US20010055615A1 - Rapid gelling biocompatible polymer composition - Google Patents

Rapid gelling biocompatible polymer composition Download PDF

Info

Publication number
US20010055615A1
US20010055615A1 US09/293,708 US29370899A US2001055615A1 US 20010055615 A1 US20010055615 A1 US 20010055615A1 US 29370899 A US29370899 A US 29370899A US 2001055615 A1 US2001055615 A1 US 2001055615A1
Authority
US
United States
Prior art keywords
sulfhydryl
composition
peg
gel
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/293,708
Other versions
US6312725B1 (en
Inventor
Donald G. Wallace
Gregory Cruise
Woonza Rhee
Jacqueline Schroeder
George Coker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiodevice International GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/293,708 priority Critical patent/US6312725B1/en
Application filed by Individual filed Critical Individual
Assigned to COHESION TECHNOLOGIES, INC. reassignment COHESION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COKER, GEORGE T., III, SCHROEDER, JACQUELINE ANNE, WALLACE, DONALD G.
Assigned to COHESION TECHNOLOGIES, INC. reassignment COHESION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RHEE, WOONZA M.
Assigned to COHESION TECHNOLOGIES, INC. reassignment COHESION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUISE, GREGORY M.
Assigned to COHESION TECHNOLOGIES, INC. reassignment COHESION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARONEY, MARCEE M.
Priority to JP2000611963A priority patent/JP2002541923A/en
Priority to AU43497/00A priority patent/AU4349700A/en
Priority to PCT/US2000/010053 priority patent/WO2000062827A2/en
Priority to US10/012,263 priority patent/US6624245B2/en
Publication of US6312725B1 publication Critical patent/US6312725B1/en
Application granted granted Critical
Publication of US20010055615A1 publication Critical patent/US20010055615A1/en
Assigned to ANGIOTECH BIOMATERIALS CORP. reassignment ANGIOTECH BIOMATERIALS CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: COHESION TECHNOLOGIES, INC.
Assigned to ANGIODEVICE INTERNATIONAL GMBH reassignment ANGIODEVICE INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANGIOTECH BIOMATERIALS CORPORATION
Priority to JP2007215016A priority patent/JP5053758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/418Agents promoting blood coagulation, blood-clotting agents, embolising agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/13Burn treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • This invention relates generally to two-part polymer compositions that rapidly form covalent linkages when mixed together.
  • Such compositions are particularly well suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired.
  • they are useful as tissue sealants, in promoting hemostasis, for drug delivery, in effecting tissue adhesion, in providing tissue augmentation, and in the prevention of surgical adhesions.
  • polymer compositions in tissue engineering are now widely recognized, particularly those consisting of synthetic polymers.
  • synthetic polymer compositions can be formulated to exhibit predetermined physical characteristics such as gel strength, as well as biological characteristics such as degradability.
  • compositions that can be administered as liquids, but subsequently form hydrogels at the site of administration.
  • Such in situ hydrogel forming compositions are more convenient to use since they can be administered as liquids from a variety of different devices, and are more adaptable for administration to any site, since they are not preformed.
  • Many different mechanisms have been described that can be used to promote hydrogel formation in situ. For example, photoactivatable mixtures of water-soluble co-polyester prepolymers and polyethylene glycol have been described to create hydrogel barriers, as well as drug release matrices.
  • block copolymers of Pluronic and Poloxamer have been designed that are soluble in cold water, but form insoluble hydrogels that adhere to tissues at body temperature (Leach, et al., Am. J Obstet. Gynecol. 162:1317-1319 (1990)).
  • Polymerizable cyanoacrylates have also been described for use as tissue adhesives (Ellis, et al., J. Otolaryngol. 19:68-72 (1990)).
  • two-part synthetic polymer compositions have been described that, when mixed together, form covalent bonds with one another, as well as with exposed tissue surfaces. (PCT WO 97/22371, which corresponds to U.S. application Ser. No.
  • compositions of the present invention have been formulated to provide for rapid gelation, and also cause less tissue inflammation at the site of administration than previously described compositions.
  • the present invention discloses generally two-component polymer compositions that, when mixed together, rapidly react to form a matrix at the site of administration. Such compositions exhibit gel times of less than one minute.
  • one of the components is a sulfhydryl-containing compound.
  • both components contain multiple functional groups, and at least one of the compounds contains three or more functional groups. This ensures sufficient reactivity for formation of a three-dimensional polymer matrix.
  • both compounds contain four or more functional groups.
  • both compounds contain 12 functional groups.
  • At least one and preferably both of the compounds are polymers.
  • the non-reactive portion of the polymeric compound is referred to as its “core”.
  • Suitable polymer cores are synthetic polymers, polyamino acids, and polysaccharides.
  • the core is a polyalkylene oxide, and more preferably it is polyethylene glycol.
  • the molecular weight of the compounds can vary depending on the desired application. In most instances, the molecular weight is about 100 to 100,000 mol. wt., and more preferably about 1,000 to about 20,000 mol. wt. When the core material is polyethylene glycol, the molecular weight of the compound(s) is/are about 7,500 to about 20,000 mol. wt., and most preferaby they are about 10,000 mol. wt.
  • Suitable small organic molecules include functionally activated succinimidyl and maleimidyl compounds.
  • the linkage group formed by reacting the two compounds of the present invention together is a covalent bond formed between the sulfur atom in the sulfhydryl group of one compound with, e.g., the carbon or sulfur atom in the sulfhydryl-reactive group of the other compound.
  • the linkage may be a thioester, thioether or a disulfide, although a thioester linkage is preferred.
  • the compounds further comprise chain extenders between the polymer core and the functional groups.
  • chain extenders can activate or suppress reactivity of the functional groups, and can also be used to provide sites for hydrolysis or degradation.
  • Suitable chain extenders include poly(amino acids), poly(lactones), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), poly(phosphoesters), and enzymatically cleavable peptide groups.
  • compositions of the present invention form gels with gel times of less than 1 minute, and more preferably less than 30 seconds, and most preferably less than 15 seconds.
  • the strength (i.e., elastic modulus or G′) of the resultant gels depends on the application for which the composition is adapted, but is preferably between about 10 2 to 10 4 dynes/cm 2 for a soft gel, or between about 10 5 to 10 8 for a harder gel.
  • optional materials can also be included, such as glycosaminoglycans, proteins such as collagen, drugs, cells, hemostatic agents, genes, DNA, therapeutic agents, antibiotics, growth factors, and the like.
  • compositions of the present invention are applied in liquid or solid form to the site of administration. It is also possible to supply them premixed but inactive, and then activate them at the site of administration.
  • a method of treating tissues for the purpose of sealing tissues, preventing adhesions, providing a platform for delivery of biologically active agents, or augmenting tissues comprising mixing together the two components as described herein at the site of administration to produce the desired medical affect.
  • FIG. 1 depicts the structure of various sulfhydryl-reactive groups, with “R” representing the chemical structure to which the reactive group is attached.
  • FIG. 2 depicts the structure of a low molecular weight multi-functional reactive compound.
  • FIG. 3 depicts the rheometric measurements of gelation of a mixture of reactive tetrafunctional polyethylene glycols.
  • FIG. 4 a depicts a “12-arm” sulfhydryl reactive PEG compound as described in Example 13.
  • FIG. 4 b depicts a “12-arm” succinimidyl reactive PEG compound as described in Example 13.
  • FIG. 5 depicts the formation of two “12-arm” peg compounds from “4-arm” intermediates as described in Example 13.
  • the present invention relates to two-part polymer compositions that form a matrix when mixed together at the site of administration.
  • Each component of the composition is generally administered separately to the tissue site. Then, within a very short time after being mixed together at the site of administration, the composition forms a gel with sufficient adhesive and cohesive strength to become anchored in place.
  • gel refers to the state of matter between liquid and solid.
  • a “gel” has some of the properties of a liquid (i.e., the shape is resilient and deformable) and some of the properties of a solid (i.e., the shape is discrete enough to maintain three dimensions on a two dimensional surface.)
  • gelation time also referred to herein as “gel time” refers to the time it takes for a composition to become non-flowable under modest stress. This is generally exhibited as achieving a gel strength, G′, of greater than or equal to 10 2 dynes/cm 2 in less than 1 minute.
  • compositions of the present invention refers to the ability of the compositions of the present invention to remain intact, i.e., not rupture, tear or crack, when subjected to physical stresses or environmental conditions. Cohesive strength is sometimes measured as a function of “burst strength”.
  • adheresive strength refers to the ability of the compositions of the present invention to be able to remain attached to the tissues at the site of administration when subjected to physical stresses or environmental conditions.
  • polymer refers to a molecule consisting of individual chemical moieties, which may be the same or different, but are preferably the same, that are joined together.
  • polymer refers to individual chemical moieties that are joined end-to-end to form a linear molecule, as well as individual chemical moieties joined together in the form of a branched (e.g. a “multi-arm” or “star-shaped”) structure.
  • biocompatible refers to the ability of the compositions of the present invention to be applied to tissues without eliciting significant inflammation and fibrosis or other adverse tissue responses.
  • synthetic polymer refers to polymers that are not naturally occurring and that are produced by chemical or recombinant synthesis. As such, naturally occurring proteins such as collagen and naturally occurring polysaccharides such as hyaluronic acid are specifically excluded. Proteins such as synthetic collagen, and carbohydrates such as synthetic hyaluronic acid, and their derivatives, are included.
  • activated synthetic polymers refers to synthetic polymers that have or have been chemically modified to have at least one functional group (e.g., a sulfhydryl group) that is capable of reacting with a corresponding reaction partner (e.g., a sulfhydryl-reactive group) to form a covalent bond.
  • multifunctionally activated refers to synthetic polymers having two or more nucleophilic or electrophilic groups. Types of multifunctionally activated synthetic polymers include di-functionally activated, tri-functionally activated, tetra-functionally activated, and star-shaped activated polymers (that have four or more functional groups).
  • the two-part compositions of the present invention comprise two different compounds, each within a separate part of the composition and at least one of which is a polymer, that react with one another to form a covalently crosslinked gel matrix. As such, they can easily be administered separately, and rapidly form gels at the site of administration.
  • each component is present in one of the two separate parts, or “components”, of the composition, along with other optional ingredients as described elsewhere herein.
  • the two reactive compounds and the gel matrix that forms when they are mixed together can be represented by Formula I as follows:
  • Compound 1 has multiple (m ⁇ 2) sulfhydryl groups (SH) that react with Compound 2 , which has multiple (n ⁇ 2) sulfhydryl-reactive groups (Y).
  • sulfhydryl groups are also “sulfhydryl reactive groups”, since it is well known that sulfhydryl groups will react with one another under certain conditions.
  • Z covalent bond
  • the two compounds form multiple attachments to one another resulting in a three-dimensional polymer matrix.
  • both compounds contain four or more functional groups, since such multifunctionality results in a gel matrix with greater overall cohesive strength.
  • each of the compounds is tetrafunctionally activated.
  • the compounds each have 12 functional groups.
  • Such compounds are formed from reacting a first tetrafunctionally activated polymer with a second tetrafunctionally activated polymer, wherein the functional groups of each of the two compounds are a reaction pair, and react together to form “12-arm” functionally activated polymers.
  • An example of such a “12-arm” compound is dodeca-sulfhydryl-PEG, 50,000 mol. wt., which is constructed from a core tetra-functional succinimide ester PEG coupled to four (exterior) tetra-functional sulfhydryl-PEG molecules.
  • Such polymers range in size from over 10,000 mol. wt. to greater than 100,000 mol. wt. depending on the molecular weight of the tetra-functionally activated polymer starting materials.
  • activated polymers that are suitable for use in the present invention may have a variety of geometric shapes and configurations.
  • each of the compounds has multiple functional groups, either sulfhydryl groups or sulfhydryl-reactive groups.
  • the non-reactive remainder of the compound is considered to be its “core”.
  • At least one of the two compounds must have a polymer core in order to form an efficient gel matrix.
  • the other compound can be a small organic molecule with multiple sulfhydryl-reactive groups.
  • the polymer core may be a synthetic polyamino acid, a polysaccharide, or a synthetic polymer.
  • a preferred polymer core material is a synthetic hydrophilic polymer.
  • Suitable synthetic hydrophilic polymers include, inter alia, polyalkylene oxide, such as polyethylene oxide ((CH 2 CH 2 O) n ), polypropylene oxide ((CH(CH 3 )CH 2 O) n ) or a polyethylene/polypropylene oxide mixture ((CH 2 CH 2 O) n —(CH(CH 3 )CH 2 O) n ).
  • a particularly preferred synthetic hydrophilic polymer is a polyethylene glycol (PEG) having a molecular weight within the range of about 100 to about 100,000 mol.
  • the polymer core is polyethylene glycol, it generally has a molecular weight within the range of about 7,500 to about 20,000 mol. wt. Most preferably, the polyethylene glycol has a molecular weight of approximately 10,000 mol. wt.
  • Multifunctionally activated polyalkylene oxides such as polyethylene glycol
  • polyalkylene oxides are commercially available, and are also easily prepared using known methods. For example, see Chapter 22 of Poly ( ethylene Glycol ) Chemistry: Biotechnical and Biomedical Applications , J. Milton Harris, ed., Plenum Press, NY (1992); and Shearwater Polymers, Inc. Catalog, Polyethylene Glycol Derivatives , Huntsville, Ala. (1997-1998).
  • the preferred combination of activated polymers is as follows: the sulfhydry-reactive group-containing compound is the tetrafunctional PEG, pentaerythritol poly(ethylene glycol) ether tetra-succinimidyl glutarate (10,000 mol. wt.); and the sulfhydryl group-containing compound is the tetrafunctional PEG, pentaerythritol poly(ethylene glycol) ether tetra-sulfhydryl (10,000 mol. wt.).
  • these “four-arm” PEGs are formed by ethoxylation of pentaerythritol, where each of the four chains is approximately 2,500 mol. wt., and then derivatized to introduce the functional groups onto each of the four arms.
  • analogous poly(ethylene glycol)-like compounds polymerized from di-glycerol instead of pentaerythritol.
  • the other reactive compound is a multifunctionally active small organic molecule.
  • Such compounds include the di-functional di-succinimidyl esters and di-maleimidyl compounds, as well as other well known commercially available compounds (Pierce Chemical Co., Rockford, Ill.).
  • Pierce Chemical Co. Rockford, Ill.
  • one of skill in the art could easily synthesize a low molecular weight multi-functional reactive compound using routine organic chemistry techniques. On such compound is shown in FIG. 2, which is a penta-erythritol coupled to four glutarates, with each arm capped with N-hydroxy-succinimidyl esters (NHS).
  • FIG. 2 is a penta-erythritol coupled to four glutarates, with each arm capped with N-hydroxy-succinimidyl esters (NHS).
  • Analogous compounds can be synthesized from inositol (radiating 6 arm), lactitol (9 arm) or sorbitol (linear 6-arm).
  • the end-capped reactive group can just as easily be sulfhydryl, maleimidyl, vinyl-sulfone, etc., instead of NHS.
  • the polymer or the small molecule can carry either reactive end group as long as there are reactive pairs in the composition such as NHS and SH, maleimidyl and SH, etc.
  • the linkage, Z comprises a covalent bond between the sulfur atom in the sulfhydryl group-containing compound and, e.g., the carbon or sulfur atom in the sulfhydryl-reactive group-containing compound.
  • the linkage may be a thioester, a thioether, a disulfide, or the like.
  • sulfhydryl reactive groups that react with sulfhydryl groups to form thioester linkages are preferred.
  • Such compounds are depicted in FIG. 1 and include, inter alia, the following compounds, with the numbers in parentheses corresponding to the structures shown in FIG. 1: mixed anhydrides, such as PEG-glutaryl-acetyl-anhydride (1), PEG-glutaryl-isovaleryl-anhydride (2), PEG-glutaryl-pivalyl-anhydride (3) and related compounds as presented in Bodanszky, p.
  • Ester derivatives of phosphorus such as structures (4) and (5); ester derivatives of p-nitrophenol (6) of p-nitrothiophenol (7), of pentafluorophenol (8), of structure (9) and related active esters as presented by Bodanszky, pp.
  • esters of substituted hydroxylamines such as those of N-hydroxy-phthalimide (10), N-hydroxy-succinimide (11), and N-hydroxy-glutarimide (12), as well as related structures in Bodanszky; Table 3; esters of 1-hydroxybenzotriazole (13), 3-hydroxy-3,4-dihydro-benzotriazine-4-one (14) and 3-hydroxy-3,4-dihydro-quinazoline-4-one; derivatives of carbonylimidazole; and isocyanates.
  • auxiliary reagents can also be used to facilitate bond formation, such as 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide can be used to facilitate coupling of carboxyl groups (i.e., glutarate and succinate) with sulfhydryl groups.
  • sulfhydryl reactive groups can be employed that form disulfide bonds with sulfhydryl groups, such as ortho pyridyl disulfide, 3-nitro-2-pyridenesulfenyl, 2-nitro-5-thiocyanobenzoic acid, 5,5′-dithio-bis(2-nitrobenzoic acid), derivatives of methane-thiosulfate, and 2,4-dinitrophenyl cysteinyl disulfides.
  • auxiliary reagents such as the hydrogen peroxide or di-tert-butyl ester of azodicarboxylic acid, can be used to facilitiate disulfide bond formation.
  • sulfhydryl reactive groups form thioether bonds with sulfhydryl groups.
  • groups include, inter alia, iodoacetamide, N-ethylmaleimide and other maleimides, including dextran maleimides, mono-bromo-bimane and related compounds, vinylsulfones, epoxides, derivatives of O-methyl-isourea, ethyleneimines, aziridines, and 4-(aminosulfonyl-)7-fluoro-2,1,3-benzoxadiazole.
  • Functional groups may be directly attached to the compound core, or they may be indirectly attached through a chain extender.
  • chain extenders are well known in the art. See, for example, PCT WO 97/22371, which describes “linking groups” that would be suitable for use as chain extenders in the compositions of the present invention. Chain extenders are useful to avoid stearic hindrance problems that are sometimes associated with the formation of direct linkages between molecules. Alternatively, chain extenders may be used to link several multifunctionally activated compounds together to make larger molecules. In a particularly preferred embodiment, the chain extender can also be used to alter the degradative properties of the compositions after administration and resultant gel formation.
  • chain extenders can be incorporated into one or both of the multifunctionally activated polymers to promote hydrolysis, to discourage hydrolysis, or to provide a site for enzymatic degradation.
  • Chain extenders can also activate or suppress activity of sulfhydryl and sulfhydryl-reactive groups. For example, electron-withdrawing groups within one or two carbons of the sulfhydryl group would be expected to diminish its effectiveness in coupling, due to a lowering of nucleophilicity. Double-bond carbon and carbonyl carbon would be anticipated to have this effect. Bulky nearby groups for either partner are anticipated to diminish coupling rates, due to steric hindrance. Electron-withdrawing groups adjacent to the reactive carbonyl of glutaryl-N-hydroxysuccinimidyl would be anticipated to make this carbonyl carbon even more reactive with the sulfhydryl partner.
  • Chain extenders may provide sites for degradation, i.e., hydrolysable sites.
  • hydrolysable chain extenders include, inter alia, alpha-hydroxy acids such as lactic acid and glycolic acid; poly(lactones) such as caprolactone, valerolactone, gamma butyl lactone and p-dioxanone; poly(amino acids); poly(anhydrides) such as glutarate and succinate; poly(orthoesters); poly(orthocarbonates) such as trimethylene carbonate; and poly(phosphoesters).
  • non-degradable chain extenders include, inter alia, succinimide, propionic acid and carboxymethylate. See, for example, PCT WO 99/07417.
  • Examples of enzymatically degradable chain extenders include Leu-Gly-Pro-Ala, which is degraded by collagenase; and Gly-Pro-Lys, which is degraded by plasmin.
  • compositions of the present invention are formulated to exhibit adequate strength and rapid gel time.
  • the elastic modulus, G′ is the preferred measure of gel strength.
  • Preferred compositions for use as tissue sealants can achieve a gel strength of about 10 3 to 10 8 dynes/cm 2 , and more preferably 10 4 to 10 7 dynes/cm 2 .
  • Preferred compositions for use as hemostatic agents or for adhesion prevention have a gel strength of at least 10 2 to 10 4 dynes/cm 2 if a soft gel is desired, or 10 5 to 10 8 dynes/cm 2 if a harder matrix is desired.
  • the gel time of preferred formulations is less than 60 seconds, more preferably less than 30 seconds, and most preferably less than 15 seconds.
  • the fast gel time ensures maximum material at the site to be treated and sufficient mechanical properties.
  • compositions of the present invention may also contain other compounds, which may be included in one or both of the components of the two-component compositions, or may be separately administered.
  • these compounds may become covalently incorporated into the matrix itself by becoming crosslinked to one or both of the reactive compounds after they are mixed together.
  • the compound may be administered in such a way that it become physically or ionically associated with the matrix-forming compounds after mixing, and thus become part of the matrix itself.
  • glycosaminoglycans and proteins are glycosaminoglycans and proteins.
  • Suitable glycosaminoglycans include, inter alia, hyaluronic acid, chitin, chondroitin sulfate A, B, or C, keratin sulfate, keratosulfate and heparin, and derivatives thereof.
  • proteins can be added for a variety of purposes.
  • collagen may improve biocompatibility of the matrix, including the potential colonization by cells, promotion of would healing, etc.
  • Collagen and any amino group-containing proteins would also contribute to the structural integrity of the matrix by becoming crosslinked thereto along with the other matrix components.
  • PEG-succinimidyl esters are used, the amide bonds formed with collagen will be more stable to hydrolytic degradation than the bonds formed by the reaction of succinimidyl esters and sulfhydryls.
  • Suitable proteins include, inter alia, collagen, fibronectin, gelatin and albumin, as well as peptide fragments thereof. Particularly preferred is collagen, which may be in the form of afibrillar, microfibrillar or fibrillar collagen. Types I and III collagen isolated from bovine corium or human placenta, or prepared by recombinant DNA methods, are suitable. See PCT WO 90/05755 for a description of suitable collagens and collagen derivatives. It should be understood that when adding collagen to the composition, it is important to adjust the concentration of the other composition components to avoid precipitation.
  • Additional constituents which may be added to the composition include antibiotics, growth factors, hemostatic proteins (such as thrombin, fibrin, fibrinogen, the blood factors, etc.), cells, genes, DNA, etc.
  • compositions of the present invention comprise two separate parts, or “components”, which may be in liquid or solid form.
  • both components are liquids, such that each can be easily applied separately to the site of administration.
  • one of the components may be in the form of a dry powder that becomes mixed with the second component, which is in liquid form, when each are sprayed separately onto the tissue, or by mixing at the tissue site. It is also possible to have both components delivered to the site as powders, to be mixed with buffer at the site of administration.
  • both components can be mixed together in a single aqueous medium in which they are both unreactive, i.e. such as in a low pH buffer. Thereafter, they can be sprayed onto the tissue site along with a high pH buffer, after which they will rapidly react and form a gel.
  • a single aqueous medium in which they are both unreactive, i.e. such as in a low pH buffer. Thereafter, they can be sprayed onto the tissue site along with a high pH buffer, after which they will rapidly react and form a gel.
  • the concentration of the reactive compounds in each of the composition components necessarily depends on a number of factors.
  • the composition components are each 4-arm PEGs (i.e. PEG-PEG compositions)
  • a concentration of 20-25% by weight in each of the two components before mixing results in a gel after mixing with an elastic modulus, G′, of approximately 10 5 -10 6 dynes/cm 2 , which is adequate for use as a surgical sealant.
  • G′ elastic modulus
  • concentrations of 2-4% and 0.2-0.4% concentrations of 2-4% and 0.2-0.4%, respectively, result in gels with cohesive strengths that are comparable to PEG-PEG gels at 10-15%.
  • albumin as one of the components, concentrations of 30% or more achieve a similar cohesive strength.
  • the synthetic polymer is generally present at a concentration of 2 to 50% (w/v), and more preferably 10-25%.
  • the liquid components of the compositions of the present invention are each separately prepared by adding the activated synthetic polymer (in dry form or as a concentrated solution) to a liquid medium.
  • Suitable liquid media include aqueous buffer solutions, such as monobasic sodium phosphate/dibasic sodium phosphate, sodium carbonate/sodium bicarbonate, glutamate or acetate, at a concentration of 0.5 to 300 mM.
  • the sulfhydryl-reactive PEG is prepared in water or a dilute buffer, with a pH of between around 5 to 6.
  • Buffers with pKs between about 8 to 10.5 for preparing the sulfhydryl-PEG component are useful to achieve fast gelation time of compositions containing mixtures of sulfhydryl-PEG/SG-PEG.
  • These include carbonate, borate and AMPSO (3-[(1,1-dimethyl-2-hydroxyethyl)amino]2-hydroxy-propane-sulfonic acid).
  • AMPSO 3-[(1,1-dimethyl-2-hydroxyethyl)amino]2-hydroxy-propane-sulfonic acid.
  • a pH of around 5 to 9 is preferred for the liquid medium used to prepare the sulfhydryl PEG.
  • a particularly preferred composition for hemostatic applications to actively bleeding tissue sites comprises a mixture of maleimidyl and succinimidyl PEG as the first component, and sulfhydryl PEG as the second component.
  • Such compositions produce gels with enhanced biodegradability and superior gel times when compared to compositions having only maleimidyl PEG or succinimicyl PEG alone.
  • the pH of the aqueous buffer solution that is used for each of the two (or more) composition components should be adjusted using routine optimization to achieve a final pH that is conducive to rapid gelation, without causing instantaneous gelation which interferes with the delivery process.
  • both amino PEG and sulfhydryl PEG need a basic pH to enhance nucleophilicity.
  • the effects of pH on gel time are discussed below in the Examples.
  • compositions of the present invention are generally delivered to the site of administration in such a way that the two (or more) individual components of the composition come into contact with one another for the first time at the site of administration, or immediately preceding administration.
  • the compositions of the present invention are preferably delivered to the site of administration using an apparatus that allows the two components to be delivered separately.
  • Such delivery systems usually involve two-compartment single exit or dual exit spray devices.
  • the two components can be delivered separately using any type of controllable extrusion system, or they can be delivered manually in the form of separate pastes, liquids or dry powders, and mixed together manually at the site of administration.
  • Many devices that are adapted for delivery of two-component tissue sealants/hemostatic agents are well known in the art and can also be used in the practice of the present invention.
  • compositions of the present invention are prepared in inactive form as either a liquid or powder.
  • Such compositions can then be activated after application to the tissue site, or immediately beforehand, by applying an activator.
  • the activator is a buffer solution having a pH that will activate the composition once mixed therewith. See Example 12 for a description of a sulfhydryl-containing PEG composition that is maintained at a low pH until administration, then mixed with a high pH buffer at the application site to initiate gelation.
  • compositions of the present invention can be used in a variety of different pharmaceutical applications.
  • the compositions described herein can be adapted for use in any tissue engineering application where synthetic gel matrices are currently being utilized.
  • the compositions of the present invention are useful as tissue sealants, in tissue augmentation, in tissue repair, as hemostatic agents, in preventing tissue adhesions, in providing surface modifications, and in drug/cell/gene delivery applications.
  • tissue sealants in tissue augmentation, in tissue repair, as hemostatic agents, in preventing tissue adhesions, in providing surface modifications, and in drug/cell/gene delivery applications.
  • One of skill in the art could easily determine the appropriate administration protocol to use with any composition having a known gel strength and gelation time based on the principles described herein and well known scientific principles. A more detailed description of several specific applications is given below:
  • compositions described herein can be used for medical conditions that require a coating or sealing layer to prevent the leakage of gases, liquid or solids.
  • the method entails applying both components to the damaged tissue or organ to seal 1) vascular and or other tissues or organs to stop or minimize the flow of blood; 2) thoracic tissue to stop or minimize the leakage of air; 3) gastrointestinal tract or pancreatic tissue to stop or minimize the leakage of fecal or tissue contents; 4) bladder or ureters to stop or minimize the leakage of urine; 5) dura to stop or minimize the leakage of CSF; and 6) skin or serosal tissue to stop the leakage of serosal fluid.
  • compositions may also be used to adhere tissues together such as small vessels, nerves or dermal tissue.
  • the material can be used 1) by applying it to the surface of one tissue and then a second tissue may be rapidly pressed against the first tissue or 2) by bringing the tissues in close juxtaposition and then applying the material.
  • a preferred application is a method of reducing the formation of adhesions after a surgical procedure in a patient.
  • the method entails applying the material onto the damaged tissue or organ either by spraying both components together or by applying previously admixed components.
  • the components will react together to form a hydrogel on the tissue surface.
  • the medical procedures include gynecological, abdominal, neurosurgical, cardiac, and orthopedic indications.
  • a preferred application is a method of locally applying a biologically active substance to patients.
  • the active substance can be delivered in conjunction with the two components such that the material can form in situ or as a preformed implant.
  • the active substance can be either released through diffusion controlled processes or may be covalently bound to the components such that it will be released as the resulting hydrogel degrades.
  • the biologically active substances can be any of a variety of organic and inorganic materials, including proteins, carbohydrates, and nucleic acids. Specific examples include enzymes, antibiotics, antineoplastic agents, cytokines, local anesthetics, hormones, antiangiogenic agents, antibodies, neurotransmitters, psychoactive drugs, drugs affecting reproductive organs, and therapeutic oligonucleotides.
  • a preferred application is a method of applying coatings to implants to affect the surface properties of implants or to help adhere implants to tissue surfaces.
  • a coat of components may be applied to 1) vascular grafts, stents to minimize or stop the leakage of blood or serosal fluid from these devices; 2) catheters or breast implants to reduce or stop excessive fibrosis; 3) artificial patches or meshes to minimize excessive fibrosis and to help adhere the implants to tissue surfaces.
  • compositions are to encapsulate and thereby deliver cells or genes, which includes material from natural sources or synthetic DNA, RNA and their respective antisense forms, to a desired site.
  • the cells can include mesenchymal stem cells, epithelial cells and neuroectodermal cells.
  • the cells may either be allogeneic or xenogenic in origin.
  • Pentaerythritol poly(ethylene glycol)ether tetra-sulfhydryl (mol. wt. 10,000) is dissolved in 300 mM sodium phosphate/sodium carbonate buffer (“P/C buffer”), pH 9.6, at a concentration of 20% w/v.
  • P/C buffer is prepared as follows: 300 mM sodium monobasic phosphate is mixed with 300 mM sodium carbonate to achieve pH 9.6. The final molarity is approximately 117 mm phosphate and 183 mM carbonate. This solution is stable in aqueous media, but care should be taken to prevent the exposure of the solution to oxygen to prevent oxidation to disulfide.
  • pH is preferred for certain compositions, a pH of 8 to 10.5 is generally believed to be suitable for use in the practice of the present invention.
  • the right carotid artery of New Zealand white rabbits is exposed.
  • the rabbits are treated with 200 U/kg of heparin and the vessel is clamped proximally and distally using atraumatic vascular clamps.
  • a puncture hole is made in the carotid artery using a 27 G needle.
  • the control rabbits are treated with tamponade until hemostasis is achieved.
  • approximately 0.5 mL of each of the two components of the compositions prepared as described in Example 1 are delivered to the defect site using a two component sprayer (Duo Flow, Hemaedics, Malibu, Calif.).
  • composition significantly reduces the amount of blood loss and time to hemostasis from a punctured artery.
  • the dogs are treated with heparin to achieve an activated clotting time of greater than 480 sec.
  • the left iliac of the dogs is exposed and isolated using atraumatic vascular clamps placed distally and proximally.
  • a 5 cm segment of the artery is excised and replaced with an ePTFE (polythetrafluoroethylene) graft of the same diameter.
  • the graft was de-aired using a 27 G needle.
  • Approximately 3.0 mL of each of the two components of the composition prepared according to Example 1 is delivered to the defect site using a two component sprayer (Cohesion Technologies, Inc., Palo Alto, Calif.).
  • Experiments A and B show a mild gross and histological response of fibrillar collagen (Collagen Corporation, Palo Alto, Calif.) and the surgical control.
  • Experiment C shows a severe response to hydrogels made with amino-PEG. The response consists of thick encapsulation of the hydrogel and abscess formation.
  • sulfhydryl-PEG substitution of sulfhydryl-PEG for amino-PEG, as in Experiment D, the biocompatibility of the hydrogel is significantly improved.
  • Experiment E involves forming an amino hydrogel ex-vivo and incubating the hydrogel in a solution of mono-SG PEG, 5000 mol. wt.
  • Experiment F involves forming a sulfhydryl hydrogel ex-vivo and incubating the hydrogel in a solution of mono-SG PEG, 5000 mol. wt.
  • the di-amino PEG reacts with the free SG groups present on the hydrogel network, thus increasing the amount of free amines on the polymeric network.
  • This treatment decreases the biocompatibility of the hydrogel.
  • a desirable characteristic of the compositions described herein is their ability to rapidly achieve gelation.
  • the effects of buffer strength and composition on gelation kinetics are studied.
  • the tetra-functional SG PEG described in Example 1 is dissolved in 0.5 mM sodium phosphate, pH 6.0, and the tetra-sulfhydryl PEG described in Example 1, or the equivalent tetra-amino PEG is dissolved in the buffer listed in Table 5.
  • Experiments A and B show the difference in gel times in amino formulations and sulfhydryl formulations in phosphate buffer. In this buffer, an increase in gelation rate is observed for sulfhydryl formulations compared to amino formulations.
  • Experiments C and D show the difference in gelation times in amino formulations and sulfhydryl formulations in carbonate buffer. As shown, a decrease in gel time is observed for sulfhydryl formulations in carbonate buffer. In the preferred P/C Buffer, a gel time of 3 seconds is observed.
  • the first component (tetra-functional Sulfhydryl-PEG, 10,000 mol. wt.) was prepared according to Example 1 and suspended in P/C Buffer.
  • the second component (tetra-functional SG-PEG, 10,000 mol. wt.) was prepared according to Example 1 in 0.5 mM phosphate, pH 6.0.
  • the two components (0.6 ml each) were loaded in a dual-syringe device with joiner and cannula.
  • the cannula contained a mixing element.
  • the solutions were mixed, and the resultant mixture was immediately delivered into a parallel plate cell of a Rheometrics Fluids Spectrometer 8500 (Rheometrics, Inc., Piscataway, N.J.).
  • the upper platen had a diameter of 25 mm, and the gap between upper and lower parallel plates was 1.5 mm.
  • buffers with pKs between 8 and 10.5 (borate, 8.1; carbonate, 10.3; AMPSO, 9.0), and mixtures thereof, are suitable
  • IAM-PEG was dissolved at 20% (w/v) in 0.5 mM sodium phosphate, pH 6.0, and mixed rapidly with a 20% (w/v) solution of tetra-sulfhydryl PEG in P/C Buffer sodium phosphate-carbonate, pH 9.6. Gelation occurred in less than 40 sec. A firm gel formed within 2 min.
  • the gel was a firm, rubbery solid.
  • On top of this gel was layered 200 ⁇ l of rabbit blood plasma.
  • the plasma had been separated from citrated blood and contained approximately 11 mM citrate.
  • this citrated blood plasma was re-calcified by addition of 8 ⁇ l of 0.5 M calcium chloride, to achieve a concentration of about 20 mM calcium.
  • This re-calcified blood plasma was observed to form a fibrin clot 1.5 minutes after layering onto the PEG gel. The clotting reaction was taken as evidence for the presence of active thrombin in the PEG gel.
  • a control reaction without thrombin forms a fibrin clot more than 18 minutes after layering onto the PEG gel.
  • the rapid formation of a fibrin clot in the sample containing thrombin is taken as evidence for the presence of active thrombin in the PEG gel.
  • 9c Thrombin Incorporated into NEM-PEG/Sulfhydryl PEG gel.
  • a “gel layering” technique can be used.
  • the tetra-sulfhydryl-PEG and tetra-SG-PEG gel at 20% solids, prepared according to Example 1 are sprayed onto sheets as described in Example 2.
  • the sheets are coarse fibered collagen hydrated by saline, which simulates a tissue surface.
  • the total volume is approximately 0.5 ml. This formula gels in 18-15 sec.
  • a second gel mixture of tetra-sulfhydryl PEG, di-maleimidyl PEG, both at 20% solids, and thrombin (700 NIH units/ml) of total gel mixture, total volume approx. 0.5 ml, are sprayed on top of the first gel.
  • This second gel layer gels at about 2 minutes.
  • 0.4 ml of re-calcified rabbit blood plasma, prepared as described above are layered on top of the PEG gel.
  • Methylated collagen is prepared by the following process: bovine corium collagen is solubilized using pepsin and purified as described in U.S. Pat. No. 4,233,360. This purfied, solubilized collagen is precipitated by neutralization into 0.2M sodium phosphate, pH 7.2. The precipitate is isolated by centrifugation to a final concentration of 70 mg/ml. The material is dried for two days, and then pulverized. Dry methanol containing HCl (to 0.1 N) is added (40 ml) and stirred for four days. Collagen is separated from the acidic methanol, vacuum dried and sterilized by irradiation. The final product is disolved in water at a pH of 3-4.
  • the adhesive and cohesive properties of the gel are examined in a burst test.
  • This test is conducted on a pressure gauge apparatus (PSI-Tronix, Model PG5000, Tulare, Calif.) connected by a pressure line to a circular sample plate with a 2 mm diameter central orifice. Sealant formulations are sprayed onto the plate to seal the orifice.
  • the sample plate has a circular sheet of coarse-fibered collagen fastened to it, with a 2 mm hole pierced into it and displaced 2-3 mm from the sample plate orifice. Burst strength is measured as a function of the pressure it takes to force saline at a flow rate of 5 ml/min through the sealant gel.
  • Both formulations have gel times less than 3 seconds. As shown above, the addition of collagen to the formulation enhances burst strength.
  • a 12-arm electrophilic PEG compound is formed from 1 mole of 4-arm sulfhydryl PEG, 10,000 mol. wt., and 4 moles of 4-arm SG-PEG, 10,000 mol. wt.
  • the resulting compound is depicted in FIG. 4 a .
  • the compound core is pentaerythritol PEG ether tetra-sulfhydryl and the end functional group is succinimide.
  • the sulfhydryl group, X can be replaced with other nucleophilic groups, such as NH 2 , etc.
  • the succinimidyl group, Y can be replaced with other electrophilic groups, such as maleimide, carbonyl imidazole, or isocyanate.
  • This method is also used to prepare the 12-arm nucleophilic PEG compound depicted in FIG. 4 b by reacting 4 moles of 4-arm sulfhydryl PEG with 1 mole of 4-arm SG-PEG. The formation of these compounds from their respective 4-arm intermediates are also shown in FIG. 5.

Abstract

This invention relates generally to two-part polymer compositions that rapidly form covalent linkages when mixed together. Such compositions are particularly well suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired. In particular, they are useful as tissue sealants, in promoting hemostasis, for drug delivery, in effecting tissue adhesion, in providing tissue augmentation, and in the prevention of surgical adhesions.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to two-part polymer compositions that rapidly form covalent linkages when mixed together. Such compositions are particularly well suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired. In particular, they are useful as tissue sealants, in promoting hemostasis, for drug delivery, in effecting tissue adhesion, in providing tissue augmentation, and in the prevention of surgical adhesions. [0001]
  • BACKGROUND OF THE INVENTION
  • The use of polymer compositions in tissue engineering is now widely recognized, particularly those consisting of synthetic polymers. In contrast to many naturally derived compositions, synthetic polymer compositions can be formulated to exhibit predetermined physical characteristics such as gel strength, as well as biological characteristics such as degradability. [0002]
  • In a variety of tissue engineering applications, it is desirable to use compositions that can be administered as liquids, but subsequently form hydrogels at the site of administration. Such in situ hydrogel forming compositions are more convenient to use since they can be administered as liquids from a variety of different devices, and are more adaptable for administration to any site, since they are not preformed. Many different mechanisms have been described that can be used to promote hydrogel formation in situ. For example, photoactivatable mixtures of water-soluble co-polyester prepolymers and polyethylene glycol have been described to create hydrogel barriers, as well as drug release matrices. In another approach, block copolymers of Pluronic and Poloxamer have been designed that are soluble in cold water, but form insoluble hydrogels that adhere to tissues at body temperature (Leach, et al., [0003] Am. J Obstet. Gynecol. 162:1317-1319 (1990)). Polymerizable cyanoacrylates have also been described for use as tissue adhesives (Ellis, et al., J. Otolaryngol. 19:68-72 (1990)). In yet another approach, two-part synthetic polymer compositions have been described that, when mixed together, form covalent bonds with one another, as well as with exposed tissue surfaces. (PCT WO 97/22371, which corresponds to U.S. application Ser. No. 08/769,806.) In a similar approach involving a two-part composition, a mixture of protein and a bifunctional crosslinking agent has been described for use as a tissue adhesive (U.S. Pat. No. 5,583,114.) One difficulty encountered when designing in situ hydrogel forming compositions is that optimizing the composition to enhance gel formation may worsen tissue inflammation at the site of administration. A possible explanation for this effect is that highly reactive composition components that are capable of rapid gel formation may adversely affect tissue surfaces.
  • The compositions of the present invention have been formulated to provide for rapid gelation, and also cause less tissue inflammation at the site of administration than previously described compositions. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention discloses generally two-component polymer compositions that, when mixed together, rapidly react to form a matrix at the site of administration. Such compositions exhibit gel times of less than one minute. In one aspect of the present invention, one of the components is a sulfhydryl-containing compound. In another aspect of the present invention, both components contain multiple functional groups, and at least one of the compounds contains three or more functional groups. This ensures sufficient reactivity for formation of a three-dimensional polymer matrix. Preferably, both compounds contain four or more functional groups. For extremely fast reacting compositions, both compounds contain 12 functional groups. [0005]
  • In one aspect of the present invention, at least one and preferably both of the compounds are polymers. The non-reactive portion of the polymeric compound is referred to as its “core”. Suitable polymer cores are synthetic polymers, polyamino acids, and polysaccharides. In a preferred embodiment, the core is a polyalkylene oxide, and more preferably it is polyethylene glycol. [0006]
  • The molecular weight of the compounds can vary depending on the desired application. In most instances, the molecular weight is about 100 to 100,000 mol. wt., and more preferably about 1,000 to about 20,000 mol. wt. When the core material is polyethylene glycol, the molecular weight of the compound(s) is/are about 7,500 to about 20,000 mol. wt., and most preferaby they are about 10,000 mol. wt. [0007]
  • When only one of the compounds is a polymer, the other is a multifunctionally activated small organic molecule. Suitable small organic molecules include functionally activated succinimidyl and maleimidyl compounds. [0008]
  • The linkage group formed by reacting the two compounds of the present invention together is a covalent bond formed between the sulfur atom in the sulfhydryl group of one compound with, e.g., the carbon or sulfur atom in the sulfhydryl-reactive group of the other compound. The linkage may be a thioester, thioether or a disulfide, although a thioester linkage is preferred. [0009]
  • In another aspect of the present invention, the compounds further comprise chain extenders between the polymer core and the functional groups. Such chain extenders can activate or suppress reactivity of the functional groups, and can also be used to provide sites for hydrolysis or degradation. Suitable chain extenders include poly(amino acids), poly(lactones), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), poly(phosphoesters), and enzymatically cleavable peptide groups. [0010]
  • The compositions of the present invention form gels with gel times of less than 1 minute, and more preferably less than 30 seconds, and most preferably less than 15 seconds. The strength (i.e., elastic modulus or G′) of the resultant gels depends on the application for which the composition is adapted, but is preferably between about 10[0011] 2 to 104 dynes/cm2 for a soft gel, or between about 105 to 108 for a harder gel.
  • In addition to the two reactive components of the compositions of the present invention, optional materials can also be included, such as glycosaminoglycans, proteins such as collagen, drugs, cells, hemostatic agents, genes, DNA, therapeutic agents, antibiotics, growth factors, and the like. [0012]
  • The compositions of the present invention are applied in liquid or solid form to the site of administration. It is also possible to supply them premixed but inactive, and then activate them at the site of administration. [0013]
  • In another aspect of the present invention, there is provided a method of treating tissues for the purpose of sealing tissues, preventing adhesions, providing a platform for delivery of biologically active agents, or augmenting tissues, comprising mixing together the two components as described herein at the site of administration to produce the desired medical affect.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts the structure of various sulfhydryl-reactive groups, with “R” representing the chemical structure to which the reactive group is attached. [0015]
  • FIG. 2 depicts the structure of a low molecular weight multi-functional reactive compound. [0016]
  • FIG. 3 depicts the rheometric measurements of gelation of a mixture of reactive tetrafunctional polyethylene glycols. [0017]
  • FIG. 4[0018] a depicts a “12-arm” sulfhydryl reactive PEG compound as described in Example 13.
  • FIG. 4[0019] b depicts a “12-arm” succinimidyl reactive PEG compound as described in Example 13.
  • FIG. 5 depicts the formation of two “12-arm” peg compounds from “4-arm” intermediates as described in Example 13.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to two-part polymer compositions that form a matrix when mixed together at the site of administration. Each component of the composition is generally administered separately to the tissue site. Then, within a very short time after being mixed together at the site of administration, the composition forms a gel with sufficient adhesive and cohesive strength to become anchored in place. [0021]
  • Definitions [0022]
  • The following definitions are provided to further describe various aspects of the preferred embodiments of the present invention. [0023]
  • The term “gel” refers to the state of matter between liquid and solid. As such, a “gel” has some of the properties of a liquid (i.e., the shape is resilient and deformable) and some of the properties of a solid (i.e., the shape is discrete enough to maintain three dimensions on a two dimensional surface.) Accordingly, “gelation time”, also referred to herein as “gel time”, refers to the time it takes for a composition to become non-flowable under modest stress. This is generally exhibited as achieving a gel strength, G′, of greater than or equal to 10[0024] 2 dynes/cm2 in less than 1 minute.
  • The term “cohesive strength” refers to the ability of the compositions of the present invention to remain intact, i.e., not rupture, tear or crack, when subjected to physical stresses or environmental conditions. Cohesive strength is sometimes measured as a function of “burst strength”. [0025]
  • The term “adhesive strength” refers to the ability of the compositions of the present invention to be able to remain attached to the tissues at the site of administration when subjected to physical stresses or environmental conditions. [0026]
  • The term “polymer” refers to a molecule consisting of individual chemical moieties, which may be the same or different, but are preferably the same, that are joined together. As used herein, the term “polymer” refers to individual chemical moieties that are joined end-to-end to form a linear molecule, as well as individual chemical moieties joined together in the form of a branched (e.g. a “multi-arm” or “star-shaped”) structure. [0027]
  • The term “biocompatible” refers to the ability of the compositions of the present invention to be applied to tissues without eliciting significant inflammation and fibrosis or other adverse tissue responses. [0028]
  • The term “synthetic polymer” refers to polymers that are not naturally occurring and that are produced by chemical or recombinant synthesis. As such, naturally occurring proteins such as collagen and naturally occurring polysaccharides such as hyaluronic acid are specifically excluded. Proteins such as synthetic collagen, and carbohydrates such as synthetic hyaluronic acid, and their derivatives, are included. [0029]
  • The term “activated synthetic polymers” refers to synthetic polymers that have or have been chemically modified to have at least one functional group (e.g., a sulfhydryl group) that is capable of reacting with a corresponding reaction partner (e.g., a sulfhydryl-reactive group) to form a covalent bond. The term “multifunctionally activated” refers to synthetic polymers having two or more nucleophilic or electrophilic groups. Types of multifunctionally activated synthetic polymers include di-functionally activated, tri-functionally activated, tetra-functionally activated, and star-shaped activated polymers (that have four or more functional groups). [0030]
  • Composition Components [0031]
  • The two-part compositions of the present invention comprise two different compounds, each within a separate part of the composition and at least one of which is a polymer, that react with one another to form a covalently crosslinked gel matrix. As such, they can easily be administered separately, and rapidly form gels at the site of administration. [0032]
  • In the compositions of the present invention, each component is present in one of the two separate parts, or “components”, of the composition, along with other optional ingredients as described elsewhere herein. The two reactive compounds and the gel matrix that forms when they are mixed together can be represented by Formula I as follows: [0033]
  • Compound1-(SH)m+Compound2-Yn→Compound1-Z-Compound2  (I)
  • Compound[0034] 1 has multiple (m≧2) sulfhydryl groups (SH) that react with Compound2, which has multiple (n≧2) sulfhydryl-reactive groups (Y). It should be understood that sulfhydryl groups are also “sulfhydryl reactive groups”, since it is well known that sulfhydryl groups will react with one another under certain conditions. When mixed together, the two compounds become interconnected via a covalent bond (Z). As depicted in FIG. 1 for illustration purposes only, there is only one bond formed between Compound1 and Compound2. However, when m+n≧5, and appropriate ratios of the two components are utilized as described elsewhere herein, the two compounds form multiple attachments to one another resulting in a three-dimensional polymer matrix. Preferably, both compounds contain four or more functional groups, since such multifunctionality results in a gel matrix with greater overall cohesive strength. In a particularly preferred embodiment, each of the compounds is tetrafunctionally activated.
  • In another preferred embodiment, the compounds each have 12 functional groups. Such compounds are formed from reacting a first tetrafunctionally activated polymer with a second tetrafunctionally activated polymer, wherein the functional groups of each of the two compounds are a reaction pair, and react together to form “12-arm” functionally activated polymers. An example of such a “12-arm” compound is dodeca-sulfhydryl-PEG, 50,000 mol. wt., which is constructed from a core tetra-functional succinimide ester PEG coupled to four (exterior) tetra-functional sulfhydryl-PEG molecules. Such polymers range in size from over 10,000 mol. wt. to greater than 100,000 mol. wt. depending on the molecular weight of the tetra-functionally activated polymer starting materials. [0035]
  • Other types of multifunctional polymers can easily be synthesized using routine synthesis. However, care should be taken to produce multi-arm products with consistent arm lengths to avoid stearic hindrance of the reactive groups. Accordingly, activated polymers that are suitable for use in the present invention may have a variety of geometric shapes and configurations. [0036]
  • Compound Core [0037]
  • As described above, each of the compounds has multiple functional groups, either sulfhydryl groups or sulfhydryl-reactive groups. The non-reactive remainder of the compound is considered to be its “core”. At least one of the two compounds must have a polymer core in order to form an efficient gel matrix. When one of the compounds contains a polymer core, the other compound can be a small organic molecule with multiple sulfhydryl-reactive groups. However, for most applications, it is preferred for both compounds to have the same or a different polymer core. [0038]
  • The polymer core may be a synthetic polyamino acid, a polysaccharide, or a synthetic polymer. A preferred polymer core material is a synthetic hydrophilic polymer. Suitable synthetic hydrophilic polymers include, inter alia, polyalkylene oxide, such as polyethylene oxide ((CH[0039] 2CH2O)n), polypropylene oxide ((CH(CH3)CH2O)n) or a polyethylene/polypropylene oxide mixture ((CH2CH2O)n—(CH(CH3)CH2O)n). A particularly preferred synthetic hydrophilic polymer is a polyethylene glycol (PEG) having a molecular weight within the range of about 100 to about 100,000 mol. wt., more preferably about 1,000 to about 20,000 mol. wt. More preferably still, when the polymer core is polyethylene glycol, it generally has a molecular weight within the range of about 7,500 to about 20,000 mol. wt. Most preferably, the polyethylene glycol has a molecular weight of approximately 10,000 mol. wt.
  • Multifunctionally activated polyalkylene oxides, such as polyethylene glycol, are commercially available, and are also easily prepared using known methods. For example, see Chapter 22 of [0040] Poly(ethylene Glycol)Chemistry: Biotechnical and Biomedical Applications, J. Milton Harris, ed., Plenum Press, NY (1992); and Shearwater Polymers, Inc. Catalog, Polyethylene Glycol Derivatives, Huntsville, Ala. (1997-1998). For use as a tissue sealant, the preferred combination of activated polymers is as follows: the sulfhydry-reactive group-containing compound is the tetrafunctional PEG, pentaerythritol poly(ethylene glycol) ether tetra-succinimidyl glutarate (10,000 mol. wt.); and the sulfhydryl group-containing compound is the tetrafunctional PEG, pentaerythritol poly(ethylene glycol) ether tetra-sulfhydryl (10,000 mol. wt.). In both cases, these “four-arm” PEGs are formed by ethoxylation of pentaerythritol, where each of the four chains is approximately 2,500 mol. wt., and then derivatized to introduce the functional groups onto each of the four arms. Also preferred are analogous poly(ethylene glycol)-like compounds polymerized from di-glycerol instead of pentaerythritol.
  • When only one of the reactive compounds comprises a polymer core, the other reactive compound is a multifunctionally active small organic molecule. Such compounds include the di-functional di-succinimidyl esters and di-maleimidyl compounds, as well as other well known commercially available compounds (Pierce Chemical Co., Rockford, Ill.). In addition, one of skill in the art could easily synthesize a low molecular weight multi-functional reactive compound using routine organic chemistry techniques. On such compound is shown in FIG. 2, which is a penta-erythritol coupled to four glutarates, with each arm capped with N-hydroxy-succinimidyl esters (NHS). Analogous compounds can be synthesized from inositol (radiating 6 arm), lactitol (9 arm) or sorbitol (linear 6-arm). The end-capped reactive group can just as easily be sulfhydryl, maleimidyl, vinyl-sulfone, etc., instead of NHS. The polymer or the small molecule can carry either reactive end group as long as there are reactive pairs in the composition such as NHS and SH, maleimidyl and SH, etc. [0041]
  • Reactive Groups and Matrix Linkages In the present invention, the linkage, Z, comprises a covalent bond between the sulfur atom in the sulfhydryl group-containing compound and, e.g., the carbon or sulfur atom in the sulfhydryl-reactive group-containing compound. Accordingly, the linkage may be a thioester, a thioether, a disulfide, or the like. A wide variety of sulfhydryl-reactive groups and the types of linkages they form when reacted with sulfhydryl groups are well known in the scientific literature. For example, see Bodanszky, M., [0042] Principles of Peptide Synthesis, 2nd ed., pages 21 to 37, Springer-Verlog, Berlin (1993); and Lundbland, R. L., Chemical Reagents for Protein Modification, 2nd ed., Chapter 6, CRC Press, Boca Raton, Fla. (1991).
  • For most applications, sulfhydryl reactive groups that react with sulfhydryl groups to form thioester linkages are preferred. Such compounds are depicted in FIG. 1 and include, inter alia, the following compounds, with the numbers in parentheses corresponding to the structures shown in FIG. 1: mixed anhydrides, such as PEG-glutaryl-acetyl-anhydride (1), PEG-glutaryl-isovaleryl-anhydride (2), PEG-glutaryl-pivalyl-anhydride (3) and related compounds as presented in Bodanszky, p. 23; Ester derivatives of phosphorus, such as structures (4) and (5); ester derivatives of p-nitrophenol (6) of p-nitrothiophenol (7), of pentafluorophenol (8), of structure (9) and related active esters as presented by Bodanszky, pp. 31-32, and Table 2; esters of substituted hydroxylamines, such as those of N-hydroxy-phthalimide (10), N-hydroxy-succinimide (11), and N-hydroxy-glutarimide (12), as well as related structures in Bodanszky; Table 3; esters of 1-hydroxybenzotriazole (13), 3-hydroxy-3,4-dihydro-benzotriazine-4-one (14) and 3-hydroxy-3,4-dihydro-quinazoline-4-one; derivatives of carbonylimidazole; and isocyanates. With these compounds, auxiliary reagents can also be used to facilitate bond formation, such as 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide can be used to facilitate coupling of carboxyl groups (i.e., glutarate and succinate) with sulfhydryl groups. [0043]
  • In addition to the sulfhydryl reactive compounds that form thioester linkages, various other compounds can be utilized that form other types of linkages. For example, compounds that contain methyl imidate derivatives form imido-thioester linkages with sulfhydryl groups. Alternatively, sulfhydryl reactive groups can be employed that form disulfide bonds with sulfhydryl groups, such as ortho pyridyl disulfide, 3-nitro-2-pyridenesulfenyl, 2-nitro-5-thiocyanobenzoic acid, 5,5′-dithio-bis(2-nitrobenzoic acid), derivatives of methane-thiosulfate, and 2,4-dinitrophenyl cysteinyl disulfides. In such instances, auxiliary reagents, such as the hydrogen peroxide or di-tert-butyl ester of azodicarboxylic acid, can be used to facilitiate disulfide bond formation. [0044]
  • Yet another class of sulfhydryl reactive groups form thioether bonds with sulfhydryl groups. Such groups include, inter alia, iodoacetamide, N-ethylmaleimide and other maleimides, including dextran maleimides, mono-bromo-bimane and related compounds, vinylsulfones, epoxides, derivatives of O-methyl-isourea, ethyleneimines, aziridines, and 4-(aminosulfonyl-)7-fluoro-2,1,3-benzoxadiazole. [0045]
  • Chain Extenders [0046]
  • Functional groups may be directly attached to the compound core, or they may be indirectly attached through a chain extender. Such chain extenders are well known in the art. See, for example, PCT WO 97/22371, which describes “linking groups” that would be suitable for use as chain extenders in the compositions of the present invention. Chain extenders are useful to avoid stearic hindrance problems that are sometimes associated with the formation of direct linkages between molecules. Alternatively, chain extenders may be used to link several multifunctionally activated compounds together to make larger molecules. In a particularly preferred embodiment, the chain extender can also be used to alter the degradative properties of the compositions after administration and resultant gel formation. For example, chain extenders can be incorporated into one or both of the multifunctionally activated polymers to promote hydrolysis, to discourage hydrolysis, or to provide a site for enzymatic degradation. Chain extenders can also activate or suppress activity of sulfhydryl and sulfhydryl-reactive groups. For example, electron-withdrawing groups within one or two carbons of the sulfhydryl group would be expected to diminish its effectiveness in coupling, due to a lowering of nucleophilicity. Double-bond carbon and carbonyl carbon would be anticipated to have this effect. Bulky nearby groups for either partner are anticipated to diminish coupling rates, due to steric hindrance. Electron-withdrawing groups adjacent to the reactive carbonyl of glutaryl-N-hydroxysuccinimidyl would be anticipated to make this carbonyl carbon even more reactive with the sulfhydryl partner. [0047]
  • Chain extenders may provide sites for degradation, i.e., hydrolysable sites. Examples of hydrolysable chain extenders include, inter alia, alpha-hydroxy acids such as lactic acid and glycolic acid; poly(lactones) such as caprolactone, valerolactone, gamma butyl lactone and p-dioxanone; poly(amino acids); poly(anhydrides) such as glutarate and succinate; poly(orthoesters); poly(orthocarbonates) such as trimethylene carbonate; and poly(phosphoesters). Examples of non-degradable chain extenders include, inter alia, succinimide, propionic acid and carboxymethylate. See, for example, PCT WO 99/07417. Examples of enzymatically degradable chain extenders include Leu-Gly-Pro-Ala, which is degraded by collagenase; and Gly-Pro-Lys, which is degraded by plasmin. [0048]
  • Gel Strength and Gel Time [0049]
  • The compositions of the present invention are formulated to exhibit adequate strength and rapid gel time. The elastic modulus, G′, is the preferred measure of gel strength. Preferred compositions for use as tissue sealants can achieve a gel strength of about 10[0050] 3 to 108 dynes/cm2, and more preferably 104 to 107 dynes/cm2. Preferred compositions for use as hemostatic agents or for adhesion prevention have a gel strength of at least 102 to 104 dynes/cm2 if a soft gel is desired, or 105 to 108 dynes/cm2 if a harder matrix is desired.
  • The gel time of preferred formulations is less than 60 seconds, more preferably less than 30 seconds, and most preferably less than 15 seconds. The fast gel time ensures maximum material at the site to be treated and sufficient mechanical properties. [0051]
  • Optional Composition Constituents [0052]
  • In addition to the reactive compounds, the compositions of the present invention may also contain other compounds, which may be included in one or both of the components of the two-component compositions, or may be separately administered. In one embodiment, these compounds may become covalently incorporated into the matrix itself by becoming crosslinked to one or both of the reactive compounds after they are mixed together. In another embodiment, such as would be the case if the compound was unreactive with either of the reactive compounds, the compound may be administered in such a way that it become physically or ionically associated with the matrix-forming compounds after mixing, and thus become part of the matrix itself. [0053]
  • Additional compounds that may be added are glycosaminoglycans and proteins. Suitable glycosaminoglycans include, inter alia, hyaluronic acid, chitin, chondroitin sulfate A, B, or C, keratin sulfate, keratosulfate and heparin, and derivatives thereof. In another embodiment, proteins can be added for a variety of purposes. For example, collagen may improve biocompatibility of the matrix, including the potential colonization by cells, promotion of would healing, etc. Collagen and any amino group-containing proteins would also contribute to the structural integrity of the matrix by becoming crosslinked thereto along with the other matrix components. In particular, if PEG-succinimidyl esters are used, the amide bonds formed with collagen will be more stable to hydrolytic degradation than the bonds formed by the reaction of succinimidyl esters and sulfhydryls. [0054]
  • Suitable proteins include, inter alia, collagen, fibronectin, gelatin and albumin, as well as peptide fragments thereof. Particularly preferred is collagen, which may be in the form of afibrillar, microfibrillar or fibrillar collagen. Types I and III collagen isolated from bovine corium or human placenta, or prepared by recombinant DNA methods, are suitable. See PCT WO 90/05755 for a description of suitable collagens and collagen derivatives. It should be understood that when adding collagen to the composition, it is important to adjust the concentration of the other composition components to avoid precipitation. [0055]
  • Additional constituents which may be added to the composition include antibiotics, growth factors, hemostatic proteins (such as thrombin, fibrin, fibrinogen, the blood factors, etc.), cells, genes, DNA, etc. [0056]
  • Composition Formulation [0057]
  • The compositions of the present invention comprise two separate parts, or “components”, which may be in liquid or solid form. In a preferred embodiment, both components are liquids, such that each can be easily applied separately to the site of administration. Accordingly, one of the components may be in the form of a dry powder that becomes mixed with the second component, which is in liquid form, when each are sprayed separately onto the tissue, or by mixing at the tissue site. It is also possible to have both components delivered to the site as powders, to be mixed with buffer at the site of administration. [0058]
  • In an alternative embodiment, both components can be mixed together in a single aqueous medium in which they are both unreactive, i.e. such as in a low pH buffer. Thereafter, they can be sprayed onto the tissue site along with a high pH buffer, after which they will rapidly react and form a gel. This embodiment is described in Example 9. [0059]
  • The concentration of the reactive compounds in each of the composition components necessarily depends on a number of factors. For example, if the composition components are each 4-arm PEGs (i.e. PEG-PEG compositions), a concentration of 20-25% by weight in each of the two components before mixing results in a gel after mixing with an elastic modulus, G′, of approximately 10[0060] 5-106 dynes/cm2, which is adequate for use as a surgical sealant. Using methylated collagen and 4-arm succinimidyl PEG, concentrations of 2-4% and 0.2-0.4%, respectively, result in gels with cohesive strengths that are comparable to PEG-PEG gels at 10-15%. Using albumin as one of the components, concentrations of 30% or more achieve a similar cohesive strength. The appropriate concentration of the compound, and other optional ingredients, in each component, and thus the relative concentration of the matrix components in the final gel matrix, can easily be optimized to achieve the desired gelation time and gel strength using routine experimentation. Using the preferred four-arm PEGs described above, the synthetic polymer is generally present at a concentration of 2 to 50% (w/v), and more preferably 10-25%.
  • The liquid components of the compositions of the present invention are each separately prepared by adding the activated synthetic polymer (in dry form or as a concentrated solution) to a liquid medium. Suitable liquid media include aqueous buffer solutions, such as monobasic sodium phosphate/dibasic sodium phosphate, sodium carbonate/sodium bicarbonate, glutamate or acetate, at a concentration of 0.5 to 300 mM. In general, the sulfhydryl-reactive PEG is prepared in water or a dilute buffer, with a pH of between around 5 to 6. Buffers with pKs between about 8 to 10.5 for preparing the sulfhydryl-PEG component are useful to achieve fast gelation time of compositions containing mixtures of sulfhydryl-PEG/SG-PEG. These include carbonate, borate and AMPSO (3-[(1,1-dimethyl-2-hydroxyethyl)amino]2-hydroxy-propane-sulfonic acid). In contrast, using a combination of maleimidyl PEG and sulfhydryl-PEG, a pH of around 5 to 9 is preferred for the liquid medium used to prepare the sulfhydryl PEG. A particularly preferred composition for hemostatic applications to actively bleeding tissue sites comprises a mixture of maleimidyl and succinimidyl PEG as the first component, and sulfhydryl PEG as the second component. Such compositions produce gels with enhanced biodegradability and superior gel times when compared to compositions having only maleimidyl PEG or succinimicyl PEG alone. [0061]
  • The pH of the aqueous buffer solution that is used for each of the two (or more) composition components should be adjusted using routine optimization to achieve a final pH that is conducive to rapid gelation, without causing instantaneous gelation which interferes with the delivery process. For example, both amino PEG and sulfhydryl PEG need a basic pH to enhance nucleophilicity. The effects of pH on gel time are discussed below in the Examples. [0062]
  • Use and Administration [0063]
  • The compositions of the present invention are generally delivered to the site of administration in such a way that the two (or more) individual components of the composition come into contact with one another for the first time at the site of administration, or immediately preceding administration. Thus, the compositions of the present invention are preferably delivered to the site of administration using an apparatus that allows the two components to be delivered separately. Such delivery systems usually involve two-compartment single exit or dual exit spray devices. Alternatively, the two components can be delivered separately using any type of controllable extrusion system, or they can be delivered manually in the form of separate pastes, liquids or dry powders, and mixed together manually at the site of administration. Many devices that are adapted for delivery of two-component tissue sealants/hemostatic agents are well known in the art and can also be used in the practice of the present invention. [0064]
  • Yet another way of delivering the compositions of the present invention is to prepare the two reactive components (or the single reactive component in the case of sulfhydryl-containing components that are designed to form disulfide bonds) in inactive form as either a liquid or powder. Such compositions can then be activated after application to the tissue site, or immediately beforehand, by applying an activator. In one embodiment, the activator is a buffer solution having a pH that will activate the composition once mixed therewith. See Example 12 for a description of a sulfhydryl-containing PEG composition that is maintained at a low pH until administration, then mixed with a high pH buffer at the application site to initiate gelation. [0065]
  • The compositions of the present invention can be used in a variety of different pharmaceutical applications. In general, the compositions described herein can be adapted for use in any tissue engineering application where synthetic gel matrices are currently being utilized. For example, the compositions of the present invention are useful as tissue sealants, in tissue augmentation, in tissue repair, as hemostatic agents, in preventing tissue adhesions, in providing surface modifications, and in drug/cell/gene delivery applications. One of skill in the art could easily determine the appropriate administration protocol to use with any composition having a known gel strength and gelation time based on the principles described herein and well known scientific principles. A more detailed description of several specific applications is given below: [0066]
  • Tissue Sealants & Adhesives [0067]
  • In a preferred application, the compositions described herein can be used for medical conditions that require a coating or sealing layer to prevent the leakage of gases, liquid or solids. The method entails applying both components to the damaged tissue or organ to seal 1) vascular and or other tissues or organs to stop or minimize the flow of blood; 2) thoracic tissue to stop or minimize the leakage of air; 3) gastrointestinal tract or pancreatic tissue to stop or minimize the leakage of fecal or tissue contents; 4) bladder or ureters to stop or minimize the leakage of urine; 5) dura to stop or minimize the leakage of CSF; and 6) skin or serosal tissue to stop the leakage of serosal fluid. [0068]
  • These compositions may also be used to adhere tissues together such as small vessels, nerves or dermal tissue. The material can be used 1) by applying it to the surface of one tissue and then a second tissue may be rapidly pressed against the first tissue or 2) by bringing the tissues in close juxtaposition and then applying the material. [0069]
  • Surgical Adhesions [0070]
  • A preferred application is a method of reducing the formation of adhesions after a surgical procedure in a patient. The method entails applying the material onto the damaged tissue or organ either by spraying both components together or by applying previously admixed components. The components will react together to form a hydrogel on the tissue surface. The medical procedures include gynecological, abdominal, neurosurgical, cardiac, and orthopedic indications. [0071]
  • Drug Delivery [0072]
  • A preferred application is a method of locally applying a biologically active substance to patients. The active substance can be delivered in conjunction with the two components such that the material can form in situ or as a preformed implant. The active substance can be either released through diffusion controlled processes or may be covalently bound to the components such that it will be released as the resulting hydrogel degrades. [0073]
  • The biologically active substances can be any of a variety of organic and inorganic materials, including proteins, carbohydrates, and nucleic acids. Specific examples include enzymes, antibiotics, antineoplastic agents, cytokines, local anesthetics, hormones, antiangiogenic agents, antibodies, neurotransmitters, psychoactive drugs, drugs affecting reproductive organs, and therapeutic oligonucleotides. [0074]
  • Modification of Implants [0075]
  • A preferred application is a method of applying coatings to implants to affect the surface properties of implants or to help adhere implants to tissue surfaces. A coat of components may be applied to 1) vascular grafts, stents to minimize or stop the leakage of blood or serosal fluid from these devices; 2) catheters or breast implants to reduce or stop excessive fibrosis; 3) artificial patches or meshes to minimize excessive fibrosis and to help adhere the implants to tissue surfaces. [0076]
  • Delivery of Cells or Genes [0077]
  • A preferred application of the compositions is to encapsulate and thereby deliver cells or genes, which includes material from natural sources or synthetic DNA, RNA and their respective antisense forms, to a desired site. The cells can include mesenchymal stem cells, epithelial cells and neuroectodermal cells. The cells may either be allogeneic or xenogenic in origin. [0078]
  • EXAMPLES Example 1 Preparation of a Two-component Tissue Sealant Composition
  • a. First Component Pentaerythritol poly(ethylene glycol)ether tetra-succinimidyl glutarate (“SG-PEG”) (mol. wt. 10,000) is dissolved in 0.5 mM sodium phosphate pH 6.0 at a concentration of 20% w/v. (This solution is not stable in aqueous media due to the susceptibility of the active ester to hydrolysis and should be used within one hour of preparation). [0079]
  • b. Second Component [0080]
  • Pentaerythritol poly(ethylene glycol)ether tetra-sulfhydryl (mol. wt. 10,000) is dissolved in 300 mM sodium phosphate/sodium carbonate buffer (“P/C buffer”), pH 9.6, at a concentration of 20% w/v. P/C buffer is prepared as follows: 300 mM sodium monobasic phosphate is mixed with 300 mM sodium carbonate to achieve pH 9.6. The final molarity is approximately 117 mm phosphate and 183 mM carbonate. This solution is stable in aqueous media, but care should be taken to prevent the exposure of the solution to oxygen to prevent oxidation to disulfide. Although pH is preferred for certain compositions, a pH of 8 to 10.5 is generally believed to be suitable for use in the practice of the present invention. [0081]
  • Example 2 Surgical Sealing of Arteries
  • The right carotid artery of New Zealand white rabbits is exposed. The rabbits are treated with 200 U/kg of heparin and the vessel is clamped proximally and distally using atraumatic vascular clamps. A puncture hole is made in the carotid artery using a 27 G needle. The control rabbits are treated with tamponade until hemostasis is achieved. For the treated rabbits, approximately 0.5 mL of each of the two components of the compositions prepared as described in Example 1 are delivered to the defect site using a two component sprayer (Duo Flow, Hemaedics, Malibu, Calif.). After the material is allowed to set for 30 sec, the clamps are removed and the time to hemostasis and the blood loss are measured. The arteries of the control rabbits also remain clamped for 30 sec for consistency. The results are shown in Table 1. [0082]
    TABLE 1
    Blood Loss and Time to Hemostasis as a Function of Treatment
    Blood Loss Time to Hemostasis
    Treatment (g) (sec)
    Tamponade (n = 18) 5.7 ± 3.4 144 ± 34
    Hydrogel (n = 17) 1.0 ± 2.5  31 ± 65
  • The above results illustrate that the composition significantly reduces the amount of blood loss and time to hemostasis from a punctured artery. [0083]
  • Example 3 Surgical Sealing of a ePTFE graft
  • The dogs are treated with heparin to achieve an activated clotting time of greater than 480 sec. The left iliac of the dogs is exposed and isolated using atraumatic vascular clamps placed distally and proximally. A 5 cm segment of the artery is excised and replaced with an ePTFE (polythetrafluoroethylene) graft of the same diameter. Prior to the completion of the anastamosis, the graft was de-aired using a 27 G needle. Approximately 3.0 mL of each of the two components of the composition prepared according to Example 1 is delivered to the defect site using a two component sprayer (Cohesion Technologies, Inc., Palo Alto, Calif.). After the material is allowed to set for 30 sec, the clamps are removed and the time to hemostasis and the blood loss are measured. The procedure was repeated on the left iliac, with the exception of material application. The right iliac received only tamponade treatment. The results are shown in Table 2. [0084]
    TABLE 2
    Blood Loss and Time to Hemostasis as a Function of Treatment
    Blood Loss Time to Hemostasis
    Treatment (g) (sec)
    Tamponade (n = 18) 244, 180 >15, >15
    Hydrogel (n = 2) 18, 7 3.3, 2.3
  • The above results illustrate that this composition significantly reduces the amount of blood loss and time to hemostasis from an ePTFE anastamosis. [0085]
  • Example 4 Enhanced Biocompatibility of Thioester-linked Formulations
  • Up to six subcutaneous pockets are made on the backs of [0086] New Zealand 5 white rabbits. Approximately 1.0 mL of each of the components of the composition described in Example 1 is delivered to the defect site using a two component sprayer (Cohesion Technologies, Inc., Palo Alto, Calif.) for liquid formulations or a spatula for formulations that are gelled ex-vivo. The grading key is shown in Table 3 and the results are shown in Table 4.
    TABLE 3
    Grading Key for Biocompatibility Experiments
    Histological
    Score Gross Observations Observations
    all tissues appeared normal all tissues appeared
    normal, no inflammation
    + mild foreign body response mild inflammation
    ++ moderate foreign body response moderate inflammation
    +++ marked foreign body response marked inflammation
    ++++ severe foreign body response severe inflammation
  • [0087]
    TABLE 4
    Results for Biocompatibility Experiments
    Results
    Histo-
    Gross logical
    Obser- Obser-
    Test Description vations vations
    A surgical control +
    B fibrillar collagen +
    C 20% w/v tetra-SG PEG 10,000 + ++++ ++++
    20% w/v tetra-amino PEG 10,000
    D 20% w/v tetra-SG PEG 10,000 + ++ ++
    20% w/v tetra-sulfhydryl PEG 10,000
    E 20% w/v tetra-SG PEG 10,000 + + ++
    20% w/v tetra-amino PEG 10,000; gelled ex-
    vivo; treated with mono-SG PEG 5000
    F 20% w/v tetra-SG PEG 10,000 + ++++ ++++
    20% w/v di-sulfhydryl PEG 3,400; gelled ex-
    vivo; treated with di-amino PEG 3400
  • Experiments A and B show a mild gross and histological response of fibrillar collagen (Collagen Corporation, Palo Alto, Calif.) and the surgical control. Experiment C shows a severe response to hydrogels made with amino-PEG. The response consists of thick encapsulation of the hydrogel and abscess formation. By substitution of sulfhydryl-PEG for amino-PEG, as in Experiment D, the biocompatibility of the hydrogel is significantly improved. Experiment E involves forming an amino hydrogel ex-vivo and incubating the hydrogel in a solution of mono-SG PEG, 5000 mol. wt. During the incubation period, the mono-SG PEG reacts with the free amines present on the hydrogel network, thus reducing the amount of free amines on the polymeric network. This treatment enhances the biocompatibility of the hydrogel. Experiment F involves forming a sulfhydryl hydrogel ex-vivo and incubating the hydrogel in a solution of mono-SG PEG, 5000 mol. wt. During the incubation period, the di-amino PEG reacts with the free SG groups present on the hydrogel network, thus increasing the amount of free amines on the polymeric network. This treatment decreases the biocompatibility of the hydrogel. Thus, these results show the enhanced biocompatibility of sulfhydryl formulations over amino formulations. [0088]
  • Example 5 Effect of Buffer and Reactive Group on Gel Times
  • A desirable characteristic of the compositions described herein is their ability to rapidly achieve gelation. In this experiment, the effects of buffer strength and composition on gelation kinetics are studied. For all experiments, the tetra-functional SG PEG described in Example 1 is dissolved in 0.5 mM sodium phosphate, pH 6.0, and the tetra-sulfhydryl PEG described in Example 1, or the equivalent tetra-amino PEG is dissolved in the buffer listed in Table 5. [0089]
    TABLE 5
    Effect of Phosphate vs. Carbonate Buffer on Amino and
    Sulfhydryl Formulations
    Gel
    Time
    Test Formulation Buffer (Sec)
    A 10% w/v tetra-SG PEG 10,000 + 300 mM dibasic 16
    10% w/v tetra-amino PEG 10,000 sodium phosphate
    pH 9
    B 10% w/v tetra-SG PEG 10,000 + 300 mM dibasic 55
    10% w/v tetra-sulfhydryl PEG 10,000 sodium phosphate
    pH 9
    C 10% w/v tetra-SG PEG 10,000 + 300 mM sodium 14
    10% w/v tetra-amino PEG 10,000 carbonate pH 9
    D 10% w/v tetra-SG PEG 10,000 + 300 mM sodium 9
    10% w/v tetra-sulfhydryl PEG 10,000 carbonate pH 9
    E 10% w/v tetra-SG PEG 10,000 + P/C Buffer pH 9.6 3
    10% w/v tetra-sulfhydryl PEG 10,000
  • Experiments A and B show the difference in gel times in amino formulations and sulfhydryl formulations in phosphate buffer. In this buffer, an increase in gelation rate is observed for sulfhydryl formulations compared to amino formulations. Experiments C and D show the difference in gelation times in amino formulations and sulfhydryl formulations in carbonate buffer. As shown, a decrease in gel time is observed for sulfhydryl formulations in carbonate buffer. In the preferred P/C Buffer, a gel time of 3 seconds is observed. [0090]
  • Example 6 Rheometric Measurements
  • The first component (tetra-functional Sulfhydryl-PEG, 10,000 mol. wt.) was prepared according to Example 1 and suspended in P/C Buffer. The second component (tetra-functional SG-PEG, 10,000 mol. wt.) was prepared according to Example 1 in 0.5 mM phosphate, pH 6.0. The two components (0.6 ml each) were loaded in a dual-syringe device with joiner and cannula. The cannula contained a mixing element. The solutions were mixed, and the resultant mixture was immediately delivered into a parallel plate cell of a Rheometrics Fluids Spectrometer 8500 (Rheometrics, Inc., Piscataway, N.J.). The upper platen had a diameter of 25 mm, and the gap between upper and lower parallel plates was 1.5 mm. [0091]
  • Gelation began immediately upon mixing of the formulation. The instrument was started, and G′ and G″ (elastic and viscous moduli, respectively) were measured at 1% strain and 1 radian/sec. In less than a minute, G′ was near 10[0092] 4 dynes/cm2, which is characteristic of a soft rubbery material. G′ began to plateau within 15 min, and continued to rise very gradually for more than an hour afterwards. G″ was in the order of 102 dynes/cm2, and declined gradually. These results are consistent with a rapidly gelling material. G′ and G″ for the unreacted starting materials was about 1-10 dynes/cm2. These results are depicted in FIG. 3.
  • In this experiment, the rheometer cannot precisely quantitate G′ and G″ below about 50 dynes/cm[0093] 2. In addition, the gelation occurred so rapidly that the mixture only filled 30 to 95% of the desired space—there was gelled fluid surrounding the plate, but not between the plates. Even with these limitations, a measurement of the elastic (G′) and viscous modulus (G″) as a function of time can still be made, and the kinetics of gelation can be followed. As indicated in this experiment, a G′ of greater than 102 dynes/cm2 in less than one minute indicates rapid gelation.
  • Example 7 Effects of Buffers on Gel Time Using Sulfhydryl-PEG and N-hydroxy-succinimidyl-PEG (NHS-PEG).
  • All tests were done with 50 ml of 20% (w/v) 4 arm, 10,000 mol. wt., tetrafunctional SG-PEG mixed with 50 ml of 20% (w/v) 4 arm, 10,000 mol. wt., tetra-functional sulfhydryl-PEG). Different buffers were used, and the times to gel were noted. The SG-PEG was dissolved in 0.5 mM phosphate, pH 6.0 for all tests. The sulfhydryl-PEG was dissolved in the buffers given below at a pH of 9.6 and times to gel are noted. [0094]
    TABLE 6
    Effect Buffers on Gelation Time.
    Gel Time
    Test Buffer (Sec)
    A P/C Buffer 8
    B 150 mM phosphate 35
    C 58 mM phosphate 138
    91 mM sodium chloride
    D 58 mM phosphate <19
    91 mM borate
    E 58 mM phosphate 8
    91 mM AMPSO*
  • As shown, buffers with pKs between 8 and 10.5 (borate, 8.1; carbonate, 10.3; AMPSO, 9.0), and mixtures thereof, are suitable [0095]
  • Example 8 Sulfhydryl-reactive PEGs
  • The gelation characteristics of several different formulations are described below: [0096]
  • 8a: Gelation of Di Functional Maleimidyl-PEG, 3400 mol. wt. (MAL-PEG) with Tetra-Sulfhydryl PEG, 10,000 mol. wt. [0097]
  • A 20% (w/v) solution of MAL-PEG in 0.5 mM sodium phosphate, pH 6.0, was mixed rapidly with an equal volume of 20% (w/v) tetra-sulfhydryl PEG in 150 mM sodium phosphate, pH 5.0. Gelation occurred in 15 sec. The gel became a firm, rubbery solid in a minute or less. [0098]
  • 8b: Gelation of Difunctional Iodoacetamide PEG, 3,400 mol.wt. (“IAM-PEG”) with Tetra-Sulfhydryl PEG, 10,000 mol. wt. [0099]
  • IAM-PEG was dissolved at 20% (w/v) in 0.5 mM sodium phosphate, pH 6.0, and mixed rapidly with a 20% (w/v) solution of tetra-sulfhydryl PEG in P/C Buffer sodium phosphate-carbonate, pH 9.6. Gelation occurred in less than 40 sec. A firm gel formed within 2 min. [0100]
  • 8c: Gelation of Tetra-sulfhydryl PEG, 10,000 mol. wt., with Dilute Hydrogen Peroxide. [0101]
  • A 20% (w/v) solution of tetra-sulfhydryl PEG in P/C Buffer, was mixed with an equal volume of 0.1% (w/v) hydrogen peroxide. Gelation occurred in 15 sec. A firm gel formed in less than 2 min. [0102]
  • Example 9 Blood Coagulation Activity of Thrombin Incorporated into PEG Compositions
  • This experiment demonstrates that hemostatic PEG gels containing active thrombin protein can be formed on tissue. [0103]
  • 9a: Thrombin Incorporated into Tetra-Sulfhydryl PEG Gelled with Hydrogen Peroxide. [0104]
  • 20 mg of tetra-sulfhydryl PEG, 10,000 mol. wt., were dissolved in 80 μl of PC Buffer, and 11 μl of bovine thrombin at 8850 NIH units/ml in 0.72 M sodium chloride (Thrombin topical, USP, Gentrac, Inc., Middleton, Wis.) were added. This solution of tetra-sulfhydryl PEG and thrombin was then mixed with 100 μl of 0.1% (w/v) hydrogen peroxide in water, by stirring rapidly in a 1.5 ml plastic tube. The mixture gelled in less than 40 sec, due to oxidation of the sulfhydryl groups to disulfide bonds. After 1.5 min, the gel was a firm, rubbery solid. On top of this gel was layered 200 μl of rabbit blood plasma. The plasma had been separated from citrated blood and contained approximately 11 mM citrate. Just prior to addition, this citrated blood plasma was re-calcified by addition of 8 μl of 0.5 M calcium chloride, to achieve a concentration of about 20 mM calcium. This re-calcified blood plasma was observed to form a fibrin clot 1.5 minutes after layering onto the PEG gel. The clotting reaction was taken as evidence for the presence of active thrombin in the PEG gel. [0105]
  • When control studies are performed, a second oxidized sulfhydryl-PEG gel without thrombin does not clot rabbit plasma until 20 minutes have elapsed. As a further control, re-calcified rabbit plasma is held in an identical plastic tube; and it clots spontaneously after 13 minutes. Therefore, the sulfhydryl-PEG gel without thrombin clots blood no faster than control re-calcified plasma. [0106]
  • When the analogous experiment was attempted with tetra-sulfhydryl PEG and tetra-SG-PEG, plus thrombin, no enhanced clotting time of plasma was observed. Clotting of plasma was delayed beyond 25 minutes. This result is interpreted to indicate that SG-PEG inactivated thrombin, presumably by binding PEG to lysine side chains of thrombin and interfering with its enzymatic activity. [0107]
  • 9b: Thrombin Incorporated into IAM-PEG/Sulfhydryl-PEG gel. [0108]
  • 20 mg of tetra-sulfhydryl PEG, 10,000 mol. wt. are dissolved in 80 μl of PC Buffer along with 11 μl of thrombin, as in 9a. above. 20 mg of IAM-PEG are dissolved in 80 μl of 0.5 mM sodium phosphate, pH 6.0. The two solutions are rapidly mixed in a 1.5 ml plastic tube. The mixture has a gel time less than 30 sec and is a rubbery gel by 1.5 minutes. Re-calcified rabbit plasma (200 μl) is layered on top of the gel, and a fibrin clot forms in this plasma in less than two minutes after layering onto the gel. A control reaction without thrombin forms a fibrin clot more than 18 minutes after layering onto the PEG gel. The rapid formation of a fibrin clot in the sample containing thrombin is taken as evidence for the presence of active thrombin in the PEG gel. [0109]
  • 9c: Thrombin Incorporated into NEM-PEG/Sulfhydryl PEG gel. [0110]
  • 20 mg of tetra-sulfhydryl PEG, 10,000 mol wt., is dissolved in 80 μl of 150 mM sodium phosphate, pH 5.0, along with 11 μl of thrombin, as in 9a. above. 20 mg of NEM-PEG are dissolved in 0.5 mM sodium phosphate, pH 6.0. The two solutions are rapidly mixed in a plastic tube. Gelation occurs in 15 sec. 15 μl of P/C Buffer, are layered onto the top of the PEG gel to adjust the pH to 7-9. Then, 200 μl of re-calcified rabbit plasma are added. A fibrin clot formed in 1.5 min. after addition of the plasma. Control gels with no thrombin form a fibrin clot after 30 min. Again, the rapid formation of a fibrin clot in the PEG gel with thrombin is taken as evidence for the presence of active thrombin. [0111]
  • 9d: Gelation of Layered Gels with Thrombin. [0112]
  • In order to provide a gel formulation from SG-PEG and sulfhydryl-PEG to which thrombin can be added and remain active, a “gel layering” technique can be used. First, the tetra-sulfhydryl-PEG and tetra-SG-PEG gel at 20% solids, prepared according to Example 1 are sprayed onto sheets as described in Example 2. The sheets are coarse fibered collagen hydrated by saline, which simulates a tissue surface. The total volume is approximately 0.5 ml. This formula gels in 18-15 sec. At 16 seconds, a second gel mixture of tetra-sulfhydryl PEG, di-maleimidyl PEG, both at 20% solids, and thrombin (700 NIH units/ml) of total gel mixture, total volume approx. 0.5 ml, are sprayed on top of the first gel. This second gel layer gels at about 2 minutes. At 3 min after the first gel is sprayed, 0.4 ml of re-calcified rabbit blood plasma, prepared as described above are layered on top of the PEG gel. This plasma clots 1.5 minutes after it is layered onto the PEG gel. The formation of a fibrin clot at this early time, compared to a non-thrombin control, is taken as evidence for active thrombin in the PEG gel. [0113]
  • Example 10 Gelation using Powdered Formulations
  • 10 mg of powdered tetra-SG PEG, 10,000 mol. wt., is spread on the surface of a piece of weighing paper. 10 mg of tetra-sulfhydryl PEG, 10,000 mol. wt., is dissolved in 80 μl of P/C buffer. The sulfhydryl-PEG solution is loaded into a 1 cc syringe with a Haemedics (Malibu, Calif.) spray head and sprayed onto the SG-PEG on the weighing paper. The sprayed fluid is not stirred or mixed. It begains to gel in 27 seconds and forms a firm, rubbery layer by 2 min. This test shows that components in powdered form are also suitable for use in the present invention. [0114]
  • Example 11 Collagen-Containing Compositions
  • Methylated collagen is prepared by the following process: bovine corium collagen is solubilized using pepsin and purified as described in U.S. Pat. No. 4,233,360. This purfied, solubilized collagen is precipitated by neutralization into 0.2M sodium phosphate, pH 7.2. The precipitate is isolated by centrifugation to a final concentration of 70 mg/ml. The material is dried for two days, and then pulverized. Dry methanol containing HCl (to 0.1 N) is added (40 ml) and stirred for four days. Collagen is separated from the acidic methanol, vacuum dried and sterilized by irradiation. The final product is disolved in water at a pH of 3-4. [0115]
  • For delivery as a sealant, 10 mg of the methylated collagen, 100 mg of tetra-functional sulfhydryl-PEG, 10,000 mol. wt., and 100 mg of tetra-functional SG PEG, 10,000 mol. wt., are dissolved in water at pH 3-4 to a final volume of 1 ml (first component). The second component is 1 ml of P/C Buffer. Each component is placed in a syringe and mixed and sprayed on the desired test site using a dual-syringe delivery system as described in Example 1. The applied mixture gels in less than 3 seconds. [0116]
  • The adhesive and cohesive properties of the gel are examined in a burst test. This test is conducted on a pressure gauge apparatus (PSI-Tronix, Model PG5000, Tulare, Calif.) connected by a pressure line to a circular sample plate with a 2 mm diameter central orifice. Sealant formulations are sprayed onto the plate to seal the orifice. To simulate bonding of the formulations to tissue, the sample plate has a circular sheet of coarse-fibered collagen fastened to it, with a 2 mm hole pierced into it and displaced 2-3 mm from the sample plate orifice. Burst strength is measured as a function of the pressure it takes to force saline at a flow rate of 5 ml/min through the sealant gel. [0117]
  • The results are given below in Table 7. [0118]
    TABLE 7
    Burst Strength Measurements of Collagen-Containing Compositions
    Material Burst Strength, mm Hg
    Sulfhydryl-PEG/SG-PEG 100-180
    Sulfhydryl-PEG/SG-PEG/Methylated 122-205
    Collagen
  • Both formulations have gel times less than 3 seconds. As shown above, the addition of collagen to the formulation enhances burst strength. [0119]
  • Example 12 Synthesis of “12-arm” PEG Compounds
  • A 12-arm electrophilic PEG compound is formed from 1 mole of 4-arm sulfhydryl PEG, 10,000 mol. wt., and 4 moles of 4-arm SG-PEG, 10,000 mol. wt. The resulting compound is depicted in FIG. 4[0120] a. As shown, the compound core is pentaerythritol PEG ether tetra-sulfhydryl and the end functional group is succinimide. As long as the functional groups are reactive with one another to form chemical bonds, the sulfhydryl group, X, can be replaced with other nucleophilic groups, such as NH2, etc., and the succinimidyl group, Y, can be replaced with other electrophilic groups, such as maleimide, carbonyl imidazole, or isocyanate. This method is also used to prepare the 12-arm nucleophilic PEG compound depicted in FIG. 4b by reacting 4 moles of 4-arm sulfhydryl PEG with 1 mole of 4-arm SG-PEG. The formation of these compounds from their respective 4-arm intermediates are also shown in FIG. 5. It should be understood that such reactions produce a heterogeneous population of activated PEG product, some having less than 12 arms, and some having more than 12 arms. As used herein, a “12-arm” PEG also refers to such heterogeneous reaction products that have an average of about 12 arms on each molecule.
  • 12a: 12 Arm Sulfhydryl PEG [0121]
  • Eight grams of pentaerythritol (polyethylene glycol)ether tetra sulfhydryl was dissolved in a mixture of 100 mL of methylene chloride and 100 mL of triethylamine. Two grams of pentaerythritol (polyethylene glycol)ether tetra succinimidyl glutarate in 40 mL of methylene chloride was slowly added with stirring at room temperature under argon overnight. The solvent was removed and the product was isolated by recrystallilzation in ethanol and dried. [0122]
  • 12b: 12 Arm Succinimidyl PEG [0123]
  • Two grams of pentaerythritol (polyethylene glycol)ether tetra succinimidyl glutarate was dissolved in 50 mL of methylene chloride. 0.5 grams of pentaerythritol (polyethylene glycol)ether tetra amine in 10 mL of methylene chloride was slowly added with stirring at room temperature under argon overnight. The solvent was removed and the product was isolated by recrystallization in ethanol and dried. [0124]
  • When the two compounds were tested for burst strength as described in Example 12, they demonstrated a burst strength of greater than 150 mm Hg and a gel time of less than 2 seconds. [0125]
  • Numerous modifications may be made to the foregoing systems without departing from the basic teachings thereof. Although the present invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the invention as set forth in the claims which follow. All publications, patents, and patent applications cited in this specification are incorporated herein by reference as if each such publication, patent, or patent application was specifically and individually indicated to be incorporated herein by reference. [0126]

Claims (20)

We claim:
1. A biocompatible two-component gel-forming composition for in vivo administration, comprising:
a first component comprising at least one sulfhydryl group-containing compound given by the formula Compound1-(SH)m, wherein m≧2; and
a second component comprising at least one sulfhydryl reactive group-containing compound given by the formula Compound2-Yn, wherein Y is a sulfhydryl reactive group and wherein n≧2;
wherein at least one of the first or second components is a polyalkylene oxide and wherein the sulfhydryl groups and the sulfhydryl reactive groups react with one another to form covalent bonds therebetween when said components are mixed together to form a gel in less than one minute.
2. The composition of
claim 1
, wherein m and n are each 4.
3. The composition of
claim 1
, wherein m and n are each 12.
4. The composition of
claim 1
, wherein the first component is a polyalkylene oxide.
5. The composition of
claim 1
, wherein the second component is a polyalkylene oxide.
6. The composition of
claim 1
, wherein the first and second components are polyalkylene oxides.
7. The composition of
claim 6
, wherein the polyalkylene oxides are polyethylene glycol.
8. The composition of
claim 1
, wherein either the first or second component is a small organic molecule.
9. The composition of
claim 8
, wherein the small organic molecule is a functionally activated succinimidyl or maleimidyl compound.
10. The composition of
claim 1
, wherein the covalent bonds are thioester linkages.
11. The composition of
claim 1
, wherein the covalent bonds are thioether linkages.
12. The composition of
claim 1
, wherein the covalent bonds are sulfhydryl linkages.
13. The composition of
claim 1
, further comprising a hemostatic agent.
14. The composition of
claim 1
, wherein the hemostatic agent is thrombin.
15. The composition of
claim 1
, wherein the first component is suspended in a buffer solution comprising a mixture of phosphate buffer and carbonate buffer.
16. The composition of
claim 2
, wherein the second component comprises a mixture of succinimidyl polyalkylene oxide and maleimidyl polyalkylene oxide.
17. A method for treating tissues, comprising the steps of:
administering to a tissue site a first component comprising at least one sulfhydryl group-containing compound given by the formula Compound1-(SH)m, wherein m≧2; and
simultaneously or subsequently administering to the tissue site a second component comprising at least one sulfhydryl reactive group-containing compound given by the formula Compound2-Yn, wherein Y is a sulfhydryl reactive group and wherein n≧2, and wherein at least one of the first or second components is a polyalkylene oxide; and
allowing the sulfhydryl groups and the sulfhydryl reactive groups to react with one another to form covalent bonds therebetween to form a gel in less than one minute.
18. A biocompatible two-component gel-forming composition for in vivo administration with a gel time of less than one minute, comprising:
polyalkylene oxide-(SH)4 in a liquid medium having an acidic pH; and
polyalkylene oxide-Y4, wherein Y is succinimidyl, in a buffer having a pH of between 8 and 10.5.
19. A biocompatible two-component gel-forming composition for in vivo administration with a gel time of less than one minute, comprising:
polyalkylene oxide-(SH)12; and
polyalkylene oxide-Y12, wherein Y is a succinimidyl or maleimidyl group.
20. A biocompatible two-component gel-forming composition for in vivo administration, comprising:
a first component comprising at least one sulfhydryl group-containing polyalkylene oxide given by the formula Core-(SH)m, wherein m≧2, in a buffer solution with an acidic pH; and
a buffer solution with an alkaline pH;
wherein the sulfhydryl groups react with one another to form covalent bonds therebetween when said components are mixed together to form a gel in less than one minute.
US09/293,708 1999-04-16 1999-04-16 Rapid gelling biocompatible polymer composition Expired - Lifetime US6312725B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/293,708 US6312725B1 (en) 1999-04-16 1999-04-16 Rapid gelling biocompatible polymer composition
PCT/US2000/010053 WO2000062827A2 (en) 1999-04-16 2000-04-13 Rapid gelling biocompatible polymer composition
JP2000611963A JP2002541923A (en) 1999-04-16 2000-04-13 Rapidly gelling biocompatible polymer composition
AU43497/00A AU4349700A (en) 1999-04-16 2000-04-13 Rapid gelling biocompatible polymer composition
US10/012,263 US6624245B2 (en) 1999-04-16 2001-11-05 Rapid-gelling biocompatible polymer composition and associated methods of preparation and use
JP2007215016A JP5053758B2 (en) 1999-04-16 2007-08-21 Rapid gelling biocompatible polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/293,708 US6312725B1 (en) 1999-04-16 1999-04-16 Rapid gelling biocompatible polymer composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/012,263 Continuation-In-Part US6624245B2 (en) 1999-04-16 2001-11-05 Rapid-gelling biocompatible polymer composition and associated methods of preparation and use

Publications (2)

Publication Number Publication Date
US6312725B1 US6312725B1 (en) 2001-11-06
US20010055615A1 true US20010055615A1 (en) 2001-12-27

Family

ID=23130216

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/293,708 Expired - Lifetime US6312725B1 (en) 1999-04-16 1999-04-16 Rapid gelling biocompatible polymer composition
US10/012,263 Expired - Lifetime US6624245B2 (en) 1999-04-16 2001-11-05 Rapid-gelling biocompatible polymer composition and associated methods of preparation and use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/012,263 Expired - Lifetime US6624245B2 (en) 1999-04-16 2001-11-05 Rapid-gelling biocompatible polymer composition and associated methods of preparation and use

Country Status (4)

Country Link
US (2) US6312725B1 (en)
JP (2) JP2002541923A (en)
AU (1) AU4349700A (en)
WO (1) WO2000062827A2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281883A1 (en) * 2004-04-28 2005-12-22 Daniloff George Y Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US20060210602A1 (en) * 1995-12-18 2006-09-21 Sehl Louis C Compositions and systems for forming crosslinked biomaterials and methods of preparation and use
US20080187568A1 (en) * 2007-02-06 2008-08-07 Sawhney Amarpreet S Polymerization with precipitation of proteins for elution in physiological solution
US7883694B2 (en) 1995-12-18 2011-02-08 Angiodevice International Gmbh Method for preventing the formation of adhesions following surgery or injury
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
EP2522304A1 (en) 2001-03-23 2012-11-14 Histogenics Corporation Composition and methods for the production of biological tissues and tissue constructs
US8377466B2 (en) * 1995-12-18 2013-02-19 Angiotech Pharmaceuticals (Us), Inc. Adhesive tissue repair patch
US8383158B2 (en) 2003-04-15 2013-02-26 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8486387B2 (en) 2006-07-31 2013-07-16 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8500680B2 (en) 2002-06-28 2013-08-06 Abbott Cardiovascular Systems Inc. Device and method for combining a treatment agent and a gel
US8521259B2 (en) 2001-06-20 2013-08-27 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8608661B1 (en) * 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US8741326B2 (en) 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8747385B2 (en) 2003-04-15 2014-06-10 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8906686B2 (en) 2002-03-22 2014-12-09 Histogenics Corporation Method for preparation of implantable constructs
US8987339B2 (en) 2013-03-14 2015-03-24 Medicus Biosciences Llc Solid polyglycol-based biocompatible pre-formulation
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US9072809B2 (en) 2012-05-11 2015-07-07 Medical Biosciences Llc Biocompatible hydrogel treatments for retinal detachment
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US9353218B2 (en) 2004-09-17 2016-05-31 Angiotech Pharmaceuticals, Inc. Kit for multifunctional compounds forming crosslinked biomaterials
US9421304B2 (en) 2007-07-03 2016-08-23 Histogenics Corporation Method for improvement of differentiation of mesenchymal stem cells using a double-structured tissue implant
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US9687630B2 (en) 2005-04-19 2017-06-27 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US9687590B2 (en) 2007-07-03 2017-06-27 Histogenics Corporation Double-structured tissue implant and a method for preparation and use thereof
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US9993326B2 (en) 2007-07-03 2018-06-12 Histogenics Corporation Method for use of a double-structured tissue implant for treatment of tissue defects
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US10111981B2 (en) 2013-03-04 2018-10-30 Dermelle, Llc Injectable in situ polymerizable collagen composition
US10111985B2 (en) 2011-08-10 2018-10-30 Medicus Biosciences, Llc Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
US10189773B2 (en) 2010-05-07 2019-01-29 Medicus Biosciences, Llc In-vivo gelling pharmaceutical pre-formulation
US11083821B2 (en) 2011-08-10 2021-08-10 C.P. Medical Corporation Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
CN113289051A (en) * 2021-05-19 2021-08-24 南方科技大学 PEG powder capable of being rapidly crosslinked and degraded and application thereof
CN115845127A (en) * 2022-12-29 2023-03-28 海南众森生物科技有限公司 Polysaccharide hemostatic repair biological glue solution and preparation method and application thereof

Families Citing this family (283)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458889B1 (en) * 1995-12-18 2002-10-01 Cohesion Technologies, Inc. Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US6066325A (en) * 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US7435425B2 (en) 2001-07-17 2008-10-14 Baxter International, Inc. Dry hemostatic compositions and methods for their preparation
WO1998012274A1 (en) 1996-09-23 1998-03-26 Chandrashekar Pathak Methods and devices for preparing protein concentrates
US7009034B2 (en) * 1996-09-23 2006-03-07 Incept, Llc Biocompatible crosslinked polymers
US20090324721A1 (en) * 1996-09-23 2009-12-31 Jack Kennedy Hydrogels Suitable For Use In Polyp Removal
US8003705B2 (en) 1996-09-23 2011-08-23 Incept Llc Biocompatible hydrogels made with small molecule precursors
US7192984B2 (en) * 1997-06-17 2007-03-20 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use as dermal fillers
US6703047B2 (en) * 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US6152943A (en) * 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US7347850B2 (en) * 1998-08-14 2008-03-25 Incept Llc Adhesion barriers applicable by minimally invasive surgery and methods of use thereof
US6458147B1 (en) 1998-11-06 2002-10-01 Neomend, Inc. Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
US6830756B2 (en) 1998-11-06 2004-12-14 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
US6899889B1 (en) 1998-11-06 2005-05-31 Neomend, Inc. Biocompatible material composition adaptable to diverse therapeutic indications
US20080114092A1 (en) * 1998-12-04 2008-05-15 Incept Llc Adhesion barriers applicable by minimally invasive surgery and methods of use thereof
EP1137373A4 (en) 1998-12-04 2004-05-19 Chandrashekhar P Pathak Biocompatible crosslinked polymers
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
AU769853B2 (en) * 1999-06-11 2004-02-05 Atossa Genetics, Inc. Gel composition for filing a breast milk duct prior to surgical excision of the duct or other breast tissue
DE60007257T2 (en) * 1999-10-21 2004-09-16 Pohang University Of Science And Technology Foundation, Pohang Process for the preparation of cucurbituril derivatives
DE60137489D1 (en) * 2000-02-03 2009-03-12 Tissuemed Ltd DEVICE FOR CLOSING A SURGICAL PUNKING WOMAN
US6602498B2 (en) 2000-02-22 2003-08-05 Shearwater Corporation N-maleimidyl polymer derivatives
EP1261294B1 (en) * 2000-03-10 2006-11-29 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
ATE373682T1 (en) 2000-03-13 2007-10-15 Biocure Inc EMBOLIC COMPOSITIONS
US6652883B2 (en) 2000-03-13 2003-11-25 Biocure, Inc. Tissue bulking and coating compositions
US20020076443A1 (en) * 2000-06-19 2002-06-20 Stanley Stein Multiple phase cross-linked compositions and uses thereof
US7807447B1 (en) 2000-08-25 2010-10-05 Merck Sharp & Dohme Corp. Compositions and methods for exon profiling
ES2236314T3 (en) * 2000-10-23 2005-07-16 Tissuemed Limited HIDRATABLE SELF-ADHESIVE FAN FOR TOPICO THERAPEUTIC USE.
US7625580B1 (en) * 2000-11-28 2009-12-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
JP2004523624A (en) * 2001-02-26 2004-08-05 デューク ユニバーシティ Novel dendritic polymer and its biomedical use
US20070078435A1 (en) * 2001-06-14 2007-04-05 Corbett Stone Tissue augmentation methods using a medical injection apparatus
CA2458023A1 (en) * 2001-09-10 2003-03-20 Paracor Medical, Inc. Device for treating heart failure
EP1465521A4 (en) 2001-11-01 2008-10-08 Spine Wave Inc System and method for the pretreatment of the endplates of an intervertebral disc
AU2002336694A1 (en) 2001-11-01 2003-05-12 Lawrence M. Boyd Devices and methods for the restoration of a spinal disc
US7923431B2 (en) 2001-12-21 2011-04-12 Ferrosan Medical Devices A/S Haemostatic kit, a method of preparing a haemostatic agent and a method of promoting haemostatis
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US20040131582A1 (en) * 2002-02-26 2004-07-08 Grinstaff Mark W. Novel dendritic polymers and their biomedical uses
US20050209699A1 (en) * 2002-03-19 2005-09-22 Slivka Michael A Method for nonsurgical treatment of the nucleus pulposus of the intervertebral disc using genipin or proanthrocyanidin, and kit therefor
US6812211B2 (en) * 2002-03-19 2004-11-02 Michael Andrew Slivka Method for nonsurgical treatment of the intervertebral disc and kit therefor
US8282912B2 (en) * 2002-03-22 2012-10-09 Kuros Biosurgery, AG Compositions for tissue augmentation
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
US8673333B2 (en) * 2002-09-25 2014-03-18 The Johns Hopkins University Cross-linked polymer matrices, and methods of making and using same
US7862831B2 (en) * 2002-10-09 2011-01-04 Synthasome, Inc. Method and material for enhanced tissue-biomaterial integration
US7074425B2 (en) * 2002-09-26 2006-07-11 Bonewax, Llc Hemostatic compositions and methods
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US6833467B2 (en) * 2002-11-12 2004-12-21 Chung-Shan Institute Of Science & Technology Method for preparing pentaerythritol phosphate alcohol by mechanochemical synthesis
US8153156B2 (en) * 2002-11-13 2012-04-10 The United States Of America As Represented By The Department Of Veteran Affairs Hydrogel nanocompsites for ophthalmic applications
US8192485B2 (en) 2002-11-13 2012-06-05 The United States of America, as represented by the Department of Veterens Affairs Reversible hydrogel systems and methods therefor
CA2504555C (en) * 2002-11-15 2012-09-04 Paracor Medical, Inc. Cardiac harness delivery device
US7736299B2 (en) 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
BR0317237A (en) 2002-12-11 2005-11-01 Ferrosan As Sampling or collecting device, kit, uses of a device and a kit, and methods for decreasing the amount of a marker in a sample area, for qualitatively or quantitatively sampling an area for the content of a marker and for grow microorganisms or mammalian cells collected
EP1594459B1 (en) * 2002-12-30 2010-02-17 Angiotech International Ag Drug delivery from rapid gelling polymer composition
CA2511486A1 (en) * 2002-12-30 2004-07-22 Angiotech International Ag Tissue reactive compounds and compositions and uses thereof
JP4585743B2 (en) * 2003-02-13 2010-11-24 独立行政法人物質・材料研究機構 Biodegradable absorbable adhesive medical material
WO2004081055A1 (en) * 2003-02-21 2004-09-23 Terumo Kabushiki Kaisha Crosslinkable polysaccharide derivative, process for producing the same, crosslinkable polysaccharide composition and medical treatment material
WO2004083259A2 (en) * 2003-03-18 2004-09-30 Neose Technologies Inc. Activated forms of water-soluble polymers
US7883500B2 (en) * 2003-03-26 2011-02-08 G&L Consulting, Llc Method and system to treat and prevent myocardial infarct expansion
JP2006523113A (en) * 2003-04-04 2006-10-12 ティシュームド リミテッド Tissue adhesive composition
US7820158B2 (en) * 2003-04-10 2010-10-26 Surmodics, Inc. Ligand-coupled initiator polymers and methods of use
CN101137388A (en) * 2003-05-15 2008-03-05 犹他卅大学研究基金会 Anti-adhesion composites and methods os use thereof
US20040236279A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Gaseous therapeutic agent delivery
US20040236278A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Therapeutic agent delivery
US20040236410A1 (en) * 2003-05-22 2004-11-25 Atrium Medical Corp. Polymeric body formation
US8834864B2 (en) 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
US7927626B2 (en) 2003-08-07 2011-04-19 Ethicon, Inc. Process of making flowable hemostatic compositions and devices containing such compositions
US7217294B2 (en) * 2003-08-20 2007-05-15 Histogenics Corp. Acellular matrix implants for treatment of articular cartilage, bone or osteochondral defects and injuries and method for use thereof
WO2005018429A2 (en) * 2003-08-20 2005-03-03 Histogenics Corporation Acellular matrix implanted into an articular cartilage or osteochondral lesion protected with a biodegradable polymer modified to have extended polymerization time and methods for preparation and use thereof
US7815561B2 (en) 2003-09-25 2010-10-19 Xoft, Inc. Brachytherapy applicator
US7645292B2 (en) * 2003-10-27 2010-01-12 Boston Scientific Scimed, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20050090856A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vasco-occlusive devices with bioactive elements
US20060009831A1 (en) * 2003-11-07 2006-01-12 Lilip Lau Cardiac harness having leadless electrodes for pacing and sensing therapy
US20050288715A1 (en) * 2003-11-07 2005-12-29 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
WO2005046746A2 (en) * 2003-11-10 2005-05-26 Angiotech International Ag Medical implants and fibrosis-inducing agents
US20050208095A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
AU2004297228A1 (en) 2003-12-03 2005-06-23 Nektar Therapeutics Al, Corporation Method of preparing maleimide functionalized polymers
JP4912565B2 (en) * 2003-12-15 2012-04-11 独立行政法人物質・材料研究機構 Biodegradable absorbable adhesive medical material
EP1696974B1 (en) * 2003-12-19 2007-05-23 Basf Aktiengesellschaft Swellable hydrogel-forming polymers having a low fine dust concentration
EP1729672A2 (en) 2004-01-08 2006-12-13 Spine Wave, Inc. Apparatus and method for injecting fluent material at a distracted tissue site
WO2005072700A2 (en) 2004-01-30 2005-08-11 Ferrosan A/S Haemostatic sprays and compositions
US8945223B2 (en) * 2004-03-12 2015-02-03 Warsaw Orthopedic, Inc. In-situ formable nucleus pulposus implant with water absorption and swelling capability
JP4566189B2 (en) * 2004-03-15 2010-10-20 テルモ株式会社 Anti-adhesive material
US8062272B2 (en) 2004-05-21 2011-11-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
GB0409446D0 (en) 2004-04-28 2004-06-02 Smith & Nephew Apparatus
US20050281866A1 (en) * 2004-05-24 2005-12-22 Genzyme Corporation Adherent polymeric compositions
ES2299776T3 (en) * 2004-06-16 2008-06-01 Straumann Holding Ag BARRIER MEMBRANE.
US7282584B2 (en) * 2004-06-16 2007-10-16 Straumann Holding Ag Methylene blue
US7794490B2 (en) * 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
EP1773417A1 (en) * 2004-06-23 2007-04-18 Angiotech Pharmaceuticals (US), Inc. Methods and crosslinked polymer compositions for cartilage repair
JP2008504895A (en) * 2004-06-29 2008-02-21 スパイン・ウェイブ・インコーポレーテッド Method for treating disc defects and injuries
WO2006004940A2 (en) 2004-06-29 2006-01-12 Biocure, Inc. Spinal disc nucleus pulposus implant
JP5113519B2 (en) * 2004-07-08 2013-01-09 ヌームアールエックス・インコーポレーテッド Treatment device, treatment method and material for pleural effusion
RU2369408C2 (en) 2004-07-09 2009-10-10 Ферросан А/С Hemostatic composition comprising hyaluronic acid
US7356368B2 (en) * 2004-07-21 2008-04-08 Boston Scientific Scimed, Inc. Light-activated anti-infective coatings and devices made thereof
AU2005268647B2 (en) * 2004-08-03 2011-04-14 Tissuemed Limited Tissue-adhesive materials
AU2005272578A1 (en) * 2004-08-13 2006-02-23 Angiotech International Ag Compositions and methods using hyaluronic acid and hyluronidase inhibitors
US20060069063A1 (en) * 2004-09-27 2006-03-30 Yng-Jiin Wang Crosslinked polygalacturonic acid used for postsurgical tissue adhesion prevention
US8790632B2 (en) 2004-10-07 2014-07-29 Actamax Surgical Materials, Llc Polymer-based tissue-adhesive form medical use
US20060110429A1 (en) * 2004-11-24 2006-05-25 Therakine Corporation Implant for intraocular drug delivery
US8535709B2 (en) * 2004-12-13 2013-09-17 Southeastern Medical Technologies, Llc Agents for controlling biological fluids and methods of use thereof
US20060127437A1 (en) * 2004-12-13 2006-06-15 Misty Anderson Kennedy Semisolid system and combination semisolid, multiparticulate system for sealing tissues and/or controlling biological fluids
US20070059350A1 (en) * 2004-12-13 2007-03-15 Kennedy John P Agents for controlling biological fluids and methods of use thereof
US7854944B2 (en) 2004-12-17 2010-12-21 Advanced Cardiovascular Systems, Inc. Tissue regeneration
US7385028B2 (en) * 2004-12-22 2008-06-10 Ambrx, Inc Derivatization of non-natural amino acids and polypeptides
DE602005012551D1 (en) * 2004-12-22 2009-03-12 California Inst Of Techn DEVELOPABLE POLYMERS AND MANUFACTURING METHOD THEREFOR
US7834065B2 (en) * 2005-01-31 2010-11-16 Bmg Incorporated Medical-use two part reactive adhesive and medical-use resin having self-degradation property
EP1846505B1 (en) 2005-02-09 2015-11-11 Covidien LP Synthetic sealants
BRPI0608186A2 (en) * 2005-02-18 2011-01-04 Synthasome Inc synthetic structure for soft tissue repair
US20060222596A1 (en) 2005-04-01 2006-10-05 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
US9119901B2 (en) 2005-04-28 2015-09-01 Warsaw Orthopedic, Inc. Surface treatments for promoting selective tissue attachment to medical impants
US8414907B2 (en) 2005-04-28 2013-04-09 Warsaw Orthopedic, Inc. Coatings on medical implants to guide soft tissue healing
JP5329949B2 (en) * 2005-05-31 2013-10-30 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ Triblock copolymers for cytoplasmic delivery of gene-based drugs
CA2610592A1 (en) * 2005-06-16 2006-12-28 Artes Medical, Inc. Liquid crystal polymer syringes and containers and methods of use for long term storage of filler materials
WO2007016622A2 (en) * 2005-08-02 2007-02-08 Wright Medical Technolody, Inc. Gel composition for inhibiting cellular adhesion
US20070100199A1 (en) * 2005-11-03 2007-05-03 Lilip Lau Apparatus and method of delivering biomaterial to the heart
US8679537B2 (en) 2005-08-24 2014-03-25 Actamaz Surgical Materials, LLC Methods for sealing an orifice in tissue using an aldol-crosslinked polymeric hydrogel adhesive
US8679536B2 (en) 2005-08-24 2014-03-25 Actamax Surgical Materials, Llc Aldol-crosslinked polymeric hydrogel adhesives
JP2009507103A (en) * 2005-09-02 2009-02-19 コルバー・ライフサイエンス・リミテツド Cross-linked polysaccharides and protein matrices and methods for their production
US20070073218A1 (en) * 2005-09-26 2007-03-29 Lilip Lau Inflatable cardiac device for treating and preventing ventricular remodeling
US20070102010A1 (en) * 2005-10-07 2007-05-10 Lemperle Stefan M Naso-pharyngeal tissue engineering
US20070098754A1 (en) * 2005-10-28 2007-05-03 Medtronic, Inc. Method and article to restore function to GI or urinary tract of a patient
AU2006321912B2 (en) 2005-12-06 2012-07-12 Covidien Lp Carbodiimide crosslinking of functionalized polethylene glycols
JP5088894B2 (en) * 2005-12-06 2012-12-05 タイコ ヘルスケア グループ リミテッド パートナーシップ Biocompatible tissue sealant and adhesive
WO2007067621A2 (en) 2005-12-06 2007-06-14 Tyco Healthcare Group Lp Biocompatible surgical compositions
CA2628580C (en) 2005-12-06 2014-07-08 Tyco Healthcare Group Lp Bioabsorbable compounds and compositions containing them
WO2007067625A2 (en) 2005-12-06 2007-06-14 Tyco Healthcare Group Lp Bioabsorbable surgical composition
AU2006321721B2 (en) 2005-12-08 2012-07-05 Covidien Lp Biocompatible surgical compositons
US20070142287A1 (en) * 2005-12-20 2007-06-21 Biomed Solutions, Llc Compositions And Methods For Treatment Of Cancer
CA2635374C (en) 2006-01-11 2015-12-08 Hyperbranch Medical Technology, Inc. Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices
US8133336B2 (en) 2006-02-03 2012-03-13 Tissuemed Limited Tissue-adhesive materials
US20070233219A1 (en) * 2006-02-16 2007-10-04 Bilal Shafi Polymeric heart restraint
US20090018575A1 (en) * 2006-03-01 2009-01-15 Tissuemed Limited Tissue-adhesive formulations
US8795709B2 (en) 2006-03-29 2014-08-05 Incept Llc Superabsorbent, freeze dried hydrogels for medical applications
WO2007127198A2 (en) * 2006-04-24 2007-11-08 Incept, Llc Protein crosslinkers, crosslinking methods and applications thereof
US7872068B2 (en) 2006-05-30 2011-01-18 Incept Llc Materials formable in situ within a medical device
MX2008014847A (en) 2006-05-31 2009-04-30 Baxter Int Method for directed cell in-growth and controlled tissue regeneration in spinal surgery.
CA2659612A1 (en) 2006-08-02 2008-02-07 Khorionyx Implantable preparation, useful more particularly for tissue complement and cicatrisation
TWI436793B (en) 2006-08-02 2014-05-11 Baxter Int Rapidly acting dry sealant and methods for use and manufacture
US8129445B2 (en) * 2006-08-09 2012-03-06 Ethicon, Inc. Moisture activated latent curing adhesive or sealant
US7947758B2 (en) * 2006-08-09 2011-05-24 Ethicon, Inc. Moisture activated latent curing adhesive or sealant
DE602007010708D1 (en) 2006-09-29 2011-01-05 Nof Corp Process for the preparation of biodegradable polyoxyalkylene
US8088095B2 (en) 2007-02-08 2012-01-03 Medtronic Xomed, Inc. Polymeric sealant for medical use
EP2712614B1 (en) * 2007-02-08 2017-11-29 Medtronic Xomed, Inc. Solvating system and sealant for medical use
JP5428017B2 (en) * 2007-03-23 2014-02-26 国立大学法人 熊本大学 Vaccine
PL2136850T3 (en) 2007-04-13 2012-07-31 Kuros Biosurgery Ag Polymeric tissue sealant
US8092837B2 (en) * 2007-04-27 2012-01-10 Biomet Manufacturing Corp Fibrin based glue with functionalized hydrophilic polymer protein binding agent
CN101338036B (en) * 2007-07-06 2010-11-03 常州百瑞吉生物医药有限公司 Biocompatible quick-gelatinizing hydrogels and method for preparing spray thereof
US9125807B2 (en) 2007-07-09 2015-09-08 Incept Llc Adhesive hydrogels for ophthalmic drug delivery
GB0715514D0 (en) * 2007-08-10 2007-09-19 Tissuemed Ltd Coated medical devices
US8067028B2 (en) * 2007-08-13 2011-11-29 Confluent Surgical Inc. Drug delivery device
US8470360B2 (en) * 2008-04-18 2013-06-25 Warsaw Orthopedic, Inc. Drug depots having different release profiles for reducing, preventing or treating pain and inflammation
WO2009039485A1 (en) * 2007-09-20 2009-03-26 University Of Utah Research Foundation Electrochemical deposition of polymers on metal substrates
US8790698B2 (en) 2007-10-30 2014-07-29 Baxter International Inc. Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects
US20090125051A1 (en) * 2007-11-13 2009-05-14 Boston Scientific Scimed, Inc. Combination coil and liquid embolic for embolization
ES2555204T3 (en) 2007-11-21 2015-12-29 T.J. Smith & Nephew Limited Suction and bandage device
WO2009066106A1 (en) 2007-11-21 2009-05-28 Smith & Nephew Plc Wound dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
GB0723875D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Wound management
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US8629314B2 (en) * 2007-12-18 2014-01-14 Ethicon, Inc. Surgical barriers having adhesion inhibiting properties
US8299316B2 (en) 2007-12-18 2012-10-30 Ethicon, Inc. Hemostatic device
JP5530934B2 (en) * 2008-01-24 2014-06-25 ユニバーシティ オブ ユタ リサーチ ファンデーション Adhesive composite coacervate and methods of making and using the same
US8283384B2 (en) * 2008-01-24 2012-10-09 University Of Utah Research Foundation Adhesive complex coacervates and methods of making and using thereof
GB0803564D0 (en) 2008-02-27 2008-04-02 Smith & Nephew Fluid collection
EP2259803B2 (en) 2008-02-29 2019-03-13 Ferrosan Medical Devices A/S Device for promotion of hemostasis and/or wound healing
US8293813B2 (en) * 2008-03-05 2012-10-23 Biomet Manufacturing Corporation Cohesive and compression resistant demineralized bone carrier matrix
CA2718715C (en) * 2008-03-19 2014-11-18 University Of Florida Research Foundation, Inc. Nerve repair with a hydrogel and optional adhesive
US8883768B2 (en) * 2008-04-18 2014-11-11 Warsaw Orthopedic, Inc. Fluocinolone implants to protect against undesirable bone and cartilage destruction
CA2722092C (en) * 2008-04-22 2016-07-12 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same
AU2009257390B2 (en) 2008-06-12 2014-09-04 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
US20100015049A1 (en) * 2008-07-16 2010-01-21 Warsaw Orthopedic, Inc. Methods and compositions for treating postoperative pain comprising nonsteroidal anti-inflammatory agents
CN101721349B (en) 2008-10-16 2011-07-20 常州百瑞吉生物医药有限公司 Injectable in-situ crosslinking aquogel and preparation method and application thereof
US7897164B2 (en) * 2008-10-30 2011-03-01 Warsaw Orthopedic, Inc Compositions and methods for nucleus pulposus regeneration
WO2010068432A1 (en) 2008-11-25 2010-06-17 Ecole Polytechnique Federale De Lausanne (Epfl) Block copolymers and uses thereof
WO2010070775A1 (en) * 2008-12-19 2010-06-24 株式会社ネクスト21 Ultra-high strength injectable hydrogel and process for producing the same
CN102264402A (en) * 2009-01-28 2011-11-30 泰尔茂株式会社 Medical device which has lubricating surface when wet
CN102264403B (en) * 2009-01-28 2015-06-03 泰尔茂株式会社 Medical device which has lubricating surface when wet
EP2396070A4 (en) 2009-02-12 2012-09-19 Incept Llc Drug delivery through hydrogel plugs
US8535477B2 (en) 2009-02-21 2013-09-17 Sofradim Production Medical devices incorporating functional adhesives
WO2010095055A1 (en) 2009-02-21 2010-08-26 Sofradim Production Crosslinked fibers and method of making same using uv radiation
US8968733B2 (en) 2009-02-21 2015-03-03 Sofradim Production Functionalized surgical adhesives
AU2010215203B2 (en) 2009-02-21 2015-07-16 Covidien Lp Medical devices with an activated coating
AU2010215200A1 (en) 2009-02-21 2011-10-13 Sofradim Production Apparatus and method of reaching polymers by exposure to UV radiation to produce injectable medical devices
US9039979B2 (en) 2009-02-21 2015-05-26 Sofradim Production Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices
CA2753162A1 (en) 2009-02-21 2010-08-26 Sofradim Production Amphiphilic compounds and self-assembling compositions made therefrom
US8877170B2 (en) 2009-02-21 2014-11-04 Sofradim Production Medical device with inflammatory response-reducing coating
EP2398523B1 (en) 2009-02-21 2018-04-04 Covidien LP Medical devices having activated surfaces
WO2010095049A1 (en) 2009-02-21 2010-08-26 Sofradim Production Crosslinked fibers and method of making same by extrusion
US8969473B2 (en) 2009-02-21 2015-03-03 Sofradim Production Compounds and medical devices activated with solvophobic linkers
US8968818B2 (en) 2009-02-21 2015-03-03 Covidien Lp Medical devices having activated surfaces
EP2398525B1 (en) 2009-02-21 2012-12-05 Sofradim Production Medical device with degradation-retarding coating
US20100261652A1 (en) * 2009-04-08 2010-10-14 California Institute Of Technology Tissue Adhesive Using Engineered Proteins
JP5684239B2 (en) 2009-05-04 2015-03-11 インセプト・リミテッド・ライアビリティ・カンパニーIncept Llc Biomaterial for track and puncture closure
US9039783B2 (en) 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
US20100311025A1 (en) * 2009-06-09 2010-12-09 The Government Of The Us, As Represented By The Secretary Of The Navy Material Formulations for Human Tissue Simulation
KR101699992B1 (en) 2009-06-16 2017-01-26 백스터 인터내셔널 인코포레이티드 Hemostatic sponge
US9597430B2 (en) * 2009-07-31 2017-03-21 Synthasome, Inc. Synthetic structure for soft tissue repair
US8138236B2 (en) * 2009-10-29 2012-03-20 Ethicon, Inc. Solvent-free moisture activated latent curing surgical adhesive or sealant
CA2814784C (en) * 2009-11-19 2022-07-26 Corporation De L'ecole Polytechnique De Montreal Soluble physiological chitosan formulations combined with platelet-rich plasma (prp) for tissue repair
JP2011110367A (en) * 2009-11-30 2011-06-09 Terumo Corp Graft implanting instrument
EP2512535A1 (en) 2009-12-16 2012-10-24 Baxter International Inc Hemostatic sponge
CA2730598C (en) * 2010-03-16 2018-03-13 Confluent Surgical, Inc. Modulating drug release rate by controlling the kinetics of the ph transition in hydrogels
EP2550034B1 (en) 2010-03-25 2015-01-07 Sofradim Production Surgical fasteners and methods for sealing wounds
WO2011117744A2 (en) 2010-03-25 2011-09-29 Sofradim Production Medical devices incorporating functional adhesives
KR101776675B1 (en) * 2010-04-06 2017-09-20 동국대학교 산학협력단 Multi-syringe for producing collagen hydrogel
SA111320355B1 (en) 2010-04-07 2015-01-08 Baxter Heathcare S A Hemostatic sponge
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
EP2575906B1 (en) 2010-05-24 2014-12-10 University of Utah Research Foundation Reinforced adhesive complex coacervates and methods of making and using thereof
CA2801118C (en) 2010-06-01 2016-01-05 Baxter International Inc. Process for making dry and stable hemostatic compositions
EP2575775B1 (en) 2010-06-01 2018-04-04 Baxter International Inc. Process for making dry and stable hemostatic compositions
BR112012030457B1 (en) 2010-06-01 2021-03-09 Baxter International Inc. process for making a dry and stable hemostatic composition, final finished container, method for providing a ready-to-use hemostatic composition, and kit for administering a hemostatic composition
US8672237B2 (en) 2010-06-25 2014-03-18 Baxter International Inc. Device for mixing and dispensing of two-component reactive surgical sealant
US9125633B2 (en) 2010-06-25 2015-09-08 Baxter International Inc. Device for mixing and dispensing of two-component reactive surgical sealant
CA2804263A1 (en) 2010-06-29 2012-01-12 Tyco Healthcare Group Lp Microwave-powered reactor and method for in situ forming implants
US9232805B2 (en) 2010-06-29 2016-01-12 Biocure, Inc. In-situ forming hydrogel wound dressings containing antimicrobial agents
WO2012001532A2 (en) 2010-07-01 2012-01-05 Sofradim Production Medical device with predefined activated cellular integration
GB201011173D0 (en) 2010-07-02 2010-08-18 Smith & Nephew Provision of wound filler
AU2011284449B2 (en) 2010-07-27 2015-07-23 Sofradim Production Polymeric fibers having tissue reactive members
US8524215B2 (en) 2010-08-02 2013-09-03 Janssen Biotech, Inc. Absorbable PEG-based hydrogels
WO2012035598A1 (en) * 2010-09-13 2012-03-22 株式会社グッドマン Medical material, dried product, and method for producing same
US8961501B2 (en) 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
US8901198B2 (en) 2010-11-05 2014-12-02 Ppg Industries Ohio, Inc. UV-curable coating compositions, multi-component composite coatings, and related coated substrates
US9044722B2 (en) 2010-11-10 2015-06-02 Darren Edward Nolen Multi-component, temperature activated, tissue adhesive, sealing, and filling composition
CA2812599A1 (en) 2010-11-12 2012-05-18 University Of Utah Research Foundation Simple adhesive coacervates and methods of making and using thereof
EP2643412B1 (en) 2010-11-25 2016-08-17 Smith & Nephew PLC Composition i-ii and products and uses thereof
GB201020005D0 (en) 2010-11-25 2011-01-12 Smith & Nephew Composition 1-1
CN102206409B (en) * 2011-04-07 2013-03-13 广州圣谕医药科技有限公司 Hydrogel forming covalent cross-linking rapidly under mild conditions and preparation method thereof
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
JP5945896B2 (en) * 2011-09-30 2016-07-05 日油株式会社 Branched hetero polyfunctional polyoxyalkylene compounds and intermediates thereof
KR102102002B1 (en) * 2011-10-11 2020-04-20 백스터 인터내셔널 인코포레이티드 Hemostatic compositions
CN103998068B (en) * 2011-10-11 2016-05-25 巴克斯特国际公司 Hemostatic composition
JP6195568B2 (en) * 2011-10-11 2017-09-13 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Hemostatic composition
PL2771027T3 (en) 2011-10-27 2016-01-29 Baxter Int Hemostatic compositions
US20150159066A1 (en) 2011-11-25 2015-06-11 Smith & Nephew Plc Composition, apparatus, kit and method and uses thereof
WO2013086015A1 (en) 2011-12-05 2013-06-13 Incept, Llc Medical organogel processes and compositions
WO2013112381A2 (en) 2012-01-24 2013-08-01 Bvw Holding Ag New class of anti-adhesion hydrogels with healing aspects
IN2014DN08122A (en) 2012-03-06 2015-05-01 Ferrosan Medical Devices As
CA2866281C (en) 2012-03-28 2016-11-01 Toray Industries, Inc. Biodegradable material and method for producing biodegradable material
PT2832381T (en) * 2012-03-28 2019-10-24 Toray Industries Biodegradable material and method for producing biodegradable material
EP2977066A3 (en) 2012-06-12 2016-07-27 Ferrosan Medical Devices A/S Dry haemostatic composition
WO2013191759A1 (en) * 2012-06-21 2013-12-27 Northwestern University Polymer hydrogel adhesives formed with multiple crosslinking mechanisms at physiologic ph
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
ES2654189T3 (en) 2012-09-12 2018-02-12 Boston Scientific Scimed, Inc. Anti-migration stent adhesive coating
US20140212355A1 (en) 2013-01-28 2014-07-31 Abbott Cardiovascular Systems Inc. Trans-arterial drug delivery
WO2014123665A1 (en) 2013-02-06 2014-08-14 Kci Licensing, Inc. Polymers, preparation and use thereof
US20140227665A1 (en) * 2013-02-14 2014-08-14 Dentsply International Inc. Resorbable and curable compositions for use in dentistry
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
US9775928B2 (en) 2013-06-18 2017-10-03 Covidien Lp Adhesive barbed filament
CA2912357C (en) 2013-06-21 2019-12-31 Ferrosan Medical Devices A/S Vacuum expanded dry composition and syringe for retaining same
US10711106B2 (en) 2013-07-25 2020-07-14 The University Of Chicago High aspect ratio nanofibril materials
CA2919489A1 (en) 2013-08-08 2015-02-12 Boston Scientific Scimed, Inc. Dissolvable or degradable adhesive polymer to prevent stent migration
AU2014348502B2 (en) 2013-11-15 2019-08-15 Tangible Science, Inc. Contact lens with a hydrophilic layer
EP3079731B1 (en) 2013-12-11 2018-08-08 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US9913927B2 (en) 2014-07-14 2018-03-13 University Of Utah Research Foundation In situ solidifying complex coacervates and methods of making and using thereof
CN105412975B (en) 2014-09-18 2019-05-31 苏州安德佳生物科技有限公司 A kind of biocompatible hemostatic product and preparation method thereof
US11046818B2 (en) 2014-10-13 2021-06-29 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
WO2016094533A1 (en) 2014-12-09 2016-06-16 Ocular Dynamics, Llc Medical device coating with a biocompatible layer
CN107206165B (en) 2014-12-24 2020-10-23 弗罗桑医疗设备公司 Syringe for holding and mixing first and second substances
CN107428930B (en) 2015-03-10 2020-01-17 国立大学法人东京大学 Method for producing low-concentration gel using gel precursor cluster, and gel obtained by the production method
JP6562410B2 (en) * 2015-03-31 2019-08-21 学校法人 関西大学 Anti-adhesion material and method for producing the same
RU2717356C2 (en) 2015-07-03 2020-03-23 Ферросан Медикал Дивайсиз А/С Syringe for holding vacuum in storage state
WO2017015354A1 (en) * 2015-07-22 2017-01-26 Anexis, Llc Collagen based materials and methods of using them
US9655842B1 (en) 2015-12-04 2017-05-23 Covidien Lp Injectable non-aqueous compositions and methods of treating vascular disease
US10668190B2 (en) 2016-05-03 2020-06-02 Bvw Holding Ag Multiphase gel
CN108498879B (en) 2017-02-28 2021-12-28 苏州安德佳生物科技有限公司 Composition and reagent combination for submucosal injection and application thereof
US11202848B2 (en) * 2017-03-08 2021-12-21 Baxter International Inc. Surgical adhesive able to glue in wet conditions
US10912859B2 (en) 2017-03-08 2021-02-09 Baxter International Inc. Additive able to provide underwater adhesion
WO2018186502A1 (en) * 2017-04-07 2018-10-11 国立大学法人東京医科歯科大学 Biological inactivator for biocompatible material surface treatment, bioinert material, and method for producing bioinert material
WO2018201007A2 (en) 2017-04-27 2018-11-01 The Johns Hopkins University Dendrimer compositions for use in angiography
NL2019650B1 (en) 2017-09-29 2019-04-08 Polyganics Ip B V Improved tissue-adhesive polymers
AU2018365250B2 (en) 2017-11-10 2022-05-26 The Johns Hopkins University Dendrimer delivery system and methods of use thereof
US11896234B2 (en) 2018-01-26 2024-02-13 Fluidx Medical Technology, Llc Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion
US11801324B2 (en) 2018-05-09 2023-10-31 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition
CA3103439A1 (en) 2018-06-11 2019-12-19 Histogenics Corporation Scaffold with adhesive for articular cartilage repair
EP3918324A2 (en) 2019-01-30 2021-12-08 Ventana Medical Systems, Inc. Calibration slides for digital pathology
CN110452367B (en) * 2019-08-07 2021-09-14 西南大学 Preparation method of aliphatic polyester dynamic covalent network polymer and product thereof
CN110559472A (en) * 2019-09-11 2019-12-13 陕西佰傲再生医学有限公司 Collagen-based medical adhesive and preparation method thereof
EP4069308A2 (en) 2019-12-04 2022-10-12 Ashvattha Therapeutics, Inc. Dendrimer compositions and methods for drug delivery to the eye
US11739166B2 (en) 2020-07-02 2023-08-29 Davol Inc. Reactive polysaccharide-based hemostatic agent
CN114652903A (en) * 2022-05-06 2022-06-24 上海益思妙医疗器械有限公司 Rapid polymerization medical hydrogel and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH628074A5 (en) 1977-03-10 1982-02-15 Ciba Geigy Ag HARDENABLE MIXTURES BASED ON EPOXY COMPOUNDS.
US5936035A (en) * 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
US5162430A (en) 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5292362A (en) 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
DE69229004D1 (en) 1991-11-07 1999-05-27 Univ Southern California COMPOSITIONS AND METHODS FOR PREVENTING ADHESION FORMATION
US5385606A (en) 1992-07-06 1995-01-31 Kowanko; Nicholas Adhesive composition and method
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
FR2707878A1 (en) * 1993-07-21 1995-01-27 Imedex New adhesive compositions for surgical use.
FR2715309B1 (en) 1994-01-24 1996-08-02 Imedex Adhesive composition, for surgical use, based on collagen modified by oxidative cutting and not crosslinked.
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US5962023A (en) 1995-03-06 1999-10-05 Ethicon, Inc. Hydrogels containing absorbable polyoxaamides
US5698213A (en) 1995-03-06 1997-12-16 Ethicon, Inc. Hydrogels of absorbable polyoxaesters
US5700583A (en) 1995-03-06 1997-12-23 Ethicon, Inc. Hydrogels of absorbable polyoxaesters containing amines or amido groups
ATE330644T1 (en) 1995-12-18 2006-07-15 Angiotech Biomaterials Corp CROSS-LINKED POLYMER MATERIALS AND METHODS FOR USE THEREOF
ZA987019B (en) 1997-08-06 1999-06-04 Focal Inc Hemostatic tissue sealants
EP1047363A4 (en) 1997-12-31 2005-06-15 Depuy Orthopaedics Inc Tissue reactive adhesive compositions
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377466B2 (en) * 1995-12-18 2013-02-19 Angiotech Pharmaceuticals (Us), Inc. Adhesive tissue repair patch
US8197802B2 (en) 1995-12-18 2012-06-12 Angiodevice International Gmbh Method for treating or inhibiting the formation of adhesions following surgery or injury
US8617584B2 (en) 1995-12-18 2013-12-31 Angiodevice International Gmbh Adhesive tissue repair patch and collagen sheets
US7883694B2 (en) 1995-12-18 2011-02-08 Angiodevice International Gmbh Method for preventing the formation of adhesions following surgery or injury
US7883693B2 (en) 1995-12-18 2011-02-08 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and methods of preparation of use
US20060210602A1 (en) * 1995-12-18 2006-09-21 Sehl Louis C Compositions and systems for forming crosslinked biomaterials and methods of preparation and use
EP2522304A1 (en) 2001-03-23 2012-11-14 Histogenics Corporation Composition and methods for the production of biological tissues and tissue constructs
US8521259B2 (en) 2001-06-20 2013-08-27 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8608661B1 (en) * 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US8906686B2 (en) 2002-03-22 2014-12-09 Histogenics Corporation Method for preparation of implantable constructs
US9393195B2 (en) 2002-03-22 2016-07-19 Histogenics Corporation Systems for cartilage repair
US8715265B2 (en) 2002-06-28 2014-05-06 Abbott Cardiovascular Systems Inc. Device and method for combining a treatment agent and a gel
US8500680B2 (en) 2002-06-28 2013-08-06 Abbott Cardiovascular Systems Inc. Device and method for combining a treatment agent and a gel
US8637069B2 (en) 2002-06-28 2014-01-28 Abbott Cardiovascular Systems Inc. Device and method for combining a treatment agent and a gel
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8383158B2 (en) 2003-04-15 2013-02-26 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8795652B1 (en) 2003-04-15 2014-08-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8747385B2 (en) 2003-04-15 2014-06-10 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8460708B2 (en) 2004-04-28 2013-06-11 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8481073B2 (en) 2004-04-28 2013-07-09 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8067031B2 (en) * 2004-04-28 2011-11-29 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US20050281883A1 (en) * 2004-04-28 2005-12-22 Daniloff George Y Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US9353218B2 (en) 2004-09-17 2016-05-31 Angiotech Pharmaceuticals, Inc. Kit for multifunctional compounds forming crosslinked biomaterials
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US8609126B2 (en) 2005-04-19 2013-12-17 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US9687630B2 (en) 2005-04-19 2017-06-27 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US8486386B2 (en) 2006-07-31 2013-07-16 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8486387B2 (en) 2006-07-31 2013-07-16 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US9775930B2 (en) 2006-11-17 2017-10-03 Abbott Cardiovascular Systems Inc. Composition for modifying myocardial infarction expansion
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8741326B2 (en) 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8465772B2 (en) 2006-12-04 2013-06-18 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US8828436B2 (en) 2006-12-04 2014-09-09 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US8465773B2 (en) 2006-12-04 2013-06-18 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US20080187568A1 (en) * 2007-02-06 2008-08-07 Sawhney Amarpreet S Polymerization with precipitation of proteins for elution in physiological solution
US9687590B2 (en) 2007-07-03 2017-06-27 Histogenics Corporation Double-structured tissue implant and a method for preparation and use thereof
US9993326B2 (en) 2007-07-03 2018-06-12 Histogenics Corporation Method for use of a double-structured tissue implant for treatment of tissue defects
US9421304B2 (en) 2007-07-03 2016-08-23 Histogenics Corporation Method for improvement of differentiation of mesenchymal stem cells using a double-structured tissue implant
US10842610B2 (en) 2007-07-03 2020-11-24 Histogenics Corporation Method for use of a double-structured tissue implant for treatment of tissue defects
US10227289B2 (en) 2010-05-07 2019-03-12 Medicus Biosciences, Llc Methods for treating diseases of the lung
US10189773B2 (en) 2010-05-07 2019-01-29 Medicus Biosciences, Llc In-vivo gelling pharmaceutical pre-formulation
US10111985B2 (en) 2011-08-10 2018-10-30 Medicus Biosciences, Llc Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
US11083821B2 (en) 2011-08-10 2021-08-10 C.P. Medical Corporation Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
US9623144B2 (en) 2012-05-11 2017-04-18 Medicus Biosciences Llc Biocompatible hydrogel treatments for retinal detachment
US11596710B2 (en) 2012-05-11 2023-03-07 C.P. Medical Corporation Biocompatible hydrogel treatments for retinal detachment
US9072809B2 (en) 2012-05-11 2015-07-07 Medical Biosciences Llc Biocompatible hydrogel treatments for retinal detachment
US10507262B2 (en) 2012-05-11 2019-12-17 C.P. Medical Corporation Biocompatible hydrogel treatments for retinal detachment
US10111981B2 (en) 2013-03-04 2018-10-30 Dermelle, Llc Injectable in situ polymerizable collagen composition
US11235089B2 (en) 2013-03-04 2022-02-01 Shanghai Haohai Biological Technology Co., Ltd. Injectable in situ polymerizable collagen composition
US8987339B2 (en) 2013-03-14 2015-03-24 Medicus Biosciences Llc Solid polyglycol-based biocompatible pre-formulation
US9149560B2 (en) 2013-03-14 2015-10-06 Medicus Biosciences Llc Solid polyglycol-based biocompatible pre-formulation
US11555172B2 (en) 2014-12-02 2023-01-17 Ocugen, Inc. Cell and tissue culture container
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
CN113289051A (en) * 2021-05-19 2021-08-24 南方科技大学 PEG powder capable of being rapidly crosslinked and degraded and application thereof
CN115845127A (en) * 2022-12-29 2023-03-28 海南众森生物科技有限公司 Polysaccharide hemostatic repair biological glue solution and preparation method and application thereof

Also Published As

Publication number Publication date
WO2000062827A3 (en) 2001-01-18
US6624245B2 (en) 2003-09-23
AU4349700A (en) 2000-11-02
US6312725B1 (en) 2001-11-06
US20020165337A1 (en) 2002-11-07
WO2000062827A2 (en) 2000-10-26
JP2008029855A (en) 2008-02-14
JP5053758B2 (en) 2012-10-17
JP2002541923A (en) 2002-12-10

Similar Documents

Publication Publication Date Title
US6312725B1 (en) Rapid gelling biocompatible polymer composition
EP1218437B1 (en) Compositions that form interpenetrating polymer networks for use as high strength medical sealants
EP1793873B1 (en) Tissue-adhesive materials
JP3592718B2 (en) Adhesive sealant composition
TWI436793B (en) Rapidly acting dry sealant and methods for use and manufacture
US5410016A (en) Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5986043A (en) Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5626863A (en) Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
EP0927214B2 (en) Polymerizable biodegradable polymers including carbonate or dioxanone linkages
EP2233161A2 (en) Low-swelling biocompatible hydrogels
EP2233160A2 (en) Low-swelling biocompatible hydrogels
US20020111392A1 (en) Radiation cross-linked hydrogels
KR20010013105A (en) Collagen gel
US20090028957A1 (en) Implantable Tissue-Reactive Biomaterial Compositions and Systems, and Methods of Us Thereof
KR20180075601A (en) Composite bioadhesive sealant
WO1997029715A1 (en) Compositions and methods for sealing tissue and preventing post-surgical adhesions
US20100260845A1 (en) Biocompatible and Biodegradable Biopolymer Matrix
CN116271188A (en) Medical hydrogel, preparation method and application thereof in preparation of vascular leakage sealing agent
CN110801528A (en) Dura mater spinalis sealing hydrogel and preparation method and application thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: COHESION TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RHEE, WOONZA M.;REEL/FRAME:010359/0369

Effective date: 19990707

Owner name: COHESION TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRUISE, GREGORY M.;REEL/FRAME:010363/0192

Effective date: 19990707

Owner name: COHESION TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALLACE, DONALD G.;SCHROEDER, JACQUELINE ANNE;COKER, GEORGE T., III;REEL/FRAME:010954/0872;SIGNING DATES FROM 19990624 TO 19990630

AS Assignment

Owner name: COHESION TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARONEY, MARCEE M.;REEL/FRAME:010570/0125

Effective date: 20000127

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ANGIOTECH BIOMATERIALS CORP., WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:COHESION TECHNOLOGIES, INC.;REEL/FRAME:016369/0932

Effective date: 20041221

AS Assignment

Owner name: ANGIODEVICE INTERNATIONAL GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH BIOMATERIALS CORPORATION;REEL/FRAME:017299/0949

Effective date: 20051102

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12