US20020108202A1 - Device and method for cleaning an elongated record medium - Google Patents

Device and method for cleaning an elongated record medium Download PDF

Info

Publication number
US20020108202A1
US20020108202A1 US10/119,482 US11948202A US2002108202A1 US 20020108202 A1 US20020108202 A1 US 20020108202A1 US 11948202 A US11948202 A US 11948202A US 2002108202 A1 US2002108202 A1 US 2002108202A1
Authority
US
United States
Prior art keywords
film
air
medium
solvent
record medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/119,482
Inventor
Hans Leisinger
George Rowland
Colin Mossman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deluxe Laboratories Inc
Original Assignee
Deluxe Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deluxe Laboratories Inc filed Critical Deluxe Laboratories Inc
Priority to US10/119,482 priority Critical patent/US20020108202A1/en
Publication of US20020108202A1 publication Critical patent/US20020108202A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D15/00Apparatus for treating processed material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/50Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges
    • G11B23/502Reconditioning of record carriers; Cleaning of record carriers ; Carrying-off electrostatic charges of tape carriers

Definitions

  • This invention relates to devices and methods for cleaning an elongated record medium, and particularly to devices and methods for cleaning motion picture film.
  • the spray is a mist and the amount sprayed onto the film is relatively small.
  • the record medium or film is dried by the use of a heated air stream.
  • the record medium or film be treated with a stream of ionized air to reduce or eliminate static electricity which might attract dirt and dust particles.
  • the air stream preferably is heated to simultaneously dry and ionize the record medium.
  • Another preferred feature of the invention is the provision of a blower and vacuum combination which are used to clean dirt particles from the sprocket holes of motion picture film.
  • a further feature of the invention is the enclosure of the cleaning device in a closed housing, removing air from the housing through a vacuum system, and sending the solvent-laden air to a still to recover solvent.
  • This arrangement not only reduces usage of the solvent, but it also greatly reduces or eliminates noxious odors and emissions from the cleaning device into the air surrounding it.
  • the device used for wiping the film after it is sprayed is a rotary buffing wheel with a soft, replaceable velvet surface.
  • FIG. 1 is front elevation view, partially schematic, of a cleaning device constructed in accordance with the present invention
  • FIG. 2 is a cross-sectional view of one of the “air knife” devices shown in FIG. 1;
  • FIG. 3 is an enlarged front elevation view of one of the spraying devices used in FIG. 1;
  • FIG. 4 is a cross-sectional, partially schematic and partially broken-away view taken along line 4 - 4 of FIG. 1;
  • FIGS. 5 and 6 are cross-sectional views of portions of the structure shown in FIGS. 1 and 4;
  • FIG. 7 is a top plan view of a component of the structure shown in FIGS. 1 and 4;
  • FIG. 8 is a partially cross-sectional, partially schematic view of one of the buffing wheels shown in FIG. 1;
  • FIG. 9 is a front elevation view of a component of the buffing wheel of FIGS. 1 and 8;
  • FIG. 10 is a left end elevation view of the buffing wheel shown in FIG. 8.
  • the preferred cleaning device of the present invention is indicated generally at 10 in FIG. 1.
  • the cleaning device 10 includes a housing 11 separated into two compartments by a vertical wall 12 .
  • the housing 11 preferably is air tight, or nearly so, so as to keep any noxious fumes within the housing where they can be removed by an evacuation system to be described below.
  • the front of the housing 10 preferably has transparent front hinged doors.
  • a reel 14 which is rotatably mounted in the housing and stores motion picture film to be cleaned; that is, dirty film. Clean film is stored in a roll 16 , which is driven by a motor (not shown) to take up the film which has been cleaned.
  • Film 18 to be cleaned passes through a restricted opening in the wall 12 to the cleaning mechanism which is in the left-hand compartment. It is pulled from the reel 14 by means of the sprocket wheel 116 in the upper portion of the cabinet.
  • the film 18 passes through a pair of guide rollers 20 and 22 , and another pair of guide rollers 24 and 26 to a first location at which a liquid cleaning material is sprayed onto the upper surface of the film by a first sprayer 34 .
  • Three other sprayers 38 , 50 and 62 also are provided for spraying solvent onto the film.
  • Each of these sprayers preferably is an ordinary artist's air brush which is set and adjusted to produce a fine mist of liquid solvent such as perchloroethylene which is sprayed sparingly on the surface of the film.
  • first buffing wheel 28 Near the location at which cleaning solution is sprayed on the upper surface of the film is a first buffing wheel 28 .
  • buffing wheels 40 , 58 and 64 are three other buffing wheels 40 , 58 and 64 , each of which also is located closely following one of the sprayers.
  • Each of the buffing wheels 28 , 40 , 52 and 64 has a soft, absorbent surface such as that provided by velvet sleeve which contacts the film.
  • Each buffing wheel is rotated in a counterclockwise direction so that its surface moves in a direction opposite to the movement of the film.
  • each of the velvet sleeves on the buffing wheels removes dirt which is loosened by the solvent. After a certain period of use, the velvet becomes dirty, and the sleeve can be replaced with a clean one.
  • the film moves past the first buffing wheel 28 , it passes between rollers 30 and 32 , and a roller 36 opposite a point where the underside of the film is sprayed by the sprayer 38 . Then, the buffing wheel 40 buffs the undersurface of the film to remove dirt.
  • the film then passes through guide rollers 42 and 44 and 46 and 48 to a third location where solvent is sprayed on the upper surface of the film for a second time, by the sprayer 50 .
  • the buffing wheel 58 then buffs the upper surface of the film for a second time.
  • the film then passes between guide rollers 54 and 56 , and over roller 60 , to a fourth location at which the underside of the film is sprayed a second time by the sprayer 62 .
  • the underside then is buffed by the buffing wheel 64 .
  • the first two buffing wheels 28 and 40 serve to remove most of the dirt from the film, and the buffing wheels 58 and 64 remove the remainder.
  • the film After leaving the sprayers and buffing wheels, the film passes between guide rollers 66 and 68 and 70 and 72 and 74 upwardly through the first of two so-called “air knives” 76 and 88 .
  • the first of the air knives 76 has air spraying heads 78 and 80 which deliver very thin jets of air extending across the width of the film against both sides of the film, as it will explained in greater detail in connection with FIG. 2 of the drawings. These thin jets of air tend to smooth out any liquid cleaning material on the film, making the liquid coating relatively uniform and promoting uniform drying.
  • the film passes upwardly over guide rollers 82 , 84 and 86 to the second air knife 88 where the air sprayers 89 and 91 deliver a second thin jet of air across the film for providing a final smoothing of any liquid coating remaining on the motion picture film.
  • the film passes over guide rollers 90 , 92 and 94 to a drying unit 96 .
  • each of the slotted conduits 95 and 97 delivers plural jets of heated, ionized air, as indicated at 98 and 100 in a direction counter to the movement of the film to dry and ionize the film to remove static electricity.
  • the film After leaving the drier, the film passes through guide roller pairs 106 and 108 upwardly past a blower 112 on one side of the film, and a vacuum device 110 on the opposite side of the film.
  • the blower 112 blows ionized air towards the film, and the vacuum device 110 carries the air away. This serves to clean out any dust particles which might remain in the sprocket holes of the film, and further reduce static electricity.
  • any overspray from the sprayers and fumes caused by evaporation of the cleaning liquid are kept within the housing 11 and are drawn downwardly through a grille 126 in the bottom of the left hand compartment, as indicated by the arrows near the bottom of the housing.
  • the fumes and air from within the housing enter an airtight compartment 128 from which the air is exhausted through a hole 130 by a suitable vacuum source, such as the “house” vacuum source which commonly is available in industrial facilities.
  • the air and fumes then are delivered through an exhaust conduit 132 to a still 134 of a known variety which recaptures the liquid entrained in the air. By this means, up to 80% of the cleaning liquid is recovered.
  • This feature of the invention is doubly advantageous in that it greatly reduces the usage of cleaning liquids, such as percholoroethylene, and simultaneously largely or entirely prevents any unpleasant fumes from escaping into the surrounding atmosphere.
  • the cleaning device 10 is capable of operating at very high speeds. For example, a speed in excess of 250 feet per minute is readily available when cleaning motion picture film. This is believed to be around three times faster than some of the most widely used prior art cleaning devices.
  • the device 10 is versatile, in that it can be used to clean elongated record media other than motion picture film. It can be used with a variety of different cleaning solutions. However, it is used to best advantage with relatively slow-drying liquids such as percholoroethylene.
  • the invention can be used to clean a wide variety of different types of film, in various forms. For example, it can be used to clean raw film stock, negative film, both that bearing picture images, and that bearing sound only, as well as fully developed film, that is, release prints with both picture and sound information recorded on it.
  • FIG. 2 is a cross-section taken through two metal tubes 78 and 80 .
  • Each of the tubes 78 and 80 has a wall 136 or 148 , with a top plate 140 or 150 , and fasteners 138 or 152 attaching the top plate 150 or 140 to the body of the tube.
  • a hole 144 or 146 allows the entry of pressurized air into the tube.
  • Each tube has a very narrow slit 141 whose width is only 0.002 inches (two thousandths of an inch).
  • the tubes 78 and 80 are mounted so that the slots 148 create very thin air streams pointed downwardly at a angle of about 45° with the film 18 .
  • the slit 141 extends across the full width of the film.
  • these thin air streams tend to smooth out any liquid on each surface of the film so as to minimize streaking, spotting or mottling when the film passes through the dryer 96 .
  • FIG. 3 is a front elevation view of one of the sprayers 34 shown in FIG. 1. It is an ordinary artist's air brush sprayer, modified so as to enable it to be mounted on the back panel 170 of the structure shown in FIG. 1 and supplied with liquid solvent and pressurized air.
  • the air brushes can be one of a variety of brands, the air brushes which have been used in a successfully tested embodiment of the invention are sold under the trademark Paasche by the Paasche Air Brush Company of Harwood Heights, Ill. It is called a “single-action, external mix air brush”.
  • Cleaning liquid is supplied from a liquid supply tank (not shown) behind the back panel 170 through a hole in the back panel and an inlet conduit 168 to an injection nozzle 158 having a needle valve 159 .
  • the needle valve within the structure 158 controls the amount of liquid being sprayed.
  • the sprayer also has a body 156 and a tip 160 through which air flows. A fine mist 162 is produced at the outlet.
  • a manifold 169 is provided, with an air inlet tube 166 entering the manifold to supply air at around 15 to 30 psi, and a mounting post 164 secures the sprayer to the back panel 170 .
  • the amount of liquid to be sprayed onto the film is set at about the minimum amount that will provide sufficient lubricity to prevent scratching by the buffing wheels.
  • the amount of liquid preferably is less than that which causes the liquid to “run”.
  • the manner in which the spray level is set for a particular film to be cleaned is that a sample of the film is run through the cleaning system with the spray set at a given level. If the level is too low, minute scratches will appear on the film. Then, the amount of liquid is increased until, on a test sample, the scratches do not appear any more.
  • FIG. 8 shows one of the buffing wheels, partly in cross-section.
  • the wheel includes an inner hub 198 with a layer of sponge 196 wrapped around it, and a velvet sleeve 194 on the surface of the sponge.
  • the buffing wheel 28 has a pair of flanges, a front flange 192 and a rear flange 193 . It has a drive shaft 195 which is rotated by a drive motor, shown schematically at 200 , which is mounted on the rear side of the back panel 170 .
  • FIG. 9 shows the velvet sleeve 194 . It consists of a sleeve made out of velvet material which is “bi-directional”. That is, the very soft bristles of the material are as effective in brushing in one direction as in the other, so that it does not matter which end of the sleeve is slipped onto the buffing wheel first.
  • the velvet fibers tend to softly brush the surface of the film to remove dirt particles loosened by the cleaning liquid.
  • Elastic bands 202 and 204 are located at the ends of the sleeve to hold it onto the sponge support surface.
  • the sponge is provided primarily for its cushioning effect.
  • the velvet sleeve usually does not become saturated with liquid during the normal operation of the cleaning device 10 . This also applies to the sponge material 196 . One reason for this is that cleaning liquid applied to the film very sparingly.
  • the dryer 96 of the invention is shown in cross-section in FIG. 4, as well as in a front elevation view in FIG. 1. It includes a first housing 177 which is generally air tight, with the exception of restricted inlet and outlet openings for the film to pass through, and an air inlet opening 172 .
  • the housing 177 is secured to the front of the panel 170 . Preferably, it has a transparent front cover 171 .
  • the drying device also includes a rear housing 178 mounted on the rear of the panel 170 in communication with the housing 177 through the large rectangular inlet opening 172 (also see FIG. 1).
  • FIG. 4 Only one of the vertical slotted conduits 95 and 97 is shown in FIG. 4.
  • a top plan view of the element 95 also is shown in FIG. 7. As it can be seen, it is metal channel with a plurality of slots 174 cut in both side walls (also see FIG. 6). The slots are slanted upwardly as shown in FIG. 6 so as to create air jets which impinge against the film 18 in a direction opposite to the direction of movement of the film.
  • the slots in the side walls of the conduit 97 are angled downwardly so as to impinge against the film 18 in a direction opposite to its movement. This maximizes the drying action of the dryer.
  • the open sides of the channels 95 and 97 abut against the front panel 171 of the housing 177 so as to close the channel and form a conduit which is open only at its ends and through the air slots in its sides.
  • an electrical resistance heater 176 is provided in the housing 178 behind the opening 172 to heat air produced by an air supply indicated generally at 181 .
  • the air supply includes a conduit 184 connected to deliver air through an opening 180 in the housing 178 flowing towards the heating element 176 .
  • the air supply includes an “air amplifier” 186 which is supplied with compressed air through an inlet 188 and takes in atmospheric air through an air filter 190 .
  • the device 181 is a known device which typically is used to deliver ionized air for use in painting automobiles or other industrial applications.
  • the air delivered by the device 180 is heated by the heating elements 176 and flows through the opening 172 to the housing 177 , and then through the slots 174 to impinge against and dry the film 18 .
  • the temperature to which the air is heated is variable and can be selected to give the maximum amount of drying without heating the film or other record medium to a temperature so high that the medium is damaged.
  • a second ionization process occurs within the blower 112 , and this can be done by ionizing the air as with the device 181 . Once again, if any static electricity has built up in the film, it is reduced or eliminated by the ionized air. Then, the vacuum device removes the particles from the film, and particularly the sprocket holes in the film.
  • the result is very clean film which has been cleaned at a very high rate of speed.
  • raw film stock, release prints and other such media can be cleaned at similarly high speeds.

Abstract

The device sprays a mist of cleaning fluid onto the record medium—e.g., motion picture film—and wipes it off, preferably with a soft material such as velvet. Then, the film is dried with air, including thin air jets to spread the liquid evenly, and heated, ionized air. The device has a closed housing and air in the housing is evacuated and sent to a still to recover much of the cleaning liquid and prevent its escape into the atmosphere.

Description

  • This invention relates to devices and methods for cleaning an elongated record medium, and particularly to devices and methods for cleaning motion picture film. [0001]
  • In the cleaning of motion picture film, some of the problems that exist are that existing equipment and methods often are too slow, they often use too much expensive cleaning liquid, and sometimes they create noxious odors and emissions. [0002]
  • It is an object of this invention to eliminate or alleviate the foregoing problems. [0003]
  • More specifically, it is an object of the present invention to provide a cleaning device and method which cleans an elongated record medium such as motion picture film at a relatively high speed. [0004]
  • It is another object of the invention to provide such a device and method which utilizes relatively small quantities of cleaning liquid. [0005]
  • It is a further object of the invention to provide such a device and method which leave the record medium very clean and do not scratch or otherwise damage its surface. [0006]
  • It is an additional object of the invention to provide such a device and method in which the emission of fumes is greatly reduced or eliminated. [0007]
  • In accordance with the present invention, the foregoing objectives are met by the provision of a device and method in which a liquid solvent is sprayed onto the surface of the record medium, and then wiped off and the surface of the record medium is dried. [0008]
  • Preferably, the spray is a mist and the amount sprayed onto the film is relatively small. The record medium or film is dried by the use of a heated air stream. [0009]
  • It also is preferred that, prior to drying, thin jets of air are used to spread the liquid solvent on the surface of the motion picture film evenly, thereby avoiding streaking and spotting. [0010]
  • It also is preferred that the record medium or film be treated with a stream of ionized air to reduce or eliminate static electricity which might attract dirt and dust particles. The air stream preferably is heated to simultaneously dry and ionize the record medium. [0011]
  • Another preferred feature of the invention is the provision of a blower and vacuum combination which are used to clean dirt particles from the sprocket holes of motion picture film. [0012]
  • A further feature of the invention is the enclosure of the cleaning device in a closed housing, removing air from the housing through a vacuum system, and sending the solvent-laden air to a still to recover solvent. This arrangement not only reduces usage of the solvent, but it also greatly reduces or eliminates noxious odors and emissions from the cleaning device into the air surrounding it. [0013]
  • It also is preferred that the device used for wiping the film after it is sprayed is a rotary buffing wheel with a soft, replaceable velvet surface. [0014]
  • The foregoing and other objects and advantages of the invention are set forth in or will be apparent from the following descriptions and drawings.[0015]
  • IN THE DRAWINGS
  • FIG. 1 is front elevation view, partially schematic, of a cleaning device constructed in accordance with the present invention; [0016]
  • FIG. 2 is a cross-sectional view of one of the “air knife” devices shown in FIG. 1; [0017]
  • FIG. 3 is an enlarged front elevation view of one of the spraying devices used in FIG. 1; [0018]
  • FIG. 4 is a cross-sectional, partially schematic and partially broken-away view taken along line [0019] 4-4 of FIG. 1;
  • FIGS. 5 and 6 are cross-sectional views of portions of the structure shown in FIGS. 1 and 4; [0020]
  • FIG. 7 is a top plan view of a component of the structure shown in FIGS. 1 and 4; [0021]
  • FIG. 8 is a partially cross-sectional, partially schematic view of one of the buffing wheels shown in FIG. 1; [0022]
  • FIG. 9 is a front elevation view of a component of the buffing wheel of FIGS. 1 and 8; and [0023]
  • FIG. 10 is a left end elevation view of the buffing wheel shown in FIG. 8.[0024]
  • GENERAL DESCRIPTION
  • The preferred cleaning device of the present invention is indicated generally at [0025] 10 in FIG. 1.
  • The [0026] cleaning device 10 includes a housing 11 separated into two compartments by a vertical wall 12. The housing 11 preferably is air tight, or nearly so, so as to keep any noxious fumes within the housing where they can be removed by an evacuation system to be described below. The front of the housing 10 preferably has transparent front hinged doors.
  • In the right-hand compartment of the housing is located a reel [0027] 14 which is rotatably mounted in the housing and stores motion picture film to be cleaned; that is, dirty film. Clean film is stored in a roll 16, which is driven by a motor (not shown) to take up the film which has been cleaned.
  • [0028] Film 18 to be cleaned passes through a restricted opening in the wall 12 to the cleaning mechanism which is in the left-hand compartment. It is pulled from the reel 14 by means of the sprocket wheel 116 in the upper portion of the cabinet.
  • The [0029] film 18 passes through a pair of guide rollers 20 and 22, and another pair of guide rollers 24 and 26 to a first location at which a liquid cleaning material is sprayed onto the upper surface of the film by a first sprayer 34. Three other sprayers 38, 50 and 62 also are provided for spraying solvent onto the film.
  • Each of these sprayers preferably is an ordinary artist's air brush which is set and adjusted to produce a fine mist of liquid solvent such as perchloroethylene which is sprayed sparingly on the surface of the film. [0030]
  • Near the location at which cleaning solution is sprayed on the upper surface of the film is a [0031] first buffing wheel 28. There are three other buffing wheels 40, 58 and 64, each of which also is located closely following one of the sprayers.
  • Each of the [0032] buffing wheels 28, 40, 52 and 64 has a soft, absorbent surface such as that provided by velvet sleeve which contacts the film. Each buffing wheel is rotated in a counterclockwise direction so that its surface moves in a direction opposite to the movement of the film.
  • The surface of each of the velvet sleeves on the buffing wheels removes dirt which is loosened by the solvent. After a certain period of use, the velvet becomes dirty, and the sleeve can be replaced with a clean one. [0033]
  • After the film moves past the [0034] first buffing wheel 28, it passes between rollers 30 and 32, and a roller 36 opposite a point where the underside of the film is sprayed by the sprayer 38. Then, the buffing wheel 40 buffs the undersurface of the film to remove dirt.
  • The film then passes through [0035] guide rollers 42 and 44 and 46 and 48 to a third location where solvent is sprayed on the upper surface of the film for a second time, by the sprayer 50. The buffing wheel 58 then buffs the upper surface of the film for a second time.
  • The film then passes between [0036] guide rollers 54 and 56, and over roller 60, to a fourth location at which the underside of the film is sprayed a second time by the sprayer 62. The underside then is buffed by the buffing wheel 64.
  • The first two [0037] buffing wheels 28 and 40 serve to remove most of the dirt from the film, and the buffing wheels 58 and 64 remove the remainder.
  • After leaving the sprayers and buffing wheels, the film passes between [0038] guide rollers 66 and 68 and 70 and 72 and 74 upwardly through the first of two so-called “air knives” 76 and 88. The first of the air knives 76 has air spraying heads 78 and 80 which deliver very thin jets of air extending across the width of the film against both sides of the film, as it will explained in greater detail in connection with FIG. 2 of the drawings. These thin jets of air tend to smooth out any liquid cleaning material on the film, making the liquid coating relatively uniform and promoting uniform drying.
  • The film passes upwardly over [0039] guide rollers 82, 84 and 86 to the second air knife 88 where the air sprayers 89 and 91 deliver a second thin jet of air across the film for providing a final smoothing of any liquid coating remaining on the motion picture film.
  • Next, the film passes over [0040] guide rollers 90, 92 and 94 to a drying unit 96.
  • The film passes downwardly through a first slotted [0041] conduit 95 in the drying unit, downwardly out of the heating unit 96 through guide roller pairs 102 and 104, and upwardly through a second slotted conduit 97. As it will be explained in greater detail below, each of the slotted conduits 95 and 97 delivers plural jets of heated, ionized air, as indicated at 98 and 100 in a direction counter to the movement of the film to dry and ionize the film to remove static electricity.
  • After leaving the drier, the film passes through [0042] guide roller pairs 106 and 108 upwardly past a blower 112 on one side of the film, and a vacuum device 110 on the opposite side of the film. The blower 112 blows ionized air towards the film, and the vacuum device 110 carries the air away. This serves to clean out any dust particles which might remain in the sprocket holes of the film, and further reduce static electricity.
  • The film now moves upwardly through the [0043] guide roller pair 114 over the sprocket wheel 116, which pulls the film through the cleaning system, downwardly over a guide roller 120, passing through a restricted opening in the wall 112, over guide rollers 122 and 124, and onto the roll 16.
  • Any overspray from the sprayers and fumes caused by evaporation of the cleaning liquid are kept within the [0044] housing 11 and are drawn downwardly through a grille 126 in the bottom of the left hand compartment, as indicated by the arrows near the bottom of the housing. The fumes and air from within the housing enter an airtight compartment 128 from which the air is exhausted through a hole 130 by a suitable vacuum source, such as the “house” vacuum source which commonly is available in industrial facilities. The air and fumes then are delivered through an exhaust conduit 132 to a still 134 of a known variety which recaptures the liquid entrained in the air. By this means, up to 80% of the cleaning liquid is recovered.
  • This feature of the invention is doubly advantageous in that it greatly reduces the usage of cleaning liquids, such as percholoroethylene, and simultaneously largely or entirely prevents any unpleasant fumes from escaping into the surrounding atmosphere. [0045]
  • The [0046] cleaning device 10 is capable of operating at very high speeds. For example, a speed in excess of 250 feet per minute is readily available when cleaning motion picture film. This is believed to be around three times faster than some of the most widely used prior art cleaning devices.
  • Although most motion picture film is made of polyester, the [0047] device 10 is versatile, in that it can be used to clean elongated record media other than motion picture film. It can be used with a variety of different cleaning solutions. However, it is used to best advantage with relatively slow-drying liquids such as percholoroethylene.
  • The invention can be used to clean a wide variety of different types of film, in various forms. For example, it can be used to clean raw film stock, negative film, both that bearing picture images, and that bearing sound only, as well as fully developed film, that is, release prints with both picture and sound information recorded on it. [0048]
  • Air Knives
  • Although the [0049] air knives 76 and 88 are known for use in film cleaning, their operation will be explained in some detail, with reference to FIG. 2.
  • FIG. 2 is a cross-section taken through two [0050] metal tubes 78 and 80. Each of the tubes 78 and 80 has a wall 136 or 148, with a top plate 140 or 150, and fasteners 138 or 152 attaching the top plate 150 or 140 to the body of the tube.
  • A [0051] hole 144 or 146 allows the entry of pressurized air into the tube.
  • Each tube has a very narrow slit [0052] 141 whose width is only 0.002 inches (two thousandths of an inch). The tubes 78 and 80 are mounted so that the slots 148 create very thin air streams pointed downwardly at a angle of about 45° with the film 18. The slit 141 extends across the full width of the film.
  • As noted above, these thin air streams tend to smooth out any liquid on each surface of the film so as to minimize streaking, spotting or mottling when the film passes through the [0053] dryer 96.
  • Sprayers and Spray Control
  • FIG. 3 is a front elevation view of one of the [0054] sprayers 34 shown in FIG. 1. It is an ordinary artist's air brush sprayer, modified so as to enable it to be mounted on the back panel 170 of the structure shown in FIG. 1 and supplied with liquid solvent and pressurized air.
  • Although the air brushes can be one of a variety of brands, the air brushes which have been used in a successfully tested embodiment of the invention are sold under the trademark Paasche by the Paasche Air Brush Company of Harwood Heights, Ill. It is called a “single-action, external mix air brush”. [0055]
  • Cleaning liquid is supplied from a liquid supply tank (not shown) behind the [0056] back panel 170 through a hole in the back panel and an inlet conduit 168 to an injection nozzle 158 having a needle valve 159. By turning the knob 159, the needle valve within the structure 158 controls the amount of liquid being sprayed. The sprayer also has a body 156 and a tip 160 through which air flows. A fine mist 162 is produced at the outlet.
  • A [0057] manifold 169 is provided, with an air inlet tube 166 entering the manifold to supply air at around 15 to 30 psi, and a mounting post 164 secures the sprayer to the back panel 170.
  • The amount of liquid to be sprayed onto the film is set at about the minimum amount that will provide sufficient lubricity to prevent scratching by the buffing wheels. The amount of liquid preferably is less than that which causes the liquid to “run”. [0058]
  • The manner in which the spray level is set for a particular film to be cleaned is that a sample of the film is run through the cleaning system with the spray set at a given level. If the level is too low, minute scratches will appear on the film. Then, the amount of liquid is increased until, on a test sample, the scratches do not appear any more. [0059]
  • Buffing Wheels
  • FIG. 8 shows one of the buffing wheels, partly in cross-section. The wheel includes an [0060] inner hub 198 with a layer of sponge 196 wrapped around it, and a velvet sleeve 194 on the surface of the sponge.
  • The [0061] buffing wheel 28 has a pair of flanges, a front flange 192 and a rear flange 193. It has a drive shaft 195 which is rotated by a drive motor, shown schematically at 200, which is mounted on the rear side of the back panel 170.
  • FIG. 9 shows the [0062] velvet sleeve 194. It consists of a sleeve made out of velvet material which is “bi-directional”. That is, the very soft bristles of the material are as effective in brushing in one direction as in the other, so that it does not matter which end of the sleeve is slipped onto the buffing wheel first. The velvet fibers tend to softly brush the surface of the film to remove dirt particles loosened by the cleaning liquid.
  • [0063] Elastic bands 202 and 204 are located at the ends of the sleeve to hold it onto the sponge support surface.
  • In replacing the sleeves, three screws [0064] 195 (FIG. 10) are removed to remove the outer flange 192 so that the old sleeve can be removed and replaced with a clean one, and the flange 192 is replaced.
  • The sponge is provided primarily for its cushioning effect. [0065]
  • Surprisingly, the velvet sleeve usually does not become saturated with liquid during the normal operation of the [0066] cleaning device 10. This also applies to the sponge material 196. One reason for this is that cleaning liquid applied to the film very sparingly.
  • Dryer
  • The [0067] dryer 96 of the invention is shown in cross-section in FIG. 4, as well as in a front elevation view in FIG. 1. It includes a first housing 177 which is generally air tight, with the exception of restricted inlet and outlet openings for the film to pass through, and an air inlet opening 172. The housing 177 is secured to the front of the panel 170. Preferably, it has a transparent front cover 171.
  • The drying device also includes a [0068] rear housing 178 mounted on the rear of the panel 170 in communication with the housing 177 through the large rectangular inlet opening 172 (also see FIG. 1).
  • Only one of the vertical slotted [0069] conduits 95 and 97 is shown in FIG. 4. A top plan view of the element 95 also is shown in FIG. 7. As it can be seen, it is metal channel with a plurality of slots 174 cut in both side walls (also see FIG. 6). The slots are slanted upwardly as shown in FIG. 6 so as to create air jets which impinge against the film 18 in a direction opposite to the direction of movement of the film. Similarly, as it is shown in FIG. 5, the slots in the side walls of the conduit 97 are angled downwardly so as to impinge against the film 18 in a direction opposite to its movement. This maximizes the drying action of the dryer.
  • As it can be seen in FIG. 7, the open sides of the [0070] channels 95 and 97 abut against the front panel 171 of the housing 177 so as to close the channel and form a conduit which is open only at its ends and through the air slots in its sides.
  • Referring again to FIG. 4, an [0071] electrical resistance heater 176 is provided in the housing 178 behind the opening 172 to heat air produced by an air supply indicated generally at 181.
  • The air supply includes a [0072] conduit 184 connected to deliver air through an opening 180 in the housing 178 flowing towards the heating element 176.
  • In the side of the [0073] conduit 184 is an electrical ionizing element 182 of known construction. The air supply includes an “air amplifier” 186 which is supplied with compressed air through an inlet 188 and takes in atmospheric air through an air filter 190.
  • The [0074] air amplifier 186 is of a known construction which uses compressed air to create an amplified volume of air flowing at a substantial velocity through the outlet conduit 184. It is sometimes referred to as an “air cannon”, when used in combination with the ionizer 182.
  • The [0075] device 181 is a known device which typically is used to deliver ionized air for use in painting automobiles or other industrial applications.
  • The air delivered by the [0076] device 180 is heated by the heating elements 176 and flows through the opening 172 to the housing 177, and then through the slots 174 to impinge against and dry the film 18.
  • The temperature to which the air is heated is variable and can be selected to give the maximum amount of drying without heating the film or other record medium to a temperature so high that the medium is damaged. [0077]
  • Although it is believed that prior cleaning devices have used ionization to reduce static electricity in the film, it is believed that this has been done in the past by a combination of electric fields with brushes. This is disadvantageous, because the brushes tend to scratch the film. In the present invention, by contrast, there is no mechanical brushing of the film. Instead, only air is used to dislodge particles released by the ionization process. [0078]
  • A second ionization process occurs within the [0079] blower 112, and this can be done by ionizing the air as with the device 181. Once again, if any static electricity has built up in the film, it is reduced or eliminated by the ionized air. Then, the vacuum device removes the particles from the film, and particularly the sprocket holes in the film.
  • The result is very clean film which has been cleaned at a very high rate of speed. [0080]
  • It should not be assumed that the specific rates of speed mentioned above constitute an upper limit for the speed attainable with the cleaning device and method of the present invention. It is believed that much higher speeds can be attained so that, for example, negative film being used in the printing of release prints of a motion picture film can be cleaned “on-the-fly”. That is, while it is running at speeds of 1,500 feet per minute or even faster. [0081]
  • Similarly, it is believed that raw film stock, release prints and other such media can be cleaned at similarly high speeds. [0082]
  • The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiments described may occur to those skilled in the art. These can be made without departing from the spirit or scope of the invention. [0083]

Claims (36)

What is claimed is:
1. A device for cleaning a thin elongated flexible record medium, said device comprising, in combination:
a sprayer for spraying a liquid solvent onto a moving elongated flexible record medium at a first location,
a wiping device for wiping said medium at a second location, and
drive means for driving said record medium sequentially past said first and second locations.
2. A device as in claim 1 including a blower for blowing heated air onto said record medium at a third location.
3. A device as in claim 1 in which said record medium is motion picture film.
4. A device as in claim 1 in which said sprayer produces a mist and produces minimal wetting of the surface of said film.
5. A device as in claim 1 including a device for blowing ionized air onto said record medium at a third location.
6. A device as in claim 1 including a device for blowing heated ionized air onto said record medium at a third location.
7. A device as in claim 1 in which said wiping device comprises a wheel having a soft, absorbent surface, and drive means for rotating said wheel against said record medium to move its surface in a direction opposite to the direction of movement of said record medium.
8. A device as in claim 7 in which said wheel comprises a reel with a hub and an easily replaceable velvet cover on said hub forming said soft, absorbent surface.
9. A device as in claim 8 including a layer of sponge material between the outer surface of said hub and said cover.
10. A device as in claim 8 in which said cover comprises a sleeve with elastic borders at opposite ends.
11. A device as in claim 1, said record medium being motion picture film having two opposed sides and including at least two of said sprayers, one for spraying solvent onto each of said sides of said film, and at least two of said wiping devices, each one being located adjacent one of said sprayers and contacting said film after one of said sprayers.
12. A device as in claim 1 including air flow means for directing at least one thin stream of air against at least one surface of said record medium onto which solvent has been sprayed and which has been buffed by said buffing device.
13. A device as in claim 11 including at least four of said sprayers and buffing devices, two acting upon one of said film surfaces and two on the other of said film surfaces.
14. A device as in claim 1 in which said solvent is perchloroethylene.
15. A device as in claim 1 including a substantially air-tight housing in which said sprayer and wiping device are located, and solvent recovery means including a recovery still and exhaust means for removing solvent-containing air from said housing and sending said air to said recovery still.
16. A device as in claim 1 in which said sprayer is an airbrush supplied with said solvent and with compressed air.
17. A motion picture film cleaning device comprising, in combination:
a first sprayer for spraying solvent onto a first surface of said film,
a first buffer located adjacent said first sprayer for buffing said first surface of said film upon which said first sprayer has sprayed solvent,
a second sprayer for spraying solvent onto the opposite side of said film,
a second buffer adjacent said second sprayer to buff said opposite side of said film upon which said second sprayer has sprayed solvent,
a heated air blower for blowing heated air against said film after said sprayers and buffers have acted upon said film, and
a drive device for moving said film past said sprayers, buffers and said blower.
18. A device as in claim 17 including air stream producing means located ahead of said blower in the path of movement of said film for directing a thin stream of air against said film at an acute angle opposite the direction of movement of said film.
19. A device as in claim 18 in which said air stream producing means produces two air streams directed against opposite sides of said film.
20. A device as in claim 17 in which said blower is an ionizing air amplifier and including an electrical heating element in the air stream output from said air amplifier, and including a drying enclosure positioned to pass said film therethrough, with an air distribution structure for directing air from said blower against said film in multiple streams flowing opposite the direction of movement of said film.
21. A device as in claim 20 including means for directing said film through said drying enclosure a plurality of times.
22. A method of cleaning an elongated, thin flat record medium, said method comprising the steps of:
(a) continuously spraying a solvent on at least one surface of said record medium at a first location,
(b) wiping said one surface to remove dirt and solvent therefrom at a second location adjacent said first location,
(c) drying said one surface at a third location, and
(d) moving said medium continuously past said first, second and third locations.
23. A method as in claim 22 in which said drying step includes directing against said medium streams of heated air flowing counter to the flow direction of said medium.
24. A method as in claim 22 including the step of removing static electricity from said medium.
25. A method as in claim 22 in which said wiping step comprises buffing said surface of said medium with a buffing wheel.
26. A method as in claim 22 in which said medium is motion picture film and said spraying and wiping steps are performed on both sides of said film.
27. A method as in claim 22 including the step of capturing fumes from said spraying step, and sending them to a recovery station for recovery of solvent therefrom.
28. A device for cleaning a thin elongated flexible record medium, said device comprising, combination:
means for cleaning said record medium with a solvent, and an air stream ionizing device for sending a stream of ionized air for reducing static electricity on the surface of said medium and thus reducing electrostatic attraction of particles to the medium.
29. A device as in claim 28, said means for cleaning including,
a sprayer for spraying a liquid solvent onto a moving elongated flexible record medium at a first location,
a wiping device for wiping said medium at a second location, and
drive means for driving said record medium past said locations.
30. A device as in claim 28 in which said deionizing device comprises an air stream creation device, an ionization device for ionizing air in said air stream, a heating device for heating the air in said stream, and means for directing said air stream against said record medium.
31. A method of cleaning an elongated thin, flat record medium, said method comprising the steps of:
(a) spraying a solvent mist onto at least one surface of said medium while moving said medium past a first station,
(b) wiping said surface with a soft wiper at a second station closely adjacent said first station, while said medium is moving,
(c) drying said surface at a third station, and
(d) moving said medium successively past said first, second and third stations.
32. A method as in claim 31 in which the quantity of said solvent sprayed onto said surface is just sufficient to lubricate said surface against scratching by said wiping step, but insufficient to run, said wiper being a replaceable velvet wiper, and including the step of replacing said velvet wiper when it becomes dirty.
33. A method as in claim 31 in which said wiper is a sleeve on a rotary drum, and including the step of rotating the drum to move the outer surface of said wiper in a direction opposite the movement of said medium.
34. A method as in claim 31 in which said drying step includes directing heated ionized air against said surface at said third station.
35. A method as in claim 31 including the step of spraying a solvent mist onto the opposite surface of said medium and subsequently wiping said opposite surface with a soft wiper, said drying step including directing at least one air jet against each surface of said medium to spread any solvent accumulations on said medium, and directing heated, ionized air against each of said surfaces, said air being directed against said surfaces at an acute angle in a direction counter to the direction of movement of said medium, and
applying a vacuum source to one surface of said medium and directing another air stream against the opposite surface, said air stream being directed towards said vacuum source.
36. A method as in claim 31 in which said record medium is motion picture film and said solvent is perchloroethylene.
US10/119,482 1998-03-02 2002-04-10 Device and method for cleaning an elongated record medium Abandoned US20020108202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/119,482 US20020108202A1 (en) 1998-03-02 2002-04-10 Device and method for cleaning an elongated record medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/035,934 US6223377B1 (en) 1998-03-02 1998-03-02 Device for cleaning an elongated record medium
US09/752,038 US6428626B2 (en) 1998-03-02 2000-12-29 Device and method for cleaning an elongated record medium
US10/119,482 US20020108202A1 (en) 1998-03-02 2002-04-10 Device and method for cleaning an elongated record medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/752,038 Division US6428626B2 (en) 1998-03-02 2000-12-29 Device and method for cleaning an elongated record medium

Publications (1)

Publication Number Publication Date
US20020108202A1 true US20020108202A1 (en) 2002-08-15

Family

ID=21885630

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/035,934 Expired - Lifetime US6223377B1 (en) 1998-03-02 1998-03-02 Device for cleaning an elongated record medium
US09/752,038 Expired - Fee Related US6428626B2 (en) 1998-03-02 2000-12-29 Device and method for cleaning an elongated record medium
US10/119,482 Abandoned US20020108202A1 (en) 1998-03-02 2002-04-10 Device and method for cleaning an elongated record medium

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/035,934 Expired - Lifetime US6223377B1 (en) 1998-03-02 1998-03-02 Device for cleaning an elongated record medium
US09/752,038 Expired - Fee Related US6428626B2 (en) 1998-03-02 2000-12-29 Device and method for cleaning an elongated record medium

Country Status (1)

Country Link
US (3) US6223377B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220147A1 (en) * 2008-11-25 2011-09-15 Schreiber Brian E Apparatus and Method for Cleaning Flexible Webs
US9668333B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Electrically conductive article with high optical transmission

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223377B1 (en) * 1998-03-02 2001-05-01 Deluxe Laboratories, Inc. Device for cleaning an elongated record medium
US6678913B1 (en) * 2000-09-01 2004-01-20 San Lab Systems Apparatus and method for cleaning film
CN102728586B (en) * 2012-06-04 2015-01-28 华中科技大学 System and method for cleaning lens
CN104399684B (en) * 2014-11-04 2017-07-18 江西先材纳米纤维科技有限公司 A kind of efficient guipure or steel strip brush side dust exhaust apparatus
CN105621008A (en) * 2016-03-30 2016-06-01 苏州倍特罗智能科技有限公司 Automatic belt conveying mechanism for stamped part

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1401012A (en) * 1920-01-16 1921-12-20 Cinema Patents Company Film-cleaner
US1669394A (en) * 1921-12-16 1928-05-08 Ellis Foster Co Process for treating films
US2289753A (en) * 1939-06-17 1942-07-14 Eastman Kodak Co Air squeegee
US2359088A (en) * 1940-02-17 1944-09-26 Blaw Knox Co Treating metal strip
US3210838A (en) * 1963-09-27 1965-10-12 All State Welding Alloys Co In Method for processing welding wire
US3370982A (en) * 1963-10-18 1968-02-27 Ibm Web cleaning apparatus and method
US3737941A (en) * 1969-07-03 1973-06-12 Gracey J Apparatus for cleaning film
FR2430304A1 (en) * 1978-07-05 1980-02-01 Saint Gobain CLEANING PLASTIC SHEETS
US4244078A (en) * 1979-04-26 1981-01-13 Research Technology, Inc. Method and apparatus for cleaning film
DE3603041A1 (en) * 1985-04-11 1986-10-30 Zöll, Dieter, Selzach Surface cleaning appliance
US5059996A (en) * 1990-11-15 1991-10-22 E. I. Du Pont De Nemours And Company Apparatus for processing a photosensitive element
US5490300A (en) * 1994-04-25 1996-02-13 Horn; Paul E. Air amplifier web cleaning system
US6223377B1 (en) * 1998-03-02 2001-05-01 Deluxe Laboratories, Inc. Device for cleaning an elongated record medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220147A1 (en) * 2008-11-25 2011-09-15 Schreiber Brian E Apparatus and Method for Cleaning Flexible Webs
US8585826B2 (en) * 2008-11-25 2013-11-19 3M Innovative Properties Company Apparatus and method for cleaning flexible webs
US9668333B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Electrically conductive article with high optical transmission

Also Published As

Publication number Publication date
US6223377B1 (en) 2001-05-01
US6428626B2 (en) 2002-08-06
US20010000872A1 (en) 2001-05-10

Similar Documents

Publication Publication Date Title
US2082411A (en) Paper cleaning device
US8585826B2 (en) Apparatus and method for cleaning flexible webs
US6524173B1 (en) Surface cleaning apparatus
US3995343A (en) Apparatus for processing a printing plate
JPH09314072A (en) Dust cleaner
US6223377B1 (en) Device for cleaning an elongated record medium
JP2004058031A (en) Device for spraying and applying liquid, method of spraying and applying liquid using the same, and liquid chemicals
US5438923A (en) Method and apparatus for the prevention of aerosol deposits in a rotary printing press
US3956790A (en) Method of apparatus for removing dust from the surface of a moving web
US6021584A (en) Blower attachment
JP2000057565A (en) Production of magnetic recording medium and device therefor
GB1314384A (en) Apparatus for cleaning strip material
US4250588A (en) Bench top printed circuit board scrubbing device
CN110181963A (en) A kind of label number Method of printing and digital label print system
US3470576A (en) Film cleaning device
US5568822A (en) Film cleaning system and method for photographic film
JP2874659B2 (en) Substrate surface treatment equipment
JP2002263758A (en) Cleaner device for steel plate, and foreign matter removing method
JPH0616110A (en) Method of washing car
JPH08196963A (en) Spray booth
JPS6040511B2 (en) Method for cleaning and drying metal strips
CN220562364U (en) Corrugated paper ground color uniform mixed color printing equipment
JPS61242682A (en) Dusting device
JP2001029852A (en) Coating device
JP3553178B2 (en) Spray fluxer exhaust gas treatment method and apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION