US20020109236A1 - Three-dimensional multi-chip package having chip selection pads and manufacturing method thereof - Google Patents

Three-dimensional multi-chip package having chip selection pads and manufacturing method thereof Download PDF

Info

Publication number
US20020109236A1
US20020109236A1 US10/059,932 US5993202A US2002109236A1 US 20020109236 A1 US20020109236 A1 US 20020109236A1 US 5993202 A US5993202 A US 5993202A US 2002109236 A1 US2002109236 A1 US 2002109236A1
Authority
US
United States
Prior art keywords
chip
wirings
chip selection
connection terminals
insulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/059,932
Other versions
US6448661B1 (en
Inventor
Hyeong-Seob Kim
Sa-Yoon Kang
Myung-Kee Chung
In-Ku Kang
Kwan-Jai Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, HYEONG-SEOB, CHUNG, MYUNG-KEE, KANG, IN-KU, KANG, SA-YOON, LEE, KWAN-JAI
Publication of US20020109236A1 publication Critical patent/US20020109236A1/en
Application granted granted Critical
Publication of US6448661B1 publication Critical patent/US6448661B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to semiconductor packaging technology and, more particularly, to a three-dimensional, multi-chip package with chip selection pads and a manufacturing method thereof.
  • a conventional three-dimensional multi-chip package is manufactured as described below. After manufacturing a wafer and separating the wafer into a plurality of individual chips, the chip is attached and electrically connected to the substrate, and is encapsulated with a molding resin to produce a package. Then, a multi-chip package is obtained by stacking the packages.
  • These multi-chip packages employ a lead frame, or a substrate such as a tape circuit board or a printed circuit board.
  • a substrate such as a tape circuit board or a printed circuit board.
  • Various interconnection methods such as a wire-bonding method, tape automated bonding (TAB) method, or flip chip-bonding method, are employed to establish electrical connection between the chip and the substrate.
  • TAB tape automated bonding
  • the multi-chip packages formed by stacking a plurality of packages are disclosed in U.S. Pat. Nos. 4,982,265, 4,996,583, 5,172,303, 5,198,888, 5,222,014, 5,247,423, 5,313,096, 5,783,870 and 6,072,233.
  • these multi-chip packages are manufactured using complex processes.
  • these multi-chip packages have much bigger sizes than the standard chip, thereby reducing the mounting density on the external apparatus.
  • the multi-chip packages employ substrates, they cause long signal transmission routes and thereby signal delay results.
  • multi-chip packages are classified into two types. One is a multi-chip package formed by stacking different types of chips, thereby achieving multi-functionality. The other is a multi-chip package formed by stacking the same types of chips, thereby improving memory capacity.
  • each memory chip comprises a chip selection terminal.
  • the Row Address Strobe (RAS), Column Address Strobe (CAS) or Chip Selection Pin (CSP) is used as the chip selection terminal.
  • RAS Row Address Strobe
  • CAS Column Address Strobe
  • CSP Chip Selection Pin
  • each substrate should comprise a connection wiring configuration different from the other substrates, thereby increasing the production cost and reducing productivity.
  • the present invention increases memory capacity by providing a multi-chip package formed by stacking at least two of the same types of chips.
  • the present invention provides a multi-chip package at the wafer-level, thereby reducing package size, increasing mounting density, and preventing signal delay.
  • the present invention separates the chip selection terminal of each chip from one another via chip selection pads formed at the chip-level.
  • the present invention simplifies the manufacturing process of the multi-chip package.
  • a three-dimensional, multi-chip package is formed by stacking a number (N) of semiconductor integrated circuit chips.
  • Each chip comprises an integrated circuit die, a chip selection terminal, a number (N- 1 ) of chip selection pads, an insulation layer, a number (N- 1 ) of metal wirings, upper connection terminals, lower connection terminals, and trench wirings.
  • the chip selection terminal and the chip selection pads are formed on an upper surface of the die, and the chip selection pads are proximate to the chip selection terminal.
  • the insulation layer is formed on the upper surface of the die, and the metal wirings are formed within the insulation layer and connected to the chip selection pads.
  • the upper connection terminals are formed on the insulation layer and connected to the metal wiring.
  • the lower connection terminals are formed on the lower surface of the die, and each of the lower connection terminals is connected to a corresponding one of the chip selection terminal and the chip selection pads.
  • the trench wirings extend through the die, and connect the chip selection terminal and the chip selection pads to the lower connection terminals.
  • a first chip selection pad next to the chip selection terminal is connected to the upper connection terminal formed above the chip selection terminal, and the (N- 1 )th chip selection pad is connected to the upper connection terminal formed above the (N- 2 )th chip selection pad.
  • the individual chips are stacked by attaching the upper connection terminals of a lower chip to the lower connection terminals of an upper chip.
  • the chip selection terminal of each chip is connected to a corresponding one of the lower connection terminals of a lowermost chip.
  • the present invention provides a method of manufacturing a chip-level, three-dimensional, multi-chip package by stacking a number (N) of semiconductor integrated circuit chips.
  • a chip selection terminal and a number (N- 1 ) of chip selection pads close to the chip selection terminal are formed on the upper active surface of the chip, and a plurality of trenches from the chip selection terminal and the chip selection pads are formed within the chip.
  • trench wirings are formed by filling the trenches with a conductive material, and a number (N- 1 ) of first metal wirings formed along the upper surface of the chip, each of the first metal wirings are connected to a corresponding one of the chip selection pads.
  • a first insulation layer is formed on the upper surface of the chip and the first metal wirings, and a plurality of upper connection terminals connected to the first metal wirings are formed on the first insulation layer.
  • the lower surface of the chip is grinded so that the trench wirings are exposed through the lower surface of the chip.
  • a plurality of lower connection terminals are formed on the lower surface of the chip, with each of the lower connection terminals being connected to a corresponding one of the trench wirings.
  • the chips are stacked by attaching the upper connection terminals of a lower chip to the lower connection terminals of an upper chip.
  • FIG. 1 is a cross-sectional view of a three-dimensional, multi-chip package in accordance with an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of an individual semiconductor integrated circuit chip used in the three-dimensional, multi-chip package of FIG. 1;
  • FIGS. 3A to 3 K are cross-sectional views showing a manufacturing method of the three-dimensional, multi-chip package of FIG. 1;
  • FIG. 4 is a cross-sectional view of a three-dimensional, multi-chip package in accordance with another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a chip-level, three-dimensional, multi-chip package in accordance with one embodiment of the present invention
  • FIG. 2 is a cross-sectional view of an individual semiconductor integrated circuit chip used in the chip-level, three-dimensional, multi-chip package.
  • a chip-level three-dimensional multi-chip package 100 of FIG. 1 is formed by stacking four (4) of the same types of semiconductor integrated circuit chips 10 in FIG. 2.
  • Reference numerals 110 , 120 , 130 and 140 in FIG. 1 each represent individual integrated circuit chips.
  • the chips 10 , 110 , 120 , 130 and 140 are memory chips such as DRAM chips or flash memory chips. It is well known that a memory chip comprises address input terminals for addressing memory cells, data input/output terminals for inputting/outputting data to/from the memory cells, and power supply terminals.
  • the chip terminals 12 of the chips are interconnected to one another, while the chip selection terminal 12 a of one chip is separated from another chip selection terminal 12 a of another chip and connected to an external environment.
  • the chip 10 comprises a die 11 .
  • the die 11 is a die on wafer-level or a die individually separated (singulated) from a wafer.
  • a plurality of chip terminals 12 and a chip selection terminal 12 a are formed on an upper active surface of the die 11 .
  • Integrated circuits (not shown) are formed within the die 11 and connected to the chip terminals 12 and the chip selection terminal 12 a.
  • the chip 10 comprises three (3) chip selection pads 12 b , 12 c , 12 d .
  • the chip selection pads 12 b , 12 c , 12 d are formed on the upper surface of the die 11 close or adjacent to the chip selection terminal 12 a .
  • the number of the chip selection pads is one less than the total number of stacked chips 10 .
  • the multi-chip package is formed by stacking a number (N) of chips, a number (N- 1 ) of chip selection pads are required.
  • the chip selection pads 12 b , 12 c , 12 d are not connected to the integrated circuits within the die 11 .
  • First metal wirings 15 are formed on the upper surface of the die 11 and the chip selection pads 12 b , 12 c , and 12 d , with each chip selection pad connected to a corresponding one of the first metal wirings 15 .
  • a first insulation layer 16 is formed on the upper surface of die 11 .
  • the first metal wirings 15 are formed within the first insulation layer 16 .
  • the first metal wirings 15 extend toward the chip selection terminal 12 a and electrically separated from one another.
  • Each of the chip selection pads 12 b , 12 c , and 12 d is connected to a corresponding one of the lower connection terminals 23 b , 23 c , and 23 d formed on the lower surface of die 11 by trench wirings 14 perforating or extending through the die 11 .
  • the chip selection terminal 12 a and the chip terminals 12 are electrically connected to the lower connection terminals 23 a and 23 , respectively, through the trench wirings 14 .
  • a second insulation layer 20 is formed on the upper surface of the first insulation layer 16 .
  • Second metal wirings 19 , 19 a are formed within the second insulation layer 20 .
  • the second metal wirings 19 , 19 a are electrically connected to the first metal wirings 15 through first through wirings 18 formed within the first insulation layer 16 .
  • the second metal wirings 19 , 19 a extend toward the chip selection terminal 12 a and are electrically separated from one another.
  • the second metal wiring 19 connected to the first chip selection pad 12 b next to the chip selection terminal 12 a is disposed above the chip selection terminal 12 a
  • the second metal wiring 19 connected to the second chip selection pad 12 c is disposed above the first chip selection pad 12 b .
  • the second metal wiring 19 connected to the third chip selection pad 12 d is disposed above the second chip selection pad 12 c .
  • the isolated second metal wiring 19 a is disposed above the third chip selection pad 12 d.
  • Second through wirings 21 are formed within the second insulation layer 20 and connected to the second metal wirings 19 , 19 a .
  • Upper connection terminals 22 a , 22 b , 22 c , 22 d are formed on the second insulation layer 20 and connected to the second through wirings 21 .
  • Upper connection terminals 22 are formed on the second insulation layer 20 , and connected to the chip terminals 12 .
  • the trench wiring 14 , the first through wiring 18 , and the second through wiring 21 all are formed on the same position.
  • the first selection pad 12 b is connected to the upper connection terminal 22 a
  • the second selection pad 12 c is connected to the upper connection terminal 22 b
  • the third selection pad 12 d is connected to the upper connection terminal 22 c .
  • the upper connection terminal 22 d is connected to the isolated second metal wiring 19 a , and is therefore not connected to any of the chip selection pads 12 b , 12 c , 12 d.
  • the multi-chip package 100 in FIG. 1 is obtained by stacking a plurality of the semiconductor integrated circuit chips 10 , each chip having the above-described configuration.
  • One chip 10 is connected to another chip by the attachment between the upper connection terminals 22 , 22 a - 22 d and the lower connection terminals 23 , 23 a - 23 d . That is, the upper connection terminals of a lower chip are attached to the lower connection terminals of an upper chip.
  • the lower connection terminals 23 , 23 a - 23 d of the lowermost chip 110 serve as external terminals of the multi-chip package 100 and are attached to an external device such as a mother board (not shown).
  • an external device such as a mother board (not shown).
  • metal bumps or solder balls may be formed on the lower connection terminals 23 , 23 a - 23 d .
  • metal bumps or solder balls may be formed on both/either the upper connection terminals 22 , 22 a - 22 d and/or the lower connection terminals 23 , 23 a - 23 d.
  • the chip selection terminal 12 a of each chip 110 , 120 , 130 , 140 is connected to a corresponding one of the lower connection terminals 23 a - 23 d of the lowermost chip 110 .
  • the chip selection terminal 12 a of the first chip 110 i.e. the lowermost chip 110
  • the chip selection terminal 12 a of the third chip 130 is connected to the third lower connection terminals 23 c by passing through the third, the second and the first chip 130 , 120 , 110 .
  • the multi-chip package in this embodiment of the present invention does not require that each chip have a different connection-wiring configuration.
  • the three-dimensional multi-chip package of the present invention comprises a plurality of stacked chips, each chip with the same structure, the chip selection terminal of each chip is automatically separated from those of other chips.
  • the chip selection pads are formed at the chip-level. That is, the chip selection pads are formed directly on the integrated circuit chip. Since the multi-chip package of the present invention does not require any additional substrate for forming the chip selection pads, the present invention can achieve chip-level, multi-chip packages. The present invention minimizes package size and improves mounting density, thus preventing signal delay.
  • FIGS. 3A to 3 K are cross-sectional views showing a manufacturing method of the chip-level, three-dimensional, multi-chip package of the present invention.
  • the manufacturing method of the chip-level, three-dimensional, multi-chip package of this embodiment is described below.
  • a semiconductor integrated circuit die 11 is first fabricated.
  • the die 11 may be one of several dies fabricated on a wafer or an individual die separated from the wafer.
  • a plurality of the chip terminals 12 and a chip selection terminal 12 a are formed on the upper active surface of the die 11 .
  • Three (3) chip selection pads 12 b , 12 c , 12 d are formed on the upper surface of the die 11 close to or proximate to the chip selection terminal 12 a .
  • the chip selection pads number one less than the number of stacked chips.
  • the chip terminals 12 and the chip selection terminal 12 a are connected to the circuits formed within the die 11 , while the chip selection pads 12 b , 12 c , 12 d are not connected to the circuits.
  • trenches 13 each having a predetermined depth, perforate the die 11 from the chip terminals 12 , the chip selection terminal 12 a and the chip selection pads 12 b , 12 c , 12 d .
  • the trenches 13 are formed by techniques such as a chemical etching method or a drilling method with a laser drill.
  • the width of the trench 13 is smaller than the widths of the chip terminals 12 , the chip selection terminal 12 a and the chip selection pads 12 b , 12 c , 12 d.
  • the trenches 13 are filled with a conductive material, forming the trench wirings 14 .
  • a conductive material preferably, tungsten (W) is used as the conductive material, but other conductive materials may also be used.
  • a conventional deposition technique such as Chemical Vaporization Deposition (CVD) is used in forming the trench wirings 14 .
  • the first metal wirings 15 are formed on the upper surface of the die 11 .
  • the first metal wirings 15 are formed on the chip selection pads 12 b , 12 c , 12 d , but not formed on the chip selection terminal 12 a and the chip terminals 12 .
  • the first metal wirings 15 extend toward the chip selection terminal 12 a along the upper surface of the die 11 , and are separated from each other.
  • Various metals such as copper (Cu) or tungsten (W) can be used as the first metal wirings 15 .
  • a person skilled art will appreciate that other suitable conductive materials can be used in place.
  • the first metal wirings 15 are formed by various methods.
  • a metal layer is deposited on the whole upper surface of the die 11 and is etched using photoresist patterns to form the first metal wirings 15 . Also, photoresist patterns are first coated on the upper surface of the die 11 , and the metal layer is deposited thereon.
  • the first insulation layer 16 is formed on the upper surface of the die 11 including the first metal wirings 15 .
  • an inorganic insulation layer such as a nitride layer or an organic layer such as a polyimide layer or an epoxy layer is used.
  • the inorganic insulation layer is formed by a conventional deposition method, and the organic insulation layer is formed by a conventional spin coating method.
  • through holes 17 are formed by partially removing the first insulation layer 16 .
  • the through holes 17 are formed by a conventional photolithography method.
  • the through holes 17 are disposed on the chip terminals 12 and the first metal wirings 15 .
  • the through holes 17 on the first metal wirings 15 are disposed between the neighboring trench wirings 14 .
  • One end of each first metal wiring 15 is connected to a corresponding one of the chip selection pads 12 b , 12 c , 12 d and the other end is connected to the through hole 17 .
  • the through holes 17 are filled with a conductive material, thereby forming the first through wirings 18 .
  • the material and the forming method of the first through wirings 18 can be the same as those of the trench wirings 14 .
  • the second metal wirings 19 , 19 a are formed on the first insulation layer 16 .
  • the second metal wirings 19 are each connected to one of the chip selection pads 12 b , 12 c , 12 d through the first metal wirings 15 within the first insulation layer 16 , and the isolated second metal wiring 19 a is disposed above the third chip selection pad 12 d .
  • the second metal wirings 19 are not formed above the chip terminals 12 and are laterally offset from the chip selection terminal 12 a .
  • the second metal wirings 19 extend toward the chip selection terminal 12 a along the upper surface of the first insulation layer 16 .
  • one of the second metal wirings 19 extends partly above and partly offset from the chip selection terminal 12 a and the others extend above the chip selection pads 12 b , 12 c .
  • the material and the forming method of the second metal wirings 19 , 19 a can be the same as those of the first metal wirings 15 .
  • the second insulation layer 20 is formed on the first insulation layer 16 .
  • Through holes extend through the second insulation layer 20 and are filled with a conductive material, thereby forming the second through wirings 21 .
  • the upper connection terminals 22 , 22 a , 22 b , 22 c , 22 d are formed on the second insulation layer 20 and connected to the second through wirings 21 .
  • the upper connection terminals 22 , 22 a , 22 b , 22 c , 22 d each corresponds to one of the chip terminals 12 , the chip selection terminal 12 , and the chip selection pads 12 b , 12 c , 12 d .
  • the upper connection terminal 22 above the chip terminal 12 is connected directly to the chip terminal 12 .
  • the upper connection terminal 22 a above the chip selection terminal 12 a is not connected to the chip selection terminal 12 a , but rather to the first chip selection pad 12 b .
  • each of the upper connection terminals 22 b , 22 c above the chip selection pads 12 b , 12 c , respectively, is not connected to the chip selection pads 12 b or 12 c , but connected to the neighboring chip selection pads 12 c , 12 d .
  • the outermost upper connection terminal 22 d is connected to the isolated second metal wiring 19 a.
  • the lower surface of the die 11 is partially removed by a conventional etching method or a conventional grinding method such as wafer back lapping, so that the trench wirings 14 are exposed through the lower surface of the die 11 .
  • lower connection terminals 23 , 23 a , 23 b , 23 c , 23 d are formed on the lower surface of the die 11 so as to be electrically connected to the trench wirings 14 . Therefore, each of the lower connection terminals 23 , 23 a , 23 b , 23 c , 23 d is connected to a corresponding one of the chip terminals 12 , the chip selection terminal 12 a , and the chip selection pads 12 b , 12 c , 12 d through the trench wirings 14 .
  • the semiconductor integrated circuit chip 10 in FIG. 2 is manufactured by the above-described processing steps. A plurality of the chips are stacked, and the upper connection terminals of a lower chip are attached to the lower connection terminals of an upper chip, thus obtaining the multi-chip package 100 in FIG. 1. Since each chip of the multi-chip package has the same structure, plural chips at the wafer-level can be collectively manufactured and separated into individual chips.
  • FIG. 4 is a cross-sectional view of a chip-level, three-dimensional, multi-chip package 200 in accordance with another embodiment of the present invention.
  • the multi-chip package 200 comprises three (3) integrated circuit chips 210 , 220 , 230 . Therefore, each of the chip 210 , 220 , 230 comprises two (2) chip selection pads 12 b , 12 c .
  • the insulation layer 16 is formed on the upper surface of the die 11 , and the metal wirings 15 connected to the chip selection pads 12 b , 12 c are formed within the insulation layer 16 . Then, through holes extend through the insulation layer 16 to expose a portion of the metal wirings 15 and are filled with a conductive material, thereby forming the through wirings 18 .
  • the through wirings 18 are connected to the upper connection terminals 22 a , 22 b on the insulation layer 16 .
  • the upper connection terminal 22 is disposed above the chip terminal 12
  • the isolated upper connection terminal 22 c is disposed above the outermost chip selection pad 12 c .
  • the chip selection pad 12 a is not connected to any of the upper connection terminals 22 , 22 a , 22 b , 22 c .
  • the lower connection terminals 23 , 23 a , 23 b , 23 c are formed on the lower surface of the die 11 correspondingly to the upper connection terminals 22 , 22 a , 22 b , 22 c .
  • Each of the chip terminal 12 , the chip selection terminal 12 a , and the chip selection pads 12 b , 12 c is connected to a corresponding one of the lower connection terminals 23 , 23 a , 23 b , 23 c through the trench wirings 14 .
  • the chips 210 , 220 , 230 can be stacked using an Anisotropic Conductive Film (ACF) or an Anisotropic Conductive Adhesive (ACA).
  • ACF Anisotropic Conductive Film
  • ACA Anisotropic Conductive Adhesive
  • the ACF 25 or the ACA comprises an insulation film 24 a or an insulating adhesive, and conductive particles 24 b dispersed within the insulation film 24 a or the insulating adhesive.
  • the insulation film 24 a or the insulation adhesive is compressed by the upper connection terminals 22 , 22 a - 22 c of a lower chip and the lower connection terminals 23 , 23 a - 23 c of an upper chip, the upper connection terminals 22 , 22 a - 22 c and the lower connection terminals 23 , 23 a - 23 c are electrically interconnected by the conductive particles 24 b .
  • the insulation film 24 a or the insulation adhesive attaches the chip to another chip.
  • the ACF 25 or the ACA other various insulation adhesives may be used as an adhesion layer.
  • the chip selection terminal 12 a of each chip 210 , 220 , 230 is separated from the chip selection terminal 12 a of another chip and connected to a corresponding one of the lower connection terminals 23 a - 23 c of the lowermost chip 210 .
  • the chip selection terminal of each chip is separated from the chip selection terminal of another chip by the chip selection pads formed on the chip. Therefore, the multi-chip package of the present invention does not require differently structured chips or any additional substrate. Accordingly, the present invention achieves the chip-level multi-chip package, using a simple process.
  • the wafer-level multi-chip package of the present invention reduces package size and increases mounting density, thereby minimizing signal delay.

Abstract

A three-dimensional, multi-chip package with chip selection pads formed at the chip-level and a manufacturing method thereof are provided. The three-dimensional, multi-chip package is formed by stacking a number (N) of semiconductor integrated circuit chips. Each chip comprises an integrated circuit die, a chip selection terminal, (N-1) chip selection pads, an insulation layer, (N-1) metal wirings, upper connection terminals, lower connection terminals, and trench wirings. The chip selection terminal of each chip is separated from the chip selection of the other chips by the chip selection pads formed at the chip-level.

Description

    BACKGROUND OF THE INVENTION
  • 1 . Field of the Invention [0001]
  • The present invention relates to semiconductor packaging technology and, more particularly, to a three-dimensional, multi-chip package with chip selection pads and a manufacturing method thereof. [0002]
  • 2 . Description of the Related Art [0003]
  • In order to satisfy the pressing demands for increased integration and multi-functionality, various three-dimensional multi-chip packages have recently been developed. A conventional three-dimensional multi-chip package is manufactured as described below. After manufacturing a wafer and separating the wafer into a plurality of individual chips, the chip is attached and electrically connected to the substrate, and is encapsulated with a molding resin to produce a package. Then, a multi-chip package is obtained by stacking the packages. [0004]
  • These multi-chip packages employ a lead frame, or a substrate such as a tape circuit board or a printed circuit board. Various interconnection methods such as a wire-bonding method, tape automated bonding (TAB) method, or flip chip-bonding method, are employed to establish electrical connection between the chip and the substrate. [0005]
  • The multi-chip packages formed by stacking a plurality of packages are disclosed in U.S. Pat. Nos. 4,982,265, 4,996,583, 5,172,303, 5,198,888, 5,222,014, 5,247,423, 5,313,096, 5,783,870 and 6,072,233. However, these multi-chip packages are manufactured using complex processes. Moreover, these multi-chip packages have much bigger sizes than the standard chip, thereby reducing the mounting density on the external apparatus. Further, since the multi-chip packages employ substrates, they cause long signal transmission routes and thereby signal delay results. [0006]
  • While three-dimensional multi-chip packages on wafer-level or chip-level are disclosed in U.S. Pat. Nos. 4,394,712, 4,807,021, 4,897,708, 4,954,875, 5,202,754, 5,229,647 and 5,767,001. These multi-chip packages have the advantage of simple structures, smaller sizes, and simple manufacturing processes. Further, a multi-chip package at the wafer-level prevents signal delay. However, this technique is applied only to non-memory devices such as Application Specific Integrated Circuit (ASIC) or to multi-chip packages with multiple functions by stacking different types of chips. [0007]
  • Generally, multi-chip packages are classified into two types. One is a multi-chip package formed by stacking different types of chips, thereby achieving multi-functionality. The other is a multi-chip package formed by stacking the same types of chips, thereby improving memory capacity. [0008]
  • In order to improve memory capacity by stacking the same types of chips, there must be a chip selection mechanism to operate the desired chip. Therefore, each memory chip comprises a chip selection terminal. For example, in case of a DRAM chip, the Row Address Strobe (RAS), Column Address Strobe (CAS) or Chip Selection Pin (CSP) is used as the chip selection terminal. By selectively transmitting electronic signals to the specific chip selection terminal corresponding to the desired chip of the multi-chip package, the desired chip is selected for operation. Other non-selecting terminals of the memory chips in the multi-chip package are commonly connected together, but the chip selection terminal for each individual chip are isolated and connected to an external electronic component. [0009]
  • The conventional technique for separating the chip selection terminals of each chip from one another is disclosed in the above-described multi-chip package. That is, the chip selection terminal of each chip is connected to an external electronic component through connection wirings formed on a substrate of the package. Therefore, in order to separate the chip selection terminal of each chip from one another, each substrate should comprise a connection wiring configuration different from the other substrates, thereby increasing the production cost and reducing productivity. [0010]
  • The drawbacks are prevented by a conventional technique disclosed in U.S. Pat. No. 5,995,379. In this patent, the chip selection terminal of each chip is connected to external electronic components by a substrate with the same connection wiring configuration as the substrate of the other chips. However, since this technique is applied to a multi-chip package by stacking packages, it requires substrates on which connection wirings are formed. Therefore, this technique also has the previously described drawbacks of stacked, multi-chip packages such as large package size, reduced mounting density, complex manufacturing processes, and signal delay. [0011]
  • SUMMARY OF THE INVENTION
  • The present invention increases memory capacity by providing a multi-chip package formed by stacking at least two of the same types of chips. [0012]
  • The present invention provides a multi-chip package at the wafer-level, thereby reducing package size, increasing mounting density, and preventing signal delay. [0013]
  • The present invention separates the chip selection terminal of each chip from one another via chip selection pads formed at the chip-level. The present invention simplifies the manufacturing process of the multi-chip package. [0014]
  • According to one embodiment, a three-dimensional, multi-chip package is formed by stacking a number (N) of semiconductor integrated circuit chips. Each chip comprises an integrated circuit die, a chip selection terminal, a number (N-[0015] 1) of chip selection pads, an insulation layer, a number (N-1) of metal wirings, upper connection terminals, lower connection terminals, and trench wirings.
  • The chip selection terminal and the chip selection pads are formed on an upper surface of the die, and the chip selection pads are proximate to the chip selection terminal. The insulation layer is formed on the upper surface of the die, and the metal wirings are formed within the insulation layer and connected to the chip selection pads. The upper connection terminals are formed on the insulation layer and connected to the metal wiring. The lower connection terminals are formed on the lower surface of the die, and each of the lower connection terminals is connected to a corresponding one of the chip selection terminal and the chip selection pads. The trench wirings extend through the die, and connect the chip selection terminal and the chip selection pads to the lower connection terminals. [0016]
  • Among the chip selection pads, a first chip selection pad next to the chip selection terminal is connected to the upper connection terminal formed above the chip selection terminal, and the (N-[0017] 1)th chip selection pad is connected to the upper connection terminal formed above the (N-2)th chip selection pad.
  • The individual chips are stacked by attaching the upper connection terminals of a lower chip to the lower connection terminals of an upper chip. The chip selection terminal of each chip is connected to a corresponding one of the lower connection terminals of a lowermost chip. [0018]
  • Further, the present invention provides a method of manufacturing a chip-level, three-dimensional, multi-chip package by stacking a number (N) of semiconductor integrated circuit chips. [0019]
  • In accordance with the method of the present invention, a chip selection terminal and a number (N-[0020] 1) of chip selection pads close to the chip selection terminal are formed on the upper active surface of the chip, and a plurality of trenches from the chip selection terminal and the chip selection pads are formed within the chip. Then, trench wirings are formed by filling the trenches with a conductive material, and a number (N-1) of first metal wirings formed along the upper surface of the chip, each of the first metal wirings are connected to a corresponding one of the chip selection pads. A first insulation layer is formed on the upper surface of the chip and the first metal wirings, and a plurality of upper connection terminals connected to the first metal wirings are formed on the first insulation layer. The lower surface of the chip is grinded so that the trench wirings are exposed through the lower surface of the chip. A plurality of lower connection terminals are formed on the lower surface of the chip, with each of the lower connection terminals being connected to a corresponding one of the trench wirings. The chips are stacked by attaching the upper connection terminals of a lower chip to the lower connection terminals of an upper chip.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects, features, and advantages of the present invention will be readily understood with reference to the following detailed description provided in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and, in which: [0021]
  • FIG. 1 is a cross-sectional view of a three-dimensional, multi-chip package in accordance with an embodiment of the present invention; [0022]
  • FIG. 2 is a cross-sectional view of an individual semiconductor integrated circuit chip used in the three-dimensional, multi-chip package of FIG. 1; [0023]
  • FIGS. 3A to [0024] 3K are cross-sectional views showing a manufacturing method of the three-dimensional, multi-chip package of FIG. 1; and
  • FIG. 4 is a cross-sectional view of a three-dimensional, multi-chip package in accordance with another embodiment of the present invention.[0025]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. [0026]
  • FIG. 1 is a cross-sectional view of a chip-level, three-dimensional, multi-chip package in accordance with one embodiment of the present invention, and FIG. 2 is a cross-sectional view of an individual semiconductor integrated circuit chip used in the chip-level, three-dimensional, multi-chip package. With reference to FIGS. 1 and 2, a first embodiment of the present invention is described below. [0027]
  • In order to improve memory capacity, a chip-level three-[0028] dimensional multi-chip package 100 of FIG. 1 is formed by stacking four (4) of the same types of semiconductor integrated circuit chips 10 in FIG. 2. Reference numerals 110, 120, 130 and 140 in FIG. 1 each represent individual integrated circuit chips.
  • The [0029] chips 10, 110, 120, 130 and 140 are memory chips such as DRAM chips or flash memory chips. It is well known that a memory chip comprises address input terminals for addressing memory cells, data input/output terminals for inputting/outputting data to/from the memory cells, and power supply terminals. The chip terminals 12 of the chips are interconnected to one another, while the chip selection terminal 12 a of one chip is separated from another chip selection terminal 12 a of another chip and connected to an external environment.
  • As shown in detail in FIG. 2, the [0030] chip 10 comprises a die 11. Herein, the die 11 is a die on wafer-level or a die individually separated (singulated) from a wafer. A plurality of chip terminals 12 and a chip selection terminal 12 a are formed on an upper active surface of the die 11. Integrated circuits (not shown) are formed within the die 11 and connected to the chip terminals 12 and the chip selection terminal 12 a.
  • The [0031] chip 10 comprises three (3) chip selection pads 12 b, 12 c, 12 d. The chip selection pads 12 b, 12 c, 12 d are formed on the upper surface of the die 11 close or adjacent to the chip selection terminal 12 a. Herein, the number of the chip selection pads is one less than the total number of stacked chips 10. For example, if the multi-chip package is formed by stacking a number (N) of chips, a number (N-1) of chip selection pads are required. The chip selection pads 12 b, 12 c, 12 d are not connected to the integrated circuits within the die 11.
  • First metal wirings [0032] 15 are formed on the upper surface of the die 11 and the chip selection pads 12 b, 12 c, and 12 d, with each chip selection pad connected to a corresponding one of the first metal wirings 15. A first insulation layer 16 is formed on the upper surface of die 11. Thus, the first metal wirings 15 are formed within the first insulation layer 16. The first metal wirings 15 extend toward the chip selection terminal 12 a and electrically separated from one another. Each of the chip selection pads 12 b, 12 c, and 12 d is connected to a corresponding one of the lower connection terminals 23 b, 23 c, and 23 d formed on the lower surface of die 11 by trench wirings 14 perforating or extending through the die 11. The chip selection terminal 12 a and the chip terminals 12 are electrically connected to the lower connection terminals 23 a and 23, respectively, through the trench wirings 14.
  • A [0033] second insulation layer 20 is formed on the upper surface of the first insulation layer 16. Second metal wirings 19, 19 a are formed within the second insulation layer 20. The second metal wirings 19, 19 a are electrically connected to the first metal wirings 15 through first through wirings 18 formed within the first insulation layer 16. The second metal wirings 19, 19 a extend toward the chip selection terminal 12 a and are electrically separated from one another. The second metal wiring 19 connected to the first chip selection pad 12 b next to the chip selection terminal 12 a is disposed above the chip selection terminal 12 a, and the second metal wiring 19 connected to the second chip selection pad 12 c is disposed above the first chip selection pad 12 b. The second metal wiring 19 connected to the third chip selection pad 12 d is disposed above the second chip selection pad 12 c. The isolated second metal wiring 19 a is disposed above the third chip selection pad 12 d.
  • Second through [0034] wirings 21 are formed within the second insulation layer 20 and connected to the second metal wirings 19, 19 a. Upper connection terminals 22 a, 22 b, 22 c, 22 d are formed on the second insulation layer 20 and connected to the second through wirings 21.
  • [0035] Upper connection terminals 22 are formed on the second insulation layer 20, and connected to the chip terminals 12. Herein, in order to electrically connect the chip terminal 12 to the corresponding upper connection terminal 22 and to the corresponding lower connection terminal 23, the trench wiring 14, the first through wiring 18, and the second through wiring 21 all are formed on the same position. Thus, the first selection pad 12 b is connected to the upper connection terminal 22 a, and the second selection pad 12 c is connected to the upper connection terminal 22 b. The third selection pad 12 d is connected to the upper connection terminal 22 c. The upper connection terminal 22 d is connected to the isolated second metal wiring 19 a, and is therefore not connected to any of the chip selection pads 12 b, 12 c, 12 d.
  • The [0036] multi-chip package 100 in FIG. 1 is obtained by stacking a plurality of the semiconductor integrated circuit chips 10, each chip having the above-described configuration. One chip 10 is connected to another chip by the attachment between the upper connection terminals 22, 22 a-22 d and the lower connection terminals 23, 23 a-23 d. That is, the upper connection terminals of a lower chip are attached to the lower connection terminals of an upper chip.
  • The [0037] lower connection terminals 23, 23 a-23 d of the lowermost chip 110 serve as external terminals of the multi-chip package 100 and are attached to an external device such as a mother board (not shown). In order to easily attach the lower connection terminals 23, 23 a-23 d to the mother board, metal bumps or solder balls may be formed on the lower connection terminals 23, 23 a-23 d. In the same manner, in order to effectively stack the chips 110, 120, 130, 140 to one another, metal bumps or solder balls may be formed on both/either the upper connection terminals 22, 22 a-22 d and/or the lower connection terminals 23, 23 a-23 d.
  • The [0038] chip selection terminal 12 a of each chip 110, 120, 130, 140 is connected to a corresponding one of the lower connection terminals 23 a-23 d of the lowermost chip 110. As shown in FIG. 1, the chip selection terminal 12 a of the first chip 110, i.e. the lowermost chip 110, is connected to the first lower connection terminals 23 a by the trench wiring 14. The chip selection terminal 12 a of the third chip 130 is connected to the third lower connection terminals 23 c by passing through the third, the second and the first chip 130, 120, 110.
  • In order to separate the chip selection terminal of one chip from the chip selection terminals of other chips, the multi-chip package in this embodiment of the present invention does not require that each chip have a different connection-wiring configuration. Although the three-dimensional multi-chip package of the present invention comprises a plurality of stacked chips, each chip with the same structure, the chip selection terminal of each chip is automatically separated from those of other chips. Also, the chip selection pads are formed at the chip-level. That is, the chip selection pads are formed directly on the integrated circuit chip. Since the multi-chip package of the present invention does not require any additional substrate for forming the chip selection pads, the present invention can achieve chip-level, multi-chip packages. The present invention minimizes package size and improves mounting density, thus preventing signal delay. [0039]
  • FIGS. 3A to [0040] 3K are cross-sectional views showing a manufacturing method of the chip-level, three-dimensional, multi-chip package of the present invention. With reference to FIGS. 3A to 3K, the manufacturing method of the chip-level, three-dimensional, multi-chip package of this embodiment is described below.
  • As shown in FIG. 3A, a semiconductor integrated circuit die [0041] 11 is first fabricated. The die 11 may be one of several dies fabricated on a wafer or an individual die separated from the wafer. As is identical to conventional chips, a plurality of the chip terminals 12 and a chip selection terminal 12 a are formed on the upper active surface of the die 11. Three (3) chip selection pads 12 b, 12 c, 12 d are formed on the upper surface of the die 11 close to or proximate to the chip selection terminal 12 a. The chip selection pads number one less than the number of stacked chips. The chip terminals 12 and the chip selection terminal 12 a are connected to the circuits formed within the die 11, while the chip selection pads 12 b, 12 c, 12 d are not connected to the circuits.
  • As shown in FIG. 3B, [0042] trenches 13, each having a predetermined depth, perforate the die 11 from the chip terminals 12, the chip selection terminal 12 a and the chip selection pads 12 b, 12 c, 12 d. The trenches 13 are formed by techniques such as a chemical etching method or a drilling method with a laser drill. The width of the trench 13 is smaller than the widths of the chip terminals 12, the chip selection terminal 12 a and the chip selection pads 12 b, 12 c, 12 d.
  • Then, as shown in FIG. 3C, the [0043] trenches 13 are filled with a conductive material, forming the trench wirings 14. Preferably, tungsten (W) is used as the conductive material, but other conductive materials may also be used. A conventional deposition technique such as Chemical Vaporization Deposition (CVD) is used in forming the trench wirings 14.
  • As shown in FIG. 3D, the [0044] first metal wirings 15 are formed on the upper surface of the die 11. The first metal wirings 15 are formed on the chip selection pads 12 b, 12 c, 12 d, but not formed on the chip selection terminal 12 a and the chip terminals 12. The first metal wirings 15 extend toward the chip selection terminal 12 a along the upper surface of the die 11, and are separated from each other. Various metals such as copper (Cu) or tungsten (W) can be used as the first metal wirings 15. A person skilled art will appreciate that other suitable conductive materials can be used in place. The first metal wirings 15 are formed by various methods. For example a metal layer is deposited on the whole upper surface of the die 11 and is etched using photoresist patterns to form the first metal wirings 15. Also, photoresist patterns are first coated on the upper surface of the die 11, and the metal layer is deposited thereon.
  • As shown in FIG. 3E, the [0045] first insulation layer 16 is formed on the upper surface of the die 11 including the first metal wirings 15. For the first insulation layer 16, an inorganic insulation layer such as a nitride layer or an organic layer such as a polyimide layer or an epoxy layer is used. The inorganic insulation layer is formed by a conventional deposition method, and the organic insulation layer is formed by a conventional spin coating method.
  • As shown in FIG. 3F, through [0046] holes 17 are formed by partially removing the first insulation layer 16. The through holes 17 are formed by a conventional photolithography method. The through holes 17 are disposed on the chip terminals 12 and the first metal wirings 15. The through holes 17 on the first metal wirings 15 are disposed between the neighboring trench wirings 14. One end of each first metal wiring 15 is connected to a corresponding one of the chip selection pads 12 b, 12 c, 12 d and the other end is connected to the through hole 17.
  • As shown in FIG. 3G, the through [0047] holes 17 are filled with a conductive material, thereby forming the first through wirings 18. The material and the forming method of the first through wirings 18 can be the same as those of the trench wirings 14.
  • As shown in FIG. 3H, the [0048] second metal wirings 19, 19 a are formed on the first insulation layer 16. The second metal wirings 19 are each connected to one of the chip selection pads 12 b, 12 c, 12 d through the first metal wirings 15 within the first insulation layer 16, and the isolated second metal wiring 19 a is disposed above the third chip selection pad 12 d. The second metal wirings 19 are not formed above the chip terminals 12 and are laterally offset from the chip selection terminal 12 a. The second metal wirings 19 extend toward the chip selection terminal 12 a along the upper surface of the first insulation layer 16. Therefore, one of the second metal wirings 19 extends partly above and partly offset from the chip selection terminal 12 a and the others extend above the chip selection pads 12 b, 12 c. The material and the forming method of the second metal wirings 19, 19 a can be the same as those of the first metal wirings 15.
  • Then, similar to the steps in FIGS. 3E to [0049] 3G, the second insulation layer 20 is formed on the first insulation layer 16. Through holes extend through the second insulation layer 20 and are filled with a conductive material, thereby forming the second through wirings 21. As shown in FIG. 31, the upper connection terminals 22, 22 a, 22 b, 22 c, 22 d are formed on the second insulation layer 20 and connected to the second through wirings 21. The upper connection terminals 22, 22 a, 22 b, 22 c, 22 d, each corresponds to one of the chip terminals 12, the chip selection terminal 12, and the chip selection pads 12 b, 12 c, 12 d. The upper connection terminal 22 above the chip terminal 12 is connected directly to the chip terminal 12. The upper connection terminal 22 a above the chip selection terminal 12 a is not connected to the chip selection terminal 12 a, but rather to the first chip selection pad 12 b. Likewise, each of the upper connection terminals 22 b, 22 c above the chip selection pads 12 b, 12 c, respectively, is not connected to the chip selection pads 12 b or 12 c, but connected to the neighboring chip selection pads 12 c, 12 d. The outermost upper connection terminal 22 d is connected to the isolated second metal wiring 19 a.
  • As shown in FIG. 3J, the lower surface of the die [0050] 11 is partially removed by a conventional etching method or a conventional grinding method such as wafer back lapping, so that the trench wirings 14 are exposed through the lower surface of the die 11.
  • As shown in FIG. 3K, [0051] lower connection terminals 23, 23 a, 23 b, 23 c, 23 d are formed on the lower surface of the die 11 so as to be electrically connected to the trench wirings 14. Therefore, each of the lower connection terminals 23, 23 a, 23 b, 23 c, 23 d is connected to a corresponding one of the chip terminals 12, the chip selection terminal 12 a, and the chip selection pads 12 b, 12 c, 12 d through the trench wirings 14.
  • The semiconductor integrated [0052] circuit chip 10 in FIG. 2 is manufactured by the above-described processing steps. A plurality of the chips are stacked, and the upper connection terminals of a lower chip are attached to the lower connection terminals of an upper chip, thus obtaining the multi-chip package 100 in FIG. 1. Since each chip of the multi-chip package has the same structure, plural chips at the wafer-level can be collectively manufactured and separated into individual chips.
  • The second metal wirings of the above-described first embodiment of the present invention may be used as the upper connection terminals. Further, in stacking the chips, an adhesive layer or an anisotropic conductive film may be interposed between the chips. FIG. 4 is a cross-sectional view of a chip-level, three-dimensional, [0053] multi-chip package 200 in accordance with another embodiment of the present invention.
  • In accordance with the second embodiment of the present invention, the [0054] multi-chip package 200 comprises three (3) integrated circuit chips 210, 220, 230. Therefore, each of the chip 210, 220, 230 comprises two (2) chip selection pads 12 b, 12 c. The insulation layer 16 is formed on the upper surface of the die 11, and the metal wirings 15 connected to the chip selection pads 12 b, 12 c are formed within the insulation layer 16. Then, through holes extend through the insulation layer 16 to expose a portion of the metal wirings 15 and are filled with a conductive material, thereby forming the through wirings 18.
  • The through [0055] wirings 18 are connected to the upper connection terminals 22 a, 22 b on the insulation layer 16. The upper connection terminal 22 is disposed above the chip terminal 12, and the isolated upper connection terminal 22 c is disposed above the outermost chip selection pad 12 c. The chip selection pad 12 a is not connected to any of the upper connection terminals 22, 22 a, 22 b, 22 c. The lower connection terminals 23, 23 a, 23 b, 23 c are formed on the lower surface of the die 11 correspondingly to the upper connection terminals 22, 22 a, 22 b, 22 c. Each of the chip terminal 12, the chip selection terminal 12 a, and the chip selection pads 12 b, 12 c is connected to a corresponding one of the lower connection terminals 23, 23 a, 23 b, 23 c through the trench wirings 14.
  • The [0056] chips 210, 220, 230 can be stacked using an Anisotropic Conductive Film (ACF) or an Anisotropic Conductive Adhesive (ACA). The ACF 25 or the ACA comprises an insulation film 24 a or an insulating adhesive, and conductive particles 24 b dispersed within the insulation film 24 a or the insulating adhesive. As the insulation film 24 a or the insulation adhesive is compressed by the upper connection terminals 22, 22 a-22 c of a lower chip and the lower connection terminals 23, 23 a-23 c of an upper chip, the upper connection terminals 22, 22 a-22 c and the lower connection terminals 23, 23 a-23 c are electrically interconnected by the conductive particles 24 b. Thereby, the insulation film 24 a or the insulation adhesive attaches the chip to another chip. Instead of the ACF 25 or the ACA, other various insulation adhesives may be used as an adhesion layer.
  • In the above-described [0057] multi-chip package 200 of the second embodiment, the chip selection terminal 12 a of each chip 210, 220, 230 is separated from the chip selection terminal 12 a of another chip and connected to a corresponding one of the lower connection terminals 23 a-23 c of the lowermost chip 210.
  • In the multi-chip package of the present invention, the chip selection terminal of each chip is separated from the chip selection terminal of another chip by the chip selection pads formed on the chip. Therefore, the multi-chip package of the present invention does not require differently structured chips or any additional substrate. Accordingly, the present invention achieves the chip-level multi-chip package, using a simple process. [0058]
  • The wafer-level multi-chip package of the present invention reduces package size and increases mounting density, thereby minimizing signal delay. [0059]
  • Although the preferred embodiments of the present invention have been described in detail hereinabove, it should be understood that many variations and/or modifications of the basic inventive concepts herein taught which may appear to those skilled in the art will still fall within the spirit and scope of the present invention as defined in the appended claims. [0060]

Claims (14)

What is claimed is:
1. A three-dimensional, multi-chip package formed by stacking a number (N) of semiconductor integrated circuit chips, each chip comprising:
an integrated circuit die having an upper surface and a lower surface;
a chip selection terminal formed on the upper surface of said die;
a number (N-1) of chip selection pads formed on the upper surface of said die proximate to said chip selection terminal;
an insulation layer formed on the upper surface;
a number (N-1) of first metal wirings formed within said insulation layer, each of said first metal wirings connected to a corresponding one of said chip selection pads;
upper connection terminals formed on said insulation layer and connected to said first metal wirings;
lower connection terminals formed on the lower surface of said die corresponding to said upper connection terminals; and
trench wirings formed through said die, said trench wirings connecting said chip selection terminal or said chip selection pads to said lower connection terminals,
wherein among said chip selection pads, a first chip selection pad next to said chip selection terminal is connected to the upper connection terminal formed above said chip selection terminal, and the (N-1)th chip selection pad is connected to the upper connection terminal formed above the (N-2)th chip selection pad, and
wherein said chips are stacked by attaching said upper connection terminals of a lower chip to said lower connection terminals of an upper chip, and said chip selection terminal of each chip is connected to a corresponding one of said lower connection terminals of a lowermost chip.
2. The multi-chip package of claim 1, wherein said die is one of a plurality of integrated circuit dies formed on a wafer.
3. The multi-chip package of claim 1, wherein said die is an integrated circuit die separated from a wafer.
4. The multi-chip package of claim 1, wherein said die is a memory chip.
5. The multi-chip package of claim 1, wherein each chip further comprises second metal wirings formed on said insulation layer, said second metal wirings for connecting said first metal wirings to said upper connection terminals.
6. The multi-chip package of claim 1, wherein said upper connection terminal formed above said (N-1)th chip selection pad is electrically isolated.
7. The multi-chip package of claim 1, further comprising adhesive layers, each adhesive layer being interposed between a lower chip and an upper chip.
8. The multi-chip package of claim 1, further comprising Anisotropic Conductive Film (ACF) or Anisotropic Conductive Adhesive (ACA), each ACF or each ACA being interposed between a lower chip and an upper chip.
9. A method for manufacturing a three-dimensional multi-chip package formed by stacking a number (N) of semiconductor integrated circuit chips, said method comprising:
(a) forming a chip selection terminal and a number (N-1) of chip selection pads proximate to said chip selection terminal on an upper surface of said chip;
(b) forming a plurality of trenches from said chip selection terminal and said chip selection pads within said chip;
(c) forming trench wirings by filling said trenches with a conductive material;
(d) forming a number (N-1) of first metal wirings along said upper surface of the chip, each of said first metal wirings being connected to a corresponding one of said chip selection pads;
(e) forming a first insulation layer on said upper surface of the chip and said first metal wirings;
(f) forming a plurality of upper connection terminals connected to said first metal wirings on said first insulation layer;
(h) forming a plurality of lower connection terminals on said lower surface of the chip, each of said lower connection terminals connected to a corresponding one of said trench wirings; and
(i) stacking said chips by attaching said upper connection terminals of a lower chip to said lower connection terminals of an upper chip.
10. The method of claim 9, wherein said step (f) comprises:
(f-1) forming a plurality of through holes by removing a portion of said first insulation layer, each of said through holes for exposing a portion of corresponding one of said first metal wirings;
(f-2) forming through wirings by filling said through holes with a conductive material; and
(f-3) forming upper connection terminals connected to a corresponding one of said through wirings on said first insulation layer.
11. The method of claim 9, wherein said step (f) comprises:
(f-4) after forming a plurality of through holes by removing a portion of said first insulation layer, forming first through wirings by filling said through holes with a conductive material, said through hole for exposing a portion of a corresponding one of said first metal wirings;
(f-5) forming second metal wirings connected to said first through wirings on said first insulation layer;
(f-6) forming a second insulation layer on said second metal wirings;
(f-7) after forming a plurality of through holes by removing a portion of said second insulation layer, forming second through wirings by filling said through holes with a conductive material, said through hole for exposing a portion of corresponding one of said second metal wirings; and
(f-8) forming upper connection terminals connected to a corresponding one of said second through wirings on said second insulation layer.
12. The method of claim 9, wherein the step (i) further comprises interposing adhesive layers between the chips.
13. The method of claim 9, wherein the step (i) further comprises interposing Anisotropic Conductive Film (ACF) or Anisotropic Conductive Adhesive (ACA) between the chips.
14. The method of claim 9, further comprising:
(g) grinding the lower surface of said chip so that said trench wirings are exposed through said lower surface of the chip.
US10/059,932 2001-02-09 2002-01-28 Three-dimensional multi-chip package having chip selection pads and manufacturing method thereof Expired - Lifetime US6448661B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010006318A KR100364635B1 (en) 2001-02-09 2001-02-09 Chip-Level Three-Dimensional Multi-Chip Package Having Chip Selection Pad Formed On Chip-Level And Making Method Therefor
KR2001-6318 2001-02-09

Publications (2)

Publication Number Publication Date
US20020109236A1 true US20020109236A1 (en) 2002-08-15
US6448661B1 US6448661B1 (en) 2002-09-10

Family

ID=19705535

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/059,932 Expired - Lifetime US6448661B1 (en) 2001-02-09 2002-01-28 Three-dimensional multi-chip package having chip selection pads and manufacturing method thereof

Country Status (3)

Country Link
US (1) US6448661B1 (en)
JP (1) JP4519392B2 (en)
KR (1) KR100364635B1 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030234434A1 (en) * 2002-06-21 2003-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US20040126994A1 (en) * 2002-12-31 2004-07-01 Rafael Reif Method of forming a multi-layer semiconductor structure having a seamless bonding interface
US20040124538A1 (en) * 2002-12-31 2004-07-01 Rafael Reif Multi-layer integrated semiconductor structure
US20040219765A1 (en) * 2002-12-31 2004-11-04 Rafael Reif Method of forming a multi-layer semiconductor structure incorporating a processing handle member
EP1587141A2 (en) 2004-04-13 2005-10-19 Sun Microsystems, Inc. Method and apparatus involving capacitively coupled communication within a stack of laminated chips
EP1686623A1 (en) * 2003-10-30 2006-08-02 Japan Science and Technology Agency Semiconductor device and process for fabricating the same
US20070001312A1 (en) * 2005-06-30 2007-01-04 Shinko Electric Industries Co., Ltd. Semiconductor chip and method of manufacturing the same
US20070126105A1 (en) * 2005-12-06 2007-06-07 Elpida Memory Inc. Stacked type semiconductor memory device and chip selection circuit
WO2007082854A1 (en) * 2006-01-18 2007-07-26 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
US20080083976A1 (en) * 2006-10-10 2008-04-10 Tessera, Inc. Edge connect wafer level stacking
US20080083977A1 (en) * 2006-10-10 2008-04-10 Tessera, Inc. Edge connect wafer level stacking
US20080116544A1 (en) * 2006-11-22 2008-05-22 Tessera, Inc. Packaged semiconductor chips with array
US20080116545A1 (en) * 2006-11-22 2008-05-22 Tessera, Inc. Packaged semiconductor chips
US20080157323A1 (en) * 2006-12-28 2008-07-03 Tessera, Inc. Stacked packages
US20080171413A1 (en) * 2007-01-17 2008-07-17 International Business Machines Corporation Method of Reducing Detrimental STI-Induced Stress in MOSFET Channels
US20080237834A1 (en) * 2007-03-29 2008-10-02 Advanced Chip Engineering Technology Inc. Chip packaging structure and chip packaging process
US20080246136A1 (en) * 2007-03-05 2008-10-09 Tessera, Inc. Chips having rear contacts connected by through vias to front contacts
US20090043917A1 (en) * 2007-08-06 2009-02-12 Thilo Wagner Electronic Circuit and Method for Selecting an Electronic Circuit
US20090039528A1 (en) * 2007-08-09 2009-02-12 Tessera, Inc. Wafer level stacked packages with individual chip selection
US20090039915A1 (en) * 2007-08-06 2009-02-12 Hermann Ruckerbauer Integrated Circuit, Chip Stack and Data Processing System
US20090065907A1 (en) * 2007-07-31 2009-03-12 Tessera, Inc. Semiconductor packaging process using through silicon vias
US20090124072A1 (en) * 2007-11-14 2009-05-14 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US20090160065A1 (en) * 2006-10-10 2009-06-25 Tessera, Inc. Reconstituted Wafer Level Stacking
US20090212381A1 (en) * 2008-02-26 2009-08-27 Tessera, Inc. Wafer level packages for rear-face illuminated solid state image sensors
US20090269888A1 (en) * 2005-06-14 2009-10-29 John Trezza Chip-based thermo-stack
US20090294916A1 (en) * 2008-06-02 2009-12-03 Hong Kong Applied Science and Technology Research Institute Company, Ltd. Bonding method for through-silicon-via based 3d wafer stacking
US20090316378A1 (en) * 2008-06-16 2009-12-24 Tessera Research Llc Wafer level edge stacking
US20100053407A1 (en) * 2008-02-26 2010-03-04 Tessera, Inc. Wafer level compliant packages for rear-face illuminated solid state image sensors
WO2010049852A1 (en) * 2008-10-30 2010-05-06 Nxp B.V. Through-substrate via and redistribution layer with metal paste
US7785987B2 (en) 2005-06-14 2010-08-31 John Trezza Isolating chip-to-chip contact
US20100219503A1 (en) * 2005-06-14 2010-09-02 John Trezza Chip capacitive coupling
US20100225002A1 (en) * 2009-03-06 2010-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Three-Dimensional System-in-Package Architecture
US20100230795A1 (en) * 2009-03-13 2010-09-16 Tessera Technologies Hungary Kft. Stacked microelectronic assemblies having vias extending through bond pads
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US20110006432A1 (en) * 2007-07-27 2011-01-13 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US7884483B2 (en) 2005-06-14 2011-02-08 Cufer Asset Ltd. L.L.C. Chip connector
US20110086486A1 (en) * 2008-06-10 2011-04-14 Ho-Jin Lee Methods of Forming Integrated Circuit Chips Having Vertically Extended Through-Substrate Vias Therein
US8021922B2 (en) 2005-06-14 2011-09-20 Cufer Asset Ltd. L.L.C. Remote chip attachment
US8084851B2 (en) 2005-06-14 2011-12-27 Cufer Asset Ltd. L.L.C. Side stacking apparatus and method
EP2474030A1 (en) * 2009-09-02 2012-07-11 MOSAID Technologies Incorporated Using interrupted through-silicon-vias in integrated circuits adapted for stacking
EP2534659A2 (en) * 2010-02-11 2012-12-19 Micron Technology, Inc. Memory dies, stacked memories, memory devices and methods
CN102844862A (en) * 2010-04-12 2012-12-26 高通股份有限公司 Dual-side interconnected cmos for stacked integrated circuits
US8432045B2 (en) 2010-11-15 2013-04-30 Tessera, Inc. Conductive pads defined by embedded traces
EP2546873A3 (en) * 2011-06-14 2013-05-29 Elpida Memory, Inc. Semiconductor device
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US20130228920A1 (en) * 2009-09-14 2013-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer for adhesive material at wafer edge
US8551815B2 (en) 2007-08-03 2013-10-08 Tessera, Inc. Stack packages using reconstituted wafers
US8587126B2 (en) 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8593891B2 (en) 2010-10-13 2013-11-26 Elpida Memory, Inc. Semiconductor device and test method thereof
US8610259B2 (en) 2010-09-17 2013-12-17 Tessera, Inc. Multi-function and shielded 3D interconnects
US8610264B2 (en) 2010-12-08 2013-12-17 Tessera, Inc. Compliant interconnects in wafers
US8637968B2 (en) 2010-12-02 2014-01-28 Tessera, Inc. Stacked microelectronic assembly having interposer connecting active chips
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip
CN103887288A (en) * 2012-12-20 2014-06-25 爱思开海力士有限公司 Semiconductor Integrated Circuit And Semiconductor System With The Same
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US8796135B2 (en) 2010-07-23 2014-08-05 Tessera, Inc. Microelectronic elements with rear contacts connected with via first or via middle structures
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US8924903B2 (en) 2010-11-30 2014-12-30 Ps4 Luxco S.A.R.L. Semiconductor device having plural memory chip
CN104465567A (en) * 2013-09-24 2015-03-25 南亚科技股份有限公司 Chip package and method for forming the same
CN104779218A (en) * 2014-01-15 2015-07-15 南亚科技股份有限公司 Chip package
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
TWI588882B (en) * 2013-09-13 2017-06-21 財團法人工業技術研究院 Thinned integrated circuit device and manufacturing process for the same
JP2019102744A (en) * 2017-12-07 2019-06-24 日本放送協会 Stacked semiconductor device
US20190259725A1 (en) * 2017-07-21 2019-08-22 United Microelectronics Corp. Manufacturing method of die-stack structure
US10790266B2 (en) 2016-09-23 2020-09-29 Toshiba Memory Corporation Memory device with a plurality of stacked memory core chips
CN115799230A (en) * 2023-02-08 2023-03-14 深圳时识科技有限公司 Stacked chip and electronic device

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060053A (en) * 2001-08-10 2003-02-28 Fujitsu Ltd Semiconductor chip, semiconductor integrated circuit device comprising it and method for selecting semiconductor chip
US6759275B1 (en) 2001-09-04 2004-07-06 Megic Corporation Method for making high-performance RF integrated circuits
US6762076B2 (en) * 2002-02-20 2004-07-13 Intel Corporation Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
KR100497111B1 (en) * 2003-03-25 2005-06-28 삼성전자주식회사 WL CSP, stack package stacking the same and manufacturing method thereof
JP4419049B2 (en) 2003-04-21 2010-02-24 エルピーダメモリ株式会社 Memory module and memory system
US7098541B2 (en) * 2003-05-19 2006-08-29 Hewlett-Packard Development Company, L.P. Interconnect method for directly connected stacked integrated circuits
US20050179120A1 (en) * 2003-12-16 2005-08-18 Koji Yamaguchi Process for producing semiconductor device, semiconductor device, circuit board and electronic equipment
DE102004060345A1 (en) 2003-12-26 2005-10-06 Elpida Memory, Inc. Semiconductor device with layered chips
JP2007250561A (en) * 2004-04-12 2007-09-27 Japan Science & Technology Agency Semiconductor element and semiconductor system
JPWO2005101476A1 (en) * 2004-04-16 2008-03-06 独立行政法人科学技術振興機構 Semiconductor element and method of manufacturing semiconductor element
JP4353861B2 (en) 2004-06-30 2009-10-28 Necエレクトロニクス株式会社 Semiconductor device
US7419852B2 (en) * 2004-08-27 2008-09-02 Micron Technology, Inc. Low temperature methods of forming back side redistribution layers in association with through wafer interconnects, semiconductor devices including same, and assemblies
US7462925B2 (en) * 2004-11-12 2008-12-09 Macronix International Co., Ltd. Method and apparatus for stacking electrical components using via to provide interconnection
JP4577688B2 (en) * 2005-05-09 2010-11-10 エルピーダメモリ株式会社 Semiconductor chip selection method, semiconductor chip, and semiconductor integrated circuit device
US7317256B2 (en) * 2005-06-01 2008-01-08 Intel Corporation Electronic packaging including die with through silicon via
JP4753725B2 (en) * 2006-01-20 2011-08-24 エルピーダメモリ株式会社 Multilayer semiconductor device
KR100743648B1 (en) * 2006-03-17 2007-07-27 주식회사 하이닉스반도체 Method of manufacturing wafer level system in packge
US7474005B2 (en) * 2006-05-31 2009-01-06 Alcatel-Lucent Usa Inc. Microelectronic element chips
KR100762206B1 (en) * 2006-06-08 2007-10-01 삼성전자주식회사 Semiconductor memory device and method of generating chip enable signal of the same
US7446424B2 (en) * 2006-07-19 2008-11-04 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure for semiconductor package
US20080122058A1 (en) * 2006-09-07 2008-05-29 Masahiro Inohara Partially stacked semiconductor devices
JP4312786B2 (en) * 2006-11-02 2009-08-12 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor chip
US8018071B2 (en) 2007-02-07 2011-09-13 Samsung Electronics Co., Ltd. Stacked structure using semiconductor devices and semiconductor device package including the same
US8232183B2 (en) * 2007-05-04 2012-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Process and apparatus for wafer-level flip-chip assembly
KR100874926B1 (en) 2007-06-07 2008-12-19 삼성전자주식회사 Stack modules, cards containing them and systems containing them
KR100920039B1 (en) * 2007-06-21 2009-10-07 주식회사 하이닉스반도체 Stacked semiconductor package and method of manufacturing thereof
KR100945504B1 (en) * 2007-06-26 2010-03-09 주식회사 하이닉스반도체 Stack package and method for manufacturing of the same
KR100909969B1 (en) * 2007-06-28 2009-07-29 삼성전자주식회사 Semiconductor devices and method of fabricating the same, and stacked modules, card and system including the same
JP5557419B2 (en) 2007-10-17 2014-07-23 スパンション エルエルシー Semiconductor device
US8492263B2 (en) * 2007-11-16 2013-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Protected solder ball joints in wafer level chip-scale packaging
JP2009139273A (en) 2007-12-07 2009-06-25 Elpida Memory Inc Laminated semiconductor device, and continuity test
US8399973B2 (en) * 2007-12-20 2013-03-19 Mosaid Technologies Incorporated Data storage and stackable configurations
KR101465948B1 (en) * 2007-12-27 2014-12-10 삼성전자주식회사 A wafer level stack package and method of manufacturing a wafer level stack package
KR101420817B1 (en) * 2008-01-15 2014-07-21 삼성전자주식회사 Semiconductor Integrated Circuit Device Electrically Connecting Integrated Circuit Modules Stacked Sequentially With 3-Dimensional Serial And Parallel Circuits And Method Of Forming The Same
KR100920053B1 (en) * 2008-01-25 2009-10-07 주식회사 하이닉스반도체 Semiconductor package and method of manufacturing the same
US8138610B2 (en) * 2008-02-08 2012-03-20 Qimonda Ag Multi-chip package with interconnected stacked chips
US11266014B2 (en) 2008-02-14 2022-03-01 Metrospec Technology, L.L.C. LED lighting systems and method
US8007286B1 (en) * 2008-03-18 2011-08-30 Metrospec Technology, Llc Circuit boards interconnected by overlapping plated through holes portions
US8851356B1 (en) 2008-02-14 2014-10-07 Metrospec Technology, L.L.C. Flexible circuit board interconnection and methods
US10334735B2 (en) 2008-02-14 2019-06-25 Metrospec Technology, L.L.C. LED lighting systems and methods
KR100950759B1 (en) * 2008-03-07 2010-04-05 주식회사 하이닉스반도체 Stack package
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
US8912654B2 (en) * 2008-04-11 2014-12-16 Qimonda Ag Semiconductor chip with integrated via
KR100988262B1 (en) 2008-04-25 2010-10-18 주식회사 하이닉스반도체 Semiconductor package and stacked semiconductor pacakge having the same
TWI389291B (en) * 2008-05-13 2013-03-11 Ind Tech Res Inst Structure of three-dimensional stacking dice
US8030208B2 (en) * 2008-06-02 2011-10-04 Hong Kong Applied Science and Technology Research Institute Company Limited Bonding method for through-silicon-via based 3D wafer stacking
CN101542701B (en) * 2008-06-05 2011-05-25 香港应用科技研究院有限公司 Bonding method of three dimensional wafer lamination based on silicon through holes
US8334170B2 (en) * 2008-06-27 2012-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
KR101001635B1 (en) 2008-06-30 2010-12-17 주식회사 하이닉스반도체 Semiconductor package, stacked semiconductor package having the same, and method for selecting one semiconductor chip of the stacked semiconductor package
US7851346B2 (en) * 2008-07-21 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding metallurgy for three-dimensional interconnect
US7843072B1 (en) 2008-08-12 2010-11-30 Amkor Technology, Inc. Semiconductor package having through holes
US8932906B2 (en) 2008-08-19 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Through silicon via bonding structure
JP2010056139A (en) * 2008-08-26 2010-03-11 Toshiba Corp Multilayer semiconductor device
US9524945B2 (en) 2010-05-18 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with L-shaped non-metal sidewall protection structure
KR20100042021A (en) * 2008-10-15 2010-04-23 삼성전자주식회사 Semiconductor chip, stack module, memory card, and method of fabricating the semiconductor chip
US7843052B1 (en) 2008-11-13 2010-11-30 Amkor Technology, Inc. Semiconductor devices and fabrication methods thereof
US7943421B2 (en) * 2008-12-05 2011-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Component stacking using pre-formed adhesive films
US20170117214A1 (en) 2009-01-05 2017-04-27 Amkor Technology, Inc. Semiconductor device with through-mold via
US9117828B2 (en) * 2009-03-27 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of handling a thin wafer
WO2010131391A1 (en) * 2009-05-14 2010-11-18 パナソニック株式会社 Semiconductor device and electronic device provided with same
US8377816B2 (en) * 2009-07-30 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming electrical connections
US8841766B2 (en) 2009-07-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US9160349B2 (en) 2009-08-27 2015-10-13 Micron Technology, Inc. Die location compensation
US8324738B2 (en) 2009-09-01 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned protection layer for copper post structure
US8803332B2 (en) * 2009-09-11 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Delamination resistance of stacked dies in die saw
US8143097B2 (en) * 2009-09-23 2012-03-27 Stats Chippac, Ltd. Semiconductor device and method of forming open cavity in TSV interposer to contain semiconductor die in WLCSMP
US9875911B2 (en) * 2009-09-23 2018-01-23 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming interposer with opening to contain semiconductor die
KR101069517B1 (en) 2009-10-05 2011-09-30 앰코 테크놀로지 코리아 주식회사 Semiconductor package
US8698321B2 (en) * 2009-10-07 2014-04-15 Qualcomm Incorporated Vertically stackable dies having chip identifier structures
US8492905B2 (en) * 2009-10-07 2013-07-23 Qualcomm Incorporated Vertically stackable dies having chip identifier structures
JP2011082450A (en) 2009-10-09 2011-04-21 Elpida Memory Inc Semiconductor device, and information processing system with the same
JP5448698B2 (en) * 2009-10-09 2014-03-19 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and test method thereof
EP2500930A4 (en) 2009-11-09 2013-05-22 Mitsubishi Gas Chemical Co Etching liquid for etching silicon substrate rear surface in through silicon via process and method for manufacturing semiconductor chip having through silicon via using the etching liquid
US8299616B2 (en) * 2010-01-29 2012-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. T-shaped post for semiconductor devices
US10297550B2 (en) 2010-02-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC architecture with interposer and interconnect structure for bonding dies
US8610270B2 (en) * 2010-02-09 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US8803319B2 (en) 2010-02-11 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar structure having a non-planar surface for semiconductor devices
US8318596B2 (en) 2010-02-11 2012-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar structure having a non-planar surface for semiconductor devices
US8519537B2 (en) * 2010-02-26 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US9385095B2 (en) 2010-02-26 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US8378480B2 (en) * 2010-03-04 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy wafers in 3DIC package assemblies
US8357932B2 (en) * 2010-03-25 2013-01-22 International Business Machines Corporation Test pad structure for reuse of interconnect level masks
US8324511B1 (en) 2010-04-06 2012-12-04 Amkor Technology, Inc. Through via nub reveal method and structure
KR20110112707A (en) 2010-04-07 2011-10-13 삼성전자주식회사 Stacked memory device having inter-chip connection unit, memory system including the same, and method of compensating delay time of transmission lines
US8455995B2 (en) 2010-04-16 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. TSVs with different sizes in interposers for bonding dies
KR20110119087A (en) 2010-04-26 2011-11-02 삼성전자주식회사 Stacked semiconductor device
US8441124B2 (en) 2010-04-29 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US8716867B2 (en) 2010-05-12 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Forming interconnect structures using pre-ink-printed sheets
US8674513B2 (en) 2010-05-13 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures for substrate
US9142533B2 (en) 2010-05-20 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate interconnections having different sizes
US8901736B2 (en) 2010-05-28 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Strength of micro-bump joints
US9018758B2 (en) 2010-06-02 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall spacer and metal top cap
US8426961B2 (en) 2010-06-25 2013-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded 3D interposer structure
TW201203496A (en) * 2010-07-01 2012-01-16 Nat Univ Tsing Hua 3D-IC device and decreasing type layer-ID detector for 3D-IC device
US8241963B2 (en) 2010-07-13 2012-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Recessed pillar structure
US8581418B2 (en) 2010-07-21 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-die stacking using bumps with different sizes
US8629568B2 (en) 2010-07-30 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device cover mark
US8440554B1 (en) 2010-08-02 2013-05-14 Amkor Technology, Inc. Through via connected backside embedded circuit features structure and method
KR101179268B1 (en) * 2010-08-05 2012-09-03 에스케이하이닉스 주식회사 Semiconductor package with chip selection by through-vias
US8540506B2 (en) 2010-08-16 2013-09-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor molding chamber
US8546254B2 (en) 2010-08-19 2013-10-01 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps using patterned anodes
US8541262B2 (en) 2010-09-02 2013-09-24 Taiwan Semiconductor Manufacturing Company, Ltd. Die edge contacts for semiconductor devices
US9343436B2 (en) 2010-09-09 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked package and method of manufacturing the same
US8487445B1 (en) 2010-10-05 2013-07-16 Amkor Technology, Inc. Semiconductor device having through electrodes protruding from dielectric layer
US8936966B2 (en) 2012-02-08 2015-01-20 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods for semiconductor devices
US9064879B2 (en) 2010-10-14 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods and structures using a die attach film
US8105875B1 (en) 2010-10-14 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Approach for bonding dies onto interposers
US8338945B2 (en) 2010-10-26 2012-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Molded chip interposer structure and methods
TWI433296B (en) 2010-11-19 2014-04-01 Ind Tech Res Inst Multi-chip stacked system and chip select apparatus thereof
US8791501B1 (en) 2010-12-03 2014-07-29 Amkor Technology, Inc. Integrated passive device structure and method
US8390130B1 (en) 2011-01-06 2013-03-05 Amkor Technology, Inc. Through via recessed reveal structure and method
US8797057B2 (en) 2011-02-11 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Testing of semiconductor chips with microbumps
JP2012226794A (en) * 2011-04-18 2012-11-15 Elpida Memory Inc Semiconductor device and method of controlling semiconductor device
KR101069441B1 (en) * 2011-05-12 2011-09-30 앰코 테크놀로지 코리아 주식회사 Semiconductor package
JP2012243910A (en) 2011-05-18 2012-12-10 Elpida Memory Inc Semiconductor device having structure for checking and testing crack in semiconductor chip
US8610285B2 (en) 2011-05-30 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC packaging structures and methods with a metal pillar
US8664760B2 (en) 2011-05-30 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Connector design for packaging integrated circuits
US8587127B2 (en) 2011-06-15 2013-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods of forming the same
US8501590B2 (en) 2011-07-05 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for dicing interposer assembly
US8580683B2 (en) 2011-09-27 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for molding die on wafer interposers
US8476770B2 (en) 2011-07-07 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for forming through vias
US8647796B2 (en) 2011-07-27 2014-02-11 Taiwan Semiconductor Manufacturing Company, Ltd. Photoactive compound gradient photoresist
US20130040423A1 (en) 2011-08-10 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of Multi-Chip Wafer Level Packaging
US8754514B2 (en) 2011-08-10 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-chip wafer level package
US8557684B2 (en) 2011-08-23 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional integrated circuit (3DIC) formation process
US8963334B2 (en) 2011-08-30 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-die gap control for semiconductor structure and method
US8531032B2 (en) 2011-09-02 2013-09-10 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally enhanced structure for multi-chip device
US9390060B2 (en) 2011-09-02 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods, material dispensing methods and apparatuses, and automated measurement systems
US9530761B2 (en) 2011-09-02 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Package systems including passive electrical components
US9418876B2 (en) 2011-09-02 2016-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of three dimensional integrated circuit assembly
US9245773B2 (en) 2011-09-02 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device packaging methods and structures thereof
US9219016B2 (en) 2011-09-28 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Structure design for 3DIC testing
US10475759B2 (en) 2011-10-11 2019-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure having dies with connectors of different sizes
US8878182B2 (en) 2011-10-12 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Probe pad design for 3DIC package yield analysis
US8518753B2 (en) 2011-11-15 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Assembly method for three dimensional integrated circuit
US8779599B2 (en) 2011-11-16 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Packages including active dies and dummy dies and methods for forming the same
US8759118B2 (en) 2011-11-16 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Plating process and structure
US8629043B2 (en) 2011-11-16 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for de-bonding carriers
US8772929B2 (en) 2011-11-16 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Package for three dimensional integrated circuit
US8779588B2 (en) 2011-11-29 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for multi-chip packaging
US8552548B1 (en) 2011-11-29 2013-10-08 Amkor Technology, Inc. Conductive pad on protruding through electrode semiconductor device
US8653658B2 (en) 2011-11-30 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Planarized bumps for underfill control
US8643148B2 (en) 2011-11-30 2014-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Chip-on-Wafer structures and methods for forming the same
US8557631B2 (en) 2011-12-01 2013-10-15 Taiwan Semiconductor Manufacturing Co., Ltd. Interposer wafer bonding method and apparatus
US8536573B2 (en) 2011-12-02 2013-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Plating process and structure
US8558229B2 (en) 2011-12-07 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Passivation layer for packaged chip
US8828848B2 (en) 2011-12-16 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Die structure and method of fabrication thereof
US8871568B2 (en) 2012-01-06 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Packages and method of forming the same
US8518796B2 (en) 2012-01-09 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor die connection system and method
US8691706B2 (en) 2012-01-12 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing substrate warpage in semiconductor processing
US9620430B2 (en) 2012-01-23 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Sawing underfill in packaging processes
US8698308B2 (en) 2012-01-31 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structural designs to minimize package defects
US9406500B2 (en) 2012-02-08 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Flux residue cleaning system and method
US9230932B2 (en) 2012-02-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect crack arrestor structure and methods
US8975183B2 (en) 2012-02-10 2015-03-10 Taiwan Semiconductor Manufacturing Co., Ltd. Process for forming semiconductor structure
US8900922B2 (en) 2012-02-16 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Fine-pitch package-on-package structures and methods for forming the same
US8816495B2 (en) 2012-02-16 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structures and formation methods of packages with heat sinks
US9646942B2 (en) 2012-02-23 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for controlling bump height variation
US8953336B2 (en) 2012-03-06 2015-02-10 Taiwan Semiconductor Manufacturing Co., Ltd. Surface metal wiring structure for an IC substrate
US8962392B2 (en) 2012-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Underfill curing method using carrier
JP2013197387A (en) * 2012-03-21 2013-09-30 Elpida Memory Inc Semiconductor device
US9006004B2 (en) 2012-03-23 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Probing chips during package formation
US9048298B1 (en) 2012-03-29 2015-06-02 Amkor Technology, Inc. Backside warpage control structure and fabrication method
US9129943B1 (en) 2012-03-29 2015-09-08 Amkor Technology, Inc. Embedded component package and fabrication method
US9034695B2 (en) 2012-04-11 2015-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated thermal solutions for packaging integrated circuits
US9391000B2 (en) 2012-04-11 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming silicon-based hermetic thermal solutions
US9425136B2 (en) 2012-04-17 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Conical-shaped or tier-shaped pillar connections
US9646923B2 (en) 2012-04-17 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices
US9299674B2 (en) 2012-04-18 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace interconnect
US9515036B2 (en) 2012-04-20 2016-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for solder connections
US8741691B2 (en) 2012-04-20 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating three dimensional integrated circuit
US9576830B2 (en) 2012-05-18 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for adjusting wafer warpage
US9583365B2 (en) 2012-05-25 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming interconnects for three dimensional integrated circuit
US9443783B2 (en) 2012-06-27 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC stacking device and method of manufacture
US8970035B2 (en) 2012-08-31 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for semiconductor package
US9111817B2 (en) 2012-09-18 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structure and method of forming same
US8628990B1 (en) 2012-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Image device and methods of forming the same
JP5543567B2 (en) * 2012-10-22 2014-07-09 誠 雫石 Manufacturing method of semiconductor device
US9070644B2 (en) 2013-03-15 2015-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US9646894B2 (en) 2013-03-15 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US9299640B2 (en) 2013-07-16 2016-03-29 Taiwan Semiconductor Manufacturing Co., Ltd. Front-to-back bonding with through-substrate via (TSV)
US8860229B1 (en) 2013-07-16 2014-10-14 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bonding with through substrate via (TSV)
US9929050B2 (en) 2013-07-16 2018-03-27 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming three-dimensional integrated circuit (3DIC) stacking structure
US9087821B2 (en) 2013-07-16 2015-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bonding with through substrate via (TSV)
US9250288B2 (en) 2013-09-05 2016-02-02 Powertech Technology Inc. Wafer-level testing method for singulated 3D-stacked chip cubes
KR102161260B1 (en) * 2013-11-07 2020-09-29 삼성전자주식회사 Semiconductor devices having through electrodes and methods for fabricaing the same
US9768090B2 (en) 2014-02-14 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10026671B2 (en) 2014-02-14 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9653443B2 (en) 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
US9935090B2 (en) 2014-02-14 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9484328B2 (en) * 2014-08-01 2016-11-01 Empire Technology Development Llc Backside through silicon vias and micro-channels in three dimensional integration
SG11201701725QA (en) * 2014-09-17 2017-04-27 Toshiba Kk Semiconductor device
US9564416B2 (en) 2015-02-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
US9613931B2 (en) 2015-04-30 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (SIP) having dummy dies and methods of making the same
US10276541B2 (en) 2015-06-30 2019-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. 3D package structure and methods of forming same
US9831155B2 (en) 2016-03-11 2017-11-28 Nanya Technology Corporation Chip package having tilted through silicon via
US9966363B1 (en) 2017-02-03 2018-05-08 Nanya Technology Corporation Semiconductor apparatus and method for preparing the same
US9893037B1 (en) * 2017-04-20 2018-02-13 Nanya Technology Corporation Multi-chip semiconductor package, vertically-stacked devices and manufacturing thereof
KR102059968B1 (en) 2018-04-05 2019-12-27 한국과학기술연구원 Optical interconnection between semiconductor chips using mid-infrared
US10849200B2 (en) 2018-09-28 2020-11-24 Metrospec Technology, L.L.C. Solid state lighting circuit with current bias and method of controlling thereof
US20210043545A1 (en) * 2019-08-07 2021-02-11 Nanya Technology Corporation Semiconductor device and manufacturing method thereof
US11600554B2 (en) * 2021-08-02 2023-03-07 Nvidia Corporation Interconnection structures to improve signal integrity within stacked dies

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138438A (en) * 1987-06-24 1992-08-11 Akita Electronics Co. Ltd. Lead connections means for stacked tab packaged IC chips
US4996583A (en) * 1989-02-15 1991-02-26 Matsushita Electric Industrial Co., Ltd. Stack type semiconductor package
US6355976B1 (en) * 1992-05-14 2002-03-12 Reveo, Inc Three-dimensional packaging technology for multi-layered integrated circuits
US5585675A (en) * 1994-05-11 1996-12-17 Harris Corporation Semiconductor die packaging tub having angularly offset pad-to-pad via structure configured to allow three-dimensional stacking and electrical interconnections among multiple identical tubs
US5973396A (en) * 1996-02-16 1999-10-26 Micron Technology, Inc. Surface mount IC using silicon vias in an area array format or same size as die array
JP3177464B2 (en) * 1996-12-12 2001-06-18 株式会社日立製作所 Input / output circuit cell and semiconductor integrated circuit device
JP2870530B1 (en) * 1997-10-30 1999-03-17 日本電気株式会社 Stack module interposer and stack module
US6064114A (en) * 1997-12-01 2000-05-16 Motorola, Inc. Semiconductor device having a sub-chip-scale package structure and method for forming same
JP2865103B2 (en) * 1998-01-19 1999-03-08 株式会社日立製作所 Multi-chip semiconductor device
JPH11307719A (en) * 1998-04-20 1999-11-05 Mitsubishi Electric Corp Semiconductor device
JP3563604B2 (en) * 1998-07-29 2004-09-08 株式会社東芝 Multi-chip semiconductor device and memory card
US5986222A (en) * 1998-09-10 1999-11-16 Zorix International Fish scale having a pivotal display assembly
US6381141B2 (en) * 1998-10-15 2002-04-30 Micron Technology, Inc. Integrated device and method for routing a signal through the device
JP3228257B2 (en) * 1999-01-22 2001-11-12 日本電気株式会社 Memory package
US6130823A (en) * 1999-02-01 2000-10-10 Raytheon E-Systems, Inc. Stackable ball grid array module and method

Cited By (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984882B2 (en) * 2002-06-21 2006-01-10 Renesas Technology Corp. Semiconductor device with reduced wiring paths between an array of semiconductor chip parts
US20030234434A1 (en) * 2002-06-21 2003-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
WO2004061962A2 (en) * 2002-12-31 2004-07-22 Massachusetts Institute Of Technology Multi-layer integrated semiconductor structure
US7307003B2 (en) 2002-12-31 2007-12-11 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure incorporating a processing handle member
US20040219765A1 (en) * 2002-12-31 2004-11-04 Rafael Reif Method of forming a multi-layer semiconductor structure incorporating a processing handle member
WO2004061962A3 (en) * 2002-12-31 2004-11-11 Massachusetts Inst Technology Multi-layer integrated semiconductor structure
US20040124538A1 (en) * 2002-12-31 2004-07-01 Rafael Reif Multi-layer integrated semiconductor structure
US7064055B2 (en) 2002-12-31 2006-06-20 Massachusetts Institute Of Technology Method of forming a multi-layer semiconductor structure having a seamless bonding interface
US20060087019A1 (en) * 2002-12-31 2006-04-27 Rafael Reif Multi-layer integrated semiconductor structure having an electrical shielding portion
US20060099796A1 (en) * 2002-12-31 2006-05-11 Rafael Reif Method of forming a multi-layer semiconductor structure having a seam-less bonding interface
US20040126994A1 (en) * 2002-12-31 2004-07-01 Rafael Reif Method of forming a multi-layer semiconductor structure having a seamless bonding interface
US7067909B2 (en) 2002-12-31 2006-06-27 Massachusetts Institute Of Technology Multi-layer integrated semiconductor structure having an electrical shielding portion
US20080064183A1 (en) * 2002-12-31 2008-03-13 Rafael Reif Method of forming a multi-layer semiconductor structure incorporating a processing handle member
EP1686623A1 (en) * 2003-10-30 2006-08-02 Japan Science and Technology Agency Semiconductor device and process for fabricating the same
US9887147B2 (en) 2003-10-30 2018-02-06 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
EP1686623A4 (en) * 2003-10-30 2007-07-11 Japan Science & Tech Agency Semiconductor device and process for fabricating the same
US9093431B2 (en) 2003-10-30 2015-07-28 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US11127657B2 (en) 2003-10-30 2021-09-21 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US20110201178A1 (en) * 2003-10-30 2011-08-18 Oki Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US20080265430A1 (en) * 2003-10-30 2008-10-30 Masamichi Ishihara Semiconductor Device an Process for Fabricating the Same
US8664666B2 (en) 2003-10-30 2014-03-04 Oki Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US10559521B2 (en) 2003-10-30 2020-02-11 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US9559041B2 (en) 2003-10-30 2017-01-31 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US7944058B2 (en) 2003-10-30 2011-05-17 Oki Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
US10199310B2 (en) 2003-10-30 2019-02-05 Lapis Semiconductor Co., Ltd. Semiconductor device and process for fabricating the same
EP1587141A2 (en) 2004-04-13 2005-10-19 Sun Microsystems, Inc. Method and apparatus involving capacitively coupled communication within a stack of laminated chips
EP1587141A3 (en) * 2004-04-13 2007-12-05 Sun Microsystems, Inc. Method and apparatus involving capacitively coupled communication within a stack of laminated chips
US7989958B2 (en) 2005-06-14 2011-08-02 Cufer Assett Ltd. L.L.C. Patterned contact
US8846445B2 (en) 2005-06-14 2014-09-30 Cufer Asset Ltd. L.L.C. Inverse chip connector
US8283778B2 (en) 2005-06-14 2012-10-09 Cufer Asset Ltd. L.L.C. Thermally balanced via
US8232194B2 (en) 2005-06-14 2012-07-31 Cufer Asset Ltd. L.L.C. Process for chip capacitive coupling
US10340239B2 (en) 2005-06-14 2019-07-02 Cufer Asset Ltd. L.L.C Tooling for coupling multiple electronic chips
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US8197626B2 (en) 2005-06-14 2012-06-12 Cufer Asset Ltd. L.L.C. Rigid-backed, membrane-based chip tooling
US8197627B2 (en) 2005-06-14 2012-06-12 Cufer Asset Ltd. L.L.C. Pin-type chip tooling
US8154131B2 (en) 2005-06-14 2012-04-10 Cufer Asset Ltd. L.L.C. Profiled contact
US20090269888A1 (en) * 2005-06-14 2009-10-29 John Trezza Chip-based thermo-stack
US8093729B2 (en) 2005-06-14 2012-01-10 Cufer Asset Ltd. L.L.C. Electrically conductive interconnect system and method
US8084851B2 (en) 2005-06-14 2011-12-27 Cufer Asset Ltd. L.L.C. Side stacking apparatus and method
US9754907B2 (en) 2005-06-14 2017-09-05 Cufer Asset Ltd. L.L.C. Tooling for coupling multiple electronic chips
US8067312B2 (en) 2005-06-14 2011-11-29 Cufer Asset Ltd. L.L.C. Coaxial through chip connection
US8053903B2 (en) 2005-06-14 2011-11-08 Cufer Asset Ltd. L.L.C. Chip capacitive coupling
US8643186B2 (en) 2005-06-14 2014-02-04 Cufer Asset Ltd. L.L.C. Processed wafer via
US9324629B2 (en) 2005-06-14 2016-04-26 Cufer Asset Ltd. L.L.C. Tooling for coupling multiple electronic chips
US7785987B2 (en) 2005-06-14 2010-08-31 John Trezza Isolating chip-to-chip contact
US7785931B2 (en) 2005-06-14 2010-08-31 John Trezza Chip-based thermo-stack
US20100219503A1 (en) * 2005-06-14 2010-09-02 John Trezza Chip capacitive coupling
US8021922B2 (en) 2005-06-14 2011-09-20 Cufer Asset Ltd. L.L.C. Remote chip attachment
US9147635B2 (en) 2005-06-14 2015-09-29 Cufer Asset Ltd. L.L.C. Contact-based encapsulation
US7969015B2 (en) 2005-06-14 2011-06-28 Cufer Asset Ltd. L.L.C. Inverse chip connector
US7946331B2 (en) 2005-06-14 2011-05-24 Cufer Asset Ltd. L.L.C. Pin-type chip tooling
US7942182B2 (en) 2005-06-14 2011-05-17 Cufer Asset Ltd. L.L.C. Rigid-backed, membrane-based chip tooling
US7808111B2 (en) 2005-06-14 2010-10-05 John Trezza Processed wafer via
US7932584B2 (en) 2005-06-14 2011-04-26 Cufer Asset Ltd. L.L.C. Stacked chip-based system and method
US7919870B2 (en) 2005-06-14 2011-04-05 Cufer Asset Ltd. L.L.C. Coaxial through chip connection
US7847412B2 (en) 2005-06-14 2010-12-07 John Trezza Isolating chip-to-chip contact
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US7884483B2 (en) 2005-06-14 2011-02-08 Cufer Asset Ltd. L.L.C. Chip connector
US20110027990A1 (en) * 2005-06-30 2011-02-03 Shinko Electric Industries Co., Ltd. Semiconductor chip and method of manufacturing the same
US8338289B2 (en) 2005-06-30 2012-12-25 Shinko Electric Industries Co., Ltd. Method of manufacturing a semiconductor chip including a semiconductor substrate and a through via provided in a through hole
US7843068B2 (en) * 2005-06-30 2010-11-30 Shinko Electric Industries Co., Ltd. Semiconductor chip and method of manufacturing the same
US20070001312A1 (en) * 2005-06-30 2007-01-04 Shinko Electric Industries Co., Ltd. Semiconductor chip and method of manufacturing the same
US20070126105A1 (en) * 2005-12-06 2007-06-07 Elpida Memory Inc. Stacked type semiconductor memory device and chip selection circuit
US8709871B2 (en) 2005-12-06 2014-04-29 Junji Yamada Stacked type semiconductor memory device and chip selection circuit
US8076764B2 (en) * 2005-12-06 2011-12-13 Elpida Memory Inc. Stacked type semiconductor memory device and chip selection circuit
US7626257B2 (en) 2006-01-18 2009-12-01 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
DE112007000267B4 (en) * 2006-01-18 2017-11-09 Infineon Technologies Ag Method for producing a semiconductor device
WO2007082854A1 (en) * 2006-01-18 2007-07-26 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
US20080083976A1 (en) * 2006-10-10 2008-04-10 Tessera, Inc. Edge connect wafer level stacking
US8022527B2 (en) 2006-10-10 2011-09-20 Tessera, Inc. Edge connect wafer level stacking
US7829438B2 (en) 2006-10-10 2010-11-09 Tessera, Inc. Edge connect wafer level stacking
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US8426957B2 (en) 2006-10-10 2013-04-23 Tessera, Inc. Edge connect wafer level stacking
US8431435B2 (en) 2006-10-10 2013-04-30 Tessera, Inc. Edge connect wafer level stacking
US20110187007A1 (en) * 2006-10-10 2011-08-04 Tessera, Inc. Edge connect wafer level stacking
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US8476774B2 (en) 2006-10-10 2013-07-02 Tessera, Inc. Off-chip VIAS in stacked chips
US20110031629A1 (en) * 2006-10-10 2011-02-10 Tessera, Inc. Edge connect wafer level stacking
US20080083977A1 (en) * 2006-10-10 2008-04-10 Tessera, Inc. Edge connect wafer level stacking
US8513789B2 (en) 2006-10-10 2013-08-20 Tessera, Inc. Edge connect wafer level stacking with leads extending along edges
US8461673B2 (en) 2006-10-10 2013-06-11 Tessera, Inc. Edge connect wafer level stacking
US9378967B2 (en) 2006-10-10 2016-06-28 Tessera, Inc. Method of making a stacked microelectronic package
US9899353B2 (en) 2006-10-10 2018-02-20 Tessera, Inc. Off-chip vias in stacked chips
US20090160065A1 (en) * 2006-10-10 2009-06-25 Tessera, Inc. Reconstituted Wafer Level Stacking
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
US8076788B2 (en) 2006-10-10 2011-12-13 Tessera, Inc. Off-chip vias in stacked chips
US20110049696A1 (en) * 2006-10-10 2011-03-03 Tessera, Inc. Off-chip vias in stacked chips
US20110033979A1 (en) * 2006-10-10 2011-02-10 Tessera, Inc. Edge connect wafer level stacking
US20110012259A1 (en) * 2006-11-22 2011-01-20 Tessera, Inc. Packaged semiconductor chips
US20080116545A1 (en) * 2006-11-22 2008-05-22 Tessera, Inc. Packaged semiconductor chips
US20080116544A1 (en) * 2006-11-22 2008-05-22 Tessera, Inc. Packaged semiconductor chips with array
US9548254B2 (en) 2006-11-22 2017-01-17 Tessera, Inc. Packaged semiconductor chips with array
US8704347B2 (en) 2006-11-22 2014-04-22 Tessera, Inc. Packaged semiconductor chips
US9070678B2 (en) 2006-11-22 2015-06-30 Tessera, Inc. Packaged semiconductor chips with array
US8653644B2 (en) 2006-11-22 2014-02-18 Tessera, Inc. Packaged semiconductor chips with array
US7791199B2 (en) 2006-11-22 2010-09-07 Tessera, Inc. Packaged semiconductor chips
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US20110230013A1 (en) * 2006-12-28 2011-09-22 Tessera, Inc. Stacked packages with bridging traces
US8349654B2 (en) 2006-12-28 2013-01-08 Tessera, Inc. Method of fabricating stacked packages with bridging traces
US7952195B2 (en) 2006-12-28 2011-05-31 Tessera, Inc. Stacked packages with bridging traces
US20080157323A1 (en) * 2006-12-28 2008-07-03 Tessera, Inc. Stacked packages
US20080171413A1 (en) * 2007-01-17 2008-07-17 International Business Machines Corporation Method of Reducing Detrimental STI-Induced Stress in MOSFET Channels
US8310036B2 (en) 2007-03-05 2012-11-13 DigitalOptics Corporation Europe Limited Chips having rear contacts connected by through vias to front contacts
US8735205B2 (en) 2007-03-05 2014-05-27 Invensas Corporation Chips having rear contacts connected by through vias to front contacts
US8405196B2 (en) 2007-03-05 2013-03-26 DigitalOptics Corporation Europe Limited Chips having rear contacts connected by through vias to front contacts
US20100225006A1 (en) * 2007-03-05 2010-09-09 Tessera, Inc. Chips having rear contacts connected by through vias to front contacts
US20080246136A1 (en) * 2007-03-05 2008-10-09 Tessera, Inc. Chips having rear contacts connected by through vias to front contacts
US8304923B2 (en) * 2007-03-29 2012-11-06 ADL Engineering Inc. Chip packaging structure
US20080237834A1 (en) * 2007-03-29 2008-10-02 Advanced Chip Engineering Technology Inc. Chip packaging structure and chip packaging process
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US8461672B2 (en) 2007-07-27 2013-06-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US20110006432A1 (en) * 2007-07-27 2011-01-13 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US20090065907A1 (en) * 2007-07-31 2009-03-12 Tessera, Inc. Semiconductor packaging process using through silicon vias
US8193615B2 (en) 2007-07-31 2012-06-05 DigitalOptics Corporation Europe Limited Semiconductor packaging process using through silicon vias
US8735287B2 (en) 2007-07-31 2014-05-27 Invensas Corp. Semiconductor packaging process using through silicon vias
US8551815B2 (en) 2007-08-03 2013-10-08 Tessera, Inc. Stack packages using reconstituted wafers
US7698470B2 (en) 2007-08-06 2010-04-13 Qimonda Ag Integrated circuit, chip stack and data processing system
US20090043917A1 (en) * 2007-08-06 2009-02-12 Thilo Wagner Electronic Circuit and Method for Selecting an Electronic Circuit
US20090039915A1 (en) * 2007-08-06 2009-02-12 Hermann Ruckerbauer Integrated Circuit, Chip Stack and Data Processing System
US20090039528A1 (en) * 2007-08-09 2009-02-12 Tessera, Inc. Wafer level stacked packages with individual chip selection
US8513794B2 (en) 2007-08-09 2013-08-20 Tessera, Inc. Stacked assembly including plurality of stacked microelectronic elements
US8043895B2 (en) 2007-08-09 2011-10-25 Tessera, Inc. Method of fabricating stacked assembly including plurality of stacked microelectronic elements
US9041218B2 (en) 2007-11-14 2015-05-26 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US20090124072A1 (en) * 2007-11-14 2009-05-14 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US8659163B2 (en) 2007-11-14 2014-02-25 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US8288278B2 (en) * 2007-11-14 2012-10-16 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US20100053407A1 (en) * 2008-02-26 2010-03-04 Tessera, Inc. Wafer level compliant packages for rear-face illuminated solid state image sensors
US20090212381A1 (en) * 2008-02-26 2009-08-27 Tessera, Inc. Wafer level packages for rear-face illuminated solid state image sensors
US7683459B2 (en) 2008-06-02 2010-03-23 Hong Kong Applied Science and Technology Research Institute Company, Ltd. Bonding method for through-silicon-via based 3D wafer stacking
US20090294916A1 (en) * 2008-06-02 2009-12-03 Hong Kong Applied Science and Technology Research Institute Company, Ltd. Bonding method for through-silicon-via based 3d wafer stacking
US9219035B2 (en) 2008-06-10 2015-12-22 Samsung Electronics Co., Ltd. Integrated circuit chips having vertically extended through-substrate vias therein
US20110086486A1 (en) * 2008-06-10 2011-04-14 Ho-Jin Lee Methods of Forming Integrated Circuit Chips Having Vertically Extended Through-Substrate Vias Therein
US8629059B2 (en) 2008-06-10 2014-01-14 Samsung Electronics Co., Ltd. Methods of forming integrated circuit chips having vertically extended through-substrate vias therein
US8680662B2 (en) 2008-06-16 2014-03-25 Tessera, Inc. Wafer level edge stacking
US20090316378A1 (en) * 2008-06-16 2009-12-24 Tessera Research Llc Wafer level edge stacking
US20110210452A1 (en) * 2008-10-30 2011-09-01 Nxp B.V. Through-substrate via and redistribution layer with metal paste
CN102197479A (en) * 2008-10-30 2011-09-21 Nxp股份有限公司 Through-substrate via and redistribution layer with metal paste
WO2010049852A1 (en) * 2008-10-30 2010-05-06 Nxp B.V. Through-substrate via and redistribution layer with metal paste
US8395267B2 (en) 2008-10-30 2013-03-12 Nxp B.V. Through-substrate via and redistribution layer with metal paste
US8487444B2 (en) * 2009-03-06 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional system-in-package architecture
TWI416693B (en) * 2009-03-06 2013-11-21 Taiwan Semiconductor Mfg Semiconductor devices and fabrication methods thereof
CN101840912A (en) * 2009-03-06 2010-09-22 台湾积体电路制造股份有限公司 Semiconductor device and manufacturing method thereof
US9099540B2 (en) * 2009-03-06 2015-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional system-in-package architecture
US20130230985A1 (en) * 2009-03-06 2013-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Three-Dimensional System-in-Package Architecture
US20100225002A1 (en) * 2009-03-06 2010-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Three-Dimensional System-in-Package Architecture
US20100230795A1 (en) * 2009-03-13 2010-09-16 Tessera Technologies Hungary Kft. Stacked microelectronic assemblies having vias extending through bond pads
US8466542B2 (en) 2009-03-13 2013-06-18 Tessera, Inc. Stacked microelectronic assemblies having vias extending through bond pads
EP2474030A1 (en) * 2009-09-02 2012-07-11 MOSAID Technologies Incorporated Using interrupted through-silicon-vias in integrated circuits adapted for stacking
US8711573B2 (en) 2009-09-02 2014-04-29 Mosaid Technologies Incorporated Using interrupted through-silicon-vias in integrated circuits adapted for stacking
EP2474030A4 (en) * 2009-09-02 2013-12-04 Mosaid Technologies Inc Using interrupted through-silicon-vias in integrated circuits adapted for stacking
US20130228920A1 (en) * 2009-09-14 2013-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer for adhesive material at wafer edge
US9997440B2 (en) * 2009-09-14 2018-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer for adhesive material at wafer edge
US8717796B2 (en) 2010-02-11 2014-05-06 Micron Technology, Inc. Memory dies, stacked memories, memory devices and methods
EP2534659A2 (en) * 2010-02-11 2012-12-19 Micron Technology, Inc. Memory dies, stacked memories, memory devices and methods
EP3852110A1 (en) * 2010-02-11 2021-07-21 Micron Technology, INC. Memory dies, stacked memories, memory devices and methods
TWI467583B (en) * 2010-02-11 2015-01-01 Micron Technology Inc Memory dies, memory devices and methods for operating the same
US8953355B2 (en) 2010-02-11 2015-02-10 Micron Technology, Inc. Memory dies, stacked memories, memory devices and methods
EP2534659A4 (en) * 2010-02-11 2013-08-28 Micron Technology Inc Memory dies, stacked memories, memory devices and methods
US8912043B2 (en) 2010-04-12 2014-12-16 Qualcomm Incorporated Dual-side interconnected CMOS for stacked integrated circuits
CN102844862B (en) * 2010-04-12 2015-07-29 高通股份有限公司 For the two-sided interconnection CMOS of stacked integrated circuit
CN102844862A (en) * 2010-04-12 2012-12-26 高通股份有限公司 Dual-side interconnected cmos for stacked integrated circuits
US8796135B2 (en) 2010-07-23 2014-08-05 Tessera, Inc. Microelectronic elements with rear contacts connected with via first or via middle structures
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US9847277B2 (en) 2010-09-17 2017-12-19 Tessera, Inc. Staged via formation from both sides of chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US8809190B2 (en) 2010-09-17 2014-08-19 Tessera, Inc. Multi-function and shielded 3D interconnects
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9362203B2 (en) 2010-09-17 2016-06-07 Tessera, Inc. Staged via formation from both sides of chip
US8610259B2 (en) 2010-09-17 2013-12-17 Tessera, Inc. Multi-function and shielded 3D interconnects
US10354942B2 (en) 2010-09-17 2019-07-16 Tessera, Inc. Staged via formation from both sides of chip
US9312031B2 (en) 2010-10-13 2016-04-12 Ps4 Luxco S.A.R.L. Semiconductor device and test method thereof
US8848473B2 (en) 2010-10-13 2014-09-30 Ps4 Luxco S.A.R.L. Semiconductor device and test method thereof
US8593891B2 (en) 2010-10-13 2013-11-26 Elpida Memory, Inc. Semiconductor device and test method thereof
US8432045B2 (en) 2010-11-15 2013-04-30 Tessera, Inc. Conductive pads defined by embedded traces
US8772908B2 (en) 2010-11-15 2014-07-08 Tessera, Inc. Conductive pads defined by embedded traces
US9252081B2 (en) 2010-11-30 2016-02-02 Ps4 Luxco S.A.R.L. Semiconductor device having plural memory chip
US8924903B2 (en) 2010-11-30 2014-12-30 Ps4 Luxco S.A.R.L. Semiconductor device having plural memory chip
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US8587126B2 (en) 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US9368476B2 (en) 2010-12-02 2016-06-14 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US9620437B2 (en) 2010-12-02 2017-04-11 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip
US8637968B2 (en) 2010-12-02 2014-01-28 Tessera, Inc. Stacked microelectronic assembly having interposer connecting active chips
US9224649B2 (en) 2010-12-08 2015-12-29 Tessera, Inc. Compliant interconnects in wafers
US8796828B2 (en) 2010-12-08 2014-08-05 Tessera, Inc. Compliant interconnects in wafers
US8610264B2 (en) 2010-12-08 2013-12-17 Tessera, Inc. Compliant interconnects in wafers
EP2546873A3 (en) * 2011-06-14 2013-05-29 Elpida Memory, Inc. Semiconductor device
US9035444B2 (en) 2011-06-14 2015-05-19 Ps4 Luxco S.A.R.L. Semiconductor device having penetration electrodes penetrating through semiconductor chip
US9356000B2 (en) * 2012-12-20 2016-05-31 SK Hynix Inc. Semiconductor integrated circuit and semiconductor system with the same
CN103887288A (en) * 2012-12-20 2014-06-25 爱思开海力士有限公司 Semiconductor Integrated Circuit And Semiconductor System With The Same
US20140175667A1 (en) * 2012-12-20 2014-06-26 SK Hynix Inc. Semiconductor integrated circuit and semiconductor system with the same
TWI588882B (en) * 2013-09-13 2017-06-21 財團法人工業技術研究院 Thinned integrated circuit device and manufacturing process for the same
CN104465567A (en) * 2013-09-24 2015-03-25 南亚科技股份有限公司 Chip package and method for forming the same
CN104779218A (en) * 2014-01-15 2015-07-15 南亚科技股份有限公司 Chip package
US10790266B2 (en) 2016-09-23 2020-09-29 Toshiba Memory Corporation Memory device with a plurality of stacked memory core chips
US10811393B2 (en) 2016-09-23 2020-10-20 Toshiba Memory Corporation Memory device
US11270981B2 (en) 2016-09-23 2022-03-08 Kioxia Corporation Memory device
US20190259725A1 (en) * 2017-07-21 2019-08-22 United Microelectronics Corp. Manufacturing method of die-stack structure
JP2019102744A (en) * 2017-12-07 2019-06-24 日本放送協会 Stacked semiconductor device
CN115799230A (en) * 2023-02-08 2023-03-14 深圳时识科技有限公司 Stacked chip and electronic device

Also Published As

Publication number Publication date
JP4519392B2 (en) 2010-08-04
KR100364635B1 (en) 2002-12-16
KR20020066095A (en) 2002-08-14
JP2002305283A (en) 2002-10-18
US6448661B1 (en) 2002-09-10

Similar Documents

Publication Publication Date Title
US6448661B1 (en) Three-dimensional multi-chip package having chip selection pads and manufacturing method thereof
US6822316B1 (en) Integrated circuit with improved interconnect structure and process for making same
CN1983533B (en) Method for packaging a semiconductor device
US8741762B2 (en) Through silicon via dies and packages
US6908785B2 (en) Multi-chip package (MCP) with a conductive bar and method for manufacturing the same
US6075712A (en) Flip-chip having electrical contact pads on the backside of the chip
US8367472B2 (en) Method of fabricating a 3-D device
US6962867B2 (en) Methods of fabrication of semiconductor dice having back side redistribution layer accessed using through-silicon vias and assemblies thereof
US5977640A (en) Highly integrated chip-on-chip packaging
US7145228B2 (en) Microelectronic devices
US8138021B2 (en) Apparatus for packaging semiconductor devices, packaged semiconductor components, methods of manufacturing apparatus for packaging semiconductor devices, and methods of manufacturing semiconductor components
TW201923984A (en) Semiconductor package and method of forming same
US20020074637A1 (en) Stacked flip chip assemblies
TW202109782A (en) Semiconductor package and manufacturing method thereof
US7030466B1 (en) Intermediate structure for making integrated circuit device and wafer
TW202117952A (en) Semiconductor packages and method of manufacture
JP2015523740A (en) Reconfigured wafer level microelectronic package
US7595268B2 (en) Semiconductor package having re-distribution lines for supplying power and a method for manufacturing the same
US7179740B1 (en) Integrated circuit with improved interconnect structure and process for making same
US9893037B1 (en) Multi-chip semiconductor package, vertically-stacked devices and manufacturing thereof
TW202238907A (en) Package structure and methods of manufacturing the same
US7468550B2 (en) High-performance semiconductor package
US11749629B2 (en) High-speed die connections using a conductive insert
WO2024053103A1 (en) Ic bridge, ic module, and method for manufacturing ic module
TWI779917B (en) Semiconductor package and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, HYEONG-SEOB;KANG, SA-YOON;CHUNG, MYUNG-KEE;AND OTHERS;REEL/FRAME:012561/0421;SIGNING DATES FROM 20020117 TO 20020119

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12