US20020060945A1 - Synchronous semiconductor device and method for latching input signals - Google Patents

Synchronous semiconductor device and method for latching input signals Download PDF

Info

Publication number
US20020060945A1
US20020060945A1 US09/832,851 US83285101A US2002060945A1 US 20020060945 A1 US20020060945 A1 US 20020060945A1 US 83285101 A US83285101 A US 83285101A US 2002060945 A1 US2002060945 A1 US 2002060945A1
Authority
US
United States
Prior art keywords
signals
semiconductor device
command
decoded
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/832,851
Other versions
US6385127B1 (en
Inventor
Shinichiro Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKEDA, SHINICHIRO
Application granted granted Critical
Publication of US6385127B1 publication Critical patent/US6385127B1/en
Publication of US20020060945A1 publication Critical patent/US20020060945A1/en
Assigned to FUJITSU MICROELECTRONICS LIMITED reassignment FUJITSU MICROELECTRONICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU LIMITED
Assigned to FUJITSU SEMICONDUCTOR LIMITED reassignment FUJITSU SEMICONDUCTOR LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU MICROELECTRONICS LIMITED
Assigned to SOCIONEXT INC. reassignment SOCIONEXT INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJITSU SEMICONDUCTOR LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/109Control signal input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1087Data input latches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/06Address interface arrangements, e.g. address buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals

Definitions

  • the invention relates to a synchronous semiconductor device, and in particular, to a method of latching an input signal to a synchronous semiconductor device.
  • SDRAM synchronous dynamic random access memory
  • Japanese Unexamined Patent Publication No. Hei 8-17182 discloses a synchronous semiconductor device according to a first prior art.
  • a decoder which precedes a latch circuit is provided in the semiconductor circuit to enable a rapid internal operation.
  • the decoding rate of the decoder has a direct influence upon the set-up/hold time.
  • the first prior art semiconductor device includes a logic circuit disposed between an external command input terminal and the latch circuit.
  • the logic circuit decodes an external command signal fed to each external command input terminal, and the decoded signal is held by the latch circuit in synchronism with the clock signal. This technique is commonly referred to as “command prefetch approach”.
  • FIG. 1 is a block diagram of a command decoder circuit 60 of a synchronous semiconductor device according to a second prior art.
  • the command decoder circuit 60 operates according to the command prefetch approach.
  • the command decoder circuit 60 includes a decode circuit 51 connected between four external command input terminals T 1 -T 4 and a latch circuit 50 .
  • the decode circuit 51 includes a decode unit 52 having six AND circuits 52 a - 52 f , and four input buffers 53 a - 53 d .
  • Clock signal CLK is fed to an external clock signal input terminal TO and passed through a clock buffer 54 to the latch circuit 50 .
  • External command signals applied to the input terminal T 1 -T 4 are passed through corresponding input buffers 53 a - 53 d , respectively, to the decode unit 52 , which then decodes the external command signals to provide decoded signals, which are in turn received and held by the latch circuit 50 in synchronism with the clock signal CLK.
  • FIG. 2 is a block diagram of one of the input buffers 53 a - 53 d .
  • any one of the input buffers 53 a - 53 d includes a level conversion circuit 56 , a delay circuit 57 connected to the level conversion circuit 56 , an inverter circuit 58 connected to the delay circuit 57 and an inverter circuit 59 connected to the inverter circuit 58 .
  • the delay circuit 57 controls the signal input to the decode unit 52 , whereby the set-up/hold time for each external command input terminal T 1 -T 4 is controlled.
  • Japanese Unexamined Patent Publication No. Hei. 9-153279 discloses a semiconductor device according to a third prior art.
  • This semiconductor device also includes a decoder which precedes a latch circuit.
  • the semiconductor device includes a plurality of external command input terminals, D-type flip-flop circuits each for temporarily storing one of a plurality of external command signals applied to the plurality of external command input terminals, and a plurality of command decode circuits.
  • the D-type flip-flop circuits deliver the plurality of external command signals which they temporarily store to the respective command decode circuits.
  • the plurality of command decode circuits operate to decode the external command signal delivered from the D-type flip flop circuit to provide decoded signals, which are then supplied to a plurality of latch circuits to be held therein. At this time, a clock signal which depends on the delay time of an associated command decode circuit is fed to each latch circuit, thus enabling it to latch the decoded signal in accordance with the corresponding clock signal.
  • the first prior art semiconductor device has an access time which is more rapid than the access time of a semiconductor device in which a latch circuit precedes a logic circuit.
  • a decoder having multiple stages of circuits and elements is connected between the external command input terminal and the latch circuit, and this results in a relatively long time interval or delay time from a point in time when an external command signal is applied to an external command input signal until the logic circuit delivers a decoded signal by decoding the external command signal.
  • the set-up/hold dead zone of the decoded signal relative to the clock signal will be offset toward the set-up side. In other words, the set-up time of the decoded signal will be shortened.
  • the delay time within the logic circuit varies from decoded signal to decoded signal as a result of the potential transition situation of the external command input terminals and operational noises of the semiconductor device.
  • the delay circuit 57 controls the set-up/hold time for each external command terminal.
  • a delay time from the transition of the potential of the signal applied to each external command input terminal T 1 -T 4 to the transition of a potential occurring in the decoded signal from each of AND circuits 52 a - 52 f varies from decoded signal to decoded signal.
  • the delay time of the decoded signal D 1 -D 6 changes depending on the direction of transition of the potential on each external command input terminal T 1 -T 4 (i.e, from H level to L level or from L level to H level).
  • the delay time of the decoded signal D 1 -D 6 changes due to operational noises of the semiconductor device such as a variation in the supply voltage, for example.
  • the command decoder circuit 60 is used in a synchronous DRAM, the following difficulties are experienced:
  • a mode register set command or self-refresh command is applied to a semiconductor device during its idle condition where the operational noises of the semiconductor device remain relatively low.
  • an active command, a read/write command or a precharge command is applied to the semiconductor device during its active condition where the operational noises are relatively high. Accordingly, with the active command, the read/write command and the precharge command, a variation in the set-up/hold time attributable to noises in the AND circuits 52 a - 52 f of the decode unit 52 is greater than a corresponding variation experienced by the mode register set command or the self-refresh command. In other words, there is a large variation in the set-up/hold time between different processing commands.
  • the latch circuit 50 includes latches 50 a - 50 f each associated with AND circuits 52 a - 52 f.
  • the setup/hold time for each external clock signal is determined by the D-type flip-flop circuit. In other words, it is impossible to adjust the set-up/hold time for each command with the semiconductor device according to the third prior art.
  • each command decode circuit follows the D-type flip-flop circuit.
  • Each latch circuit latches an output signal from the corresponding command decode circuit, and at this end, each latch circuit is supplied with a clock signal which takes the delay time into consideration.
  • clock signal is required to have the same delay time as the set-up/hold window width that is determined by the D-type flip-flop circuit.
  • the present invention provides a synchronous semiconductor device including a decoder, a delay adjusting unit, and a latch circuit unit.
  • the decoder receives a plurality of input signals and produces a plurality of decoded signals.
  • the delay adjusting unit is connected to the decoder and adjusts a delay time of each of the decoded signals and provides a plurality of adjusted decoded signals.
  • the latch circuit unit is connected to the delay adjusting unit and latches the adjusted decoded signals in synchronism with a clock signal.
  • the decoder typically includes a plurality of decode circuits, and the delay adjusting unit includes a plurality of delay adjusting circuits, each of which is connected with each of the decode circuits.
  • the latch circuit unit includes a plurality of latch circuits, each of which is connected with each of the delay adjusting circuits.
  • the input signal includes one of an address signal and a command signal used to operate a synchronous semiconductor memory. One of the decoded circuits will operate when the input signal is decoded.
  • the synchronous semiconductor device further includes a plurality of command input terminals for receiving the command input signals.
  • the delay adjusting circuit includes an input terminal to which the decoded signal is provided, an output signal from which the decoded signal is output, at least one switching element connected to at least one node between the input terminal and the output terminal, and at least one capacitor, which can be a MOS capacitor, connected to the switching element and the ground.
  • the delay adjusting circuit adjusts the delay time of the associated decoded signals depending on the operational condition of the synchronous semiconductor device, and the delay time is changed when the switching element is switched.
  • the synchronous semiconductor device described above is used to latching a plurality of input signals.
  • the input signals are first decoded to provide decoded signals.
  • the delay time of each of the decoded signals is adjusted so that a variation in the set-up/hold time for the decoded signals is reduced, thus providing adjusted decoded signals.
  • the adjusted decoded signals are then latched in synchronism with a clock signal. The delay time of each decoded signal is adjusted depending on the operational condition of the synchronous semiconductor device.
  • FIG. 1 is a schematic block diagram of a decode circuit and a latch circuit according to a prior art
  • FIG. 2 is a schematic block diagram of an input buffer of the prior art
  • FIG. 3 is a schematic block diagram of a command decode circuit for a synchronous DRAM according to a first embodiment of the present invention
  • FIG. 4 is a schematic block diagram of an input buffer shown in FIG. 3;
  • FIG. 5 is a schematic block diagram of a variable delay circuit shown in FIG. 3;
  • FIG. 6 is a schematic block diagram of an SFF circuit shown in FIG. 3.
  • FIG. 7 is a schematic block diagram of an address decode circuit for a synchronous DRAM according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram of a command decode circuit 100 for a synchronous DRAM.
  • the command decode circuit 100 has an external clock signal input terminal T 0 , and four or first to fourth external command input terminals T 1 -T 4 .
  • the external clock terminal T 0 receives an external clock signal CLK from an external unit, not shown.
  • the first to the fourth external command input terminal T 1 -T 4 receive external command signals from an external unit.
  • the external command signals include a chip select signal CSB, a row address strobe signal RASB, a column address strobe signal CASB and a write enable signal WEB.
  • the command decode circuit 100 decodes external command signals to provide decoded signals.
  • the external commands also include an active command, a read command, a write command, a precharge command, and a mode register set command.
  • An active command activates a synchronous DRAM in response to an access demand from an external unit, downloads a row address during the same cycle through a separate route, not shown, to select any desired word line and allows a memory cell data to be amplified by a sense amp.
  • a read command follows the active command to download a column address to deliver the memory cell data.
  • a write command follows the active command to download a column address and data to be written to cause the data to be written into a selected memory cell.
  • a precharge command follows either one of the active command, the read command and the write command to deactivate a word line or a bit line, thereby initializing internal nodes within the synchronous DRAM.
  • the mode register set command occurs during one of the active command, the read command and the write command to set up parameters to control the internal circuit of the synchronous DRAM closely.
  • the command decoder circuit 100 includes a decode unit 10 connected to the first to the fourth external command input terminal T 1 -T 4 , a set-up/hold latch circuit 15 connected to the external clock signal input terminal TO and a delay adjusting unit 14 connected between the decode unit 10 and the set-up/hold latch circuit 15 .
  • the decode unit 10 includes a first to a fourth input buffer 11 a - 11 d , and a decode circuit 12 including a first to a fifth AND circuit 12 a - 12 e .
  • Each of the first to the fourth input buffer 11 a - 11 d has a single input terminal and a pair of output terminals.
  • the input terminal of the first input buffer 11 a is connected to the first external command input terminal T 1 to receive a chip select signal CSB.
  • the input terminal of the second input buffer 11 b is connected to the second external command input terminal T 2 to receive a row address strobe signal RASB.
  • the input terminal of the third input buffer 11 c is connected to the third external command input terminal T 3 to receive a column address strobe signal CASB.
  • the input terminal of the fourth input buffer lid is connected to the fourth external command input terminal T 4 to receive a write enable signal WEB.
  • FIG. 4 is a block diagram of the first input buffer 11 a . It is to be understood that the second to the fourth input buffer 11 b - 11 d are similarly constructed as the first input buffer 11 a . Specifically, the first input buffer 11 a includes a pair of inverter circuits 13 a , 13 b , thereby producing two complimentary signals outz, outx from a single input signal in. More specifically, the first input buffer 11 a produces an inversion of the chip select signal CSB (or inverted chip select signal csz) and a signal which is in phase with the chip select signal CSB (or a chip select signal csx).
  • the second input buffer 11 b produces an inversion of the row address strobe signal RASB (or an inverted row address strobe signal rasz) and a signal in phase with the row address strobe signal RASB (or a row address strobe signal rasx).
  • the third input buffer 11 c produces an inversion of the column address strobe signal CASB (or an inverted column address strobe signal casz) and a signal in phase with the column address strobe signal CASB (or a column address strobe signal casx).
  • the fourth input buffer lid produces an inversion of the write address enable signal WEB (or an inverted write enable signal wez) and a signal in phase with the write enable signal WEB (or a write enable signal wex).
  • Output signals csz, rasz, rasx, casz, casx, wez, and wex from the first to the fourth input buffers 11 a - 11 d are supplied to the decode circuit 12 . Accordingly, the external commands (specifically the chip select signal CSB, the row address strobe signal RASB, the column address strobe signal CASB and the write enable signal WEB) are decoded in the decode circuit 12 .
  • the external commands specifically the chip select signal CSB, the row address strobe signal RASB, the column address strobe signal CASB and the write enable signal WEB
  • the first AND circuit 12 a receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the column address strobe signal casx and the write enable signal wex to produce a decoded signal D 1 which assumes an H level when all of the signals csz, rasz, casx and wex are at H levels.
  • the second AND circuit 12 b receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the column address strobe signal casx and the inverted write enable signal wez to produce a decoded signal D 2 which assumes an H level when all of the signals csz, rasz, casx and wez are at H levels.
  • the third AND circuit 12 c receives the inverted chip select signal csz, the row address strobe signal rasx, the inverted column address strobe signal casz and the write enable signal wex to produce a decoded signal D 3 which assumes an H level when all of the signals csz, rasx, casz and wex are at H levels.
  • the fourth AND circuit 12 d receives the inverted chip select signal csz, the row address strobe signal rasx, the inverted column address strobe signal casz and the inverted write enable signal wez to produce a decoded signal D 4 which assumes an H level when all of the signals csz, rasx, casz and wez are at H levels.
  • the fifth AND circuit 12 e receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the inverted column address strobe signal casz and the inverted write enable signal wez to produce a decoded signal D 5 which assumes an H level when all of the signals csz, rasz, casz and wez are at H levels.
  • the decode circuit 12 decodes various external commands in a manner such that one of the decoded signals D 1 -D 5 rises to its H level while the remaining decoded signals D 1 -D 5 fall to their L level.
  • the decode circuit 12 produces the decoded signal D 1 of an H level and decoded signals D 2 -D 5 of an L level.
  • the decode circuit 12 produces the decoded signal D 2 of an H level, and decoded signals D 1 , D 3 -D 5 of an L level.
  • the decode circuit 12 When the external command is a read command, the decode circuit 12 produces the decoded signal D 3 of an H level and decoded signals D 1 , D 2 -D 4 and D 5 of an L level. When the external command is a write command, the decode circuit 12 produces the decoded signal D 4 of an H level and decoded signals D 1 -D 3 and D 5 of an L level. When the external command is a mode register set command, the decode circuit 12 produces the decoded signal D 5 of an H level and decoded signals D 1 -D 4 of an L level.
  • the decode circuit 12 delivers the decoded signals D 1 -D 5 to the set-up/hold latch circuit 15 through a delay adjusting unit 14 . More specifically, decoded signals D 1 -D 5 from the AND circuits 12 a - 12 e are supplied to the set-up/hold latch circuit 15 through the corresponding ones of a first to a fifth variable delay circuit 14 a - 14 e.
  • the set-up/hold latch circuit 15 includes five SFF circuits 15 a - 15 e , each of which is latched with one of the decoded signals D 1 -D 5 in synchronism with the external clock signal CLK.
  • a clock buffer 20 receives an external clock signal CLK and produces an internal clock signal clk which is in phase with the external clock signal CLK.
  • the clock buffer 20 delivers the internal clock signal clk to each of SFF circuits 15 a - 15 e.
  • FIG. 6 is a schematic diagram of SFF circuit 15 a . It is to be understood that remaining SFF circuits 15 b - 15 e are constructed in the same manner as the SFF circuit 15 a .
  • the SFF circuit 15 a includes a pair of latches 21 a , 21 b , a pair of transfer gates 22 a , 22 b and a pair of inversion circuits 23 , 24 .
  • Each SFF circuit 15 a - 15 e has an input terminal Pin which is connected to the corresponding variable delay circuit 14 a.
  • the first and the second latch 21 a , 21 b each include a pair of inverter circuits.
  • the first latch 21 a is connected between the first transfer gate 22 a and the second transfer gate 22 b .
  • the first latch 21 a is connected to the input terminal Pin through the first transfer gate 22 a and the invention circuit 23 .
  • the second latch 21 b is connected between the second transfer gate 22 b and an output terminal Pout of the SFF circuit 15 a .
  • the output terminal Pout is connected to an internal circuit, not shown.
  • the first transfer gate 22 a includes an P-channel MOS (PMOS) transistor Q 1 and an N-channel MOS (NMOS) transistor Q 2 .
  • the PMOS transistor Q 1 has a gate, to which the internal clock signal clk is applied.
  • the inverted internal clock signal clk is applied to the gate of NMOS transistor Q 2 through the invertion circuit 24 .
  • the second transfer gate 22 b includes an PMOS transistor Q 3 and an NMOS transistor Q 4 .
  • the inverted internal clock signal clk is applied to the gate of PMOS transistor Q 3 through the invertion circuit 24 while the internal clock signal clk is applied to the gate of NMOS transistor Q 4 .
  • the first transfer gate 22 a is opened while the second transfer gate 22 b is closed.
  • the first latch 21 a holds the inverted decoded signal.
  • the second transfer gate 22 b is opened while the first transfer gate 22 a is closed.
  • the second latch 21 b receives the decoded signal which has been held by the first latch 21 a and continues to hold such decoded signal. In this manner, respective decoded signals D 1 -D 5 are latched into a corresponding second latch 21 b in response to the rising edge of the internal clock signal clk.
  • the set-up/hold time is adjusted by the adjusting unit 14 (or the first to the fifth variable delay circuit 14 a 14 e ). Accordingly, a result of detection (decoded signals D 1 -D 5 ) from the decode circuit 12 is held by the SFF circuits 15 a - 15 e in a positive manner in response to the rising edge of the internal clock signal clk.
  • the delay adjusting unit 14 includes a first to a fifth variable delay circuit 14 a - 14 e.
  • the first variable delay circuit 14 a receives the decoded signal D 1 from the first AND circuit 12 a and feeds it to the first SFF circuit 15 a without or with a delay.
  • the second to the fifth variable delay circuit 14 b - 14 e receive the decoded signal D 2 -D 5 , respectively, from the second to the fifth AND circuit 12 b - 12 e , respectively, and feed the decoded signal D 2 -D 5 to the second to the fifth SFF circuit 15 b - 15 e , respectively, without or with a delay.
  • FIG. 5 is a schematic diagram of the first variable delay circuit 14 a . It is to be understood that the second to the fifth variable delay circuit 14 b - 14 e are constructed in the similar manner as the first variable delay circuit 14 a .
  • the first variable delay circuit 14 a has an input terminal in which is connected to the AND circuit 12 a and an output terminal out which is connected to the SFF circuit 15 a .
  • the first variable delay circuit 14 a includes a pair of switch elements 16 a , 16 b and a pair of MOS capacitors 17 a , 17 b .
  • each switch element 16 a , 16 b is connected to nodes 18 a , 18 b on a signal line 18 which joins the input terminal in and the output terminal out, and the pair of MOS capacitors 17 a , 17 b are connected between the respective switch elements 16 a , 16 b and the ground.
  • each switch element 16 a , 16 b includes an MOS transistor.
  • the delay time or the set-up/hold time of the decoded signals D 1 -D 5 is adjusted by each variable delay circuit 14 a - 14 e .
  • the delay time is adjusted by selectively turning the switch elements 16 a , 16 b on and/or off. More specifically, when the both switch elements 16 a , 16 b are turned off, a shortest delay time is set up. When the both switch elements 16 a , 16 b are turned on, a longest delay time is set up. When one of the switch elements 16 a , 16 b is turned off while the other is turned on, the resulting delay time is intermediate the longest and the shortest delay time.
  • the first to the fifth AND circuit 12 a - 12 e produces one decoded signal D 1 -D 5 of an H level and four decoded signals of an L level. Paying attention to this fact, it is examined in a test mode if one of the SFF circuits 15 a - 15 e is capable of holding one of the decoded signals, which has an H level in accordance with the external command, in accordance with the internal clock signal clk. The delay times of the variable delay circuits 14 a - 14 e are determined so that the SFF circuit is capable of holding the decoded signal having an H level in accordance with the internal clock signal clk.
  • the decoded signal D 1 assumes an H level.
  • the external clock signal CLK and the active command are supplied to the synchronous DRAM.
  • the delay time of the first variable delay circuit 14 a is adjusted so that the first SFF circuit 15 a is capable of holding the decoded signal D 1 in accordance with the internal clock signal clk.
  • the decoded signal D 2 assumes an H level.
  • the external clock signal CLK and the precharge command are supplied to the synchronous DRAM.
  • the delay time in the second variable delay circuit 14 b is adjusted so that the second SFF circuit 15 b holds the decoded signal D 2 in accordance with the internal clock signal clk.
  • the decoded signal D 3 assumes an H level.
  • the external clock signal CLK and the read command are supplied to the synchronous DRAM.
  • the delay time of the third variable delay circuit 14 c is adjusted so that the third SFF circuit 15 c holds the decoded signal D 3 in accordance with the internal clock signal clk.
  • the decoded signal D 3 assumes an H level.
  • the external clock signal CLK and the read command are supplied to the synchronous DRAM.
  • the delay time of the third variable delay circuit 14 c is adjusted so that the third SFF circuit 15 c holds the decoded signal D 3 in accordance with the internal clock signal clk.
  • the decoded signal D 4 assumes an H level.
  • the external clock signal CLK and the write command are supplied to the synchronous DRAM.
  • the delay time of the fourth variable delay circuit 14 d is adjusted so that the fourth SFF circuit 15 d holds the decoded signal D 4 in accordance with the internal clock signal clk.
  • the decoded signal D 5 assumes an H level.
  • the external clock signal CLK and the mode register set command are supplied to the synchronous DRAM.
  • the delay time of the fifth variable delay circuit 14 e is adjusted so that the fifth SFF circuit 15 c holds the decoded signal D 5 in accordance with the internal clock signal clk.
  • the delay time for each of the decoded signals D 1 -D 5 is defined as a length of time passed from the transition of the potential of the command signal applied to one of the external command input terminal T 1 -T 4 to the transition of the potential of the decoded signal D 1 -D 5 delivered from the AND circuits 12 a - 12 e . It should be noted that the delay time is different between decoded signals D 1 -D 5 . In addition, the delay time also varies depending on the direction of transition (from H level or L level or L level to H level) on the external command input terminals T 1 -T 4 .
  • the delay time also varies due to operational noises of the synchronous DRAM such as a variation in the supply voltage, for example.
  • operational noises of the synchronous DRAM such as a variation in the supply voltage, for example.
  • the influence of the noises upon the delay time varies from decoded signal to decoded signal.
  • the semiconductor device when the mode register set command is applied to the semiconductor device, the semiconductor device is in an idle condition where the operational noises within the semiconductor device are relatively low.
  • the active command, the read/write command and precharge command are applied to the semiconductor device, the semiconductor device is in an active condition where the operational noises are relatively high.
  • the set-up/hold time when the mode register set command is applied, the set-up/hold time is less susceptible to the influence of noises.
  • the set-up/hold time of each AND circuit 12 a - 12 e is greatly influenced by the noises. This means that when the active command, the read/write command and precharge command are asserted, the set-up/hold time is susceptible to variation.
  • a variation in the set-up/hold time is reduced by using the variable delay circuits 14 a - 14 e to adjust the delay time (set-up/hold time) for each command.
  • the SFF circuits 15 a - 15 e are enabled to hold each decoded signal having an H level in conformity to the internal clock signal clk.
  • the command decode circuit 100 exhibits a reduced dead zone width for the set-up/hold when viewed from the entire external command input terminals T 1 -T 4 .
  • the synchronous DRAM according to the first embodiment has the following advantages:
  • the first to the fifth variable circuit 14 a - 14 e are connected between the decode unit 10 and the setup/hold latch circuit 15 .
  • the command decode circuit 100 has a number of circuit elements which is less than the number of circuit elements used in the third prior art, and thus there are provided a relatively compact command decode circuit 100 and hence SDRAM. Since the delay time is adjusted for each decoded signal in the command decode circuit 100 , the dead zone width of the set-up/hold time as viewed from the entire input terminals T 1 -T 4 is relatively narrow.
  • the delay time (set-up/hold time) is adjusted for each command. Accordingly, if the operational noises such as a variation in the supply voltage of the synchronous DRAM differ from command to command, there is provided an optimum adjustment of the delay time. As a consequence, a variation in the set-up/hold time from command to command is reduced, and the decoded signals D 1 -D 5 can be latched in the set-up/hold latch circuit 15 .
  • Each of the delay circuits 14 a - 14 e includes the switch elements 16 a , 16 b and MOS capacitors 17 a , 17 b , and is relatively simple in construction. The incorporation of MOS capacitors 17 a , 17 b is facilitated.
  • the decode circuit 12 has a relatively low power dissipation. It will be noted that only one of the delay circuits which is associated with the operating AND circuit operates. Accordingly, the power dissipation of the delay circuits 14 a - 14 e is also relatively low.
  • the input buffers 11 a - 11 d may deliver a single phase signal.
  • the input buffer may include a delay circuit. Where a level conversion of an external signal is unnecessary, the input buffers 11 a - 11 d can be omitted.
  • AND circuit 12 a - 12 e may be replaced by a decode circuit 12 which employ other logic circuits.
  • variable delay circuits 14 a - 14 e are not limited to those shown in FIG. 5.
  • the switch elements 16 a , 16 b may be replaced by fuses.
  • the fuse which is connected to MOS capacitors 17 a , 17 b which is turned off is cut by a laser.
  • MOS capacitors 17 a , 17 b may be replaced by capacitors other than MOS capacitors.
  • a delay circuit or set/reset delay circuit which employs an inverter circuit may be used.
  • SFF circuits 15 a - 15 e latch the decoded signals D 1 -D 5 in response to the rising edge of the internal clock signal clk.
  • SFF circuits 15 a - 15 e may latch the decoded signals DL-D 5 in response to the falling edge of the internal clock signal clk, for example.
  • the invention is not limited to its application to a command decode circuit 100 for the synchronous DRAM, but may also be applied to an address decode circuit of such DRAM or to a variety of test mode decision circuits.
  • FIG. 7 is a block diagram of an address decode circuit 200 according to a second embodiment of the invention.
  • the address decode circuit 200 includes a decode unit 30 , a delay adjusting unit 33 and a set-up/hold latch circuit 34 .
  • An external address signal BA 0 and BA 1 are supplied to a first and a second external address terminal T 11 and T 12 , respectively.
  • the decode unit 30 includes a first and a second input buffer 31 a , 31 b , and a first to a fourth AND circuit 32 a - 32 d .
  • the first input buffer 31 a produces complimentary address signals ba 0 x, ba 0 z from an external address signal BA 0 .
  • the second input buffer 31 b produces complimentary address signals ba 1 x, ba 1 z from the external address signal BA 1 .
  • Each of AND circuits 32 a - 32 d represents a two input AND circuit and receives address signals ba 0 x, ba 0 z, ba 1 x and ba 1 z in different combinations.
  • Each of AND circuits 32 a - 32 d produces one of decoded signals D 11 -D 14 of an H level when two address signals assume an H level.
  • the delay adjusting unit 33 includes a first to a fourth variable delay circuit 33 a - 33 d .
  • the set-up/hold latch circuit 34 includes a first to a fourth SFF circuit 34 a - 34 d .
  • the SFF circuits 34 a - 34 d latch respective decoded signals D 11 -D 14 supplied from corresponding variable delay circuits 33 a - 33 d in synchronism with the external clock signal CLK.
  • the difference in the number of inverter circuits within the input buffers 31 a and 31 b causes a variation in the set-up/hold time of the external address signal.
  • the set-up/hold time is adjusted by using the variable delay circuits 33 a to 33 d in the similar manner as in the first embodiment. Accordingly, the second embodiment provides the same advantage as achieved by the first embodiment.
  • the command decode circuit 100 of the synchronous DRAM may be formed on a single semiconductor substrate, or may be formed on the semiconductor substrate in mixture with the logic circuit.

Abstract

A compact synchronous semiconductor device having an improved set-up/hold time is disclosed. A decoder receives input signals and generates decoded signals. A delay-adjusting unit adjusts the delay time of each of the decoded signals and provides adjusted decoded signals. A latch circuit unit latches the adjusted decoded signals in synchronism with a clock signal.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a synchronous semiconductor device, and in particular, to a method of latching an input signal to a synchronous semiconductor device. [0001]
  • In a synchronous semiconductor device such as synchronous dynamic random access memory (SDRAM), there are demands for reducing the set-up time and the set-up/hold time for input signals (command signal and address signal) which follow a clock signal in order to accommodate for the acceleration of the synchronous clock cycle. [0002]
  • Japanese Unexamined Patent Publication No. Hei 8-17182 discloses a synchronous semiconductor device according to a first prior art. A decoder which precedes a latch circuit is provided in the semiconductor circuit to enable a rapid internal operation. As a consequence, the decoding rate of the decoder has a direct influence upon the set-up/hold time. [0003]
  • The first prior art semiconductor device includes a logic circuit disposed between an external command input terminal and the latch circuit. The logic circuit decodes an external command signal fed to each external command input terminal, and the decoded signal is held by the latch circuit in synchronism with the clock signal. This technique is commonly referred to as “command prefetch approach”. [0004]
  • FIG. 1 is a block diagram of a [0005] command decoder circuit 60 of a synchronous semiconductor device according to a second prior art. The command decoder circuit 60 operates according to the command prefetch approach. Specifically, the command decoder circuit 60 includes a decode circuit 51 connected between four external command input terminals T1-T4 and a latch circuit 50. The decode circuit 51 includes a decode unit 52 having six AND circuits 52 a-52 f, and four input buffers 53 a-53 d. Clock signal CLK is fed to an external clock signal input terminal TO and passed through a clock buffer 54 to the latch circuit 50. External command signals applied to the input terminal T1-T4 are passed through corresponding input buffers 53 a-53 d, respectively, to the decode unit 52, which then decodes the external command signals to provide decoded signals, which are in turn received and held by the latch circuit 50 in synchronism with the clock signal CLK.
  • FIG. 2 is a block diagram of one of the input buffers [0006] 53 a-53 d. Thus any one of the input buffers 53 a-53 d includes a level conversion circuit 56, a delay circuit 57 connected to the level conversion circuit 56, an inverter circuit 58 connected to the delay circuit 57 and an inverter circuit 59 connected to the inverter circuit 58. In each of the input buffers 53 a-53 d, the delay circuit 57 controls the signal input to the decode unit 52, whereby the set-up/hold time for each external command input terminal T1-T4 is controlled.
  • Japanese Unexamined Patent Publication No. Hei. 9-153279 discloses a semiconductor device according to a third prior art. This semiconductor device also includes a decoder which precedes a latch circuit. Specifically, the semiconductor device includes a plurality of external command input terminals, D-type flip-flop circuits each for temporarily storing one of a plurality of external command signals applied to the plurality of external command input terminals, and a plurality of command decode circuits. The D-type flip-flop circuits deliver the plurality of external command signals which they temporarily store to the respective command decode circuits. The plurality of command decode circuits operate to decode the external command signal delivered from the D-type flip flop circuit to provide decoded signals, which are then supplied to a plurality of latch circuits to be held therein. At this time, a clock signal which depends on the delay time of an associated command decode circuit is fed to each latch circuit, thus enabling it to latch the decoded signal in accordance with the corresponding clock signal. [0007]
  • The first prior art semiconductor device has an access time which is more rapid than the access time of a semiconductor device in which a latch circuit precedes a logic circuit. However, a decoder having multiple stages of circuits and elements is connected between the external command input terminal and the latch circuit, and this results in a relatively long time interval or delay time from a point in time when an external command signal is applied to an external command input signal until the logic circuit delivers a decoded signal by decoding the external command signal. As a consequence, the set-up/hold dead zone of the decoded signal relative to the clock signal will be offset toward the set-up side. In other words, the set-up time of the decoded signal will be shortened. [0008]
  • With the semiconductor device according to the first prior art, the delay time within the logic circuit varies from decoded signal to decoded signal as a result of the potential transition situation of the external command input terminals and operational noises of the semiconductor device. [0009]
  • Consequently, the total dead zone in the set-up/hold of the decoded signal relative to the clock signal further increases. [0010]
  • By contrast, in the [0011] command decoder circuit 60 shown in FIG. 1, the delay circuit 57 controls the set-up/hold time for each external command terminal. However, a delay time from the transition of the potential of the signal applied to each external command input terminal T1-T4 to the transition of a potential occurring in the decoded signal from each of AND circuits 52 a-52 f varies from decoded signal to decoded signal. In addition, the delay time of the decoded signal D1-D6 changes depending on the direction of transition of the potential on each external command input terminal T1-T4 (i.e, from H level to L level or from L level to H level).
  • In addition, the delay time of the decoded signal D[0012] 1-D6 changes due to operational noises of the semiconductor device such as a variation in the supply voltage, for example. By way of example, if the command decoder circuit 60 is used in a synchronous DRAM, the following difficulties are experienced:
  • A mode register set command or self-refresh command is applied to a semiconductor device during its idle condition where the operational noises of the semiconductor device remain relatively low. By contrast, an active command, a read/write command or a precharge command is applied to the semiconductor device during its active condition where the operational noises are relatively high. Accordingly, with the active command, the read/write command and the precharge command, a variation in the set-up/hold time attributable to noises in the [0013] AND circuits 52 a-52 f of the decode unit 52 is greater than a corresponding variation experienced by the mode register set command or the self-refresh command. In other words, there is a large variation in the set-up/hold time between different processing commands.
  • It is difficult to adjust such variation by using a plurality of [0014] delay circuits 57 in each of the input buffers 53 a-53 d which precedes the decode unit 52. Specifically, to accommodate for such variation, it would be necessary to choose an individual delay time for each of the plurality of delay circuits 57, but in practice, such control would be difficult, and there remains a certain variation, which causes the dead zone breadth of the set-up/hold to increase when viewed from the whole assembly of external command input terminals T1-T4. If the command decoder circuit 60 is used in an address decode circuit or a variety of test mode decision circuits, a similar problem occurs.
  • For a semiconductor device including the input buffers [0015] 53 a-53 d as shown in FIG. 2, there is a difference between a positive logic output circuit and a negative logic output circuit in the number of stages of constituting circuit elements. Obviously, there results an offset in the output timing between the positive logic output circuit and the negative logic output circuit, and this leads to an offset between the operations of AND circuits 52 a-52 f which receive complimentary logic signals. Specifically, with the AND circuits 52 a-52 f, when producing a decoded output signal having an L level (or when selecting two input signals each having an L level), the transition of the decoded output signal is fastest while degrading the hold time. On the contrary, when producing a decoded output signal having an H level (or when selecting two input signals each having an H level), the transition of the decoded output signal is slowest while degrading the set-up time.
  • The [0016] latch circuit 50 includes latches 50 a-50 f each associated with AND circuits 52 a-52 f.
  • On the other hand, in the semiconductor device according to the third prior art, while the delay time can be adjusted for each external command terminal, the setup/hold time for each external clock signal is determined by the D-type flip-flop circuit. In other words, it is impossible to adjust the set-up/hold time for each command with the semiconductor device according to the third prior art. [0017]
  • Furthermore, in the semiconductor device according to the third prior art, each command decode circuit follows the D-type flip-flop circuit. Each latch circuit latches an output signal from the corresponding command decode circuit, and at this end, each latch circuit is supplied with a clock signal which takes the delay time into consideration. However, such clock signal is required to have the same delay time as the set-up/hold window width that is determined by the D-type flip-flop circuit. In addition, it is necessary to provide a number of clock signal generator circuits which is equal to the number of the latch circuits. Because the clock signal generator circuit requires a relatively increased number of elements, it follows that the circuit area for a synchronous DRAM, which is provided with a number of commands and address, decodes increases. [0018]
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to provide a synchronous semiconductor device that is compact and has an improved set-up/hold time. [0019]
  • To achieve the above object, the present invention provides a synchronous semiconductor device including a decoder, a delay adjusting unit, and a latch circuit unit. The decoder receives a plurality of input signals and produces a plurality of decoded signals. The delay adjusting unit is connected to the decoder and adjusts a delay time of each of the decoded signals and provides a plurality of adjusted decoded signals. The latch circuit unit is connected to the delay adjusting unit and latches the adjusted decoded signals in synchronism with a clock signal. The decoder typically includes a plurality of decode circuits, and the delay adjusting unit includes a plurality of delay adjusting circuits, each of which is connected with each of the decode circuits. The latch circuit unit includes a plurality of latch circuits, each of which is connected with each of the delay adjusting circuits. The input signal includes one of an address signal and a command signal used to operate a synchronous semiconductor memory. One of the decoded circuits will operate when the input signal is decoded. The synchronous semiconductor device further includes a plurality of command input terminals for receiving the command input signals. [0020]
  • The delay adjusting circuit includes an input terminal to which the decoded signal is provided, an output signal from which the decoded signal is output, at least one switching element connected to at least one node between the input terminal and the output terminal, and at least one capacitor, which can be a MOS capacitor, connected to the switching element and the ground. The delay adjusting circuit adjusts the delay time of the associated decoded signals depending on the operational condition of the synchronous semiconductor device, and the delay time is changed when the switching element is switched. [0021]
  • The synchronous semiconductor device described above is used to latching a plurality of input signals. The input signals are first decoded to provide decoded signals. The delay time of each of the decoded signals is adjusted so that a variation in the set-up/hold time for the decoded signals is reduced, thus providing adjusted decoded signals. The adjusted decoded signals are then latched in synchronism with a clock signal. The delay time of each decoded signal is adjusted depending on the operational condition of the synchronous semiconductor device. [0022]
  • Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which: [0024]
  • FIG. 1 is a schematic block diagram of a decode circuit and a latch circuit according to a prior art; [0025]
  • FIG. 2 is a schematic block diagram of an input buffer of the prior art; [0026]
  • FIG. 3 is a schematic block diagram of a command decode circuit for a synchronous DRAM according to a first embodiment of the present invention; [0027]
  • FIG. 4 is a schematic block diagram of an input buffer shown in FIG. 3; [0028]
  • FIG. 5 is a schematic block diagram of a variable delay circuit shown in FIG. 3; [0029]
  • FIG. 6 is a schematic block diagram of an SFF circuit shown in FIG. 3; and [0030]
  • FIG. 7 is a schematic block diagram of an address decode circuit for a synchronous DRAM according to a second embodiment of the present invention.[0031]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A synchronous DRAM according to a first embodiment of the invention will now be described. FIG. 3 is a block diagram of a [0032] command decode circuit 100 for a synchronous DRAM.
  • The [0033] command decode circuit 100 has an external clock signal input terminal T0, and four or first to fourth external command input terminals T1-T4. The external clock terminal T0 receives an external clock signal CLK from an external unit, not shown. The first to the fourth external command input terminal T1-T4 receive external command signals from an external unit. In the first embodiment, the external command signals include a chip select signal CSB, a row address strobe signal RASB, a column address strobe signal CASB and a write enable signal WEB. The command decode circuit 100 decodes external command signals to provide decoded signals.
  • The external commands also include an active command, a read command, a write command, a precharge command, and a mode register set command. An active command activates a synchronous DRAM in response to an access demand from an external unit, downloads a row address during the same cycle through a separate route, not shown, to select any desired word line and allows a memory cell data to be amplified by a sense amp. [0034]
  • A read command follows the active command to download a column address to deliver the memory cell data. A write command follows the active command to download a column address and data to be written to cause the data to be written into a selected memory cell. A precharge command follows either one of the active command, the read command and the write command to deactivate a word line or a bit line, thereby initializing internal nodes within the synchronous DRAM. The mode register set command occurs during one of the active command, the read command and the write command to set up parameters to control the internal circuit of the synchronous DRAM closely. [0035]
  • The [0036] command decoder circuit 100 includes a decode unit 10 connected to the first to the fourth external command input terminal T1-T4, a set-up/hold latch circuit 15 connected to the external clock signal input terminal TO and a delay adjusting unit 14 connected between the decode unit 10 and the set-up/hold latch circuit 15.
  • The [0037] decode unit 10 includes a first to a fourth input buffer 11 a-11 d, and a decode circuit 12 including a first to a fifth AND circuit 12 a-12 e. Each of the first to the fourth input buffer 11 a-11 d has a single input terminal and a pair of output terminals. The input terminal of the first input buffer 11 a is connected to the first external command input terminal T1 to receive a chip select signal CSB. The input terminal of the second input buffer 11 b is connected to the second external command input terminal T2 to receive a row address strobe signal RASB. The input terminal of the third input buffer 11 c is connected to the third external command input terminal T3 to receive a column address strobe signal CASB. The input terminal of the fourth input buffer lid is connected to the fourth external command input terminal T4 to receive a write enable signal WEB.
  • FIG. 4 is a block diagram of the [0038] first input buffer 11 a. It is to be understood that the second to the fourth input buffer 11 b-11 d are similarly constructed as the first input buffer 11 a. Specifically, the first input buffer 11 a includes a pair of inverter circuits 13 a, 13 b, thereby producing two complimentary signals outz, outx from a single input signal in. More specifically, the first input buffer 11 a produces an inversion of the chip select signal CSB (or inverted chip select signal csz) and a signal which is in phase with the chip select signal CSB (or a chip select signal csx). The second input buffer 11 b produces an inversion of the row address strobe signal RASB (or an inverted row address strobe signal rasz) and a signal in phase with the row address strobe signal RASB (or a row address strobe signal rasx). The third input buffer 11 c produces an inversion of the column address strobe signal CASB (or an inverted column address strobe signal casz) and a signal in phase with the column address strobe signal CASB (or a column address strobe signal casx). The fourth input buffer lid produces an inversion of the write address enable signal WEB (or an inverted write enable signal wez) and a signal in phase with the write enable signal WEB (or a write enable signal wex).
  • Output signals csz, rasz, rasx, casz, casx, wez, and wex from the first to the fourth input buffers [0039] 11 a-11 d are supplied to the decode circuit 12. Accordingly, the external commands (specifically the chip select signal CSB, the row address strobe signal RASB, the column address strobe signal CASB and the write enable signal WEB) are decoded in the decode circuit 12.
  • The first AND [0040] circuit 12 a receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the column address strobe signal casx and the write enable signal wex to produce a decoded signal D1 which assumes an H level when all of the signals csz, rasz, casx and wex are at H levels.
  • The second AND [0041] circuit 12 b receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the column address strobe signal casx and the inverted write enable signal wez to produce a decoded signal D2 which assumes an H level when all of the signals csz, rasz, casx and wez are at H levels.
  • The third AND [0042] circuit 12 c receives the inverted chip select signal csz, the row address strobe signal rasx, the inverted column address strobe signal casz and the write enable signal wex to produce a decoded signal D3 which assumes an H level when all of the signals csz, rasx, casz and wex are at H levels.
  • The fourth AND [0043] circuit 12 d receives the inverted chip select signal csz, the row address strobe signal rasx, the inverted column address strobe signal casz and the inverted write enable signal wez to produce a decoded signal D4 which assumes an H level when all of the signals csz, rasx, casz and wez are at H levels.
  • The fifth AND [0044] circuit 12 e receives the inverted chip select signal csz, the inverted row address strobe signal rasz, the inverted column address strobe signal casz and the inverted write enable signal wez to produce a decoded signal D5 which assumes an H level when all of the signals csz, rasz, casz and wez are at H levels.
  • The [0045] decode circuit 12 decodes various external commands in a manner such that one of the decoded signals D1-D5 rises to its H level while the remaining decoded signals D1-D5 fall to their L level. By way of example, when the external command is an active command, the decode circuit 12 produces the decoded signal D1 of an H level and decoded signals D2-D5 of an L level. When the external command is a precharge command, the decode circuit 12 produces the decoded signal D2 of an H level, and decoded signals D1, D3-D5 of an L level. When the external command is a read command, the decode circuit 12 produces the decoded signal D3 of an H level and decoded signals D1, D2-D4 and D5 of an L level. When the external command is a write command, the decode circuit 12 produces the decoded signal D4 of an H level and decoded signals D1-D3 and D5 of an L level. When the external command is a mode register set command, the decode circuit 12 produces the decoded signal D5 of an H level and decoded signals D1-D4 of an L level.
  • The [0046] decode circuit 12 delivers the decoded signals D1-D5 to the set-up/hold latch circuit 15 through a delay adjusting unit 14. More specifically, decoded signals D1-D5 from the AND circuits 12 a-12 e are supplied to the set-up/hold latch circuit 15 through the corresponding ones of a first to a fifth variable delay circuit 14 a-14 e.
  • The set-up/[0047] hold latch circuit 15 will now be described.
  • The set-up/[0048] hold latch circuit 15 includes five SFF circuits 15 a-15 e, each of which is latched with one of the decoded signals D1-D5 in synchronism with the external clock signal CLK. Specifically, a clock buffer 20 receives an external clock signal CLK and produces an internal clock signal clk which is in phase with the external clock signal CLK. The clock buffer 20 delivers the internal clock signal clk to each of SFF circuits 15 a-15 e.
  • FIG. 6 is a schematic diagram of [0049] SFF circuit 15 a. It is to be understood that remaining SFF circuits 15 b-15 e are constructed in the same manner as the SFF circuit 15 a. The SFF circuit 15 a includes a pair of latches 21 a, 21 b, a pair of transfer gates 22 a, 22 b and a pair of inversion circuits 23, 24. Each SFF circuit 15 a-15 e has an input terminal Pin which is connected to the corresponding variable delay circuit 14 a.
  • The first and the [0050] second latch 21 a, 21 b each include a pair of inverter circuits. The first latch 21 a is connected between the first transfer gate 22 a and the second transfer gate 22 b. In other words, the first latch 21 a is connected to the input terminal Pin through the first transfer gate 22 a and the invention circuit 23. The second latch 21 b is connected between the second transfer gate 22 b and an output terminal Pout of the SFF circuit 15 a. The output terminal Pout is connected to an internal circuit, not shown.
  • The [0051] first transfer gate 22 a includes an P-channel MOS (PMOS) transistor Q1 and an N-channel MOS (NMOS) transistor Q2. The PMOS transistor Q1 has a gate, to which the internal clock signal clk is applied. On the other hand, the inverted internal clock signal clk is applied to the gate of NMOS transistor Q2 through the invertion circuit 24.
  • The [0052] second transfer gate 22 b includes an PMOS transistor Q3 and an NMOS transistor Q4. The inverted internal clock signal clk is applied to the gate of PMOS transistor Q3 through the invertion circuit 24 while the internal clock signal clk is applied to the gate of NMOS transistor Q4.
  • When the internal clock signal clk assumes an L level, the [0053] first transfer gate 22 a is opened while the second transfer gate 22 b is closed. In this instance, the first latch 21 a holds the inverted decoded signal. When the internal clock signal clk changes from its L level to its H level, the second transfer gate 22 b is opened while the first transfer gate 22 a is closed. At this time, the second latch 21 b receives the decoded signal which has been held by the first latch 21 a and continues to hold such decoded signal. In this manner, respective decoded signals D1-D5 are latched into a corresponding second latch 21 b in response to the rising edge of the internal clock signal clk.
  • The set-up/hold time is adjusted by the adjusting unit [0054] 14 (or the first to the fifth variable delay circuit 14a14 e). Accordingly, a result of detection (decoded signals D1-D5) from the decode circuit 12 is held by the SFF circuits 15 a-15 e in a positive manner in response to the rising edge of the internal clock signal clk.
  • The [0055] delay adjusting unit 14 will now be described. The delay adjusting unit 14 includes a first to a fifth variable delay circuit 14 a-14 e.
  • The first [0056] variable delay circuit 14 a receives the decoded signal D1 from the first AND circuit 12 a and feeds it to the first SFF circuit 15 a without or with a delay. Similarly, the second to the fifth variable delay circuit 14 b-14 e receive the decoded signal D2-D5, respectively, from the second to the fifth AND circuit 12 b-12 e, respectively, and feed the decoded signal D2-D5 to the second to the fifth SFF circuit 15 b-15 e, respectively, without or with a delay.
  • FIG. 5 is a schematic diagram of the first [0057] variable delay circuit 14 a. It is to be understood that the second to the fifth variable delay circuit 14 b-14 e are constructed in the similar manner as the first variable delay circuit 14 a. The first variable delay circuit 14 a has an input terminal in which is connected to the AND circuit 12 a and an output terminal out which is connected to the SFF circuit 15 a. The first variable delay circuit 14 a includes a pair of switch elements 16 a, 16 b and a pair of MOS capacitors 17 a, 17 b. Specifically, the switch elements 16 a, 16 b are connected to nodes 18 a, 18 b on a signal line 18 which joins the input terminal in and the output terminal out, and the pair of MOS capacitors 17 a, 17 b are connected between the respective switch elements 16 a, 16 b and the ground. Preferably, each switch element 16 a, 16 b includes an MOS transistor.
  • An adjustment of the set-up/hold time will now be described. [0058]
  • The delay time or the set-up/hold time of the decoded signals D[0059] 1-D5 is adjusted by each variable delay circuit 14 a-14 e. In the variable delay circuit 14 a-14 e, the delay time is adjusted by selectively turning the switch elements 16 a, 16 b on and/or off. More specifically, when the both switch elements 16 a, 16 b are turned off, a shortest delay time is set up. When the both switch elements 16 a, 16 b are turned on, a longest delay time is set up. When one of the switch elements 16 a, 16 b is turned off while the other is turned on, the resulting delay time is intermediate the longest and the shortest delay time.
  • In the first embodiment, for each external command, the first to the fifth AND [0060] circuit 12 a-12 e produces one decoded signal D1-D5 of an H level and four decoded signals of an L level. Paying attention to this fact, it is examined in a test mode if one of the SFF circuits 15 a-15 e is capable of holding one of the decoded signals, which has an H level in accordance with the external command, in accordance with the internal clock signal clk. The delay times of the variable delay circuits 14 a-14 e are determined so that the SFF circuit is capable of holding the decoded signal having an H level in accordance with the internal clock signal clk.
  • Specifically, when the external command is an active command, only the decoded signal D[0061] 1 assumes an H level. The external clock signal CLK and the active command are supplied to the synchronous DRAM. The delay time of the first variable delay circuit 14 a is adjusted so that the first SFF circuit 15 a is capable of holding the decoded signal D1 in accordance with the internal clock signal clk.
  • When the external command is a precharge command, only the decoded signal D[0062] 2 assumes an H level. The external clock signal CLK and the precharge command are supplied to the synchronous DRAM. The delay time in the second variable delay circuit 14 b is adjusted so that the second SFF circuit 15 b holds the decoded signal D2 in accordance with the internal clock signal clk.
  • When the external command is a read command, only the decoded signal D[0063] 3 assumes an H level. The external clock signal CLK and the read command are supplied to the synchronous DRAM. The delay time of the third variable delay circuit 14 c is adjusted so that the third SFF circuit 15 c holds the decoded signal D3 in accordance with the internal clock signal clk.
  • When the external command is a read command, only the decoded signal D[0064] 3 assumes an H level. The external clock signal CLK and the read command are supplied to the synchronous DRAM. The delay time of the third variable delay circuit 14 c is adjusted so that the third SFF circuit 15 c holds the decoded signal D3 in accordance with the internal clock signal clk.
  • When the external command is a write command, only the decoded signal D[0065] 4 assumes an H level. The external clock signal CLK and the write command are supplied to the synchronous DRAM. The delay time of the fourth variable delay circuit 14 d is adjusted so that the fourth SFF circuit 15 d holds the decoded signal D4 in accordance with the internal clock signal clk.
  • When the external command is a mode register set command, only the decoded signal D[0066] 5 assumes an H level. The external clock signal CLK and the mode register set command are supplied to the synchronous DRAM. The delay time of the fifth variable delay circuit 14 e is adjusted so that the fifth SFF circuit 15 c holds the decoded signal D5 in accordance with the internal clock signal clk.
  • The delay time for each of the decoded signals D[0067] 1-D5 is defined as a length of time passed from the transition of the potential of the command signal applied to one of the external command input terminal T1-T4 to the transition of the potential of the decoded signal D1-D5 delivered from the AND circuits 12 a-12 e. It should be noted that the delay time is different between decoded signals D1-D5. In addition, the delay time also varies depending on the direction of transition (from H level or L level or L level to H level) on the external command input terminals T1-T4.
  • The delay time also varies due to operational noises of the synchronous DRAM such as a variation in the supply voltage, for example. In other words, depending on the operational condition of the semiconductor device as the potential of the decoded signal D[0068] 1-D5 transitions, the influence of the noises upon the delay time varies from decoded signal to decoded signal.
  • Specifically, when the mode register set command is applied to the semiconductor device, the semiconductor device is in an idle condition where the operational noises within the semiconductor device are relatively low. By contrast, when the active command, the read/write command and precharge command are applied to the semiconductor device, the semiconductor device is in an active condition where the operational noises are relatively high. As a consequence, when the mode register set command is applied, the set-up/hold time is less susceptible to the influence of noises. However, conversely, when the active command, the read/write command or precharge command is applied, the set-up/hold time of each AND [0069] circuit 12 a-12 e is greatly influenced by the noises. This means that when the active command, the read/write command and precharge command are asserted, the set-up/hold time is susceptible to variation.
  • A variation in the set-up/hold time is reduced by using the [0070] variable delay circuits 14 a-14 e to adjust the delay time (set-up/hold time) for each command. In this manner, the SFF circuits 15 a-15 e are enabled to hold each decoded signal having an H level in conformity to the internal clock signal clk. As a consequence, the command decode circuit 100 exhibits a reduced dead zone width for the set-up/hold when viewed from the entire external command input terminals T1-T4.
  • The synchronous DRAM according to the first embodiment has the following advantages: [0071]
  • (1) The first to the fifth [0072] variable circuit 14 a-14 e are connected between the decode unit 10 and the setup/hold latch circuit 15. The command decode circuit 100 has a number of circuit elements which is less than the number of circuit elements used in the third prior art, and thus there are provided a relatively compact command decode circuit 100 and hence SDRAM. Since the delay time is adjusted for each decoded signal in the command decode circuit 100, the dead zone width of the set-up/hold time as viewed from the entire input terminals T1-T4 is relatively narrow.
  • (2) Using the first to the fifth [0073] variable delay circuit 14 a-14 e, the delay time (set-up/hold time) is adjusted for each command. Accordingly, if the operational noises such as a variation in the supply voltage of the synchronous DRAM differ from command to command, there is provided an optimum adjustment of the delay time. As a consequence, a variation in the set-up/hold time from command to command is reduced, and the decoded signals D1-D5 can be latched in the set-up/hold latch circuit 15.
  • (3) Each of the [0074] delay circuits 14 a-14 e includes the switch elements 16 a, 16 b and MOS capacitors 17 a, 17 b, and is relatively simple in construction. The incorporation of MOS capacitors 17 a, 17 b is facilitated.
  • (4) In the first embodiment, only one of the first to the fifth AND [0075] circuit 12 a-12 e operates in response to a variety of external commands. Accordingly, the decode circuit 12 has a relatively low power dissipation. It will be noted that only one of the delay circuits which is associated with the operating AND circuit operates. Accordingly, the power dissipation of the delay circuits 14 a-14 e is also relatively low.
  • The first embodiment mentioned above can be modified in the manner mentioned below. [0076]
  • The input buffers [0077] 11 a-11 d may deliver a single phase signal. The input buffer may include a delay circuit. Where a level conversion of an external signal is unnecessary, the input buffers 11 a-11 d can be omitted.
  • AND [0078] circuit 12 a-12 e may be replaced by a decode circuit 12 which employ other logic circuits.
  • The [0079] variable delay circuits 14 a-14 e are not limited to those shown in FIG. 5. For example, the switch elements 16 a, 16 b may be replaced by fuses. In this instance, the fuse which is connected to MOS capacitors 17 a, 17 b which is turned off is cut by a laser. MOS capacitors 17 a, 17 b may be replaced by capacitors other than MOS capacitors. In addition, a delay circuit or set/reset delay circuit which employs an inverter circuit may be used.
  • [0080] SFF circuits 15 a-15 e latch the decoded signals D1-D5 in response to the rising edge of the internal clock signal clk. However, as an alternative, SFF circuits 15 a-15 e may latch the decoded signals DL-D5 in response to the falling edge of the internal clock signal clk, for example.
  • The invention is not limited to its application to a [0081] command decode circuit 100 for the synchronous DRAM, but may also be applied to an address decode circuit of such DRAM or to a variety of test mode decision circuits.
  • By way of example, FIG. 7 is a block diagram of an [0082] address decode circuit 200 according to a second embodiment of the invention. The address decode circuit 200 includes a decode unit 30, a delay adjusting unit 33 and a set-up/hold latch circuit 34. An external address signal BA0 and BA1 are supplied to a first and a second external address terminal T11 and T12, respectively.
  • The [0083] decode unit 30 includes a first and a second input buffer 31 a, 31 b, and a first to a fourth AND circuit 32 a-32 d. The first input buffer 31 a produces complimentary address signals ba0x, ba0z from an external address signal BA0. The second input buffer 31 b produces complimentary address signals ba1x, ba1z from the external address signal BA1. Each of AND circuits 32 a-32 d represents a two input AND circuit and receives address signals ba0x, ba0z, ba1x and ba1z in different combinations. Each of AND circuits 32 a-32 d produces one of decoded signals D11-D14 of an H level when two address signals assume an H level.
  • The [0084] delay adjusting unit 33 includes a first to a fourth variable delay circuit 33 a-33 d. The set-up/hold latch circuit 34 includes a first to a fourth SFF circuit 34 a-34 d. The SFF circuits 34 a-34 d latch respective decoded signals D11-D14 supplied from corresponding variable delay circuits 33 a-33 d in synchronism with the external clock signal CLK.
  • It will be understood that in the [0085] address decode circuit 200, the difference in the number of inverter circuits within the input buffers 31 a and 31 b causes a variation in the set-up/hold time of the external address signal. In order to assure that a result of detection (decoded signal D11-D14) of the decode unit 30 be positively held in response to the rising edge of the internal clock signal clk, the set-up/hold time is adjusted by using the variable delay circuits 33 a to 33 d in the similar manner as in the first embodiment. Accordingly, the second embodiment provides the same advantage as achieved by the first embodiment.
  • The [0086] command decode circuit 100 of the synchronous DRAM may be formed on a single semiconductor substrate, or may be formed on the semiconductor substrate in mixture with the logic circuit.
  • It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims. [0087]

Claims (14)

What is claimed is:
1. A synchronous semiconductor device comprising:
a decoder for receiving a plurality of input signals to generate a plurality of decoded signals;
a delay adjusting unit connected to the decoder to adjust a delay time of each of the decoded signals and to provide a plurality of adjusted decoded signals; and
a latch circuit unit connected to the delay adjusting unit for latching the adjusted decoded signals in synchronism with a clock signal.
2. A synchronous semiconductor device comprising:
a plurality of decode circuits for receiving a plurality of input signals and for producing a plurality of decoded signals;
a plurality of delay adjusting circuits connected to the plurality of decode circuits, respectively, to adjust the respective delay times of the plurality of decode signals so that a variation in the set-up/hold time of the plurality of decode signals is reduced, thus providing a plurality of adjusted decoded signals; and
a plurality of latch circuits connected to the plurality of delay adjusting circuits for latching the plurality of adjusted decoded signals, respectively, in synchronism with a clock signal.
3. A synchronous semiconductor device according to claim 2, wherein each of the delay adjusting circuits adjusts the delay time of an associated one of the decoded signals depending on the operational condition of the synchronous semiconductor device.
4. A synchronous semiconductor device according to claim 2, wherein each of the delay adjusting circuits includes a capacitor that delays an associated one of the decoded signals.
5. A synchronous semiconductor device according to claim 2, wherein each of the plurality of delay adjusting circuits includes:
an input terminal to which the decoded signal is provided;
an output terminal from which the decoded signal is output;
at least one switching element connected to at least one node between the input terminal and the output terminal; and
at least one capacitor connected to the at least one switching element, the at least one switching element selectively connecting the at least one capacitor and the at least one node.
6. A synchronous semiconductor device according to claim 5, wherein the delay time is changed as the at least one switching element is switched.
7. A synchronous semiconductor device according to claim 5, wherein the capacitor includes MOS capacitor.
8. A synchronous semiconductor device according to claim 2, wherein when the input signal is to be decoded, one of the plurality of decode circuits operates.
9. A synchronous semiconductor device according to claim 2, wherein the input signal is at least one of an address signal and a command signal that are used to operate a synchronous semiconductor memory.
10. A method of latching a plurality of input signals in a synchronous semiconductor device, comprising the steps of:
decoding the plurality of input signals to provide a plurality of decoded signals;
adjusting a delay time of each of the decoded signals so that a variation in the set-up/hold time for the decoded signals is reduced, thus providing a plurality of adjusted decoded signals; and
latching the adjusted decoded signals in synchronism with a clock signal.
11. A method of latching the plurality of input signals according to claim 10, wherein the delay time is adjusted in the manner depending on the operational condition of the synchronous semiconductor device.
12. A synchronous semiconductor device comprising:
a plurality of command input terminals for receiving a plurality of command signals;
a plurality of decode circuits connected to the command input terminals, respectively, to decode the command signals, thereby providing a plurality of decoded signals;
a plurality of delay adjusting circuits connected to the decode circuits to adjust a delay time of each of the decoded signals in a manner dependent on the variety of the command signals, thereby providing a plurality of adjusted decoded signals; and
a plurality of latch circuits connected to the delay adjusting circuits for latching the adjusted decoded signals in synchronism with a clock signal.
13. A synchronous semiconductor device according to claim 12, wherein each of the delay adjusting circuits includes a capacitor for delaying an associated one of the decoded signals.
14. A synchronous semiconductor device according to claim 12, wherein each of the delay adjusting circuits includes:
an input terminal for receiving an associated one of the decoded signals;
an output terminal connected to an associated one of the latch circuits;
a plurality of MOS transistors connected to the ground; and
a plurality of switching elements connected between a plurality of nodes, which are defined between the input terminals and the output terminals, and the MOS transistors, for selectively connecting the nodes and the MOS transistors.
US09/832,851 2000-11-20 2001-04-12 Synchronous semiconductor device and method for latching input signals Expired - Lifetime US6385127B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000352636A JP2002157883A (en) 2000-11-20 2000-11-20 Synchronous semiconductor device and latch method for input signal in synchronous semiconductor device
JP2000-352636 2000-11-20

Publications (2)

Publication Number Publication Date
US6385127B1 US6385127B1 (en) 2002-05-07
US20020060945A1 true US20020060945A1 (en) 2002-05-23

Family

ID=18825503

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/832,851 Expired - Lifetime US6385127B1 (en) 2000-11-20 2001-04-12 Synchronous semiconductor device and method for latching input signals

Country Status (4)

Country Link
US (1) US6385127B1 (en)
JP (1) JP2002157883A (en)
KR (1) KR100675576B1 (en)
TW (1) TW530300B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285031A1 (en) * 2005-06-24 2009-11-19 Suresh Natarajan Rajan System and method for simulating an aspect of a memory circuit
US20090290442A1 (en) * 2005-06-24 2009-11-26 Rajan Suresh N Method and circuit for configuring memory core integrated circuit dies with memory interface integrated circuit dies
US20100257304A1 (en) * 2006-07-31 2010-10-07 Google Inc. Apparatus and method for power management of memory circuits by a system or component thereof
US8019589B2 (en) 2006-07-31 2011-09-13 Google Inc. Memory apparatus operable to perform a power-saving operation
US8055833B2 (en) 2006-10-05 2011-11-08 Google Inc. System and method for increasing capacity, performance, and flexibility of flash storage
US8060774B2 (en) 2005-06-24 2011-11-15 Google Inc. Memory systems and memory modules
US8081474B1 (en) 2007-12-18 2011-12-20 Google Inc. Embossed heat spreader
US8080874B1 (en) 2007-09-14 2011-12-20 Google Inc. Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween
US8089795B2 (en) 2006-02-09 2012-01-03 Google Inc. Memory module with memory stack and interface with enhanced capabilities
US8090897B2 (en) 2006-07-31 2012-01-03 Google Inc. System and method for simulating an aspect of a memory circuit
US8111566B1 (en) 2007-11-16 2012-02-07 Google, Inc. Optimal channel design for memory devices for providing a high-speed memory interface
US8130560B1 (en) 2006-11-13 2012-03-06 Google Inc. Multi-rank partial width memory modules
US8154935B2 (en) * 2006-07-31 2012-04-10 Google Inc. Delaying a signal communicated from a system to at least one of a plurality of memory circuits
US8169233B2 (en) 2009-06-09 2012-05-01 Google Inc. Programming of DIMM termination resistance values
US8181048B2 (en) 2006-07-31 2012-05-15 Google Inc. Performing power management operations
US8209479B2 (en) 2007-07-18 2012-06-26 Google Inc. Memory circuit system and method
US8213205B2 (en) 2005-09-02 2012-07-03 Google Inc. Memory system including multiple memory stacks
US8244971B2 (en) 2006-07-31 2012-08-14 Google Inc. Memory circuit system and method
US8280714B2 (en) 2006-07-31 2012-10-02 Google Inc. Memory circuit simulation system and method with refresh capabilities
US20120268170A1 (en) * 2011-04-19 2012-10-25 Elpida Memory, Inc. Semiconductor device having gear down mode, method of controlling same, and information processing system
US8327104B2 (en) 2006-07-31 2012-12-04 Google Inc. Adjusting the timing of signals associated with a memory system
US8335894B1 (en) 2008-07-25 2012-12-18 Google Inc. Configurable memory system with interface circuit
US8386722B1 (en) 2008-06-23 2013-02-26 Google Inc. Stacked DIMM memory interface
US8397013B1 (en) 2006-10-05 2013-03-12 Google Inc. Hybrid memory module
US8438328B2 (en) 2008-02-21 2013-05-07 Google Inc. Emulation of abstracted DIMMs using abstracted DRAMs
US8566516B2 (en) 2006-07-31 2013-10-22 Google Inc. Refresh management of memory modules
US8773937B2 (en) 2005-06-24 2014-07-08 Google Inc. Memory refresh apparatus and method
US8796830B1 (en) 2006-09-01 2014-08-05 Google Inc. Stackable low-profile lead frame package
US9171585B2 (en) 2005-06-24 2015-10-27 Google Inc. Configurable memory circuit system and method
US9507739B2 (en) 2005-06-24 2016-11-29 Google Inc. Configurable memory circuit system and method
US9542353B2 (en) 2006-02-09 2017-01-10 Google Inc. System and method for reducing command scheduling constraints of memory circuits
US9632929B2 (en) 2006-02-09 2017-04-25 Google Inc. Translating an address associated with a command communicated between a system and memory circuits
US10013371B2 (en) 2005-06-24 2018-07-03 Google Llc Configurable memory circuit system and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035188A (en) * 1999-07-26 2001-02-09 Fujitsu Ltd Test method for semiconductor device and semiconductor device
JP2002358782A (en) * 2001-05-31 2002-12-13 Nec Corp Semiconductor memory
JP4717373B2 (en) * 2004-05-20 2011-07-06 富士通セミコンダクター株式会社 Semiconductor memory
KR100675898B1 (en) 2006-02-21 2007-02-02 주식회사 하이닉스반도체 Data training circuit
KR100868251B1 (en) * 2007-03-22 2008-11-12 주식회사 하이닉스반도체 Semiconductor Memory Device
JP2009020953A (en) * 2007-07-11 2009-01-29 Elpida Memory Inc Synchronous semiconductor device and data processing system provided with the same
US7626884B2 (en) * 2007-10-30 2009-12-01 Intel Corporation Optimizing mode register set commands
US9396786B2 (en) * 2013-09-25 2016-07-19 SK Hynix Inc. Memory and memory system including the same
KR102122892B1 (en) * 2013-09-25 2020-06-15 에스케이하이닉스 주식회사 Memory and memory system including the same
KR20180051108A (en) * 2016-11-08 2018-05-16 에스케이하이닉스 주식회사 Input buffer circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157681B2 (en) 1994-06-27 2001-04-16 日本電気株式会社 Logical data input latch circuit
JP2874619B2 (en) 1995-11-29 1999-03-24 日本電気株式会社 Semiconductor storage device
JP3152174B2 (en) * 1997-07-29 2001-04-03 日本電気株式会社 Semiconductor storage device
US6216180B1 (en) * 1998-05-21 2001-04-10 Intel Corporation Method and apparatus for a nonvolatile memory interface for burst read operations
KR100287189B1 (en) * 1999-04-07 2001-04-16 윤종용 Semiconductor Memory Device Having a Plurality of Wordlines being Sequentially Disabled
JP2001035195A (en) * 1999-07-19 2001-02-09 Nec Ic Microcomput Syst Ltd Semiconductor memory

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9507739B2 (en) 2005-06-24 2016-11-29 Google Inc. Configurable memory circuit system and method
US20090290442A1 (en) * 2005-06-24 2009-11-26 Rajan Suresh N Method and circuit for configuring memory core integrated circuit dies with memory interface integrated circuit dies
US8773937B2 (en) 2005-06-24 2014-07-08 Google Inc. Memory refresh apparatus and method
US7990746B2 (en) 2005-06-24 2011-08-02 Google Inc. Method and circuit for configuring memory core integrated circuit dies with memory interface integrated circuit dies
US20090285031A1 (en) * 2005-06-24 2009-11-19 Suresh Natarajan Rajan System and method for simulating an aspect of a memory circuit
US8949519B2 (en) 2005-06-24 2015-02-03 Google Inc. Simulating a memory circuit
US8386833B2 (en) 2005-06-24 2013-02-26 Google Inc. Memory systems and memory modules
US8060774B2 (en) 2005-06-24 2011-11-15 Google Inc. Memory systems and memory modules
US10013371B2 (en) 2005-06-24 2018-07-03 Google Llc Configurable memory circuit system and method
US8359187B2 (en) 2005-06-24 2013-01-22 Google Inc. Simulating a different number of memory circuit devices
US9171585B2 (en) 2005-06-24 2015-10-27 Google Inc. Configurable memory circuit system and method
US8615679B2 (en) 2005-06-24 2013-12-24 Google Inc. Memory modules with reliability and serviceability functions
US8811065B2 (en) 2005-09-02 2014-08-19 Google Inc. Performing error detection on DRAMs
US8213205B2 (en) 2005-09-02 2012-07-03 Google Inc. Memory system including multiple memory stacks
US8582339B2 (en) 2005-09-02 2013-11-12 Google Inc. System including memory stacks
US8619452B2 (en) 2005-09-02 2013-12-31 Google Inc. Methods and apparatus of stacking DRAMs
US8089795B2 (en) 2006-02-09 2012-01-03 Google Inc. Memory module with memory stack and interface with enhanced capabilities
US9542353B2 (en) 2006-02-09 2017-01-10 Google Inc. System and method for reducing command scheduling constraints of memory circuits
US9542352B2 (en) 2006-02-09 2017-01-10 Google Inc. System and method for reducing command scheduling constraints of memory circuits
US8566556B2 (en) 2006-02-09 2013-10-22 Google Inc. Memory module with memory stack and interface with enhanced capabilities
US9632929B2 (en) 2006-02-09 2017-04-25 Google Inc. Translating an address associated with a command communicated between a system and memory circuits
US9727458B2 (en) 2006-02-09 2017-08-08 Google Inc. Translating an address associated with a command communicated between a system and memory circuits
US8797779B2 (en) 2006-02-09 2014-08-05 Google Inc. Memory module with memory stack and interface with enhanced capabilites
US9047976B2 (en) 2006-07-31 2015-06-02 Google Inc. Combined signal delay and power saving for use with a plurality of memory circuits
US8671244B2 (en) 2006-07-31 2014-03-11 Google Inc. Simulating a memory standard
US8280714B2 (en) 2006-07-31 2012-10-02 Google Inc. Memory circuit simulation system and method with refresh capabilities
US8340953B2 (en) 2006-07-31 2012-12-25 Google, Inc. Memory circuit simulation with power saving capabilities
US8244971B2 (en) 2006-07-31 2012-08-14 Google Inc. Memory circuit system and method
US20100257304A1 (en) * 2006-07-31 2010-10-07 Google Inc. Apparatus and method for power management of memory circuits by a system or component thereof
US8181048B2 (en) 2006-07-31 2012-05-15 Google Inc. Performing power management operations
US8745321B2 (en) 2006-07-31 2014-06-03 Google Inc. Simulating a memory standard
US8019589B2 (en) 2006-07-31 2011-09-13 Google Inc. Memory apparatus operable to perform a power-saving operation
US8407412B2 (en) 2006-07-31 2013-03-26 Google Inc. Power management of memory circuits by virtual memory simulation
US8972673B2 (en) 2006-07-31 2015-03-03 Google Inc. Power management of memory circuits by virtual memory simulation
US8154935B2 (en) * 2006-07-31 2012-04-10 Google Inc. Delaying a signal communicated from a system to at least one of a plurality of memory circuits
US8566516B2 (en) 2006-07-31 2013-10-22 Google Inc. Refresh management of memory modules
US8122207B2 (en) 2006-07-31 2012-02-21 Google Inc. Apparatus and method for power management of memory circuits by a system or component thereof
US8112266B2 (en) 2006-07-31 2012-02-07 Google Inc. Apparatus for simulating an aspect of a memory circuit
US8595419B2 (en) 2006-07-31 2013-11-26 Google Inc. Memory apparatus operable to perform a power-saving operation
US8601204B2 (en) 2006-07-31 2013-12-03 Google Inc. Simulating a refresh operation latency
US8090897B2 (en) 2006-07-31 2012-01-03 Google Inc. System and method for simulating an aspect of a memory circuit
US8868829B2 (en) 2006-07-31 2014-10-21 Google Inc. Memory circuit system and method
US8041881B2 (en) 2006-07-31 2011-10-18 Google Inc. Memory device with emulated characteristics
US8631220B2 (en) 2006-07-31 2014-01-14 Google Inc. Adjusting the timing of signals associated with a memory system
US8667312B2 (en) 2006-07-31 2014-03-04 Google Inc. Performing power management operations
US8327104B2 (en) 2006-07-31 2012-12-04 Google Inc. Adjusting the timing of signals associated with a memory system
US8796830B1 (en) 2006-09-01 2014-08-05 Google Inc. Stackable low-profile lead frame package
US8055833B2 (en) 2006-10-05 2011-11-08 Google Inc. System and method for increasing capacity, performance, and flexibility of flash storage
US8397013B1 (en) 2006-10-05 2013-03-12 Google Inc. Hybrid memory module
US8977806B1 (en) 2006-10-05 2015-03-10 Google Inc. Hybrid memory module
US8751732B2 (en) 2006-10-05 2014-06-10 Google Inc. System and method for increasing capacity, performance, and flexibility of flash storage
US8370566B2 (en) 2006-10-05 2013-02-05 Google Inc. System and method for increasing capacity, performance, and flexibility of flash storage
US8446781B1 (en) 2006-11-13 2013-05-21 Google Inc. Multi-rank partial width memory modules
US8130560B1 (en) 2006-11-13 2012-03-06 Google Inc. Multi-rank partial width memory modules
US8760936B1 (en) 2006-11-13 2014-06-24 Google Inc. Multi-rank partial width memory modules
US8209479B2 (en) 2007-07-18 2012-06-26 Google Inc. Memory circuit system and method
US8080874B1 (en) 2007-09-14 2011-12-20 Google Inc. Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween
US8675429B1 (en) 2007-11-16 2014-03-18 Google Inc. Optimal channel design for memory devices for providing a high-speed memory interface
US8111566B1 (en) 2007-11-16 2012-02-07 Google, Inc. Optimal channel design for memory devices for providing a high-speed memory interface
US8081474B1 (en) 2007-12-18 2011-12-20 Google Inc. Embossed heat spreader
US8730670B1 (en) 2007-12-18 2014-05-20 Google Inc. Embossed heat spreader
US8705240B1 (en) 2007-12-18 2014-04-22 Google Inc. Embossed heat spreader
US8438328B2 (en) 2008-02-21 2013-05-07 Google Inc. Emulation of abstracted DIMMs using abstracted DRAMs
US8631193B2 (en) 2008-02-21 2014-01-14 Google Inc. Emulation of abstracted DIMMS using abstracted DRAMS
US8386722B1 (en) 2008-06-23 2013-02-26 Google Inc. Stacked DIMM memory interface
US8762675B2 (en) 2008-06-23 2014-06-24 Google Inc. Memory system for synchronous data transmission
US8335894B1 (en) 2008-07-25 2012-12-18 Google Inc. Configurable memory system with interface circuit
US8819356B2 (en) 2008-07-25 2014-08-26 Google Inc. Configurable multirank memory system with interface circuit
US8169233B2 (en) 2009-06-09 2012-05-01 Google Inc. Programming of DIMM termination resistance values
US20120268170A1 (en) * 2011-04-19 2012-10-25 Elpida Memory, Inc. Semiconductor device having gear down mode, method of controlling same, and information processing system
US8890584B2 (en) * 2011-04-19 2014-11-18 Ps4 Luxco S.A.R.L. Semiconductor device having gear down mode, method of controlling same, and information processing system

Also Published As

Publication number Publication date
KR100675576B1 (en) 2007-02-01
TW530300B (en) 2003-05-01
US6385127B1 (en) 2002-05-07
KR20020039215A (en) 2002-05-25
JP2002157883A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US6385127B1 (en) Synchronous semiconductor device and method for latching input signals
KR100381968B1 (en) High speed action DRAM
US6260128B1 (en) Semiconductor memory device which operates in synchronism with a clock signal
US6538956B2 (en) Semiconductor memory device for providing address access time and data access time at a high speed
KR100401506B1 (en) Synchronous memory device having asynchronous precharge
US6466075B2 (en) Clock signal generator for generating signal with differing phase for an integrated circuit
US6606274B2 (en) Semiconductor memory device having function of supplying stable power supply voltage
KR102287306B1 (en) Apparatus and method for configurable instruction and data input circuitry for semiconductor memory
US6480033B2 (en) Semiconductor device
JPH09231767A (en) Static semiconductor memory device
US6636443B2 (en) Semiconductor memory device having row buffers
US20030031081A1 (en) Semiconductor memory device operating in synchronization with data strobe signal
US6771558B2 (en) Semiconductor memory device
EP0766251B1 (en) Semiconducteur memory device having extended margin in latching input signal
US6696862B2 (en) Semiconductor memory device input circuit
US7061826B2 (en) Command decoder of semiconductor memory device
KR19980057449A (en) Column Selection Control Circuit of Semiconductor Memory Device
US5877652A (en) Voltage detecting circuit and method for reduced power consumption
KR100363481B1 (en) Input Buffer Control Device
US6704240B2 (en) Predecoder control circuit
US6891763B1 (en) Input buffer with differential amplifier
US5940330A (en) Synchronous memory device having a plurality of clock input buffers
US6310823B1 (en) Circuit for generating internal column strobe signal in synchronous semiconductor memory device
US5812485A (en) Synchronous graphic RAM having block write control function
US6930950B2 (en) Semiconductor memory device having self-precharge function

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IKEDA, SHINICHIRO;REEL/FRAME:011708/0068

Effective date: 20010314

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FUJITSU MICROELECTRONICS LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021976/0876

Effective date: 20081104

Owner name: FUJITSU MICROELECTRONICS LIMITED,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021976/0876

Effective date: 20081104

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: FUJITSU SEMICONDUCTOR LIMITED, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:FUJITSU MICROELECTRONICS LIMITED;REEL/FRAME:024804/0269

Effective date: 20100401

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: SOCIONEXT INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU SEMICONDUCTOR LIMITED;REEL/FRAME:035507/0706

Effective date: 20150302