US20020051380A1 - Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system - Google Patents

Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system Download PDF

Info

Publication number
US20020051380A1
US20020051380A1 US09/947,355 US94735501A US2002051380A1 US 20020051380 A1 US20020051380 A1 US 20020051380A1 US 94735501 A US94735501 A US 94735501A US 2002051380 A1 US2002051380 A1 US 2002051380A1
Authority
US
United States
Prior art keywords
layer
magnetic
magnetization
magnetoresistance effect
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/947,355
Inventor
Yuuzo Kamiguchi
Hiromi Yuasa
Tomohiko Nagata
Hiroaki Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAMIGUCHI, YUUZO, NAGATA, TOMOHIKO, YODA, HIROAKI, YUASA, HIROMI
Publication of US20020051380A1 publication Critical patent/US20020051380A1/en
Priority to US10/970,278 priority Critical patent/US7359162B2/en
Priority to US11/984,865 priority patent/US7542248B2/en
Priority to US12/042,166 priority patent/US7483245B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Definitions

  • the spin-valve film can rotate the magnetization of the free layer, i.e., the ferromagnetic layer F. Therefore, the spin-valve film can be sensitized, so that it is suitable for an MR element for use in an MR head.
  • At least one of the ferromagnetic layers included in the stacked body may include a layer of a first ferromagnetic material, and a layer of a second ferromagnetic material different from the first ferromagnetic material.
  • the ferromagnetic layers included in the stacked body may contain any one of an iron (Fe) base alloy, a cobalt (Co) base alloy and a nickel (Ni) base alloy, and the non-magnetic layers included in the stacked body may contain any one of gold (Au), silver (Ag), copper (Cu), rhodium (Rh), ruthenium (Ru), manganese (Mn), chromium (Cr), rhenium (Re), osmium (Os), iridium (Ir), and an alloy containing any one of gold, silver, copper, rhodium, ruthenium, manganese, chromium, rhenium, osmium, and iridium.
  • the non-magnetic intermediate layer may have a stacked body wherein two kinds or more of non-magnetic layers are stacked.
  • FIG. 3 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein ferromagnetic layers FF and PF are formed in the form of islands;
  • FIG. 8A is a conceptual drawing showing modulation of potential in the spin-valve element of FIG. 7 when the magnetization of the pinned layer is parallel to the magnetization of the free layer;
  • FIG. 8B is a conceptual drawing showing modulation of potential in the spin-valve element of FIG. 7 when the magnetization of the pinned layer is anti-parallel to the magnetization of the free layer;
  • FIG. 9 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein a non-magnetic layer has a stacked structure
  • the magnetization of the pinned layer P and the magnetization of the free layer F are operated so as to be integrated, the magnetization can be controlled only by the magnetization fixing of the pinned layer P and the control of the magnetization of one free layer F.
  • the element is used for a reading sensor, such as a magnetic head, it is possible to realize a magnetic head wherein Barkhausen noises are suppressed.
  • the stacked structure of ferromagnetic layer/non-magnetic layer is preferably flat and continuous.
  • the pin holes H are formed in the non-magnetic layers FN and PN as shown in FIG. 2 and if adjacent ferromagnetic layers FF and PF are connected directly to each other in that portion.
  • the ferromagnetic layer FF 2 of a magnetic material having excellent magnetically soft characteristics such as CoFe or NiFe, which is ferromagnetically coupled as a ferromagnetic layer.
  • the wave number vector of electrons flowing in a direction perpendicular to the plane of the film is perturbed in accordance with modulation of band potential.
  • the perturbed wave number varies in accordance with the period of the multilayered structure. Therefore, the stacking periods in the pinned layer P and free layer F are changed as illustrated in FIG. 7, it is possible to greatly restrict the wave number of electrons capable of passing through both layers.
  • the screen effect itself has the spin dependence effect, it is possible to hold a high spin dependency while maintaining a low transmission probability of electrons as a whole. For that reason, if the stacking periods in the pinned layer P and free layer F are intentionally changed, it is possible to form a CPP-SV capable of realizing a high rate of change in MR while maintaining a higher resistance.
  • the material of the non-magnetic intermediate layer S is preferably a material, in which the mean free path of conductive electrons is long, such as Cu, Au or Ag.
  • a material in which the mean free path of conductive electrons is long, such as Cu, Au or Ag.
  • electrons can varistically conduct from the ferromagnetic layer forming an electrode to the ferromagnetic layer F, so that it is possible to more effectively utilize the scattering effect of electrons depending on spin which is caused by the ferromagnetic material.
  • the non-magnetic intermediate layer S may be formed of an alloy of the above described three elements. In that case, the composition is preferably adjusted so that the crystal lattice constant in the stacked structure can be adjusted to be the optimum value.
  • FIG. 10 is a conceptual drawing showing a spin-valve element wherein a non-magnetic intermediate layer S is multilayered. That is, in the spin-valve element shown in this figure, the non-magnetic intermediate layer S has the stacked structure of first non-magnetic layers SN 1 and second non-magnetic layers SN 2 . All of the non-magnetic layers may be formed of a material, such as Cu, Au or Ag. In this case, conductive electrons can also be perturbed by the stacking period of the stacked structure of non-magnetic layer/non-magnetic layer.
  • the material of the antiferromagnetic layer A is preferably a metallic antiferromagnetic material having excellent magnetization fixing characteristics.
  • an antiferromagnetic material such as PtMn, NiMn, FeMn or IrMn, may be used.
  • the thickness of the antiferromagnetic layer A is preferably as thin as possible from the standpoint of electric characteristics. However, if the antiferromagnetic layer A is too thin, the magnetization fixing characteristics deteriorate, so that it is required to select such a thickness that the blocking temperature does not decrease. For that reason, the thickness is preferably 5 nm or more.
  • FIG. 13 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element according to the second embodiment of the present invention. That is, the magnetoresistance effect element according to the second embodiment comprises an antiferromagnetic layer A, a first magnetic material P, a non-magnetic intermediate layer S, a second magnetic material F and a high conductive layer G, which are stacked on a predetermined substrate (not shown) in that order.
  • a Cu bottom electrode having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode was formed so as to have a stripe shape having a width of 9 ⁇ m by the photolithography. Then, a CPP-SV 3 ⁇ m square was deposited thereon.
  • the construction of the film was as follows.
  • the resistance was 8 ⁇ , and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 3.2 ⁇ .
  • the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally.
  • the contact of the electrode of the magnetoresistance effect element 104 is formed so as to be limited to a region corresponding to a recording track width W shown in the figure.

Abstract

There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, if a pinned layer and a free layer have a stacked construction of a magnetic layer and a non-magnetic layer or a stacked construction of a magnetic layer and a magnetic layer, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims benefit of priority from the prior Japanese Patent Applications No. 2000-275417, filed on Sep. 11, 2000; the entire contents of which are incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of The Invention [0002]
  • The present invention relates generally to a magnetoresistance effect element, a magnetic head and a magnetic recording and/or reproducing system. More specifically, the invention relates to a magnetoresistance effect element using a spin-valve film wherein a sense current flows in a direction perpendicular to the plane of the thin film, a magnetic head including the magnetoresistance effect element, and a magnetic recording and/or reproducing system including the magnetoresistance effect element. [0003]
  • 2. Description of Related Art [0004]
  • There is known a phenomenon that an electric resistance varies in response to an external magnetic field in a certain kind of ferromagnetic material. This is called a “magnetoresistance effect”. This effect can be used for detecting an external magnetic field, and such a magnetic field detecting element is called a “magnetoresistance effect element (which will be hereinafter referred to as an “MR element”)”. [0005]
  • Such an MR element is industrially utilized for reading information, which has been stored in a magnetic recording medium, in a magnetic recording and/or reproducing system, such as a hard disk or a magnetic tape (see IEEE MAG-7, 150 (1971)), and such a magnetic head is called an “MR head”. [0006]
  • By the way, in recent years, in magnetic recording and/or reproducing systems utilizing such an MR element, particularly in hard disk drives, the magnetic recording density is being enhanced, and the size of one bit is decreasing, so that the amount of leakage flux from a bit is increasingly decreased. For that reason, it is necessary to prepare an MR element, which has a high sensitivity and a high S/N ratio and which can obtain a high rate of change in resistance even in a lower magnetic field, in order to read information which has been written in a magnetic medium, and this is an important basic technique for improving the recording density. [0007]
  • The “high sensitivity” means that the amount of change in resistance (Ω) per a unit magnetic field (Oe) is large. As an MR element has a larger amount of change in MR and a more excellent magnetically soft characteristic, the MR element has a higher sensitivity. In addition, in order to realize a high S/N ratio, it is important to reduce thermal noises. Therefore, it is not desired that the resistance itself of the element is too high, and when the element is used as a reading sensor for a hard disk, the resistance of the element is preferably in the range of from about 5 Ω to about 30 Ω in order to realize a good S/N ratio. [0008]
  • Under such a background, at present, a spin-valve film capable of obtaining a high rate of change in MR is generally used as an MR element for use in a hard disk MR head. [0009]
  • FIG. 19 is a conceptual drawing showing an example of a schematic cross-sectional structure of a spin-valve film. The spin-[0010] valve film 100 has a structure wherein a ferromagnetic layer F, a non-magnetic layer S, a ferromagnetic layer P and an antiferromagnetic layer A are stacked in that order. Of the two ferromagnetic layers F and P which are magnetically in a non-coupled state via the non-magnetic layer S, the magnetization of one ferromagnetic layer P is fixed by an exchange bias or the like using the antiferromagnetic material, and the magnetization of the other ferromagnetic layer F is set to be capable of being easily rotated by an external magnetic field (a signal magnetic field or the like). Then, only the magnetization of the ferromagnetic layer F can be rotated by the external magnetic field to change a relative angle between the magnetization directions of the two ferromagnetic layers P and F to obtain a large magnetoresistance effect (see Phys. Rev. B45, 806 (1992), J. Appl. Phys. 69, 4774 (1991)).
  • The ferromagnetic layer F is often called a “free layer”, a “magnetic field receiving layer”, or a “magnetization free layer”. The ferromagnetic layer P is often called a “pinned layer” or a “magnetization fixed layer”. The non-magnetic layer S is often called a “spacer layer”, a “non-magnetic intermediate layer” or an “intermediate layer”. [0011]
  • The spin-valve film can rotate the magnetization of the free layer, i.e., the ferromagnetic layer F. Therefore, the spin-valve film can be sensitized, so that it is suitable for an MR element for use in an MR head. [0012]
  • It is required to cause a “sense current” to flow through such a spin-valve element in order to detect the variation in resistance due to a magnetic field. [0013]
  • FIG. 20 is a conceptual drawing showing a generally used current supply system. That is, at present, there is generally used a system for providing electrodes EL, EL on both ends of a spin-valve element as shown in the figure to cause a sense current I to flow in parallel to the plane of the film to measure a resistance in a direction parallel to the plane of the film. This method is generally called a “current-in-plane (CIP)” system. [0014]
  • In the case of the CIP system, it is possible to obtain a value of about 10 to 20% as a rate of change in MR. In a shield-type MR head which is generally used at present, a spin-valve element has a substantially square shape, so that the resistance of an MR element is substantially equal to a value of plane electric resistance (sheet resistance) of an MR film. Therefore, a spin-valve film of a CIP system can obtain good S/N characteristics if the value of plane electric resistance is set to be 10 to 30 Ω. This can be relatively simply realized by decreasing the thickness of the whole spin-valve film. Because of these advantages, the spin-valve film of the CIP system is generally used as an MR element for an MR head at present. [0015]
  • However, it is expected that the rate of change in MR is required to exceed 30% in order to realize information reproduction at a high recording density exceeding 100 Gbit/inch[0016] 2. On the other hand, it is difficult to obtain a value exceeding 20% as the rate of change in MR in conventional spin-valve films. For that reason, in order to further improve a recording density, it is a great technical theme to increase the rate of change in MR.
  • From such a point of view, in order to increase the rate of change in MR, there is proposed a spin-valve comprising a magnetic/non-magnetic layer stacked film wherein a pinned layer and a free layer are ferromagnetically coupled in a CIP-spin-valve (CIP-SV) film. [0017]
  • FIG. 21 is a schematic sectional view of a spin-valve film having such a stacked structure. That is, each of a pinned layer P and a free layer F has the stacked structure of a ferromagnetic layer and a non-magnetic layer. In the case of this structure, the scattering of electrons depending on spin in the magnetic layer/non-magnetic layer interface in the spin-valve film contributes to the MR effect. Therefore, if the number of the magnetic layer/non-magnetic layer interface between the pinned layer P and the free layer F is increased so that a larger number of conduction electrons pass through the magnetic layer/non-magnetic layer interface, it is possible to obtain a high rate of change in MR. [0018]
  • However, in the construction of FIG. 21, since the sense current I flows in parallel to the stacked structure although the number of interfaces increases, there is a strong probability that each of electrons will flow through any one of the layers, so that the number of electrons crossing the interface can not be so increased. Therefore, it is difficult to improve the high rate of change in resistance. [0019]
  • In addition, in the above described method, since the total thickness of the film increases by the non-magnetic layers which are stacked on the pinned layer P and free layer F, respectively, the value of resistance of the plane of the film, i.e., a so-called value of plane electric resistance (sheet resistance), greatly decreases, so that the value of change in resistance (=value of plane electric resistance×rate of change in MR) decreases. Since the output of the head is generally in proportion to the amount of change in resistance, there is also a problem in that the absolute value of the output decreases when it is actually used as a sensor. [0020]
  • For the above described reasons, also in the CIP-SV film having the multi-layer structure of pin and free layers shown in FIG. 21, it is substantially difficult to realize a high rate of change in MR exceeding 20% and a practical amount of chamber in resistance of 5 to 30 Ω. [0021]
  • On the other hand, as a method for obtaining a large MR exceeding 30%, there is proposed a magnetoresistance effect element (which will be hereinafter referred to as a CPP-artificial lattice) of a type (current perpendicular to plane (CPP)) that a sense current is caused to flow in a direction perpendicular to the plane of the film in an artificial lattice wherein magnetic and non-magnetic materials are stacked. [0022]
  • FIG. 22 is a conceptual drawing showing a cross-sectional structure of a CPP-artificial lattice type element. In a magnetoresistance effect element of this type, electrodes EL are provided on the top and bottom face of an artificial lattice SL comprising ferromagnetic/non-magnetic layers, and a sense current I flows in a direction perpendicular to the plane of the film. It is known that this construction can a good interface effect and a high rate of change in MR since there is a strong probability that the current I will cross the magnetic layer/non-magnetic layer interface. [0023]
  • However, in such a CPP artificial lattice type element, it is required to measure the electric resistance of an artificial lattice SL having the stacked structure of very thin metallic films in a direction perpendicular to the plane of the film. However, this value of resistance is generally very small. Therefore, in the CPP artificial lattice, it is an important technical theme to increase the value of resistance. Conventionally, in order to increase this value, it is necessary to decreases the junction area between the artificial lattice SL and the electrode SL as small as possible and to increase the number of stacked layers of the artificial lattice SL to increase the total thickness of the film. For example, when the element is patterned so as to have a size of 0.1 μm×0.1 μm, if a Co layer having a thickness of 2 nm and a Cu layer having a thickness of 2 nm are alternately stacked ten times, the total thickness of the film is 20 nm, and a value of resistance of about 1 Ω can be obtained. [0024]
  • For the above described reasons, in order that the CPP artificial lattice type film provides a sufficient head output to be used as a good reading sensor for a hard disk, it is necessary for the film to be the artificial lattice type, not the spin-valve type, from the standpoint of resistance. [0025]
  • However, when the MR element is used for an MR head, it is required to cause each of magnetic layers to be a single magnetic domain so as not to generate Barkhausen noises, while controlling the magnetization of the magnetic layer so that an external magnetic field can be efficiently measured. However, as described above, it is required to alternately stack many magnetic and non-magnetic layers in order to increase the value of resistance in the CPP-MR element, and it is technically very difficult to individually control the magnetization of such many magnetic layers. [0026]
  • In addition, when the MR element is used for an MR head, it is required to allow the magnetization against a small signal magnetic field to sensitively rotate to obtain a high rate of change in MR. For that purpose, it is required to improve the signal magnetic flux density at a sensing portion to obtain a large amount of rotation of magnetization even at the same magnetic flux density. Therefore, it is required to decrease the total Mst (magnetization×thickness) of layers wherein magnetization is rotated by an external magnetic field. However, in the CPP-MR element, it is required to alternately stack many magnetic and non-magnetic layers in order to increase the value of resistance. Therefore, Mst increases, so that it is difficult to improve the sensitivity to the signal magnetic flux. [0027]
  • For that reason, although it is expected that the CPP artificial lattice type film has a rate of change in MR exceeding 30%, it is difficult to sensitize the film in order to use the film as an MR sensor for a head, so that it is substantially impossible to use the film as the MR sensor. [0028]
  • On the other hand, it is considered that the spin-valve structure using FeMn/NiFe/Cu/NiFe, FeMn/CoFe/Cu/CoFe or the like adopts the CPP system. [0029]
  • FIG. 23 is a conceptual drawing showing a cross-sectional structure of a CPP-SV element. However, in such a CPP-SV construction, the thickness of a magnetic layer must be increased to about 20 nm in order to the value of resistance. Also in that case, it is predicted that the rate of change in resistance would be only about 30% at 4.2 K and about 15%, which is half thereof, at room temperatures. [0030]
  • That is, in the spin-valve film of the CPP system, the rate of change in MR is only about 15%, and the Mst of the free layer must be increased. Therefore, it is difficult to sensitize the film in order to use the film as an MR sensor for a head, so that it is substantially difficult to use the film. [0031]
  • As described above, although there are proposed various systems, such as the spin-valve film of the CIP system, the artificial lattice of the CPP system, and the spin-valve of the CPP system, it is difficult to realize a spin-valve film which can be used at a high packing density exceeding 100 Gbit/inch[0032] 2, which has an appropriate value of resistance and a large amount of change in MR and which is magnetically sensitive, at present.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to eliminate the aforementioned problems and to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, while effectively utilizing the scattering effect depending on spin, and a magnetic head and magnetic recording and/or reproducing system using the same. [0033]
  • In order to accomplish the aforementioned object, according to one aspect of the present invention, a magnetoresistance effect element comprises: a magnetization fixed layer in which the direction of magnetization is substantially fixed to one direction; a magnetization free layer in which the direction of magnetization varies in response to an external magnetic field; and a non-magnetic intermediate layer provided between the magnetization fixed layer and the magnetization free layer, at least one of the magnetization fixed layer and the magnetization free layer having a stacked body in which ferromagnetic layers and non-magnetic layers are alternately stacked, the non-magnetic layers in the stacked body being thinner than the non-magnetic intermediate layer, the resistance of the magnetoresistance effect element varying in response to a relative angle between the direction of magnetization of the magnetization fixed layer and the direction of magnetization of the magnetization free layer, and a sense current being applied to the magnetization fixed layer, the non-magnetic intermediate layer and the magnetization free layer in a direction substantially perpendicular to surfaces of those layers. [0034]
  • The ferromagnetic layers in the stacked body may be ferromagnetically coupled to each other. [0035]
  • At least one of the ferromagnetic layers included in the stacked body may include a layer of a first ferromagnetic material, and a layer of a second ferromagnetic material different from the first ferromagnetic material. [0036]
  • The stacked body may include the ferromagnetic layers of a first ferromagnetic material, and the ferromagnetic layers of a second ferromagnetic material different from the first ferromagnetic material. [0037]
  • The ferromagnetic layers included in the stacked body may contain any one of an iron (Fe) base alloy, a cobalt (Co) base alloy and a nickel (Ni) base alloy, and the non-magnetic layers included in the stacked body may contain any one of gold (Au), silver (Ag), copper (Cu), rhodium (Rh), ruthenium (Ru), manganese (Mn), chromium (Cr), rhenium (Re), osmium (Os), iridium (Ir), and an alloy containing any one of gold, silver, copper, rhodium, ruthenium, manganese, chromium, rhenium, osmium, and iridium. [0038]
  • Each of the magnetization fixed layer and the magnetization free layer may have the stacked body, and the stacked body of the magnetization fixed layer may have a different film structure from that of the stacked body of the magnetization free layer. [0039]
  • According to another aspect of the present invention, a magnetoresistance effect element comprises: a magnetization fixed layer in which the direction of magnetization is substantially fixed to one direction; a magnetization free layer in which the direction of magnetization varies in response to an external magnetic field; and a non-magnetic intermediate layer provided between the magnetization fixed layer and the magnetization free layer, at least one of the magnetization fixed layer and the magnetization free layer having a stacked body in which two kinds or more of ferromagnetic layers are stacked, the resistance of the magnetoresistance effect element varying in response to a relative angle between the direction of magnetization of the magnetization fixed layer and the direction of magnetization of the magnetization free layer, and a sense current for detecting the variation in the resistance being applied to the magnetization fixed layer, the non-magnetic intermediate layer and the magnetization free layer in a direction substantially perpendicular to surfaces of those layers. [0040]
  • In any one of the above described magnetoresistance effect elements, at least one of the ferromagnetic layers included in the stacked body may contain an iron (Fe) base alloy. [0041]
  • At least one of the ferromagnetic layers included in the stacked body may be formed of an alloy containing nickel (Ni), iron (Fe) or cobalt (Co). [0042]
  • Each of the magnetization fixed layer and the magnetization free layer may have the stacked body, and the stacking period in the stacked body of the magnetization fixed layer may be different from the stacking period in the stacked body of the magnetization free layer. [0043]
  • The non-magnetic intermediate layer may have a stacked body wherein two kinds or more of non-magnetic layers are stacked. [0044]
  • The two kinds or more of non-magnetic layers may include two kinds of non-magnetic layers, each of which contains two of gold (Au), silver (Ag), copper (Cu), rhodium (Rh), ruthenium (Re), manganese (Mn), chromium (Cr), rhenium (Re), osmium (Os) and iridium (Ir) as principal components. [0045]
  • Each of the magnetization fixed layer and the magnetization free layer may have the stacked body, and the stacked body of the magnetization fixed layer may have a different film structure from that of the stacked body of the magnetization free layer. [0046]
  • A magnetic head according to another aspect of the present invention may have any one of the above described magnetoresistance effect elements. [0047]
  • A magnetic recording and/or reproducing system according to another aspect of the present invention may have the above described magnetic head, and can read magnetic information stored in a magnetic recording medium. [0048]
  • The magnetoresistance effect element according to the present invention can effectively utilize the scattering effect depending on spin to have both a high rate of change in MR and an appropriate value of resistance.[0049]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood more fully from the detailed description given herebelow and from the accompanying drawings of the embodiments of the invention. However, the drawings are not intended to imply limitation of the invention to a specific embodiment, but are for explanation and understanding only. [0050]
  • In the drawings: [0051]
  • FIG. 1 is a conceptual drawing showing a cross-sectional structure of the first embodiment of a magnetoresistance effect element according to the present invention; [0052]
  • FIG. 2 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein pin holes are formed in non-magnetic layers FN and PN; [0053]
  • FIG. 3 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein ferromagnetic layers FF and PF are formed in the form of islands; [0054]
  • FIG. 4 is a conceptual drawing showing a cross-sectional drawing of a magnetoresistance effect element which uses a stacked film of two kinds of ferromagnetic materials; [0055]
  • FIG. 5 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element which is formed of two kinds or more of ferromagnetic materials; [0056]
  • FIG. 6 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein a bcc ferromagnetic material and an fcc ferromagnetic material are combined; [0057]
  • FIG. 7 is a conceptual drawing showing an example of a spin-valve element wherein the stacking period in a pinned layer is different from the stacking period of a free layer; [0058]
  • FIG. 8A is a conceptual drawing showing modulation of potential in the spin-valve element of FIG. 7 when the magnetization of the pinned layer is parallel to the magnetization of the free layer; [0059]
  • FIG. 8B is a conceptual drawing showing modulation of potential in the spin-valve element of FIG. 7 when the magnetization of the pinned layer is anti-parallel to the magnetization of the free layer; [0060]
  • FIG. 9 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element wherein a non-magnetic layer has a stacked structure; [0061]
  • FIG. 10 is a conceptual drawing showing a spin-valve element wherein a non-magnetic intermediate layer S comprises multiple layers; [0062]
  • FIG. 11 is a conceptual drawing showing a cross-sectional construction of a spin-valve element having a synthetic structure; [0063]
  • FIG. 12 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element having a buffer layer and a protective layer; [0064]
  • FIG. 13 is a conceptual drawing showing a cross-sectional structure of the second embodiment of a magnetoresistance effect element according to the present invention; [0065]
  • FIG. 14 is a conceptual drawing showing an example of a case where a free layer has three kinds of ferromagnetic layers; [0066]
  • FIG. 15 is a conceptual drawing showing a cross-sectional construction of a first example of a spin-valve element according to an aspect of the present invention; [0067]
  • FIG. 16 is a schematic perspective view of a magnetic head including a magnetoresistance effect element according to an aspect of the present invention; [0068]
  • FIG. 17 is a perspective view of a principal part illustrating a schematic construction of a magnetic recording and/or reproducing system according to another aspect of the present invention; [0069]
  • FIG. 18 is an enlarged perspective view of a magnetic head assembly in front of an [0070] actuator arm 155, viewed from the side of a disk;
  • FIG. 19 is a conceptual drawing illustrating a schematic cross-sectional structure of a spin-valve film; [0071]
  • FIG. 20 is a conceptual drawing showing a generally used current supply system; [0072]
  • FIG. 21 is a conceptual drawing showing a spin-valve wherein each of a pinned layer and free layer comprises a ferromagnetically coupled magnetic/nonmagnetic layer stacked film; [0073]
  • FIG. 22 is a conceptual drawing showing a cross-sectional structure of a CPP-artificial lattice type element; and [0074]
  • FIG. 23 is a conceptual drawing showing a cross-sectional construction of a CPP-SV element.[0075]
  • DESCRIPTION OF THE EMBODIMENTS
  • Referring now to the accompanying drawings, the embodiments of the present invention will be described below. [0076]
  • (First Embodiment) [0077]
  • FIG. 1 is a conceptual drawing showing a cross-sectional structure of the first embodiment of a magnetoresistance effect element according to an aspect of the present invention. That is, the [0078] magnetoresistance effect element 10A according to the aspect of the present invention comprises an antiferromagnetic layer A, a first magnetic material P, an intermediate non-magnetic layer S and a second magnetic material F which are stacked on a predetermined substrate (not shown) in that order.
  • Moreover, electrode layers EL are provided on the top and bottom faces of this stacked structure, respectively, and a sense current I is caused to flow in a direction perpendicular to the plane of the film. [0079]
  • In this embodiment, the first magnetic layer P functions as a “pinned layer”, the magnetization of which is fixed by one-directional anisotropy due to the antiferromagnetic layer A. In addition, the second magnetic layer F functions as a “magnetic field receiving layer” or “free layer”, the magnetization of which is rotated by an external magnetic field (e.g., a signal magnetic field) produced from a magnetic recording medium (not shown). [0080]
  • In this embodiment, the first magnetic layer P and the second magnetic layer F have stacked structures of ferromagnetic layer PF/non-magnetic layer PN and ferromagnetic layer FF/non-magnetic layer FN, respectively. In this stacked layer of ferromagnetic layer/non-magnetic layer, the ferromagnetic layers are ferromagnetically coupled to each other, and magnetization behaves so as to be substantially integrated. That is, the magnetization of each of the ferromagnetic layers included in this stacked structure of ferromagnetic layer/non-magnetic layer is substantially parallel to each other, the magnetization in the pinned layer P being substantially fixed in the same direction, and the magnetizing direction in the free layer F being substantially the same direction corresponding to the external magnetic field. [0081]
  • In this embodiment, a larger number of interfaces of ferromagnetic layers/non-magnetic layers can be clearly provided in the pinned layer P and free layer F than the CPP spin-valve construction illustrated in FIG. 23. In the CPP spin-valve film, the scattering effect of electron in the interface of ferromagnetic layer/non-magnetic layer, i.e., an interface resistance, has a large spin dependency and has the function of increasing the CPP-MR. [0082]
  • In addition, since the interface resistance has a relatively large value, the value of resistance in a direction perpendicular to the plane of the film can be increased by increasing the number of the interfaces of ferromagnetic layers/non-magnetic layers. According to an aspect of the present invention, it is possible to utilize a larger number of values of interface resistance, and it is possible to provide a CPP-SV having a higher resistance and higher rate of change in MR than those of the CPP spin-valve film illustrated in FIG. 23. [0083]
  • In addition, since an aspect of the present invention adopts the CPP system wherein a current I flows in a direction perpendicular to the plane of the film, all of current components cross the interfaces of ferromagnetic layers/non-magnetic layers, so that it is possible to very effectively utilize the interface effect which can not effectively be utilized in the case of the CIP system illustrated in FIGS. 20 and 21. For that reason, it is possible to very conspicuously obtain the function of increasing the rate of change in MR which can not sufficiently be obtained by the CIP construction. [0084]
  • Moreover, since a sense current I flows in a direction perpendicular to the plane of the film according to an aspect of the present invention, there is no problem in that the value of resistance is lowered by sandwiching the non-magnetic layer like the CIP system illustrated in FIG. 21. [0085]
  • As described above, according to an aspect of the present invention, it is possible to provide a CPP spin-valve element suitably utilizing an interface resistance and having an appropriate value of resistance though it has a spin-valve construction. [0086]
  • In addition, in this embodiment, since the magnetization of the pinned layer P and the magnetization of the free layer F are operated so as to be integrated, the magnetization can be controlled only by the magnetization fixing of the pinned layer P and the control of the magnetization of one free layer F. As a result, when the element is used for a reading sensor, such as a magnetic head, it is possible to realize a magnetic head wherein Barkhausen noises are suppressed. [0087]
  • In addition, in this embodiment, it is possible to obtain a good value of resistance and a good rate of change in MR while the total thickness of the pinned layer P and free layer F is small. That is, as compared with the simple CPP spin-valve construction illustrated in FIG. 23, it is possible to sufficiently utilize the interface resistance in this construction. Therefore, even if the total Mst of the pinned layer P and free layer F is small, it is possible to obtain a sufficient value of resistance and a sufficient rate of change in MR. Specifically, although the thickness of the magnetic material of the pinned layer P and free layer F must be about 20 nm in the construction of FIG. 23, it is possible to sufficient characteristics in this construction even if the total thickness of the magnetic layer is about 5 nm. Thus, the Mst of the free layer F can be held to be a small value, so that it is possible to form a sensitive spin-valve element. In addition, since it is possible to decrease the Mst of the pinned layer P, it is possible to improve the magnetization fixing characteristics by the antiferromagnetic layer, and it is possible to thermally make it stable, so that it is possible to improve the reliability of the device. [0088]
  • In this embodiment, the ferromagnetic layers included in the first and second ferromagnetic layer/non-magnetic layer stacked structure may be formed of, e.g., a simple substance of Co (cobalt), a Co containing ferromagnetic material such as a Co containing magnetic alloy, an Ni base alloy such as NiFe (ferronickel), or an Fe base alloy. [0089]
  • In this embodiment, it is desired to obtain a high interface resistance depending on spin in the interface of ferromagnetic layer/non-magnetic layer. As such a combination of ferromagnetic and non-magnetic layers, the ferromagnetic layer is preferably formed of an Fe base alloy, a Co base alloy or an Ni base alloy, and the non-magnetic layer is preferably formed of Cu (copper), Ag (silver), Au (gold) or an alloy thereof. [0090]
  • In particular, any one of non-ferromagnetic transition metals, such as Rh (rhodium), Ru (ruthenium), Mn (manganese), Cr (chromium), Re (rhenium), Os (osmium) and Ir (iridium), are preferably used. Among these transition metals, Mn or Re is more preferably used. [0091]
  • As a combination in which the interface resistance is particularly high, any one of Fe base alloy/Au, Fe base alloy/Ag, Fe base alloy/Au-Ag alloy, Co base alloy/Cu, Co base alloy/Ag, Co base alloy/Au, and Co base alloy/Cu—Ag—Au alloy is preferably used. [0092]
  • The thickness of the ferromagnetic layers included in the stacked structure of ferromagnetic layer/non-magnetic layer is preferably as thin as possible, in order to increase the number of interfaces without increasing the total Mst. In a combination in which magnetization is held, the magnetic layer may be formed of a monatomic layer. As such a combination, an artificial lattice comprising Fe monatomic layer/Au monatomic layer may be used. Although the upper limit of the thickness is not particularly defined, the thickness is preferably 2 nm or less in order to increase the number of interfaces. [0093]
  • The thickness of the non-magnetic layer included in the stacked structure of ferromagnetic layer/non-magnetic layer is preferably 1 nm or less since the ferromagnetic coupling of ferromagnetic layers to each there must be strong and stable. However, the thickness is preferably selected in accordance with the material of the non-magnetic layer so that the ferromagnetic coupling is stable. Even if the non-magnetic layer is a monoatomic layer as the lower limit, the interface resistance can be produced. [0094]
  • In order to suitably obtain the interface resistance, the combination of materials forming the stacked structure of ferromagnetic layer/non-magnetic layer is preferably a combination wherein the ferromagnetic and non-magnetic layers are non-solid-solution systems. However, the present invention should not always be limited to combinations of non-solid-solution systems. [0095]
  • The stacked structure of ferromagnetic layer/non-magnetic layer is preferably flat and continuous. However, in order to obtain a good ferromagnetic coupling, there is no problem if the pin holes H are formed in the non-magnetic layers FN and PN as shown in FIG. 2 and if adjacent ferromagnetic layers FF and PF are connected directly to each other in that portion. [0096]
  • Conversely, even if the stacked structure is formed so that the ferromagnetic layers FF and PF are arranged in the form of islands as shown in FIG. 3, if the interface of ferromagnetic layer/non-magnetic layer extends substantially in parallel to the plane of the film, there is no problem. [0097]
  • The ferromagnetic layer in the stacked structure of ferromagnetic layer/non-magnetic layer is not always required to be formed of one kind of material. [0098]
  • In the construction illustrated in FIG. 4, a stacked film of two kinds of ferromagnetic materials. That is, ferromagnetic layers PF constituting a first ferromagnetic layer P constitute a stacked construction of PF[0099] 1/PF2/PF1, and ferromagnetic layers FF constituting a second ferromagnetic layer F constitute a stacked construction of FF1/FF2/FF1.
  • More specifically, for example, in the pinned layer P, an Fe/Au interface having a high interface resistance is preferably used. However, since Fe has a large fluctuation in spin, it is desired to inhibit the fluctuation in spin, in order to use it at room temperatures. For that reason, the ferromagnetic layer PF preferably has the stacked structure of Fe and a magnetic material, which has a small fluctuation in spin, such as Fe/CoFe/Fe or Fe/NiFe/Fe. [0100]
  • On the other hand, the Fe/Au interface having a high interface resistance is preferably used for the free layer F. However, it is difficult to obtain magnetically soft characteristics, which are required for the free layer, by only Fe. Therefore, the ferromagnetic layers FF preferably have the stacked structure of Fe and a magnetic material, which has excellent magnetically soft characteristics, such as Fe/CoFe/Fe or Fe/NiFe/Fe. [0101]
  • Furthermore, in FIG. 4, a high conductive layer G of Cu, Ag, Au or the like is stacked on the free layer F. [0102]
  • On the other hand, the ferromagnetic layer in the stacked structure of ferromagnetic layer/non-magnetic layer is not always required to be formed of one kind of material. As shown in FIG. 5, the ferromagnetic layer may be two or more kinds of ferromagnetic materials. For example, although an Fe/Au interface having a high interface resistance is preferably used in the free layer F which is provided between the high conductive layer G and the non-magnetic intermediate layer S, it is difficult to obtain magnetically soft characteristics, which are required for the free layer, by only the ferromagnetic layer FF[0103] 1 of Fe. For that reason, it is possible to improve magnetically soft characteristics by adding the ferromagnetic layer FF2 of a magnetic material having excellent magnetically soft characteristics, such as CoFe or NiFe, which is ferromagnetically coupled as a ferromagnetic layer.
  • In addition, when the ferromagnetic layer in the stacked structure of ferromagnetic layer/non-magnetic layer contains Fe or an Fe base alloy, it preferably has the face-centered cubic (fcc) structure. Because the stacked structure can be more stable when an fcc metal, such as Au, Ag or Cu, which constitutes the non-magnetic layer, is stacked and because the stacked structure can have good crystalline properties as a whole to improve magnetically soft characteristics and reduce fluctuation in spin. However, the body-centered cubic (bcc) structure can also be used. [0104]
  • When two or more kinds of ferromagnetic layers are combined as illustrated in FIGS. 4 and 5, a ferromagnetic material having the fcc structure can be combined with a ferromagnetic material having the bcc structure. In such a combination, the state of electrons, the shape of the Fermi surface, and the distribution of state density of the fcc ferromagnetic material are greatly different from those of the bcc ferromagnetic material. For that reason, it is possible to obtain a considerable screen effect with respect to conduction electrons, so that it is possible to obtain a high resistance and a high rate of change in MR. [0105]
  • FIG. 6 is a conceptual drawing showing an example of a combination of a bcc ferromagnetic material with an fcc ferromagnetic material. That is, in a spin-valve shown in this figure, a first magnetic layer P has the stacked structure of ferromagnetic layers PF having the bcc structure and non-magnetic layers PN, and a second magnetic layer F has the stacked structure of ferromagnetic layers FF having the fcc structure and non-magnetic layers FN. Thus, even if the ferromagnetic layers of the pinned layer P and free layer F have different crystal structures, it is possible to obtain a large screen effect. [0106]
  • In each of the above described magnetic layers, the Fe base alloy is preferably a material, which can easily obtain magnetically soft characteristics, such as Fe, FeNi, FeCo, FeSi, FeMo or FeAl. [0107]
  • The Co containing alloy is an alloy of Co, to which one or more of Fe, Ni, Au, Ag, Cu, Pd, Pt, Ir, Rh, Ru, Os and Hf are added. The amount of the additional element is preferably in the range of from 5 to 50 at %, and more preferably in the range of from 8 to 20 at %. Because there is the possibility that the bulk effect does not sufficiently increase if the amount of the additional element is too small and that the interface effect greatly decreases if the amount of the additional element is too large. In order to obtain a high rate of change in MR, the additional element is preferably Fe. [0108]
  • By the way, in the CPP-SV, the scattering of electrons occurs when conductive electrons pass through the pinned layer P and the free layer F, respectively. If the pinned layer P or the free layer F is multilayered according to an aspect of the present invention, the modulation of band potential based on the staked period of the multilayered structure is carried out. Therefore, if the stacking period in the pinned layer is different from that in the free layer, the “screen effect” of electrons can be obtained. [0109]
  • FIG. 7 is a conceptual drawing showing an example of a spin-valve element wherein the stacking period in a pinned layer is different from the stacking period in a free layer. [0110]
  • FIGS. 8A and 8B are conceptual drawings showing modulation of potential in this spin-valve element. That is, FIG. 8A is a graph showing potentials sensed by electrons in the cases of up-spin and down-spin when the magnetization of the pinned layer is parallel to the magnetization of the free layer, and FIG. 8B is a graph showing potentials sensed by electrons in the cases of up-spin and down-spin when the magnetization of the pinned layer is anti-parallel to the magnetization of the free layer. [0111]
  • In the example shown in FIG. 7, the stacking period of ferromagnetic layer/non-magnetic layer in the first magnetic layer (pinned layer) P is shorter than the stacking period of ferromagnetic layer/non-magnetic layer in the second magnetic layer (free layer) F. [0112]
  • The wave number vector of electrons flowing in a direction perpendicular to the plane of the film is perturbed in accordance with modulation of band potential. The perturbed wave number varies in accordance with the period of the multilayered structure. Therefore, the stacking periods in the pinned layer P and free layer F are changed as illustrated in FIG. 7, it is possible to greatly restrict the wave number of electrons capable of passing through both layers. Moreover, since the screen effect itself has the spin dependence effect, it is possible to hold a high spin dependency while maintaining a low transmission probability of electrons as a whole. For that reason, if the stacking periods in the pinned layer P and free layer F are intentionally changed, it is possible to form a CPP-SV capable of realizing a high rate of change in MR while maintaining a higher resistance. [0113]
  • In FIGS. 8A and 8B, the axis of ordinates of each graph shows potentials sensed by conductive electrons, and the axis of abscissas shows the position of the spin-valve element in thickness directions. The potential sensed by conductive electrons corresponds to Fermi energy when the conductive electrons in a metal are approximated by a free electron model. As the Fermi wave number on the Fermi surface increases, the Fermi energy increases, and the potential is more deeply sensed. The depth of the potential varies in accordance with the kind of the metal, the potential is modulated in thickness directions if the stacked structure is formed. [0114]
  • In FIGS. 8A and 8B, the shallow potential portion shows a state that the number of conductive electrons is small and the Fermi energy is low. On the other hand, the deep potential portion shows a state that the number of conductive electrons is large and the Fermi energy is high. Since conductive electrons are spin-divided by exchange energy in the magnetic material, the magnitude of potential sensed by conductive electrons in the case of down-spin is different from that in the case of up-spin. [0115]
  • Due to the above described effects, the potentials sensed by conductive electrons in the CPP-SV film according to the present invention have structures shown in FIGS. 8A and 8B. That is, since the first and second magnetic layers have the stacked structure of magnetic layer/non-magnetic layers, the potential sensed by conductive electrons is Clonich-Penny-modulated, and a mini gap is formed in the band structure of conductive electrons Since how to form the mini gap is influenced by the stacking period, the place of the mini gap to be formed varies if the stacking period in the first magnetic layer is different from the stacking period in the second magnetic layer. [0116]
  • For that reason, if electrons are caused to flow in such a CPP-SV in a direction perpendicular to the plane of the film, there is a strong probability that the conduction of electrons is inhibited by the gap, so that it is possible to restrict the transmission probability of conductive electrons as a whole. [0117]
  • In addition, since the depth of the potential sensed by conductive electrons in the case of up-spin is different from that in the case of down-spin, how to restrict the transmission probability of conductive electrons depends on spin, so that it is possible to produce a large scattering effect depending on spin. [0118]
  • From the above described effects, it is possible to form a CPP-SV having a high resistance and a high rate of change in resistance. [0119]
  • On the other hand, according to an aspect of the present invention, the ferromagnetic layers must be ferromagnetically coupled to each other in the stacked structure of ferromagnetic layer/non-magnetic layer constituting the pinned layer P and free layer F. For that purpose, it is required to form a good stacked structure. In addition, the magnetic characteristics of the pinned layer P and free layer F can be improved by adjusting the crystal lattice constant in the stacked structure to be the optimum value. [0120]
  • Therefore, the non-magnetic layer can also have a stacked structure, such as Au/Cu/Au, as shown in FIG. 9, so that it is possible to realize a good lattice constant while realizing a high interface resistance and it is possible to obtain good magnetic characteristics. That is, in the example shown in FIG. 9, in the ferromagnetic layer PF/non-magnetic layer PN constituting the first magnetic layer (pinned layer) P, the non-magnetic layer PN has such a construction that the second non-magnetic layer PN[0121] 2 is sandwiched between the first non-magnetic layers PN1. Similarly in the second magnetic layer (free layer) F, the non-magnetic layer FN has a sandwich structure that the second non-magnetic layer FN2 is sandwiched between the first non-magnetic layers FN1.
  • In the construction of FIG. 9, the material of the non-magnetic intermediate layer S is preferably a material, in which the mean free path of conductive electrons is long, such as Cu, Au or Ag. By using such a material, electrons can varistically conduct from the ferromagnetic layer forming an electrode to the ferromagnetic layer F, so that it is possible to more effectively utilize the scattering effect of electrons depending on spin which is caused by the ferromagnetic material. Thus, it is possible to obtain a higher rate of change in MR. Alternatively, the non-magnetic intermediate layer S may be formed of an alloy of the above described three elements. In that case, the composition is preferably adjusted so that the crystal lattice constant in the stacked structure can be adjusted to be the optimum value. [0122]
  • On the other hand, the non-magnetic intermediate layer S may be multilayered. [0123]
  • FIG. 10 is a conceptual drawing showing a spin-valve element wherein a non-magnetic intermediate layer S is multilayered. That is, in the spin-valve element shown in this figure, the non-magnetic intermediate layer S has the stacked structure of first non-magnetic layers SN[0124] 1 and second non-magnetic layers SN2. All of the non-magnetic layers may be formed of a material, such as Cu, Au or Ag. In this case, conductive electrons can also be perturbed by the stacking period of the stacked structure of non-magnetic layer/non-magnetic layer. That is, if the stacking period of non-magnetic layer/non-magnetic layer of the non-magnetic intermediate layer S, and the stacking period of the pinned layer p or the free layer F are suitably set, the wave number vector of electrons capable of flowing through the whole CPP-SV in a direction perpendicular to the plane of the film can be further restricted, so that it is possible to form a CPP-SV capable of realizing a higher resistance and a higher rate of change in MR.
  • On the other hand, the material of the antiferromagnetic layer A is preferably a metallic antiferromagnetic material having excellent magnetization fixing characteristics. Specifically, an antiferromagnetic material, such as PtMn, NiMn, FeMn or IrMn, may be used. The thickness of the antiferromagnetic layer A is preferably as thin as possible from the standpoint of electric characteristics. However, if the antiferromagnetic layer A is too thin, the magnetization fixing characteristics deteriorate, so that it is required to select such a thickness that the blocking temperature does not decrease. For that reason, the thickness is preferably 5 nm or more. [0125]
  • On the other hand, in addition to the above described construction, a magnetic layer antiferromagnetically coupled to another ferromagnetic layer may be added any one or both of the first magnetic layer P and the second magnetic layer F to form a so-called “synthetic antiferromagnetic layer structure”. [0126]
  • FIG. 11 is a conceptual drawing showing a cross-sectional construction of a spin-valve element having a synthetic structure. That is, in the example shown in this figure, each of the pinned layer P and the free layer F has the synthetic structure of magnetic layers magnetized in directions shown by arrows in the figure. By forming such synthetic structures, the apparent magnetization can be zero in the pinned layer P, so that the magnetization fixing in the pinned layer can be more stable. In addition, by decreasing the apparent magnetization in the free layer F, it is possible to obtain a more sensitive response to external magnetic field. [0127]
  • On the other hand, while no special layer has been provided between the electrode EL and the spin-valve in the above described construction, other layers may be provided when an actual element is formed. [0128]
  • In the spin-valve element illustrated in FIG. 12, a buffer layer (underlying layer) B is provided between an electrode EL and an antiferromagnetic layer A for improving smoothness and crystalline properties. In addition, a protective layer C is provided between the top electrode EL and the free layer F. [0129]
  • The buffer layer (underlying layer) B and the protective layer C are preferably formed of a material having a good wetting property, such as Ta, Ti or Cr, a material having a low electric resistance and a stable fcc structure, such as Cu, Au or Ag, or a stacked structure thereof. [0130]
  • As the first embodiment of the present invention, the spin-valve element of the CPP type wherein at least one of the pinned layer and the free layer has the stacked structure of ferromagnetic layers and non-magnetic layers has been described above. [0131]
  • (Second Embodiment) [0132]
  • The second embodiment of the present invention will be described below. [0133]
  • FIG. 13 is a conceptual drawing showing a cross-sectional structure of a magnetoresistance effect element according to the second embodiment of the present invention. That is, the magnetoresistance effect element according to the second embodiment comprises an antiferromagnetic layer A, a first magnetic material P, a non-magnetic intermediate layer S, a second magnetic material F and a high conductive layer G, which are stacked on a predetermined substrate (not shown) in that order. [0134]
  • Moreover, electrode layers EL are provided on the top and bottom faces of this stacked structure, respectively, and a sense current I is supplied in a direction perpendicular to the plane of the film. [0135]
  • Also in this embodiment, the first magnetic layer P functions as a “pinned layer”, the magnetization of which is fixed by one-directional anisotropy due to the antiferromagnetic layer A. In addition, the second magnetic layer F functions as a “magnetic field receiving layer” or “free layer”, the magnetization of which is rotated by an external magnetic field (e.g., a signal magnetic field) produced from a magnetic recording medium (not shown). [0136]
  • In this embodiment, the first magnetic layer P or the second magnetic layer F has the stacked structure of ferromagnetic layers and non-magnetic layers. That is, in the embodiment shown in FIG. 13, the pinned layer P has the stacked structure of first ferromagnetic layers PN[0137] 1 and second ferromagnetic layers PN2, and the free layer F has the stacked structure of first ferromagnetic layers FF1 and second ferromagnetic layers FF2.
  • In the stacked layer of ferromagnetic layer/non-magnetic layer in this embodiment, the ferromagnetic layers are ferromagnetically coupled to each other, and magnetization behaves so as to be substantially integrated. That is, the magnetization of each of the ferromagnetic layers included in this stacked structure of ferromagnetic layer/ferromagnetic layer is substantially parallel to each other, the magnetization in the pinned layer P being substantially arranged in the same direction, and the magnetizing direction in the free layer F being substantially the same direction with respect to the external magnetic field. [0138]
  • After the inventor was studied the effects of the interface resistance, it was revealed that the effect of the scattering of electrons on the interface of ferromagnetic layer/ferromagnetic layer, the interface resistance, in the CPP-SV, has a large spin dependency to serve to increase the CPP-MR. [0139]
  • In this embodiment, it is possible to provide many interfaces of ferromagnetic layer/ferromagnetic layer in the pinned layer P and free layer F, to utilize a larger number of values of interface resistance, so that it is possible to form a CPP-SV having a high resistance and a high rate of change in MR. [0140]
  • Since the magnetization of the pinned layer P and the magnetization of the free layer F are operated so as to be integrated, the magnetization can be controlled only by the magnetization fixing of the pinned layer and the control of the magnetization of one free layer. As a result, when the element is used for a reading sensor, such as a head, it is possible to form a head of Barkhausen noise free. [0141]
  • The first and second ferromagnetic layers are formed of, e.g., a simple substance of Co, a Co containing ferromagnetic material such as a Co containing magnetic alloy, a ferromagnetic material such as NiFe alloy, or an Fe base alloy. [0142]
  • As a combination in which the interface resistance is particularly high, any one of NiFe alloy/CoFe alloy, Fe base alloy/NiFe alloy, and Fe base alloy/CoFe alloy is preferably used. [0143]
  • The thickness of the ferromagnetic layers included in the stacked structure of ferromagnetic layer/ferromagnetic layer is preferably as thin as possible, in order to increase the number of interfaces without increasing the total Mst. In a combination in which magnetization is held, the magnetic layer may be formed of a monatomic layer. Although the upper limit of the thickness is not particularly defined, the thickness is preferably 2 nm or less in order to increase the number of interfaces. [0144]
  • The thickness of the magnetic layer included in the stacked structure of ferromagnetic layer/ferromagnetic layer is preferably 1 nm or less in order to increase the number of interfaces. Even if the magnetic layer is a monoatomic layer as the lower limit, the interface resistance can be produced. [0145]
  • In order to suitably obtain the interface resistance, the combination of materials forming the stacked structure of ferromagnetic layer/ferromagnetic layer is preferably a combination wherein adjacent ferromagnetic layers are non-solid-solution systems. However, the present invention should not always be limited to combinations of non-solid-solution systems. [0146]
  • The ferromagnetic layers of the pinned layer P and free layer F in this embodiment are not always required to be formed of two kinds of materials, but the ferromagnetic layers may be formed of three kinds or more of ferromagnetic materials. [0147]
  • FIG. 14 is a conceptual drawing showing an example where a free layer has three kinds of ferromagnetic layers. That is, in a spin-valve element shown in this figure, a free layer F has the stacked structure of a first ferromagnetic layer FF[0148] 1, a second ferromagnetic layer FF2 and a third ferromagnetic layer FF3.
  • In the free layer F, the Fe/CoFe interface having a high interface resistance is preferably used. However, it is difficult to obtain magnetically soft characteristics, which are required for the free layer, by only Fe. Therefore, the magnetically soft characteristics can be improved by adding the ferromagnetic layer FF[0149] 3 having excellent magnetically soft characteristics, such as NiFe, which is ferromagnetically coupled as a ferromagnetic layer.
  • When the ferromagnetic layer in the stacked structure of ferromagnetic layer/ferromagnetic layer contains Fe or an Fe base alloy, the ferromagnetic layer preferably has the fcc structure. Because the stacked structure can be more stable when an fcc metal, such as CoFe or NiFe, is stacked and because the stacked structure can have good crystalline properties as a whole to improve magnetically soft characteristics and reduce spin fluctuation. However, the bcc structure can also be used. [0150]
  • As a combination of two kinds of magnetic materials, a magnetic material having the fcc structure can be combined with a magnetic material having the bcc structure. In such a combination, the state of electrons, the shape of the Fermi surface, and the distribution of state density of the fcc magnetic material are greatly different from those of the bcc magnetic material. For that reason, it is possible to obtain a considerable screen effect with respect to conduction electrons, so that it is possible to obtain a high resistance and a high rate of change in MR. [0151]
  • The Fe base alloy is preferably a material, which can easily obtain magnetically soft characteristics, such as Fe, FeNi, FeCo, FeSi, FeMo or FeAl. [0152]
  • The Co containing alloy is an alloy of Co, to which one or more of Fe, Ni, Au, Ag, Cu, Pd, Pt, Ir, Rh, Ru, Os and Hf are added. The amount of the additional element is preferably in the range of from 5 to 50 at %, and more preferably in the range of from 8 to 20 at %. Because there is the possibility that the bulk effect does not sufficiently increase if the amount of the additional element is too small and that the interface effect greatly decreases if the amount of the additional element is too large. In order to obtain a high rate of change in MR, the additional element is preferably Fe. [0153]
  • In the CPP-SV, the scattering of electrons occurs when conductive electrons pass through the pinned layer P and the free layer F. If the pinned layer P or the free layer F is multilayered according to this embodiment, the modulation of band potential based on the staked period of the multilayered structure is carried out. Therefore, the wave number vector of electrons capable of flowing in a direction perpendicular to the plane of the film is restricted in accordance with modulation of band potential. The restricted wave number varies in accordance with the stacking period. Therefore, also in this embodiment similar to the above described case referring to FIGS. 7, 8A and [0154] 8B, the wave number of electrons capable of passing through both layers can be greatly restricted by changing the stacking periods in the pinned layer P and free layer F. Since the screen effect itself has the spin dependence effect, it is possible to hold a high spin dependency while maintaining a low transmission probability of electrons as a whole. For that reason, if the stacking periods in the pinned layer P and free layer F are intentionally changed, it is possible to form a CPP-SV capable of realizing a high rate of change in MR while maintaining a higher resistance.
  • The non-magnetic intermediate layer S is preferably formed of a material, in which the mean free path of conductive electrons is long, such as Cu, Au or Ag. By using such a material, electrons can varistically conduct from the pinned layer P forming an electrode to the free layer F, so that it is possible to more effectively utilize the scattering effect of electrons depending on spin which is caused by the ferromagnetic material. Thus, it is possible to obtain a higher rate of change in MR. Alternatively, the non-magnetic intermediate layer S may be formed of an alloy of the above described three elements. In that case, the composition is preferably adjusted so that the crystal lattice constant in the stacked structure can be adjusted to be the optimum value. [0155]
  • As described above referring to FIG. 10, the non-magnetic intermediate layer S may have the stacked structure of non-magnetic layer/non-magnetic layer wherein a material, such as Cu, Au or Ag, is stacked. In this case, if the stacking period of the stacked structure of non-magnetic layer/non-magnetic layer, and the stacking period of the pinned layer p or the free layer F are suitably set, the wave number vector of electrons capable of flowing through the whole CPP-SV in a direction perpendicular to the plane of the film can be further restricted, so that it is possible to form a CPP-SV capable of realizing a higher resistance and a higher rate of change in MR. [0156]
  • On the other hand, the antiferromagnetic layer A is preferably formed of a metallic antiferromagnetic material having excellent magnetization fixing characteristics. specifically, an antiferromagnetic material, such as PtMn, NiMn, FeMn or IrMn, may be used. The thickness of the antiferromagnetic layer A is preferably as thin as possible from the standpoint of electric characteristics. However, if the antiferromagnetic layer A is too thin, the magnetization fixing characteristics deteriorate, so that it is required to select such a thickness that the blocking temperature does not decrease. For that reason, the thickness is preferably 5 nm or more. [0157]
  • In addition to the above described construction, a magnetic layer antiferromagnetically coupled to another ferromagnetic layer may be added any one or both of the first magnetic layer P and the second magnetic layer F to form a synthetic antiferromagnetic layer structure as described above referring to FIG. 11. By forming such a synthetic construction, the apparent magnetization can be zero in the pinned layer, so that the magnetization fixing in the pinned layer can be more stable. In addition, by decreasing the apparent magnetization in the free layer, it is possible to obtain a more sensitive response to external magnetic field. [0158]
  • In addition, also in this embodiment similar to the above described embodiment referring to FIG. 12, a buffer layer (underlying layer) B and a protective layer C may be provided. That is, an underlying layer is preferably formed between the electrode EL and the antiferromagnetic layer A for improving smoothness and crystalline properties. In addition, a layer to be a protective layer is preferably arranged between the top electrode EL and the free layer F. The underlying layer and the protective layer are preferably formed of a material having a good wetting property, such as Ta, Ti or Cr, a material having a low electric resistance and a stable fcc structure, such as Cu, Au or Ag, or a stacked structure thereof. [0159]
  • The embodiment of the present invention has been described above. [0160]
  • Referring to Examples, the present invention will be described below in more detail. [0161]
  • EXAMPLE 1
  • FIG. 15 is a conceptual drawing showing a cross-sectional construction of a spin-valve element according to a first example of the present invention. A fabricating process in this example will be described below. [0162]
  • First, a Cu bottom electrode EL[0163] 1 having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate (not shown) by the sputtering method, and the Cu bottom electrode EL1 was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The stacked construction of the film was as follows.
    Ta 5 nm/NiFe 2 nm/PtMn 15 nm/CoFe 1 nm/
    Cu 1 nm/CoFe 1 nm/Cu 1 nm/CoFe 1 nm/
    Cu 3 nm/CoFe 1 nm/Cu 1 nm/CoFe 1 nm/
    Cu 1 nm/CoFe 1 nm/Cu 1 nm/Ta 5 nm
  • An insulating film Z of AlOx was deposited thereon, and a hole 0.1 μm square was formed in the insulating film Z. Then, a Cu top electrode EL[0164] 2 having a thickness of 500 nm was stacked thereon by the sputtering method. In this example, with the above described construction, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of the insulating film Z.
  • As the results of measurement at room temperatures, the resistance was 5 Ω, and it was possible to obtain a rate of change in resistance of 10%. Thus, it was possible to obtain an amount of change in resistance of 0.5 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0165]
  • It was also verified that Hc of the free layer F was small and its magnetization moved integrally with respect to the external magnetic field. [0166]
  • In addition, a fine through hole was formed in a portion of Ta 5 nm/NiFe 2 nm/PtMn 15 nm constituting the bottom structure of the film structure in this example, to cause the Cu bottom electrode to bond directly to the CoFe/Cu stacked structure, and the size of the hole formed in the insulating film Z was set to be 0.05 μm square. Thus, it was possible to measure MR from which a parasitic resistance caused by the Ta 5 nm/NiFe 2 nm/PtMn 15 nm structure was removed. [0167]
  • As a result, the resistance was 5 Ω, and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 2 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0168]
  • Comparative Example 1
  • As a comparative example to the above described example, a spin-valve element of a CPP type wherein each of a pinned layer and a free layer was a monolayer was fabricated by way of experiment. [0169]
  • First, a Cu bottom electrode EL[0170] 1 having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode EL1 was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The construction of the film was as follows.
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/CoFe 3 nm (pinned layer) Cu 3 nm (non-magnetic intermediate layer)/CoFe 3 nm (free layer)/Cu 1 nm (high conductive layer)/CoFe 5 nm (protective layer) [0171]
  • The same insulating film of AlOx as that shown in FIG. 15 was formed thereon, and a hole 0.1 μm square was formed in AlOx. Then, a Cu top electrode having a thickness of 500 nm was stacked thereon by the sputtering method. In this example, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of AlOx. As the results of measurement at room temperatures, the resistance was 3Ω, and the rate of change in resistance was only 2%. Therefore, the amount of change in resistance was only 0.06 Ω. so that the amount of change was only about ⅛ as large as that in Example 1. [0172]
  • Comparative Example 2
  • As a second comparative example, a spin-valve element of a CPP type wherein a sense current was caused to flow in a direction parallel to the plane of the film was fabricated by way of experiment. [0173]
  • First, the same stacked structure as that in the first comparative example was formed on a thermally oxidized silicon (Si) substrate by the sputtering method. [0174]
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/CoFe 3 nm (pinned layer)/Cu 3 nm (non-magnetic intermediate layer)/CoFe 3 nm (free layer)/Cu 1 nm (high conductive layer)/Ta 5 nm (protective layer) [0175]
  • Then, electrodes were formed on both end portions of the stacked film, and a sense current was caused to flow in a direction parallel to the plane of the film to measure a rate of change in MR. As a result, the rate of change in MR was 8%. [0176]
  • Then, a CIP type spin-valve element having the stacked structure of a pinned layer and a free layer was fabricated by way of experiment. The stacked structure was as follows. [0177]
  • Ta 5 rm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/CoFe 1 nm (pinned layer)/Co 1 nm (pinned layer)/CoFe 1 nm (pinned layer)/Cu 1 nm (pinned layer)/CoFe 1 nm (pinned layer)/Cu 3 nm (non-magnetic intermediate layer)/CoFe1 nm (free layer)/Cu 1 nm (free layer)/CoFe 1 nm (free layer)/Cu 1 nm (free layer)/CoFe 1 nm (free layer)/Cu 1 nm (high conductive layer)/Ta 5 nm (protective layer) [0178]
  • This stacked structure was deposited to measure a rate of change in MR. As a result, the rate of change in MR was 9%. That is, although the rate of change in MR was increased as compared with Comparative Example 1, the increased rate was only a small value. [0179]
  • From the results of the above described comparative examples, it was revealed that it was not so effective that the pinned layer and the free layer in the CIP type SV element had the multilayer structure of the ferromagnetic layers and the non-magnetic layers. [0180]
  • EXAMPLE 2
  • As a second example of the present invention, a CPP type spin-valve element having an Fe/Au type stacked structure will be described below. [0181]
  • First, a Cu bottom electrode having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The stacked construction of the film was as follows. [0182]
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/Fe 1 mm (pinned layer)/Au 1 nm (pinned layer)/Fe 1 nm (pinned layer)/Au 1 nm (pinned layer)/Fe 1 nm (pinned layer)/Au 3 nm (non-magnetic intermediate layer)/Fe 1 nm (free layer)/Au 1 nm (free layer)/Fe 1 nm (free layer)/Au 1 nm (free layer)/Fe 1 nm (free layer)/Au 1 nm (high conductive layer)/Ta 5 nm (protective layer) [0183]
  • As shown in FIG. 15, an insulating film of AlOx was formed thereon, and a hole 0.1 μm square was formed in AlOx. Then, a Cu top electrode having a thickness of 500 nm was stacked thereon by the sputtering method. In this example, with the above described construction, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of AlOx. As the results of measurement at room temperatures, the resistance was 8 Ω, and it was possible to obtain a rate of change in resistance of 20%. Thus, it was possible to obtain an amount of change in resistance of 1.6 Ω. [0184]
  • In addition, it was verified that the pinned layer was suitably magnetization-fixed by the antiferromagnetic layer and that the magnetization of the pin stacked structure moved integrally. [0185]
  • It was also verified that, although Hc of the free layer F was a large value of 20 Oe, the magnetization moved integrally with respect to the external magnetic field. [0186]
  • In addition, a fine through hole was formed in a portion of Ta 5 nm/NiFe 2 nm/PtMn 15 nm constituting the bottom structure of the film structure in this example, to cause the Cu bottom electrode to bond directly to the CoFe/Cu stacked structure, and the size of the hole formed in the insulating film Z was set to be 0.05 μm square. Thus, it was possible to measure MR from which a parasitic resistance caused by the Ta 5 nm/NiFe 2 nm/PtMn 15 nm structure was removed. [0187]
  • As a result, the resistance was 12 Ω, and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 2 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0188]
  • EXAMPLE 3
  • As a third example of the present invention, a CPP type spin-valve element which has an Fe/Au type stacked structure and which is provided with an NiFe layer on a free layer to improve magnetically soft characteristics will be described below. [0189]
  • First, a Cu bottom electrode having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The construction of the film was as follows. [0190]
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/Fe 1 nm (pinned layer)/Au 1 nm (pinned layer)/Fe 1 nm (pinned layer)/Au 1 nm (pinned layer)/Fe 1 nm (pinned layer)/Au 3 nm (non-magnetic intermediate layer)/Fe 1 nm (free layer)/Au 1 nm (free layer)/Fe 1 nm (free layer)/Au 1 nm (free layer)/NiFe 2 nm (free layer)/Ta 5 nm (protective layer) [0191]
  • As shown in FIG. 15, an insulating film of AlOx was formed thereon, and a hole 0.1 μm square was formed in AlOx. Then, a Cu top electrode having a thickness of 500 nm was stacked thereon by the sputtering method. Also in this example, with the above described construction, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of AlOx. [0192]
  • As the results of measurement at room temperatures, the resistance was 7 Ω, and it was possible to obtain a rate of change in resistance of 18%. Thus, it was possible to obtain an amount of change in resistance of 1.26 Ω. [0193]
  • In addition, it was verified that the pinned layer was suitably magnetization-fixed by the antiferromagnetic layer and that the magnetization of the pin stacked structure moved integrally. [0194]
  • It was also verified that it was possible to decrease Hc of the free layer to 18 Oe and that the magnetization moved integrally with respect to the external magnetic field. [0195]
  • In addition, a fine through hole was formed in a portion of Ta 5 nm/NiFe 2 nm/PtMn 15 nm constituting the bottom structure of the film structure in this example, to cause the Cu bottom electrode to bond directly to the CoFe/Cu stacked structure, and the size of the hole formed in the insulating film Z was set to be 0.05 μm square. Thus, it was possible to measure MR from which a parasitic resistance caused by the Ta 5 nm/NiFe 2 nm/PtMn 15 nm structure was removed. [0196]
  • As a result, the resistance was 10 Ω, and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 4.0 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0197]
  • EXAMPLE 4
  • First, a Cu bottom electrode having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The construction of the film was as follows. [0198]
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/Fe 0.5 nm (pinned layer)/CoFe 0.5 nm (pinned layer)/Fe 0.5 nm (pinned layer)/Au 1 nm (pinned layer)/Fe 0.5 nm (pinned layer)/CoFe 0.5 nm (pinned layer)/Fe 0.5 nm (pinned layer)/Au 3 nm (pinned layer)/Fe 0.5 nm (free layer)/CoFe 0.5 nm (free layer)/Fe 0.5 nm (free layer)/Au 1 nm (free layer)/Fe 0.5 nm (free layer)/CoFe 0.5 nm (free layer)/ Fe 0.5 nm (pinned layer)/Au 1 nm (free layer)/NiFe 2 nm (free layer)/Ta 5 nm (protective layer) [0199]
  • As shown in FIG. 15, an insulating film of AlOx was formed thereon, and a hole 0.1 μm square was formed in AlOx. Then, a Cu top electrode having a thickness of 500 nm was stacked thereon by the sputtering method. In this example, with the above described construction, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of AlOx. [0200]
  • As the results of measurement at room temperatures, the resistance was 9 Ω, and it was possible to obtain a rate of change in resistance of 27%. Thus, it was possible to obtain an amount of change in resistance of 2.5 ‘Ω. [0201]
  • In addition, it was verified that the pinned layer was suitably magnetization-fixed and that the magnetization of the pin stacked structure moved integrally. It was also verified that it was possible to decrease Hc of the free layer to 8 Oe, and that the magnetization moved integrally with respect to the external magnetic field. [0202]
  • In addition, a fine through hole was formed in a portion of Ta 5 nm/NiFe 2 nm/PtMn 15 nm constituting the bottom structure of the film structure in this example, to cause the Cu bottom electrode to bond directly to the CoFe/Cu stacked structure, and the size of the hole formed in the insulating film Z was set to be 0.05 μm square. Thus, it was possible to measure MR from which a parasitic resistance caused by the Ta 5 nm/NiFe 2 nm/PtMn 15 nm structure was removed. [0203]
  • As a result, the resistance was 20 Ω, and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 8 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0204]
  • EXAMPLE 5
  • First, a Cu bottom electrode having a thickness of 500 nm was stacked on a thermally oxidized silicon (Si) substrate by the sputtering method, and the Cu bottom electrode was formed so as to have a stripe shape having a width of 9 μm by the photolithography. Then, a CPP-SV 3 μm square was deposited thereon. The construction of the film was as follows. [0205]
  • Ta 5 nm (buffer layer)/NiFe 2 nm (buffer layer)/PtMn 15 nm (antiferromagnetic layer)/Fe 1 nm (pinned layer)/CoFe 1 nm (pinned layer)/Fe 1 nm (pinned layer)/CoFe 1 nm (pinned layer)/Fe 1 nm (pinned layer)/Au 3 nm (non-magnetic intermediate layer)/Fe 1 nm (free layer)/CoFe 1 nm (free layer)/Fe 1 nm (free layer)/CoFe 1 nm (free layer)/NiFe 2 nm (free layer)/Ta 5 nm (protective layer) [0206]
  • As shown in FIG. 15, an insulating film of AlOx was formed thereon, and a hole 0.1 μm square was formed in AlOx. Then, a Cu top electrode having a thickness of 500 nm was stacked thereon by the sputtering method. In this example, with the above described construction, it was possible to measure the characteristics of the CPP-SV via the hole 0.1 μm square of AlOx. [0207]
  • As the results of measurement at room temperatures, the resistance was 6 Ω. and it was possible to obtain a rate of change in resistance of 16%. Thus, it was possible to obtain an amount of change in resistance of 0.96 Ω. [0208]
  • In addition, it was verified that the pinned layer was suitably magnetization-fixed and that the magnetization of the pin stacked structure moved integrally. [0209]
  • It was also verified that it was possible to decrease Hc of the free layer to 8 Oe and that the magnetization moved integrally with respect to the external magnetic field. [0210]
  • In addition, a fine through hole was formed in a portion of Ta 5 nm/NiFe 2 nm/PtMn 15 nm constituting the bottom structure of the film structure in this example, to cause the Cu bottom electrode to bond directly to the CoFe/Cu stacked structure, and the size of the hole formed in the insulating film Z was set to be 0.05 μm square. Thus, it was possible to measure MR from which a parasitic resistance caused by the Ta 5 nm/NiFe 2 nm/PtMn 15 nm structure was removed. [0211]
  • As a result, the resistance was 8 Ω, and it was possible to obtain a rate of change in resistance of 40%. Thus, it was possible to obtain an amount of change in resistance of 3.2 Ω. In addition, it was verified that the pinned layer P was suitably magnetization-fixed by the antiferromagnetic layer A and that the magnetization of the stacked structure constituting the pinned layer P moved integrally. [0212]
  • (Third Embodiment) [0213]
  • As a third embodiment of the present invention, a magnetic head using a magnetoresistance effect element according to an aspect of the present invention will be described below. [0214]
  • FIG. 16 is a schematic perspective view of a principal part of a magnetic head using a magnetoresistance effect element according to an aspect of the present invention. That is, the magnetic head according to another aspect of the present invention has a pair of [0215] magnetic yokes 102, 102 which are arranged so as to face a recording medium 200. On the magnetic yokes 102, 102, a magnetoresistance effect element 104 magnetically coupled thereto is provided. The magnetoresistance effect element 104 is any one of the CPP type elements according to an aspect of the present invention, which have bee described above referring to FIGS. 1 through 15. On both sides thereof, a pair of bias layers 106, 106 are formed so as to straddle the pair of magnetic yokes 102, 102. The bias layers 106 are made of an antiferromagnetic or ferromagnetic material, and have the function of directing the magnetization of the magnetic yoke 102 and the free layer of the magnetoresistance effect element 104 to a direction perpendicular to a recording magnetic field, i.e., to the y direction in the figure.
  • In the [0216] recording medium 200, a recording track 200 T is formed, and recording bits 200B are arranged. In each of the recording bits 200B, a signal magnetization illustrated by arrow is formed. The signal magnetic flux from these recording bits is given to a magnetic circuit which connects the magnetic yokes 102 to the magnetoresistance effect element 104. If the magnetic field of the recording bit 200B is given to the magnetoresistance effect element 104, the magnetization of the free layer rotates on the plane from they direction due to the bias layer 106. Then, the variation in magnetizing direction is detected as the variation in magnetic resistance.
  • In order to match the magnetic detection region of the magnetoresistance effect element to the size of the [0217] recording bit 200B, the contact of the electrode of the magnetoresistance effect element 104 is formed so as to be limited to a region corresponding to a recording track width W shown in the figure.
  • According to the embodiment of the present invention, any one of the CPP type elements described above referring to FIGS. 1 through 15 is used as the [0218] magnetoresistance effect element 104, so that it is possible to obtain both an appropriate element resistance and a large variation in magnetic resistance. That is, it is possible to realize a magnetic head having a greatly higher sensitive and more stable reliability than those of conventional heads.
  • While the magnetic head suitable for magnetic recording media of a longitudinal (in-plane) recording system has been described in this example, the present invention should not be limited thereto. The magnetoresistance effect element according to the present invention may be applied to a magnetic head suitable for vertical recording media, to obtain the same effects. [0219]
  • (Fourth Embodiment) [0220]
  • As a fourth embodiment of the present invention, a magnetic recording and/or reproducing system using a magnetoresistance effect element according to embodiments of the present invention will be described below. Anyone of the magnetoresistance effect elements according to embodiments of the present invention, which have been described above referring to FIGS. 1 through 15, can be mounted on a magnetic head illustrated in FIG. 16, and can be incorporated in, e.g., a recording/reproducing integral type magnetic head assembly, to be applied to a magnetic recording and/or reproducing system. [0221]
  • FIG. 17 is a perspective view illustrating a schematic construction of a principal part of such a magnetic recording and/or reproducing system. That is, a magnetic recording and/or reproducing [0222] system 150 according to an aspect of the present invention is a system of a type using a rotary actuator. In this figure, a longitudinal recording or vertical recording magnetic disk 200 is mounted on a spindle 152, and is rotated in a direction of arrow A by means of a motor (not shown) which responds to a control signal from a drive unit control part (not shown). A head slider 153 for recording/reproducing information to be stored in the magnetic disk 200 is mounted on the tip of a thin-film-like suspension 154. For example, a magnetic head including any one of the magnetoresistance effect elements according to the present invention, which have been described in Example 6, is provided in the vicinity of the tip of the head slider 153.
  • If the [0223] magnetic disk 200 rotates, the medium facing surface or air bearing surface (ABS) of the head slider 153 is held at a predetermined flying height from the surface of the magnetic disk 200.
  • The [0224] suspension 154 is connected to one end of an actuator arm 155 which has a bobbin portion or the like for holding a driving coil (not shown). On the other hand of the actuator arm 155, a voice coil motor 156 which is a kind of a linear motor is provided. The voice coil motor 156 comprises: a driving coil (not shown) wound onto the bobbin portion of the actuator arm 155; and a magnetic circuit comprising permanent magnets, which are arranged so as to face each other via the coil, and facing yokes.
  • The [0225] actuator arm 155 is held by two ball bearings (not shown) which are provided above and below a fixing shaft 157, and is rotatable and slidable by means of the voice coil motor 156.
  • FIG. 18 is an enlarged perspective view of a magnetic head assembly in front of an [0226] actuator arm 155, which is viewed from the side of a disk. That is, the magnetic head assembly 160 has an actuator arm 151 having, e.g., a bobbin portion or the like for holding a driving coil, and a suspension 154 is connected to one end of the actuator arm 155.
  • A [0227] head slider 153 having a reproducing magnetic head using a magnetoresistance effect element according to embodiments of the present invention is mounted on the tip of the suspension 154. A recording head may be combined. The suspension 154 has a lead wire 164 for writing and reading signals. This lead wire 164 is electrically connected to each electrode of the magnetic head which is incorporated in the head slider 153. In the figure, reference number 165 denotes an electrode pad of the magnetic head assembly 160.
  • Between the medium facing surface or air bearing surface (ABS) of the [0228] head slider 153 and the surface of the magnetic disk 200, a predetermined flying height is set.
  • The [0229] slider 153 including the magnetic head 10 operates while flying at a predetermined height from the surface of the magnetic disk 200. According to an aspect of the present invention, such a “flying traveling type” magnetic recording and/or reproducing system can also reproduce at low noises with a higher resolution than conventional systems.
  • On the other hand, of course, a “contact traveling type” magnetic recording and/or reproducing system for traveling the slider while positively causing the magnetic head [0230] 10 to contact the magnetic disk 200 can also reproduce at low noises with a higher resolution than conventional systems.
  • Referring to Examples, the embodiments of the present invention have been described. However, the present invention should not be limited to these examples. [0231]
  • For example, with respect to the structure of the spin-valve element and the materials of the respective layers, the present invention may be similarly applied to all embodiments, which can be selected by persons with ordinary skill in the art, to provide the same effects. For example, the present invention can be similarly applied to a “dual type” structure. [0232]
  • In addition, the structure of the magnetic head, the materials and shapes of the respective elements constituting the magnetic head should not be limited to those described above in Examples, but the present invention may be similarly applied to all embodiments, which can be selected by persons with ordinary skill in the art, to provide the same effects. [0233]
  • The magnetic recording and/or reproducing system may be a reproducing only system or a recording and/or reproducing system. In addition, the medium should not be limited to a hard disk, but it may be any one of all magnetic recording media, such as flexible disks and magnetic cards. Moreover, the magnetic recording and/or reproducing system may be a so-called “removable” type system wherein a magnetic recording medium is removed from the system. [0234]
  • As described above, according to the present invention, it is possible to provide a magnetoresistance effect element which has an appropriate value of resistance and a large amount of change in MR and which is magnetically sensitive. [0235]
  • As a result, it is possible to surely read magnetic information from a finer recording bit from that in conventional elements, so that it is possible to greatly improve the packing density of a recording medium. Simultaneously, the reliability of the magnetic recording and/or reproducing system is improved due to thermal stability, and the utilized scope thereof is extended, so that there is a great industrial merit. [0236]
  • While the present invention has been disclosed in terms of the embodiment in order to facilitate better understanding thereof, it should be appreciated that the invention can be embodied in various ways without departing from the principle of the invention. Therefore, the invention should be understood to include all possible embodiments and modification to the shown embodiments which can be embodied without departing from the principle of the invention as set forth in the appended claims. [0237]

Claims (20)

What is claimed is:
1. A magnetoresistance effect element comprising:
a magnetization fixed layer in which a direction of magnetization is substantially fixed to one direction;
a magnetization free layer in which a direction of magnetization varies in response to an external magnetic field; and
a non-magnetic intermediate layer provided between the magnetization fixed layer and the magnetization free layer,
at least one of the magnetization fixed layer and the magnetization free layer having a stacked body in which ferromagnetic layers and non-magnetic layers are alternately stacked,
the non-magnetic layers in the stacked body being thinner than the non-magnetic intermediate layer,
a resistance of the magnetoresistance effect element varying in accordance with a relative angle between the direction of magnetization of the magnetization fixed layer and the direction of magnetization of the magnetization free layer, and
a sense current being flowed to the magnetization fixed layer, the non-magnetic intermediate layer and the magnetization free layer in a direction substantially perpendicular to surfaces of those layers.
2. A magnetoresistance effect element as set forth in claim 1, wherein each of ferromagnetic layers in the stacked body is ferromagnetically coupled.
3. A magnetoresistance effect element as set forth in claim 1, wherein at least one of the ferromagnetic layers included in the stacked body includes a layer of a first ferromagnetic material, and a layer of a second ferromagnetic material different from the first ferromagnetic material.
4. A magnetoresistance effect element as set forth in claim 1, wherein the stacked body includes the ferromagnetic layers of a first ferromagnetic material, and the ferromagnetic layers of a second ferromagnetic material different from the first ferromagnetic material.
5. A magnetoresistance effect element as set forth in claim 1, wherein the ferromagnetic layers included in the stacked body contains any one of an iron (Fe) base alloy, a cobalt (Co) base alloy and a nickel (Ni) base alloy, and the non-magnetic layers included in the stacked body contains any one of gold (Au), silver (Ag), copper (Cu), rhodium (Rh), ruthenium (Ru), manganese (Mn), chromium (Cr), rhenium (Re), osmium (Os), iridium (Ir), and an alloy containing any one of gold, silver, copper, rhodium, ruthenium, manganese, chromium, rhenium, osmium, and iridium.
6. A magnetoresistance effect element as set forth in claim 1, wherein at least one of the ferromagnetic layers included in the stacked body contains an iron (Fe) base alloy.
7. A magnetoresistance effect element as set forth in claim 1, wherein each of the magnetization fixed layer and the magnetization free layer has the stacked body, and
the stacking period in the stacked body of the magnetization fixed layer is different from the stacking period in the stacked body of the magnetization free layer.
8. A magnetoresistance effect element as set forth in claim 1, wherein the non-magnetic intermediate layer has a stacked body wherein two kinds or more of non-magnetic layers are stacked.
9. A magnetoresistance effect element as set forth in claim 8, wherein the two kinds or more of non-magnetic layers include two kinds of non-magnetic layers, each of which contains two of gold (Au), silver (Ag), copper (Cu), rhodium (Rh), ruthenium (Ru), manganese (Mn), chromium (Cr), rhenium (Re), osmium (Os), and iridium (Ir) as principal components.
10. A magnetoresistance effect element comprising:
a magnetization fixed layer in which a direction of magnetization is substantially fixed to one direction;
a magnetization free layer in which a direction of magnetization varies response to an external magnetic field; and
a non-magnetic intermediate layer provided between the magnetization fixed layer and the magnetization free layer, p1 at least one of the magnetization fixed layer and the magnetization free layer having a stacked body in which two kinds or more of ferromagnetic layers are stacked,
a resistance of the magnetoresistance effect element varying in accordance with a relative angle between the direction of magnetization of the magnetization fixed layer and the direction of magnetization of the magnetization free layer,
a sense current being flowed to the magnetization fixed layer, the non-magnetic intermediate layer and the magnetization free layer in a direction substantially perpendicular to surfaces of those layers.
11. A magnetoresistance effect element as set forth in claim 10, wherein at least one of the ferromagnetic layers included in the stacked body contains an iron (Fe) base alloy.
12. A magnetoresistance effect element as set forth in claim 10, wherein at least one of the ferromagnetic layers included in the stacked body is formed of an alloy containing nickel (Ni), iron (Fe) or cobalt (Co).
13. A magnetoresistance effect element as set forth in claim 10, wherein the stacked body is any one of an (NiFe alloy/CoFe alloy) stacked body, an (Fe base alloy/NiFe alloy) stacked body, and an (Fe base alloy/CoFe alloy) stacked body.
14. A magnetoresistance effect element as set forth in claim 10, wherein each of the magnetization fixed layer and the magnetization free layer has the stacked body, and
the stacking period in the stacked body of the magnetization fixed layer is different from the stacking period in the stacked body of the magnetization free layer.
15. A magnetoresistance effect element as set forth in claim 10, wherein the non-magnetic intermediate layer has a stacked body wherein two kinds or more of non-magnetic layers are stacked.
16. A magnetoresistance effect element as set forth in claim 15, wherein the two kinds or more of non-magnetic layers include two kinds of non-magnetic layers, each of which contains two of gold (Au), silver (Ag) and copper (Cu) as principal components.
17. A magnetic head having a magnetoresistance effect element as set forth in claim 1.
18. A magnetic head having a magnetoresistance effect element as set forth in claim 10.
19. A magnetic recording and/or reproducing system which has a magnetic head as set forth in claim 17 and which is capable of reading magnetic information stored in a magnetic recording medium.
20. A magnetic recording and/or reproducing system which has a magnetic head as set forth in claim 18 and which is capable of reading magnetic information stored in a magnetic recording medium.
US09/947,355 2000-09-11 2001-09-07 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system Abandoned US20020051380A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/970,278 US7359162B2 (en) 2000-09-11 2004-10-22 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US11/984,865 US7542248B2 (en) 2000-09-11 2007-11-23 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US12/042,166 US7483245B2 (en) 2000-09-11 2008-03-04 Magnetoresistance effect element, and magnetic head and magnetic recording and/or reproducing system utilizing the magnetoresistance element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-275417 2000-09-11
JP2000275417A JP3618654B2 (en) 2000-09-11 2000-09-11 Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/970,278 Continuation US7359162B2 (en) 2000-09-11 2004-10-22 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system

Publications (1)

Publication Number Publication Date
US20020051380A1 true US20020051380A1 (en) 2002-05-02

Family

ID=18761040

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/947,355 Abandoned US20020051380A1 (en) 2000-09-11 2001-09-07 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US10/970,278 Expired - Fee Related US7359162B2 (en) 2000-09-11 2004-10-22 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US11/984,865 Expired - Fee Related US7542248B2 (en) 2000-09-11 2007-11-23 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US12/042,166 Expired - Fee Related US7483245B2 (en) 2000-09-11 2008-03-04 Magnetoresistance effect element, and magnetic head and magnetic recording and/or reproducing system utilizing the magnetoresistance element

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/970,278 Expired - Fee Related US7359162B2 (en) 2000-09-11 2004-10-22 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US11/984,865 Expired - Fee Related US7542248B2 (en) 2000-09-11 2007-11-23 Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US12/042,166 Expired - Fee Related US7483245B2 (en) 2000-09-11 2008-03-04 Magnetoresistance effect element, and magnetic head and magnetic recording and/or reproducing system utilizing the magnetoresistance element

Country Status (2)

Country Link
US (4) US20020051380A1 (en)
JP (1) JP3618654B2 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150791A1 (en) * 2001-02-01 2002-10-17 Hiromi Yuasa Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US20030128483A1 (en) * 2001-10-12 2003-07-10 Nec Corporation Exchange coupling film, magneto-resistance effect device, magnetic head, and magnetic random access memory
US20040048104A1 (en) * 2002-09-09 2004-03-11 Tdk Corporation Exchange-coupled film, spin valve film, thin film magnetic head, magnetic head apparatus, and magnetic recording/reproducing apparatus
US20040169963A1 (en) * 2001-09-19 2004-09-02 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
WO2005008799A1 (en) * 2003-07-18 2005-01-27 Fujitsu Limited Ccp magnetoresistance element, method for manufacturing same, magnetic head and magnetic storage
US20050023938A1 (en) * 2003-06-30 2005-02-03 Kabushiki Kaisha Toshiba High-frequency oscillation element, magnetic information recording head, and magnetic storage device
US20050035383A1 (en) * 2003-08-12 2005-02-17 Ha Young-Ki Magnetic tunnel junction and memory device including the same
US20050111145A1 (en) * 2003-10-02 2005-05-26 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic reproducing apparatus
US20050122633A1 (en) * 2003-12-05 2005-06-09 Seagate Technology Llc Read sensor with confined sense current
US20050146967A1 (en) * 2003-10-24 2005-07-07 Samsung Electronics Co., Ltd. Magnetic random access memory (MRAM) and method of manufacturing the same
US20050168887A1 (en) * 2003-12-25 2005-08-04 Hiromi Yuasa Magnetoresistive element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20050180059A1 (en) * 2004-02-18 2005-08-18 Hitachi Global Storage Technologies High HC reference layer structure for self-pinned GMR heads
US20050201020A1 (en) * 2004-03-11 2005-09-15 Hiromi Fuke Magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
US20050213262A1 (en) * 2004-03-25 2005-09-29 Tdk Corporation Magnetoresistive device, thin film magnetic head, head gimbal assembly and magnetic disk unit
US20050230771A1 (en) * 2004-04-19 2005-10-20 Ha Young-Ki Magnetic tunnel junction structures having bended tips at both ends thereof, magnetic random access memory cells employing the same and photomasks used in formation thereof
US20050254179A1 (en) * 2004-05-13 2005-11-17 Tdk Corporation Magnetoresistive element, thin-film magnetic head, head gimbal assembly, and magnetic disk drive
US20060077596A1 (en) * 2004-10-13 2006-04-13 Kabushiki Kaisha Toshiba Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US20060098353A1 (en) * 2004-11-09 2006-05-11 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetoresistive head, magnetic recording apparatus, and magnetic memory
US20060240289A1 (en) * 2005-04-04 2006-10-26 Tdk Corporation Magnetoresistive element and method of manufacturing same, magnetoresistive device, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
US7190560B2 (en) 2004-02-18 2007-03-13 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned CPP sensor using Fe/Cr/Fe structure
US20070081276A1 (en) * 2002-03-28 2007-04-12 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20070159733A1 (en) * 2006-01-11 2007-07-12 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof, and magnetic head, magnetic reproducing apparatus, and magnetic memory using the same
US20070188945A1 (en) * 2006-02-16 2007-08-16 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head and magnetic recording/reproducing apparatus
US20070202249A1 (en) * 2006-02-09 2007-08-30 Kabushiki Kaisha Toshiba Method for manufacturing magnetoresistance effect element
US20070223150A1 (en) * 2006-03-27 2007-09-27 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic disk apparatus
US20070253122A1 (en) * 2006-04-28 2007-11-01 Kabushiki Kaisha Toshiba Magneto-resistive element and method of manufacturing the same
US20080008909A1 (en) * 2006-07-07 2008-01-10 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element, and magneto-resistance effect element
US20080005891A1 (en) * 2006-07-07 2008-01-10 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element, and magneto-resistance effect element
US20080013218A1 (en) * 2006-07-11 2008-01-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, magnetic reproducing apparatus, and manufacturing method thereof
US20080080098A1 (en) * 2006-09-28 2008-04-03 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US20080204943A1 (en) * 2006-09-28 2008-08-28 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetic memory, magnetic head, and magnetic recording/reproducing device
US20080261082A1 (en) * 2006-12-28 2008-10-23 Kazumasa Nishimura Tunneling magnetoresistive element including multilayer free magnetic layer having inserted nonmagnetic metal sublayer
US20080285183A1 (en) * 2004-03-03 2008-11-20 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic memory
US20080311431A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Toshiba Magnetic multilayered film current element
US7522390B2 (en) 2004-10-13 2009-04-21 Kabushiki Kaisha Toshiba Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US20090190262A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US20090190264A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
DE102004039978B4 (en) * 2003-08-12 2009-08-20 Samsung Electronics Co., Ltd., Suwon Magnetic tunnel junction device and MRAM cell containing the same
US20090219754A1 (en) * 2005-05-19 2009-09-03 Nec Corporation Magnetoresistive device and magnetic memory using the same
US20100091415A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100091414A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100091412A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100092803A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100226048A1 (en) * 2005-09-29 2010-09-09 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magneto-resistance effect head, magnetic storage and magnetic memory
US20100276771A1 (en) * 2005-02-16 2010-11-04 Nec Corporation Magnetoresistance device including layered ferromagnetic structure, and method of manufacturing the same
US7855859B2 (en) 2007-12-27 2010-12-21 Tdk Corporation Magnetoresistive element and magnetic head
US20110109397A1 (en) * 2009-11-06 2011-05-12 Commissariat A I'energie Atomique Et Aux Energies Alternatives Radiofrequency oscillator
US7948717B2 (en) 2006-09-08 2011-05-24 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US20110204886A1 (en) * 2010-02-23 2011-08-25 Tdk Corporation Magnetic sensor, magnetic detector, and magnetic head
US20110228428A1 (en) * 2010-03-19 2011-09-22 Seagate Technology Llc Trilayer reader with current constraint at the abs
US8031443B2 (en) 2007-03-27 2011-10-04 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and method for manufacturing a magneto-resistance effect element
US8048492B2 (en) 2005-12-21 2011-11-01 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
US8274765B2 (en) 2008-09-29 2012-09-25 Kabushiki Kaisha Toshiba Method of manufacturing magnetoresistive element, magnetoresistive element, magnetic head assembly and magnetic recording apparatus
US8749924B2 (en) 2011-09-13 2014-06-10 Seagate Technology Llc Tuned shunt ratio for magnetic sensors
US8755154B2 (en) 2011-09-13 2014-06-17 Seagate Technology Llc Tuned angled uniaxial anisotropy in trilayer magnetic sensors
US8780508B2 (en) 2012-06-29 2014-07-15 Seagate Technology Llc Magnetic element with biased side shield lamination
US8837092B2 (en) 2012-06-29 2014-09-16 Seagate Technology Llc Magnetic element with biasing structure distal the air bearing surface
US20150129946A1 (en) * 2013-11-13 2015-05-14 International Business Machines Corporation Self reference thermally assisted mram with low moment ferromagnet storage layer
US20200090718A1 (en) * 2018-09-13 2020-03-19 Kabushiki Kaisha Toshiba Magnetic memory device
CN112885960A (en) * 2019-11-29 2021-06-01 浙江驰拓科技有限公司 MTJ device
CN113763994A (en) * 2020-06-01 2021-12-07 株式会社东芝 Magnetic head and magnetic recording apparatus
CN114550754A (en) * 2020-11-19 2022-05-27 株式会社东芝 Magnetic head and magnetic recording apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343006B2 (en) 2003-06-27 2009-10-14 株式会社東芝 Magnetic element, magnetic information reproducing head, and magnetic information reproducing apparatus
US7242045B2 (en) * 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US7180716B2 (en) * 2004-03-30 2007-02-20 Headway Technologies, Inc. Fabrication method for an in-stack stabilized synthetic stitched CPP GMR head
JP2006005286A (en) 2004-06-21 2006-01-05 Alps Electric Co Ltd Magnetic detecting element
JP2006005278A (en) 2004-06-21 2006-01-05 Alps Electric Co Ltd Magnetic detecting element
JP2006005282A (en) 2004-06-21 2006-01-05 Alps Electric Co Ltd Magnetic detecting element
JP2006318983A (en) * 2005-05-10 2006-11-24 Sony Corp Magnetic memory element and memory
US7551409B2 (en) * 2006-11-16 2009-06-23 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with improved ferromagnetic free layer structure
US7746603B2 (en) * 2006-12-19 2010-06-29 Hitachi Global Storage Technologies Netherlands B.V. CPP Magnetoresistive head with different thickness free layers for improved signal to noise ratio
JP2008252008A (en) 2007-03-30 2008-10-16 Toshiba Corp Magnetoresistance effect element and method of manufacturing the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304975A (en) * 1991-10-23 1994-04-19 Kabushiki Kaisha Toshiba Magnetoresistance effect element and magnetoresistance effect sensor
US5313186A (en) * 1991-12-23 1994-05-17 Thomson-Csf Sensor of weak magnetic fields, with magnetoresistive effect
US5448515A (en) * 1992-09-02 1995-09-05 Mitsubishi Denki Kabushiki Kaisha Magnetic thin film memory and recording/reproduction method therefor
US5459687A (en) * 1993-02-18 1995-10-17 Matsushita Electric Industrial Co., Ltd. Memory element
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5768181A (en) * 1997-04-07 1998-06-16 Motorola, Inc. Magnetic device having multi-layer with insulating and conductive layers
US5768183A (en) * 1996-09-25 1998-06-16 Motorola, Inc. Multi-layer magnetic memory cells with improved switching characteristics
US6002553A (en) * 1994-02-28 1999-12-14 The United States Of America As Represented By The United States Department Of Energy Giant magnetoresistive sensor
US6205008B1 (en) * 1993-10-06 2001-03-20 U.S. Philips Corporation Magnetic-resistance device, and magnetic head employing such a device
US6400537B2 (en) * 1996-02-22 2002-06-04 Matsushita Electric Industrial Co., Ltd. Thin film magnetic head
US20020073785A1 (en) * 2000-12-20 2002-06-20 Shiva Prakash Use of multi-layer thin films as stress sensors
US6473275B1 (en) * 2000-06-06 2002-10-29 International Business Machines Corporation Dual hybrid magnetic tunnel junction/giant magnetoresistive sensor
US6522507B1 (en) * 2000-05-12 2003-02-18 Headway Technologies, Inc. Single top spin valve heads for ultra-high recording density
US20030035256A1 (en) * 1998-11-30 2003-02-20 Nec Corporation Magnetoresistive effect transducer having longitudinal bias layer directly connected to free layer
US6603642B1 (en) * 2000-03-15 2003-08-05 Tdk Corporation Magnetic transducer having a plurality of magnetic layers stacked alternately with a plurality of nonmagnetic layers and a fixed-orientation-of-magnetization layer and thin film magnetic head including the magnetic transducer
US6636391B2 (en) * 2000-04-06 2003-10-21 Hitachi, Ltd. Magnetoresistive sensor, magnetic head and magnetic disk apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35256A (en) * 1862-05-13 Improvement in tail-pieces for violins
US73785A (en) * 1868-01-28 Improved waseihg-maohihe
US5617071A (en) * 1992-11-16 1997-04-01 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate alloy layer having magnetic concentrator and shielding permeable masses
JP3364309B2 (en) 1993-03-15 2003-01-08 株式会社東芝 Magnetoresistive element and magnetic recording device
EP0675554A1 (en) * 1994-03-24 1995-10-04 Nec Corporation Magnetoresistive effect element
EP0843827A2 (en) * 1996-06-12 1998-05-27 Koninklijke Philips Electronics N.V. A magneto-resistive magnetic field sensor
JP2871670B1 (en) 1997-03-26 1999-03-17 富士通株式会社 Ferromagnetic tunnel junction magnetic sensor, method of manufacturing the same, magnetic head, and magnetic recording / reproducing device
US6137662A (en) * 1998-04-07 2000-10-24 Read-Rite Corporation Magnetoresistive sensor with pinned SAL
JP2000021414A (en) 1998-07-06 2000-01-21 Shin Kobe Electric Mach Co Ltd Manufacture of grid for positive electrode for lead-acid battery, and manufacture of the positive electrode for the lead-acid battery
US6052263A (en) 1998-08-21 2000-04-18 International Business Machines Corporation Low moment/high coercivity pinned layer for magnetic tunnel junction sensors
JP2000188435A (en) 1998-12-22 2000-07-04 Sony Corp Magnetic tunneling junction element and its manufacture, magnetic head, magnetic sensor, magnetic memory magnetic recording/reproducing apparatus, magnetic sensor and magnetic memory using the element
JP2001176030A (en) * 1999-12-20 2001-06-29 Alps Electric Co Ltd Spin valve type thin film magnetic element and thin film magnetic head
JP2002050011A (en) * 2000-08-03 2002-02-15 Nec Corp Magnetoresistive effect element, magnetoresistive effect head, magnetoresistive conversion system, and magnetic recording system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304975A (en) * 1991-10-23 1994-04-19 Kabushiki Kaisha Toshiba Magnetoresistance effect element and magnetoresistance effect sensor
US5313186A (en) * 1991-12-23 1994-05-17 Thomson-Csf Sensor of weak magnetic fields, with magnetoresistive effect
US5448515A (en) * 1992-09-02 1995-09-05 Mitsubishi Denki Kabushiki Kaisha Magnetic thin film memory and recording/reproduction method therefor
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5459687A (en) * 1993-02-18 1995-10-17 Matsushita Electric Industrial Co., Ltd. Memory element
US6205008B1 (en) * 1993-10-06 2001-03-20 U.S. Philips Corporation Magnetic-resistance device, and magnetic head employing such a device
US6002553A (en) * 1994-02-28 1999-12-14 The United States Of America As Represented By The United States Department Of Energy Giant magnetoresistive sensor
US6400537B2 (en) * 1996-02-22 2002-06-04 Matsushita Electric Industrial Co., Ltd. Thin film magnetic head
US5768183A (en) * 1996-09-25 1998-06-16 Motorola, Inc. Multi-layer magnetic memory cells with improved switching characteristics
US5768181A (en) * 1997-04-07 1998-06-16 Motorola, Inc. Magnetic device having multi-layer with insulating and conductive layers
US20030035256A1 (en) * 1998-11-30 2003-02-20 Nec Corporation Magnetoresistive effect transducer having longitudinal bias layer directly connected to free layer
US6603642B1 (en) * 2000-03-15 2003-08-05 Tdk Corporation Magnetic transducer having a plurality of magnetic layers stacked alternately with a plurality of nonmagnetic layers and a fixed-orientation-of-magnetization layer and thin film magnetic head including the magnetic transducer
US6636391B2 (en) * 2000-04-06 2003-10-21 Hitachi, Ltd. Magnetoresistive sensor, magnetic head and magnetic disk apparatus
US6522507B1 (en) * 2000-05-12 2003-02-18 Headway Technologies, Inc. Single top spin valve heads for ultra-high recording density
US6473275B1 (en) * 2000-06-06 2002-10-29 International Business Machines Corporation Dual hybrid magnetic tunnel junction/giant magnetoresistive sensor
US20020073785A1 (en) * 2000-12-20 2002-06-20 Shiva Prakash Use of multi-layer thin films as stress sensors

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154740A1 (en) * 2001-02-01 2007-07-05 Hiromi Yuasa Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US20050152077A1 (en) * 2001-02-01 2005-07-14 Hiromi Yuasa Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US7897274B2 (en) * 2001-02-01 2011-03-01 Kabushiki Kaisha Toshiba Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US6905780B2 (en) * 2001-02-01 2005-06-14 Kabushiki Kaisha Toshiba Current-perpendicular-to-plane-type magnetoresistive device, and magnetic head and magnetic recording-reproducing apparatus using the same
US20020150791A1 (en) * 2001-02-01 2002-10-17 Hiromi Yuasa Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US7223485B2 (en) 2001-02-01 2007-05-29 Kabushiki Kaisha Toshiba Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
US20050042478A1 (en) * 2001-09-19 2005-02-24 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US7240419B2 (en) 2001-09-19 2007-07-10 Kabushiki Kaisha Toshiba Method of manufacturing a magnetoresistance effect element
US6937447B2 (en) * 2001-09-19 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US20050094327A1 (en) * 2001-09-19 2005-05-05 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US20080013222A1 (en) * 2001-09-19 2008-01-17 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US20040169963A1 (en) * 2001-09-19 2004-09-02 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US7265950B2 (en) 2001-09-19 2007-09-04 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US7494724B2 (en) 2001-09-19 2009-02-24 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US7355883B2 (en) 2001-09-19 2008-04-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
US6819532B2 (en) * 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
US20030128483A1 (en) * 2001-10-12 2003-07-10 Nec Corporation Exchange coupling film, magneto-resistance effect device, magnetic head, and magnetic random access memory
US20080062577A1 (en) * 2002-03-28 2008-03-13 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20080068764A1 (en) * 2002-03-28 2008-03-20 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7301733B1 (en) 2002-03-28 2007-11-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7505234B2 (en) 2002-03-28 2009-03-17 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7843669B2 (en) 2002-03-28 2010-11-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20090141408A1 (en) * 2002-03-28 2009-06-04 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US8929035B2 (en) 2002-03-28 2015-01-06 Kabushiki Kaisha Toshiba Tunnel barrier sensor with multilayer structure
US20070081276A1 (en) * 2002-03-28 2007-04-12 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20090225477A1 (en) * 2002-03-28 2009-09-10 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7593195B2 (en) 2002-03-28 2009-09-22 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20040048104A1 (en) * 2002-09-09 2004-03-11 Tdk Corporation Exchange-coupled film, spin valve film, thin film magnetic head, magnetic head apparatus, and magnetic recording/reproducing apparatus
US7029770B2 (en) * 2002-09-09 2006-04-18 Tdk Corporation Exchange-coupled film, spin valve film, thin film magnetic head, magnetic head apparatus, and magnetic recording/reproducing apparatus
US7961439B2 (en) * 2003-06-30 2011-06-14 Kabushiki Kaisha Toshiba High-frequency oscillation element, magnetic information recording head, and magnetic storage device
US20050023938A1 (en) * 2003-06-30 2005-02-03 Kabushiki Kaisha Toshiba High-frequency oscillation element, magnetic information recording head, and magnetic storage device
WO2005008799A1 (en) * 2003-07-18 2005-01-27 Fujitsu Limited Ccp magnetoresistance element, method for manufacturing same, magnetic head and magnetic storage
EP1648039A4 (en) * 2003-07-18 2006-09-06 Fujitsu Ltd Ccp magnetoresistance element, method for manufacturing same, magnetic head and magnetic storage
US20060157810A1 (en) * 2003-07-18 2006-07-20 Fujitsu Limited CPP magneto-resistive element, method of manufacturing CPP magneto-resistive element, magnetic head, and magnetic memory apparatus
EP1648039A1 (en) * 2003-07-18 2006-04-19 Fujitsu Limited Ccp magnetoresistance element, method for manufacturing same, magnetic head and magnetic storage
US20050035383A1 (en) * 2003-08-12 2005-02-17 Ha Young-Ki Magnetic tunnel junction and memory device including the same
DE102004039978B4 (en) * 2003-08-12 2009-08-20 Samsung Electronics Co., Ltd., Suwon Magnetic tunnel junction device and MRAM cell containing the same
US7378698B2 (en) * 2003-08-12 2008-05-27 Samsung Electronics Co., Ltd. Magnetic tunnel junction and memory device including the same
US7495870B2 (en) 2003-10-02 2009-02-24 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic reproducing apparatus
US20050111145A1 (en) * 2003-10-02 2005-05-26 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic reproducing apparatus
US20050146967A1 (en) * 2003-10-24 2005-07-07 Samsung Electronics Co., Ltd. Magnetic random access memory (MRAM) and method of manufacturing the same
US7317219B2 (en) * 2003-10-24 2008-01-08 Samsung Electronics Co., Ltd. Magnetic random access memory (MRAM) and method of manufacturing the same
US20080118993A1 (en) * 2003-10-24 2008-05-22 Samsung Electronics Co., Ltd. Method of manufacturing magnetic random access memory (MRAM)
US20060245117A1 (en) * 2003-12-05 2006-11-02 Seagate Technology Llc Magnetic sensor with confined sense current
US20050122633A1 (en) * 2003-12-05 2005-06-09 Seagate Technology Llc Read sensor with confined sense current
US8027129B2 (en) 2003-12-05 2011-09-27 Seagate Technology Llc Current perpendicular to plane magnetoresistive sensor pre-product with current confining path precursor
US7093347B2 (en) 2003-12-05 2006-08-22 Seagate Technology Llc Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US20050168887A1 (en) * 2003-12-25 2005-08-04 Hiromi Yuasa Magnetoresistive element, magnetic head, magnetic reproducing apparatus, and magnetic memory
US7426098B2 (en) 2003-12-25 2008-09-16 Kabushiki Kaisha Toshiba Magnetoresistive element having three-layer buffer layer, magnetic head, magnetic reproducing apparatus, and magnetic memory
US20050180059A1 (en) * 2004-02-18 2005-08-18 Hitachi Global Storage Technologies High HC reference layer structure for self-pinned GMR heads
US7221545B2 (en) 2004-02-18 2007-05-22 Hitachi Global Storage Technologies Netherlands B.V. High HC reference layer structure for self-pinned GMR heads
US7190560B2 (en) 2004-02-18 2007-03-13 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned CPP sensor using Fe/Cr/Fe structure
US7746601B2 (en) * 2004-03-03 2010-06-29 Kabushiki Kaisha Toshiba Magneto-resistance effect element with a surface contacting with a side face of electrode having a magnetization direction
US20080285183A1 (en) * 2004-03-03 2008-11-20 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic memory
US20050201020A1 (en) * 2004-03-11 2005-09-15 Hiromi Fuke Magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
US7289305B2 (en) 2004-03-11 2007-10-30 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetic head, and magnetic recording and reproducing apparatus
US20050213262A1 (en) * 2004-03-25 2005-09-29 Tdk Corporation Magnetoresistive device, thin film magnetic head, head gimbal assembly and magnetic disk unit
US7564657B2 (en) 2004-03-25 2009-07-21 Tdk Corporation Magnetoresistive device, thin film magnetic head, head gimbal assembly and magnetic disk unit exhibiting superior magnetoresistive effect
US20050230771A1 (en) * 2004-04-19 2005-10-20 Ha Young-Ki Magnetic tunnel junction structures having bended tips at both ends thereof, magnetic random access memory cells employing the same and photomasks used in formation thereof
US7582890B2 (en) 2004-04-19 2009-09-01 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures having bended tips at both ends thereof, magnetic random access memory cells employing the same and photomasks used in formation thereof
US20050254179A1 (en) * 2004-05-13 2005-11-17 Tdk Corporation Magnetoresistive element, thin-film magnetic head, head gimbal assembly, and magnetic disk drive
US7446983B2 (en) 2004-05-13 2008-11-04 Tdk Corporation Magnetoresistive element, thin-film magnetic head, head gimbal assembly, and magnetic disk drive
US7515387B2 (en) 2004-10-13 2009-04-07 Kabushiki Kaisha Toshiba Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US20060077596A1 (en) * 2004-10-13 2006-04-13 Kabushiki Kaisha Toshiba Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US7522390B2 (en) 2004-10-13 2009-04-21 Kabushiki Kaisha Toshiba Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
US20060098353A1 (en) * 2004-11-09 2006-05-11 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetoresistive head, magnetic recording apparatus, and magnetic memory
US7525776B2 (en) 2004-11-09 2009-04-28 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetoresistive head, magnetic recording apparatus, and magnetic memory
US8865326B2 (en) * 2005-02-16 2014-10-21 Nec Corporation Magnetoresistance device including layered ferromagnetic structure, and method of manufacturing the same
US20100276771A1 (en) * 2005-02-16 2010-11-04 Nec Corporation Magnetoresistance device including layered ferromagnetic structure, and method of manufacturing the same
US20060240289A1 (en) * 2005-04-04 2006-10-26 Tdk Corporation Magnetoresistive element and method of manufacturing same, magnetoresistive device, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
US7787220B2 (en) 2005-04-04 2010-08-31 Tdk Corporation Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
US8513748B2 (en) 2005-05-19 2013-08-20 Nec Corporation Magnetoresistive device and magnetic memory using the same
US20090219754A1 (en) * 2005-05-19 2009-09-03 Nec Corporation Magnetoresistive device and magnetic memory using the same
US20100226048A1 (en) * 2005-09-29 2010-09-09 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magneto-resistance effect head, magnetic storage and magnetic memory
US7821748B2 (en) 2005-09-29 2010-10-26 Kabushiki Kaisha Toshiba Magneto-resistance effect element including a damping factor adjustment layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8305716B2 (en) 2005-09-29 2012-11-06 Kabushiki Kaisha Toshiba Magneto-resistance effect element including diffusive electron scattering layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8130477B2 (en) 2005-09-29 2012-03-06 Kabushiki Kaisha Toshiba Magneto-resistance effect element having a diffusive electron scattering layer, magneto-resistance effect head, magnetic storage and magnetic memory
US8048492B2 (en) 2005-12-21 2011-11-01 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
US7719800B2 (en) 2006-01-11 2010-05-18 Kabuhsiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof, and magnetic head, magnetic reproducing apparatus, and magnetic memory using the same
US20070159733A1 (en) * 2006-01-11 2007-07-12 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof, and magnetic head, magnetic reproducing apparatus, and magnetic memory using the same
US7897201B2 (en) 2006-02-09 2011-03-01 Kabushiki Kaisha Toshiba Method for manufacturing magnetoresistance effect element
US20070202249A1 (en) * 2006-02-09 2007-08-30 Kabushiki Kaisha Toshiba Method for manufacturing magnetoresistance effect element
US20070188945A1 (en) * 2006-02-16 2007-08-16 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head and magnetic recording/reproducing apparatus
US7808747B2 (en) * 2006-02-16 2010-10-05 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head and magnetic recording/reproducing apparatus
US20070223150A1 (en) * 2006-03-27 2007-09-27 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic disk apparatus
US8917485B2 (en) 2006-03-27 2014-12-23 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, and magnetic disk apparatus
US8274766B2 (en) 2006-04-28 2012-09-25 Kabushiki Kaisha Toshiba Magnetic recording element including a thin film layer with changeable magnetization direction
US20070253122A1 (en) * 2006-04-28 2007-11-01 Kabushiki Kaisha Toshiba Magneto-resistive element and method of manufacturing the same
US8111489B2 (en) 2006-07-07 2012-02-07 Kabushiki Kaisha Toshiba Magneto-resistance effect element
US8256095B2 (en) 2006-07-07 2012-09-04 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element
US7776387B2 (en) 2006-07-07 2010-08-17 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element
US20080005891A1 (en) * 2006-07-07 2008-01-10 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element, and magneto-resistance effect element
US20100323104A1 (en) * 2006-07-07 2010-12-23 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element
US20080008909A1 (en) * 2006-07-07 2008-01-10 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element, and magneto-resistance effect element
US7810228B2 (en) 2006-07-07 2010-10-12 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element
US20080013218A1 (en) * 2006-07-11 2008-01-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element, magnetic head, magnetic reproducing apparatus, and manufacturing method thereof
US7948717B2 (en) 2006-09-08 2011-05-24 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US8331062B2 (en) 2006-09-28 2012-12-11 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US20080204943A1 (en) * 2006-09-28 2008-08-28 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetic memory, magnetic head, and magnetic recording/reproducing device
US8184410B2 (en) 2006-09-28 2012-05-22 Kabushiki Kaisha Toshiba Magnetoresistive element having free layer magnetic compound expressed by M1M2O
US8351164B2 (en) 2006-09-28 2013-01-08 Kabushiki Kaisha Toshiba Magnetoresistive element having free and/or pinned layer magnetic compound expressed by M1M2O
US20080080098A1 (en) * 2006-09-28 2008-04-03 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
US8054588B2 (en) 2006-12-28 2011-11-08 Alps Electric Co., Ltd. Tunneling magnetoresistive element including multilayer free magnetic layer having inserted nonmagnetic metal sublayer
US20110129690A1 (en) * 2006-12-28 2011-06-02 Alps Electric Co., Ltd. Tunneling magnetoresistive element including multilayer free magnetic layer having inserted nonmagnetic metal sublayer
US20080261082A1 (en) * 2006-12-28 2008-10-23 Kazumasa Nishimura Tunneling magnetoresistive element including multilayer free magnetic layer having inserted nonmagnetic metal sublayer
US8031443B2 (en) 2007-03-27 2011-10-04 Kabushiki Kaisha Toshiba Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and method for manufacturing a magneto-resistance effect element
US8111488B2 (en) 2007-06-13 2012-02-07 Kabushiki Kaisha Toshiba Magnetic multilayered film current element
US20080311431A1 (en) * 2007-06-13 2008-12-18 Kabushiki Kaisha Toshiba Magnetic multilayered film current element
US7855859B2 (en) 2007-12-27 2010-12-21 Tdk Corporation Magnetoresistive element and magnetic head
US20090190264A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US20090190262A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US8184408B2 (en) 2008-01-30 2012-05-22 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US8228643B2 (en) 2008-09-26 2012-07-24 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100091414A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US8315020B2 (en) 2008-09-26 2012-11-20 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100091412A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100092803A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US20100091415A1 (en) * 2008-09-26 2010-04-15 Kabushiki Kaisha Toshiba Method for manufacturing a magneto-resistance effect element and magnetic recording and reproducing apparatus
US8274765B2 (en) 2008-09-29 2012-09-25 Kabushiki Kaisha Toshiba Method of manufacturing magnetoresistive element, magnetoresistive element, magnetic head assembly and magnetic recording apparatus
EP2323252A1 (en) * 2009-11-06 2011-05-18 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Magneto-resistive radio-frequency oscillator
US20110109397A1 (en) * 2009-11-06 2011-05-12 Commissariat A I'energie Atomique Et Aux Energies Alternatives Radiofrequency oscillator
US20110204886A1 (en) * 2010-02-23 2011-08-25 Tdk Corporation Magnetic sensor, magnetic detector, and magnetic head
US8872514B2 (en) * 2010-02-23 2014-10-28 Tdk Corporation Magnetic sensor, magnetic detector, and magnetic head
US8659855B2 (en) 2010-03-19 2014-02-25 Seagate Technology Llc Trilayer reader with current constraint at the ABS
US20110228428A1 (en) * 2010-03-19 2011-09-22 Seagate Technology Llc Trilayer reader with current constraint at the abs
US8755154B2 (en) 2011-09-13 2014-06-17 Seagate Technology Llc Tuned angled uniaxial anisotropy in trilayer magnetic sensors
US8749924B2 (en) 2011-09-13 2014-06-10 Seagate Technology Llc Tuned shunt ratio for magnetic sensors
US8780508B2 (en) 2012-06-29 2014-07-15 Seagate Technology Llc Magnetic element with biased side shield lamination
US8837092B2 (en) 2012-06-29 2014-09-16 Seagate Technology Llc Magnetic element with biasing structure distal the air bearing surface
US9001474B2 (en) 2012-06-29 2015-04-07 Seagate Technology Llc Magnetic element with biasing structure distal the air bearing surface
US20150129946A1 (en) * 2013-11-13 2015-05-14 International Business Machines Corporation Self reference thermally assisted mram with low moment ferromagnet storage layer
US20160240773A1 (en) * 2013-11-13 2016-08-18 International Business Machines Coporation Self reference thermally assisted mram with low moment ferromagnet storage layer
US20200090718A1 (en) * 2018-09-13 2020-03-19 Kabushiki Kaisha Toshiba Magnetic memory device
US10902900B2 (en) * 2018-09-13 2021-01-26 Kabushiki Kaisha Toshiba Magnetic memory device
CN112885960A (en) * 2019-11-29 2021-06-01 浙江驰拓科技有限公司 MTJ device
CN113763994A (en) * 2020-06-01 2021-12-07 株式会社东芝 Magnetic head and magnetic recording apparatus
US11443762B2 (en) 2020-06-01 2022-09-13 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording device including a stacked body having a first magnetic member and a second magnetic member
US11705152B2 (en) 2020-06-01 2023-07-18 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording device including a stacked body having a first magnetic member and a second magnetic member
CN114550754A (en) * 2020-11-19 2022-05-27 株式会社东芝 Magnetic head and magnetic recording apparatus
US11495250B2 (en) 2020-11-19 2022-11-08 Kabushiki Kaisha Toshiba Magnetic recording device including a magnetic head including a stacked body between magnetic poles

Also Published As

Publication number Publication date
US20050052788A1 (en) 2005-03-10
US20080158737A1 (en) 2008-07-03
US20080088981A1 (en) 2008-04-17
US7483245B2 (en) 2009-01-27
US7542248B2 (en) 2009-06-02
JP2002092826A (en) 2002-03-29
US7359162B2 (en) 2008-04-15
JP3618654B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US7359162B2 (en) Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
JP4942445B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
EP0611033B1 (en) A magnetoresistive spin valve sensor and magnetic storage system incorporating such a sensor
JP2592216B2 (en) Dual spin valve magnetoresistive sensor
JP2786601B2 (en) Magnetoresistive spin valve sensor and magnetic recording system using this sensor
US8514525B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reference layer integrated in magnetic shield
US7116530B2 (en) Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting
JP3657916B2 (en) Magnetoresistive head and perpendicular magnetic recording / reproducing apparatus
US20020048128A1 (en) Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US7719799B2 (en) Magnetoresistive element, magnetic head and magnetic recording/reproducing apparatus
CN114730569A (en) Two-dimensional magnetic recording (TDMR) read head structure with different stack sensors and disk drive incorporating the same
JP2004538591A (en) GMR magnetic transducer with nano-oxide exchange-coupled free layer
US6456469B1 (en) Buffer layer of a spin valve structure
JP3618300B2 (en) Spin valve sensor and disk drive device
US7580231B2 (en) Magneto-resistive element having a free layer provided with a ternary alloy layer
JP2001177163A (en) Magnetic conversion element and thin film magnetic head
US7510787B2 (en) Magneto-resistance effect element and thin-film magnetic head
KR20040076633A (en) Magnetoresistive head and magnetic recording-reproducing apparatus
US8295015B2 (en) Magnetoresistive element, thin film magnetic head, magnetic head slider, head gimbal assembly, head arm assembly and magnetic disk device
JP4181095B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
US7787220B2 (en) Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
US20090086384A1 (en) Magneto-resistance effect element including ferromagnetic layer having granular structure
JP2000182224A (en) Spin valve reading sensor having high heat stability and its manufacture

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAMIGUCHI, YUUZO;YUASA, HIROMI;NAGATA, TOMOHIKO;AND OTHERS;REEL/FRAME:012297/0512

Effective date: 20011019

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION