US20020029693A1 - Evaporated fuel discharge preventing apparatus - Google Patents

Evaporated fuel discharge preventing apparatus Download PDF

Info

Publication number
US20020029693A1
US20020029693A1 US09/885,156 US88515601A US2002029693A1 US 20020029693 A1 US20020029693 A1 US 20020029693A1 US 88515601 A US88515601 A US 88515601A US 2002029693 A1 US2002029693 A1 US 2002029693A1
Authority
US
United States
Prior art keywords
intake air
evaporated fuel
air passage
passage portion
adsorbent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/885,156
Other versions
US6440200B1 (en
Inventor
Hitoshi Sakakibara
Tomonari Toki
Hideo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Japan Display Inc
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Assigned to AISAN KOGYO KABUSHIKI KAISHA reassignment AISAN KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKAKIBARA, HITOSHI, TOKI, TOMONARI, YAMADA, HIDEO
Publication of US20020029693A1 publication Critical patent/US20020029693A1/en
Application granted granted Critical
Publication of US6440200B1 publication Critical patent/US6440200B1/en
Assigned to HITACHI DISPLAYS, LTD. reassignment HITACHI DISPLAYS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HITACHI, LTD.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/30Particle separators, e.g. dust precipitators, using loose filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0218Air cleaners acting by absorption or adsorption; trapping or removing vapours or liquids, e.g. originating from fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4516Gas separation or purification devices adapted for specific applications for fuel vapour recovery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/60Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for the intake of internal combustion engines or turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/19Crankcase ventilation

Definitions

  • the invention relates to an evaporated fuel discharge preventing apparatus.
  • an air cleaner case 102 is provided on an upper portion of an air cleaner chamber 101 communicating with an intake manifold and a blow-by gas introduction pipe (these elements are not illustrated), and a cylindrical evaporated fuel adsorbing element 103 and a cylindrical air cleaner element 104 are provided within the air cleaner case 102 in such a manner that respective axes extend in a vertical direction and the former is arranged on a lower side of the latter, thereby adsorbing and collecting the evaporated fuel generated at a time when the internal combustion engine stops by the evaporated fuel adsorbing element 103 , and purging the evaporated fuel adsorbed and collected in the evaporated fuel adsorbing element 103 in accordance with the atmospheric air stream as shown by arrows A in FIG. 7 generated by an intake negative pressure at a time when the engine is driven.
  • This structure is disclosed, for example, in JP-U-61-183456 and JP-U-61-194761. This is set to a first prior art.
  • FIG. 8 there has been provided a structure in which an air cleaner main body 201 is disposed laterally, a filter 202 and an adsorbent 203 are arranged in series within the air cleaner main body, and a passage 204 is provided on an outer peripheral portion of the adsorbent 203 , adsorbing and collecting the evaporated fuel by the adsorbent 203 at a time when the engine stops and flowing the atmospheric air within the adsorbent 203 as arrows B in FIG. 9 at a time when the engine is driven so as to purge the evaporated fuel collected within the adsorbent 203 .
  • This structure is disclosed, for example, in JP-U-58-113861. This is set to a second prior art.
  • the element 103 and the adsorbent 203 adsorbing the evaporated fuel as mentioned above are structured such that an amount of transmitting air is less than an amount of transmitting air of the air cleaner elements 104 and 202 in order to prevent the evaporated fuel adsorbed and collected in the element 103 and the adsorbent 203 from being purged at a large amount for a short time at a time when the engine is driven.
  • an object of the present invention is to provide an evaporated fuel discharge preventing apparatus which can sufficiently adsorb and collect an evaporated fuel without causing a reduction of engine performance as mentioned above.
  • an evaporated fuel discharge preventing apparatus comprising:
  • the adsorbing device is formed by an intake air passage portion laterally formed within the device so as to pass through and communicated with the passage at both ends, an adsorbent layer arranged on an outer periphery of the intake air passage portion, and a member covering an outer surface in a non-ventilating state except a side of the intake air passage portion in the adsorbent layer, and an inner diameter of the intake air passage portion of the adsorbing device is set to be substantially equal to or more than an inner diameter of the intake air passage.
  • the evaporated fuel and the blow-by gas (hereinafter, both thereof are also referred to as evaporated fuel) generated within the intake air passage or the evaporated fuel flowing out from an atmospheric port of a canister or the like, at a time when the engine stops, slowly flows within the intake air passage portion laterally disposed in the adsorbing device. Accordingly, the evaporated fuel is adsorbed and collected by the adsorbent layer arranged on the outer periphery of the intake air passage portion.
  • an inner diameter of the intake air passage portion in the adsorbing device is set to be substantially equal to or more than an inner diameter of the front and rear passages, an intake air resistance is significantly small in the adsorbing device portion with respect to the air flowing within the passage. Accordingly, an engine performance is not reduced by the intake air resistance.
  • the adsorbent layer may be provided only on a substantially lower half portion of the outer periphery of the intake air passage portion.
  • the evaporated fuel slowly flowing in a lateral direction on the side of the lower portion in the intake air passage portion at a time when the engine stops is mainly adsorbed and collected to the adsorbent layer on the lower side of the intake air passage portion.
  • the adsorbent layer is provided only on the substantially lower half portion of the outer periphery in the intake air passage portion, it is possible to sufficiently adsorb and collect the evaporated fuel. Further, it is possible to reduce a cost in comparison with the structure in which the adsorbent layer is provided in all around the periphery, by omitting the adsorbent layer on the upper half portion.
  • a thickness of the adsorbent layer in a direction perpendicular to an axis of the intake air passage portion on the side of the lower portion may be large while that on the side of the upper portion may be small.
  • the evaporated fuel is mainly adsorbed and collected on the side of the lower portion of the adsorbent layer, it is possible to increase an adsorbing and collecting capacity of the evaporated fuel by increasing the thickness on the side of the lower portion. Further, since the adsorbent layer is also provided on the side of the upper portion of the adsorbing passage portion, the evaporated fuel is adsorbed and collected even in the adsorbent layer on the side of the upper portion. Accordingly, the evaporated fuel can be further efficiently adsorbed and collected.
  • a filter may be provided between the intake air passage portion and the adsorbent layer, and the filter may be bent in a wave shape.
  • a surface area on the side of the intake air passage portion in the adsorbent layer becomes larger than that of a flat filter, whereby it is possible to increase an adsorbing efficiency of the evaporated fuel.
  • FIG. 1 is a schematic view showing an embodiment of an evaporated fuel discharge preventing apparatus in accordance with the present invention
  • FIGS. 2A and 2B are cross sectional views showing a first embodiment of an adsorbing device shown in FIG. 1, in which FIG. 2A is a side cross sectional view and FIG. 2B is a cross sectional view along a line IIB-IIB in FIG. 2A;
  • FIGS. 3A and 3B are cross sectional views showing a second embodiment of an adsorbing device in accordance with the present invention, in which FIG. 3A is a side cross sectional view and FIG. 3B is a cross sectional view along a line IIIB-IIIB in FIG. 3A;
  • FIGS. 4A and 4B are cross sectional views showing a third embodiment of an adsorbing device in accordance with the present invention, in which FIG. 4A is a side cross sectional view and FIG. 4B is a cross sectional view along a line IVB-IVB in FIG. 4A;
  • FIG. 5 is a side cross sectional view showing a fourth embodiment of an adsorbing device in accordance with the present invention.
  • FIG. 6 is a front cross sectional view showing a fifth embodiment of an adsorbing device in accordance with the present invention.
  • FIG. 7 is a vertical cross sectional view showing a conventional evaporated fuel discharge preventing apparatus.
  • FIG. 8 is a vertical cross sectional view showing another embodiment of a conventional evaporated fuel discharge preventing apparatus.
  • FIGS. 1 to 2 B show a first embodiment in accordance with the present invention, in which FIG. 1 shows an embodiment obtained by applying the present invention to an intake air passage of an evaporated fuel discharge preventing apparatus in an internal combustion engine, and FIGS. 2A and 2B show details of an adsorbing device for an evaporated fuel arranged in the apparatus.
  • an injector 3 for injecting a fuel is provided in an intake air manifold 2 corresponding to an intake air passage of an internal combustion engine 1 , and a surge tank 4 is provided in an upstream of the intake air manifold 2 .
  • a first hose 5 in a blowby gas reducing system is communicated with the surge tank 4 by an outflow port 5 a .
  • Another end of the first hose 5 is communicated with a crank case of the internal combustion engine 1 via a PCV valve (not shown).
  • a throttle body 7 having a throttle valve 6 built-in is arranged on an upstream side of the surge tank 4 (with respect to a direction of flow of the intake air), and one end of a second hose 9 in the blowby gas reducing system is communicated with and open to an intake air passage 8 on an upstream side of the throttle body 7 by an outflow port 9 a . Another end of the second hose 9 is communicated with an inside of the crank case of the internal combustion engine.
  • An adsorbing device 10 for an evaporated fuel is communicated with and arranged in the intake air passage on an upstream side from an evaporated fuel generating source of the injector 3 and the outflow ports 5 a and 9 a in the first and second hoses 5 and 9 .
  • the adsorbing device 10 is arranged so that an intake air passage portion 11 therewithin becomes a transverse passage, that is, an axis of the intake air passage portion 11 extends in a substantially horizontal direction.
  • the intake air passage portion 11 is formed by a cylindrical filter 12 , and an inner diameter RI of the intake air passage portion 11 constituted by an inner surface of the cylindrical filter 12 (more particularly, an inner surface of an inner cylindrical portion 18 shown in FIGS.
  • a flow cross sectional area of the intake air passage portion 11 is set to be substantially equal to or more than a flow cross sectional area of the intake air passage 8 and a flow cross sectional area of the intake air passage 13 in the side of the air cleaner.
  • the air cleaner 14 is arranged on an upstream side of the adsorbing device 10 for the evaporated fuel, and an air cleaner element 15 is provided therewithin.
  • the air cleaner element 15 is provided on an upstream side with an atmospheric air intake port 16 , and is communicated on a downstream side with the adsorbing device 10 for the evaporated fuel through the intake air passage 13 , as mentioned above.
  • FIGS. 2A and 2B show details of the adsorbing device 10 for the evaporated fuel.
  • a case 17 forming the adsorbing device 10 is constituted by a cylindrical inner cylinder portion 18 forming the intake air passage portion 11 , and an outer cylinder portion 20 forming an adsorbent receiving chamber 19 on an outer periphery thereof.
  • a connecting portion 18 a is formed at an upstream end of the inner cylinder portion 18 .
  • One end surface of the adsorbent receiving chamber 19 is closed by a lid 21 , and a connecting portion 21 a is formed in a center of the lid 21 .
  • Inner diameters of flow ports 22 a and 22 b formed in both connecting portions 18 a and 21 a are formed to have the same diameter as that of the intake air passage portion 11 .
  • the outer cylinder portion 20 and the lid 21 form a member covering an outer surface of an adsorbent layer 23 mentioned below in a non-flow state.
  • a main portion of the inner cylinder portion 18 is structured such that a plurality of narrow ribs 18 b are arranged in a peripheral direction so as to be directed in an axial direction, and a plurality of introduction windows 18 c each having a wide area are formed between the ribs 18 b in a peripheral direction.
  • the cylindrical permeable filter 12 is arranged and held on an outer periphery of a plurality of ribs 18 b , and an outer portion of each of the introduction windows 18 c is covered by the filter 12 .
  • the adsorbent layer 23 formed by filling it with adsorbent is provided within the adsorbent receiving chamber 19 formed on the outer peripheral portion of the filter 12 .
  • the adsorbent within the adsorbent layer 23 employs a carbonaceous porous material such as an activated carbon or the like mainly containing a carbon, an inorganic porous material such as a silica gel, a zeolite, an activated alumina or the like, an organic polymer adsorbent, or the like.
  • an evaporated fuel slightly leaking from the injector 3 to the intake air manifold 2 so as to be evaporated, a blowby gas leaking from the outlet ports 5 a and 7 a of the blowby gas reducing system to the surge tank 4 and the intake air passage 8 , and the like flow to the side of the adsorbing device 10 for the evaporated fuel at a slow speed corresponding to a speed of diffusion and a volume changing speed level of the air within the intake air passage, and slowly flow in a direction of the air cleaner 14 within the intake air passage portion 11 in the adsorbing device 10 .
  • the evaporated fuel and the blowby gas transmit through the filter 12 from the introduction windows 18 c and enter the adsorbent layer 23 so as to be adsorbed and collected by the adsorbent. Accordingly, it is not necessary to make the gas containing the evaporated fuel and the blowby gas positively pass through the inner portion of the adsorbent layer 23 . That is, it is possible to sufficiently adsorb and collect the evaporated fuel only by passing through the inner peripheral surface side of the adsorbent layer 23 .
  • the ambient air flows into the intake air passage 8 through the intake air passage portion 11 of the adsorbing device 10 from the side of the air cleaner 14 in a straight manner, and is further supplied to the engine 1 . Due to the air intake, the evaporated fuel, the blowby gas and the like collected in the adsorbent layer 23 of the adsorbing device 10 are drawn out by the intake air mentioned above so as to be purged to the engine.
  • a diameter (a flow area) of the intake air passage portion 11 in the adsorbing device 10 is set to be substantially equal to or more than a diameter (a flow area) of the intake air passages 8 and 13 disposed in front and at the rear thereof, and the intake air passage portion 11 is formed in a straight shape, an intake air resistance in the adsorbing device 10 is significantly small, so that an intake operation of the engine is not disturbed and an engine performance is not reduced.
  • FIGS. 3A and 3B show a second embodiment in accordance with the present invention.
  • the second embodiment is structured such that the adsorbent layer 23 in the adsorbing device 10 for the evaporated fuel is provided only in a substantially lower half portion of the intake air passage portion 11 . That is, a substantially upper half portion of the inner cylinder portion 18 in the first embodiment is formed as a nonporous wall portion 18 d , and the same ribs 18 b and introduction windows 18 c as those of the first embodiment are formed in the substantially lower half portion.
  • an upper half portion of the outer cylinder portion 20 in the first embodiment is omitted such that a substantially semicircular adsorbent receiving chamber 19 is formed between the substantially semicircular outer cylinder portion 20 disposed on the lower side and the inner cylinder portion 18 , and the adsorbent layer 23 is provided within the adsorbent receiving chamber 19 with interposing the filter 12 .
  • the adsorbing device 10 is connected and arranged between the front and rear intake air passages 8 and 13 shown in FIG. 1 and in the transverse direction as the first embodiment in a state of arranging the adsorbent receiving chamber 19 on the lower side of the adsorbing device.
  • the evaporated fuel is normally heavier than air, the evaporated fuel flows on the lower side in the intake air passage portion 11 and the air flows on the upper side when the gas containing the evaporated fuel passes through the inner portion of the intake air passage portion 11 in the manner mentioned above. Accordingly, the evaporated fuel is mainly adsorbed and collected in the adsorbent layer 23 which is positioned in an area lower than a center of the intake air passage portion 11 .
  • FIGS. 4A and 4B show a third embodiment in accordance with the present invention.
  • the third embodiment is structured such that the outer cylinder portion 20 in the first embodiment is arranged so that an axis of the outer cylinder portion 20 is downward eccentric with respect to the axis of the inner cylinder portion 18 , so as to form the adsorbent receiving chamber 19 in such a manner that an upper portion thereof is narrow and a lower portion thereof is wide, thereby making a thickness of the adsorbent layer 23 in a direction perpendicular to the axis of the intake air passage portion 11 thin on an upper side and thick on a lower side.
  • the adsorbent layer 23 is mainly arranged in the lower portion, it is possible to effectively adsorb and collect the evaporated fuel in the same manner as the second embodiment so as to reduce a cost.
  • the adsorbent layer 23 is arranged on the upper side, an amount of which is smaller than that on the lower side, it is possible to adsorb and collect the evaporated fuel passing through the upper side, whereby it is possible to intend to improve an adsorbing and collecting efficiency.
  • FIG. 5 shows a fourth embodiment according to the present invention.
  • the present fourth embodiment is structured such that the filter 12 in the first embodiment shown in FIGS. 2A and 2B is bent in a waveform in an axial direction of the intake air passage portion 11 .
  • the filter 12 is provided on the outer peripheral portion of the introduction windows 18 c in the inner cylinder portion 18 , that is, out of the intake air passage portion 11 even in the case of being bent in a waveform, the filter 12 does not constitute a large flowing resistance.
  • FIG. 6 shows a fifth embodiment according to the present invention.
  • the present fifth embodiment is structured such that the filter 12 in the first embodiment shown in FIGS. 2A and 2B is bent in a waveform in a peripheral direction of the intake air passage portion 11 .
  • the filters 12 in the embodiments shown in FIGS. 3A, 3B and FIGS. 4A and 4B may be bent in a waveform as shown in FIGS. 5 and 6.
  • the present invention is not limited to the embodiments mentioned above, and the adsorbing device 10 may be connected to an outlet portion of the atmospheric air port in the canister arranged in the evaporated fuel discharge preventing apparatus.
  • the canister constitutes the evaporated fuel generating portion, and the evaporated fuel discharged from the canister through the atmospheric air port is adsorbed and collected by the adsorbing device 10 .
  • the structure is made in the manner mentioned above, in accordance with the present invention, it is possible to sufficiently adsorb and collect the evaporated fuel at a time when the engine stops, and significantly reduce the intake air resistance in the adsorbing device portion at a time when the engine is driven, so as to prevent the engine performance from being reduced due to the intake air resistance.

Abstract

An evaporated fuel discharge preventing apparatus, in order to sufficiently adsorb and collect an evaporated fuel generated in an intake air passage at a time when an engine stops, and to prevent an engine performance from being reduced by reducing an intake air resistance in an evaporated fuel adsorbing portion at a time when the engine is driven, has an adsorbing device arranged in a passage between an evaporated fuel generating portion and an air cleaner element, and, the adsorbing device is formed by an intake air passage portion laterally arranged within the device penetratingly and communicated with the passage at both ends, an adsorbent layer arranged on an outer periphery of the intake air passage portion, and a member covering an outer surface in a non-ventilating state except a side of the intake air passage portion in the adsorbent layer, and an inner diameter of the intake air passage portion of the adsorbing device is set to be substantially equal to or more than an inner diameter of the intake air passage.

Description

    FIELD OF THE INVENTION
  • The invention relates to an evaporated fuel discharge preventing apparatus. [0001]
  • DESCRIPTION OF RELATED ART
  • As an apparatus for preventing an evaporated fuel from being discharged into an atmospheric air by providing an evaporated fuel adsorbing element in an air cleaner portion for adsorbing and collecting the evaporated fuel evaporated from an internal combustion engine or the like at a time when the internal combustion engine stops, there has been conventionally provided a structure as shown in FIG. 7, in which an [0002] air cleaner case 102 is provided on an upper portion of an air cleaner chamber 101 communicating with an intake manifold and a blow-by gas introduction pipe (these elements are not illustrated), and a cylindrical evaporated fuel adsorbing element 103 and a cylindrical air cleaner element 104 are provided within the air cleaner case 102 in such a manner that respective axes extend in a vertical direction and the former is arranged on a lower side of the latter, thereby adsorbing and collecting the evaporated fuel generated at a time when the internal combustion engine stops by the evaporated fuel adsorbing element 103, and purging the evaporated fuel adsorbed and collected in the evaporated fuel adsorbing element 103 in accordance with the atmospheric air stream as shown by arrows A in FIG. 7 generated by an intake negative pressure at a time when the engine is driven. This structure is disclosed, for example, in JP-U-61-183456 and JP-U-61-194761. This is set to a first prior art.
  • Further, as shown in FIG. 8, there has been provided a structure in which an air cleaner [0003] main body 201 is disposed laterally, a filter 202 and an adsorbent 203 are arranged in series within the air cleaner main body, and a passage 204 is provided on an outer peripheral portion of the adsorbent 203, adsorbing and collecting the evaporated fuel by the adsorbent 203 at a time when the engine stops and flowing the atmospheric air within the adsorbent 203 as arrows B in FIG. 9 at a time when the engine is driven so as to purge the evaporated fuel collected within the adsorbent 203. This structure is disclosed, for example, in JP-U-58-113861. This is set to a second prior art.
  • In this case, the [0004] element 103 and the adsorbent 203 adsorbing the evaporated fuel as mentioned above are structured such that an amount of transmitting air is less than an amount of transmitting air of the air cleaner elements 104 and 202 in order to prevent the evaporated fuel adsorbed and collected in the element 103 and the adsorbent 203 from being purged at a large amount for a short time at a time when the engine is driven.
  • Accordingly, in the first prior art mentioned above, since a part of the air sucked at a time when the engine is driven passes through the evaporated fuel adsorbing [0005] element 103 having a little amount of transmitting air, an airflow resistance is increased and there is a risk that a performance of the internal combustion engine is reduced.
  • Further, in the second prior art mentioned above, since most of the sucked air passes through the adsorbent [0006] 203, there is also a risk that a performance of the internal combustion engine is reduced in the same manner as that of the first prior art.
  • Accordingly, an object of the present invention is to provide an evaporated fuel discharge preventing apparatus which can sufficiently adsorb and collect an evaporated fuel without causing a reduction of engine performance as mentioned above. [0007]
  • SUMMARY OF THE INVENTION
  • In order to solve the problems mentioned above, in accordance with the present invention, there is provided an evaporated fuel discharge preventing apparatus comprising: [0008]
  • an evaporated fuel generating portion; [0009]
  • an air cleaner element; and [0010]
  • an adsorbing device arranged in a passage between the evaporated fuel generating portion and the air cleaner element, [0011]
  • wherein the adsorbing device is formed by an intake air passage portion laterally formed within the device so as to pass through and communicated with the passage at both ends, an adsorbent layer arranged on an outer periphery of the intake air passage portion, and a member covering an outer surface in a non-ventilating state except a side of the intake air passage portion in the adsorbent layer, and an inner diameter of the intake air passage portion of the adsorbing device is set to be substantially equal to or more than an inner diameter of the intake air passage. [0012]
  • In accordance with the present invention, the evaporated fuel and the blow-by gas (hereinafter, both thereof are also referred to as evaporated fuel) generated within the intake air passage or the evaporated fuel flowing out from an atmospheric port of a canister or the like, at a time when the engine stops, slowly flows within the intake air passage portion laterally disposed in the adsorbing device. Accordingly, the evaporated fuel is adsorbed and collected by the adsorbent layer arranged on the outer periphery of the intake air passage portion. [0013]
  • When the engine is driven, an ambient air flows from the side of the air cleaner through the intake air passage portion in the adsorbing device so as to be supplied to the engine via the intake air passage and the canister. At this time, the evaporated fuel adsorbed and collected in the adsorbent layer in the adsorbing device is sucked to the air (the ambient air) flowing through the intake air passage portion in the adsorbing device and purged to the engine together with the air. [0014]
  • Further, since the intake air flows within the intake air passage portion without flowing through the adsorbent layer, and an inner diameter of the intake air passage portion in the adsorbing device is set to be substantially equal to or more than an inner diameter of the front and rear passages, an intake air resistance is significantly small in the adsorbing device portion with respect to the air flowing within the passage. Accordingly, an engine performance is not reduced by the intake air resistance. [0015]
  • Further, in the present invention, the adsorbent layer may be provided only on a substantially lower half portion of the outer periphery of the intake air passage portion. [0016]
  • Since the intake air passage portion of the adsorbing device is arranged laterally, the evaporated fuel slowly flowing in a lateral direction on the side of the lower portion in the intake air passage portion at a time when the engine stops is mainly adsorbed and collected to the adsorbent layer on the lower side of the intake air passage portion. [0017]
  • Accordingly, as mentioned above, even in the case that the adsorbent layer is provided only on the substantially lower half portion of the outer periphery in the intake air passage portion, it is possible to sufficiently adsorb and collect the evaporated fuel. Further, it is possible to reduce a cost in comparison with the structure in which the adsorbent layer is provided in all around the periphery, by omitting the adsorbent layer on the upper half portion. [0018]
  • Further, in the present invention, a thickness of the adsorbent layer in a direction perpendicular to an axis of the intake air passage portion on the side of the lower portion may be large while that on the side of the upper portion may be small. [0019]
  • Accordingly, since the evaporated fuel is mainly adsorbed and collected on the side of the lower portion of the adsorbent layer, it is possible to increase an adsorbing and collecting capacity of the evaporated fuel by increasing the thickness on the side of the lower portion. Further, since the adsorbent layer is also provided on the side of the upper portion of the adsorbing passage portion, the evaporated fuel is adsorbed and collected even in the adsorbent layer on the side of the upper portion. Accordingly, the evaporated fuel can be further efficiently adsorbed and collected. [0020]
  • Furthermore, in the present invention, a filter may be provided between the intake air passage portion and the adsorbent layer, and the filter may be bent in a wave shape. [0021]
  • With the structure, a surface area on the side of the intake air passage portion in the adsorbent layer becomes larger than that of a flat filter, whereby it is possible to increase an adsorbing efficiency of the evaporated fuel.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view showing an embodiment of an evaporated fuel discharge preventing apparatus in accordance with the present invention; [0023]
  • FIGS. 2A and 2B are cross sectional views showing a first embodiment of an adsorbing device shown in FIG. 1, in which FIG. 2A is a side cross sectional view and FIG. 2B is a cross sectional view along a line IIB-IIB in FIG. 2A; [0024]
  • FIGS. 3A and 3B are cross sectional views showing a second embodiment of an adsorbing device in accordance with the present invention, in which FIG. 3A is a side cross sectional view and FIG. 3B is a cross sectional view along a line IIIB-IIIB in FIG. 3A; [0025]
  • FIGS. 4A and 4B are cross sectional views showing a third embodiment of an adsorbing device in accordance with the present invention, in which FIG. 4A is a side cross sectional view and FIG. 4B is a cross sectional view along a line IVB-IVB in FIG. 4A; [0026]
  • FIG. 5 is a side cross sectional view showing a fourth embodiment of an adsorbing device in accordance with the present invention; [0027]
  • FIG. 6 is a front cross sectional view showing a fifth embodiment of an adsorbing device in accordance with the present invention; [0028]
  • FIG. 7 is a vertical cross sectional view showing a conventional evaporated fuel discharge preventing apparatus; and [0029]
  • FIG. 8 is a vertical cross sectional view showing another embodiment of a conventional evaporated fuel discharge preventing apparatus.[0030]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A description will be given of an embodiment in accordance with the present invention on the basis of an example shown in the accompanying drawings. [0031]
  • FIGS. [0032] 1 to 2B show a first embodiment in accordance with the present invention, in which FIG. 1 shows an embodiment obtained by applying the present invention to an intake air passage of an evaporated fuel discharge preventing apparatus in an internal combustion engine, and FIGS. 2A and 2B show details of an adsorbing device for an evaporated fuel arranged in the apparatus.
  • In FIG. 1, an [0033] injector 3 for injecting a fuel is provided in an intake air manifold 2 corresponding to an intake air passage of an internal combustion engine 1, and a surge tank 4 is provided in an upstream of the intake air manifold 2. One end of a first hose 5 in a blowby gas reducing system is communicated with the surge tank 4 by an outflow port 5 a. Another end of the first hose 5 is communicated with a crank case of the internal combustion engine 1 via a PCV valve (not shown).
  • A throttle body [0034] 7 having a throttle valve 6 built-in is arranged on an upstream side of the surge tank 4 (with respect to a direction of flow of the intake air), and one end of a second hose 9 in the blowby gas reducing system is communicated with and open to an intake air passage 8 on an upstream side of the throttle body 7 by an outflow port 9 a. Another end of the second hose 9 is communicated with an inside of the crank case of the internal combustion engine.
  • An [0035] adsorbing device 10 for an evaporated fuel is communicated with and arranged in the intake air passage on an upstream side from an evaporated fuel generating source of the injector 3 and the outflow ports 5 a and 9 a in the first and second hoses 5 and 9. The adsorbing device 10 is arranged so that an intake air passage portion 11 therewithin becomes a transverse passage, that is, an axis of the intake air passage portion 11 extends in a substantially horizontal direction. Further, the intake air passage portion 11 is formed by a cylindrical filter 12, and an inner diameter RI of the intake air passage portion 11 constituted by an inner surface of the cylindrical filter 12 (more particularly, an inner surface of an inner cylindrical portion 18 shown in FIGS. 2A and 2B) is set to be substantially equal to or more than an inner diameter R2 of the intake air passage 8 to which the second hose 9 is open and an intake air passage 13 on a side of an air cleaner 14. That is, a flow cross sectional area of the intake air passage portion 11 is set to be substantially equal to or more than a flow cross sectional area of the intake air passage 8 and a flow cross sectional area of the intake air passage 13 in the side of the air cleaner.
  • The [0036] air cleaner 14 is arranged on an upstream side of the adsorbing device 10 for the evaporated fuel, and an air cleaner element 15 is provided therewithin. The air cleaner element 15 is provided on an upstream side with an atmospheric air intake port 16, and is communicated on a downstream side with the adsorbing device 10 for the evaporated fuel through the intake air passage 13, as mentioned above.
  • FIGS. 2A and 2B show details of the adsorbing [0037] device 10 for the evaporated fuel.
  • A [0038] case 17 forming the adsorbing device 10 is constituted by a cylindrical inner cylinder portion 18 forming the intake air passage portion 11, and an outer cylinder portion 20 forming an adsorbent receiving chamber 19 on an outer periphery thereof. A connecting portion 18 a is formed at an upstream end of the inner cylinder portion 18. One end surface of the adsorbent receiving chamber 19 is closed by a lid 21, and a connecting portion 21 a is formed in a center of the lid 21. Inner diameters of flow ports 22 a and 22 b formed in both connecting portions 18 a and 21 a are formed to have the same diameter as that of the intake air passage portion 11.
  • The [0039] outer cylinder portion 20 and the lid 21 form a member covering an outer surface of an adsorbent layer 23 mentioned below in a non-flow state.
  • A main portion of the [0040] inner cylinder portion 18 is structured such that a plurality of narrow ribs 18 b are arranged in a peripheral direction so as to be directed in an axial direction, and a plurality of introduction windows 18 c each having a wide area are formed between the ribs 18 b in a peripheral direction.
  • The cylindrical [0041] permeable filter 12 is arranged and held on an outer periphery of a plurality of ribs 18 b, and an outer portion of each of the introduction windows 18 c is covered by the filter 12.
  • The [0042] adsorbent layer 23 formed by filling it with adsorbent is provided within the adsorbent receiving chamber 19 formed on the outer peripheral portion of the filter 12. The adsorbent within the adsorbent layer 23 employs a carbonaceous porous material such as an activated carbon or the like mainly containing a carbon, an inorganic porous material such as a silica gel, a zeolite, an activated alumina or the like, an organic polymer adsorbent, or the like.
  • Next, a description will be given of an operation in the first embodiment mentioned above. [0043]
  • At a time when the engine stops, an evaporated fuel slightly leaking from the [0044] injector 3 to the intake air manifold 2 so as to be evaporated, a blowby gas leaking from the outlet ports 5 a and 7 a of the blowby gas reducing system to the surge tank 4 and the intake air passage 8, and the like flow to the side of the adsorbing device 10 for the evaporated fuel at a slow speed corresponding to a speed of diffusion and a volume changing speed level of the air within the intake air passage, and slowly flow in a direction of the air cleaner 14 within the intake air passage portion 11 in the adsorbing device 10. Due to the stream at the slow speed, the evaporated fuel and the blowby gas transmit through the filter 12 from the introduction windows 18 c and enter the adsorbent layer 23 so as to be adsorbed and collected by the adsorbent. Accordingly, it is not necessary to make the gas containing the evaporated fuel and the blowby gas positively pass through the inner portion of the adsorbent layer 23. That is, it is possible to sufficiently adsorb and collect the evaporated fuel only by passing through the inner peripheral surface side of the adsorbent layer 23.
  • In the case that the engine is driven, when the [0045] throttle valve 6 is opened, the ambient air flows into the intake air passage 8 through the intake air passage portion 11 of the adsorbing device 10 from the side of the air cleaner 14 in a straight manner, and is further supplied to the engine 1. Due to the air intake, the evaporated fuel, the blowby gas and the like collected in the adsorbent layer 23 of the adsorbing device 10 are drawn out by the intake air mentioned above so as to be purged to the engine.
  • At such a time of sucking when the engine is driven, since a diameter (a flow area) of the intake [0046] air passage portion 11 in the adsorbing device 10 is set to be substantially equal to or more than a diameter (a flow area) of the intake air passages 8 and 13 disposed in front and at the rear thereof, and the intake air passage portion 11 is formed in a straight shape, an intake air resistance in the adsorbing device 10 is significantly small, so that an intake operation of the engine is not disturbed and an engine performance is not reduced.
  • FIGS. 3A and 3B show a second embodiment in accordance with the present invention. [0047]
  • The second embodiment is structured such that the [0048] adsorbent layer 23 in the adsorbing device 10 for the evaporated fuel is provided only in a substantially lower half portion of the intake air passage portion 11. That is, a substantially upper half portion of the inner cylinder portion 18 in the first embodiment is formed as a nonporous wall portion 18 d, and the same ribs 18 b and introduction windows 18 c as those of the first embodiment are formed in the substantially lower half portion. Further, an upper half portion of the outer cylinder portion 20 in the first embodiment is omitted such that a substantially semicircular adsorbent receiving chamber 19 is formed between the substantially semicircular outer cylinder portion 20 disposed on the lower side and the inner cylinder portion 18, and the adsorbent layer 23 is provided within the adsorbent receiving chamber 19 with interposing the filter 12.
  • The other structural components are the same as those of the first embodiment mentioned above. [0049]
  • The adsorbing [0050] device 10 is connected and arranged between the front and rear intake air passages 8 and 13 shown in FIG. 1 and in the transverse direction as the first embodiment in a state of arranging the adsorbent receiving chamber 19 on the lower side of the adsorbing device.
  • In the present second embodiment, in addition to the same operation and effect as those of the first embodiment mentioned above, the following effects can be obtained. [0051]
  • Since the evaporated fuel is normally heavier than air, the evaporated fuel flows on the lower side in the intake [0052] air passage portion 11 and the air flows on the upper side when the gas containing the evaporated fuel passes through the inner portion of the intake air passage portion 11 in the manner mentioned above. Accordingly, the evaporated fuel is mainly adsorbed and collected in the adsorbent layer 23 which is positioned in an area lower than a center of the intake air passage portion 11.
  • Thus, by arranging the [0053] adsorbent layer 23 only in the portion positioned at the substantially lower half portion of the intake air passage portion 11 as shown in FIGS. 3A and 3B, it is possible to sufficiently collect the evaporated fuel and prevent the adsorbent from being wastefully used, so that it is possible to reduce a cost and a weight of the adsorbing device 10.
  • FIGS. 4A and 4B show a third embodiment in accordance with the present invention. [0054]
  • The third embodiment is structured such that the [0055] outer cylinder portion 20 in the first embodiment is arranged so that an axis of the outer cylinder portion 20 is downward eccentric with respect to the axis of the inner cylinder portion 18, so as to form the adsorbent receiving chamber 19 in such a manner that an upper portion thereof is narrow and a lower portion thereof is wide, thereby making a thickness of the adsorbent layer 23 in a direction perpendicular to the axis of the intake air passage portion 11 thin on an upper side and thick on a lower side.
  • The other structural components are the same as those of the first embodiment mentioned above. [0056]
  • In the third embodiment, since the [0057] adsorbent layer 23 is mainly arranged in the lower portion, it is possible to effectively adsorb and collect the evaporated fuel in the same manner as the second embodiment so as to reduce a cost. In addition, in the third embodiment, since the adsorbent layer 23 is arranged on the upper side, an amount of which is smaller than that on the lower side, it is possible to adsorb and collect the evaporated fuel passing through the upper side, whereby it is possible to intend to improve an adsorbing and collecting efficiency.
  • FIG. 5 shows a fourth embodiment according to the present invention. [0058]
  • The present fourth embodiment is structured such that the [0059] filter 12 in the first embodiment shown in FIGS. 2A and 2B is bent in a waveform in an axial direction of the intake air passage portion 11.
  • The other structural components are the same as those of the first embodiment. [0060]
  • In accordance with the present fifth embodiment, in addition to the same operation and effect as those of the first embodiment mentioned above, it is possible to increase a surface area on the side surface of the intake [0061] air passage portion 11 in the adsorbent layer 23 in comparison with the structure shown in FIGS. 2A and 2B so as to further increase a collecting efficiency for the evaporated fuel. Accordingly, it is possible to reduce a capacity of the adsorbent and make the structure light and compact.
  • Further, since the [0062] filter 12 is provided on the outer peripheral portion of the introduction windows 18 c in the inner cylinder portion 18, that is, out of the intake air passage portion 11 even in the case of being bent in a waveform, the filter 12 does not constitute a large flowing resistance.
  • FIG. 6 shows a fifth embodiment according to the present invention. [0063]
  • The present fifth embodiment is structured such that the [0064] filter 12 in the first embodiment shown in FIGS. 2A and 2B is bent in a waveform in a peripheral direction of the intake air passage portion 11 .
  • The other structural components are the same as those of the first embodiment mentioned above. [0065]
  • In the present fifth embodiment, it is also possible to obtain the same operation and effect as those of the fourth embodiment mentioned above. [0066]
  • In this case, the [0067] filters 12 in the embodiments shown in FIGS. 3A, 3B and FIGS. 4A and 4B may be bent in a waveform as shown in FIGS. 5 and 6.
  • Incidentally, the present invention is not limited to the embodiments mentioned above, and the adsorbing [0068] device 10 may be connected to an outlet portion of the atmospheric air port in the canister arranged in the evaporated fuel discharge preventing apparatus. In this case, the canister constitutes the evaporated fuel generating portion, and the evaporated fuel discharged from the canister through the atmospheric air port is adsorbed and collected by the adsorbing device 10. In this case, it is also possible to obtain the same operation and effect as those of the embodiments mentioned above.
  • Since the structure is made in the manner mentioned above, in accordance with the present invention, it is possible to sufficiently adsorb and collect the evaporated fuel at a time when the engine stops, and significantly reduce the intake air resistance in the adsorbing device portion at a time when the engine is driven, so as to prevent the engine performance from being reduced due to the intake air resistance. [0069]
  • Additionally, in accordance with the present invention, it is further possible to achieve the effects mentioned above and reduce the cost of the adsorbing device by providing the adsorbent layer only on the substantially lower half portion in the outer periphery of the intake air passage portion. [0070]
  • In addition, in accordance with the present invention, it is further possible to more effectively adsorb and collect the evaporated fuel by making the thickness of the adsorbent layer in the direction perpendicular to the axis of the intake air passage portion larger on the lower side and smaller on the upper side. [0071]
  • Moreover, in accordance with the present invention, it is further possible to increase the adsorbing side surface in the adsorbent layer so as to increase the adsorbing efficiency by providing the filter between the intake air passage portion and the adsorbent layer and bending the filter in the waveform. [0072]

Claims (6)

What is claimed is:
1. An evaporated fuel discharge preventing apparatus comprising:
an evaporated fuel generating portion;
an air cleaner element; and
an adsorbing device arranged in a passage between the evaporated fuel generating portion and the air cleaner element,
wherein said adsorbing device is formed by an intake air passage portion laterally arranged within the device penetratingly and communicated with said passage at both ends, an adsorbent layer arranged on an outer periphery of said intake air passage portion, and a member covering an outer surface in a non-ventilating state except a side of said intake air passage portion in said adsorbent layer, and an inner diameter of the intake air passage portion of said adsorbing device is set to be substantially equal to or more than an inner diameter of said intake air passage.
2. An evaporated fuel discharge preventing apparatus as claimed in claim 1, wherein said adsorbent layer is provided only on a substantially lower half portion of an outer periphery of the intake air passage portion.
3. An evaporated fuel discharge preventing apparatus as claimed in claim 1, wherein a thickness of the adsorbent layer in a direction perpendicular to an axis of said intake air passage portion is larger on a side of a lower portion and smaller on a side of an upper portion.
4. An evaporated fuel discharge preventing apparatus as claimed in claim 1, wherein a filter is provided between said intake air passage portion and said adsorbent layer and said filter is bent in a wave shape.
5. An evaporated fuel discharge preventing apparatus as claimed in claim 2, wherein a filter is provided between said intake air passage portion and said adsorbent layer and said filter is bent in a wave shape.
6. An evaporated fuel discharge preventing apparatus as claimed in claim 3, wherein a filter is provided between said intake air passage portion and said adsorbent layer and said filter is bent in a wave shape.
US09/885,156 2000-06-23 2001-06-21 Evaporated fuel discharge preventing apparatus Expired - Fee Related US6440200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000188559A JP2002004956A (en) 2000-06-23 2000-06-23 Device for preventing discharging of evaporated fuel
JP2000-188559 2000-06-23

Publications (2)

Publication Number Publication Date
US20020029693A1 true US20020029693A1 (en) 2002-03-14
US6440200B1 US6440200B1 (en) 2002-08-27

Family

ID=18688326

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/885,156 Expired - Fee Related US6440200B1 (en) 2000-06-23 2001-06-21 Evaporated fuel discharge preventing apparatus

Country Status (2)

Country Link
US (1) US6440200B1 (en)
JP (1) JP2002004956A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145732A1 (en) * 2002-02-07 2003-08-07 Leffel Jeffry Marvin Screened carbon trap protection
US20040069146A1 (en) * 2002-07-31 2004-04-15 Carter Steven Alan Adsorptive duct for contaminant removal, and methods
US6736871B1 (en) * 2002-12-09 2004-05-18 Visteon Global Technologies, Inc. Integrated filter screen and hydrocarbon adsorber
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US20040211320A1 (en) * 2003-04-22 2004-10-28 Cain Rodney H. Integration of a metallic substrate into a plastic induction system
EP1486661A2 (en) 2003-06-11 2004-12-15 Arvin Technologies, Inc. Increased surface area hydrocarbon adsorber
US20050005770A1 (en) * 2002-07-31 2005-01-13 Dallas Andrew James Adsorptive duct for contaminant removal, and methods
US20050081712A1 (en) * 2003-10-17 2005-04-21 Koslow Evan E. Tangential in-line air filter
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
US20060096458A1 (en) * 2004-11-08 2006-05-11 Visteon Global Technologies, Inc. Low loss hydrocarbon (HC) adsorber device for air induction system
US7070641B1 (en) * 2003-12-03 2006-07-04 Fleetguard, Inc. Carbon media filter element
US20060272508A1 (en) * 2005-06-01 2006-12-07 Hoke Jeffrey B Coated screen adsorption unit for controlling evaporative hydrocarbon emissions
US20070079702A1 (en) * 2005-10-11 2007-04-12 Multisorb Technologies, Inc. Hydrocarbon emission scavenger
US20070107705A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffery B Hydrocarbon adsorption trap for controlling evaporative emissions from EGR valves
US20070107701A1 (en) * 2005-11-17 2007-05-17 Buelow Mark T Hydrocarbon adsorption filter for air intake system evaporative emission control
US20070107599A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffrey B Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
US20070113831A1 (en) * 2005-11-18 2007-05-24 Hoke Jeffrey B Hydrocarbon adsorpotion method and device for controlling evaporative emissions from the fuel storage system of motor vehicles
US20070137155A1 (en) * 2005-12-16 2007-06-21 Furseth Michael R Multiple flow filter system
DE202006007096U1 (en) * 2006-05-02 2007-09-13 Mann+Hummel Gmbh Adsorber in the intake of an internal combustion engine
US20070278034A1 (en) * 2006-05-30 2007-12-06 Toyota Boshoku Kabushiki Kaisha Duct and process for producing the same
WO2007149978A2 (en) * 2006-06-22 2007-12-27 Honeywell International Inc. Hydrocarbon adsorber for air induction systems
US20080127949A1 (en) * 2006-10-27 2008-06-05 Herald Michael L Hydrocarbon adsorber for air induction systems
US20080257160A1 (en) * 2007-04-17 2008-10-23 Toyota Boshoku Kabushiki Kaisha Fuel adsorption filter and air cleaner
US20090113862A1 (en) * 2005-12-16 2009-05-07 Connor Michael J Volume-Efficient Filter
EP2249020A1 (en) * 2008-03-04 2010-11-10 Tokyo Roki Co., Ltd. Muffling structure of vent pipe and muffling structure of case
WO2012152894A1 (en) * 2011-05-12 2012-11-15 Jaguar Cars Ltd. Motor vehicle hydrocarbon trap and method
WO2013006359A1 (en) * 2011-07-01 2013-01-10 Meadwestvaco Corporation Emission control devices for air intake systems
US20150369183A1 (en) * 2012-03-02 2015-12-24 Ford Global Technologies, Llc Induction system including a passive-adsorption hydrocarbon trap
CN106481488A (en) * 2015-08-31 2017-03-08 福特环球技术公司 Induction system including passive adsorption hydrocarbon trap
US20220260044A1 (en) * 2021-02-16 2022-08-18 GM Global Technology Operations LLC Vapor capture element for an air intake system of an internal combustion engine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120445A (en) * 2001-10-05 2003-04-23 Tokyo Roki Co Ltd Air cleaner
JP3942887B2 (en) * 2001-12-26 2007-07-11 株式会社日本自動車部品総合研究所 Evaporative fuel adsorbent and air cleaner
JP4050935B2 (en) 2002-06-07 2008-02-20 トヨタ紡織株式会社 Intake device for internal combustion engine
US6692551B2 (en) 2002-07-17 2004-02-17 Delphi Technologies, Inc. Air cleaner assembly and process
US6752859B2 (en) * 2002-10-02 2004-06-22 Delphi Technologies, Inc. Air cleaner assembly for reducing pollutants from being discharged into the atmosphere
US20040099253A1 (en) * 2002-10-08 2004-05-27 Tschantz Michael Ford Carbon-containing shaped cylinders for engine air induction system emission reduction
US6835234B2 (en) 2002-12-12 2004-12-28 Visteon Global Technologies, Inc. Intake tube assembly with evaporative emission control device
US7278406B2 (en) * 2005-01-27 2007-10-09 Delphi Technologies, Inc. Spiral-wound hydrocarbon adsorber for an air intake of an internal combustion engine
US7222612B2 (en) * 2005-01-27 2007-05-29 Delphi Technologies, Inc. Low-resistance hydrocarbon adsorber cartridge for an air intake of an internal combustion engine
DE202005008505U1 (en) * 2005-05-11 2006-09-14 Mann + Hummel Gmbh adsorbing
US7763104B2 (en) 2006-09-05 2010-07-27 Visteon Global Technologies, Inc. Hydrocarbon trap assembly
JP2009103088A (en) 2007-10-25 2009-05-14 Aisan Ind Co Ltd Evaporated fuel treatment equipment
US8082906B2 (en) 2007-12-07 2011-12-27 Toyota Boshoku Kabushiki Kaisha Air duct for engine
JP4882995B2 (en) * 2007-12-17 2012-02-22 トヨタ紡織株式会社 Air duct
JP4882988B2 (en) * 2007-12-07 2012-02-22 トヨタ紡織株式会社 Engine air duct device
JP5514713B2 (en) * 2008-03-04 2014-06-04 東京濾器株式会社 Silencer structure of vent pipe and case
US8205442B2 (en) * 2008-06-06 2012-06-26 Visteon Global Technologies, Inc. Low restriction hydrocarbon trap assembly
US8191539B2 (en) 2008-09-18 2012-06-05 Ford Global Technologies, Llc Wound hydrocarbon trap
US8191535B2 (en) * 2008-10-10 2012-06-05 Ford Global Technologies, Llc Sleeve hydrocarbon trap
US8372477B2 (en) * 2009-06-11 2013-02-12 Basf Corporation Polymeric trap with adsorbent
JP5471136B2 (en) * 2009-08-05 2014-04-16 トヨタ紡織株式会社 Air intake duct
JP5875938B2 (en) * 2012-05-24 2016-03-02 愛三工業株式会社 Evaporative fuel processing equipment
DE102013006505A1 (en) * 2013-04-16 2014-10-16 Mann + Hummel Gmbh air filter
US9702327B2 (en) * 2015-02-05 2017-07-11 Caterpillar Inc. System and method for introducing gas into engine cylinder
DE102015008011B4 (en) * 2015-06-22 2020-12-17 A. Kayser Automotive Systems Gmbh Activated carbon filter system
US10598137B2 (en) * 2016-12-20 2020-03-24 K&N Engineering, Inc. Mass airflow sensor and hydrocarbon trap combination

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572014A (en) * 1968-11-01 1971-03-23 Ford Motor Co Engine air cleaner carbon bed filter element construction
JPS5933890Y2 (en) * 1978-03-07 1984-09-20 株式会社デンソー Air cleaner element for internal combustion engine
US4224044A (en) * 1978-06-26 1980-09-23 General Motors Corporation Air cleaner with valve means for preventing fuel vapor escape
JPS5539335A (en) 1978-09-13 1980-03-19 Toyo Rubber Chem Ind Co Ltd Production of mold
JPS5536990A (en) 1979-07-16 1980-03-14 Toshiba Corp Apparatus for applying electron beam
US4261717A (en) * 1979-10-15 1981-04-14 Canadian Fram Limited Air cleaner with fuel vapor door in inlet tube
JPS58113861A (en) 1981-12-28 1983-07-06 Ricoh Co Ltd Measuring method for irregularity of rotation of mechanical scanner
JPS61183456A (en) 1985-02-06 1986-08-16 Nippon Mining Co Ltd Method and apparatus for hot dip zinc coating
JPS61194761A (en) 1985-02-22 1986-08-29 Nec Corp Integrated circuit
US5119791A (en) * 1991-06-07 1992-06-09 General Motors Corporation Vapor storage canister with liquid trap
US5509947A (en) * 1994-04-04 1996-04-23 Burton; John E. Supplemental spark arrester and silencer
US5586996A (en) * 1994-05-12 1996-12-24 Manookian, Jr.; Arman K. Vapor separating device
US6261333B1 (en) * 1999-07-09 2001-07-17 Diesel Research, Inc. Air filter for an internal combustion engine having a primary air region and a secondary air region

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145732A1 (en) * 2002-02-07 2003-08-07 Leffel Jeffry Marvin Screened carbon trap protection
US20050005770A1 (en) * 2002-07-31 2005-01-13 Dallas Andrew James Adsorptive duct for contaminant removal, and methods
US20040069146A1 (en) * 2002-07-31 2004-04-15 Carter Steven Alan Adsorptive duct for contaminant removal, and methods
US6997977B2 (en) * 2002-07-31 2006-02-14 Donaldson Company, Inc. Adsorptive duct for contaminant removal, and methods
US6736871B1 (en) * 2002-12-09 2004-05-18 Visteon Global Technologies, Inc. Integrated filter screen and hydrocarbon adsorber
US20050145224A1 (en) * 2003-03-19 2005-07-07 Zulauf Gary B. Evaporative emissions filter
US7163574B2 (en) 2003-03-19 2007-01-16 Honeywell International, Inc. Evaporative emissions filter
AU2004224396B2 (en) * 2003-03-19 2007-11-22 Fram Group Ip Llc Evaporative hydrocarbon emissions filter
KR101130036B1 (en) 2003-03-19 2012-03-28 프램 그룹 아이피 엘엘씨 Evaporative hydrocarbon emissions filter
US7182802B2 (en) * 2003-03-19 2007-02-27 Honeywell International, Inc. Evaporative emissions filter
US8216349B2 (en) * 2003-03-19 2012-07-10 Fram Group Ip Llc Evaporative emissions filter
US7655166B2 (en) * 2003-03-19 2010-02-02 Honeywell International Inc. Evaporative emissions filter
WO2004085035A1 (en) * 2003-03-19 2004-10-07 Honeywell International Inc. Evaporative hydrocarbon emissions filter
US20100101542A1 (en) * 2003-03-19 2010-04-29 Zulauf Gary B Evaporative emissions filter
US20080184891A1 (en) * 2003-03-19 2008-08-07 Zulauf Gary B Evaporative emissions filter
US20040182240A1 (en) * 2003-03-19 2004-09-23 Bause Daniel E. Evaporative emissions filter
US7344586B2 (en) 2003-03-19 2008-03-18 Honeywell International, Inc. Evaporative emissions filter
US20040211320A1 (en) * 2003-04-22 2004-10-28 Cain Rodney H. Integration of a metallic substrate into a plastic induction system
EP1486661A2 (en) 2003-06-11 2004-12-15 Arvin Technologies, Inc. Increased surface area hydrocarbon adsorber
US6905536B2 (en) * 2003-06-11 2005-06-14 Arvin Technologies, Inc. Increased surface area hydrocarbon adsorber
US20040250680A1 (en) * 2003-06-11 2004-12-16 Wright Allen B. Increased surface area hydrocarbon adsorber
US20050081712A1 (en) * 2003-10-17 2005-04-21 Koslow Evan E. Tangential in-line air filter
US7276098B2 (en) * 2003-10-17 2007-10-02 Kx Technologies, Llc Tangential in-line air filter
US7070641B1 (en) * 2003-12-03 2006-07-04 Fleetguard, Inc. Carbon media filter element
US7377966B2 (en) 2004-08-26 2008-05-27 Honeywell International, Inc. Adsorptive assembly and method of making the same
US20060042468A1 (en) * 2004-08-26 2006-03-02 Smith Robert L Adsorptive assembly and method of making the same
WO2006049680A3 (en) * 2004-11-01 2006-08-31 Honeywell Int Inc Evaporative emissions filter
US7294178B2 (en) * 2004-11-08 2007-11-13 Visteon Global Technologies, Inc. Low loss hydrocarbon (HC) adsorber device for air induction system
US20060096458A1 (en) * 2004-11-08 2006-05-11 Visteon Global Technologies, Inc. Low loss hydrocarbon (HC) adsorber device for air induction system
US20060272508A1 (en) * 2005-06-01 2006-12-07 Hoke Jeffrey B Coated screen adsorption unit for controlling evaporative hydrocarbon emissions
US7531029B2 (en) 2005-06-01 2009-05-12 Basf Catalysts Llc Coated screen adsorption unit for controlling evaporative hydrocarbon emissions
US8475569B2 (en) 2005-10-11 2013-07-02 Multisorb Technologies, Inc. Hydrocarbon emission scavenger and method for making
US7708817B2 (en) * 2005-10-11 2010-05-04 Multisorb Technologies, Inc. Hydrocarbon emission scavenger
US20070079702A1 (en) * 2005-10-11 2007-04-12 Multisorb Technologies, Inc. Hydrocarbon emission scavenger
US20110108008A1 (en) * 2005-10-11 2011-05-12 Multisorb Technologies, Inc. Hydrocarbon emission scavenger and method for making
US7278410B2 (en) 2005-11-17 2007-10-09 Engelhard Corporation Hydrocarbon adsorption trap for controlling evaporative emissions from EGR valves
US20070107599A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffrey B Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
US20070107705A1 (en) * 2005-11-17 2007-05-17 Hoke Jeffery B Hydrocarbon adsorption trap for controlling evaporative emissions from EGR valves
US20070107701A1 (en) * 2005-11-17 2007-05-17 Buelow Mark T Hydrocarbon adsorption filter for air intake system evaporative emission control
US7677226B2 (en) 2005-11-17 2010-03-16 Basf Catalysts Llc Hydrocarbon adsorption filter for air intake system evaporative emission control
US7540904B2 (en) 2005-11-17 2009-06-02 Basf Catalysts Llc Hydrocarbon adsorption slurry washcoat formulation for use at low temperature
US7578285B2 (en) 2005-11-17 2009-08-25 Basf Catalysts Llc Hydrocarbon adsorption filter for air intake system evaporative emission control
US20090272361A1 (en) * 2005-11-17 2009-11-05 Basf Catalysts, Llc Hydrocarbon Adsorption Filter for Air Intake System Evaporative Emission Control
US7753034B2 (en) 2005-11-18 2010-07-13 Basf Corporation, Hydrocarbon adsorption method and device for controlling evaporative emissions from the fuel storage system of motor vehicles
US20070113831A1 (en) * 2005-11-18 2007-05-24 Hoke Jeffrey B Hydrocarbon adsorpotion method and device for controlling evaporative emissions from the fuel storage system of motor vehicles
US7799108B2 (en) 2005-12-16 2010-09-21 Cummins Filtration Ip, Inc. Volume-efficient filter
US20070137155A1 (en) * 2005-12-16 2007-06-21 Furseth Michael R Multiple flow filter system
US7540895B2 (en) * 2005-12-16 2009-06-02 Fleetguard, Inc. Multiple flow filter system
US20090113862A1 (en) * 2005-12-16 2009-05-07 Connor Michael J Volume-Efficient Filter
DE202006007096U1 (en) * 2006-05-02 2007-09-13 Mann+Hummel Gmbh Adsorber in the intake of an internal combustion engine
US7621372B2 (en) * 2006-05-30 2009-11-24 Toyota Boshoku Kabushiki Kaisha Duct and process for producing the same
US20070278034A1 (en) * 2006-05-30 2007-12-06 Toyota Boshoku Kabushiki Kaisha Duct and process for producing the same
WO2007149978A2 (en) * 2006-06-22 2007-12-27 Honeywell International Inc. Hydrocarbon adsorber for air induction systems
US7610904B2 (en) * 2006-06-22 2009-11-03 Honeywell International Inc. Hydrocarbon adsorber for air induction systems
WO2007149978A3 (en) * 2006-06-22 2008-04-03 Honeywell Int Inc Hydrocarbon adsorber for air induction systems
US20080000455A1 (en) * 2006-06-22 2008-01-03 Treier Philip P Hydrocarbon adsorber for air induction systems
US20080127949A1 (en) * 2006-10-27 2008-06-05 Herald Michael L Hydrocarbon adsorber for air induction systems
US7556026B2 (en) * 2006-10-27 2009-07-07 Honeywell International Inc. Hydrocarbon adsorber for air induction systems
US20080257160A1 (en) * 2007-04-17 2008-10-23 Toyota Boshoku Kabushiki Kaisha Fuel adsorption filter and air cleaner
US7758678B2 (en) * 2007-04-17 2010-07-20 Toyota Boshoku Kabushiki Kaisha Fuel adsorption filter and air cleaner
US8316987B2 (en) 2008-03-04 2012-11-27 Tokyo Roki Co., Ltd. Muffling structure of vent pipe and muffling structure of case
EP2249020A4 (en) * 2008-03-04 2012-04-18 Tokyo Roki Kk Muffling structure of vent pipe and muffling structure of case
US20110011670A1 (en) * 2008-03-04 2011-01-20 Tokyo Roki Co. Ltd Muffling structure of vent pipe and muffling structure of case
EP2249020A1 (en) * 2008-03-04 2010-11-10 Tokyo Roki Co., Ltd. Muffling structure of vent pipe and muffling structure of case
WO2012152894A1 (en) * 2011-05-12 2012-11-15 Jaguar Cars Ltd. Motor vehicle hydrocarbon trap and method
US9945335B2 (en) 2011-05-12 2018-04-17 Jaguar Land Rover Limited Motor vehicle hydrocarbon trap and method
WO2013006359A1 (en) * 2011-07-01 2013-01-10 Meadwestvaco Corporation Emission control devices for air intake systems
US20150369183A1 (en) * 2012-03-02 2015-12-24 Ford Global Technologies, Llc Induction system including a passive-adsorption hydrocarbon trap
US9581115B2 (en) * 2012-03-02 2017-02-28 Ford Global Technologies, Llc Induction system including a passive-adsorption hydrocarbon trap
CN106481488A (en) * 2015-08-31 2017-03-08 福特环球技术公司 Induction system including passive adsorption hydrocarbon trap
US20220260044A1 (en) * 2021-02-16 2022-08-18 GM Global Technology Operations LLC Vapor capture element for an air intake system of an internal combustion engine
US11639705B2 (en) * 2021-02-16 2023-05-02 GM Global Technology Operations LLC Vapor capture element for an air intake system of an internal combustion engine

Also Published As

Publication number Publication date
US6440200B1 (en) 2002-08-27
JP2002004956A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US6440200B1 (en) Evaporated fuel discharge preventing apparatus
US7255094B2 (en) Fuel vapor recovery canister
US6699310B2 (en) Evaporative fuel adsorbing member and air cleaner
JP2934699B2 (en) Evaporative fuel processing equipment
CN100439696C (en) Evaporative emissions control system including a charcoal canister for small internal combustion engines
US6460516B2 (en) Canister for vehicle
US4173207A (en) Canister
JP2004143950A (en) Filter for canister
US6047687A (en) Canister
JP2003003914A (en) Vaporized fuel disposition device
US7520271B2 (en) Evaporated fuel adsorbing mechanism for internal combustion engine
US5915364A (en) Canister for use in evaporative emission control system for automotive vehicle
US20020073847A1 (en) Cell within a cell monolith structure for an evaporative emissions hydrocarbon scrubber
JPH08189427A (en) Canister
US7214258B2 (en) Evaporated fuel processing device
JP3610757B2 (en) Canister
US5983870A (en) Adsorption filter for the fuel tank venting system of an internal combustion engine and process for operating said system
JPH07189817A (en) Canister purge system for engine
KR100482858B1 (en) Air filter for canister
JPH06280693A (en) Evaporated fuel processor
CN218151110U (en) Oil-gas separation structure of engine
JPH0311406Y2 (en)
JPH0322544Y2 (en)
KR200226521Y1 (en) Charcoal Canister Structure
JPH0355803Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: AISAN KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAKAKIBARA, HITOSHI;YAMADA, HIDEO;TOKI, TOMONARI;REEL/FRAME:011924/0326

Effective date: 20010607

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: HITACHI DISPLAYS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HITACHI, LTD.;REEL/FRAME:021205/0273

Effective date: 20080428

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140827