US20010053565A1 - Method and apparatus for edge connection between elements of an integrated circuit - Google Patents

Method and apparatus for edge connection between elements of an integrated circuit Download PDF

Info

Publication number
US20010053565A1
US20010053565A1 US09/885,000 US88500001A US2001053565A1 US 20010053565 A1 US20010053565 A1 US 20010053565A1 US 88500001 A US88500001 A US 88500001A US 2001053565 A1 US2001053565 A1 US 2001053565A1
Authority
US
United States
Prior art keywords
integrated circuit
modules
interlocking
adjacent
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/885,000
Other versions
US6440775B2 (en
Inventor
Theodore Khoury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/596,437 external-priority patent/US6343940B1/en
Application filed by Individual filed Critical Individual
Priority to US09/885,000 priority Critical patent/US6440775B2/en
Publication of US20010053565A1 publication Critical patent/US20010053565A1/en
Application granted granted Critical
Publication of US6440775B2 publication Critical patent/US6440775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/366Assembling printed circuits with other printed circuits substantially perpendicularly to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/514Bases; Cases composed as a modular blocks or assembly, i.e. composed of co-operating parts provided with contact members or holding contact members between them
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/048Second PCB mounted on first PCB by inserting in window or holes of the first PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09172Notches between edge pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10439Position of a single component
    • H05K2201/10446Mounted on an edge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10568Integral adaptations of a component or an auxiliary PCB for mounting, e.g. integral spacer element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/167Using mechanical means for positioning, alignment or registration, e.g. using rod-in-hole alignment

Definitions

  • This invention relates to the field of integrated circuits, and in particular, to constructing smaller and more efficient integrated circuits using integrated circuit modules to create shorter connection paths between elements, and to customize the shape of the completed integrated circuit in order to use real estate more efficiently.
  • One solution is to create IC modules, where the IC modules are combined to create the overall IC.
  • Each IC module has an element attached to an individual wafer, and the IC modules are arranged to reduce the real estate used by the IC, or reduce the pathway lengths between elements.
  • the IC modules are electrically connected at the edges, but are structurally connected either to a common carrier substrate below the IC modules or bonded flush at the edges.
  • This method requires either the use of an additional wafer for use as a carrier substrate, and/or the use of toxic adhesives to bond the IC module wafers together to create a final IC.
  • the ability to customize the shape of the completed IC is compromised since the overall shape of the completed IC is governed by the shape of the carrier substrate, or by the planar shape of the IC modules, leading to both longer pathways, thus decreasing the overall speed of the IC, and the IC taking up more real estate than is otherwise necessary.
  • a second solution is to stack the IC modules vertically, with the elements being electrically interconnected through pathways along the edge of the stack or through the center of the stack.
  • This solution results in taller ICs, often resembling cubes, which take up more vertical air space, but less horizontal real estate in a housing.
  • these stacked IC modules still require the use of toxic adhesives and other bonding techniques in order to structurally connect the IC modules.
  • these stacked IC modules have problems cooling the IC elements at the center of these stacks.
  • the size of the completed stack still utilizes more real estate than is necessary, only in three dimensions instead of two, and also is not conformable to the shape of the housing.
  • the prior solutions lack the capacity to provide structural, positive connections between edges of IC modules, thus requiring the use of adhesives and additional carrier substrates.
  • the prior solutions only teach reducing the real estate taken up by the IC by vertically stacking the IC modules, which results in taking up vertical air space and results in cooling problems.
  • the prior solutions do not suggest how to construct an IC using IC modules to conform the IC to non-rectangular, out-of-plane shapes in the housing.
  • An object of the present invention is to create a positive structural connection between IC modules using interlocking edges so as to allow for the creation of an IC having irregular shapes allowing for a greater reduction in real estate used by the IC within a housing.
  • a further object of the present invention to create a modular IC wherein the IC modules can be arranged such that, in combination with the use of external and/or internal pathways, to optimize the pathway lengths between elements resulting in decreased communication times and an increased speed for the IC.
  • a still further object of the invention is to provide a modular IC using interlocking edges to create a non-planar IC by connecting the IC modules at angles relative to the attachment surfaces of the IC modules.
  • an IC module has an attachment surface suitable for attachment of an element, a first interlocking edge adjacent to the respective attachment surface, wherein the first interlocking edge is sized to be securely received by a respective interlocking edge of an adjacent IC module or other device forming a structural connection.
  • a preferred embodiment of the present invention provides for an IC that has a plurality of first and second IC modules, a plurality of elements attached to a respective attachment surface of a respective IC module, each first IC module comprising a first interlocking edge adjacent to the respective attachment surface, each second IC module comprising a second interlocking edge adjacent to the respective attachment surface, wherein each first IC module is structurally connected to a respective second IC module by interlocking the first interlocking edge of the first IC module with the second interlocking edge of the respective second IC module since the first interlocking edge is sized to be securely received by the second interlocking edge, and where the elements are in communication with each other.
  • another preferred embodiment of the present invention is directed to a method of connecting IC modules, each IC module having an interlocking edge adjacent to an attachment surface, and an element attached to the attachment surface, the method including connecting the interlocking edges of the IC modules to create a structural connection, and connecting the elements on the to allow the to communicate.
  • the interlocking edges are a plurality of teeth and recesses, wherein the teeth of one interlocking edge are securely received by the respective teeth of the another interlocking edge so as to create a structural connection between the IC modules.
  • the interlocking edges are ridge members or ridge recesses, wherein the ridge member of one interlocking edge is securely received by the respective ridge recess of the another interlocking edge so as to create a structural connection between adjacent IC modules.
  • the integrated circuit modules are combined such that attachment surfaces of adjacent integrated circuit modules define an angle, where this angle is determined based upon the size of a housing for the IC, and by the optimal pathway between elements on the IC.
  • FIG. 1 is a perspective view of an IC module according to an embodiment of the present invention.
  • FIG. 2 is a side view of an interlocking edge showing the rows of teeth and ridge members according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a junction between interlocking edges and a wire-bond attachment between elements on adjacent IC modules according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a configuration of IC modules according to an embodiment of the present invention where the attachment surfaces are coplanar.
  • FIG. 5 is a perspective view of an IC module according to another embodiment of the present invention where the interlocking edge is a single row of teeth.
  • FIG. 6 is a perspective view of a junction between adjacent IC modules according to an embodiment of the present invention where the attachment surfaces define an angle.
  • FIG. 7 is a side view of a combination of junctions between IC modules defining an extended “L” shaped IC according to an embodiment of the present invention.
  • FIG. 8 is a side view of a combination of junctions between IC modules defining a “U” shaped IC according to an embodiment of the present invention.
  • FIGS. 1 and 2 show the integrated circuit (IC) module 100 according to a preferred embodiment of the present invention.
  • IC module 100 includes a wafer 103 , to which an element 105 is attached at an attachment surface 104 .
  • the wafer 103 is designed to complement the size of the element 105 attached to it.
  • the wafer 103 is generally rectangular, and is made from Si, although it is understood that other shapes and materials, such as glass, GaAr, and SiGe, could also be employed.
  • Interlocking edges 106 and 108 are composed of rows of teeth 110 with recesses 111 disposed between adjacent teeth 110 .
  • the recesses 111 of interlocking edge 106 are sized to securely receive the respective teeth 110 of an adjacent interlocking edge (not shown) to create a structural connection.
  • Interlocking edges 113 and 115 are composed of respective female and male members.
  • the female member of interlocking edge 113 is a ridge recess 114 .
  • the male member of interlocking edge 115 is ridge member 116 .
  • Ridge recess 114 is sized to securely receive the ridge member of an adjacent interlocking edge (not shown) to create a third structural connection.
  • interlocking edges such as dovetail-channel connections, or “puzzle style” edges so long as the interlocking edges have shapes that intermesh to allow for one IC module to positively lock/mate with a second IC module to form a structural connection.
  • the layers for these shapes may or may not extend through the entire edge of the substrate so long as this structural connection is formed.
  • the interconnection edges 106 , 108 , 113 , 115 on wafer 103 are preferably formed using deep reactive ion etching.
  • other methods of imparting these features include ion micromilling or other etching techniques, forming the wafers with the desired interlocking edges, or adhering pre-prepared strips of interlocking edges onto edges of the wafer 103 .
  • break away tabs may be used at the corners to restrain the wafer 103 during etching.
  • the IC modules 100 are connected structurally and electrically at junction 125 .
  • the interlocking edge 106 of a first wafer 117 is locked to the interlocking edge 108 of a second wafer 119 to form a positive structural connection at junction 125 . While this junction 125 may be entirely structural and rely on the locking action of the interlocking edges 106 and 108 , the strength of junction 125 can be augmented using standard adhesive techniques to increase the strength of the connection.
  • the element 121 is electrically connected to element 123 through bond pads 129 and wires 127 , which creates external pathways to allow communication between the elements 121 and 123 .
  • FIG. 5 shows an IC module 200 of another embodiment of the present invention.
  • IC module 200 includes a wafer 202 , to which an element 204 is attached at the attachment surface 206 .
  • a single row of teeth 210 At the interlocking edge 208 , a single row of teeth 210 , with recesses 212 disposed between adjacent teeth 210 , provides the locking mechanism.
  • the recesses 212 are sized so as to securely receive the respective teeth 210 of an adjacent IC module (not shown).
  • FIG. 6 shows the structural and electrical connection of first and second IC modules 218 and 220 according to another embodiment of the present invention.
  • the interlocking edge 208 of the first IC module 218 is interlocked to the respective interlocking edge 208 of the second IC module 220 to form a positive connection at junction 222 .
  • This junction 222 may be entirely structural and rely on the locking action of the interlocking edges 208 , or can be augmented using standard adhesive techniques to increase the strength of the connection.
  • element 204 of the first IC module 218 is electrically connected to element 205 (not shown) of the second IC module 220 through bond pads 224 and wires 226 , which create external pathways to allow communication between elements 204 and 205 .
  • the IC modules 200 can be interconnected at the edges in non-planar arrangements, such as the “L” shapes shown in FIG. 6.
  • FIG. 7 shows a further embodiment of the present invention in which IC modules 300 are structurally and electrically connected in an extended “L” shape.
  • the IC modules utilize a combination of junctions 222 and 125 in order to form both planar and non-planar edge connections.
  • the elements 301 , 302 , 303 are electrically interconnected using bonds 304 and wires 306 , which create external pathways to allow communication between elements 302 .
  • the electrical connection between elements 302 and 303 can also be accomplished by bonding balls 305 between bond pads 304 .
  • FIG. 8 shows yet another potential shape realized by IC modules 400 using junctions 222 (elements and electrical connections not shown) according to another embodiment of the present invention.
  • IC modules can be arranged so as to minimize the real estate occupied by the IC within a housing, or to mold the IC to conform to a particular shape within the housing.
  • those elements needing the greatest heat dissipation may be arranged to achieve that dissipation without significantly increasing the size of the IC, as a whole.
  • an optimal pathway between elements can be created as to create the most efficient communication scheme between the elements.
  • adjacent IC modules are aligned such that their corresponding interlocking edges are disposed to securely receive each other to create a structural connection between the IC modules, and then the IC modules are combined to form a junction.
  • the elements on the IC modules are connected, either internally or externally, to complete the integrated circuit.
  • the IC modules can be connected such that the shape of the completed IC is defined using the shape of the housing and the optimal pathway between elements on the IC, where the optimal pathway is the pathway, internal and/or external to the IC, that creates the most efficient communication scheme between the elements.
  • the elements on the IC modules communicate either using internal pathways, or through a combination of internal and external pathways.
  • the IC module wafers have an internal conductive layer used to define the pathways. These internal pathways extend through the interlocking edge connections, enabling the creation of an internal pathway connection between elements on the IC modules.
  • the elements could also be connected using standard connection techniques such as through wire bonding, or tape automated bonding. Since the IC modules do not need to be coplanar or in a stacked relationship, the shortest path between elements can be created by tilting the IC modules relative to one another and using external pathways in addition to internal pathways.
  • the wafers of adjacent IC modules can be made from different materials having different material properties.
  • a buffer can be employed to account for these different material properties, such as varying rates of thermal expansion, in order to ensure a solid structural connection between the IC modules.
  • existing IC modules are modified to add interlocking edges so as to directly combine the elements.
  • the interlocking edges can either be directly integrated into the wafer of the IC module, or can be added from strips of interlocking edges attached to the edges of the IC module using standard adhesive techniques. In this way, existing wafers can be adapted to employ the present invention without having to reattach the element on an new wafer having the interlocking edges.
  • the interlocking edges could be used to connect an IC created using the IC modules to external devices, such as sensors, actuators, transmitting devices, display devices, optical components, waveguide transmission devices, nozzles/valves or any other device to which an IC needs to connected.
  • the external device would include an interlocking edge to which an interlocking edge of an IC module would be structurally connected so as to attach the external device to the IC.

Abstract

An integrated circuit (IC) having a plurality of IC modules, each IC module having attachment surfaces to which elements of the IC are attached, and each IC module having interlocking edges adjacent to the attachment surface. The interlocking edges of adjacent IC modules are interlocked to form a structural connection between the IC modules. The interlocking edges are a plurality of teeth and recesses, which are arranged in rows. The teeth are securely received by a respective recess in an adjacent interlocking edge to create a structural connection between adjacent IC modules. In addition, the interlocking edges can be a ridge member or a ridge recess, where the ridge member or ridge recess is securely received by a respective ridge recess or ridge member of an adjacent IC module to create a structural connection between the IC modules. The interconnection edge can also be a combination of the ridge member, ridge recess, and/or the rows of teeth and recesses. The attachment surfaces of adjacent IC modules can be co-planar and non-planar, depending on the shape desired. The elements on the IC modules communicate using external pathways and/or internal pathways using conventional wire-bond techniques or using conductive layers within the IC module. The IC module is formed of conventional Si wafers. Using this configuration, an IC can be constructed that utilizes less real estate, fits in non-planar spaces in a housing, and has improved speed due to reduced pathway lengths.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of application Ser. No. 09/670,107, filed Sep. 26, 2000, now pending, which is a continuation-in-part application of Ser. No. [0001] 09/596,437, filed Jun. 19, 2000 in the U.S. Patent and Trademark Office, the disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates to the field of integrated circuits, and in particular, to constructing smaller and more efficient integrated circuits using integrated circuit modules to create shorter connection paths between elements, and to customize the shape of the completed integrated circuit in order to use real estate more efficiently. [0003]
  • 2. Description of the Related Art [0004]
  • In creating an integrated circuit (IC), various elements, such as logic and memory, need to be combined to provide the desired functionality for the IC. However, as the number of elements in an IC increases, the size of the IC wafer itself increases. In addition, as the size of the wafer increases, the elements of the IC have longer pathways between the elements, increasing the communication time between the elements and thus decreasing the overall speed of the IC. Thus, there is a need to arrange the wafers to accommodate all elements without increasing the size of the wafer. [0005]
  • One solution is to create IC modules, where the IC modules are combined to create the overall IC. Each IC module has an element attached to an individual wafer, and the IC modules are arranged to reduce the real estate used by the IC, or reduce the pathway lengths between elements. The IC modules are electrically connected at the edges, but are structurally connected either to a common carrier substrate below the IC modules or bonded flush at the edges. This method requires either the use of an additional wafer for use as a carrier substrate, and/or the use of toxic adhesives to bond the IC module wafers together to create a final IC. In addition, the ability to customize the shape of the completed IC is compromised since the overall shape of the completed IC is governed by the shape of the carrier substrate, or by the planar shape of the IC modules, leading to both longer pathways, thus decreasing the overall speed of the IC, and the IC taking up more real estate than is otherwise necessary. [0006]
  • A second solution is to stack the IC modules vertically, with the elements being electrically interconnected through pathways along the edge of the stack or through the center of the stack. This solution results in taller ICs, often resembling cubes, which take up more vertical air space, but less horizontal real estate in a housing. However, these stacked IC modules still require the use of toxic adhesives and other bonding techniques in order to structurally connect the IC modules. In addition, these stacked IC modules have problems cooling the IC elements at the center of these stacks. Lastly, the size of the completed stack still utilizes more real estate than is necessary, only in three dimensions instead of two, and also is not conformable to the shape of the housing. [0007]
  • As a result, the prior solutions lack the capacity to provide structural, positive connections between edges of IC modules, thus requiring the use of adhesives and additional carrier substrates. In addition, the prior solutions only teach reducing the real estate taken up by the IC by vertically stacking the IC modules, which results in taking up vertical air space and results in cooling problems. Lastly, the prior solutions do not suggest how to construct an IC using IC modules to conform the IC to non-rectangular, out-of-plane shapes in the housing. [0008]
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to create a positive structural connection between IC modules using interlocking edges so as to allow for the creation of an IC having irregular shapes allowing for a greater reduction in real estate used by the IC within a housing. [0009]
  • A further object of the present invention to create a modular IC wherein the IC modules can be arranged such that, in combination with the use of external and/or internal pathways, to optimize the pathway lengths between elements resulting in decreased communication times and an increased speed for the IC. [0010]
  • A still further object of the invention is to provide a modular IC using interlocking edges to create a non-planar IC by connecting the IC modules at angles relative to the attachment surfaces of the IC modules. [0011]
  • Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention. [0012]
  • To accomplish the above and other objectives, an IC module has an attachment surface suitable for attachment of an element, a first interlocking edge adjacent to the respective attachment surface, wherein the first interlocking edge is sized to be securely received by a respective interlocking edge of an adjacent IC module or other device forming a structural connection. [0013]
  • When combined with other IC modules, a preferred embodiment of the present invention provides for an IC that has a plurality of first and second IC modules, a plurality of elements attached to a respective attachment surface of a respective IC module, each first IC module comprising a first interlocking edge adjacent to the respective attachment surface, each second IC module comprising a second interlocking edge adjacent to the respective attachment surface, wherein each first IC module is structurally connected to a respective second IC module by interlocking the first interlocking edge of the first IC module with the second interlocking edge of the respective second IC module since the first interlocking edge is sized to be securely received by the second interlocking edge, and where the elements are in communication with each other. [0014]
  • To create the IC using IC modules, another preferred embodiment of the present invention is directed to a method of connecting IC modules, each IC module having an interlocking edge adjacent to an attachment surface, and an element attached to the attachment surface, the method including connecting the interlocking edges of the IC modules to create a structural connection, and connecting the elements on the to allow the to communicate. [0015]
  • In an embodiment of the present invention, the interlocking edges are a plurality of teeth and recesses, wherein the teeth of one interlocking edge are securely received by the respective teeth of the another interlocking edge so as to create a structural connection between the IC modules. [0016]
  • In yet another embodiment of the present invention, the interlocking edges are ridge members or ridge recesses, wherein the ridge member of one interlocking edge is securely received by the respective ridge recess of the another interlocking edge so as to create a structural connection between adjacent IC modules. [0017]
  • In yet a further embodiment of the present invention, the integrated circuit modules are combined such that attachment surfaces of adjacent integrated circuit modules define an angle, where this angle is determined based upon the size of a housing for the IC, and by the optimal pathway between elements on the IC.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and advantages of the invention will become apparent and more readily appreciated from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings of which: [0019]
  • FIG. 1 is a perspective view of an IC module according to an embodiment of the present invention. [0020]
  • FIG. 2 is a side view of an interlocking edge showing the rows of teeth and ridge members according to an embodiment of the present invention. [0021]
  • FIG. 3 is a perspective view of a junction between interlocking edges and a wire-bond attachment between elements on adjacent IC modules according to an embodiment of the present invention. [0022]
  • FIG. 4 is a perspective view of a configuration of IC modules according to an embodiment of the present invention where the attachment surfaces are coplanar. [0023]
  • FIG. 5 is a perspective view of an IC module according to another embodiment of the present invention where the interlocking edge is a single row of teeth. [0024]
  • FIG. 6 is a perspective view of a junction between adjacent IC modules according to an embodiment of the present invention where the attachment surfaces define an angle. [0025]
  • FIG. 7 is a side view of a combination of junctions between IC modules defining an extended “L” shaped IC according to an embodiment of the present invention. [0026]
  • FIG. 8 is a side view of a combination of junctions between IC modules defining a “U” shaped IC according to an embodiment of the present invention.[0027]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now made in detail to the present preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures. [0028]
  • FIGS. 1 and 2 show the integrated circuit (IC) [0029] module 100 according to a preferred embodiment of the present invention. IC module 100 includes a wafer 103, to which an element 105 is attached at an attachment surface 104. The wafer 103 is designed to complement the size of the element 105 attached to it. The wafer 103 is generally rectangular, and is made from Si, although it is understood that other shapes and materials, such as glass, GaAr, and SiGe, could also be employed.
  • Along the sides of [0030] wafer 103, there are sets of interlocking edges 106 and 108, and 113 and 115. Interlocking edges 106 and 108 are composed of rows of teeth 110 with recesses 111 disposed between adjacent teeth 110. The recesses 111 of interlocking edge 106 are sized to securely receive the respective teeth 110 of an adjacent interlocking edge (not shown) to create a structural connection.
  • Interlocking [0031] edges 113 and 115 are composed of respective female and male members. The female member of interlocking edge 113 is a ridge recess 114. The male member of interlocking edge 115 is ridge member 116. Ridge recess 114 is sized to securely receive the ridge member of an adjacent interlocking edge (not shown) to create a third structural connection.
  • One [0032] such wafer 103 is disclosed in Ser. No. 09/596,437, filed Jun. 19, 2000 in the U.S. Patent and Trademark Office, the disclosure of which is incorporated herein by reference.
  • It should be noted that other shapes are possible for interlocking edges, such as dovetail-channel connections, or “puzzle style” edges so long as the interlocking edges have shapes that intermesh to allow for one IC module to positively lock/mate with a second IC module to form a structural connection. In addition, the layers for these shapes may or may not extend through the entire edge of the substrate so long as this structural connection is formed. [0033]
  • The interconnection edges [0034] 106, 108, 113, 115 on wafer 103 are preferably formed using deep reactive ion etching. However, other methods of imparting these features include ion micromilling or other etching techniques, forming the wafers with the desired interlocking edges, or adhering pre-prepared strips of interlocking edges onto edges of the wafer 103. During etching, break away tabs (not shown) may be used at the corners to restrain the wafer 103 during etching.
  • As shown in FIG. 3, the [0035] IC modules 100 are connected structurally and electrically at junction 125. The interlocking edge 106 of a first wafer 117 is locked to the interlocking edge 108 of a second wafer 119 to form a positive structural connection at junction 125. While this junction 125 may be entirely structural and rely on the locking action of the interlocking edges 106 and 108, the strength of junction 125 can be augmented using standard adhesive techniques to increase the strength of the connection. The element 121 is electrically connected to element 123 through bond pads 129 and wires 127, which creates external pathways to allow communication between the elements 121 and 123.
  • As shown in FIG. 4, by utilizing the interlocking [0036] edges 106, 108, 113, and 115, numerous IC modules 100 can be connected along a single plane without the use of a carrier substrate (IC elements and electrical connections not shown).
  • FIG. 5 shows an [0037] IC module 200 of another embodiment of the present invention. IC module 200 includes a wafer 202, to which an element 204 is attached at the attachment surface 206. At the interlocking edge 208, a single row of teeth 210, with recesses 212 disposed between adjacent teeth 210, provides the locking mechanism. The recesses 212 are sized so as to securely receive the respective teeth 210 of an adjacent IC module (not shown).
  • FIG. 6 shows the structural and electrical connection of first and [0038] second IC modules 218 and 220 according to another embodiment of the present invention. The interlocking edge 208 of the first IC module 218 is interlocked to the respective interlocking edge 208 of the second IC module 220 to form a positive connection at junction 222. This junction 222 may be entirely structural and rely on the locking action of the interlocking edges 208, or can be augmented using standard adhesive techniques to increase the strength of the connection. In addition, element 204 of the first IC module 218 is electrically connected to element 205 (not shown) of the second IC module 220 through bond pads 224 and wires 226, which create external pathways to allow communication between elements 204 and 205. Using this arrangement, the IC modules 200 can be interconnected at the edges in non-planar arrangements, such as the “L” shapes shown in FIG. 6.
  • FIG. 7 shows a further embodiment of the present invention in which [0039] IC modules 300 are structurally and electrically connected in an extended “L” shape. The IC modules utilize a combination of junctions 222 and 125 in order to form both planar and non-planar edge connections. In addition, the elements 301, 302, 303 are electrically interconnected using bonds 304 and wires 306, which create external pathways to allow communication between elements 302. The electrical connection between elements 302 and 303 can also be accomplished by bonding balls 305 between bond pads 304.
  • FIG. 8 shows yet another potential shape realized by [0040] IC modules 400 using junctions 222 (elements and electrical connections not shown) according to another embodiment of the present invention.
  • It is understood that a myriad of shapes can be realized by arranging IC modules at angles. Further, the IC modules can be arranged so as to minimize the real estate occupied by the IC within a housing, or to mold the IC to conform to a particular shape within the housing. In addition, by arranging the IC modules, those elements needing the greatest heat dissipation may be arranged to achieve that dissipation without significantly increasing the size of the IC, as a whole. Lastly, by arranging the IC modules, an optimal pathway between elements can be created as to create the most efficient communication scheme between the elements. [0041]
  • In order to interconnect the IC modules according to the preferred embodiment of the present invention, adjacent IC modules are aligned such that their corresponding interlocking edges are disposed to securely receive each other to create a structural connection between the IC modules, and then the IC modules are combined to form a junction. The elements on the IC modules are connected, either internally or externally, to complete the integrated circuit. The IC modules can be connected such that the shape of the completed IC is defined using the shape of the housing and the optimal pathway between elements on the IC, where the optimal pathway is the pathway, internal and/or external to the IC, that creates the most efficient communication scheme between the elements. [0042]
  • In other embodiments of the present invention, the elements on the IC modules communicate either using internal pathways, or through a combination of internal and external pathways. For internal pathways, the IC module wafers have an internal conductive layer used to define the pathways. These internal pathways extend through the interlocking edge connections, enabling the creation of an internal pathway connection between elements on the IC modules. For external connections, in addition to the wire and bond path method disclosed above, the elements could also be connected using standard connection techniques such as through wire bonding, or tape automated bonding. Since the IC modules do not need to be coplanar or in a stacked relationship, the shortest path between elements can be created by tilting the IC modules relative to one another and using external pathways in addition to internal pathways. [0043]
  • It is understood that, while the disclosed elements communicate electronically, elements can communicate using other signals, such as optical signals, instead of or in addition to the electrical connections discussed in the above embodiments. [0044]
  • In another embodiment of the present invention, the wafers of adjacent IC modules can be made from different materials having different material properties. In this case, a buffer can be employed to account for these different material properties, such as varying rates of thermal expansion, in order to ensure a solid structural connection between the IC modules. [0045]
  • In yet another embodiment of the present invention, existing IC modules, perhaps obtained from different manufacturers, are modified to add interlocking edges so as to directly combine the elements. The interlocking edges can either be directly integrated into the wafer of the IC module, or can be added from strips of interlocking edges attached to the edges of the IC module using standard adhesive techniques. In this way, existing wafers can be adapted to employ the present invention without having to reattach the element on an new wafer having the interlocking edges. [0046]
  • In a further embodiment of the present invention, the interlocking edges could be used to connect an IC created using the IC modules to external devices, such as sensors, actuators, transmitting devices, display devices, optical components, waveguide transmission devices, nozzles/valves or any other device to which an IC needs to connected. According to this embodiment, the external device would include an interlocking edge to which an interlocking edge of an IC module would be structurally connected so as to attach the external device to the IC. [0047]
  • Although a few preferred embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents. [0048]

Claims (5)

What is claimed is:
1. A method of connecting integrated circuit modules, each module having an interlocking edge adjacent to an attachment surface, and an integrated circuit element attached to the attachment surface, comprising:
connecting the interlocking edges of the integrated circuit modules, the interlocking edges being sized to be securely received by an adjacent interlocking edge so as to create a structural connection between adjacent integrated circuit modules; and
connecting the integrated circuit elements to allow the integrated circuit elements to communicate.
2. The method of connecting integrated circuit modules of
claim 1
, wherein each interlocking edge comprises a plurality of teeth and a plurality of recesses, each recess disposed between adjacent teeth and sized to securely receive a respective tooth of an adjacent interlocking edge, wherein said connecting the interlocking edges further comprises:
aligning the teeth and respective recesses of the interlocking edges; and
combining the teeth and respective recesses of the interlocking edges such that a structural connection is formed.
3. The method of connecting integrated circuit modules of
claim 1
, wherein the integrated circuit modules comprise a plurality of first and second integrated circuit modules, wherein the interlocking edge of each first integrated circuit module further comprises a ridge member, and the interlocking edge of each second integrated circuit module further comprises a recess sized to securely receive the ridge, and wherein said connecting the interlocking edges further comprises:
aligning each ridge member with a respective recess; and
combining the ridge member and the respective recess such that a structural connection is formed.
4. The method of connecting integrated circuit modules of
claim 1
, wherein said connecting comprises
determining angles between the attachment surfaces of adjacent integrated circuit modules;
connecting the interlocking edges of adjacent integrated circuit modules at the determined angle to form a structural connection.
5. The method of connecting integrated circuit modules of
claim 4
, wherein the angles are determined based upon the shape of a housing in which integrated circuit modules are housed, and/or an optimal pathway between the integrated circuit elements, wherein the optimal pathway is the most efficient combination of pathways, internal or external to the integrated circuit modules, that allows the integrated circuit elements to communicate with each other.
US09/885,000 2000-06-19 2001-06-21 Method and apparatus for edge connection between elements of an integrated circuit Expired - Fee Related US6440775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/885,000 US6440775B2 (en) 2000-06-19 2001-06-21 Method and apparatus for edge connection between elements of an integrated circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/596,437 US6343940B1 (en) 2000-06-19 2000-06-19 Contact structure and assembly mechanism thereof
US09/670,107 US6369445B1 (en) 2000-06-19 2000-09-26 Method and apparatus for edge connection between elements of an integrated circuit
US09/885,000 US6440775B2 (en) 2000-06-19 2001-06-21 Method and apparatus for edge connection between elements of an integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/670,107 Division US6369445B1 (en) 2000-06-19 2000-09-26 Method and apparatus for edge connection between elements of an integrated circuit

Publications (2)

Publication Number Publication Date
US20010053565A1 true US20010053565A1 (en) 2001-12-20
US6440775B2 US6440775B2 (en) 2002-08-27

Family

ID=27082547

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/885,000 Expired - Fee Related US6440775B2 (en) 2000-06-19 2001-06-21 Method and apparatus for edge connection between elements of an integrated circuit

Country Status (6)

Country Link
US (1) US6440775B2 (en)
JP (1) JP2004519087A (en)
AU (1) AU6429201A (en)
DE (1) DE10192788T5 (en)
TW (1) TW492114B (en)
WO (1) WO2001099189A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127368A1 (en) * 2003-11-27 2005-06-16 Shih-Hsiung Lien Memory module
US20060023423A1 (en) * 2004-07-30 2006-02-02 Via Technologies, Inc. Expandable heat sink
US20080219441A1 (en) * 2004-03-24 2008-09-11 Karl Asperger Arrangement Comprising an Integrated Circuit
US20090127704A1 (en) * 2007-11-20 2009-05-21 Fujitsu Limited Method and System for Providing a Reliable Semiconductor Assembly
US20090149038A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Forming edge metallic contacts and using coulomb forces to improve ohmic contact
US20090145229A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Decelerometer formed by levitating a substrate into equilibrium
US7608919B1 (en) * 2003-09-04 2009-10-27 University Of Notre Dame Du Lac Interconnect packaging systems
US20100258951A1 (en) * 2007-12-07 2010-10-14 METAMEMS Corp. Assembling substrates that can form 3-d structures
US20110006394A1 (en) * 2007-12-07 2011-01-13 METAMES Corp. Connect and capacitor substrates in a multilayered substrate structure coupled by surface coulomb forces
US7965489B2 (en) 2007-12-07 2011-06-21 METAMEMS Corp. Using coulomb forces to form 3-D reconfigurable antenna structures
US8008070B2 (en) 2007-12-07 2011-08-30 METAMEMS Corp. Using coulomb forces to study charateristics of fluids and biological samples
US8018009B2 (en) 2007-12-07 2011-09-13 METAMEMS Corp. Forming large planar structures from substrates using edge Coulomb forces
US8159809B2 (en) 2007-12-07 2012-04-17 METAMEMS Corp. Reconfigurable system that exchanges substrates using coulomb forces to optimize a parameter
US20120160555A1 (en) * 2009-09-03 2012-06-28 Christoph Thumser Method for connecting a plurality of elements of a circuit board, circuit board, and use of such a method
US8367522B1 (en) * 2010-04-08 2013-02-05 MCube Inc. Method and structure of integrated micro electro-mechanical systems and electronic devices using edge bond pads
US8395252B1 (en) 2009-11-13 2013-03-12 MCube Inc. Integrated MEMS and CMOS package and method
US8486723B1 (en) 2010-08-19 2013-07-16 MCube Inc. Three axis magnetic sensor device and method
US8531848B2 (en) 2007-12-07 2013-09-10 METAMEMS Corp. Coulomb island and Faraday shield used to create adjustable Coulomb forces
US8637943B1 (en) 2010-01-04 2014-01-28 MCube Inc. Multi-axis integrated MEMS devices with CMOS circuits and method therefor
US8652961B1 (en) 2010-06-18 2014-02-18 MCube Inc. Methods and structure for adapting MEMS structures to form electrical interconnections for integrated circuits
US8723986B1 (en) 2010-11-04 2014-05-13 MCube Inc. Methods and apparatus for initiating image capture on a hand-held device
US8794065B1 (en) 2010-02-27 2014-08-05 MCube Inc. Integrated inertial sensing apparatus using MEMS and quartz configured on crystallographic planes
US8797279B2 (en) 2010-05-25 2014-08-05 MCube Inc. Analog touchscreen methods and apparatus
US8823007B2 (en) 2009-10-28 2014-09-02 MCube Inc. Integrated system on chip using multiple MEMS and CMOS devices
US8869616B1 (en) 2010-06-18 2014-10-28 MCube Inc. Method and structure of an inertial sensor using tilt conversion
US8928696B1 (en) 2010-05-25 2015-01-06 MCube Inc. Methods and apparatus for operating hysteresis on a hand held device
US8928602B1 (en) 2009-03-03 2015-01-06 MCube Inc. Methods and apparatus for object tracking on a hand-held device
US8936959B1 (en) 2010-02-27 2015-01-20 MCube Inc. Integrated rf MEMS, control systems and methods
US8969101B1 (en) 2011-08-17 2015-03-03 MCube Inc. Three axis magnetic sensor device and method using flex cables
US8981560B2 (en) 2009-06-23 2015-03-17 MCube Inc. Method and structure of sensors and MEMS devices using vertical mounting with interconnections
US8993362B1 (en) 2010-07-23 2015-03-31 MCube Inc. Oxide retainer method for MEMS devices
US9321629B2 (en) 2009-06-23 2016-04-26 MCube Inc. Method and structure for adding mass with stress isolation to MEMS structures
US9365412B2 (en) 2009-06-23 2016-06-14 MCube Inc. Integrated CMOS and MEMS devices with air dieletrics
US9376312B2 (en) 2010-08-19 2016-06-28 MCube Inc. Method for fabricating a transducer apparatus
US9377487B2 (en) 2010-08-19 2016-06-28 MCube Inc. Transducer structure and method for MEMS devices
US9620473B1 (en) 2013-01-18 2017-04-11 University Of Notre Dame Du Lac Quilt packaging system with interdigitated interconnecting nodules for inter-chip alignment
US20170125389A1 (en) * 2015-10-28 2017-05-04 Indiana Integrated Circuits, LLC Edge Interconnect Self-Assembly Substrate
US20170127518A1 (en) * 2015-10-28 2017-05-04 Indiana Integrated Circuits, LLC Substrates with Interdigitated Hinged Edge Interconnects
US9709509B1 (en) 2009-11-13 2017-07-18 MCube Inc. System configured for integrated communication, MEMS, Processor, and applications using a foundry compatible semiconductor process
US10886670B2 (en) * 2014-02-19 2021-01-05 At&S Austria Technologie & Systemtechnik Aktiengesellschaft PCB-based connector device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225003B2 (en) * 1996-11-29 2012-07-17 Ellis Iii Frampton E Computers and microchips with a portion protected by an internal hardware firewall
US6725250B1 (en) 1996-11-29 2004-04-20 Ellis, Iii Frampton E. Global network computers
US7024449B1 (en) * 1996-11-29 2006-04-04 Ellis Iii Frampton E Global network computers
US7506020B2 (en) 1996-11-29 2009-03-17 Frampton E Ellis Global network computers
US7926097B2 (en) * 1996-11-29 2011-04-12 Ellis Iii Frampton E Computer or microchip protected from the internet by internal hardware
US7805756B2 (en) 1996-11-29 2010-09-28 Frampton E Ellis Microchips with inner firewalls, faraday cages, and/or photovoltaic cells
US7634529B2 (en) 1996-11-29 2009-12-15 Ellis Iii Frampton E Personal and server computers having microchips with multiple processing units and internal firewalls
US6167428A (en) * 1996-11-29 2000-12-26 Ellis; Frampton E. Personal computer microprocessor firewalls for internet distributed processing
US8312529B2 (en) 1996-11-29 2012-11-13 Ellis Frampton E Global network computers
US20050180095A1 (en) * 1996-11-29 2005-08-18 Ellis Frampton E. Global network computers
AU2003303524A1 (en) * 2002-12-27 2004-07-29 La Jolla Pharmaceutical Company Methods of improving health-related quality of life in individuals with systemic lupus erythematosus
WO2004103103A1 (en) * 2003-05-20 2004-12-02 Universidad De Las Palmas De Gran Canaria System for the mechanical and electrical connection of printed circuits
TWM256569U (en) * 2003-12-09 2005-02-01 Optimum Care Int Tech Inc Memory module device
GB0426943D0 (en) * 2003-12-09 2005-01-12 Optimum Care Int Tech Inc Memory module
US7448734B2 (en) * 2004-01-21 2008-11-11 Silverbrook Research Pty Ltd Inkjet printer cartridge with pagewidth printhead
JP4848676B2 (en) * 2005-06-10 2011-12-28 株式会社村田製作所 Component-embedded substrate, component-embedded module using the component-embedded substrate, and method of manufacturing the component-embedded substrate
TWI299647B (en) 2005-12-07 2008-08-01 High Tech Comp Corp Alignment structure of pcb substrate and method thereof
CN1993016B (en) 2005-12-26 2010-09-29 宏达国际电子股份有限公司 Composition board aligning structure and method thereof
JP4963275B2 (en) * 2007-07-20 2012-06-27 日東電工株式会社 Wiring circuit board and wiring circuit board connection structure
US8125796B2 (en) 2007-11-21 2012-02-28 Frampton E. Ellis Devices with faraday cages and internal flexibility sipes
US8429735B2 (en) 2010-01-26 2013-04-23 Frampton E. Ellis Method of using one or more secure private networks to actively configure the hardware of a computer or microchip
US9095069B2 (en) * 2010-09-23 2015-07-28 Buddy A. Stefanoff Direct mechanical/electrical printed circuit board interface
CH704882A2 (en) * 2011-04-29 2012-10-31 Fischer Connectors Holding Sa high density connector.
WO2014127450A1 (en) * 2013-02-19 2014-08-28 Tomas Rodinger Led light
CN104075142A (en) 2013-03-26 2014-10-01 纳米格有限公司 Led lamp
USD706960S1 (en) 2013-02-19 2014-06-10 NanoGrid Limited Hong Kong LED bulb
EP3146811B1 (en) * 2014-05-22 2023-08-02 Signify Holding B.V. Printed circuit board arrangement
DE102014111619B4 (en) * 2014-08-14 2016-07-28 FELA GmbH Conductor rail for electrical components, in particular for lighting devices, system of busbars for electrical components, in particular for lighting devices, and method for producing a busbar for electrical components, in particular for lighting devices
US10649000B2 (en) * 2015-12-17 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Connection assembly
TWI678570B (en) * 2018-06-06 2019-12-01 鴻海精密工業股份有限公司 Connection structure and camera module using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343940B1 (en) * 2000-06-19 2002-02-05 Advantest Corp Contact structure and assembly mechanism thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735455A1 (en) 1987-03-18 1988-09-29 Telefonbau & Normalzeit Gmbh ELECTRICAL COMPONENTS
US4990462A (en) 1989-04-12 1991-02-05 Advanced Micro Devices, Inc. Method for coplanar integration of semiconductor ic devices
JP2737322B2 (en) * 1989-11-22 1998-04-08 ソニー株式会社 Memory module
JP2952980B2 (en) 1990-07-19 1999-09-27 大日本インキ化学工業株式会社 Polyarylene sulfide resin composition for sealing electronic parts and electronic parts
JPH0476056U (en) * 1990-11-15 1992-07-02
JPH0513666A (en) 1991-06-29 1993-01-22 Sony Corp Complex semiconductor device
WO1993007659A1 (en) 1991-10-09 1993-04-15 Ifax Corporation Direct integrated circuit interconnection system
JPH06196626A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Composite electronic device
JPH0794551A (en) 1993-09-25 1995-04-07 Nec Corp Semiconductor device
KR950027550U (en) 1994-03-07 1995-10-18 정의훈 Left side of the inclined guide of the cloth guide. Right feeder
JP3519453B2 (en) * 1994-06-20 2004-04-12 富士通株式会社 Semiconductor device
US5466634A (en) 1994-12-20 1995-11-14 International Business Machines Corporation Electronic modules with interconnected surface metallization layers and fabrication methods therefore
US5539246A (en) 1995-03-01 1996-07-23 Lsi Logic Corporation Microelectronic integrated circuit including hexagonal semiconductor "gate " device
US5552633A (en) 1995-06-06 1996-09-03 Martin Marietta Corporation Three-dimensional multimodule HDI arrays with heat spreading
US5623160A (en) 1995-09-14 1997-04-22 Liberkowski; Janusz B. Signal-routing or interconnect substrate, structure and apparatus
US5838060A (en) 1995-12-12 1998-11-17 Comer; Alan E. Stacked assemblies of semiconductor packages containing programmable interconnect
US5696031A (en) 1996-11-20 1997-12-09 Micron Technology, Inc. Device and method for stacking wire-bonded integrated circuit dice on flip-chip bonded integrated circuit dice
JPH1022520A (en) 1996-06-28 1998-01-23 Nec Corp Semiconductor photodetector and its manufacture
JP3012555B2 (en) 1997-05-29 2000-02-21 神戸日本電気ソフトウェア株式会社 Polyhedral IC package
US6683376B2 (en) 1997-09-01 2004-01-27 Fanuc Ltd. Direct bonding of small parts and module of combined small parts without an intermediate layer inbetween
US5936840A (en) 1997-11-03 1999-08-10 Texas Instruments Incorporated Stacked passive components
JPH11168172A (en) * 1997-12-04 1999-06-22 Toshiba Tec Corp Manufacture of semiconductor chip, three-dimensional structure using semiconductor chip thereof, manufacture thereof and electrical connection thereof
US6075288A (en) 1998-06-08 2000-06-13 Micron Technology, Inc. Semiconductor package having interlocking heat sinks and method of fabrication
JP2000260931A (en) * 1999-03-05 2000-09-22 Hitachi Ltd Semiconductor device and its manufacture
US6023097A (en) 1999-03-17 2000-02-08 Chipmos Technologies, Inc. Stacked multiple-chip module micro ball grid array packaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343940B1 (en) * 2000-06-19 2002-02-05 Advantest Corp Contact structure and assembly mechanism thereof
US6369445B1 (en) * 2000-06-19 2002-04-09 Advantest Corporation Method and apparatus for edge connection between elements of an integrated circuit

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612443B1 (en) * 2003-09-04 2009-11-03 University Of Notre Dame Du Lac Inter-chip communication
US10410989B2 (en) * 2003-09-04 2019-09-10 University Of Notre Dame Du Lac Inter-chip alignment
US8021965B1 (en) 2003-09-04 2011-09-20 University Of Norte Dame Du Lac Inter-chip communication
US20170229416A1 (en) * 2003-09-04 2017-08-10 University Of Notre Dame Du Lac Inter-Chip Alignment
US8623700B1 (en) 2003-09-04 2014-01-07 University Of Notre Dame Du Lac Inter-chip communication
US7608919B1 (en) * 2003-09-04 2009-10-27 University Of Notre Dame Du Lac Interconnect packaging systems
US7119436B2 (en) * 2003-11-27 2006-10-10 Optimum Care International Tech. Inc. Memory module
US20050127368A1 (en) * 2003-11-27 2005-06-16 Shih-Hsiung Lien Memory module
US20080219441A1 (en) * 2004-03-24 2008-09-11 Karl Asperger Arrangement Comprising an Integrated Circuit
US8577031B2 (en) * 2004-03-24 2013-11-05 Continental Automotive Gmbh Arrangement comprising an integrated circuit
US20060023423A1 (en) * 2004-07-30 2006-02-02 Via Technologies, Inc. Expandable heat sink
US8487428B2 (en) * 2007-11-20 2013-07-16 Fujitsu Limited Method and system for providing a reliable semiconductor assembly
US20090127704A1 (en) * 2007-11-20 2009-05-21 Fujitsu Limited Method and System for Providing a Reliable Semiconductor Assembly
US8018009B2 (en) 2007-12-07 2011-09-13 METAMEMS Corp. Forming large planar structures from substrates using edge Coulomb forces
US20090145229A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Decelerometer formed by levitating a substrate into equilibrium
US8008070B2 (en) 2007-12-07 2011-08-30 METAMEMS Corp. Using coulomb forces to study charateristics of fluids and biological samples
US7993968B2 (en) 2007-12-07 2011-08-09 METAMEMS Corp. Assembling substrates that can form 3-D structures
US8159809B2 (en) 2007-12-07 2012-04-17 METAMEMS Corp. Reconfigurable system that exchanges substrates using coulomb forces to optimize a parameter
US8003973B2 (en) 2007-12-07 2011-08-23 METAMEMS Corp. Connect and capacitor substrates in a multilayered substrate structure coupled by surface coulomb forces
US7965489B2 (en) 2007-12-07 2011-06-21 METAMEMS Corp. Using coulomb forces to form 3-D reconfigurable antenna structures
US20090149038A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Forming edge metallic contacts and using coulomb forces to improve ohmic contact
US7946174B2 (en) 2007-12-07 2011-05-24 METAMEMS Corp. Decelerometer formed by levitating a substrate into equilibrium
US20110006394A1 (en) * 2007-12-07 2011-01-13 METAMES Corp. Connect and capacitor substrates in a multilayered substrate structure coupled by surface coulomb forces
US8531848B2 (en) 2007-12-07 2013-09-10 METAMEMS Corp. Coulomb island and Faraday shield used to create adjustable Coulomb forces
US20100258951A1 (en) * 2007-12-07 2010-10-14 METAMEMS Corp. Assembling substrates that can form 3-d structures
US8928602B1 (en) 2009-03-03 2015-01-06 MCube Inc. Methods and apparatus for object tracking on a hand-held device
US9365412B2 (en) 2009-06-23 2016-06-14 MCube Inc. Integrated CMOS and MEMS devices with air dieletrics
US9321629B2 (en) 2009-06-23 2016-04-26 MCube Inc. Method and structure for adding mass with stress isolation to MEMS structures
US8981560B2 (en) 2009-06-23 2015-03-17 MCube Inc. Method and structure of sensors and MEMS devices using vertical mounting with interconnections
US20120160555A1 (en) * 2009-09-03 2012-06-28 Christoph Thumser Method for connecting a plurality of elements of a circuit board, circuit board, and use of such a method
US20150014021A1 (en) * 2009-09-03 2015-01-15 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Printed circuit board
US8863375B2 (en) * 2009-09-03 2014-10-21 AT & S Austria Technologie & Sytemtechnik Aktiengesellschaft Method for connecting a plurality of elements of a circuit board
US8823007B2 (en) 2009-10-28 2014-09-02 MCube Inc. Integrated system on chip using multiple MEMS and CMOS devices
US9709509B1 (en) 2009-11-13 2017-07-18 MCube Inc. System configured for integrated communication, MEMS, Processor, and applications using a foundry compatible semiconductor process
US8395252B1 (en) 2009-11-13 2013-03-12 MCube Inc. Integrated MEMS and CMOS package and method
US8637943B1 (en) 2010-01-04 2014-01-28 MCube Inc. Multi-axis integrated MEMS devices with CMOS circuits and method therefor
US9150406B2 (en) 2010-01-04 2015-10-06 MCube Inc. Multi-axis integrated MEMS devices with CMOS circuits and method therefor
US8936959B1 (en) 2010-02-27 2015-01-20 MCube Inc. Integrated rf MEMS, control systems and methods
US8794065B1 (en) 2010-02-27 2014-08-05 MCube Inc. Integrated inertial sensing apparatus using MEMS and quartz configured on crystallographic planes
US8592993B2 (en) 2010-04-08 2013-11-26 MCube Inc. Method and structure of integrated micro electro-mechanical systems and electronic devices using edge bond pads
US8367522B1 (en) * 2010-04-08 2013-02-05 MCube Inc. Method and structure of integrated micro electro-mechanical systems and electronic devices using edge bond pads
US8928696B1 (en) 2010-05-25 2015-01-06 MCube Inc. Methods and apparatus for operating hysteresis on a hand held device
US8797279B2 (en) 2010-05-25 2014-08-05 MCube Inc. Analog touchscreen methods and apparatus
US8869616B1 (en) 2010-06-18 2014-10-28 MCube Inc. Method and structure of an inertial sensor using tilt conversion
US8652961B1 (en) 2010-06-18 2014-02-18 MCube Inc. Methods and structure for adapting MEMS structures to form electrical interconnections for integrated circuits
US8993362B1 (en) 2010-07-23 2015-03-31 MCube Inc. Oxide retainer method for MEMS devices
US9376312B2 (en) 2010-08-19 2016-06-28 MCube Inc. Method for fabricating a transducer apparatus
US9377487B2 (en) 2010-08-19 2016-06-28 MCube Inc. Transducer structure and method for MEMS devices
US8486723B1 (en) 2010-08-19 2013-07-16 MCube Inc. Three axis magnetic sensor device and method
US8723986B1 (en) 2010-11-04 2014-05-13 MCube Inc. Methods and apparatus for initiating image capture on a hand-held device
US8969101B1 (en) 2011-08-17 2015-03-03 MCube Inc. Three axis magnetic sensor device and method using flex cables
US9620473B1 (en) 2013-01-18 2017-04-11 University Of Notre Dame Du Lac Quilt packaging system with interdigitated interconnecting nodules for inter-chip alignment
US10886670B2 (en) * 2014-02-19 2021-01-05 At&S Austria Technologie & Systemtechnik Aktiengesellschaft PCB-based connector device
US20170127518A1 (en) * 2015-10-28 2017-05-04 Indiana Integrated Circuits, LLC Substrates with Interdigitated Hinged Edge Interconnects
US20170125389A1 (en) * 2015-10-28 2017-05-04 Indiana Integrated Circuits, LLC Edge Interconnect Self-Assembly Substrate
US10182498B2 (en) * 2015-10-28 2019-01-15 Indiana Integrated Circuits, LLC Substrates with interdigitated hinged edge interconnects
US10896898B2 (en) * 2015-10-28 2021-01-19 Indiana Integrated Circuits, LLC Edge interconnect self-assembly substrate
US11398463B2 (en) 2015-10-28 2022-07-26 Indiana Integrated Circuits, LLC Edge interconnect self-assembly substrate

Also Published As

Publication number Publication date
AU6429201A (en) 2002-01-02
DE10192788T5 (en) 2004-04-15
JP2004519087A (en) 2004-06-24
WO2001099189A1 (en) 2001-12-27
US6440775B2 (en) 2002-08-27
TW492114B (en) 2002-06-21

Similar Documents

Publication Publication Date Title
US6440775B2 (en) Method and apparatus for edge connection between elements of an integrated circuit
US6369445B1 (en) Method and apparatus for edge connection between elements of an integrated circuit
US7005730B2 (en) Memory module having interconnected and stacked integrated circuits
US6215193B1 (en) Multichip modules and manufacturing method therefor
US4722914A (en) Method of making a high density IC module assembly
EP0183722B1 (en) High density ic module assembly
US5093708A (en) Multilayer integrated circuit module
US9847248B2 (en) Method of making a stacked device assembly
US20080211089A1 (en) Interposer for die stacking in semiconductor packages and the method of making the same
US7368810B2 (en) Invertible microfeature device packages
KR20010060343A (en) Semiconductor apparatus and method of fabricating semiconductor apparatus
US8164189B2 (en) Multi-chip semiconductor device
US7396763B2 (en) Semiconductor package using flexible film and method of manufacturing the same
JPH0563137A (en) Semiconductor device
KR20090022771A (en) Stack package
JP2581532B2 (en) Semiconductor device
US7071555B2 (en) Ball grid array package stack
JP2001185648A (en) Semiconductor device
JP2706699B2 (en) Semiconductor module
JP2003133516A (en) Laminated semiconductor device
KR100924553B1 (en) Memory module
JPH05235259A (en) Semiconductor device and semiconductor device unit
KR20150040998A (en) Multiple die face-down stacking for two or more die
JPH10335574A (en) Electronic circuit device
JPH04251797A (en) Ic memory card

Legal Events

Date Code Title Description
CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060827