−), —(C═O)NH(CH2)m(NR1)2;
  • —Si(OR[0035] 1)3, —Si(OR1)2R1, —Si(OR1)(R1)2, —Si(R1)3;
  • —F, —Cl, —Br, —I; [0036]
  • —C≡N; [0037]
  • oxiranyl; [0038]
  • —NH(C═O)NH[0039] 2, —NH(C═O)NHR1, —NH(C═O)N(R1)2;.
    Figure US20020111448A1-20020815-C00002
  • —CH[0040] 2CnF2n+1,—CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
  • —P(═O)(OR[0041] 1)3;
  • —S(═O)[0042] 2(OR1);
  • —S(═O)[0043] 2R1;
  • A[0044] 3, A4=independently selected from —H, —F, —Cl, —Br, R1;
  • E[0045] 1, E2=independently selected from —H,
    Figure US20020111448A1-20020815-C00003
  • G[0046] 1, G2=independently selected from —H, —CH3, —(CH2)mCO2R1, —F, —Cl, —Br, —I;
  • M[0047] 1, M2=independently selected from —H, —C≡N, —(C═O)OR1, —F, —Cl, —Br, —I;
  • Q=C[0048] 1-C8 straight-chain or branched alkyl, —OR3, residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R4)2C≡N;
  • R=C[0049] 1-C50 straight-chain or branched alkyl, C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds;
  • C[0050]   5-C8 cycloalkyl, C5-C8 cycloalkenyl;
  • phenyl, (CH[0051]   2)m-phenyl, 1- or 2-naphthyl, -4-benzoylphenyl (where any phenyl group may be substituted with up to 2 R2), anthracenyl, anthracenylmethyl;
  • —(CH[0052]   2)mO(C═O)R1, —(CH2)m(C═O)OR1;
  • —(CH[0053]   2)m(C═O)R1;
  • (CH[0054]   2)m(C═O)NH2, —(CH2)m(C═O)NHR1,
  • —(CH[0055]   2)m(C═O)NH(R1)2; —(CH2)m N(R1)2, —(CH2)mNH3 (+)X(−);
  • —(CH[0056]   2)mOR1, —(CH2CH2O)mR1, —(CH2CH(CH3)O)mR1, -2-tetrahydrofuranyl;
  • —(CH[0057]   2)mN═C═O;
  • —CH[0058]   2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2C nF2nH, —CH2CH2CnF2nH;
  • —(CH[0059]   2)m
    Figure US20020111448A1-20020815-C00004
  • linear alkanes containing 1-5 epoxy groups derived from (poly)unsaturated vegetable oils; [0060]  
  • —(CH[0061]   2)pOH, —(CH2CH2O)mH, —[CH2CH(CH3)O]mH;
  • —(CH[0062]   2)mSi(OR1)3, —(CH 2)mSi(R1)(OR1)2, —(CH2)mSi(R1)2OR1, —(CH2)mSi(R1)3;
    Figure US20020111448A1-20020815-C00005
  • —(CH[0063]   2)mO(C═O)CH2(C═O)R1;
  • R[0064] 1=independently selected from C1-C8 straight chain or branched alkyl where (R1)2 may constitute a C5-C8 cycloalkyl group; phenyl, —CH2phenyl;
  • R[0065] 2=C1-C6 straight chain or branched alkyl, C1-C6 straight chain or branched alkoxy, —CHO, —(C═O)OR1, —N(R1)2, —NO2, —(C═O)N(R1)2, —CF3, —(C═O)R1;
  • —F, —Cl, —Br, —I; [0066]  
  • R[0067] 3=—H, C1-C8 straight chain or branched alkyl, —R1(C═O), —R1(C═O)O;
  • R[0068] 4=C1-C8 straight-chain alkyl, C5-C8 cycloalkyl wherein the two adjacent R4groups may together form a 5-8 membered ring, C1-C4 alkoxy-substituted straight-chain or branched C1-C8 alkyl groups;
  • X[0069] (31)=—F(−−), —Cl (−), —Br(−), —I(−), —HSO 4 (−), —H 2PO3 (−);
  • Y=—OH, —F, —Cl, —Br, —I, —NH[0070] 2, —N(R1)2;
  • m=1-8 [0071]
  • n=1-18 [0072]
  • p=2-8 [0073]
  • x=0-49 [0074]
  • y=0-49 [0075]
  • z=0-49 [0076]
  • x+y+z≦49. [0077]
  • The invention is also directed to a mixture that contains: [0078]
  • (1) about 50 to 90% by weight, based on the weight of the mixture, of a first oligomer having terminal unsaturation of Formula (I), where at least one of E[0079] 1 and E2 is an endgroup of the formula:
    Figure US20020111448A1-20020815-C00006
  • (II) [0080]
  • and when only one of E[0081] 1 and E2 is an endgroup of Formula (II) then the other endgroup is selected independently from H,
    Figure US20020111448A1-20020815-C00007
  • (2) about 10 to 50% by weight, based on the weight of the mixture, of a second oligomer having no terminal unsaturation of Formula (I), wherein E[0082] 1 and E2 are independently selected from
    Figure US20020111448A1-20020815-C00008
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the term “(meth)acrylate” refers to methacrylate and acrylate, the term “(meth)acrylic” refers to methacrylic and acrylic and the term “(meth)acrylamide” refers to methacrylamide and acrylamide. As used herein, the term “substantially free” means less than 0.5% by weight. As used herein, the term “ambient conditions” means at a temperature of 20° C.-40° C. and at a pressure of 1 bar. As used herein, the term “homooligomer” means an oligomer containing the same monomer units and the term “co-oligomer” means an oligomer containing at least two different monomer units. As used herein, the term “neat” means a composition that contains only the oligomer and is substantially free of solvent and other additives. As used herein, the phrase “carboxylic-acid containing monomers and their salts” means monoethylenically unsaturated monocarboxylic acids, and the alkali metal, alkaline earth metal, and ammonium salts thereof, and monoethylenically unsaturated dicarboxylic acids, and the alkali metal, alkaline earth metal, and ammonium salts thereof, and the anhydrides of the cis-dicarboxylic acids. [0083]
  • The first step of the process of the invention is forming a reaction mixture, substantially free of carboxylic acid-containing monomers and their salts, containing: [0084]
  • (a) from 0.5 to 99.95% by weight of the reaction mixture of at least one ethylenically unsaturated monomer; and [0085]
  • (b) from 0.05 to 25% by weight, based on the weight of the ethylenically unsaturated monomer, of at least one free-radical initiator. [0086]
  • Preferably, the reaction mixture contains 10% to 99.9% by weight, and most preferably, 50% to 98% by weight, based on the weight of the reaction mixture, of at least one ethylenically unsaturated monomer. Preferably, the reaction mixture contains 0.1% to 5% by weight, and most preferably, 1% to 2% by weight, based on the weight of the ethylenically unsaturated monomer, of at least one free-radical initiator. [0087]
  • The process of the invention is suitable for polymerizing any ethylenically unsaturated monomer, except carboxylic acid-containing monomers and their salts. Suitable monomers include, but are not limited to, [0088]
  • n-alkyl(meth)acrylates, such as methyl acrylate, butyl methacrylate, octadecyl acrylate; [0089]
  • branched alkyl(meth)acrylates, such as isopropyl methacrylate, 2-ethyl hexyl acrylate, isobornyl methacrylate; [0090]
  • cycloalkyl(meth)acrylates, such as cyclopentyl methyl acrylate, cyclohexyl methacrylate; [0091]
  • straight chain or branched haloalkyl(meth)acrylates, such as 2,2,2-trifluoroethyl acrylate, hexafluoroisopropyl methacrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate; [0092]
  • aromatic alkyl(meth)acrylates, such as benzyl acrylate, 4-chlorophenethyl methacrylate; [0093]
  • aromatic (meth)acrylates, such as phenyl acrylate, 4-benzoyl phenyl acrylate; [0094]
  • hydroxyalkyl(meth)acrylates, such as 2-hydroxyethyl acrylate, 4-hydroxybutyl methacrylate; [0095]
  • heterocyclyl(meth)acrylates, such as 3-oxazolidinyl ethyl methacrylate, N-ethyl-ethylene ureido methacrylate; [0096]
  • aminoalkyl(meth)acrylates, such as N,N-dimethyl aminoethyl acrylate and acid salts of 2-aminoethyl acrylate, N,N-diethyl aminopropyl methacrylate; [0097]
  • ether-containing (meth)acrylates, such as ethoxyethoxyethyl acrylate, 2-tetrahydrofuranyl acrylate, ethyl ether of a polyalkoxylated ester of methacrylic acid; [0098]
  • silicon-containing (meth)acrylates, such as trimethoxysilylpropyl acrylate, diethoxymethylsilylpropyl methacrylate, isopropoxydimethylsilylpropyl acrylate; [0099]
  • (meth)acrylamides, such as N-methyl acrylamide, N,N-dimethylaminopropyl methacrylamide; [0100]
  • epoxide-containing (meth)acrylates, such as glycidyl (meth)acrylate, (meth)acrylates derived from partially or completely epoxidized (poly)unsaturated vegetable oils; [0101]
  • unsaturated alkyl(meth)acrylates, such as vinyl acrylate, allyl methacrylate, 2,4 hexadienyl methacrylate; [0102]
  • (meth)acrylate esters derived from (poly)unsaturated vegetable oils; terminal alkenes, such as ethylene, 1-hexene, 3-vinyl cyclohexene; aralkenes, such as styrene, 4-methyl styrene, αc-methyl styrene, 4-methoxy styrene, 4-benzoyl styrene, 4-N,N-dimethylaminostyrene; [0103]
  • heterocyclyl alkenes, such as 2,-3,or 4-vinyl pyridines and N-vinyl imidazole; [0104]
  • dienes, such as butadiene, isoprene, vinylidene chloride, vinyl fluoride; [0105]
  • vinyl halides, such as vinyl chloride, tetrafluoroethylene; [0106]
  • vinyl esters, such as vinyl acetate, vinyl benzoate; [0107]
  • vinyl ketones, such as methyl vinyl ketone; [0108]
  • aldehyde containing vinyl functionality, such as (meth)acrolein and their acetal derivatives; [0109]
  • epoxyalkenes, such as 3,4-epoxybut-1-ene; [0110]
  • vinyl monomers, such as (meth)acrylonitrile, N-vinyl formamide, N-vinyl acetamide, fumaronitrile; [0111]
  • vinylsilanes and alkoxyvinylsilanes, such as vinyltrimethylsilane, vinyltrimethoxy silane, vinyldiethoxymethylsilane; [0112]
  • unsaturated diesters, such as dimethylmaleate, dibutylfumarate, diethyl itaconate; [0113]
  • functional (meth)acrylates, such as isocyanatoethyl methacrylate, acryloylchloride, aceto acetoxylethyl methacrylate [0114]
  • Preferred ethylenically unsaturated monomers include those monomers whose neat homooligomer of a degree of polymerization of about 5 to about 10 is a liquid under ambient conditions. [0115]
  • Suitable initiators for carrying out the processes of the present invention are any conventional free-radical initiators including, but are not limited to, hydrogen peroxide, certain alkyl hydroperoxides, dialkyl peroxides, peresters, percarbonates, persulfates, peracids, oxygen, ketone peroxides, azo initiators and combinations thereof. Specific examples of some suitable initiators include hydrogen peroxide, oxygen, t-butyl hydroperoxide, di-tertiary butyl peroxide, tertiary-amyl hydroperoxide, methylethyl ketone peroxide and combinations thereof. [0116]
  • The monomers may be polymerized as dilute solutions, although the process does not require solvent, nor is the use of solvents preferred. The reaction mixture may contain one or more solvents at a level of from 0% to 99.5% by weight of the reaction mixture, preferably from 30% to 97% by weight of the reaction mixture, and most preferably from 50% to 95% by weight of the reaction mixture. As the relative amount of one or more solvents in the reaction mixture decreases, particularly below 60%, the molecular weight and the polydispersity of the resulting oligomer mixture increases. Suitable solvents for the process of the present invention are capable of dissolving the one or more monomers, especially under the supercritical fluid conditions of the process, and the oligomers formed therefrom. Suitable solvents for the present invention include, for example, ethers such as tetrahydrofuran, ketones such as acetone; esters such as ethyl acetate; alcohols such as methyl alcohol and butyl alcohol; alkanes such as hexane and heptane; aromatic hydrocarbons such as benzene, toluene and xylene; supercritical fluids such as carbon dioxide; water; and mixtures thereof. Supercritical fluids such as carbon dioxide are particularly useful because the solvent readily is stripped from the product and may be recycled. [0117]
  • In the second step of the process of the present invention, the reaction mixture is continuously passed through a heated zone, wherein the reaction mixture is maintained at a temperature of at least 150° C. under elevated pressure. Once the reaction mixture is formed, it is preferable to have the passing reaction mixture reach the polymerization temperature as rapidly as possible. Preferably, the reaction mixture reaches the polymerization temperature within 2 minutes, more preferably within 1 minute, most preferably within 30 seconds. Prior to reaching the reaction temperature, the reaction mixture may be at any suitable temperature, preferably at a temperature of from room temperature to 450° C., most preferably from a temperature of from room temperature to 60° C. to 400° C. The oligomerization is conducted at a temperature of at least 150° C., and is preferably conducted at a temperature in the range of from 200° C. to 500° C., and most preferably at a temperature in the range of from 275° C. to 450° C. At temperatures below 150° C., the molecular weight of the oligomer increases and the relative amount of by-products, a particularly non-terminally unsaturated compounds, increases. [0118]
  • The oligomerization at the elevated temperatures of the process of the invention is rapid. Thus, the reaction mixture can be maintained at the polymerization temperature for as little as 0.1 seconds up to 4 minutes, preferably from 0.5 seconds to 2 minutes, most preferably from 1 second to 1 minute. Under extended periods of time at which the reaction mixture is exposed to the polymerization temperature, the yield of terminally unsaturated oligomer decreases. However, extended periods at the polymerization temperature have been found to have little effect on both the conversion of monomer and the molecular weight of the products formed. [0119]
  • The elevated temperatures of the polymerization require that the polymerization reactor be equipped to operate at elevated pressure of at least 30 bars to maintain the contents of the reactor as a fluid at the reaction temperature. In general, it is preferred to conduct the polymerization at from 70 bars to 350 bars, and more preferably at from 200 bars to 300 bars. [0120]
  • In the process of the present invention, the ethylenically unsaturated monomers, initiator and, optionally, solvent are combined to form a reaction mixture. The order of combining the components of the reaction mixture is not critical to the process of the present invention. In one embodiment of the present invention, it may be desirable to use one or more solvents, heat the one or more solvents to an elevated temperature, and add the one or more monomers and the at least one initiator to the heated solvent to form the reaction mixture. It is preferred to add the initiator last. The reaction mixture can be formed at a temperature below, at or above the oligomerization temperature. In one embodiment of the invention, it may be desirable to add an additional amount of solvent to the oligomer product while the oligomer product is at an elevated temperature to maintain desirable fluidity and viscosity properties of the oligomer product. [0121]
  • Reactors suitable for use in the process of invention include tubular reactors having no moving parts and of any cross-sectional shape that permit continuous, steady state flow and that may operate under elevated temperatures and pressures. Such reactors are typically made from inert materials, such as stainless steel or titanium. The reactor may be of any length and cross-sectional dimension that permits effective temperature and pressure control. [0122]
  • Depending upon the final application of the oligomeric products of the invention, the reaction mixture may optionally contain metal ions, such as copper, nickel or iron ions or combinations thereof. However, their presence is not preferred. [0123]
  • The process of the present invention generally results in a relative conversion of the monomers into oligomer product of from 10% to greater than 95% relative to the initial amount of the one or more monomers present in the reaction mixture. If residual monomer levels in the oligomer mixture are unacceptably high for a particular application, their levels can be reduced by any of several techniques known to those skilled in the art, including rotary evaporation, distillation, and vacuum distillation. Preferably, any residual monomers which may be present in the oligomer mixture are distilled or “stripped” and recycled for later use. [0124]
  • The process of the present invention results in oligomers having low molecular weights and narrow polydispersities. Furthermore, embodiments of the process result in products that do not require the removal of organic solvents (if none were used in the process) and are not contaminated with high levels of salt. The process of the present invention may be used to produce oligomers having number average molecular weights below 5,000, preferably below 3,000, and most preferably from 200 to 1,000. [0125]
  • The process of the invention may contain an optional third step wherein the terminal unsaturation of the terminally unsaturated oligomers is removed by hydrogenation under conditions known to those skilled in the art, with or without solvent. Preferably, the hydrogenation may be carried out utilizing a wide variety of hydrogenation catalysts on an alkaline metal salt support. Preferred metal catalysts include those comprising metals selected from groups 3, 4, 5, 6 , 7, 8, 9, 10, 11 or 12 of the Periodic Table of Elements as published in [0126] Chemical and Engineering News 63(5), 27, 1985, is preferably present in the reaction at a ratio of 0.01 to 5.0, and preferably 0.02 to 2.0 grams of catalyst per gram of unsaturated oligomer. The degree of hydrogenation is determined from proton NMR measurements at 25° C. using oligomer solutions in CDCl3 with TMS as the internal reference. Upon hydrogenation the resonances associated with olefinic protons are converted to aliphatic protons. Thus the saturation efficiency can be measured by analyzing the remaining olefinic proton resonances.
  • The process of the invention is useful for preparing oligomers of the formula: [0127]
    Figure US20020111448A1-20020815-C00009
  • (I) [0128]
  • where [0129]
  • A, A[0130] 1 and A2=independently selected from —H;
  • C[0131] 1-C50 straight-chain or branched alkyl, optionally substituted with a Y group;
  • C[0132] 2-C50 straight-chain or branched alkenyl containing 1-5 double bonds, optionally substituted with 1-2 Y groups;
  • C[0133] 5-C8 cycloalkyl, C5-C8 cycloalkenyl;
  • phenyl, (CH[0134] 2)m-phenyl, 1- or 2-naphthyl;
  • —(C═O)H; [0135]
  • —C(OR[0136] 1)2H;
  • —(C═O)R[0137] 1, —(C═O)CF3;
  • —C(OR[0138] 1)2R1;
  • —(C═O)OR, —O(C═O)R[0139] 1;
  • —(C═O)Cl; [0140]
  • —O(C═O)OR[0141] 1;
  • —OR; [0142]
  • —(C═O)NH[0143] 2, —(C═O)NHR1, —(C═O)N(R1)2, —NH(C═O)R1, —NH(C═O)H, —(C═O)NH(CH2)m(NH3)(+)(X)(−), —(C═O)NH(CH2)m(NR1)2;
  • —Si(OR[0144] 1)3, —Si(OR1)2R1, —Si(OR1)(R1)2, —Si(R1)3;
  • —F, —Cl, —Br, —I; [0145]
  • —C≡N; oxiranyl; [0146]
  • —NH(C═O)NH[0147] 2, —NH(C═O)NHR1, —NH(C═O)N(R1)2;
    Figure US20020111448A1-20020815-C00010
  • —CH[0148] 2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF,)2, —CH2CnF2nH, —CH2 CH2CnF2nH;
  • —P(═O)(OR[0149] 1)3; —S(═O)2(OR1); —S(═O)2R1;
  • A[0150] 3, A4=independently selected from —H, —F, —Cl, —Br, R1;
  • E[0151] 1, E2=independently selected from —H,
    Figure US20020111448A1-20020815-C00011
  • G[0152] 1, G2=independently selected from —H, —CH3, —(CH2)mCO2R1, —F, —Cl, —Br, —I;
  • M[0153] 1, M2=independently selected from —H, —C═N, —(C═O)OR1, —F, —Cl, —Br, —I;
  • Q=C[0154] 1-C8 straight-chain or branched alkyl, —OR3, residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R4)2C≡N;
  • R=C[0155] 1-C50 straight-chain or branched alkyl, C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds;
  • C[0156]   5-C8 cycloalkyl, C5-C8 cycloalkenyl;
  • phenyl, (CH[0157]   2)m-phenyl, 1- or 2-naphthyl, -4-benzoylphenyl (where any phenyl group may be substituted with up to 2 R2), anthracenyl, anthracenylmethyl;
  • —(CH[0158]   2)mO(C═O)R1, —(CH2)m(C═O)OR1;
  • —(CH[0159]   2)m(C═O)R1;
  • —(CH[0160]   2)m(C═O)NH2, —(CH2)m(C═O)NHR1, —(CH2)m(C═O)NH(R1)2;
  • —(CH[0161]   2)mN(R1)2, —(CH2)mNH3 (+)X(−);
  • —(CH[0162]   2)mOR1, —(CH2CH2O)mR1, —(CH2CH(CH3)O)mR1, -2-tetrahydrofuranyl;
  • —(CH[0163]   2)mN═C═O;
  • —CH[0164]   2CnF2n+1, —CH2CH2CF 2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
  • —(C[0165]   2)m
    Figure US20020111448A1-20020815-C00012
  • linear alkanes containing 1-5 epoxy groups derived from (poly)unsaturated vegetable oils; [0166]  
  • —(CH[0167]   2)pOH, —(CH2CH2O)mH, —[CH2CH(CH3)O]mH;
  • —(CH[0168]   2)mSi(OR1)3, —(CH2)mSi(R1)(OR1)2, —(CH2)mSi(R1)2R1, —(CH2)mSi(R1),3;
    Figure US20020111448A1-20020815-C00013
  • —(CH[0169]   2)mO(C═O)CH2(C═O)R1;
  • R[0170] 1=independently selected from C1-C8 straight chain or branched alkyl where (R1)2 may constitute a C5-C8 cycloalkyl group; phenyl, —CH2phenyl;
  • R[0171] 2=C1-C6 straight chain or branched alkyl, C1-C6 straight chain or branched alkoxy, —CHO, —(C═O)OR1, —N(R1)2, —NO2, —(C═O)N(R1)2, —CF3, —(C═O)R1;
  • —F, —Cl, —Br, —I; [0172]  
  • R[0173] 3=—H, C1-C8 straight chain or branched alkyl, —R1(C═O), —R1(C═O)O;
  • R[0174] 4=C1-C18 straight-chain alkyl, C5-C8 cycloalkyl wherein the two adjacent R4 groups may together form a 5-8 membered ring, C1-C4 alkoxy-substituted straight-chain or branched C1-C8 alkyl groups;
  • X[0175] (−)=—F(−−), —Cl(−), —Br(−), —I(−), —HSO 4 (−), —H2PO3 (−);
  • Y=—OH, —F, —Cl, —Br, —I, —NH[0176] 2, —N(R1)2;
  • m=1-8 [0177]
  • n=1-18 [0178]
  • p=2-8 [0179]
  • x=0-49 [0180]
  • y=0-49 [0181]
  • z=0-49 [0182]
  • x+y+z≦49. [0183]
  • It is understood that the residues of the monomers, Z[0184] 1, Z2 and Z3, in the oligomers of Formula (I) above may be randomly arranged to form alternating, random or block polymer structures. It is also understood that, not only are homooligomers and co-oligomers contemplated, but oligomers formed from more than two different types of monomers, such as low molecular weight terpolymers or “ter-oligomers”, are also contemplated. In the broadest sense, it is understood that in the oligomer where there are up to 49 possible residues of monomers (whether of Z1, Z2 or Z3 structure) the monomers are each independently selected such that it would be possible to form an oligomer from 49 different monomers.
  • The process of the present invention is useful for producing a mixture of oligomers containing: [0185]
  • (1) about 50 to 90% by weight, based on the weight of the mixture, of a first oligomer having terminal unsaturation of Formula (I), where at least one of E[0186] 1 and E2 is an endgroup of the formula:
    Figure US20020111448A1-20020815-C00014
  • (II) and when only one of E[0187] 1 and E2 is an endgroup of Formula (II) then the other endgroup is selected independently from H,
    Figure US20020111448A1-20020815-C00015
  • (2) about 10 to 50% by weight, based on the weight of the mixture, of a second oligomer having no terminal unsaturation of Formula (I), wherein E[0188] 1 and E2 are independently selected from
    Figure US20020111448A1-20020815-C00016
  • The mixture may optionally contain an oligomer formed by a chain-chain termination reaction. [0189]
  • Terminal unsaturation may be detected and measured by conventional techniques, including [0190] 1H NMR spectroscopy, 13C NMR spectroscopy, and bromine titration. The endgroups may be identified by conventional techniques, including MALDI-MS.
  • The terminally-unsaturated oligomers, fully saturated oligomers and mixtures of the invention may be supplied neat and flow under ambient conditions. The consistency of the products ranges from a thin, water-like fluid to a viscous, taffy-like fluid. Furthermore, they do not require the use of water or other solvents in the preparation or use and are substantially free of contaminants, including, salts, surfactants, metals and the like. [0191]
  • The oligomers of the invention may be used neat, provided in solvent or provided emulsified in water with at least one surfactant. The emulsified oligomer in water is preferred if the neat form of the oligomer is too viscous for use in an application. Suitable surfactants include conventional anionic, cationic, nonionic, amphoteric surfactants and mixtures thereof. The surfactant may be added at a level of at least 0.1% solids based on the weight of the oligomer. The emulsified composition may be prepared by mixing at least one surfactant, at least one oligomer, water and mixing vigorously. Other minor components, such as wetting agent, may be added to the emulsified composition. Alternatively, the emulsified composition may be prepared by adding the surfactant to the reaction mixture containing the ethylenically unsaturated monomer and initiator prior to oligomerization. [0192]
  • The oligomers of the invention are useful in many applications, including, for example, in binders and additives (surfactants, emulsifiers, rheology modifiers) for architectural coatings (paints, primers, lacquers, varnishes, stains, EIFS); in industrial coatings (including automotive finishes, metal finishes, printing inks and resins); in building products (wood coatings and binders, caulks, sealants, concrete modifiers and coatings, impregnants, polishes) in coatings and additives for paper, textiles, and nonwovens; in adhesives; in leather chemicals; in formulation chemicals (including detergents, dispersants, water treatment, scale inhibitors, suspension aids); in plastics and plastic additives (plasticizers, processing aids); in rubber and rubber additives (plasticizers, processing aids); in biocides and adjuvants; in agricultural chemicals and adjuvants; in electronic chemicals; in ion exchange resins (adsorbents and adsorbents); in oil additives; in solvents; in lubricants and hydraulic fluids; and the like.[0193]
  • EXAMPLES The Equipment and General Procedures
  • A 10 foot long section of stainless steel tubing having an inner diameter of {fraction (1/16)}th inch and a wall thickness of 0.050 inch was connected at one end to a high pressure pump (Hewlett Packard Model HP 1050 TI) and at another end to a back-pressure control device. Between the two ends, the section of tubing was coiled about a torus-shaped metal mandrel. The mandrel was situated above a primary coil of a transformer so that the coils of tubing and the mandrel functioned as secondary coils of the transformer. The coils of tubing were further equipped with one end of a temperature probe. The other end of the temperature probe was connected to a temperature controlling device. The temperature controlling device regulated the current supplied to the primary coil of the transformer which had the effect of regulating the heat of inductance imparted to the coiled steel tubing. [0194]
  • A reaction mixture was prepared by mixing solvent (if present), monomers, comonomers (if present) and initiator. Nitrogen was bubbled through the mixture while stirring. Under solvent-free conditions, the initiator and monomers/comonomers were separately fed into the reactor. [0195]
  • Solvent was pumped through the tubing via the high pressure pump at a rate of from 0.05 to 10 milliliters per minute (“ml/min”). The pressure was maintained at a level of from 200 bars to 350 bars. Current was supplied to the primary coil of the transformer to increase the temperature within the tubing to the desired polymerization temperature. After about 15 minutes, the solvent being pumped through the tubing was replaced by the reaction mixture which was continuously pumped through the tubing at the same rate, temperature and pressure. After allowing a suitable amount of time for the solvent to be cleared from the tubing, product was collected as the effluent from the back-pressure control device. When the reaction mixture was nearly gone, solvent was pumped through the tubing at the same rate, pressure and temperature as the reaction mixture. Solvent and residual monomer were removed on a rotary evaporator. [0196]
  • Terminal unsaturation was detected and measured by both [0197] 1H NMR spectroscopy and 13C NMR spectroscopy; endgroups were identified by MALDI-MS.
  • Examples 1-103 are oligomerizations conducted according to the general procedure outlined above. The reaction conditions and final properties of the oligomers are shown in Table 1. [0198]
    TABLE 1
    Viscosity
    Ethylenically Reactor of neat
    Unsaturated Initiator Solvent Temperature oligomer Tg 7
    Example Monomer (BOM)1 (w/w)2 (° C.) % Conversion3 Mw/Mn 4 dp5 (cps)6 (° C.)
     1 EA 1% dTBP 50% in acetone 375 99 —/— <7
     2 EA 1% dTBP 50% in acetone 325 97 1670/640  7.3 54
     3 EA 1% dTBP 50% in acetone 250 97 2900/1080 10.9
     4 BA 2% dTBP none 300 82 2800/1000 −72
     5 BA 1% dTBP 50% in 350 93-98 −80 → −75
    heptane
     6 BA 1% dTBP 50% in ethyl 350 93-98 −80 → −75
    acetate
     7 BA 1% dTBP 50% in acetone 350 93-98 −80 → −75
     8 BA 1% dTBP 50% in 300 93-98 11.5 −80 → −75
    heptane
     9 BA 1% dTBP 50% in ethyl 300 93-98 9.4 −80 → −75
    acetate
     10 BA 1% dTBP 50% in acetone 300 93-98 7.9 −80 → −75
     11 BA 1% dTBP 50% in 250 93-98 13.8 −80 → −75
    heptane
     12 BA 1% dTBP 50% in ethyl 250 93-98 12.4 −80 → −75
    acetate
     13 BA 1% dTBP 50% in acetone 250 93-98 10.3 −80 → −75
     14 BA 1% dTBP 50% in 200 93-98 24.5 −80 → −75
    heptane
     15 BA 1% dTBP 50% in ethyl 200 93-98 14.8 −80 → −75
    acetate
     16 BA 1% dTBP 50% in acetone 200 93-98 14.5 −80 → −75
     17 MA 1% dTBP 50% in acetone 325 85 9.0 −39
     18 LA 1% dTBP 50% in 350 99 15.8 −14
    acetone/ (melting
    hexane point)
     19 stearyl acrylate 1% dTBP 50% in 375 98 20.8 19
    heptane
     20 2-EHA 2% dTBP 35% in acetone 285 95 2727/1487 cooking oil- −81
    like
     21 i-bornyl 1% dTBP 50% in acetone 325 96 7
    acrylate
     22 styrene 2% dTBP 30% in ethyl 350 46 1350/674  7.8 −24
    acetate
     23 styrene 2% dTBP 30% in ethyl 300 43 1880/920  17 −7
    acetate
     24 styrene 2% dTBP 50% in toluene 350 73 2530/1360 14.7 1
     25 styrene 2% dTBP 50% in toluene 300 64 3630/1950 21.1 13
     26 styrene 2% dTBP 50% in toluene 250 56 4740/2310 25.1 13
     27 styrene 2% dTBP 50% in acetone 325 42 4680/1950
     28 styrene 2% dTBP 50% in acetone 275 44 4730/1850
     29 styrene 2% dTBP 50% in acetone 225 53 6155/2450
     30 VAc 4% dTBP 50% in acetone 280 62 —/— 8.7 −7
     31 VAc 2% dTBP 50% in acetone 225 58 —/— 10 6
     32 VAc8 1% dTBP 50% in acetone 190 62 5546/1936 16 10
     33 VAc 0.2% H2O2 none 325 40 7861/2331
     34 VAc 0.2% H2O2 none 375 45 4933/1493
     35 VAc 0.2% tBHP none 325 53 6217/1488
     36 VAc 0.2% tBHP none 375 50 4151/1187
     37 VAc 2% dTBP 50% in acetone 250 4734/1316 taffy-like
     38 VAc 2% dTBP 50% in acetone 275 4310/1229 taffy-like
     39 VAc 2% dTBP 50% in acetone 275 99  4800/1400* taffy-like
     40 methylvinyl 2% H2O2 50% in methyl 250 82 —/— 13
    ketone alcohol
     41 methylvinyl 2% H2O2 10% in methyl 250 21 —/— 7
    ketone alcohol
     42 methylvinyl 0.1% tBHP 10% in methyl 250 44 —/— 7
    ketone alcohol
     43 methylvinyl 2% H2O2 10% in water 375 70 —/— 5
    ketone
     44 MMA 2% dTBP 50% in acetone 200 20 —/—  <59 −37, −9
     45 MMA 2% dTBP 50% in acetone 180 24 —/—  <59 −20, −1
     46 MMA 2% dTBP 50% in acetone 160 27 —/— 30-409 68
     47 MMA 2% dTBP 50% in acetone 140 22 —/— >609 98
    Compar-
    ative
     48 VTMO 2% dTBP 50% in acetone 210 51 1150/800  7.4 −76
     49 allyl alcohol 2% H2O2 25% in water 350 15-20 —/— 106
     50 allyl alcohol 2% H2O2 25% in water 300 15-20 —/—
     51 allyl alcohol 2% H2O2 25% in water 250 15-20 —/—
     52 allyl alcohol 2% H2O2 25% in water 200 15-20 —/— 106
     53 isoprene 1% dTBP 50% in toluene 300 47 13700/3995 
     54 isoprene 1% dTBP 50% in toluene 225 31 22550/5738  −59
     55 acrylamide 1% H2O2 20% in water 200 85-95 —/— 124
     56 EA/MMA11 2% dTBP 50% in acetone 350 91/47 —/— 5
     57 EA/MMA11 2% dTBP 50% in acetone 300 87/56 —/— 6
     58 EA/MMA11 2% dTBP 50% in acetone 250 67/56 —/— 12 −17
     59 EA/MMA11 2% dTBP 50% in acetone 200 66/66 —/—
     60 100 EA/0 MMA 1% dTBP 50% in acetone 250 99/— —/— Mn = 1076 −54
     61 50 EA/50 MMA 1% dTBP 50% in acetone 250 67/56 —/— Mn = 1270 −17
     62 25 EA/75 MMA 1% dTBP 50% in acetone 300 91/41 —/— Mn = 830  −56
     63 25 EA/75 MMA 1% dTBP 50% in acetone 250 79/37 —/— Mn = 900  −44
     64 25 EA/75 MMA 1% dTBP 50% in acetone 200 54/35 —/— Mn = 1300 −18
     65 15 EA/85 MMA 1% dTBP 50% in acetone 300  89/37* —/— −61
     66 15 EA/85 MMA 1% dTBP 50% in acetone 250  81/29* —/— −48
     67 15 EA/85 MMA 1% dTBP 50% in acetone 200  50/24* —/— Mn = 950  −24
     68 EA/styrene10 2% dTBP 50% in acetone 350 93/87 —/— Mn = 620 
     69 EA/styrene10 2% dTBP 50% in acetone 300 85/88 —/— Mn = 710 
     70 EA/styrene10 2% dTBP 50% in acetone 250 69/79 —/— Mn = 1209
     71 EA/styrene10 2% dTBP 50% in acetone 200 63/74 —/— Mn = 1810
     72 MMA/styrene10 2% dTBP 50% in acetone 320 50/70 —/— <5
     73 MMA/styrene10 2% dTBP 50% in acetone 300 49/64 —/— <5
     74 MMA/styrene10 2% dTBP 50% in acetone 280 47/61 —/— <5
     75 MMA/styrene10 2% dTBP 50% in acetone 260 47/57 —/— <5
     76 BA/VAc10 2% dTBP 50% in acetone 350 99/78 —/— Mn = 790  −50
     77 BA/VAc10 2% dTBP 50% in acetone 300 99/67 —/— Mn = 1056 −53
     78 BA/VAc10 2% dTBP 50% in acetone 250 99/64 —/— Mn = 1283 −51
     79 BA/VAc10 2% dTBP 50% in acetone 200 98/55 —/— Mn = 1740 −42
     80 BA/VAc10 2% dTBP 50% in acetone 150 94/41 —/— Mn = 5720 −32
     81 MMA/VAc10 2% dTBP 50% in acetone 300 73/69 —/— Mn = 782  −9
     82 MMA/VAc10 2% dTBP 50% in acetone 250 38/29 —/— Mn = 1252 4
     83 MMA/VAc10 2% dTBP 50% in acetone 200 35/20 —/— Mn = 1436 7
     84 MMA/VAc10 2% dTBP 50% in acetone 150 24/13 —/— Mn = 4470 25
     85 styrene/VAc10 2% dTBP 50% in acetone 300 68/21 —/— Mn = 854  −12
     86 styrene/VAc10 2% dTBP 50% in acetone 250 59/14 —/— Mn = 1113 7
     87 styrene/VAc10 2% dTBP 50% in acetone 200 63/14 —/— Mn = 1490 34
     88 styrene/VAc10 2% dTBP 50% in acetone 150 30/10 —/— Mn = 2830 69
     89 1.1 mol 2% dTBP none 300 1700/700  200 −72
    EA/VTMO
     90 2:1 mol 2% dTBP none 300 1100/590  130 −67
    EA/VTMO
     91 BA/VTMO 2% dTBP none 300 2100/900  190 −75
     92 2:1 mol 2% dTBP 50% in acetone 330 3058/94611  syrup −48
    EA/HEA
     93 2:1 mol 2% dTBP 50% in acetone 330 3700/120011 5100 at −45
    EA/HEA 25° C.
     94 4:1 mol 2% benzoyl 30% in acetone 260 1840/800  ˜8 8300 at −36
    EA/GA peroxide 25° C.
     95 40 BA/60 allyl 2% tBHP 50% in butyl 300 99/50 921/638
    alcohol alcohol
     96 40 BA/60 allyl 2% tBHP 50% in butyl 225 78/41 1580/1030
    alcohol alcohol
     97 40 BA/60 allyl 2% tBHP 50% in butyl 200 60/36 2208/1391
    alcohol alcohol
     98 45 VAc/28 BA/ 2% tBHP none 200 23/78/84 6086/1448
    25 Sty
     99 45 VAc/28 BA/ 2% tBHP none 250 20/74/80 4386/1015
    25 Sty
    100 45 VAc/28 BA/ 2% tBHP none 275 26/83/87 3786/914 
    25 Sty
    101 45 VAc/28 BA/ 2% tBHP none 300 34/93/94 3288/810 
    25 Sty
    102 45 VAc/28 BA/ 2% tBHP none 325 45/97/97 2865/683 
    25 Sty
    103 45 VAc/28 BA/ 2% tBHP none 350 53/99/98 2435/560 
    25 Sty
    # solids in water with gentle stirring (conventional oligomeric vinyl acetate requires prolonged heating to dissolve).
  • All of the examples of the invention were liquid, ranging from low viscosity to high viscosity, when provided neat, whether or not the reaction mixture contained the optional solvent during the process of manufacture. [0199]
  • While only a few embodiments of the invention have been shown and described herein, it will become apparent to those skilled in the art that various modifications and changes can be made in the process and compositions without departing from the scope of the present invention. [0200]

Claims (22)

What is claimed is:
1. A process for forming oligomers, comprising the steps of:
(1) forming a reaction mixture, substantially free of solvent and carboxylic acid-monomers and their salts, comprising:
(i) 0.5 to 99.95% by weight, based on the weight of said reaction mixture, of at least one ethylenically-unsaturated monomer; and
(ii) 0.05 to 25% by weight, based on the weight of said ethylenically-unsaturated monomer, of at least one free-radical initiator; and
(2) continuously passing said reaction mixture through a heated zone wherein said reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form terminally-unsaturated oligomers.
2. A process for forming oligomers having a degree of polymerization of at least 4, comprising the steps of:
(1) forming a reaction mixture, substantially free of carboxylic-containing monomers and their salts, comprising:
(i) 0.5 to 99.95% by weight, based on the weight of said reaction mixture, of at least one ethylenically-unsaturated monomer; and
(ii) 0.05 to 25% by weight, based on the weight of said ethylenically-unsaturated monomer, of at least one free-radical initiator; and
(2) continuously passing said reaction mixture through a heated zone wherein said reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form terminally-unsaturated oligomers.
3. The process of claims 1 or 2, wherein step (2) is conducted in a tubular reactor having no moving parts.
4. The process of claims 1 or 2, wherein said ethylenically-unsaturated monomer is at least one monomer selected from the group consisting of n-alkyl(meth)acrylates, branched alkyl(meth)acrylates, cycloalkyl (meth)acrylates, straight chain or branched haloalkyl(meth)acrylates, aromatic alkyl(meth)acrylates, aromatic (meth)acrylates, hydroxyalkyl(meth)acrylates, heterocyclyl (meth)acrylates, aminoalkyl (meth)acrylates, ether-containing (meth)acrylates, silicon-containing (meth)acrylates, (meth)acrylamides, epoxide-containing (meth)acrylates, unsaturated alkyl(meth)acrylates, (meth)acrylate esters derived from (poly)unsaturated vegetable oils, terminal alkenes, aralkenes, heterocyclyl alkenes, dienes, vinyl halides, vinyl esters, vinyl ketones, aldehyde-containing vinyl functionality, epoxyalkenes, vinyl monomers, vinylsilanes, alkoxyvinylsilanes, unsaturated diesters, and functional (meth)acrylates.
5. The process of claims 1 or 2, wherein said reaction mixture comprises at least two different ethylenically-unsaturated monomers.
6. The process of claims 1 or 2, wherein said reaction mixture comprises at least three different ethylenically-unsaturated monomers.
7. The process of claim 2, wherein said reaction mixture further comprises 0% to 99.5% solvent.
8. The process of claim 7, wherein said solvent is at least one solvent selected from the group consisting of tetrahydrofuran, acetone, ethyl acetate, methyl alcohol, butyl alcohol, hexane, heptane, benzene, toluene, xylene, carbon dioxide, water, and mixtures thereof.
9. The process of claims 1 or 2, further comprising the step of:
(3) hydrogenating said terminally-unsaturated oligomers.
10. The process of claims 1 or 2 wherein said heated zone is maintained at a temperature of from 200° C. to 500° C.
11. The process of claims 1 or 2 wherein said heated zone is maintained at a temperature of from 275° C. to 450° C.
12. The process of claims 1 or 2 wherein said heated zone is maintained at a pressure of from 70 bars to 350 bars.
13. The process of claims 1 or 2 wherein said heated zone is maintained at a pressure of from 200 bars to 300 bars.
14. The process of claims 1 or 2 wherein said reaction mixture is maintained in said heated zone for from 0.5 seconds to 2 minutes.
15. The process of claims 1 or 2 wherein said reaction mixture is maintained in said heated zone for from 1 second to 1 minute.
16. A process for forming oligomers of vinyl acetate, comprising the steps of:
(1) forming a reaction mixture, substantially free of carboxylic-containing monomers and their salts, comprising:
(i) 0.5 to 99.95% by weight, based on the weight of said reaction mixture, of vinyl acetate; and
(ii) 0.05 to 25% by weight, based on the weight of said vinyl acetate, of at least one free-radical initiator; and
(2) continuously passing said reaction mixture through a heated zone wherein said reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form oligomers of vinyl acetate.
17. A process for forming oligomers of vinyl alcohol, comprising the steps of:
(1) forming a reaction mixture, substantially free of carboxylic-containing monomers and their salts, comprising:
(i) 0.5 to 99.95% by weight, based on the weight of said reaction mixture, of vinyl acetate; and
(ii) 0.05 to 25% by weight, based on the weight of said vinyl acetate, of at least one free-radical initiator;
(2) continuously passing said reaction mixture through a heated zone wherein said reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form oligomers of vinyl acetate; and
(3) hydrolyzing said oligomers of vinyl acetate in the presence of a catalyst to form oligomers of vinyl alcohol.
18. A process for forming oligomers of vinyl alcohol, comprising the steps of:
(1) forming a reaction mixture, substantially free of carboxylic-containing monomers and their salts, comprising:
(i) 0.5 to 99.95% by weight, based on the weight of said reaction mixture, of vinyl acetate; and
(ii) 0.05 to 25% by weight, based on the weight of said vinyl acetate, of at least one free-radical initiator;
(2) continuously passing said reaction mixture through a heated zone wherein said reaction mixture is maintained at a temperature of at least 150° C. and a pressure of at least 30 bars for from 0.1 seconds to 4 minutes to form oligomers of vinyl acetate; and
(3) transesterifying said oligomers of vinyl acetate with an alcohol in the presence of a catalyst to form oligomers of vinyl alcohol.
19. The process of claims 16-18 wherein step (2) is conducted in a tubular reactor having no moving parts.
20. A mixture, comprising:
(1) about 50 to 90% by weight, based on the weight of the mixture, of a first oligomer having terminal unsaturation of Formula (I):
Figure US20020111448A1-20020815-C00017
(I)
where at least one of E1 and E2 is an endgroup of the formula:
Figure US20020111448A1-20020815-C00018
and when only one of said E1 and E2 is an endgroup of Formula (II) then said other of said E1 and E2 is selected independently from H,
Figure US20020111448A1-20020815-C00019
and where
A, A1 and A2=independently selected from —H;
C1-C50 straight-chain or branched alkyl, optionally substituted with a Y group;
C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds, optionally substituted with 1-2 Y groups;
C5-C8 cycloalkyl, C5-C8 cycloalkenyl;
phenyl, (CH2)m-phenyl, 1- or 2-naphthyl;
—(C═O)H;
—C(OR1)2H;
—(C═O)R1, —(C═O)CF3;
—C(OR1)2R1;
—(C═O)OR, —O(C═O)R1;
—(C═O)Cl;
—O(C═O)OR1;
—OR;
—(C═O)NH2, —(C═O)NHR1, —(C═O)N(R1)2, —NH(C═O)R1, —NH(C═O)H, —(C═O)NH(CH2)m(NH3)(+)(X)(−), —(C═O)NH(CH2)m(NR1)2;
—Si(OR1)3, —Si(OR1)2R1, —Si(OR1)(R1)2,
—Si(R1)3;
—F, —Cl, —Br, —I;
—C≡N; oxiranyl;
—NH(C═O)NH2, —NH(C═O)NHR1,
—NH(C═O)N(R1)2;
Figure US20020111448A1-20020815-C00020
—CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
—P(═O)(OR1)3; —S(═O)2(OR1); —S(═O)2R1;
A3, A4=independently selected from —H, —F, —Cl, —Br, R1;
G1, G2=independently selected from —H, —CH3, —(CH2)mCO2R1, —F, —Cl, —Br, —I;
M1, M2+independently selected from —H, —C≡N, —(C═O)OR1, —F, —Cl, —Br, —I;
Q=C1-C8 straight-chain or branched alkyl, —OR3, residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R4)2C≡N;
R=C1-C50 straight-chain or branched alkyl, C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds;
 C5-C8 cycloalkyl, C5-C8 cycloalkenyl; phenyl, (CH2)m-phenyl, 1- or 2-naphthyl, -4-benzoylphenyl (where any phenyl group may be substituted with up to 2 R2), anthracenyl, anthracenylmethyl;
 —(CH2)mO(C═O)R1, —(CH2)m(C═O)OR1;
 —(CH2)m(C═O)R1;
 —(CH2)m(C═O)NH2, —(CH2)m(C═O)NHR1, —(CH2)m(C═O)NH(R1)2;
 —(CH2)mN(R1)2, —(CH2)mNH3 (+)X(−);
 —(CH2)mOR1, —(CH2CH2O)mR1, —(CH2CH(CH3)O)mR1, -2-tetrahydrofuranyl;
 —(CH2)mN═C═O;
 —CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
 (CH2)m
Figure US20020111448A1-20020815-C00021
 linear alkanes containing 1-5 epoxy groups derived from (poly)unsaturated vegetable oils;
 —(CH2)pOH, —(CH2CH2O)mH —[CH2CH—(CH3)O]mH;
 —(CH2)mSi(OR1)3, (CH2)mSi(R1)(OR1)2, —(CH2)mSi(R1)2 OR1, —(CH2)mSi(R1)3;
Figure US20020111448A1-20020815-C00022
 —(CH2)mO(C═O)CH2(C═O)R1;
R1=independently selected from C1-C8 straight chain or branched alkyl where (R1)2 may constitute a C5-C8 cycloalkyl group; phenyl, —CH2phenyl;
R2=C1-C6 straight chain or branched alkyl, C1-C6 straight chain or branched alkoxy, —CHO, —(C═O)OR1, —N(R1)2, —NO2, —(C═O)N(R1)2, —CF3, —(C═O)R1;
 —F, —Cl, —Br, —I;
R3=—H, C1-C8 straight chain or branched alkyl, —R1(C═O), -R1(C═O)O;
R4=C1-C18 straight-chain alkyl, C5-C8 cycloalkyl wherein the two adjacent R4 groups may together form a 5-8 membered ring, C1-C4 alkoxy-substituted straight-chain or branched C1-C8 alkyl groups;
X(−)=—F(−), —Cl(−), —Br(−), —I(−), HSO4 (−), —H2PO3 (−);
Y=—OH, —F, —Cl, —Br, —I, —NH2, —N(R1)2;
m=1-8
n=1-18
p=2-8
x=0-49
y=0-49
z=0-49
x+y+z≦49; and
(2) about 10 to 50% by weight, based on the weight of the mixture, of a second oligomer of Formula (I),
Figure US20020111448A1-20020815-C00023
(I)
where
E1 and E2=independently selected from H,
Figure US20020111448A1-20020815-C00024
A, A1 and A2 =independently selected from —H;
C1-C50 straight-chain or branched alkyl, optionally substituted with a Y group;
C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds, optionally substituted with 1-2 Y groups;
C5-C8 cycloalkyl, C5-C8 cycloalkenyl;
phenyl, (CH2)m-phenyl, 1- or 2-naphthyl;
—(C═O)H;
—C(OR1)2H;
—(C═O)R1, —(C═O)CF3;
—C(OR1)2R1;
—(C═O)OR, —O(C═O)R1; —
—(C═O)Cl; —O(C═O)OR1;
—OR;
—(C═O)NH2, —(C═O)NHR1, —(C═O)N(R1)2,
—NH(C═O)R1, —NH(C═O)H,
—(C═O)NH(CH2)m(NH3)(+)(X)(−),
—(C═O)NH(CH2)m(NR1)2;
—Si(OR1)3, —Si(OR1)2R1, —Si(OR1)(R1)2, —Si(R1)3;
—F, —Cl, —Br, —I;
—C≡N; oxiranyl;
—NH(C═O)NH2, —NH(C═O)NHR1, —NH(C═O)N(R1)2;
Figure US20020111448A1-20020815-C00025
—CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2 CH2CnF2nH;
—P(═O)(OR1)3; —S(═O)2(OR1); —S(═O)2R1;
A3, A4=independently selected from —H, —F, —Cl, —Br, R1;
G1, G2=independently selected from —H, —CH3, —(CH2)mCO2R1, —F, —Cl, —Br, —I;
M1, M2=independently selected from —H, —CN, —(C═O)OR1, —F, —Cl, —Br, —I;
Q=C1-C8 straight-chain or branched alkyl, —OR3, residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R4)2C≡N;
R=C1-C50 straight-chain or branched alkyl, C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds;
 C5-C8 cycloalkyl, C5-C8 cycloalkenyl;
 phenyl, (CH2)m-phenyl, 1- or 2-naphthyl, -4-benzoylphenyl (where any phenyl group may be substituted with up to 2 R2), anthracenyl, anthracenylmethyl;
 —(CH2)mO(C═O)R1, —(CH2)m(C═O)OR1;
 —(CH2)m(C═O)R1;
 —(CH2)m(C═O)NH2, —(CH2)m(C═O)NHR1, —(CH2)m(C═O)NH(R1)2;
 —(CH2)mN(R1)2, —(CH2)mNH3 (+)X(−); —(CH2)mOR1, —(CH2CH2O)mR1, —(CH2CH(CH3)O)mR1, -2-tetrahydrofuranyl;
 —(CH2)mN═C═O;
 CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
 —(CH2)m
Figure US20020111448A1-20020815-C00026
 linear alkanes containing 1-5 epoxy groups derived from (poly)unsaturated vegetable oils;
 —(CH2)pOH, —(CH2CH2O)mH, —[CH2CH(CH3)O]mH;
 —(CH2)mSi(OR1)3, —(CH2)mSi(R1)(OR1)2, —(CH2)mSi(R1)2,OR1, —(CH2)mSi(R1)3;
Figure US20020111448A1-20020815-C00027
 —(CH2)mO(C═O)CH2(C═O)R1;
R1=independently selected from C1-C8 straight chain or branched alkyl where (R1)2 may constitute a C5-C8 cycloalkyl group; phenyl, —CH2phenyl;
R2=C1-C6 straight chain or branched alkyl, C1-C6 straight chain or branched alkoxy, —CHO, —(C═O)OR1, —N(R1)2, —NO2, —(C═O)N(R1)2, —CF3, —(C═O)R1;
 —F, —Cl, —Br, —I;
R3=—H, C1-C8 straight chain or branched alkyl, —R1(C═O), —R1(C═O)O;
R4=C1-C18 straight-chain alkyl, C5-C8 cycloalkyl wherein the two adjacent R4 groups may together form a 5-8 membered ring, C1-C4 alkoxy-substituted straight-chain or branched C1-C8 alkyl groups;
X(−)=—F(−−), —Cl(−), —Br(−), —I(−), —HSO4 (−), —H2PO3 (−);
Y=—OH, —F, —Cl, —Br, —I, —NH2, —N(R1)2;
m=1-8
n=1-18
p=2-8
x=0-49
y=0-49
z=0-49
x+y+z≦49.
21. The mixture of claim 20 wherein said oligomers are formed from at least one ethylenically-unsaturated monomer selected from the group consisting of n-alkyl(meth)acrylates, branched alkyl(meth)acrylates, cycloalkyl (meth)acrylates, straight chain or branched haloalkyl(meth)acrylates, aromatic alkyl(meth)acrylates, aromatic (meth)acrylates, hydroxyalkyl(meth)acrylates, heterocyclyl (meth)acrylates, aminoalkyl (meth)acrylates, ether-containing (meth)acrylates, silicon-containing (meth)acrylates, (meth)acrylamides, epoxide-containing (meth)acrylates, unsaturated alkyl(meth)acrylates, (meth)acrylate esters derived from (poly)unsaturated vegetable oils, terminal alkenes, aralkenes, heterocyclyl alkenes, dienes, vinyl halides, vinyl esters, vinyl ketones, aldehyde-containing vinyl functionality, epoxyalkenes, vinyl monomers vinylsilanes, alkoxyvinylsilanes, unsaturated diesters, and functional (meth)acrylates.
22. A composition, consisting essentially of:
(a) at least one oligomer of the formula:
Figure US20020111448A1-20020815-C00028
(I)
where
A, A1 and A2=independently selected from —H;
C1-C50 straight-chain or branched alkyl, optionally substituted with a Y group;
C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds, optionally substituted with 1-2 Y groups;
C5-C8 cycloalkyl, C5-C8 cycloalkenyl;
phenyl, (CH2)m-phenyl, 1- or 2-naphthyl;
—(C═O)H;
—C(OR1)2H;
—(C═O)R1, —(C═O)CF3;
—C(OR1)2R1;
—(C═O)OR, —O(C═O)R1;
—(C═O)Cl;
—O(C═O)OR1;
—OR;
—(C═O)NH2, —(C═O)NHR1, —(C═O)N(R1)2, —NH(C═O)R1, —NH(C═O)H, —(C═O)NH(CH2)m(NH3)(+)(X)(−), —(C═O)NH(CH2)m(NR1)2; —Si(OR )3, —Si(OR1)2R1, —Si(OR1)(R1)2, —Si(R1)3;
—F, —Cl, —Br, —I;
—C≡N; oxiranyl;
—NH(C═O)NH2, —NH(C═O)NHR1, —NH(C═O)N(R1)2;
Figure US20020111448A1-20020815-C00029
—CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
—P(═O)(OR1)3; —S(═O)2(OR1); —S(═O)2R1;
A3, A4=independently selected from —H, —F, —Cl, —Br, R1;
E1, E2=independently selected from —H,
Figure US20020111448A1-20020815-C00030
G1,G2=independently selected from —H, —CH3, —(CH2)mCO2R1, —F, —Cl, —Br, —I;
M1, M2=independently selected from —H, —C≡N, —(C═O)OR1, —F, —Cl, —Br, —I;
Q=C1-C8 straight-chain or branched alkyl, —OR3, residue from radical decomposition of azo initiators (azonitrile, azoamidine, cyclic azoamidine, azoamide, azoalkyl classes) such as —C(R4)2C≡N;
R=C1-C50 straight-chain or branched alkyl, C2-C50 straight-chain or branched alkenyl containing 1-5 double bonds;
 C5-C8 cycloalkyl, C5-C8 cycloalkenyl;
 phenyl, (CH2)m-phenyl, 1- or 2-naphthyl, -4-benzoylphenyl (where any phenyl group may be substituted with up to 2 R2), anthracenyl, anthracenylmethyl;
 —(CH2)mO(C═O)R1, —(CH2)m(C═O)OR1;
 —(CH2)m(C═O)R1;
 —(CH2)m(C═O)NH2, —(CH2)m(C═O)NHR1, —(CH2)m(C═O)NH(R1)2;
—(CH2)mN(R1)2, —(CH2)mNH3 (+)X)(−);
 —(CH2)mOR1, —(CH2CH2O)mR1, —(CH2CH(CH3)O)mR1, -2-tetrahydrofuranyl;
 —(CH2)mN═C═O;
 —CH2CnF2n+1, —CH2CH2CnF2n+1, —CH(CF3)2, —CH2CnF2nH, —CH2CH2CnF2nH;
 —(CH2)m
Figure US20020111448A1-20020815-C00031
 linear alkanes containing 1-5 epoxy groups derived from (poly)unsaturated vegetable oils;
 —(CH2)pOH, —(CH2CH2O)mH, [CH2CH(CH3)O]mH;
 —(CH2)mSi(OR1)3, —(CH2)mSi(R1)(OR1)2, —(CH2)mSi(R1)2OR1, —(CH2)mSi(R1)3;
Figure US20020111448A1-20020815-C00032
 —(CH2)mO(C═O)CH2(C═O)R1;
R1=independently selected from C1-C8 straight chain or branched alkyl where (R1)2 may constitute a C5-C8 cycloalkyl group; phenyl, —CH2phenyl;
R2 C1-C6 straight chain or branched alkyl, C1-C6 straight chain or branched alkoxy, —CHO, —(C═O)OR1, —N(R1)2, —NO2, —(C═O)N(R1)2, —CF3, —(C═O)R1; —F, —Cl, —Br, —I;
R3=—H, C1-C8 straight chain or branched alkyl, —R1(C═O), —R1(C═O)O;
R4=C1-C18 straight-chain alkyl, C5-C8 cycloalkyl wherein the two adjacent R4 groups may together form a 5-8 membered ring, C1-C4 alkoxy-substituted straight-chain or branched C1-C8 alkyl groups;
X(−)=—F(−−), —Cl(−), —Br(−), —I(−),—HSO4 (−), —H2PO3 (−);
Y=—OH, —F, —Cl, —Br, —I, —NH2, —N(R1)2;
m=1-8
n=1-18
p=2-8
x=0-49
y=0-49
z=0-49
x+y+z≦49;
(b) at least one surfactant; and
(c) water.
US10/025,637 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom Abandoned US20020111448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/025,637 US20020111448A1 (en) 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4272597P 1997-04-08 1997-04-08
US7705998P 1998-03-06 1998-03-06
US09/212,038 US6566549B1 (en) 1994-06-13 1998-12-15 Continuous polymerization process and products therefrom
US10/025,637 US20020111448A1 (en) 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/212,038 Division US6566549B1 (en) 1994-06-13 1998-12-15 Continuous polymerization process and products therefrom

Publications (1)

Publication Number Publication Date
US20020111448A1 true US20020111448A1 (en) 2002-08-15

Family

ID=22789301

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/212,038 Expired - Lifetime US6566549B1 (en) 1994-06-13 1998-12-15 Continuous polymerization process and products therefrom
US10/025,642 Abandoned US20020082371A1 (en) 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom
US10/025,637 Abandoned US20020111448A1 (en) 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/212,038 Expired - Lifetime US6566549B1 (en) 1994-06-13 1998-12-15 Continuous polymerization process and products therefrom
US10/025,642 Abandoned US20020082371A1 (en) 1997-04-08 2001-12-19 Continuous polymerization process and products therefrom

Country Status (6)

Country Link
US (3) US6566549B1 (en)
EP (1) EP1010706A3 (en)
JP (1) JP2000198749A (en)
CN (1) CN1257058A (en)
AU (1) AU6302699A (en)
BR (1) BR9905846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238699B2 (en) 2010-10-01 2016-01-19 Basf Se Styrenic (meth)acrylic oligomers
CN109553865A (en) * 2018-10-31 2019-04-02 长沙市佳密封件有限公司 A kind of high-strength high temperature-resistant carbon seal ring

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60127977T2 (en) 2000-09-14 2008-01-17 Rohm And Haas Co. PROCESS FOR THE MANUFACTURE OF TEETH, HEAT-HARDENING OBJECTS AND THERMAL-HARDENING OBJECTS MADE THEREFOR
WO2002074822A1 (en) * 2001-03-15 2002-09-26 Toagosei Co., Ltd. Process for producing copolymer
US6812313B2 (en) * 2001-06-25 2004-11-02 Rohm And Haas Company Non-functional aromatic end group-containing polymer
DE60231018D1 (en) * 2001-06-25 2009-03-19 Rohm & Haas Process for the preparation of thermosetting compositions and toughening regulators
US7637961B2 (en) 2002-03-05 2009-12-29 Rohm And Haas Company Composition and method for preparing leather
JP4064937B2 (en) * 2003-09-02 2008-03-19 ローム アンド ハース カンパニー Method for preparing a toughening agent for a thermosetting composition
EP1602783B1 (en) 2004-04-23 2014-02-26 Rohm And Haas Company Method of preparing paper
EP1632537B1 (en) 2004-09-02 2013-03-13 Rohm And Haas Company Method of using hollow sphere polymers
US20070066777A1 (en) * 2004-09-03 2007-03-22 Bzowej Eugene I Methods for producing crosslinkable oligomers
EP1757638A1 (en) 2005-08-22 2007-02-28 Rohm and Haas France SAS Methods for using hollow sphere polymers
US8765217B2 (en) 2008-11-04 2014-07-01 Entrotech, Inc. Method for continuous production of (meth)acrylate syrup and adhesives therefrom
US8329079B2 (en) 2009-04-20 2012-12-11 Entrochem, Inc. Method and apparatus for continuous production of partially polymerized compositions and polymers therefrom
JP6868979B2 (en) * 2016-07-06 2021-05-12 株式会社日本触媒 Acrylic acid ester polymer and its manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158736A (en) * 1972-04-05 1979-06-19 Rohm And Haas Company Polymers of alkyl acrylates
US4356288A (en) * 1979-03-05 1982-10-26 Rohm And Haas Company Novel polymers of alkyl acrylates
US4529787A (en) * 1982-06-15 1985-07-16 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
US4680352A (en) * 1985-03-01 1987-07-14 E. I. Du Pont De Nemours And Company Cobalt (II) chelates as chain transfer agents in free radical polymerizations
US4694054A (en) * 1985-03-01 1987-09-15 E. I. Du Pont De Nemours And Company Cobalt(II) chelates as chain transfer agents in free radical polymerizations
US4914167A (en) * 1981-10-10 1990-04-03 Basf Aktiengesellschaft Polymeric organic acids, their preparation and their use in detergents and cleansers
US5268437A (en) * 1992-01-22 1993-12-07 Rohm And Haas Company High temperature aqueous polymerization process
US5328972A (en) * 1992-09-28 1994-07-12 Rohm And Haas Company Process for preparing low molecular weight polymers
US5576386A (en) * 1992-02-06 1996-11-19 Basf Aktiengesellschaft Continuous polymerization of vinyl monomers
US5710227A (en) * 1994-06-13 1998-01-20 Rohm And Haas Company High temperature polymerization process for making terminally unsaturated oligomers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391832A (en) 1977-01-20 1978-08-12 Kaberu Sukii Ind Ski carrier
US4618659A (en) 1984-12-05 1986-10-21 Ppg Industries, Inc. Low molecular weight acrylic polymers
DE4419568A1 (en) 1994-06-03 1995-12-07 Henkel Kgaa Process for the production of low molecular weight polyacrylic acids with a narrow molecular weight distribution in a tubular reactor
AU752670B2 (en) 1997-04-23 2002-09-26 Commonwealth Scientific And Industrial Research Organisation Method of macromonomer synthesis

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158736A (en) * 1972-04-05 1979-06-19 Rohm And Haas Company Polymers of alkyl acrylates
US4356288A (en) * 1979-03-05 1982-10-26 Rohm And Haas Company Novel polymers of alkyl acrylates
US4914167A (en) * 1981-10-10 1990-04-03 Basf Aktiengesellschaft Polymeric organic acids, their preparation and their use in detergents and cleansers
US4529787A (en) * 1982-06-15 1985-07-16 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
US4529787B1 (en) * 1982-06-15 1987-07-07
US4680352A (en) * 1985-03-01 1987-07-14 E. I. Du Pont De Nemours And Company Cobalt (II) chelates as chain transfer agents in free radical polymerizations
US4694054A (en) * 1985-03-01 1987-09-15 E. I. Du Pont De Nemours And Company Cobalt(II) chelates as chain transfer agents in free radical polymerizations
US5268437A (en) * 1992-01-22 1993-12-07 Rohm And Haas Company High temperature aqueous polymerization process
US5576386A (en) * 1992-02-06 1996-11-19 Basf Aktiengesellschaft Continuous polymerization of vinyl monomers
US5328972A (en) * 1992-09-28 1994-07-12 Rohm And Haas Company Process for preparing low molecular weight polymers
US5710227A (en) * 1994-06-13 1998-01-20 Rohm And Haas Company High temperature polymerization process for making terminally unsaturated oligomers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238699B2 (en) 2010-10-01 2016-01-19 Basf Se Styrenic (meth)acrylic oligomers
CN109553865A (en) * 2018-10-31 2019-04-02 长沙市佳密封件有限公司 A kind of high-strength high temperature-resistant carbon seal ring

Also Published As

Publication number Publication date
EP1010706A3 (en) 2000-08-30
US6566549B1 (en) 2003-05-20
AU6302699A (en) 2000-06-22
CN1257058A (en) 2000-06-21
MX9911633A (en) 2002-03-14
EP1010706A2 (en) 2000-06-21
US20020082371A1 (en) 2002-06-27
BR9905846A (en) 2000-11-28
JP2000198749A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
US6566549B1 (en) Continuous polymerization process and products therefrom
CA2243306C (en) Solubilized hydrophobically-modified alkali-soluble emulsion polymers
EP0687690B1 (en) High temperature polymerization process and products therefrom
US6645562B2 (en) Method of preparing a curable coating and curing thereof
US7910677B2 (en) Detergents containing polycarboxylic acid polymers
US8476384B2 (en) Olefin acrylate emulsion copolymerization
JPH01502516A (en) Pyrrolidonyl acrylate block polymer
IL43760A (en) Acrylic and methacrylic acid ester based polymers their manufacture and their use as thickening agents
EP1463768A2 (en) Free radical retrograde precipitation copolymers and process for making same
US6143817A (en) Use of derivatives of polyamino acids as emulsifiers stabilizers in aqueous free radical emulsion polymerization
AU2669401A (en) Method for producing a composition that contains polymer ester compounds with long-chain alkyl groups, and use of such a composition
US4760152A (en) Pyrrolidonyl acrylate block polymers
JPH05501549A (en) Allyl peroxide chain transfer agent
US5463110A (en) Michael adducts of N-vinylformamide and acrylic and methacrylic esters
MXPA99011633A (en) Process of preparing curable compositions and compositions therefrom
JP4337594B2 (en) Process for producing polycarboxylic acid macromonomer composition
CA2379418A1 (en) Method for producing aqueous resin dispersion composition
JP4490269B2 (en) Method for producing comb or star copolymers using epoxy-functionalized nitroxyl ethers
WO2001096411A1 (en) Water soluble ampiphilic heteratom star polymers and their use as emulsion stabilizers in emulsion polymerization
WO2022191288A1 (en) Method for producing polymer, composition for radical polymerization, and radical polymerization inhibitor
CA1216389A (en) Ethylenically unsaturated polymerizable compositions
AU720073B2 (en) Terminally unsaturated oligomers and mixtures and polymer products thereof
JPH0593008A (en) Production of new polymer having epoxy group

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION