US20020032463A1 - Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue - Google Patents

Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue Download PDF

Info

Publication number
US20020032463A1
US20020032463A1 US09/283,535 US28353599A US2002032463A1 US 20020032463 A1 US20020032463 A1 US 20020032463A1 US 28353599 A US28353599 A US 28353599A US 2002032463 A1 US2002032463 A1 US 2002032463A1
Authority
US
United States
Prior art keywords
material according
poly
polymer
peg
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/283,535
Other versions
US6458147B1 (en
Inventor
Gregory M. Cruise
Olexander Hnojewyj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NeoMend Inc
Original Assignee
NeoMend Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/188,083 external-priority patent/US6371975B2/en
Application filed by NeoMend Inc filed Critical NeoMend Inc
Priority to US09/283,535 priority Critical patent/US6458147B1/en
Priority to EP99942511A priority patent/EP1107813B1/en
Priority to AU55870/99A priority patent/AU759991B2/en
Priority to DE69931170T priority patent/DE69931170T2/en
Priority to AT99942511T priority patent/ATE324831T1/en
Priority to CA002340648A priority patent/CA2340648A1/en
Priority to JP2000571017A priority patent/JP4860817B2/en
Priority to CA002435050A priority patent/CA2435050A1/en
Priority to PCT/US1999/019561 priority patent/WO2000012018A1/en
Assigned to ADVANCED CLOSURE SYSTEMS reassignment ADVANCED CLOSURE SYSTEMS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUISE, GREGORY M., HNOJEWY, OLEXANDER
Priority to US09/520,856 priority patent/US6899889B1/en
Priority to US09/780,014 priority patent/US6830756B2/en
Priority to US09/780,843 priority patent/US6949114B2/en
Publication of US20020032463A1 publication Critical patent/US20020032463A1/en
Assigned to NEOMEND, INC. reassignment NEOMEND, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED CLOSURE SYSTEMS, INC.
Priority to US10/141,510 priority patent/US7279001B2/en
Priority to US10/212,472 priority patent/US7351249B2/en
Application granted granted Critical
Publication of US6458147B1 publication Critical patent/US6458147B1/en
Priority to US10/972,259 priority patent/US7318933B2/en
Priority to US11/002,837 priority patent/US7247314B2/en
Priority to US11/716,266 priority patent/US8802146B2/en
Priority to US11/880,552 priority patent/US20080175817A1/en
Priority to US11/973,526 priority patent/US20080038313A1/en
Priority to US12/004,964 priority patent/US8034367B2/en
Priority to US12/079,049 priority patent/US8409249B2/en
Priority to US12/455,561 priority patent/US8409605B2/en
Priority to US12/641,171 priority patent/US8642085B2/en
Priority to US12/641,215 priority patent/US8383144B2/en
Priority to JP2011009210A priority patent/JP2011120927A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4233Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using plates with holes, the holes being displaced from one plate to the next one to force the flow to make a bending movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/501Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use
    • B01F33/5011Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use portable during use, e.g. hand-held
    • B01F33/50112Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use portable during use, e.g. hand-held of the syringe or cartridge type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3415Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • A61B2017/00495Surgical glue applicators for two-component glue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • A61B2017/005Surgical glue applicators hardenable using external energy source, e.g. laser, ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00637Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/0065Type of implements the implement being an adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3492Means for supporting the trocar against the body or retaining the trocar inside the body against the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • the invention generally relates systems and methods for arresting or controlling the bleeding or leakage of fluid in body tissues, e.g., diffuse organ bleeding, lung punctures, anastomotic leakage, and the like.
  • Hemostatic barriers are routinely called upon to control bleeding.
  • the bleeding may be caused by trauma, e.g. splenic, kidney, and liver lacerations, or may be caused during surgery, e.g. tumor removal or bone bleeding.
  • Bleeding is conventionally controlled by the application of solid sheets of material, e.g. gauze, GelfoamTM material, or SurgicelTM material. These materials can be soaked with a hemostatic agent, such as thrombin or epinephrine, or sprayable formulations such as fibrin glue.
  • a hemostatic agent such as thrombin or epinephrine
  • sprayable formulations such as fibrin glue.
  • hemostatic agents can include coagulation factors (e.g. thrombin), platelet activators (e.g. collagen), vasoconstrictors (epinephrine), or fibrinolytic inhibitors.
  • coagulation factors e.g. thrombin
  • platelet activators e.g. collagen
  • vasoconstrictors epinephrine
  • fibrinolytic inhibitors e.g. fibrinolytic inhibitors.
  • bovine collagen and bovine thrombin to cause the desired clotting action.
  • bovine spongiform encephalopathy also called “Mad Cow Disease”.
  • bovine thrombin marketed today is relatively impure, and these impurities can lead to complications in certain patient populations.
  • fibrin glue generally composed of purified fibrinogen and thrombin from pooled human blood, has safety and efficacy concerns as well.
  • many products do not achieve hemostasis in a clinically acceptable period, particularly in cases of brisk bleeding.
  • surgical sealants are also commonly used to control bleeding or fluid leakage along anastomoses formed by suture or staple lines, e.g., between blood vessels, bowel, or lung tissue.
  • fibrin glue can be utilized to seal an anastomosis. Still, fibrin glue's lack of adhesion to moist tissue, safety concerns, and cost precludes its widespread use as a surgical sealant for blood vessel anastomoses.
  • the invention provides compositions, instruments, systems, and methods, which arrest or control bleeding or leakage of fluid in body tissue.
  • a biocompatible and biodegradable material which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests the flow of blood or fluid from body tissue.
  • a biocompatible and biodegradable material which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests organ diffuse bleeding.
  • a biocompatible and biodegradable material which comprises a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, which, when mixed by instruments, systems, and methods that embody the invention, form a mechanical non-liquid covering structure that arrests the flow of blood or seals tissue.
  • FIG. 1 is a plan view of a system for arresting or controlling bleeding or leakage of fluid in body tissue, showing the components of the system prepackaged in sterile kits;
  • FIG. 2 is a diagrammatic view of a compromised tissue region, upon which a covering structure that embodies the features of the invention has been dispersed to arrest or control bleeding;
  • FIG. 3 is a side view of the covering structure shown in FIG. 2, taken generally along line 3 - 3 in FIG. 2;
  • FIG. 4 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached mixing spray head to disperse the solutions to form the covering structure shown in FIGS. 2 and 3;
  • FIG. 5 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached cannula to disperse the solutions to form the covering structure shown in FIGS. 2 and 3;
  • FIG. 6A is an exploded, perspective view of the kit shown in FIG. 1 that contains the liquid and solid components and syringe dispensers for the covering structure;
  • FIG. 6B is an exploded, perspective view of the kit shown in FIG. 1 that contains the introducer/mixer shown in FIGS. 4 and 5, which receives the syringes shown in FIG. 6A during use;
  • FIGS. 7A, 7B, and 7 C illustrate use of the system shown in FIG. 1 to control or arrest diffuse organ bleeding
  • FIGS. 8A, 8B, and 8 C demonstrate use of the system shown in FIG. 1 to seal a puncture site in a lung
  • FIGS. 9A, 9B, and 9 C illustrate use of the system shown in FIG. 1 to control or arrest bleeding through an anastomosis
  • FIGS. 10A to 10 D are perspective views showing the manipulation of syringes contained in the kit shown in FIG. 6A, to create a liquid PEG solution for use with the system shown in FIG. 1.
  • FIG. 1 shows a system 10 of functional instruments for arresting or controlling the loss of blood or other fluids in body tissue.
  • the instruments of the system 10 are brought to a compromised tissue region (shown as an incision INC in FIGS. 2 and 3), where bleeding or loss of another body fluid is occurring, e.g., due to diffuse bleeding or anastomosis.
  • the parts of the system 10 are manipulated by a physician or medical support personnel to create a liquid material, which is immediately dispersed as a spray directly onto the surface of the compromised tissue region.
  • the liquid material transforms as it is being dispersed as a result of cross-linking into an in situ-formed non-liquid covering structure.
  • the covering structure intimately adheres and conforms to the surface the compromised tissue region, as FIG. 3 best shows.
  • the presence of the covering structure mechanically arrests or blocks further blood or fluid loss from the compromised tissue region, without need for a hemostatic agent.
  • the covering structure exists long enough to prevent blood or fluid leakage while the compromised tissue region heals by natural processes.
  • the covering structure is, over time, degraded by hydrolysis by in the host body and cleared by the kidneys from the blood stream and removed in the urine.
  • the system 10 is consolidated in two functional kits 12 and 14 .
  • the kit 12 houses the component assembly 18 , which contains the formative components from which the covering structure is created.
  • the kit 12 holds the components in an unmixed condition until the instant of use.
  • the kit 14 contains a dispersing assembly 16 .
  • the dispersing assembly 16 brings the components in the assembly 18 , while in liquid form, into intimate mixing contact. At the same time, the assembly 16 disperses the liquid mixture onto the surface of the compromised tissue region, to ultimately form the in situ covering structure.
  • the covering structure comprises a material that is chemically cross-linked, to form a non-liquid mechanical matrix or barrier.
  • the material of the covering structure is a protein/polymer composite hydrogel.
  • the material is most preferably formed from the mixture of a protein solution and a solution of an electrophilic derivative of a hydrophilic polymer with a functionality of at least three.
  • the material is nontoxic, biodegradable, and possesses mechanical properties such as cohesive strength, adhesive strength, and elasticity sufficient to block or arrest diffuse organ bleeding, or to block or arrest seepage as a result of anastomosis, or to seal lung punctures.
  • the material also permits the rate of cross-linking and gelation to be controlled through buffer selection and concentration.
  • the rate of degradation after cross-linking can be controlled through the selection of a degradation control region.
  • the component assembly 18 includes first and second dispensing syringes 60 and 62 , in which the formative components of the covering structure are stored prior to use.
  • the first dispensing syringe 60 contains a concentration of buffered protein solution 100 .
  • the protein solution is supplemented with the appropriate buffers, sterile filtered, aseptically filled into the syringe 60 , and the syringe 60 is capped for storage prior to use.
  • Suitable proteins for incorporation into material include non-immunogenic, hydrophilic proteins. Examples include solutions of albumin, gelatin, antibodies, serum proteins, serum fractions, and serum. Also, water soluble derivatives of hydrophobic proteins can also be used. Examples include collagen, fibrinogen, elastin, chitosan, and hyaluronic acid.
  • the protein can be produced from naturally occurring source or it may be recombinantly produced.
  • the preferred protein solution is 25% human serum albumin, USP. Human serum albumin is preferred due to its biocompatibility and its ready availability.
  • Buffer selection and concentration maintains the pH of the reactive mixture. Buffers that are well tolerated physiologically can be used. Examples include carbonate and phosphate buffer systems. Care should be taken to select buffers that do not participate in or interfere with the cross-linking reaction.
  • the preferred range of buffer concentration is from about 0.03 M to about 0.4 M, and the preferred range of pH is from about 7.0 to about 10.0.
  • a preferred buffer system for the covering structure is carbonate buffer at a concentration of 0.315 M at a pH value of about 9 to about 10. As will be described later, there is a relationship between pH and the time for cross-linking (also called “gelation”).
  • the second dispensing syringe 62 contains an inert, electrophilic, water soluble polymer 102 .
  • the polymer cross-links the protein to form an inert, three dimensional mechanical network or matrix.
  • the matrix forms the mechanical covering structure.
  • the covering structure adheres and conforms to the surface of the tissue region on which it is dispensed.
  • the covering structure is, over time, resorbed.
  • the polymer 102 comprises a hydrophilic, biocompatible polymer, which is electrophilically derivatized with a functionality of at least three.
  • a number of polymers could be utilized, including poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(ethyloxazoline), and poly(ethylene glycol)-co-poly(propylene glycol) block copolymers.
  • the polymer portion is not restricted to synthetic polymers as polysaccharides, carbohydrates, and proteins could also be electrophilically derivatized.
  • the polymer 102 is comprised of poly(ethylene glycol) (PEG) with a molecular weight between 1,000 and 30,000 g/mole, more preferably between 2,000 and 15,000 g/mole, and most preferably between 10,000 and 15,000 g/mole.
  • PEG poly(ethylene glycol)
  • the preferred polymer can be generally expressed as compounds of the formula:
  • DCR is a degradation control region.
  • the preferred polymer is a multi-armed structure
  • a linear polymer with a functionality of at least three can also be used.
  • the desired functionality of the PEG polymer for forming the covering structure can be expressed in terms of (i) how quickly the polymer cross-links the protein and transforms to a nonfluent gel state (i.e., the mechanical material) (a preferred gelation time is under three seconds), and (ii) the mechanical properties of the covering structure after gelation in terms of its liquid sealing characteristics, physical strength, resistance to fragmentation (i.e., brittleness), and bioresorption.
  • the optimization of both attributes (i) and (ii) is desirable.
  • the inventors have discovered that the utility of a given PEG polymer significantly increases when the functionality is increased to be greater than or equal to three.
  • the observed incremental increase in functionality occurs when the functionality is increased from two to three, and again when the functionality is increased from three to four. Further incremental increases are minimal when the functionality exceeds about four.
  • the polymer 102 is initially packaged prior to use in the second dispensing syringe 62 in an inert atmosphere (e.g., argon) in a stable, powder form.
  • the component assembly 18 includes a third syringe 104 , which contains sterile water 106 for dissolution of the powder polymer 102 just before mixing with the albumin component 100 .
  • a stopcock valve 108 is secured to the luer fitting 88 at the dispensing end of the second dispensing syringe 62 .
  • the dispensing end 110 of the water syringe 104 couples to the stopcock valve 108 , so that the water 106 can be mixed with the polymer 102 in the dispensing syringe 62 prior to use.
  • the rate of degradation is controlled by the selection of chemical moiety in the degradation control region DCG. If degradation is desired, a hydrolytically or enzymatically degradable moiety can be selected,
  • hydrolytically degradable moieties include saturated di-acids, unsaturated di-acids, poly(glycolic acid), poly(DL-lactic acid), poly(L-lactic acid), poly( ⁇ -caprolactone), poly( ⁇ -valerolactone), poly( ⁇ -butyrolactone), poly(amino acids), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), and poly(phosphoesters).
  • Examples of enzymatically degradable regions include Leu-Glyc-Pro-Ala (collagenase sensitive linkage) and Gly-Pro-Lys (plasmin sensitive linkage).
  • the preferred degradable control regions for degradable materials are ester containing linkages, as are present when succinic acid or glutaric acid are coupled to a PEG molecule.
  • the preferred degradable control regions for nondegradable materials are ether containing linkages. The material can also be created without the introduction of a degradation control region.
  • the cross-linking group is responsible for the cross-linking of the albumin, as well as the binding to the tissue substrate.
  • the cross-linking group can be selected to selectively react with sulfhydryl groups, selectively react with amines, or can be selected to react with sulfhydryl, primary amino, and secondary amino groups.
  • Cross-linking groups that react selectively with sulfhydryl groups include vinyl sulfone, N-ethyl maleimide, iodoacetamide, and orthopyridyl disulfide.
  • Cross-linking groups specific to amines include aldehydes.
  • Non-selective electrophilic cross-linking groups include active esters, epoxides, carbonylimidazole, nitrophenyl carbonates, tresylate, mesylate, tosylate, and isocyanate.
  • the preferred cross-linking group is an active ester, specifically an ester of N-hydroxysuccinimide.
  • the concentration of the cross-linking groups is preferably kept less than 5% of the total mass of the reactive solution, and more preferably about 1% or less.
  • the low concentration of the cross-linking group is also beneficial so that the amount of the leaving group is also minimized.
  • the cross-linking group portion comprising a N-hydroxysuccinimide ester has demonstrated ability to participate in the cross-linking reaction with albumin without presenting the risk of local or systemic immune responses in humans.
  • the polymer is comprised of a 4-arm PEG with a molecular weight of about 10,000 g/mole, the degradation control region is comprised of glutaric acid, and the cross-linking group is comprised of a N-hydroxysuccinimide ester.
  • a preferred polymer is poly(ethylene glycol) tetra-succinimidyl glutarate, which is available from Shearwater Polymers, Huntsville, Ala. The preferred polymer will, in shorthand, be called 4-PEG-SG.
  • the polymer is dissolved in water prior to use. Preferred concentrations of the polymer are from 5% to 35% w/w in water.
  • the solution of 4-PEG-SG mixes with 25% serum albumin to form a liquid solution that quickly cross-links to form a non-liquid, three dimensional network for the covering structure.
  • the rate of reaction can be controlled by the pH of the reactive solution.
  • An increase in temperature is not observed during formation of the covering structure network, due to the low concentration of reactive groups, which account for only about 1% of the total mass.
  • about 50 mg of a non-toxic leaving group is produced during the cross-linking reaction, which is a further desired result.
  • the resulting nonfluent material created by mixing 25% albumin and 4-PEG-SG is approximately 80% water, 13% albumin, and 7% PEG.
  • the material is well tolerated by the body, without invoking a severe foreign body response. Over a controlled period of time, the material is degraded via hydrolysis. Histological studies have shown a foreign body response consistent with a biodegradable material, such as VICRYLTM sutures. As the material is degraded. the tissue returns to a quiescent state. The molecules of the degraded material are cleared from the bloodstream by the kidneys and eliminated from the body in the urine. In a preferred embodiment of the invention, the material loses its physical strength during the first twenty days, and total resorption occurs in about 4 weeks.
  • Cross-linked covering structure networks were formed by the mixture of an 4-PEG-SG and albumin.
  • a solution of 4-PEG-SG was prepared by dissolving 0.40 g in 2.0 mL of water.
  • the albumin solution consisted 25% human serum alburmin, USP (Plasbumin-25, Bayer Corporation), as received.
  • Dispensing syringes containing 2.0 mL of the polymer solution and 2.0 mL of albumin solution were connected to the joiner 84 , to which a spray head was coupled.
  • the solutions were sprayed into a polystyrene weigh boat.
  • a cross-linked covering structure network formed at room temperature in about 90 seconds.
  • the rate of formation of the cross-linked covering structure network of 4-PEG-SG and albumin (i.e., gelation) can be controlled by the pH of the reactive solution.
  • the pH of the solution is increased, and conversely, to decrease the rate of cross-linking, the pH of the solution is decreased.
  • the pH of the solution is controlled by both the buffer strength and buffer pH.
  • Table 1 shows the effect of buffer strength on the rate of gelation of 17% w/w 4-PEG-SG in water for injection and 25% human serum albumin, USP at room temperature.
  • the rate of gelation can also be controlled by adjusting the pH of the buffer at a constant buffer concentration.
  • the buffer was placed in the solution of albumin.
  • the gelation time is the amount of time required for the formulation to transform from the liquid state to the cross-linked solid state.
  • the dispersing assembly 16 comprises a material introducer/mixer 22 .
  • the material introducer/mixer 22 receives the two dispensing syringes 60 and 62 .
  • the material introducer/mixer 22 allows the physician to uniformly dispense the two components in a liquid state from the dispensing syringes 60 and 62 .
  • the material introducer/mixer 22 also mixes the components while flowing in the liquid state from the dispensing syringes 60 and 62 .
  • the material introducer/mixer 22 includes syringe support 64 .
  • the support 64 includes side-by-side channels 66 (see FIG. 1, too).
  • the channel 66 accommodates in a snap-friction-fit the barrels of the syringes 60 and 62 .
  • the material introducer/mixer 22 also includes a syringe clip 68 .
  • the syringe clip 68 includes spaced apart walls 70 forming an interior race 72 .
  • the race 72 receives in a sliding friction fit the thumb rests 74 of the pistons 76 of the dispensing syringes 60 and 62 , in axial alignment with the syringe barrels carried by the syringe support 64 .
  • the syringe clip 68 mechanically links the syringe pistons 76 together for common advancement inside their respective syringe barrels.
  • the syringe support 64 includes opposed finger rests 80
  • the syringe clip 68 includes a thumb rest 82 .
  • the orientation of these rests 80 and 82 parallel the orientation of the finger rests and thumb rests of a single syringe. The physician is thereby able to hold and operate multiple syringes 60 and 62 in the same way as a single syringe.
  • the material introducer/mixer 22 also includes a joiner 84 .
  • the joiner 84 includes side by side female luer fittings 86 .
  • the female luer fittings 86 each receives the threaded male luer fitting 88 at the dispensing end of the dispensing syringes 60 and 62 .
  • the female luer fittings 86 are axially aligned with the barrels 78 of the dispensing syringes 60 and 62 carried in the syringe support 64 .
  • the physician is thereby able to quickly and conveniently ready the dispensing syringes 60 and 62 for use by securing the dispensing syringes to the joiner 84 , snap fitting the syringe barrels 78 into the syringe support 64 , and slide fitting the syringe thumb rests 74 into the clip 68 .
  • the joiner 84 includes interior channels 90 coupled to the female luer fittings 86 .
  • the channels 90 merge at a Y-junction into a single outlet port 92 .
  • the joiner 84 maintains two fluids dispensed by the syringes 60 and 62 separately until they leave the joiner 84 . This design minimizes plugging of the joiner 84 due to a mixing reaction between the two fluids.
  • the syringe clip 68 ensures even application of individual solutions through the joiner 84 .
  • the material introducer/mixer 22 further includes a mixing spray head 94 , which, in use, is coupled to the single outlet port 92 .
  • the kit 14 contains several interchangeable mixing spray heads 94 , in case one mixing spray head 94 becomes clogged during use.
  • the mixing spray head 94 may be variously constructed. It may, for example, comprise a spray head manufactured and sold by Hemaedics.
  • the material introducer/mixer 22 can include a cannula 152 , which, in use, can be coupled to the outlet port 92 instead of the mixing spray head (see FIG. 5).
  • the two components of the barrier material come into contact in the liquid state either in the mixing spray head 94 or the cannula 152 .
  • Atomization of the two components occurs as they are dispersed through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
  • Passage of the liquid components through the cannula 152 will channel-mix the materials. Either by atomization or channel mixing, the liquid components are sufficiently mixed to immediately initiate the cross-linking reaction.
  • the parts of the introducer/mixer 22 are made, e.g., by molding medical grade plastic materials, such as polycarbonate and acrylic.
  • each kit 12 and 14 includes an interior tray 112 made, e.g., from die cut cardboard, plastic sheet, or thermo-formed plastic material.
  • the component assembly 18 is carried by the tray 112 in the kit 12 (see FIG. 6A).
  • the dispersing assembly 16 is carried by the tray 112 in the kit 14 (see FIG. 6B).
  • the kit 14 includes an inner wrap 114 , which is peripherally sealed by heat or the like, to enclose the tray 112 from contact with the outside environment.
  • One end of the inner wrap 114 includes a conventional peel away seal 116 .
  • the seal 116 provides quick access to the tray 112 at the instant of use, which preferably occurs in a suitable sterile environment.
  • the kit 14 is further wrapped in an outer wrap 118 , which is also peripherally sealed by heat or the like, to enclose the interior tray 112 .
  • One end of the inner wrap 118 includes a conventional peel away seal 120 , to provide quick access to the interior tray 112 and its contents.
  • the outer wrap 118 and the inner wrap 114 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEKTM plastic material (available from DuPont). Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation.
  • a material that is permeable to ethylene oxide sterilization gas e.g., TYVEKTM plastic material (available from DuPont).
  • Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation.
  • kit 12 includes a polymer package 138 (which contains the prefilled powder polymer syringe 62 and water syringe 104 ) and an albumin package 140 (which contains the prefilled albumin syringe 64 ).
  • Each polymer package 138 and albumin package 140 includes an individual wrap 142 , which is peripherally sealed by heat or the like, to enclose package 138 and 140 from contact with the outside environment.
  • One end of the individual wrap 142 includes a conventional peel away seal 144 , to provide quick access to the contents of the packages 138 and 140 at the instant of use.
  • Polymer package 138 and albumin package 140 are further wrapped in an outer wrap 118 , which is also peripherally sealed by heat or the like.
  • One end of the outer wrap 118 includes a conventional peel away seal 148 , to provide quick access to the packages 138 and 140 .
  • the packages 138 and 140 and the tray 112 are further wrapped in container 146 for the user's convenience.
  • the wraps 142 and 118 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEKTM plastic material (available from DuPont).
  • the albumin package 140 is prepared, sterilized utilizing ethylene oxide gas, and placed into kit 14 .
  • the polymer package 138 is prepared, sterilized utilizing electron beam irradiation, and place into kit 14 .
  • each kit 12 and 14 also preferably includes directions 122 for using the contents of the kit to carry out a desired procedure.
  • the directions 122 can, of course vary, according to the particularities of the desired procedure. Furthermore, the directions 122 need not be physically present in the kits 12 and 14 .
  • the directions 122 can be embodied in separate instruction manuals, or in video or audio tapes.
  • exemplary directions 122 are described, which instruct the physician how to use of the system 10 to arrest diffuse bleeding of an injured or compromised body organ.
  • diffuse bleeding is shown to occur diagrammatically through an incision in the organ.
  • the system 10 is applicable for use to control or arrest diffuse bleeding in diverse types of organs, e.g., the liver, spleen, kidney, or bone.
  • the cause of diffuse bleeding that the system 10 controls or arrests can also vary.
  • the diffuse bleeding can occur as a result of trauma or accidental injury.
  • the diffuse bleeding can also occur during normal surgical intervention, e.g., by organ resection, or tumor excision, or (in the case of bone) by sternotomy, orthopedic procedure, or craniotomy.
  • the diffuse bleeding can also occur through needle tracks formed during tissue biopsy, or by capillary bed bleeding, as a result of saphenous vein harvesting, adhesiolysis, or tumor removal. It should be appreciated that the effectiveness of the system 10 does not depend upon where the diffuse bleeding is occuring or its underlying cause.
  • the outer wrap 118 of the kits 12 and 14 are removed.
  • the trays 112 still contained in the inner wraps 118 , are placed in the sterile operating field.
  • the physician opens the inner wrap 118 of the kit 12 to gain access the first, second, and third syringes 60 , 62 , and 104 .
  • the directions 122 for use instruct the physician to remove from the kit tray 112 the second dispensing syringe 62 , which contains, in sterile powder form, a predetermined amount of the polymer 102 (e.g., about 0.3 to 0.5 g).
  • the directions 122 also instruct the physician to remove from the kit 12 the third syringe 104 , which contains sterile water 106 (e.g., about 2 cc). Both are contained in the polymer package 138 .
  • the directions 122 instruct the physician to couple the dispensing end of the water syringe 104 to the stopcock valve 108 on the second dispensing syringe 62 .
  • the stopcock valve 108 is closed at this point.
  • the physician opens the stopcock valve 108 (see FIG. 10B) and transfers water from the water syringe 104 into the powder 100 in the second dispensing syringe 62 (see FIG. 10C).
  • the physician is instructed to repeatedly transfer the water and powder mixture between the two syringes 62 and 104 , to syringe-mix the powder and water until all solids are dissolved.
  • the syringe-mixing places the water soluble, polymer material into solution.
  • the syringe-mixing process generally takes about two minutes.
  • the physician After syringe mixing, the physician, following the directions 122 , transfers the PEG solution 136 (about 2 cc) into one of the syringes (which, in the illustrated embodiment, is the second syringe 62 ). The physician waits for bubbles to dissipate, which generally takes about an additional two minutes.
  • the physician now closes the stopcock valve 108 (as FIG. 10D shows).
  • the physician removes the stopcock valve 108 by unscrewing it from the luer fitting on the dispensing end of the second syringe 62 .
  • the PEG solution 136 is ready for use. Mixing of the PEG solution 136 should take place generally within one hour of use. If the PEG solution 136 remains unused over two hours after mixing, it should be discarded.
  • the directions 122 instruct the physician to remove from the second kit tray 112 the dispensing syringe 60 containing the albumin 100 .
  • the albumin 100 has been premixed in a buffered form to the desired concentration (e.g., 25%), then sterile filtered, and aseptically filled into the syringe 60 .
  • a closure cap normally closes the dispensing end inside the tray 112 .
  • the physician now, or at a previous time, opens the outer wrap 118 of the kit 14 to gain access to the material introducer/mixer 22 .
  • the directions 122 instruct the physician to remove the closure cap and screw the dispensing end of the first syringe 60 to the luer fitting 86 on the joiner 84 .
  • the physician is also instructed to screw the dispensing end of the second syringe 62 (now containing the mixed PEG solution 136 ) to the other luer fitting 86 on the joiner 84 .
  • the physician snaps the barrels 78 of the syringes 60 and 62 to the holder channels 66 .
  • the physician captures the thumb rests 74 of the two syringes 60 and 62 inside the race 72 of the syringe clip 68 .
  • the directions 122 instruct the physician to attach the joiner 84 to the mixing spray head 94 .
  • FIG. 7B shows, the physician is instructed to position the mixing spray head 94 in a close relationship with the exposed site of diffuse bleeding on the organ.
  • the physician applies manual pressure to the dispensing syringes 60 and 62 .
  • Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
  • Atomization of the liquid components occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
  • the mixed liquids initiate the cross-linking reaction as they are dispersed onto the organ surface.
  • the liquid material transforms by in situ cross-linking into a non-liquid structure covering the diffuse bleeding site.
  • the covering structure adheres and conforms to the organ surface, including entry into any incision, blunt penetration, or other surface irregularity from which the diffuse bleeding emanates. Due to speed of cross-linking and the physical properties of the covering structure, diffuse bleeding does not wash away or dilute the liquid material as it transforms into the covering structure.
  • the covering structure entraps diffused blood. Diffuse bleeding just as rapidly stops as the structure forms in situ, without need of any hemostatic agent.
  • the covering structure forms an in situ barrier against further bleeding on the surface of the organ.
  • the covering structure exists long enough to prevent further blood or fluid leakage while the compromised organ heals by natural processes.
  • a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
  • the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
  • a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
  • the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
  • a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
  • the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
  • the liver of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the liver. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure.
  • the exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 to control or arrest the leakage of air through a perforation or puncture in the lung caused, e.g., by trauma (see FIG. 8A).
  • the instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth.
  • the physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with lung puncture site.
  • the lung is deflated (see FIG. 8B).
  • the physician applies manual pressure to the dispensing syringes 60 and 62 (as FIG. 8B shows).
  • Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
  • Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
  • the mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue surrounding the the lung puncture site.
  • the liquid material transforms by in situ cross-linking into a non-liquid structure covering the puncture site (see FIG. 8C). Air leaks through the puncture site stop as the structure forms in situ. The covering structure exists long enough to prevent further air leaks, while the lung tissue heals by natural processes.
  • a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
  • the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
  • the lung of a euthanized, intubated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the lung. An air leak was confirmed by manually inflated the lung and listening for the hissing sound of air leaks. The lung was deflated and the surgical sealant, consisting of the polymer and albumin syringes, was applied using digital pressure.
  • the exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 as a surgical sealant along suture lines or about surgical staples, forming an anastomosis (see FIG. 9A).
  • the sutures or staples can be used, e.g., to join blood vessels, bowels, ureter, or bladder.
  • the sutures or staples can also be used in the course of neurosurgery or ear-nose-throat surgery.
  • the instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth.
  • the physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with the anastomosis (as FIG. 9B shows).
  • the physician applies manual pressure to the dispensing syringes 60 and 62 .
  • Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
  • Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
  • the mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue along the anastomosis (see FIG. 9B).
  • the liquid material transforms by in situ cross-linking into a non-liquid structure covering the anastomosis (see FIG. 9C). Blood or fluid seepage through the anastomosis stop as the structure forms in situ.
  • the covering structure exists long enough to prevent further blood or fluid leaks, while tissue along the anastomsis heals by natural processes.
  • compositions, systems, and methods described are applicable for use to control or arrest bleeding or fluid leaks in tissue throughout the body, including by way of example, the following surgical sites and indications:

Abstract

A biocompatible and biodegradable hydrogel compound, which is free of a hemostatic agent, is applied to arrest the flow of blood or fluid from body tissue. The compound preferably includes a protein comprising recombinant or natural serum albumin, which is mixed with a polymer that comprises poly(ethylene) glycol (PEG), and, most preferably, a multi-armed PEG polymer.

Description

    RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 09/188,083, filed Nov. 6, 1998 and entitled “Compositions, Systems, and Methods for Creating in Situ, Chemically Cross-linked, Mechanical Barriers.”[0001]
  • FIELD OF THE INVENTION
  • The invention generally relates systems and methods for arresting or controlling the bleeding or leakage of fluid in body tissues, e.g., diffuse organ bleeding, lung punctures, anastomotic leakage, and the like. [0002]
  • BACKGROUND OF THE INVENTION
  • Hemostatic barriers are routinely called upon to control bleeding. The bleeding may be caused by trauma, e.g. splenic, kidney, and liver lacerations, or may be caused during surgery, e.g. tumor removal or bone bleeding. [0003]
  • Bleeding is conventionally controlled by the application of solid sheets of material, e.g. gauze, Gelfoam™ material, or Surgicel™ material. These materials can be soaked with a hemostatic agent, such as thrombin or epinephrine, or sprayable formulations such as fibrin glue. [0004]
  • Conventional treatment modalities require the use of these hemostatic agents in conjunction with pressure to achieve hemostasis. The various hemostatic agents can include coagulation factors (e.g. thrombin), platelet activators (e.g. collagen), vasoconstrictors (epinephrine), or fibrinolytic inhibitors. [0005]
  • In some instances, conventional treatments achieve hemostasis in a clinically acceptable time. Still, there are a number of drawbacks. [0006]
  • For example, many treatment modalities consist of bovine collagen and bovine thrombin to cause the desired clotting action. These products have the potential for the transmission to humans of bovine spongiform encephalopathy (also called “Mad Cow Disease”). Regardless, the bovine thrombin marketed today is relatively impure, and these impurities can lead to complications in certain patient populations. Furthermore, fibrin glue, generally composed of purified fibrinogen and thrombin from pooled human blood, has safety and efficacy concerns as well. Additionally, many products do not achieve hemostasis in a clinically acceptable period, particularly in cases of brisk bleeding. [0007]
  • In addition to hemostatic agents, surgical sealants are also commonly used to control bleeding or fluid leakage along anastomoses formed by suture or staple lines, e.g., between blood vessels, bowel, or lung tissue. In cases of blood leakage, fibrin glue can be utilized to seal an anastomosis. Still, fibrin glue's lack of adhesion to moist tissue, safety concerns, and cost precludes its widespread use as a surgical sealant for blood vessel anastomoses. [0008]
  • Conventional hemostatic agents and surgical sealants for blood vessel anastomoses achieve hemostasis using the application of pressure and by activating the coagulation pathway of the blood. Yet, many of the surgeries where hemostatic barriers and surgical sealants are required also require the administration of anti-coagulation therapies, such as heparin. The hemostatic barrier or surgical sealant, which is promoting coagulation, is hindered by the effect of the heparin, which is preventing coagulation. [0009]
  • Despite conventional treatment modalities for hemostatic barriers and surgical sealants, there is a need for a biomaterial that safely, quickly, and reliably arrests or controls fluid leakage in body tissues through the application of pressure and without interaction with the patient's coagulation pathways. [0010]
  • SUMMARY OF THE INVENTION
  • The invention provides compositions, instruments, systems, and methods, which arrest or control bleeding or leakage of fluid in body tissue. [0011]
  • According to one aspect of the invention, a biocompatible and biodegradable material is provided which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests the flow of blood or fluid from body tissue. [0012]
  • According to another aspect of the invention, a biocompatible and biodegradable material is provided which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests organ diffuse bleeding. [0013]
  • According to another aspect of the invention, a biocompatible and biodegradable material is provided which comprises a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, which, when mixed by instruments, systems, and methods that embody the invention, form a mechanical non-liquid covering structure that arrests the flow of blood or seals tissue. [0014]
  • Features and advantages of the inventions are set forth in the following Description and Drawings, as well as in the appended claims.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a system for arresting or controlling bleeding or leakage of fluid in body tissue, showing the components of the system prepackaged in sterile kits; [0016]
  • FIG. 2 is a diagrammatic view of a compromised tissue region, upon which a covering structure that embodies the features of the invention has been dispersed to arrest or control bleeding; [0017]
  • FIG. 3 is a side view of the covering structure shown in FIG. 2, taken generally along line [0018] 3-3 in FIG. 2;
  • FIG. 4 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached mixing spray head to disperse the solutions to form the covering structure shown in FIGS. 2 and 3; [0019]
  • FIG. 5 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached cannula to disperse the solutions to form the covering structure shown in FIGS. [0020] 2 and 3;
  • FIG. 6A is an exploded, perspective view of the kit shown in FIG. 1 that contains the liquid and solid components and syringe dispensers for the covering structure; [0021]
  • FIG. 6B is an exploded, perspective view of the kit shown in FIG. 1 that contains the introducer/mixer shown in FIGS. 4 and 5, which receives the syringes shown in FIG. 6A during use; [0022]
  • FIGS. 7A, 7B, and [0023] 7C illustrate use of the system shown in FIG. 1 to control or arrest diffuse organ bleeding;
  • FIGS. 8A, 8B, and [0024] 8C demonstrate use of the system shown in FIG. 1 to seal a puncture site in a lung;
  • FIGS. 9A, 9B, and [0025] 9C illustrate use of the system shown in FIG. 1 to control or arrest bleeding through an anastomosis; and
  • FIGS. 10A to [0026] 10D are perspective views showing the manipulation of syringes contained in the kit shown in FIG. 6A, to create a liquid PEG solution for use with the system shown in FIG. 1.
  • The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.[0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a [0028] system 10 of functional instruments for arresting or controlling the loss of blood or other fluids in body tissue.
  • During use, the instruments of the [0029] system 10 are brought to a compromised tissue region (shown as an incision INC in FIGS. 2 and 3), where bleeding or loss of another body fluid is occurring, e.g., due to diffuse bleeding or anastomosis. The parts of the system 10 are manipulated by a physician or medical support personnel to create a liquid material, which is immediately dispersed as a spray directly onto the surface of the compromised tissue region. The liquid material transforms as it is being dispersed as a result of cross-linking into an in situ-formed non-liquid covering structure. The covering structure intimately adheres and conforms to the surface the compromised tissue region, as FIG. 3 best shows.
  • Due to the physical characteristics of the covering structure and the speed at which it forms in situ, the presence of the covering structure mechanically arrests or blocks further blood or fluid loss from the compromised tissue region, without need for a hemostatic agent. The covering structure exists long enough to prevent blood or fluid leakage while the compromised tissue region heals by natural processes. The covering structure is, over time, degraded by hydrolysis by in the host body and cleared by the kidneys from the blood stream and removed in the urine. [0030]
  • In the illustrated embodiment (see FIG. 1), the [0031] system 10 is consolidated in two functional kits 12 and 14.
  • The [0032] kit 12 houses the component assembly 18, which contains the formative components from which the covering structure is created. The kit 12 holds the components in an unmixed condition until the instant of use.
  • The [0033] kit 14 contains a dispersing assembly 16. The dispersing assembly 16 brings the components in the assembly 18, while in liquid form, into intimate mixing contact. At the same time, the assembly 16 disperses the liquid mixture onto the surface of the compromised tissue region, to ultimately form the in situ covering structure.
  • I. The Covering Structure [0034]
  • The covering structure comprises a material that is chemically cross-linked, to form a non-liquid mechanical matrix or barrier. [0035]
  • In a preferred embodiment, the material of the covering structure is a protein/polymer composite hydrogel. The material is most preferably formed from the mixture of a protein solution and a solution of an electrophilic derivative of a hydrophilic polymer with a functionality of at least three. The material is nontoxic, biodegradable, and possesses mechanical properties such as cohesive strength, adhesive strength, and elasticity sufficient to block or arrest diffuse organ bleeding, or to block or arrest seepage as a result of anastomosis, or to seal lung punctures. [0036]
  • The material also permits the rate of cross-linking and gelation to be controlled through buffer selection and concentration. The rate of degradation after cross-linking can be controlled through the selection of a degradation control region. [0037]
  • A. Material Components [0038]
  • In the illustrated embodiment (see FIG. 1), the [0039] component assembly 18 includes first and second dispensing syringes 60 and 62, in which the formative components of the covering structure are stored prior to use.
  • (i) Natural Plasma-based Protein The [0040] first dispensing syringe 60 contains a concentration of buffered protein solution 100. The protein solution is supplemented with the appropriate buffers, sterile filtered, aseptically filled into the syringe 60, and the syringe 60 is capped for storage prior to use.
  • Suitable proteins for incorporation into material include non-immunogenic, hydrophilic proteins. Examples include solutions of albumin, gelatin, antibodies, serum proteins, serum fractions, and serum. Also, water soluble derivatives of hydrophobic proteins can also be used. Examples include collagen, fibrinogen, elastin, chitosan, and hyaluronic acid. The protein can be produced from naturally occurring source or it may be recombinantly produced. [0041]
  • The preferred protein solution is 25% human serum albumin, USP. Human serum albumin is preferred due to its biocompatibility and its ready availability. [0042]
  • Buffer selection and concentration maintains the pH of the reactive mixture. Buffers that are well tolerated physiologically can be used. Examples include carbonate and phosphate buffer systems. Care should be taken to select buffers that do not participate in or interfere with the cross-linking reaction. The preferred range of buffer concentration is from about 0.03 M to about 0.4 M, and the preferred range of pH is from about 7.0 to about 10.0. A preferred buffer system for the covering structure is carbonate buffer at a concentration of 0.315 M at a pH value of about 9 to about 10. As will be described later, there is a relationship between pH and the time for cross-linking (also called “gelation”). [0043]
  • (ii) Electrophilic Water Soluble Polymer [0044]
  • In the illustrated embodiment (still referring principally to FIG. 1), the [0045] second dispensing syringe 62 contains an inert, electrophilic, water soluble polymer 102. The polymer cross-links the protein to form an inert, three dimensional mechanical network or matrix. The matrix forms the mechanical covering structure. The covering structure adheres and conforms to the surface of the tissue region on which it is dispensed. The covering structure is, over time, resorbed.
  • The [0046] polymer 102 comprises a hydrophilic, biocompatible polymer, which is electrophilically derivatized with a functionality of at least three. A number of polymers could be utilized, including poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(ethyloxazoline), and poly(ethylene glycol)-co-poly(propylene glycol) block copolymers. The polymer portion is not restricted to synthetic polymers as polysaccharides, carbohydrates, and proteins could also be electrophilically derivatized.
  • Preferably, the [0047] polymer 102 is comprised of poly(ethylene glycol) (PEG) with a molecular weight between 1,000 and 30,000 g/mole, more preferably between 2,000 and 15,000 g/mole, and most preferably between 10,000 and 15,000 g/mole. PEG has been demonstrated to be biocompatible and non-toxic in a variety of physiological applications.
  • The preferred polymer can be generally expressed as compounds of the formula: [0048]
  • PEG-(DCR-CG)n
  • where: [0049]
  • DCR is a degradation control region. [0050]
  • CG in a cross-linking group. [0051]
  • n≧3 [0052]
  • While the preferred polymer is a multi-armed structure, a linear polymer with a functionality of at least three can also be used. The desired functionality of the PEG polymer for forming the covering structure can be expressed in terms of (i) how quickly the polymer cross-links the protein and transforms to a nonfluent gel state (i.e., the mechanical material) (a preferred gelation time is under three seconds), and (ii) the mechanical properties of the covering structure after gelation in terms of its liquid sealing characteristics, physical strength, resistance to fragmentation (i.e., brittleness), and bioresorption. The optimization of both attributes (i) and (ii) is desirable. [0053]
  • The inventors have discovered that the utility of a given PEG polymer significantly increases when the functionality is increased to be greater than or equal to three. The observed incremental increase in functionality occurs when the functionality is increased from two to three, and again when the functionality is increased from three to four. Further incremental increases are minimal when the functionality exceeds about four. [0054]
  • The use of PEG polymers with functionality of greater than three provides a surprising advantage. When cross-linked with higher functionality PEG polymers, the concentration of albumin can be reduced to 25% and below. Past uses of difunctional PEG polymers require concentrations of albumin well above 25%, e.g. 35% to 45%. Use of lower concentrations of albumin results in superior sealing properties with reduced brittleness, facilitating reentry through the nonfluid material, without fragmentation. Additionally, 25% human serum albumin, USP is commercially available from several sources, however higher concentrations of USP albumin are not commercially available. By using commercially available materials, the dialysis and ultrafiltration of the albumin solution, as disclosed in the prior art, is eliminated, significantly reducing the cost and complexity of the preparation of the albumin solution. [0055]
  • In the illustrated embodiment, the [0056] polymer 102 is initially packaged prior to use in the second dispensing syringe 62 in an inert atmosphere (e.g., argon) in a stable, powder form. In this arrangement, the component assembly 18 includes a third syringe 104, which contains sterile water 106 for dissolution of the powder polymer 102 just before mixing with the albumin component 100.
  • In facilitating mixing, a [0057] stopcock valve 108 is secured to the luer fitting 88 at the dispensing end of the second dispensing syringe 62. The dispensing end 110 of the water syringe 104 couples to the stopcock valve 108, so that the water 106 can be mixed with the polymer 102 in the dispensing syringe 62 prior to use.
  • (a) Selection of the Degradation Control Region DCR [0058]
  • The rate of degradation is controlled by the selection of chemical moiety in the degradation control region DCG. If degradation is desired, a hydrolytically or enzymatically degradable moiety can be selected, [0059]
  • Examples of hydrolytically degradable moieties include saturated di-acids, unsaturated di-acids, poly(glycolic acid), poly(DL-lactic acid), poly(L-lactic acid), poly(ξ-caprolactone), poly(δ-valerolactone), poly(γ-butyrolactone), poly(amino acids), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), and poly(phosphoesters). [0060]
  • Examples of enzymatically degradable regions include Leu-Glyc-Pro-Ala (collagenase sensitive linkage) and Gly-Pro-Lys (plasmin sensitive linkage). [0061]
  • The preferred degradable control regions for degradable materials are ester containing linkages, as are present when succinic acid or glutaric acid are coupled to a PEG molecule. The preferred degradable control regions for nondegradable materials are ether containing linkages. The material can also be created without the introduction of a degradation control region. [0062]
  • (b) Selection of the Cross-linking Group CG [0063]
  • The cross-linking group is responsible for the cross-linking of the albumin, as well as the binding to the tissue substrate. The cross-linking group can be selected to selectively react with sulfhydryl groups, selectively react with amines, or can be selected to react with sulfhydryl, primary amino, and secondary amino groups. Cross-linking groups that react selectively with sulfhydryl groups include vinyl sulfone, N-ethyl maleimide, iodoacetamide, and orthopyridyl disulfide. Cross-linking groups specific to amines include aldehydes. Non-selective electrophilic cross-linking groups include active esters, epoxides, carbonylimidazole, nitrophenyl carbonates, tresylate, mesylate, tosylate, and isocyanate. The preferred cross-linking group is an active ester, specifically an ester of N-hydroxysuccinimide. [0064]
  • To minimize the liberation of heat during the cross-linking reaction, the concentration of the cross-linking groups is preferably kept less than 5% of the total mass of the reactive solution, and more preferably about 1% or less. The low concentration of the cross-linking group is also beneficial so that the amount of the leaving group is also minimized. In a preferred embodiment, the cross-linking group portion comprising a N-hydroxysuccinimide ester has demonstrated ability to participate in the cross-linking reaction with albumin without presenting the risk of local or systemic immune responses in humans. [0065]
  • (c) Preferred Multiple Arm PEG Polymer [0066]
  • In a preferred embodiment, the polymer is comprised of a 4-arm PEG with a molecular weight of about 10,000 g/mole, the degradation control region is comprised of glutaric acid, and the cross-linking group is comprised of a N-hydroxysuccinimide ester. Thus, a preferred polymer is poly(ethylene glycol) tetra-succinimidyl glutarate, which is available from Shearwater Polymers, Huntsville, Ala. The preferred polymer will, in shorthand, be called 4-PEG-SG. The polymer is dissolved in water prior to use. Preferred concentrations of the polymer are from 5% to 35% w/w in water. [0067]
  • The solution of 4-PEG-SG mixes with 25% serum albumin to form a liquid solution that quickly cross-links to form a non-liquid, three dimensional network for the covering structure. With these material formulations, it is possible to intimately mix the water soluble polymer with the albumin protein using, e.g., atomization, or static mixing, or in-line channel mixing. [0068]
  • As will be demonstrated later, the rate of reaction can be controlled by the pH of the reactive solution. An increase in temperature is not observed during formation of the covering structure network, due to the low concentration of reactive groups, which account for only about 1% of the total mass. In a typical clinical application, about 50 mg of a non-toxic leaving group is produced during the cross-linking reaction, which is a further desired result. [0069]
  • The resulting nonfluent material created by mixing 25% albumin and 4-PEG-SG is approximately 80% water, 13% albumin, and 7% PEG. The material is well tolerated by the body, without invoking a severe foreign body response. Over a controlled period of time, the material is degraded via hydrolysis. Histological studies have shown a foreign body response consistent with a biodegradable material, such as VICRYL™ sutures. As the material is degraded. the tissue returns to a quiescent state. The molecules of the degraded material are cleared from the bloodstream by the kidneys and eliminated from the body in the urine. In a preferred embodiment of the invention, the material loses its physical strength during the first twenty days, and total resorption occurs in about 4 weeks. [0070]
  • The following Examples demonstrate the superior features of the material of the invention. [0071]
  • EXAMPLE 1
  • Preparation of Cross-linked Networks [0072]
  • Cross-linked covering structure networks were formed by the mixture of an 4-PEG-SG and albumin. A solution of 4-PEG-SG was prepared by dissolving 0.40 g in 2.0 mL of water. The albumin solution consisted 25% human serum alburmin, USP (Plasbumin-25, Bayer Corporation), as received. [0073]
  • Dispensing syringes containing 2.0 mL of the polymer solution and 2.0 mL of albumin solution were connected to the [0074] joiner 84, to which a spray head was coupled. The solutions were sprayed into a polystyrene weigh boat. A cross-linked covering structure network formed at room temperature in about 90 seconds.
  • EXAMPLE 2
  • Control of the Rate of Gelation [0075]
  • The rate of formation of the cross-linked covering structure network of 4-PEG-SG and albumin (i.e., gelation) can be controlled by the pH of the reactive solution. To increase the rate of cross-linking, the pH of the solution is increased, and conversely, to decrease the rate of cross-linking, the pH of the solution is decreased. The pH of the solution is controlled by both the buffer strength and buffer pH. [0076]
  • Table 1 shows the effect of buffer strength on the rate of gelation of 17% w/w 4-PEG-SG in water for injection and 25% human serum albumin, USP at room temperature. The rate of gelation can also be controlled by adjusting the pH of the buffer at a constant buffer concentration. The buffer was placed in the solution of albumin. The gelation time is the amount of time required for the formulation to transform from the liquid state to the cross-linked solid state. [0077]
    TABLE 1
    Effect of Buffer Strength
    and Buffer pH on Gel
    Formation
    Buffer
    Concentration Buffer pH Gelation Time
    300 mM 9 <1 sec
    200 mM 9  5 sec
    100mM 9 10 sec
    50 mM 9 20 sec
    0 mM 7 90 sec
  • II. The Dispersing assembly [0078]
  • As FIG. 4 shows, the dispersing [0079] assembly 16 comprises a material introducer/mixer 22. The material introducer/mixer 22 receives the two dispensing syringes 60 and 62. The material introducer/mixer 22 allows the physician to uniformly dispense the two components in a liquid state from the dispensing syringes 60 and 62.
  • The material introducer/[0080] mixer 22 also mixes the components while flowing in the liquid state from the dispensing syringes 60 and 62.
  • To accomplish these functions (see FIG. 4), the material introducer/[0081] mixer 22 includes syringe support 64. The support 64 includes side-by-side channels 66 (see FIG. 1, too). The channel 66 accommodates in a snap-friction-fit the barrels of the syringes 60 and 62.
  • The material introducer/[0082] mixer 22 also includes a syringe clip 68. The syringe clip 68 includes spaced apart walls 70 forming an interior race 72. The race 72 receives in a sliding friction fit the thumb rests 74 of the pistons 76 of the dispensing syringes 60 and 62, in axial alignment with the syringe barrels carried by the syringe support 64. The syringe clip 68 mechanically links the syringe pistons 76 together for common advancement inside their respective syringe barrels.
  • To faciliate handling, the [0083] syringe support 64 includes opposed finger rests 80, and the syringe clip 68 includes a thumb rest 82. The orientation of these rests 80 and 82 parallel the orientation of the finger rests and thumb rests of a single syringe. The physician is thereby able to hold and operate multiple syringes 60 and 62 in the same way as a single syringe.
  • The material introducer/[0084] mixer 22 also includes a joiner 84. The joiner 84 includes side by side female luer fittings 86. The female luer fittings 86 each receives the threaded male luer fitting 88 at the dispensing end of the dispensing syringes 60 and 62. The female luer fittings 86 are axially aligned with the barrels 78 of the dispensing syringes 60 and 62 carried in the syringe support 64.
  • The physician is thereby able to quickly and conveniently ready the dispensing [0085] syringes 60 and 62 for use by securing the dispensing syringes to the joiner 84, snap fitting the syringe barrels 78 into the syringe support 64, and slide fitting the syringe thumb rests 74 into the clip 68.
  • The [0086] joiner 84 includes interior channels 90 coupled to the female luer fittings 86. The channels 90 merge at a Y-junction into a single outlet port 92. The joiner 84 maintains two fluids dispensed by the syringes 60 and 62 separately until they leave the joiner 84. This design minimizes plugging of the joiner 84 due to a mixing reaction between the two fluids. The syringe clip 68 ensures even application of individual solutions through the joiner 84.
  • The material introducer/[0087] mixer 22 further includes a mixing spray head 94, which, in use, is coupled to the single outlet port 92. In FIG. 1, the kit 14 contains several interchangeable mixing spray heads 94, in case one mixing spray head 94 becomes clogged during use.
  • The mixing [0088] spray head 94 may be variously constructed. It may, for example, comprise a spray head manufactured and sold by Hemaedics.
  • Alternatively, the material introducer/[0089] mixer 22 can include a cannula 152, which, in use, can be coupled to the outlet port 92 instead of the mixing spray head (see FIG. 5).
  • Expressed in tandem from the dispensing [0090] syringes 60 and 62, which are mechanically linked together by the joiner 84, support 64, and clip 68, the two components of the barrier material come into contact in the liquid state either in the mixing spray head 94 or the cannula 152. Atomization of the two components occurs as they are dispersed through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62. Passage of the liquid components through the cannula 152 will channel-mix the materials. Either by atomization or channel mixing, the liquid components are sufficiently mixed to immediately initiate the cross-linking reaction.
  • The parts of the introducer/[0091] mixer 22 are made, e.g., by molding medical grade plastic materials, such as polycarbonate and acrylic.
  • III. The Kits [0092]
  • As FIGS. 6A and 6B show, in the illustrated embodiment, each [0093] kit 12 and 14 includes an interior tray 112 made, e.g., from die cut cardboard, plastic sheet, or thermo-formed plastic material.
  • The [0094] component assembly 18 is carried by the tray 112 in the kit 12 (see FIG. 6A). The dispersing assembly 16 is carried by the tray 112 in the kit 14 (see FIG. 6B).
  • As shown in FIG. 6B, the [0095] kit 14 includes an inner wrap 114, which is peripherally sealed by heat or the like, to enclose the tray 112 from contact with the outside environment. One end of the inner wrap 114 includes a conventional peel away seal 116. The seal 116 provides quick access to the tray 112 at the instant of use, which preferably occurs in a suitable sterile environment.
  • The [0096] kit 14 is further wrapped in an outer wrap 118, which is also peripherally sealed by heat or the like, to enclose the interior tray 112. One end of the inner wrap 118 includes a conventional peel away seal 120, to provide quick access to the interior tray 112 and its contents.
  • The [0097] outer wrap 118 and the inner wrap 114 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEK™ plastic material (available from DuPont). Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation.
  • As shown in FIG. 6A, [0098] kit 12 includes a polymer package 138 (which contains the prefilled powder polymer syringe 62 and water syringe 104) and an albumin package 140 (which contains the prefilled albumin syringe 64). Each polymer package 138 and albumin package 140 includes an individual wrap 142, which is peripherally sealed by heat or the like, to enclose package 138 and 140 from contact with the outside environment. One end of the individual wrap 142 includes a conventional peel away seal 144, to provide quick access to the contents of the packages 138 and 140 at the instant of use.
  • [0099] Polymer package 138 and albumin package 140 are further wrapped in an outer wrap 118, which is also peripherally sealed by heat or the like. One end of the outer wrap 118 includes a conventional peel away seal 148, to provide quick access to the packages 138 and 140. After sterilization treatment, the packages 138 and 140 and the tray 112 are further wrapped in container 146 for the user's convenience.
  • The [0100] wraps 142 and 118 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEK™ plastic material (available from DuPont). The albumin package 140 is prepared, sterilized utilizing ethylene oxide gas, and placed into kit 14. The polymer package 138 is prepared, sterilized utilizing electron beam irradiation, and place into kit 14.
  • In the illustrated embodiment, each [0101] kit 12 and 14 also preferably includes directions 122 for using the contents of the kit to carry out a desired procedure. The directions 122 can, of course vary, according to the particularities of the desired procedure. Furthermore, the directions 122 need not be physically present in the kits 12 and 14. The directions 122 can be embodied in separate instruction manuals, or in video or audio tapes.
  • IV. Using the System [0102]
  • A. Controlling or Arresting Diffuse Organ Bleeding [0103]
  • In this embodiment, [0104] exemplary directions 122 are described, which instruct the physician how to use of the system 10 to arrest diffuse bleeding of an injured or compromised body organ. In the illustrated embodiment (see FIG. 7A), diffuse bleeding is shown to occur diagrammatically through an incision in the organ.
  • The [0105] system 10 is applicable for use to control or arrest diffuse bleeding in diverse types of organs, e.g., the liver, spleen, kidney, or bone. The cause of diffuse bleeding that the system 10 controls or arrests can also vary. The diffuse bleeding can occur as a result of trauma or accidental injury. The diffuse bleeding can also occur during normal surgical intervention, e.g., by organ resection, or tumor excision, or (in the case of bone) by sternotomy, orthopedic procedure, or craniotomy. The diffuse bleeding can also occur through needle tracks formed during tissue biopsy, or by capillary bed bleeding, as a result of saphenous vein harvesting, adhesiolysis, or tumor removal. It should be appreciated that the effectiveness of the system 10 does not depend upon where the diffuse bleeding is occuring or its underlying cause.
  • When use of the [0106] system 10 is desired, the outer wrap 118 of the kits 12 and 14 are removed. The trays 112, still contained in the inner wraps 118, are placed in the sterile operating field. The physician opens the inner wrap 118 of the kit 12 to gain access the first, second, and third syringes 60, 62, and 104.
  • The [0107] directions 122 for use instruct the physician to remove from the kit tray 112 the second dispensing syringe 62, which contains, in sterile powder form, a predetermined amount of the polymer 102 (e.g., about 0.3 to 0.5 g). The directions 122 also instruct the physician to remove from the kit 12 the third syringe 104, which contains sterile water 106 (e.g., about 2 cc). Both are contained in the polymer package 138.
  • As FIG. 10A shows, the [0108] directions 122 instruct the physician to couple the dispensing end of the water syringe 104 to the stopcock valve 108 on the second dispensing syringe 62. The stopcock valve 108 is closed at this point. As instructed by the directions 122, the physician opens the stopcock valve 108 (see FIG. 10B) and transfers water from the water syringe 104 into the powder 100 in the second dispensing syringe 62 (see FIG. 10C). The physician is instructed to repeatedly transfer the water and powder mixture between the two syringes 62 and 104, to syringe-mix the powder and water until all solids are dissolved. The syringe-mixing places the water soluble, polymer material into solution. The syringe-mixing process generally takes about two minutes.
  • After syringe mixing, the physician, following the [0109] directions 122, transfers the PEG solution 136 (about 2 cc) into one of the syringes (which, in the illustrated embodiment, is the second syringe 62). The physician waits for bubbles to dissipate, which generally takes about an additional two minutes.
  • According to the [0110] directions 122, the physician now closes the stopcock valve 108 (as FIG. 10D shows). The physician removes the stopcock valve 108 by unscrewing it from the luer fitting on the dispensing end of the second syringe 62. The PEG solution 136 is ready for use. Mixing of the PEG solution 136 should take place generally within one hour of use. If the PEG solution 136 remains unused over two hours after mixing, it should be discarded.
  • The [0111] directions 122 instruct the physician to remove from the second kit tray 112 the dispensing syringe 60 containing the albumin 100. As before described, the albumin 100 has been premixed in a buffered form to the desired concentration (e.g., 25%), then sterile filtered, and aseptically filled into the syringe 60. A closure cap normally closes the dispensing end inside the tray 112.
  • The physician now, or at a previous time, opens the [0112] outer wrap 118 of the kit 14 to gain access to the material introducer/mixer 22. The directions 122 instruct the physician to remove the closure cap and screw the dispensing end of the first syringe 60 to the luer fitting 86 on the joiner 84. The physician is also instructed to screw the dispensing end of the second syringe 62 (now containing the mixed PEG solution 136) to the other luer fitting 86 on the joiner 84.
  • Following the [0113] directions 122, the physician snaps the barrels 78 of the syringes 60 and 62 to the holder channels 66. The physician captures the thumb rests 74 of the two syringes 60 and 62 inside the race 72 of the syringe clip 68. The directions 122 instruct the physician to attach the joiner 84 to the mixing spray head 94.
  • As FIG. 7B shows, the physician is instructed to position the mixing [0114] spray head 94 in a close relationship with the exposed site of diffuse bleeding on the organ. The physician applies manual pressure to the dispensing syringes 60 and 62. Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94. Atomization of the liquid components occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62. The mixed liquids initiate the cross-linking reaction as they are dispersed onto the organ surface. Within seconds (as determined by the gel time), the liquid material transforms by in situ cross-linking into a non-liquid structure covering the diffuse bleeding site. As FIG. 7C shows, the covering structure adheres and conforms to the organ surface, including entry into any incision, blunt penetration, or other surface irregularity from which the diffuse bleeding emanates. Due to speed of cross-linking and the physical properties of the covering structure, diffuse bleeding does not wash away or dilute the liquid material as it transforms into the covering structure.
  • As cross linking rapidly occurs at the surface of the organ, the covering structure entraps diffused blood. Diffuse bleeding just as rapidly stops as the structure forms in situ, without need of any hemostatic agent. The covering structure forms an in situ barrier against further bleeding on the surface of the organ. The covering structure exists long enough to prevent further blood or fluid leakage while the compromised organ heals by natural processes. [0115]
  • EXAMPLE 3
  • Control of Bleeding from a Kidney Incision [0116]
  • A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.). [0117]
  • The kidney of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the kidney. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure. [0118]
  • As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding kidney, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the kidney, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel. [0119]
  • EXAMPLE 4
  • Control of Bleeding from a Spleen Incision [0120]
  • A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.). [0121]
  • The spleen of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the spleen. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure. [0122]
  • As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding spleen, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the spleen, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel. [0123]
  • EXAMPLE 5
  • Control of Bleeding from a Liver Incision [0124]
  • A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.). [0125]
  • The liver of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the liver. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure. [0126]
  • As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding liver, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the liver, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel. [0127]
  • B. controlling or Arresting Air Leaks From a Lung Incision [0128]
  • The [0129] exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 to control or arrest the leakage of air through a perforation or puncture in the lung caused, e.g., by trauma (see FIG. 8A).
  • In this embodiment, the [0130] instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth. The physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with lung puncture site. The lung is deflated (see FIG. 8B).
  • In the manner previously described, the physician applies manual pressure to the dispensing [0131] syringes 60 and 62 (as FIG. 8B shows). Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94. Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62. The mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue surrounding the the lung puncture site. Within seconds, the liquid material transforms by in situ cross-linking into a non-liquid structure covering the puncture site (see FIG. 8C). Air leaks through the puncture site stop as the structure forms in situ. The covering structure exists long enough to prevent further air leaks, while the lung tissue heals by natural processes.
  • EXAMPLE 5
  • Control of Air Leaks from a Lung Incision [0132]
  • A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.). [0133]
  • The lung of a euthanized, intubated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the lung. An air leak was confirmed by manually inflated the lung and listening for the hissing sound of air leaks. The lung was deflated and the surgical sealant, consisting of the polymer and albumin syringes, was applied using digital pressure. [0134]
  • As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the lung, the gelation of the solution occurred. The hydrogel was firmly adherent to the surface of the lung. After about 10 seconds, the lungs were manually inflated and examined for the presence of air leaks. The hydrogel remained firmly attached to the lung tissue, even during and after the expansion of the lungs. Air leaks were not present after the application of the hydrogel surgical sealant. The hydrogel showed sufficient adhesion, cohesion, and elasticity to seal air leaks of lung tissue. [0135]
  • C. Sealing Anastomosis [0136]
  • The [0137] exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 as a surgical sealant along suture lines or about surgical staples, forming an anastomosis (see FIG. 9A). The sutures or staples can be used, e.g., to join blood vessels, bowels, ureter, or bladder. The sutures or staples can also be used in the course of neurosurgery or ear-nose-throat surgery.
  • In this embodiment, the [0138] instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth. The physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with the anastomosis (as FIG. 9B shows).
  • In the manner previously described, the physician applies manual pressure to the dispensing [0139] syringes 60 and 62. Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94. Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62. The mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue along the anastomosis (see FIG. 9B). Within seconds, the liquid material transforms by in situ cross-linking into a non-liquid structure covering the anastomosis (see FIG. 9C). Blood or fluid seepage through the anastomosis stop as the structure forms in situ. The covering structure exists long enough to prevent further blood or fluid leaks, while tissue along the anastomsis heals by natural processes.
  • It should be appreciated that the compositions, systems, and methods described are applicable for use to control or arrest bleeding or fluid leaks in tissue throughout the body, including by way of example, the following surgical sites and indications: [0140]
  • (i) In general surgery, such as in the liver (resection, tumor excision or trauma); in the spleen (trauma or iatrogenic capsular avlsion; oncology in general (excision of tumors); or laporoscopic cholecystectomy (Lapchole) (to control bleeding from the gall bladder bed); [0141]
  • (ii) In vascular surgery, such as peripheral vascular procedures; anastomosis sites (carotid, femoral and popliteal arteries); or aneurysms; [0142]
  • (iii) In the head, such as craniotomy (to control bone bleeding from cut bone edges or bleeding from soft tissue); or superior sagittal sinus (to control bleeding from damage to thin wall sinus and access to sinus); [0143]
  • (iv) To treat arteriovenous malformation (AVM) (to control blood vessel bleeding from smaller vessels); [0144]
  • (v) To treat tumor complications, such as tumor bed bleeding or damage to soft tissue due to excisions; [0145]
  • (vi) To treat hematomas, such as in the control of bleeding in soft tissues and adjacent to vessels; [0146]
  • (vii) In orthopedic applications, such as laminectomy or discectomy, to control bone bleeding from the vertebrae; or spinal reconstruction and a fusion, to control epidural vessels and vertabral bleeders; or in hip and knee replacements, to control of bleeding in smooth muscle tissue, soft tissue; [0147]
  • (viii) In cardiovascular and thoracic surgery, such as control of anastomosis sites in coronary artery bypass graft (C.A.B.G.); aorta reconstruction and repair, to control bleeding in surrounding tissue; or chest cavity access through the sternum, to control bone bleeding or soft tissue bleeding; [0148]
  • (ix) In urology, such as retropubic prostatectomy, to control bleeding in soft tissue; or partial nephrectomy, to control parenchymal bleeding; in bladder substitution, uretero-intestinal anastomosis; urethral surgery; open urethral surgery; or vasovasostomy; [0149]
  • (x) In ear-neck-throat surgery, such as during clearing of the frontal, thmoid, sphenoid and maxillary sinuses; or in polyp removal; [0150]
  • (xi) In plastic and reconstructive surgery, such as face lifts, rhinoplasty, blepharplasty, or breast surgery; [0151]
  • (xii) In emergency procedures involving trauma, tissue fracture, or abrasions. [0152]
  • The features of the invention are set forth in the following claims. [0153]

Claims (76)

We claim:
1. A biocompatible and biodegradable material applied to arrest the flow of blood or fluid from body tissue comprising a hydrogel compound free of a hemostatic agent.
2. A material according to claim 1
wherein the hydrogel compound includes a protein.
3. A material according to claim 2
wherein the protein includes recombinant or natural serum albumin.
4. A material according to claim 1
wherein the compound includes a polymer.
5. A material according to claim 4
wherein the polymer includes poly(ethylene) glycol (PEG).
6. A material according to claim 5
wherein the PEG comprises a multi-armed polymer.
7. A biocompatible and biodegradable material applied to arrest diffuse bleeding comprising a hydrogel compound free of a hemostatic agent.
8. A material according to claim 7
wherein the hydrogel compound includes a protein.
9. A material according to claim 8
wherein the protein includes recombinant or natural serum albumin.
10. A material according to claim 7
wherein the compound includes a polymer.
11. A material according to claim 10
wherein the polymer includes poly(ethylene) glycol (PEG).
12. A material according to claim 11
wherein the PEG comprises a multi-armed polymer.
13. A biocompatible and biodegradable material applied to arrest the flow of blood or to seal tissue comprising a mixture of a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, wherein, upon mixing, the protein solution and the polymer solution cross-link to form a mechanical non-liquid covering structure.
14. A material according to claim 13, wherein the protein solution comprises a hydrophilic protein selected from a group consisting essentially of albumin, gelatin, antibodies, serum fractions, or serum.
15. A material according to claim 13, wherein the protein solution comprises a water soluble derivative of a hydrophobic protein selected from a group consisting essentially of collagen, fibrinogen, elastin, chitosan, or hyaluronic acid.
16. A material according to claim 13, wherein the protein solution comprises recombinant or natural human serum albumin.
17. A material according to claim 16, wherein the human serum albumin is at a concentration of about 25% or less.
18. A material according to claim 13, wherein the protein solution includes a buffer.
19. A material according to claim 18, wherein the buffer includes carbonate or phosphate.
20. A material according to claim 18, wherein the buffer has a concentration of about 0.3 M to about 0.4 M.
21. A material according to claim 20, wherein the buffer comprises carbonate at a concentration of about 0.3 M and a pH value of about 8 to about 10.
22. A material according to claim 13, wherein the protein solution has a pH value of between about 7 to about 10.
23. A material according to claim 22, wherein the pH value is about 8 to about 10.
24. A material according to claim 13, wherein the polymer is electrophilically derivatized.
25. A material according to claim 13, wherein the polymer solution includes a derivative of a polymer selected from a group consisting essentially of poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(ethyloxazoline), poly(ethylene glycol)-co-poly(propylene glycol) block copolymers, or electrophilically derivatized polysaccharides, carbohydrates, or proteins.
26. A material according to claim 13, wherein the polymer is comprised of poly(ethylene glycol)(PEG).
27. A material according to claim 26, wherein the PEG has a molecular weight of between about 1,000 and about 30,000 g/mole.
28. A material according to claim 27, wherein the PEG has a molecular weight of between about 2,000 and about 15,000 g/mole.
29. A material according to claim 27, wherein the PEG has a molecular weight of between about 10,000 and 15,000 g/mole.
30. A material according to claim 26, wherein the PEG comprises a multi-armed polymer structure.
31. A material according to claim 13, wherein the polymer comprises a compound of the formula PEG-(DCR-CG)n, where PEG is poly(ethylene glycol), DCR is a degradation control region, CG is a cross-linking group, and n is equal to or greater than three.
32. A material according to claim 31, wherein the compound comprises a multi-armed polymer structure.
33. A material according to claim 31, wherein the degradation control region (DCR) comprises a hydrolytically degradable moiety.
34. A material according to claim 33, wherein the hydrolytically degradable moiety includes saturated di-acids, unsaturated di-acids, poly(glycolic acid), poly(DL-lactic acid), poly(L-lactic acid), poly(ξ-caprolactone), poly(δ-valerolactone), poly(γ-butyrolactone), poly(amino acids), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), or poly(phosphoesters).
35. A material according to claim 31, wherein the degradation control region (DCR) comprises an enzymatically degradable region.
36. A barrier according to claim 35, wherein the enzymatically degradable region includes Leu-Glyc-Pro-Ala (collagenes sensitive linkage) or Gly-Pro-Lys (plasmin sensitive linkage).
37. A material according to claim 31, wherein the degradable control region (DGR) includes ester containing linkages.
38. A material according to claim 37, wherein the degradable control region (GCR) includes succinic acid or glutaric acid.
39. A material according to claim 31, wherein the cross-linking group (CG) includes an active ester.
40. A material according to claim 39, wherein the active ester includes an ester of N-hydroxysuccinimide.
41. A material according to claim 31, wherein the cross-linking group (CG) selectively reacts with sulfhydryl groups.
42. A material according to claim 41, wherein the cross-linking group (CG) includes vinyl sulfone, N-ethyl maleimide, iodoacetamide, or orthopyridyl disulfide.
43. A material according to claim 31, wherein the cross-linking group (CG) selectively reacts with amino groups.
44. A material according to claim 43, wherein the cross-linking group (CG) includes aldehydes.
45. A material according to claim 31, wherein the cross-linking group (CG) reacts with sulfhydryl, primary amino, and secondary amino groups.
46. A material according to claim 31, wherein the cross-linking group (CG) include active esters, epoxides, carbonylimidazole, nitrophenyl carbonates, tresylate, mesylate, tosylate, or isocyanate.
47. A material according to claim 31, wherein the cross-linking group (CG) is present in a concentration of less than about 5% of total mass of the compound.
48. A material according to claim 31, wherein the cross-linking group (CG) is present in a concentration of about 1% or less of total mass of the compound.
49. A material according to claim 31, wherein the PEG comprises a 4-arm PEG, the degradation control region comprises glutaric acid, and the cross-linking group includes a N-hydroxysuccinimide ester.
50. A material according to claim 47, wherein the 4-arm PEG has a molecular weight of about 10,000 g/mole.
51. A material according to claim 31, wherein the compound comprises poly(ethylene glycol) tetra-succinimidyl glutarate.
52. A material according to claim 31, wherein the compound comprises poly(ethylene glycol)tetra-succinimidyl succinate.
53. A material according to claim 49 or 51 or 52, wherein the protein solution includes recombinant or natural human serum albumin.
54. A material according to claim 53, wherein the human serum albumin is present in a concentration of about 25% or less.
55. A material according to claim 13, wherein the polymer solution includes poly(ethylene glycol)tetra-succinimidyl glutarate.
56. A material according to claim 55, wherein the polymer solution includes water.
57. A material according to claim 55, wherein the protein solution includes recombinant or natural human serum albumin.
58. A material according to claim 57, wherein the human serum albumin is present in a concentration of about 25% or less.
59. A material according to claim 13, wherein the polymer has a functionality of four.
60. A material according to claim 13, wherein the polymer solution includes poly(ethylene glycol)tetra-succinimidyl succinate.
61. A material according to claim 13, wherein the polymer solution has a concentration that ranged from about 5% to about 35% w/w.
62. A system to arrest the flow of blood or fluid from body tissue comprising
a first dispenser containing a first liquid component,
a second dispenser containing a second liquid component,
a mixer coupled to the first and second dispensers for mixing the first and second liquid components to form the material as defined in claim 1 or 7.
63. A system according to claim 62
wherein the mixer includes a spray head.
64. A system according to claim 62
wherein the mixer includes a cannula.
65. A system to arrest the flow of blood or to seal tissue comprising
a first dispenser containing a first liquid component comprising a protein solution,
a second dispenser containing a second liquid component comprising a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three,
a mixer coupled to the first and second dispensers for mixing the first and second liquid components, wherein, upon mixing, the protein solution and the polymer solution cross-link to form a mechanical non-liquid tissue covering structure.
66. A system according to claim 65
wherein the mixer includes a spray head.
67. A system according to claim 65
wherein the mixer includes a cannula.
68. A method for arresting the flow of blood or fluid from body tissue comprising the step of dispersing on the body tissue a biocompatible and biodegradable material comprising a hydrogel compound free of a hemostatic agent.
69. A method according to claim 68 wherein the dispersing step includes spraying the material on the body tissue.
70. A method according to claim 68 wherein the dispersing step includes flowing the material on the body tissue through a cannula.
71. A method for arresting diffuse bleeding comprising the step of dispersing on the body tissue a biocompatible and biodegradable material comprising a hydrogel compound free of a hemostatic agent.
72. A method according to claim 71 wherein the dispersing step includes spraying the material on the body tissue.
73. A method according to claim 71 wherein the dispersing step includes flowing the material on the body tissue through a cannula.
74. A method for arresting the flow of blood or to seal tissue comprising the step of dispersing on the body tissue a biocompatible and biodegradable material comprising a mixture of a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, wherein, upon mixing, the protein solution and the polymer solution cross-link to form a mechanical non-liquid covering structure.
75. A method according to claim 74 wherein the dispersing step includes spraying the mixture on the body tissue.
76. A method according to claim 68 wherein the dispersing step includes flowing the mixture on the body tissue through a cannula.
US09/283,535 1998-08-26 1999-04-01 Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue Expired - Lifetime US6458147B1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
US09/283,535 US6458147B1 (en) 1998-11-06 1999-04-01 Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
AU55870/99A AU759991B2 (en) 1998-08-26 1999-08-25 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
PCT/US1999/019561 WO2000012018A1 (en) 1998-08-26 1999-08-25 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
DE69931170T DE69931170T2 (en) 1998-08-26 1999-08-25 KIT FOR THE IN-SITU PRODUCTION OF CHEMICALLY-LINKED MECHANICAL BARRIER OR COVER STRUCTURES FOR A POINTER IN A BLOOD VESSEL
AT99942511T ATE324831T1 (en) 1998-08-26 1999-08-25 KIT FOR THE IN-SITU GENERATION OF CHEMICALLY BONDED MECHANICAL BARRIERS OR COVERING STRUCTURES FOR A PUNCTURE SITE IN A BLOOD VESSEL
CA002340648A CA2340648A1 (en) 1998-08-26 1999-08-25 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
JP2000571017A JP4860817B2 (en) 1998-08-26 1999-08-25 Compositions, systems and methods for in situ creation of chemically cross-linked mechanical barriers or coating structures
CA002435050A CA2435050A1 (en) 1998-11-06 1999-08-25 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
EP99942511A EP1107813B1 (en) 1998-08-26 1999-08-25 Kit for creating in situ, chemically cross-linked, mechanical barriers or covering structures for vascular puncture sites
US09/520,856 US6899889B1 (en) 1998-11-06 2000-03-07 Biocompatible material composition adaptable to diverse therapeutic indications
US09/780,014 US6830756B2 (en) 1998-11-06 2001-02-09 Systems, methods, and compositions for achieving closure of vascular puncture sites
US09/780,843 US6949114B2 (en) 1998-11-06 2001-02-09 Systems, methods, and compositions for achieving closure of vascular puncture sites
US10/141,510 US7279001B2 (en) 1998-11-06 2002-05-08 Systems, methods, and compositions for achieving closure of vascular puncture sites
US10/212,472 US7351249B2 (en) 1998-11-06 2002-08-05 Systems, methods, and compositions for achieving closure of suture sites
US10/972,259 US7318933B2 (en) 1998-11-06 2004-10-22 Systems, methods, and compositions for achieving closure of vascular puncture sites
US11/002,837 US7247314B2 (en) 1998-11-06 2004-12-02 Biocompatible material composition adaptable to diverse therapeutic indications
US11/716,266 US8802146B2 (en) 1998-11-06 2007-03-09 Systems, methods, and compositions for prevention of tissue adhesion
US11/880,552 US20080175817A1 (en) 1998-11-06 2007-07-23 Biocompatible material composition adaptable to diverse therapeutic indications
US11/973,526 US20080038313A1 (en) 1998-11-06 2007-10-09 Systems, methods, and compositions for mixing and applying lyophilized biomaterials
US12/004,964 US8034367B2 (en) 1998-11-06 2007-12-21 Tissue adhering compositions
US12/079,049 US8409249B2 (en) 1998-11-06 2008-03-24 Systems, methods, and compositions for achieving closure of suture sites
US12/455,561 US8409605B2 (en) 1998-11-06 2009-06-03 Biocompatible material composition adaptable to diverse therapeutic indications
US12/641,171 US8642085B2 (en) 1998-11-06 2009-12-17 Systems, methods, and compositions for prevention of tissue adhesion
US12/641,215 US8383144B2 (en) 1998-11-06 2009-12-17 Tissue adhering compositions
JP2011009210A JP2011120927A (en) 1998-08-26 2011-01-19 Composition, system, and method for creating in situ, chemically crosslinked, mechanical barrier or covering structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/188,083 US6371975B2 (en) 1998-11-06 1998-11-06 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers
US09/283,535 US6458147B1 (en) 1998-11-06 1999-04-01 Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09188033 Continuation-In-Part 1998-11-06
US09/188,083 Continuation-In-Part US6371975B2 (en) 1997-03-12 1998-11-06 Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/520,856 Continuation-In-Part US6899889B1 (en) 1998-11-06 2000-03-07 Biocompatible material composition adaptable to diverse therapeutic indications
US09/780,843 Continuation-In-Part US6949114B2 (en) 1998-11-06 2001-02-09 Systems, methods, and compositions for achieving closure of vascular puncture sites
US09/780,014 Continuation-In-Part US6830756B2 (en) 1998-11-06 2001-02-09 Systems, methods, and compositions for achieving closure of vascular puncture sites

Publications (2)

Publication Number Publication Date
US20020032463A1 true US20020032463A1 (en) 2002-03-14
US6458147B1 US6458147B1 (en) 2002-10-01

Family

ID=56289900

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/283,535 Expired - Lifetime US6458147B1 (en) 1998-08-26 1999-04-01 Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue

Country Status (1)

Country Link
US (1) US6458147B1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050125015A1 (en) * 2003-12-04 2005-06-09 Mcnally-Heintzelman Karen M. Tissue-handling apparatus, system and method
US20050125033A1 (en) * 2003-12-04 2005-06-09 Mcnally-Heintzelman Karen M. Wound closure apparatus
US20060253082A1 (en) * 2005-04-21 2006-11-09 Mcintosh Kevin D Fluid dispenser
US20070102453A1 (en) * 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US20080131476A1 (en) * 2005-02-28 2008-06-05 Masato Kanzaki Cultured Cell Sheet, Production Method and Tissue Repair Method Using Thereof
WO2009095223A1 (en) 2008-01-28 2009-08-06 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Injectable biocompatible composition
US20100184223A1 (en) * 2007-07-13 2010-07-22 Helmut Wurst Biomaterial based on a hydrophilic polymeric carrier
US20100312274A1 (en) * 2009-06-09 2010-12-09 Grifols, S.A. Device for the application of fibrin adhesive
US20130096062A1 (en) * 2011-10-11 2013-04-18 Baxter Healthcare S.A. Hemostatic compositions
US20130110161A1 (en) * 2011-10-28 2013-05-02 Medtronic Xomed, Inc. Spray delivery system
WO2013053759A3 (en) * 2011-10-11 2013-11-07 Baxter International Inc. Hemostatic compositions
WO2013053755A3 (en) * 2011-10-11 2013-11-14 Baxter International Inc. Hemostatic compositions
WO2013053749A3 (en) * 2011-10-11 2013-11-14 Baxter International Inc. Hemostatic compositions
US20140257375A1 (en) * 2013-03-11 2014-09-11 St. Jude Medical Puerto Rico Llc Active securement detachable sealing tip for extra-vascular closure device and methods
EP2946795A4 (en) * 2013-01-18 2016-08-31 Nat Inst For Materials Science Tissue adhesive and process for producing same
WO2019138019A2 (en) 2018-01-10 2019-07-18 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin System and methods for sealing a channel in tissue
US10441959B2 (en) 2011-10-28 2019-10-15 Medtronic Xomed, Inc. Multi-orifice spray head
CN110801528A (en) * 2019-10-30 2020-02-18 金路平 Dura mater spinalis sealing hydrogel and preparation method and application thereof
WO2020144372A1 (en) 2019-01-10 2020-07-16 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin Composite viscoelastic hydrogel, and uses thereof for sealing a channel in tissue
WO2020172162A1 (en) * 2019-02-19 2020-08-27 Tc1 Llc Vascular graft and methods for sealing a vascular graft
US11253391B2 (en) 2018-11-13 2022-02-22 Contraline, Inc. Systems and methods for delivering biomaterials
WO2022130103A1 (en) * 2020-12-18 2022-06-23 Ethicon, Inc. Methods and devices for changing the flow rates of ph modifying fluids for controlling cross-linking rates of reactive components of biocompatible sealing compositions
US11559345B2 (en) * 2015-01-29 2023-01-24 Boston Scientific Scimed, Inc. Vapor ablation systems and methods
US11904068B2 (en) 2015-11-12 2024-02-20 University Of Virginia Patent Foundation Occlusive implant compositions

Families Citing this family (494)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003705B2 (en) 1996-09-23 2011-08-23 Incept Llc Biocompatible hydrogels made with small molecule precursors
US6152943A (en) * 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US7335220B2 (en) * 2004-11-05 2008-02-26 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US6605294B2 (en) * 1998-08-14 2003-08-12 Incept Llc Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US6899889B1 (en) * 1998-11-06 2005-05-31 Neomend, Inc. Biocompatible material composition adaptable to diverse therapeutic indications
US7351249B2 (en) * 1998-11-06 2008-04-01 Neomend, Inc. Systems, methods, and compositions for achieving closure of suture sites
US6830756B2 (en) * 1998-11-06 2004-12-14 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
CA2353642C (en) * 1998-12-04 2009-11-10 Amarpreet S. Sawhney Biocompatible crosslinked polymers
US6592608B2 (en) * 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
EP3915541A1 (en) 2002-08-06 2021-12-01 BAXTER INTERNATIONAL INC. (a Delaware corporation) Biocompatible phase invertible proteinaceous compositions and methods for making and using the same
US10098981B2 (en) 2002-08-06 2018-10-16 Baxter International Inc. Biocompatible phase invertable proteinaceous compositions and methods for making and using the same
US8349348B2 (en) * 2002-08-06 2013-01-08 Matrix Medical, Llc Biocompatible phase invertible proteinaceous compositions and methods for making and using the same
US9101536B2 (en) * 2002-08-06 2015-08-11 Matrix Medical Llc Biocompatible phase invertable proteinaceous compositions and methods for making and using the same
DE10236152A1 (en) * 2002-08-07 2004-02-19 Marker Deutschland Gmbh Ski and ski binding combination
US7074425B2 (en) * 2002-09-26 2006-07-11 Bonewax, Llc Hemostatic compositions and methods
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7331979B2 (en) * 2003-06-04 2008-02-19 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US9289195B2 (en) * 2003-06-04 2016-03-22 Access Closure, Inc. Auto-retraction apparatus and methods for sealing a vascular puncture
WO2005065079A2 (en) * 2003-11-10 2005-07-21 Angiotech International Ag Medical implants and fibrosis-inducing agents
US20070060950A1 (en) * 2003-12-24 2007-03-15 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
US20050149117A1 (en) * 2003-12-24 2005-07-07 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
US8048101B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US8052669B2 (en) 2004-02-25 2011-11-08 Femasys Inc. Methods and devices for delivery of compositions to conduits
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US9238127B2 (en) 2004-02-25 2016-01-19 Femasys Inc. Methods and devices for delivering to conduit
US20050267520A1 (en) 2004-05-12 2005-12-01 Modesitt D B Access and closure device and method
US7678133B2 (en) * 2004-07-10 2010-03-16 Arstasis, Inc. Biological tissue closure device and method
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8348971B2 (en) 2004-08-27 2013-01-08 Accessclosure, Inc. Apparatus and methods for facilitating hemostasis within a vascular puncture
EP1796746B1 (en) 2004-10-07 2011-05-04 E.I. Du Pont De Nemours And Company Polysaccharide-based polymer tissue adhesive for medical use
US8262693B2 (en) 2004-11-05 2012-09-11 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US8663225B2 (en) 2004-11-12 2014-03-04 Medtronic, Inc. Hydrogel bone void filler
US20060161110A1 (en) * 2004-12-30 2006-07-20 Neomend, Inc. Method and apparatus for percutaneous wound sealing
US7806856B2 (en) 2005-04-22 2010-10-05 Accessclosure, Inc. Apparatus and method for temporary hemostasis
AU2006247355B2 (en) 2005-05-12 2013-01-10 Arstasis, Inc. Access and closure device and method
WO2006135740A1 (en) * 2005-06-10 2006-12-21 Albert Einstein College Of Medicine Of Yeshiva University Pegylated hemoglobin and albumin and uses thereof
US8071546B2 (en) * 2005-06-10 2011-12-06 La Jolla Bioengineering Institute Uses of pegylated albumin
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20070185495A1 (en) * 2006-01-30 2007-08-09 Howmedica International S. De R. L. Plug-in syringe stand
US20080125722A1 (en) * 2006-09-15 2008-05-29 Howmedica International S. De R.L. Syringe and stand
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8795709B2 (en) 2006-03-29 2014-08-05 Incept Llc Superabsorbent, freeze dried hydrogels for medical applications
JP6075930B2 (en) * 2006-04-24 2017-02-08 インセプト エルエルシー Protein cross-linking agent, cross-linking method and use thereof
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080003193A1 (en) * 2006-06-28 2008-01-03 S.C. Johnson & Son, Inc. Odor elimination and air sanitizing composition
US7789893B2 (en) * 2006-09-12 2010-09-07 Boston Scientific Scimed, Inc. Method and apparatus for promoting hemostasis of a blood vessel puncture
WO2008033964A2 (en) 2006-09-13 2008-03-20 Accessclosure, Inc. Apparatus for sealing a vascular puncture
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
WO2008066787A2 (en) * 2006-11-27 2008-06-05 E. I. Du Pont De Nemours And Company Multi-functional polyalkylene oxides, hydrogels and tissue adhesives
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8932560B2 (en) * 2007-09-04 2015-01-13 University of Maryland, College Parke Advanced functional biocompatible polymeric matrix used as a hemostatic agent and system for damaged tissues and cells
US9066885B2 (en) * 2007-03-16 2015-06-30 University Of Maryland, College Park Advanced functional biocompatible polymeric matrix containing nano-compartments
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8092837B2 (en) * 2007-04-27 2012-01-10 Biomet Manufacturing Corp Fibrin based glue with functionalized hydrophilic polymer protein binding agent
US20080287633A1 (en) * 2007-05-18 2008-11-20 Drumheller Paul D Hydrogel Materials
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US20090035249A1 (en) * 2007-08-02 2009-02-05 Bhatia Sujata K Method of inhibiting proliferation of Escherichia coli
US8067028B2 (en) * 2007-08-13 2011-11-29 Confluent Surgical Inc. Drug delivery device
US7993367B2 (en) 2007-09-28 2011-08-09 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
JP2011502582A (en) 2007-11-02 2011-01-27 インセプト,エルエルシー Device and method for blocking vascular puncture
US8545457B2 (en) * 2007-11-08 2013-10-01 Terumo Kabushiki Kaisha Sprayer
EP2214731B1 (en) * 2007-11-14 2014-05-14 Actamax Surgical Materials LLC Oxidized cationic polysaccharide-based polymer tissue adhesive for medical use
JP5409646B2 (en) 2007-12-03 2014-02-05 テネックシス メディカル, インコーポレイテッド Biocompatible phase-invertible protein composition
US7862538B2 (en) * 2008-02-04 2011-01-04 Incept Llc Surgical delivery system for medical sealant
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9364206B2 (en) 2008-04-04 2016-06-14 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US8029533B2 (en) 2008-04-04 2011-10-04 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US20100015231A1 (en) * 2008-07-17 2010-01-21 E.I. Du Pont De Nemours And Company Low swell, long-lived hydrogel sealant
US8551136B2 (en) 2008-07-17 2013-10-08 Actamax Surgical Materials, Llc High swell, long-lived hydrogel sealant
CN102159126A (en) 2008-07-21 2011-08-17 阿尔斯塔西斯公司 Devices, methods, and kits for forming tracts in tissue
JP5616891B2 (en) 2008-08-26 2014-10-29 セント ジュード メディカル インコーポレイテッドSt. Jude Medical, Inc. Method and system for sealing a percutaneous puncture
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9554826B2 (en) 2008-10-03 2017-01-31 Femasys, Inc. Contrast agent injection system for sonographic imaging
US10070888B2 (en) 2008-10-03 2018-09-11 Femasys, Inc. Methods and devices for sonographic imaging
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
EP3305207B1 (en) 2008-11-12 2020-08-26 Access Closure, Inc. Apparatus for sealing a vascular puncture
US9044529B2 (en) * 2008-11-19 2015-06-02 Actamax Surgical Materials, Llc Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether
US8466327B2 (en) 2008-11-19 2013-06-18 Actamax Surgical Materials, Llc Aldehyde-functionalized polyethers and method of making same
US20100160960A1 (en) * 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Hydrogel tissue adhesive having increased degradation time
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8409606B2 (en) 2009-02-12 2013-04-02 Incept, Llc Drug delivery through hydrogel plugs
EP2411062B1 (en) 2009-03-27 2014-08-20 Actamax Surgical Materials LLC Tissue adhesive and sealant comprising polyglycerol aldehyde
EP2411448B1 (en) 2009-03-27 2013-03-20 Actamax Surgical Materials LLC Polyglycerol aldehydes
US20100256671A1 (en) * 2009-04-07 2010-10-07 Biomedica Management Corporation Tissue sealant for use in noncompressible hemorrhage
JP2012523289A (en) 2009-04-09 2012-10-04 アクタマックス サージカル マテリアルズ リミテッド ライアビリティ カンパニー Hydrogel tissue adhesive with reduced degradation time
US9155815B2 (en) 2009-04-17 2015-10-13 Tenaxis Medical, Inc. Biocompatible phase invertible proteinaceous compositions and methods for making and using the same
EP2427233B1 (en) 2009-05-04 2016-12-21 Incept Llc Biomaterials for track and puncture closure
US8796242B2 (en) 2009-07-02 2014-08-05 Actamax Surgical Materials, Llc Hydrogel tissue adhesive for medical use
EP2448604B1 (en) 2009-07-02 2016-03-23 Actamax Surgical Materials LLC Hydrogel tissue adhesive for medical use
US8580951B2 (en) 2009-07-02 2013-11-12 Actamax Surgical Materials, Llc Aldehyde-functionalized polysaccharides
US8580950B2 (en) 2009-07-02 2013-11-12 Actamax Surgical Materials, Llc Aldehyde-functionalized polysaccharides
EP2498820B1 (en) 2009-11-13 2019-01-09 University of Maryland, College Park Advanced functional biocompatible foam used as a hemostatic agent for compressible and non-compressible acute wounds
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
BR112012025500A2 (en) 2010-04-05 2016-06-21 Neomend Inc automatic purge system for releasing a hydrogel composition and method for releasing a hydrogel composition
CN102933243A (en) 2010-04-05 2013-02-13 尼奥文股份有限公司 Method and apparatus for wound sealant application
US8603036B2 (en) * 2010-07-01 2013-12-10 Cook Medical Technologies Llc Vascular introducer and method of using same
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
CA2808454A1 (en) 2010-08-13 2012-02-16 University Of Maryland, College Park Method and system for reversal of interactions between hydrophobically modified biopolymers and vesicles or cell membranes
US8961501B2 (en) 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
WO2012075457A2 (en) 2010-12-02 2012-06-07 University Of Maryland, College Park Method and system for capture and use of intact vesicles on electrodeposited hydrophobically modified biopolymer films
CA2824964C (en) 2011-01-19 2019-01-08 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US9820728B2 (en) 2011-01-19 2017-11-21 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US9386968B2 (en) 2011-05-11 2016-07-12 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11571493B2 (en) 2012-03-19 2023-02-07 Neomend, Inc. Co-precipitation method
US8721680B2 (en) 2012-03-23 2014-05-13 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US9757105B2 (en) 2012-03-23 2017-09-12 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
US20130317481A1 (en) 2012-05-25 2013-11-28 Arstasis, Inc. Vascular access configuration
US20130317438A1 (en) 2012-05-25 2013-11-28 Arstasis, Inc. Vascular access configuration
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US8859705B2 (en) 2012-11-19 2014-10-14 Actamax Surgical Materials Llc Hydrogel tissue adhesive having decreased gelation time and decreased degradation time
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
WO2014160136A1 (en) 2013-03-13 2014-10-02 University Of Maryland, Office Of Technology Commercialization Advanced functional biocompatible polymer putty used as a hemostatic agent for treating damaged tissue and cells
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US20160184474A1 (en) 2013-07-29 2016-06-30 Actamax Surgical Materials, Llc Low swell tissue adhesive and sealant formulations
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
EP3160342A4 (en) 2014-06-25 2018-01-10 Neomend, Inc. Pleural air leak test system
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US9295752B1 (en) 2014-09-30 2016-03-29 Covidien Lp Bioadhesive for occluding vessels
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10258337B2 (en) 2016-04-20 2019-04-16 Ethicon Llc Surgical staple cartridge with severed tissue edge adjunct
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10722384B2 (en) * 2017-03-01 2020-07-28 Nordson Corporation Medical material mixer and transfer apparatus and method for using the same
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10980913B2 (en) 2018-03-05 2021-04-20 Ethicon Llc Sealant foam compositions for lung applications
WO2019231763A1 (en) 2018-05-27 2019-12-05 Christos Angeletakis Tissue adhesives and sealants using naturally derived aldehydes
US10960259B2 (en) * 2018-06-08 2021-03-30 Timothy J. Huntington Hip-stretching device
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
CN114025706A (en) 2019-06-26 2022-02-08 达沃有限公司 Reactive dry powder hemostatic material comprising a nucleophile and a multifunctional modified polyethylene glycol-based cross-linker
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
CN115515653A (en) 2020-03-20 2022-12-23 巴德外周血管股份有限公司 Reactive hydrogel-forming formulations and related methods
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11739166B2 (en) 2020-07-02 2023-08-29 Davol Inc. Reactive polysaccharide-based hemostatic agent
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
EP4267210A1 (en) 2020-12-28 2023-11-01 Davol Inc. Reactive dry powdered hemostatic materials comprising a protein and a multifunctionalized modified polyethylene glycol based crosslinking agent
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464468A (en) 1968-03-29 1984-08-07 Agence Nationale De Valorisation De La Recherche (Anvar) Immobilization of active protein by cross-linking to inactive protein
IL47468A (en) 1975-06-12 1979-05-31 Rehovot Res Prod Process for the cross-linking of proteins using water soluble cross-linking agents
CH625702A5 (en) 1977-01-18 1981-10-15 Delalande Sa
US4839345A (en) 1985-03-09 1989-06-13 Nippon Oil And Fats Co., Ltd. Hydrated adhesive gel and method for preparing the same
WO1988006457A1 (en) 1987-03-04 1988-09-07 Nippon Hypox Laboratories Incorporated Medicinal composition containing albumin as carrier and process for its preparation
US5936035A (en) 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
US5318524A (en) * 1990-01-03 1994-06-07 Cryolife, Inc. Fibrin sealant delivery kit
US5071417A (en) 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5626863A (en) 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5252714A (en) 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US5129882A (en) 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US5419765A (en) 1990-12-27 1995-05-30 Novoste Corporation Wound treating device and method for treating wounds
EP0572526A4 (en) * 1991-02-13 1995-12-06 Interface Biomedical Lab Corp Filler material for use in tissue welding
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5676689A (en) 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
JP3011768B2 (en) 1992-02-28 2000-02-21 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Photopolymerizable biodegradable hydrophilic gels as tissue contacting materials and controlled release carriers
US5573934A (en) * 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5403278A (en) 1992-04-15 1995-04-04 Datascope Investment Corp. Device and method for treating hematomas and false aneurysms
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5520885A (en) 1993-01-19 1996-05-28 Thermogenesis Corporation Fibrinogen processing apparatus, method and container
US5800373A (en) 1995-03-23 1998-09-01 Focal, Inc. Initiator priming for improved adherence of gels to substrates
US5383896A (en) 1993-05-25 1995-01-24 Gershony; Gary Vascular sealing device
US5626601A (en) 1995-10-27 1997-05-06 Gary Gershony Vascular sealing apparatus and method
US5951583A (en) 1993-05-25 1999-09-14 Vascular Solutions, Inc. Thrombin and collagen procoagulant and process for making the same
US5843124A (en) 1993-09-28 1998-12-01 Hemodynamics, Inc. Surface opening adhesive sealer
US5759194A (en) 1993-09-28 1998-06-02 Hemodynamics, Inc. Vascular patch applicator
US5653730A (en) 1993-09-28 1997-08-05 Hemodynamics, Inc. Surface opening adhesive sealer
US5383899A (en) 1993-09-28 1995-01-24 Hammerslag; Julius G. Method of using a surface opening adhesive sealer
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
PT705298E (en) 1993-12-01 2002-07-31 Bioartificial Gel Technologies Inc ALBUMINE-BASED HYDROGEL
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
EP0785774B1 (en) 1994-10-12 2001-01-31 Focal, Inc. Targeted delivery via biodegradable polymers
FR2726571B1 (en) 1994-11-03 1997-08-08 Izoret Georges BIOLOGICAL GLUE, PREPARATION METHOD AND APPLICATION DEVICE FOR BIOLOGICAL GLUE, AND HARDENERS FOR BIOLOGICAL GLUE
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US5900245A (en) 1996-03-22 1999-05-04 Focal, Inc. Compliant tissue sealants
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
DK2111876T3 (en) 1995-12-18 2011-12-12 Angiodevice Internat Gmbh Crosslinked polymer preparations and methods for their use
JP2000509014A (en) 1996-03-11 2000-07-18 フォーカル,インコーポレイテッド Polymer delivery of radionuclides and radiopharmaceuticals
US5791352A (en) 1996-06-19 1998-08-11 Fusion Medical Technologies, Inc. Methods and compositions for inhibiting tissue adhesion
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
ZA978537B (en) 1996-09-23 1998-05-12 Focal Inc Polymerizable biodegradable polymers including carbonate or dioxanone linkages.
US5951589A (en) 1997-02-11 1999-09-14 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5782860A (en) 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5990237A (en) 1997-05-21 1999-11-23 Shearwater Polymers, Inc. Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines
ZA987019B (en) 1997-08-06 1999-06-04 Focal Inc Hemostatic tissue sealants
CA2323048C (en) 1998-03-12 2006-10-10 Shearwater Polymers, Inc. Poly(ethylene glycol) derivatives with proximal reactive groups
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6179862B1 (en) 1998-08-14 2001-01-30 Incept Llc Methods and apparatus for in situ formation of hydrogels
US6514534B1 (en) 1998-08-14 2003-02-04 Incept Llc Methods for forming regional tissue adherent barriers and drug delivery systems
EP1104324B8 (en) 1998-08-14 2011-06-22 Incept Llc Apparatus for in situ formation of hydrogels
US6022361A (en) 1998-10-09 2000-02-08 Biointerventional Corporation Device for introducing and polymerizing polymeric biomaterials in the human body and method
CA2353642C (en) 1998-12-04 2009-11-10 Amarpreet S. Sawhney Biocompatible crosslinked polymers
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050125033A1 (en) * 2003-12-04 2005-06-09 Mcnally-Heintzelman Karen M. Wound closure apparatus
US20050125015A1 (en) * 2003-12-04 2005-06-09 Mcnally-Heintzelman Karen M. Tissue-handling apparatus, system and method
US20080131476A1 (en) * 2005-02-28 2008-06-05 Masato Kanzaki Cultured Cell Sheet, Production Method and Tissue Repair Method Using Thereof
US9889228B2 (en) 2005-02-28 2018-02-13 Cellseed Inc. Cultured cell sheet, production method, and tissue repair method using thereof
US20100076399A1 (en) * 2005-04-21 2010-03-25 Arteriocyte Medical Systems, Inc. Fluid dispenser
US7635343B2 (en) * 2005-04-21 2009-12-22 Arteriocyte Medical Systems, Inc. Fluid dispenser
US8088099B2 (en) * 2005-04-21 2012-01-03 Arteriocyte Medical Systems, Inc. Fluid dispenser
US20060253082A1 (en) * 2005-04-21 2006-11-09 Mcintosh Kevin D Fluid dispenser
US7673783B2 (en) * 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US20070102453A1 (en) * 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US20100184223A1 (en) * 2007-07-13 2010-07-22 Helmut Wurst Biomaterial based on a hydrophilic polymeric carrier
US10196602B2 (en) * 2007-07-13 2019-02-05 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen Biomaterial based on a hydrophilic polymeric carrier
WO2009095223A1 (en) 2008-01-28 2009-08-06 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Injectable biocompatible composition
US20100322993A1 (en) * 2008-01-28 2010-12-23 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen Injectable biocompatible composition
US10500154B2 (en) 2008-01-28 2019-12-10 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen Injectable biocompatible composition
US20100312274A1 (en) * 2009-06-09 2010-12-09 Grifols, S.A. Device for the application of fibrin adhesive
US8376188B2 (en) * 2009-06-09 2013-02-19 Grifols, S.A. Device for the application of fibrin adhesive
AU2012318257B2 (en) * 2011-10-11 2015-10-01 Baxter Healthcare S.A. Hemostatic compositions
WO2013053753A3 (en) * 2011-10-11 2013-11-07 Baxter International Inc. Hemostatic composition
WO2013053749A3 (en) * 2011-10-11 2013-11-14 Baxter International Inc. Hemostatic compositions
CN103957949A (en) * 2011-10-11 2014-07-30 巴克斯特国际公司 Hemostatic compositions
EP4137165A1 (en) * 2011-10-11 2023-02-22 Baxter International Inc. Hemostatic compositions
AU2012318258B2 (en) * 2011-10-11 2015-07-09 Baxter Healthcare S.A. Hemostatic compositions
EP4137164A1 (en) * 2011-10-11 2023-02-22 Baxter International Inc. Hemostatic compositions
US10322170B2 (en) 2011-10-11 2019-06-18 Baxter International Inc. Hemostatic compositions
AU2012318256B2 (en) * 2011-10-11 2015-10-01 Baxter Healthcare S.A. Hemostatic composition
EP4137166A1 (en) * 2011-10-11 2023-02-22 Baxter International Inc Hemostatic compositions
US20130096062A1 (en) * 2011-10-11 2013-04-18 Baxter Healthcare S.A. Hemostatic compositions
US9821025B2 (en) 2011-10-11 2017-11-21 Baxter International Inc. Hemostatic compositions
WO2013053759A3 (en) * 2011-10-11 2013-11-07 Baxter International Inc. Hemostatic compositions
WO2013053755A3 (en) * 2011-10-11 2013-11-14 Baxter International Inc. Hemostatic compositions
US10441959B2 (en) 2011-10-28 2019-10-15 Medtronic Xomed, Inc. Multi-orifice spray head
US20130110161A1 (en) * 2011-10-28 2013-05-02 Medtronic Xomed, Inc. Spray delivery system
US9486190B2 (en) * 2011-10-28 2016-11-08 Medtronic Xomed, Inc. Spray delivery system
EP2946795A4 (en) * 2013-01-18 2016-08-31 Nat Inst For Materials Science Tissue adhesive and process for producing same
US9107646B2 (en) * 2013-03-11 2015-08-18 St. Jude Medical Puerto Rico Llc Active securement detachable sealing tip for extra-vascular closure device and methods
US20140257375A1 (en) * 2013-03-11 2014-09-11 St. Jude Medical Puerto Rico Llc Active securement detachable sealing tip for extra-vascular closure device and methods
US11559345B2 (en) * 2015-01-29 2023-01-24 Boston Scientific Scimed, Inc. Vapor ablation systems and methods
US11904068B2 (en) 2015-11-12 2024-02-20 University Of Virginia Patent Foundation Occlusive implant compositions
WO2019138019A2 (en) 2018-01-10 2019-07-18 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin System and methods for sealing a channel in tissue
US11318040B2 (en) * 2018-11-13 2022-05-03 Contraline, Inc. Systems and methods for delivering biomaterials
US11510807B2 (en) 2018-11-13 2022-11-29 Contraline, Inc. Systems and methods for delivering biomaterials
US11253391B2 (en) 2018-11-13 2022-02-22 Contraline, Inc. Systems and methods for delivering biomaterials
WO2020144372A1 (en) 2019-01-10 2020-07-16 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin Composite viscoelastic hydrogel, and uses thereof for sealing a channel in tissue
CN113557042A (en) * 2019-02-19 2021-10-26 Tc1有限责任公司 Vascular prosthesis and method for sealing a vascular prosthesis
WO2020172162A1 (en) * 2019-02-19 2020-08-27 Tc1 Llc Vascular graft and methods for sealing a vascular graft
CN110801528A (en) * 2019-10-30 2020-02-18 金路平 Dura mater spinalis sealing hydrogel and preparation method and application thereof
WO2022130103A1 (en) * 2020-12-18 2022-06-23 Ethicon, Inc. Methods and devices for changing the flow rates of ph modifying fluids for controlling cross-linking rates of reactive components of biocompatible sealing compositions

Also Published As

Publication number Publication date
US6458147B1 (en) 2002-10-01

Similar Documents

Publication Publication Date Title
US6458147B1 (en) Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
AU759991B2 (en) Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
US6371975B2 (en) Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers
US6994686B2 (en) Systems for applying cross-linked mechanical barriers
EP1263327B1 (en) Biocompatible material composition adaptable to diverse therapeutic indications
US8802146B2 (en) Systems, methods, and compositions for prevention of tissue adhesion
Alving et al. Fibrin sealant: summary of a conference on characteristics and clinical uses
US5951583A (en) Thrombin and collagen procoagulant and process for making the same
US20110104280A1 (en) Wound treatment systems, devices, and methods using biocompatible synthetic hydrogel compositions
JP2016074673A (en) Dry powder fibrin sealant
Takeuchi et al. Reduction of adhesions with fibrin glue after laparoscopic excision of large ovarian endometriomas
Barton et al. Fibrin glue as a biologic vascular patch—a comparative study
WO1999018931A1 (en) Use of fibrin sealant to maintain hemostasis, lymphostasis and prevent local accumulation of body fluids
CA2435050A1 (en) Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures
US20230047711A1 (en) Flowable collagen colloid and method of forming

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED CLOSURE SYSTEMS, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRUISE, GREGORY M.;HNOJEWY, OLEXANDER;REEL/FRAME:010374/0594

Effective date: 19991103

AS Assignment

Owner name: NEOMEND, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CLOSURE SYSTEMS, INC.;REEL/FRAME:012848/0941

Effective date: 20000313

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12