US20010044598A1 - Apparatus and methods for reducing embolization during treatment of carotid artery disease - Google Patents

Apparatus and methods for reducing embolization during treatment of carotid artery disease Download PDF

Info

Publication number
US20010044598A1
US20010044598A1 US09/418,727 US41872799A US2001044598A1 US 20010044598 A1 US20010044598 A1 US 20010044598A1 US 41872799 A US41872799 A US 41872799A US 2001044598 A1 US2001044598 A1 US 2001044598A1
Authority
US
United States
Prior art keywords
blood
catheter
balloon
lumen
emboli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/418,727
Other versions
US6423032B2 (en
Inventor
Juan Carlos Parodi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICOLA A PISANO
WL Gore and Associates Inc
Original Assignee
Arteria Medical Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/078,263 external-priority patent/US6413235B1/en
Priority claimed from PCT/US1999/005469 external-priority patent/WO1999045835A2/en
Priority claimed from US09/333,074 external-priority patent/US6206868B1/en
Application filed by Arteria Medical Science Inc filed Critical Arteria Medical Science Inc
Priority to US09/418,727 priority Critical patent/US6423032B2/en
Assigned to ARTERIA MEDICAL SCIENCE, INC. reassignment ARTERIA MEDICAL SCIENCE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARODI, JUAN CARLOS
Priority to CA2380350A priority patent/CA2380350C/en
Priority to CA2721188A priority patent/CA2721188C/en
Priority to EP20100012238 priority patent/EP2335770A1/en
Priority to EP00942819A priority patent/EP1210142B1/en
Priority to PCT/US2000/016393 priority patent/WO2000076390A2/en
Priority to EP10012034A priority patent/EP2311519A1/en
Priority to JP2001502737A priority patent/JP2003521286A/en
Priority to DE60045555T priority patent/DE60045555D1/en
Priority to EP10006014A priority patent/EP2236170B1/en
Priority to ES10006014T priority patent/ES2404842T3/en
Priority to AT00942819T priority patent/ATE495785T1/en
Priority to AU57389/00A priority patent/AU781760B2/en
Priority to US09/909,729 priority patent/US6682505B2/en
Priority to US09/916,349 priority patent/US6632236B2/en
Priority to US09/991,417 priority patent/US6905490B2/en
Publication of US20010044598A1 publication Critical patent/US20010044598A1/en
Priority to US10/100,628 priority patent/US6936060B2/en
Priority to US10/100,630 priority patent/US6908474B2/en
Priority to US10/187,058 priority patent/US6960222B2/en
Publication of US6423032B2 publication Critical patent/US6423032B2/en
Application granted granted Critical
Assigned to ARTERIA MEDICAL SCIENCE, INC. reassignment ARTERIA MEDICAL SCIENCE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BATES, MARK C.
Assigned to GORE ENTERPRISE HOLDINGS, INC. reassignment GORE ENTERPRISE HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARTERIA MEDICAL SCIENCE, INC.
Priority to AU2005202496A priority patent/AU2005202496B2/en
Priority to US11/156,865 priority patent/US7927347B2/en
Priority to US11/256,121 priority patent/US20060041228A1/en
Priority to AU2008229661A priority patent/AU2008229661B2/en
Priority to JP2009044416A priority patent/JP4865825B2/en
Priority to US12/763,923 priority patent/US20100204724A1/en
Priority to JP2011006313A priority patent/JP2011087971A/en
Priority to US13/043,402 priority patent/US20110160762A1/en
Assigned to W. L. GORE & ASSOCIATES, INC. reassignment W. L. GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GORE ENTERPRISE HOLDINGS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • A61B17/12045Type of occlusion temporary occlusion double occlusion, e.g. during anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
    • A61F2/014Retrograde blood flow filters, i.e. device inserted against the blood flow direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22067Blocking; Occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2215Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320716Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions comprising means for preventing embolism by dislodged material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0001Catheters; Hollow probes for pressure measurement
    • A61M2025/0002Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0681Systems with catheter and outer tubing, e.g. sheath, sleeve or guide tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • A61M2025/1031Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1052Balloon catheters with special features or adapted for special applications for temporarily occluding a vessel for isolating a sector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1065Balloon catheters with special features or adapted for special applications having a balloon which is inversely attached to the shaft at the distal or proximal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1093Balloon catheters with special features or adapted for special applications having particular tip characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1095Balloon catheters with special features or adapted for special applications with perfusion means for enabling blood circulation while the balloon is in an inflated state or in a deflated state, e.g. permanent by-pass within catheter shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril

Definitions

  • This invention relates to apparatus and methods for protecting against embolization during vascular interventions, such as carotid artery angioplasty and endarterectomy. More particularly, the apparatus and methods of the present invention induce substantially continuous retrograde flow through the internal carotid artery during treatment during an interventional procedure, without significant blood loss.
  • Carotid artery stenoses typically manifest in the common carotid artery, internal carotid artery or external carotid artery as a pathologic narrowing of the vascular wall, for example, caused by the deposition of plaque, that inhibits normal blood flow.
  • Endarterectomy an open surgical procedure, traditionally has been used to treat such stenosis of the carotid artery.
  • emboli may be formed during the course of the procedure, and these emboli can rapidly pass into the cerebral vasculature and cause ischemic stroke.
  • Such emboli may be created, for example, when an interventional instrument, such as a guide wire or angioplasty balloon, is forcefully passed into or through the stenosis, as well as after dilatation and deflation of the angioplasty balloon or stent deployment. Because such instruments are advanced into the carotid artery in the same direction as blood flow, emboli generated by operation of the instruments are carried directly into the brain by antegrade blood flow.
  • an interventional instrument such as a guide wire or angioplasty balloon
  • Solano et al. U.S. Pat. No. 4,921,478 describes cerebral angioplasty methods and devices wherein two concentric shafts are coupled at a distal end to a distally-facing funnel-shaped balloon.
  • a lumen of the innermost shaft communicates with an opening in the funnel-shaped balloon at the distal end, and is open to atmospheric pressure at the proximal end.
  • the funnel-shaped balloon is deployed proximally (in the direction of flow) of a stenosis, occluding antegrade flow.
  • An angioplasty balloon catheter is passed through the innermost lumen and into the stenosis, and then inflated to dilate the stenosis.
  • the patent states that when the angioplasty balloon is deflated, a pressure differential between atmospheric pressure and the blood distal to the angioplasty balloon causes a reversal of flow in the vessel that flushes any emboli created by the angioplasty balloon through the lumen of the innermost catheter.
  • Applicant has determined another drawback of the method described in the Solano patent: deployment of the funnel-shaped balloon in the common carotid artery (“CCA”) causes reversal of flow from the external carotid artery (“ECA”) into the internal carotid artery (“ICA”), due to the lower flow impedance of the ICA. Consequently, when a guide wire or interventional instrument is passed across a lesion in either the ECA or ICA, emboli dislodged from the stenosis are introduced into the blood flow and carried into the cerebral vasculature via the ICA.
  • CCA common carotid artery
  • ICA internal carotid artery
  • EP Publication No. 0 427 429 describes use of a separate balloon to occlude the ECA prior to crossing the lesion in the ICA.
  • that publication discloses that flow reversal occurs only when the dilatation balloon in the ICA is deflated.
  • a dilation catheter is advanced through a lumen of the guide catheter and dilated to disrupt the stenosis
  • the occlusion balloons on the guide catheter and in the ECA are inflated to block antegrade blood flow to the brain.
  • the dilation balloon then is deflated, the dilation catheter is removed, and blood is aspirated from the ICA to remove emboli.
  • the occlusion balloons are not inflated until after inflation of the dilation balloon. Microemboli generated during advancement of the dilation catheter into the stenosed segment may therefore be carried by retrograde blood flow into the brain before dilation, occlusion, and aspiration are even attempted.
  • a still further drawback of both the device in EP Publication No. 0 427 429 and the Interventional Neuroradiology device is that, if they are used for placing a stent in the ICA instead of for ICA angioplasty, the stent often extends beyond the bifurcation between the ECA and the ICA.
  • the occlusion balloon placed by guide wire in the ECA may snag the stent during retrieval. Emergency surgery may then be required to remove the balloon.
  • Imran U.S. Pat. No. 5,833,650 describes a system for treating stenoses that comprises three concentric shafts.
  • the outermost shaft includes a proximal balloon at its distal end that is deployed proximal of a stenosis to occlude antegrade blood flow.
  • a suction pump then draws suction through a lumen in the outermost shaft to cause a reversal of flow in the vessel while the innermost shaft is passed across the stenosis.
  • a distal balloon on the innermost shaft is deployed to occlude flow distal to the stenosis.
  • Autologous blood taken from a femoral artery using an extracorporeal blood pump is infused through a central lumen of the innermost catheter to provide continued antegrade blood flow distal to the distal balloon.
  • the third concentric shaft which includes an angioplasty balloon, is then advanced through the annulus between the innermost and outermost catheters to dilate the stenosis.
  • the device of the Imran patent appears to suffer the drawback of potentially dislodging emboli that are carried into the cerebral vasculature.
  • flow reversal in the vasculature distal to the distal balloon ceases, and the blood perfused through the central lumen of the innermost shaft establishes antegrade flow.
  • emboli are generated during deployment of the distal balloon, those emboli will be carried by the perfused blood directly into the cerebral vasculature, and again pose a risk of ischemic stroke.
  • reperfusion of blood under pressure through a small diameter catheter may contribute to hemolysis and possible dislodgment of emboli.
  • emboli removal methods and apparatus that prevent the development of reverse flow from the ECA and antegrade into the ICA once the CCA has been occluded, thereby enhancing the likelihood that emboli generated by a surgical or interventional procedure are effectively removed from the vessel.
  • interventional apparatus comprising an arterial catheter, an occlusion balloon disposed on a guide wire, a venous return catheter, and optionally a blood filter.
  • the arterial catheter has proximal and distal ends, an aspiration lumen extending therebetween, an occlusion element disposed on the distal end, and a hemostatic port and blood outlet port disposed on the proximal end that communicate with the aspiration lumen.
  • the aspiration lumen is sized so that an interventional instrument, e.g., an angioplasty catheter or stent delivery system, may be readily advanced therethrough to the site of a stenosis in either the ECA (proximal to the balloon) or the ICA.
  • an interventional instrument e.g., an angioplasty catheter or stent delivery system
  • the arterial catheter is disposed in the CCA proximal of the ICA/ECA bifurcation, the occlusion balloon on the guide wire is disposed in the ECA to occlude flow reversal from the ECA to the ICA, and the blood outlet port of the arterial catheter is coupled to the venous return catheter, with or without the blood filter disposed therebetween.
  • Higher arterial than venous pressure permits substantially continuous flow reversal in the ICA during the procedure (other than when a dilatation balloon is inflated), thereby flushing blood containing emboli from the vessel.
  • the blood is filtered and reperfused into the body through the venous return catheter.
  • FIGS. 1A and 1B are schematic views of previously known emboli protection systems
  • FIG. 2 is a schematic view of the emboli protection system of the present invention.
  • FIGS. 3 A- 3 D are, respectively, a schematic view, and detailed side and sectional views of the distal end of an interventional device of the present invention.
  • FIGS. 4A and 4B are views of the distal end of an alternative interventional device suitable for use in the system of the present invention.
  • FIGS. 5 A- 5 D illustrate a method of using the system of FIG. 3 in accordance with the principles of the present invention
  • FIGS. 6 A- 6 B are, respectively, a schematic view and a cross-sectional view of an alternative embodiment of the device of FIGS. 3;
  • FIGS. 7 A- 7 B are, respectively, a schematic view of an alternative embodiment of the guide wire balloon elements of the device of FIGS. 3 , and a method of using the alternative embodiment.
  • FIGS. 1A and 1B drawbacks of previously known emboli removal catheters are described with reference to performing percutaneous angioplasty of stenosis S in common carotid artery CCA.
  • FIG. 1A drawbacks associated with naturally-aspirated emboli removal systems, such as described in the above-mentioned patent to Solano and European Patent Publication, are described. No flow reversal is induced by those systems until after balloon 10 of angioplasty catheter 11 first is passed across the stenosis, inflated, and then deflated. However, applicant has determined that once member 15 of emboli removal catheter 16 is inflated, flow within the ECA reverses and provides antegrade flow into the ICA, due to the lower hemodynamic resistance of the ICA.
  • emboli E generated while passing guide wire 20 or catheter 11 across stenosis S may be carried irretrievably into the cerebral vasculature—before flow in the vessel is reversed and directed into the aspiration lumen of emboli removal catheter 16 by opening the proximal end of the aspiration lumen to atmospheric pressure
  • natural-aspiration may not remove an adequate volume of blood to retrieve even those emboli that have not yet been carried all the way into the cerebral vasculature.
  • FIG. 1B system 17 described in the above-mentioned patent to Imran is shown.
  • deployment of distal balloon 18 , and ejection of blood out of the distal end of the inner catheter may dislodge emboli from the vessel wall distal to balloon 18 .
  • the introduction of antegrade flow through inner catheter 19 is expected only to exacerbate the problem by pushing the emboli further into the cerebral vasculature.
  • the use of positive suction in the Imran system may remove emboli located in the confined treatment field defined by the proximal and distal balloons, such suction is not expected to provide any benefit for emboli dislodged distal of distal balloon 18 .
  • Apparatus 30 comprises catheter 31 having an aspiration lumen and occlusion element 32 , and guide wire 35 having inflatable balloon 36 disposed on its distal end.
  • catheter 31 having an aspiration lumen and occlusion element 32
  • guide wire 35 having inflatable balloon 36 disposed on its distal end.
  • antegrade blood flow is stopped when both occlusion element 32 in the CCA and inflatable balloon 36 are deployed.
  • the aspiration lumen of catheter 31 is connected to a venous return catheter (described hereinbelow), disposed, for example, in the patient's femoral vein. In this manner a substantially continuous flow of blood is induced between the treatment site and the patient's venous vasculature. Because flow through the artery is towards catheter 31 , any emboli dislodged by advancing a guide wire or angioplasty catheter 33 across stenosis S causes the emboli to be aspirated by catheter 31 .
  • the present invention provides substantially continuous retrograde blood flow through eh ICA while preventing blood from flowing retrograde in the ECA and antegrade into the ICA, thereby preventing emboli from being carried into the cerebral vasculature. Because the apparatus and methods of the present invention “recycle” emboli-laden blood from the arterial catheter through the blood filter and to the venous return catheter, the patient experiences significantly less blood loss.
  • Apparatus 40 constructed in accordance with the principles of the present invention is described.
  • Apparatus 40 comprises arterial catheter 41 , guide wire 45 , venous return line 52 , tubing 49 and optional blood filter 50 .
  • Catheter 41 includes distal occlusion element 42 , proximal hemostatic port 43 , e.g., a Touhy-Borst connector, inflation port 44 , and blood outlet port 48 .
  • Guide wire 45 includes balloon 46 that is inflated via inflation port 47 .
  • Tubing 49 couples blood outlet port 48 to filter 50 and blood inlet port 51 of venous return line 52 .
  • Guide wire 45 and balloon 46 are configured to pass through hemostatic port 43 and the aspiration lumen of catheter 41 (see FIGS. 3C and 3D), so that the balloon may be advanced into and occlude the ECA.
  • Port 43 and the aspiration lumen of catheter 41 are sized to permit additional interventional devices, such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through the aspiration lumen when guide wire 45 is deployed.
  • Guide wire 45 preferably comprises a small diameter flexible shaft having an inflation lumen that couples inflatable balloon 46 to inflation port 47 .
  • Inflatable balloon 46 preferably comprises a compliant material, such as described hereinabove with respect to occlusion element 42 of emboli removal catheter 41 .
  • Venous return line 52 includes hemostatic port 53 , blood inlet port 51 and a lumen that communicates with ports 53 and 51 and tip 54 .
  • Venous return line 52 may be constructed in a manner per se known for venous introducer catheters.
  • Tubing 49 may comprise a suitable length of a biocompatible material, such as silicone. Alternatively, tubing 49 may be omitted and blood outlet port 48 of catheter 41 and blood inlet port 51 of venous return line 52 may be lengthened to engage either end of filter 50 or each other.
  • distal occlusion element 42 comprises expandable bell or pear-shaped balloon 55 .
  • balloon 55 comprises a compliant material, such as polyurethane, latex or polyisoprene which has variable thickness along its length to provide a bell-shape when inflated.
  • Balloon 55 is affixed to distal end 56 of catheter 41 , for example, by gluing or a melt-bond, so that opening 57 in balloon 55 leads into aspiration lumen 58 of catheter 41 .
  • Balloon 55 preferably is wrapped and heat treated during manufacture so that distal portion 59 of the balloon extends beyond the distal end of catheter 41 and provides an atraumatic tip or bumper for the catheter.
  • catheter 41 preferably comprises inner layer 60 of low-friction material, such as polytetrafluoroethylene (“PTFE”), covered with a layer of flat stainless steel wire braid 61 and polymer cover 62 (e.g., polyurethane, polyethylene, or PEBAX).
  • Inflation lumen 63 is disposed within polymer cover 62 and couples inflation port 44 to balloon 55 .
  • the diameter of lumen 58 is 7 Fr, and the outer diameter of the catheter is approximately 9 Fr.
  • occlusion element 42 of emboli removal catheter 41 comprises self-expanding wire basket 65 covered with elastomeric polymer 66 , such as latex, polyurethane or polyisoprene.
  • elastomeric polymer 66 such as latex, polyurethane or polyisoprene.
  • a tightly knit self-expanding wire mesh may be used, with or without an elastomeric covering.
  • Catheter 41 is surrounded by movable sheath 67 .
  • Catheter 41 is inserted transluminally with sheath 67 in a distalmost position, and after basket 65 has been determined to be in a desired position proximal to a stenosis, sheath 67 is retracted proximally to cause basket 65 to deploy.
  • basket 65 is again collapsed within sheath 67 by moving the sheath to its distalmost position. Operation of the system of FIG. 3A using the emboli removal catheter of FIGS. 4A and 4B is similar to that described hereinbelow for FIGS. 5 A- 5 D, except that the occlusion element self-expands when sheath 67 is retracted, rather than by infusing an inflation medium to balloon 55 .
  • FIGS. 5 A- 5 D use of the apparatus of FIGS. 3 in accordance with the methods of the present invention is described.
  • stenosis S is located in internal carotid artery ICA above the bifurcation between the internal carotid artery ICA and the external carotid artery ECA.
  • catheter 41 is inserted, either percutaneously and transluminally or via a surgical cut-down, to a position proximal of stenosis S, without causing guide wire 45 to cross the stenosis.
  • Balloon 55 of distal occlusion element 42 is then inflated, preferably with a radiopaque contrast solution, via inflation port 44 . As seen in FIG. 5A, this creates reversal of flow from the external carotid artery ECA into the internal carotid artery ICA.
  • Venous return line 52 then is introduced into the patient's femoral vein, either percutaneously or via a surgical cut-down.
  • Filter 50 is then coupled between blood outlet port 48 of catheter 41 and blood inlet port 51 of venous return line 52 using tubing 49 , and any air is removed from the line. Once this circuit is closed, negative pressure in the venous catheter during diastole will establish a low rate continuous flow of blood through aspiration lumen 58 of catheter 41 , as seen in FIG. 5B, to the patient's vein via venous return line 52 .
  • Continuous blood flow (except during inflation of any dilatation instruments) with reperfusion in accordance with the present invention provides efficient emboli removal with significantly reduced blood loss.
  • filter 50 may be omitted, in which case emboli removed from the arterial side will be introduced into the venous side, and eventually captured in the lungs. Because of a low incidence of septal defects, which could permit such emboli to cross-over to the left ventricle, the use of filter 50 is preferred.
  • balloon 55 of occlusion element 42 inflated and a retrograde flow established in the ICA
  • guide wire 45 and balloon 46 are advanced through aspiration lumen 58 .
  • balloon 46 is disposed within the ECA, as determined, e.g., using a fluoroscope and a radiopaque inflation medium injected into balloon 46
  • balloon 46 is inflated.
  • Occlusion of the ECA prevents the development of reverse flow in the ECA from causing antegrade flow in the ICA.
  • Another interventional instrument such as conventional angioplasty balloon catheter 71 having balloon 72 , is loaded through hemostatic port 43 and aspiration lumen 58 and positioned within the stenosis. Hemostatic port 43 is closed and instrument 71 is actuated to disrupt the plaque forming stenosis S.
  • balloon 72 is deflated Throughout the procedure, except when the dilatation balloon is fully inflated, the pressure differential between the blood in the ICA and the venous pressure causes blood in ICA to flow in a retrograde direction in the ICA into aspiration lumen 58 of emboli removal catheter 41 , thereby flushing any emboli from the vessel.
  • the blood is filtered and reperfused into the patient's vein.
  • increased volumetric blood flow through the extracorporeal circuit may by achieved by attaching an external pump, such as a roller pump, to tubing 49 .
  • an external pump such as a roller pump
  • the external pump may be used in conjunction with device 40 at any point during the interventional procedure.
  • Instrument 71 , guide wire 45 , emboli removal catheter 41 , and venous return line 52 are then removed from the patient, completing the procedure.
  • the method of the present invention protects against embolization, first, by preventing the reversal of blood flow from the ECA to the ICA when distal occlusion element 42 is inflated, and second, by providing continuous, low volume blood flow from the carotid artery to the remote vein in order to filter and flush any emboli from the vessel and blood stream.
  • the method of the present invention permits emboli to be removed with little blood loss, because the blood is filtered and reperfused into the patient. Furthermore, continuous removal of blood containing emboli prevents emboli from migrating too far downstream for aspiration.
  • Apparatus 140 is an alternative embodiment of apparatus 40 described hereinabove and comprises arterial catheter 141 having distal occlusion element 142 , proximal hemostatic port 143 , inflation port 144 and blood outlet port 148 .
  • Guide wire 145 includes balloon 146 that is inflated via inflation port 147 .
  • Biocompatible tubing 149 couples blood outlet port 148 to filter 150 and to blood inlet port 151 of venous return line 152 .
  • Arterial catheter 141 , guide wire 145 , venous return line 152 and tubing 149 are constructed as described hereinabove, except as noted below.
  • Guide wire 145 and balloon 146 are configured to pass through guide wire lumen 164 of catheter 141 (see FIG. 6B), so that the balloon may be advanced into and occlude the ECA.
  • catheter 141 comprises aspiration lumen 158 which is sized to permit interventional devices, such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through port 143 and the aspiration lumen.
  • interventional devices such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through port 143 and the aspiration lumen.
  • guide wire 45 is advanced through the aspiration lumen of catheter 41
  • guide wire 145 is advanced through separate guide wire lumen 164 of catheter 141 .
  • Catheter 141 preferably is constructed from inner layer 160 of low-friction material, such as polytetrafluoroethylene (“PTFE”), covered with a layer of flat stainless steel wire braid 161 , and polymer cover 162 (e.g., polyurethane, polyethylene, or PEBAX).
  • Inflation lumen 163 is disposed within polymer cover 162 and couples inflation port 144 to occlusion element 142 .
  • Guide wire lumen 164 also is disposed within polymer cover 142 , and is sized to permit guide wire 145 and balloon 146 to pass therethrough.
  • the diameter of inflation lumen 163 is 0.014′′
  • the diameter of guide wire lumen 164 is 0.020′′
  • the diameter of lumen 158 is 7 Fr.
  • the thickness of the catheter wall varies around the circumference from a maximum of 0.026′′ at the location of guide wire lumen 164 to a minimum of 0.005′′ 180 degrees away.
  • Occlusion apparatus 200 comprises guide wire 201 , occlusion balloon 202 , inflation lumen 203 , and wedge 204 .
  • Wedge 204 may comprise a resilient material, such as a polymer or resilient wire, and reduces the risk that balloon 202 will snag on a stent that extends beyond the bifurcation of the ICA and ECA.
  • an occlusion balloon on a guide wire is placed in the ECA and inflated to block that artery.
  • a stent then may be placed in the ICA to ensure proper blood flow to the ICA. It is often desirable, however, for such stents to extend beyond the bifurcation between the ECA and the ICA. Consequently, when the occlusion balloon on the guide wire is deflated and withdrawn from the ECA, there is a risk that the balloon may snag the stent. In such cases, emergency surgery is often required to remove the balloon.
  • occlusion apparatus 200 is illustratively shown in conjunction with catheter 41 .
  • Stent S extends beyond the bifurcation between the ECA and the ICA and into the CCA.
  • Balloon 202 is deflated and positioned for retrieval. Because balloon 202 is disposed on guide wire 201 instead of a traditional, larger diameter balloon catheter, its cross-sectional diameter is significantly reduced, and thus the risk that the balloon will snag on stent S is reduced.
  • Resilient wedge 204 further reduces this risk by urging the balloon outward away from the stent during retrieval of guide wire 201 and balloon 202 .
  • a separate sheath may be advanced over guide wire 201 and occlusion balloon 202 to surround those components, and therefore reduce the risk that the occlusion balloon or guide wire will snag the stent.

Abstract

Methods and apparatus are provided for removing emboli during an angioplasty, stenting or surgical procedure comprising a catheter having an occlusion element, an aspiration lumen, and a blood outlet port in communication with the lumen, a guide wire having a balloon, a venous return catheter with a blood inlet port, and tubing that couples the blood outlet port to the blood inlet port. Apparatus is also provided for occluding the external carotid artery to prevent reversal of flow into the internal carotid artery. The pressure differential between the artery and the vein provides reverse flow through the artery, thereby flushing emboli. A blood filter may optionally be included in-line with the tubing to filter emboli from blood reperfused into the patient.

Description

    REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 09/333,074, filed Jun. 14, 1999, which is a continuation-in-part of International Application PCT/US99/05469, filed Mar. 12, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/078,263, filed Mar. 5, 1998.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to apparatus and methods for protecting against embolization during vascular interventions, such as carotid artery angioplasty and endarterectomy. More particularly, the apparatus and methods of the present invention induce substantially continuous retrograde flow through the internal carotid artery during treatment during an interventional procedure, without significant blood loss. [0002]
  • BACKGROUND OF THE INVENTION
  • Carotid artery stenoses typically manifest in the common carotid artery, internal carotid artery or external carotid artery as a pathologic narrowing of the vascular wall, for example, caused by the deposition of plaque, that inhibits normal blood flow. Endarterectomy, an open surgical procedure, traditionally has been used to treat such stenosis of the carotid artery. [0003]
  • An important problem encountered in carotid artery surgery is that emboli may be formed during the course of the procedure, and these emboli can rapidly pass into the cerebral vasculature and cause ischemic stroke. [0004]
  • In view of the trauma and long recuperation times generally associated with open surgical procedures, considerable interest has arisen in the endovascular treatment of carotid artery stenosis. In particular, widespread interest has arisen in transforming interventional techniques developed for treating coronary artery disease, such as angioplasty and stenting, for use in the carotid arteries. Such endovascular treatments, however, are especially prone to the formation of emboli. [0005]
  • Such emboli may be created, for example, when an interventional instrument, such as a guide wire or angioplasty balloon, is forcefully passed into or through the stenosis, as well as after dilatation and deflation of the angioplasty balloon or stent deployment. Because such instruments are advanced into the carotid artery in the same direction as blood flow, emboli generated by operation of the instruments are carried directly into the brain by antegrade blood flow. [0006]
  • Stroke rates after carotid artery stenting have widely varied in different clinical series, from as low as 4.4% to as high as 30%. One review of carotid artery stenting including data from twenty-four major interventional centers in Europe, North America, South America and Asia, had a combined initial failure and combined mortality/stroke rate of more than 7%. Cognitive studies and reports of intellectual changes after carotid artery stenting indicate that embolization is a common event causing subclinical cerebral damage. [0007]
  • Several previously known apparatus and methods attempt to remove emboli formed during endovascular procedures by trapping or suctioning the emboli out of the vessel of interest. These previously known systems, however, provide less than optimal solutions to the problems of effectively removing emboli. [0008]
  • Solano et al. U.S. Pat. No. 4,921,478 describes cerebral angioplasty methods and devices wherein two concentric shafts are coupled at a distal end to a distally-facing funnel-shaped balloon. A lumen of the innermost shaft communicates with an opening in the funnel-shaped balloon at the distal end, and is open to atmospheric pressure at the proximal end. In use, the funnel-shaped balloon is deployed proximally (in the direction of flow) of a stenosis, occluding antegrade flow. An angioplasty balloon catheter is passed through the innermost lumen and into the stenosis, and then inflated to dilate the stenosis. The patent states that when the angioplasty balloon is deflated, a pressure differential between atmospheric pressure and the blood distal to the angioplasty balloon causes a reversal of flow in the vessel that flushes any emboli created by the angioplasty balloon through the lumen of the innermost catheter. [0009]
  • While a seemingly elegant solution to the problem of emboli removal, several drawbacks of the device and methods described in the Solano et al. patent seem to have lead to abandonment of that approach. Chief among these problems is the inability of that system to generate flow reversal during placement of the guide wire and the angioplasty balloon across the stenosis. Because flow reversal does not occur until after deflation of the angioplasty balloon, there is a substantial risk that any emboli created during placement of the angioplasty balloon will travel too far downstream to be captured by the subsequent flow reversal. It is expected that this problem is further compounded because only a relatively small volume of blood is removed by the pressure differential induced after deflation of the angioplasty balloon. [0010]
  • Applicant has determined another drawback of the method described in the Solano patent: deployment of the funnel-shaped balloon in the common carotid artery (“CCA”) causes reversal of flow from the external carotid artery (“ECA”) into the internal carotid artery (“ICA”), due to the lower flow impedance of the ICA. Consequently, when a guide wire or interventional instrument is passed across a lesion in either the ECA or ICA, emboli dislodged from the stenosis are introduced into the blood flow and carried into the cerebral vasculature via the ICA. [0011]
  • The insufficient flow drawback identified for the system of the Solano patent is believed to have prevented development of a commercial embodiment of the similar system described in EP Publication No. 0 427 429. EP Publication No. 0 427 429 describes use of a separate balloon to occlude the ECA prior to crossing the lesion in the ICA. However, like Solano, that publication discloses that flow reversal occurs only when the dilatation balloon in the ICA is deflated. [0012]
  • [0013] Chapter 46 of Interventional Neuroradioloy: strategies and practical techniques (J. J. Connors & J. Wojak, 1999), published by Saunders of Philadelphia, Pa., describes using a coaxial balloon angioplasty system for patients having with proximal ICA stenoses. In particular, a small, deflated occlusion balloon on a wire is introduced into the origin of the ECA, and a guide catheter with a deflated occlusion balloon is positioned in the CCA just proximal to the origin of the ECA. A dilation catheter is advanced through a lumen of the guide catheter and dilated to disrupt the stenosis Before deflation of the dilation catheter, the occlusion balloons on the guide catheter and in the ECA are inflated to block antegrade blood flow to the brain. The dilation balloon then is deflated, the dilation catheter is removed, and blood is aspirated from the ICA to remove emboli.
  • Applicant has determined that cerebral damage still may result from the foregoing previously known procedure, which is similar to that described in EP Publication No. 0 427 429, except that the ICA is occluded prior to the ECA. Consequently, both of these previously known systems and methods suffer from the same drawback—the inability to generate flow reversal at sufficiently high volumes during placement of the guide wire and dilation catheter across the stenosis. Both methods entail a substantial risk that any emboli created during placement of the balloon will travel too far downstream to be captured by the flow reversal. [0014]
  • Applicants note, irrespective of the method of aspiration employed with the method described in the foregoing [0015] Interventional Neuroradiology article, substantial drawbacks are attendant. If, for example, natural aspiration is used (i.e., induced by the pressure gradient between the atmosphere and the artery), then only a relatively small volume of blood is expected to be removed by the pressure differential induced after deflation of the angioplasty balloon. If, on the other hand, an external pump is utilized, retrieval of these downstream emboli may require a flow rate that cannot be sustained for more than a few seconds, resulting insufficient removal of emboli.
  • Furthermore, with the dilation balloon in position, the occlusion balloons are not inflated until after inflation of the dilation balloon. Microemboli generated during advancement of the dilation catheter into the stenosed segment may therefore be carried by retrograde blood flow into the brain before dilation, occlusion, and aspiration are even attempted. [0016]
  • A still further drawback of both the device in EP Publication No. 0 427 429 and the [0017] Interventional Neuroradiology device is that, if they are used for placing a stent in the ICA instead of for ICA angioplasty, the stent often extends beyond the bifurcation between the ECA and the ICA. The occlusion balloon placed by guide wire in the ECA may snag the stent during retrieval. Emergency surgery may then be required to remove the balloon.
  • Imran U.S. Pat. No. 5,833,650 describes a system for treating stenoses that comprises three concentric shafts. The outermost shaft includes a proximal balloon at its distal end that is deployed proximal of a stenosis to occlude antegrade blood flow. A suction pump then draws suction through a lumen in the outermost shaft to cause a reversal of flow in the vessel while the innermost shaft is passed across the stenosis. Once located distal to the stenosis, a distal balloon on the innermost shaft is deployed to occlude flow distal to the stenosis. Autologous blood taken from a femoral artery using an extracorporeal blood pump is infused through a central lumen of the innermost catheter to provide continued antegrade blood flow distal to the distal balloon. The third concentric shaft, which includes an angioplasty balloon, is then advanced through the annulus between the innermost and outermost catheters to dilate the stenosis. [0018]
  • Like the device of the Solano patent, the device of the Imran patent appears to suffer the drawback of potentially dislodging emboli that are carried into the cerebral vasculature. In particular, once the distal balloon of Imran's innermost shaft is deployed, flow reversal in the vasculature distal to the distal balloon ceases, and the blood perfused through the central lumen of the innermost shaft establishes antegrade flow. Importantly, if emboli are generated during deployment of the distal balloon, those emboli will be carried by the perfused blood directly into the cerebral vasculature, and again pose a risk of ischemic stroke. Moreover, there is some evidence that reperfusion of blood under pressure through a small diameter catheter may contribute to hemolysis and possible dislodgment of emboli. [0019]
  • In applicant's co-pending U.S. patent application Ser. No. 09/333,074, filed Jun. 14, 1999, which is incorporated herein by reference, applicant described the use of external suction to induce regional reversal of flow. That application further described that intermittently induced regional flow reversal overcomes the drawbacks of naturally-aspirated systems such as described hereinabove. However, the use of external suction may in some instances result in flow rates that are too high to be sustained for more than a few seconds. In addition, continuous use of an external pump may result in excessive blood loss, requiring infusion of non-autologous blood and/or saline that causes hemodilution, reduced blood pressure, or raise related safety issues. [0020]
  • In view of these drawbacks of the previously known emboli removal systems, it would be desirable to provide methods and apparatus for removing emboli from within the carotid arteries during interventional procedures, such as angioplasty or carotid stenting, that reduce the risk that emboli are carried into the cerebral vasculature. [0021]
  • It also would be desirable to provide methods and apparatus for removing emboli from within the carotid arteries during interventional procedures, such as angioplasty or carotid stenting, that provide substantially continuous low retrograde blood flow from the treatment zone, thereby reducing the risk that emboli are carried into the cerebral vasculature. [0022]
  • It further would be desirable to provide emboli removal methods and apparatus that prevent the development of reverse flow from the ECA and antegrade into the ICA once the CCA has been occluded, thereby enhancing the likelihood that emboli generated by a surgical or interventional procedure are effectively removed from the vessel. [0023]
  • It still further would be desirable to provide an occlusion balloon on a guide wire for placement in the ECA during stenting of the ICA that mitigates the risk of snagging the stent during removal. [0024]
  • It also would be desirable to provide methods and apparatus for removing emboli during a carotid stenting procedure that enable filtering of emboli and reduced blood loss. [0025]
  • SUMMARY OF THE INVENTION
  • In view of the foregoing, it is an object of this invention to provide methods and apparatus for removing emboli from within the carotid arteries during interventional procedures, such as angioplasty or carotid stenting, that reduce the risk that emboli are carried into the cerebral vasculature. [0026]
  • It also is an object of the present invention to provide methods and apparatus for removing emboli from within the carotid arteries during interventional procedures, such as angioplasty or carotid stenting, that provide substantially continuous low retrograde blood flow from the treatment zone, thereby reducing the risk that emboli are carried into the cerebral vasculature. [0027]
  • It is another object of the present invention to provide emboli removal methods and apparatus that prevent the development of reverse flow between the ECA and ICA once the common carotid artery has been occluded, thereby enhancing the likelihood that emboli generated by a surgical or interventional procedure are effectively removed from the vessel. [0028]
  • It is a further object of this invention to provide methods and apparatus for an occlusion balloon on a guide wire for placement in the ECA during stenting of the ICA that mitigates the risk of snagging the stent during removal. [0029]
  • It is yet another object of the present invention to provide methods and apparatus for removing emboli during a carotid stenting procedure that enable filtering of emboli and reduced blood loss. [0030]
  • The foregoing objects of the present invention are accomplished by providing interventional apparatus comprising an arterial catheter, an occlusion balloon disposed on a guide wire, a venous return catheter, and optionally a blood filter. The arterial catheter has proximal and distal ends, an aspiration lumen extending therebetween, an occlusion element disposed on the distal end, and a hemostatic port and blood outlet port disposed on the proximal end that communicate with the aspiration lumen. The aspiration lumen is sized so that an interventional instrument, e.g., an angioplasty catheter or stent delivery system, may be readily advanced therethrough to the site of a stenosis in either the ECA (proximal to the balloon) or the ICA. [0031]
  • In accordance with the principles of the present invention, the arterial catheter is disposed in the CCA proximal of the ICA/ECA bifurcation, the occlusion balloon on the guide wire is disposed in the ECA to occlude flow reversal from the ECA to the ICA, and the blood outlet port of the arterial catheter is coupled to the venous return catheter, with or without the blood filter disposed therebetween. Higher arterial than venous pressure, especially during diastole, permits substantially continuous flow reversal in the ICA during the procedure (other than when a dilatation balloon is inflated), thereby flushing blood containing emboli from the vessel. The blood is filtered and reperfused into the body through the venous return catheter. [0032]
  • Methods of using the apparatus of the present invention are also provided. [0033]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which: [0034]
  • FIGS. 1A and 1B are schematic views of previously known emboli protection systems; [0035]
  • FIG. 2 is a schematic view of the emboli protection system of the present invention; [0036]
  • FIGS. [0037] 3A-3D are, respectively, a schematic view, and detailed side and sectional views of the distal end of an interventional device of the present invention;
  • FIGS. 4A and 4B are views of the distal end of an alternative interventional device suitable for use in the system of the present invention; and [0038]
  • FIGS. [0039] 5A-5D illustrate a method of using the system of FIG. 3 in accordance with the principles of the present invention;
  • FIGS. [0040] 6A-6B are, respectively, a schematic view and a cross-sectional view of an alternative embodiment of the device of FIGS. 3;
  • FIGS. [0041] 7A-7B are, respectively, a schematic view of an alternative embodiment of the guide wire balloon elements of the device of FIGS. 3, and a method of using the alternative embodiment.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1A and 1B, drawbacks of previously known emboli removal catheters are described with reference to performing percutaneous angioplasty of stenosis S in common carotid artery CCA. [0042]
  • With respect to FIG. 1A, drawbacks associated with naturally-aspirated emboli removal systems, such as described in the above-mentioned patent to Solano and European Patent Publication, are described. No flow reversal is induced by those systems until after balloon [0043] 10 of angioplasty catheter 11 first is passed across the stenosis, inflated, and then deflated. However, applicant has determined that once member 15 of emboli removal catheter 16 is inflated, flow within the ECA reverses and provides antegrade flow into the ICA, due to the lower hemodynamic resistance of the ICA. Consequently, emboli E generated while passing guide wire 20 or catheter 11 across stenosis S may be carried irretrievably into the cerebral vasculature—before flow in the vessel is reversed and directed into the aspiration lumen of emboli removal catheter 16 by opening the proximal end of the aspiration lumen to atmospheric pressure Furthermore, natural-aspiration may not remove an adequate volume of blood to retrieve even those emboli that have not yet been carried all the way into the cerebral vasculature.
  • In FIG. 1B, [0044] system 17 described in the above-mentioned patent to Imran is shown. As described hereinabove, deployment of distal balloon 18, and ejection of blood out of the distal end of the inner catheter, may dislodge emboli from the vessel wall distal to balloon 18. The introduction of antegrade flow through inner catheter 19 is expected only to exacerbate the problem by pushing the emboli further into the cerebral vasculature. Thus, while the use of positive suction in the Imran system may remove emboli located in the confined treatment field defined by the proximal and distal balloons, such suction is not expected to provide any benefit for emboli dislodged distal of distal balloon 18.
  • Referring now to FIG. 2, apparatus and methods of the present invention are described. [0045] Apparatus 30 comprises catheter 31 having an aspiration lumen and occlusion element 32, and guide wire 35 having inflatable balloon 36 disposed on its distal end. In accordance with the principles of the present invention, antegrade blood flow is stopped when both occlusion element 32 in the CCA and inflatable balloon 36 are deployed. Furthermore, the aspiration lumen of catheter 31 is connected to a venous return catheter (described hereinbelow), disposed, for example, in the patient's femoral vein. In this manner a substantially continuous flow of blood is induced between the treatment site and the patient's venous vasculature. Because flow through the artery is towards catheter 31, any emboli dislodged by advancing a guide wire or angioplasty catheter 33 across stenosis S causes the emboli to be aspirated by catheter 31.
  • Unlike the previously known naturally-aspirated systems, the present invention provides substantially continuous retrograde blood flow through eh ICA while preventing blood from flowing retrograde in the ECA and antegrade into the ICA, thereby preventing emboli from being carried into the cerebral vasculature. Because the apparatus and methods of the present invention “recycle” emboli-laden blood from the arterial catheter through the blood filter and to the venous return catheter, the patient experiences significantly less blood loss. [0046]
  • Referring now to FIG. 3A, [0047] embolic protection apparatus 40 constructed in accordance with the principles of the present invention is described. Apparatus 40 comprises arterial catheter 41, guide wire 45, venous return line 52, tubing 49 and optional blood filter 50.
  • [0048] Catheter 41 includes distal occlusion element 42, proximal hemostatic port 43, e.g., a Touhy-Borst connector, inflation port 44, and blood outlet port 48. Guide wire 45 includes balloon 46 that is inflated via inflation port 47. Tubing 49 couples blood outlet port 48 to filter 50 and blood inlet port 51 of venous return line 52.
  • [0049] Guide wire 45 and balloon 46 are configured to pass through hemostatic port 43 and the aspiration lumen of catheter 41 (see FIGS. 3C and 3D), so that the balloon may be advanced into and occlude the ECA. Port 43 and the aspiration lumen of catheter 41 are sized to permit additional interventional devices, such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through the aspiration lumen when guide wire 45 is deployed.
  • [0050] Guide wire 45 preferably comprises a small diameter flexible shaft having an inflation lumen that couples inflatable balloon 46 to inflation port 47. Inflatable balloon 46 preferably comprises a compliant material, such as described hereinabove with respect to occlusion element 42 of emboli removal catheter 41.
  • [0051] Venous return line 52 includes hemostatic port 53, blood inlet port 51 and a lumen that communicates with ports 53 and 51 and tip 54. Venous return line 52 may be constructed in a manner per se known for venous introducer catheters. Tubing 49 may comprise a suitable length of a biocompatible material, such as silicone. Alternatively, tubing 49 may be omitted and blood outlet port 48 of catheter 41 and blood inlet port 51 of venous return line 52 may be lengthened to engage either end of filter 50 or each other.
  • With respect to FIGS. 3B and 3C, [0052] distal occlusion element 42 comprises expandable bell or pear-shaped balloon 55. In accordance with manufacturing techniques which are known in the art, balloon 55 comprises a compliant material, such as polyurethane, latex or polyisoprene which has variable thickness along its length to provide a bell-shape when inflated. Balloon 55 is affixed to distal end 56 of catheter 41, for example, by gluing or a melt-bond, so that opening 57 in balloon 55 leads into aspiration lumen 58 of catheter 41. Balloon 55 preferably is wrapped and heat treated during manufacture so that distal portion 59 of the balloon extends beyond the distal end of catheter 41 and provides an atraumatic tip or bumper for the catheter.
  • As shown in FIG. 3D, [0053] catheter 41 preferably comprises inner layer 60 of low-friction material, such as polytetrafluoroethylene (“PTFE”), covered with a layer of flat stainless steel wire braid 61 and polymer cover 62 (e.g., polyurethane, polyethylene, or PEBAX). Inflation lumen 63 is disposed within polymer cover 62 and couples inflation port 44 to balloon 55. In a preferred embodiment of catheter 41, the diameter of lumen 58 is 7 Fr, and the outer diameter of the catheter is approximately 9 Fr.
  • Referring now to FIGS. 4A and 4B, an alternative embodiment of [0054] occlusion element 42 of the system of FIG. 3A is described. In FIGS. 4A and 4B, occlusion element 42 of emboli removal catheter 41 comprises self-expanding wire basket 65 covered with elastomeric polymer 66, such as latex, polyurethane or polyisoprene. Alternatively, a tightly knit self-expanding wire mesh may be used, with or without an elastomeric covering.
  • [0055] Catheter 41 is surrounded by movable sheath 67. Catheter 41 is inserted transluminally with sheath 67 in a distalmost position, and after basket 65 has been determined to be in a desired position proximal to a stenosis, sheath 67 is retracted proximally to cause basket 65 to deploy. Upon completion of the procedure, basket 65 is again collapsed within sheath 67 by moving the sheath to its distalmost position. Operation of the system of FIG. 3A using the emboli removal catheter of FIGS. 4A and 4B is similar to that described hereinbelow for FIGS. 5A-5D, except that the occlusion element self-expands when sheath 67 is retracted, rather than by infusing an inflation medium to balloon 55.
  • Referring now to FIGS. [0056] 5A-5D, use of the apparatus of FIGS. 3 in accordance with the methods of the present invention is described. In FIGS. 5, stenosis S is located in internal carotid artery ICA above the bifurcation between the internal carotid artery ICA and the external carotid artery ECA. In a first step, catheter 41 is inserted, either percutaneously and transluminally or via a surgical cut-down, to a position proximal of stenosis S, without causing guide wire 45 to cross the stenosis. Balloon 55 of distal occlusion element 42 is then inflated, preferably with a radiopaque contrast solution, via inflation port 44. As seen in FIG. 5A, this creates reversal of flow from the external carotid artery ECA into the internal carotid artery ICA.
  • [0057] Venous return line 52 then is introduced into the patient's femoral vein, either percutaneously or via a surgical cut-down. Filter 50 is then coupled between blood outlet port 48 of catheter 41 and blood inlet port 51 of venous return line 52 using tubing 49, and any air is removed from the line. Once this circuit is closed, negative pressure in the venous catheter during diastole will establish a low rate continuous flow of blood through aspiration lumen 58 of catheter 41, as seen in FIG. 5B, to the patient's vein via venous return line 52.
  • This low rate continuous flow due to the difference between venous pressure and arterial pressure will continue throughout the interventional procedure. Specifically, blood passes through [0058] aspiration lumen 58 and blood outlet port 48 of catheter 41, through biocompatible tubing 49 to filter 50, and into blood inlet port 51 of venous return line 52, where it is reperfused into the remote vein. Filtered emboli collect in filter 50 and may be studied and characterized upon completion of the procedure.
  • Continuous blood flow (except during inflation of any dilatation instruments) with reperfusion in accordance with the present invention provides efficient emboli removal with significantly reduced blood loss. Alternatively, filter [0059] 50 may be omitted, in which case emboli removed from the arterial side will be introduced into the venous side, and eventually captured in the lungs. Because of a low incidence of septal defects, which could permit such emboli to cross-over to the left ventricle, the use of filter 50 is preferred.
  • Referring to FIG. 5C, with [0060] balloon 55 of occlusion element 42 inflated and a retrograde flow established in the ICA, guide wire 45 and balloon 46 are advanced through aspiration lumen 58. When balloon 46 is disposed within the ECA, as determined, e.g., using a fluoroscope and a radiopaque inflation medium injected into balloon 46, balloon 46 is inflated. Occlusion of the ECA prevents the development of reverse flow in the ECA from causing antegrade flow in the ICA. Another interventional instrument, such as conventional angioplasty balloon catheter 71 having balloon 72, is loaded through hemostatic port 43 and aspiration lumen 58 and positioned within the stenosis. Hemostatic port 43 is closed and instrument 71 is actuated to disrupt the plaque forming stenosis S.
  • As seen in FIG. 5D, upon completion of the angioplasty portion of the [0061] procedure using catheter 71, balloon 72 is deflated Throughout the procedure, except when the dilatation balloon is fully inflated, the pressure differential between the blood in the ICA and the venous pressure causes blood in ICA to flow in a retrograde direction in the ICA into aspiration lumen 58 of emboli removal catheter 41, thereby flushing any emboli from the vessel. The blood is filtered and reperfused into the patient's vein.
  • Optionally, increased volumetric blood flow through the extracorporeal circuit may by achieved by attaching an external pump, such as a roller pump, to [0062] tubing 49. If deemed beneficial, the external pump may be used in conjunction with device 40 at any point during the interventional procedure. Instrument 71, guide wire 45, emboli removal catheter 41, and venous return line 52 are then removed from the patient, completing the procedure.
  • As set forth above, the method of the present invention protects against embolization, first, by preventing the reversal of blood flow from the ECA to the ICA when [0063] distal occlusion element 42 is inflated, and second, by providing continuous, low volume blood flow from the carotid artery to the remote vein in order to filter and flush any emboli from the vessel and blood stream. Advantageously, the method of the present invention permits emboli to be removed with little blood loss, because the blood is filtered and reperfused into the patient. Furthermore, continuous removal of blood containing emboli prevents emboli from migrating too far downstream for aspiration.
  • Referring now to FIGS. [0064] 6, apparatus 140 constructed in accordance with the present invention is described. Apparatus 140 is an alternative embodiment of apparatus 40 described hereinabove and comprises arterial catheter 141 having distal occlusion element 142, proximal hemostatic port 143, inflation port 144 and blood outlet port 148. Guide wire 145 includes balloon 146 that is inflated via inflation port 147. Biocompatible tubing 149 couples blood outlet port 148 to filter 150 and to blood inlet port 151 of venous return line 152. Arterial catheter 141, guide wire 145, venous return line 152 and tubing 149 are constructed as described hereinabove, except as noted below.
  • [0065] Guide wire 145 and balloon 146 are configured to pass through guide wire lumen 164 of catheter 141 (see FIG. 6B), so that the balloon may be advanced into and occlude the ECA. Additionally, catheter 141 comprises aspiration lumen 158 which is sized to permit interventional devices, such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through port 143 and the aspiration lumen. As shown in FIG. 6B, the key difference between catheters 41 and 141 lies in the method of advancing the guide wire through the catheter: guide wire 45 is advanced through the aspiration lumen of catheter 41, whereas guide wire 145 is advanced through separate guide wire lumen 164 of catheter 141.
  • [0066] Catheter 141 preferably is constructed from inner layer 160 of low-friction material, such as polytetrafluoroethylene (“PTFE”), covered with a layer of flat stainless steel wire braid 161, and polymer cover 162 (e.g., polyurethane, polyethylene, or PEBAX). Inflation lumen 163 is disposed within polymer cover 162 and couples inflation port 144 to occlusion element 142. Guide wire lumen 164 also is disposed within polymer cover 142, and is sized to permit guide wire 145 and balloon 146 to pass therethrough. In a preferred embodiment of catheter 141, the diameter of inflation lumen 163 is 0.014″, the diameter of guide wire lumen 164 is 0.020″, and the diameter of lumen 158 is 7 Fr. To retain an outer catheter diameter in the preferred embodiment of approximately 9 Fr., the thickness of the catheter wall varies around the circumference from a maximum of 0.026″ at the location of guide wire lumen 164 to a minimum of 0.005″ 180 degrees away.
  • Referring now to FIGS. [0067] 7, an alternative embodiment of the guide wire occlusion apparatus of the present invention is described. Occlusion apparatus 200 comprises guide wire 201, occlusion balloon 202, inflation lumen 203, and wedge 204. Wedge 204 may comprise a resilient material, such as a polymer or resilient wire, and reduces the risk that balloon 202 will snag on a stent that extends beyond the bifurcation of the ICA and ECA.
  • For the reasons described hereinabove, it is desirable when performing a stenting procedure in the ICA to occlude the ECA, to prevent flow reversal from the ECA and into the ICA. Accordingly, an occlusion balloon on a guide wire is placed in the ECA and inflated to block that artery. A stent then may be placed in the ICA to ensure proper blood flow to the ICA. It is often desirable, however, for such stents to extend beyond the bifurcation between the ECA and the ICA. Consequently, when the occlusion balloon on the guide wire is deflated and withdrawn from the ECA, there is a risk that the balloon may snag the stent. In such cases, emergency surgery is often required to remove the balloon. [0068]
  • Referring now to FIG. 7B, [0069] occlusion apparatus 200 is illustratively shown in conjunction with catheter 41. Stent S extends beyond the bifurcation between the ECA and the ICA and into the CCA. Balloon 202 is deflated and positioned for retrieval. Because balloon 202 is disposed on guide wire 201 instead of a traditional, larger diameter balloon catheter, its cross-sectional diameter is significantly reduced, and thus the risk that the balloon will snag on stent S is reduced. Resilient wedge 204 further reduces this risk by urging the balloon outward away from the stent during retrieval of guide wire 201 and balloon 202. Alternatively, a separate sheath may be advanced over guide wire 201 and occlusion balloon 202 to surround those components, and therefore reduce the risk that the occlusion balloon or guide wire will snag the stent.
  • While preferred illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention. [0070]

Claims (20)

What is claimed is:
1. Apparatus for removing emboli during an angioplasty or stenting procedure, the apparatus comprising:
a catheter having proximal and distal ends, a lumen extending therethrough, and a blood outlet port in communication with the lumen, the catheter adapted to be disposed in a patient's carotid artery;
an occlusion element disposed on the distal end of the catheter and having an opening that communicates with the lumen, the occlusion element having a contracted state suitable for transluminal insertion and an expanded state wherein the occlusion element occludes antegrade flow in the vessel;
a venous return catheter having proximal and distal ends, a lumen extending therethrough, and a blood inlet port in communication with the lumen; and
tubing that couples the blood outlet port to the blood inlet port.
2. The apparatus of
claim 1
further comprising a wire having a distal end and a balloon disposed on the distal end, wherein the wire and balloon are sized to pass through the lumen of the catheter.
3. The apparatus of
claim 1
further comprising a blood filter coupled between the blood outlet port and the blood inlet port.
4. The apparatus of
claim 1
wherein the occlusion element is an inflatable member.
5. The apparatus of
claim 4
wherein the inflatable element has a pear-shape with a wall thickness that varies along the length of the inflatable member.
6. The apparatus of
claim 4
wherein a portion of the pear-shaped inflatable member extends beyond the distal end of the catheter in the contracted position and forms an atraumatic bumper.
7. The apparatus of
claim 1
wherein the occlusion element comprises a self-expanding basket.
8. The apparatus of
claim 1
wherein the catheter comprises:
a non-stick tubular member;
a layer of wire braid disposed surrounding the non-stick tubular member; and
a layer of thermoplastic polymer disposed on the layer of wire braid.
9. The apparatus of
claim 1
wherein the catheter further comprises a second lumen through which the wire and inflatable balloon may be inserted.
10. The apparatus of
claim 1
further comprising a pump that removes blood through the catheter and reperfuses blood via the venous return catheter.
11. The apparatus of
claim 2
further comprising a resilient wedge affixed to the wire proximal of the balloon to reduce snagging of the balloon following a stenting procedure.
12. A method for removing emboli from a vessel comprising:
providing a catheter having proximal and distal ends, a lumen extending therethrough, an occlusion element disposed on the distal end, a hemostatic port coupled to the lumen, and a blood outlet port coupled to the lumen;
providing a venous return catheter having proximal and distal ends, a lumen extending therethrough, and a blood inlet port coupled to the lumen;
inserting the distal end of the catheter to a position proximal to the stenosis;
inserting the distal end of the venous return catheter into a remote vein;
deploying the occlusion element to occlude antegrade flow through the vessel;
causing blood to flow between the blood outlet port and the blood inlet port to induce reverse flow in, and remove emboli from, the vessel.
13. The method of
claim 12
further comprising:
providing a blood filter; and
coupling the blood filter in fluid communication between the blood outlet port and the blood inlet port.
14. The method of
claim 12
further comprising:
providing a wire having a balloon;
while flow is reversed in the vessel, advancing the balloon of the wire into the patient's external carotid artery;
inflating the balloon of the wire to prevent reverse flow from the external carotid artery from entering the internal carotid artery.
15. The method of
claim 12
further comprising, while causing blood to flow between the blood outlet port and the blood inlet port, performing an interventional procedure with an interventional instrument inserted through the hemostatic port.
16. The method of
claim 12
wherein the occlusion element comprises a balloon, and deploying the occlusion element comprises inflating the balloon.
17. The method of
claim 12
wherein the occlusion element comprises a self-expanding basket, and deploying the occlusion element comprises retracting a sheath relative to the distal end of the catheter.
18. The method of
claim 14
wherein advancing the balloon of the wire into the patient's external carotid artery comprises advancing the balloon through a separate lumen of the catheter.
19. The method of
claim 12
further comprising:
providing a pump; and
actuating the pump to increase a rate of flow of blood between the blood outlet port and the blood inlet port.
20. The method of
claim 15
wherein performing an interventional procedure with an interventional instrument comprises delivering a stent within the vessel and the wire further comprises a resilient wedge, the method further comprising urging the resilient wedge against the stent during removal of the wire and balloon.
US09/418,727 1998-03-13 1999-10-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease Expired - Lifetime US6423032B2 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
US09/418,727 US6423032B2 (en) 1998-03-13 1999-10-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease
JP2001502737A JP2003521286A (en) 1999-06-14 2000-06-14 Method and low profile device for reducing embolization during treatment of carotid artery disease
AT00942819T ATE495785T1 (en) 1999-06-14 2000-06-14 APPARATUS FOR REDUCING THE RISK OF EMBOLISM DURING THE TREATMENT OF CARDIAC DISEASES
AU57389/00A AU781760B2 (en) 1999-06-14 2000-06-14 Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
CA2721188A CA2721188C (en) 1999-06-14 2000-06-14 Apparatus for removing emboli with inflatable member and puncture risk reducing means
ES10006014T ES2404842T3 (en) 1999-06-14 2000-06-14 Low profile device to reduce embolization during the treatment of carotid artery disease
EP20100012238 EP2335770A1 (en) 1999-06-14 2000-06-14 Low profile apparatus for reducing embolization during treatment of carotid artery disease
EP00942819A EP1210142B1 (en) 1999-06-14 2000-06-14 Apparatus for reducing embolization during treatment of carotid artery disease
PCT/US2000/016393 WO2000076390A2 (en) 1999-06-14 2000-06-14 Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
EP10012034A EP2311519A1 (en) 1999-06-14 2000-06-14 Low profile apparatus for reducing embolization during treatment of carotid artery disease
CA2380350A CA2380350C (en) 1999-06-14 2000-06-14 Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
DE60045555T DE60045555D1 (en) 1999-06-14 2000-06-14 APPARATUS FOR REDUCING THE EMERGENCY POLLUTION DURING THE TREATMENT OF DISEASES OF THE HEADSHAKES
EP10006014A EP2236170B1 (en) 1999-06-14 2000-06-14 Low profile apparatus for reducing embolization during treatment of carotid artery disease
US09/909,729 US6682505B2 (en) 1999-03-12 2001-07-19 Catheter for removing emboli from saphenous vein grafts and native coronary arteries
US09/916,349 US6632236B2 (en) 1999-03-12 2001-07-26 Catheter having radially expandable main body
US09/991,417 US6905490B2 (en) 1998-03-13 2001-11-16 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US10/100,628 US6936060B2 (en) 1998-05-13 2002-03-14 Apparatus and methods for removing emboli during a surgical procedure
US10/100,630 US6908474B2 (en) 1998-05-13 2002-03-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US10/187,058 US6960222B2 (en) 1998-03-13 2002-06-27 Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
AU2005202496A AU2005202496B2 (en) 1999-06-14 2005-06-08 Apparatus for removing emboli during an angioplasty or stenting procedure
US11/156,865 US7927347B2 (en) 1998-05-13 2005-06-20 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US11/256,121 US20060041228A1 (en) 1998-05-13 2005-10-21 Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
AU2008229661A AU2008229661B2 (en) 1999-06-14 2008-09-26 Apparatus for removing emboli during an angioplasty or stenting procedure
JP2009044416A JP4865825B2 (en) 1999-06-14 2009-02-26 Method and low profile device for reducing embolization during treatment of carotid artery disease
US12/763,923 US20100204724A1 (en) 1998-05-13 2010-04-20 Apparatus and methods for reducing embolization during treatment of carotid artery disease
JP2011006313A JP2011087971A (en) 1999-06-14 2011-01-14 Method and low profile apparatus for reducing embolization during treatment of carotid artery disease
US13/043,402 US20110160762A1 (en) 1998-05-13 2011-03-08 Apparatus and methods for reducing embolization during treatment of carotid artery disease

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
AR9801146 1998-03-13
ARP980101146 1998-03-13
US09/078,263 US6413235B1 (en) 1998-03-13 1998-05-13 Protective device against embolization in carotid angioplasty
PCT/US1999/005469 WO1999045835A2 (en) 1998-03-13 1999-03-12 Protective device and method against embolization in carotid angioplasty
US09/333,074 US6206868B1 (en) 1998-03-13 1999-06-14 Protective device and method against embolization during treatment of carotid artery disease
US09/418,727 US6423032B2 (en) 1998-03-13 1999-10-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/078,263 Continuation-In-Part US6413235B1 (en) 1998-03-13 1998-05-13 Protective device against embolization in carotid angioplasty
US09/333,074 Continuation-In-Part US6206868B1 (en) 1998-03-13 1999-06-14 Protective device and method against embolization during treatment of carotid artery disease

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US09/909,729 Continuation-In-Part US6682505B2 (en) 1999-03-12 2001-07-19 Catheter for removing emboli from saphenous vein grafts and native coronary arteries
US09/916,349 Continuation-In-Part US6632236B2 (en) 1999-03-12 2001-07-26 Catheter having radially expandable main body
US09/991,417 Continuation US6905490B2 (en) 1998-03-13 2001-11-16 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US10/100,628 Continuation-In-Part US6936060B2 (en) 1998-05-13 2002-03-14 Apparatus and methods for removing emboli during a surgical procedure
US10/100,630 Continuation-In-Part US6908474B2 (en) 1998-05-13 2002-03-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US10/187,058 Continuation-In-Part US6960222B2 (en) 1998-03-13 2002-06-27 Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture

Publications (2)

Publication Number Publication Date
US20010044598A1 true US20010044598A1 (en) 2001-11-22
US6423032B2 US6423032B2 (en) 2002-07-23

Family

ID=46256749

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/418,727 Expired - Lifetime US6423032B2 (en) 1998-03-13 1999-10-15 Apparatus and methods for reducing embolization during treatment of carotid artery disease
US09/991,417 Expired - Lifetime US6905490B2 (en) 1998-03-13 2001-11-16 Apparatus and methods for reducing embolization during treatment of carotid artery disease

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/991,417 Expired - Lifetime US6905490B2 (en) 1998-03-13 2001-11-16 Apparatus and methods for reducing embolization during treatment of carotid artery disease

Country Status (1)

Country Link
US (2) US6423032B2 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165573A1 (en) * 2001-05-01 2002-11-07 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
EP1545685A1 (en) * 2002-06-27 2005-06-29 Gore Enterprise Holdings, Inc. Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
US20060041304A1 (en) * 1999-12-22 2006-02-23 Yue-Teh Jang Endoluminal occlusion-irrigation catheter with aspiration capabilities and methods of use
US20060149393A1 (en) * 2004-12-30 2006-07-06 Reynaldo Calderon Computerized system for monitored retrograde perfusion of tumor sites
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US20090018455A1 (en) * 2003-11-21 2009-01-15 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US7549974B2 (en) 2002-06-01 2009-06-23 The Board Of Trustees Of The Leland Stanford Junior University Device and method for medical interventions of body lumens
US20090247884A1 (en) * 1999-03-01 2009-10-01 Barbut Denise R Cerebral perfusion augmentation
US7654978B2 (en) 2001-05-01 2010-02-02 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US20100082012A1 (en) * 2008-09-22 2010-04-01 Foxhollow Technologies, Inc. Double balloon catheter and methods for homogeneous drug delivery using the same
AU2007200632B2 (en) * 2002-06-27 2010-06-03 W. L. Gore & Associates, Inc. A catheter
US20100228269A1 (en) * 2009-02-27 2010-09-09 Garrison Michi E Vessel closure clip device
US20100312262A1 (en) * 2006-08-21 2010-12-09 Variomed Ag Device And Method For Reducing Or Removing Stenoses
US20110213290A1 (en) * 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
US20110213459A1 (en) * 2010-02-26 2011-09-01 Garrison Michi E Systems and methods for transcatheter aortic valve treatment
US8157760B2 (en) 2007-07-18 2012-04-17 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8221348B2 (en) 2005-07-07 2012-07-17 St. Jude Medical, Cardiology Division, Inc. Embolic protection device and methods of use
WO2012156924A1 (en) * 2011-05-17 2012-11-22 Cardioflow Ltd. Vascular occlusion and aspiration device
US8545432B2 (en) 2009-06-03 2013-10-01 Silk Road Medical, Inc. System and methods for controlling retrograde carotid arterial blood flow
US8574245B2 (en) 2008-08-13 2013-11-05 Silk Road Medical, Inc. Suture delivery device
WO2014039334A1 (en) * 2012-09-05 2014-03-13 Medtronic Vascular Galway Integrated dilation balloon and valve prosthesis delivery system
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9011467B2 (en) 2008-08-13 2015-04-21 Silk Road Medical, Inc. Suture delivery device
US20150119977A1 (en) * 2013-10-30 2015-04-30 The Regents Of The University Of Michigan System and method to limit cerebral ischemia
US9126018B1 (en) 2014-09-04 2015-09-08 Silk Road Medical, Inc. Methods and devices for transcarotid access
US20150250481A1 (en) * 2014-03-10 2015-09-10 Trivascular, Inc. Inflatable occlusion wire-balloon for aortic applications
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9295393B2 (en) 2012-11-09 2016-03-29 Elwha Llc Embolism deflector
US20160158489A1 (en) * 2013-07-18 2016-06-09 Zhongjun Wu Self-expanding cannula
US20170105743A1 (en) * 2014-06-13 2017-04-20 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9669191B2 (en) 2008-02-05 2017-06-06 Silk Road Medical, Inc. Interventional catheter system and methods
CN108113734A (en) * 2016-11-28 2018-06-05 尼尔拉维有限公司 For removing the apparatus and method of acute tamper from blood vessel
US9993622B2 (en) 2012-05-16 2018-06-12 Endovascular Development AB Assembly with a guide tube, a fixator for attaching to a blood vessel, and a pump
US20180242978A1 (en) * 2015-07-24 2018-08-30 Route 92 Medical, Inc. Methods of intracerebral implant delivery
US20180325647A1 (en) * 2004-03-25 2018-11-15 David L Hauser System for removing a thrombus from a blood vessel
US10159479B2 (en) 2012-08-09 2018-12-25 Silk Road Medical, Inc. Suture delivery device
US10226563B2 (en) 2008-12-23 2019-03-12 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10238853B2 (en) 2015-04-10 2019-03-26 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10327790B2 (en) 2011-08-05 2019-06-25 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10363393B2 (en) * 2011-04-05 2019-07-30 Thermopeutix Inc. Microcatheter with distal tip portion and proximal solution lumen
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
CN111228635A (en) * 2020-03-10 2020-06-05 刘睿方 Microcatheter assembly for chronic total occlusion of coronary artery
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10918504B2 (en) 2017-02-21 2021-02-16 Silk Road Medical, Inc. Vascular implant
US11027104B2 (en) 2014-09-04 2021-06-08 Silk Road Medical, Inc. Methods and devices for transcarotid access
US11076876B2 (en) 2014-06-30 2021-08-03 Neuravi Limited System for removing a clot from a blood vessel
CN113365689A (en) * 2019-01-31 2021-09-07 马宝海德医疗有限责任公司 Carotid stent implantation system and method
US11141259B2 (en) 2017-11-02 2021-10-12 Silk Road Medical, Inc. Fenestrated sheath for embolic protection during transcarotid carotid artery revascularization
US11229770B2 (en) 2018-05-17 2022-01-25 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11311304B2 (en) 2019-03-04 2022-04-26 Neuravi Limited Actuated clot retrieval catheter
US11395667B2 (en) * 2016-08-17 2022-07-26 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11484328B2 (en) 2014-03-11 2022-11-01 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11529495B2 (en) 2019-09-11 2022-12-20 Neuravi Limited Expandable mouth catheter
US11547415B2 (en) 2016-07-22 2023-01-10 Route 92 Medical, Inc. Endovascular interventions in neurovascular anatomy
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US11633571B2 (en) 2015-02-04 2023-04-25 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11793529B2 (en) 2015-02-04 2023-10-24 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11896246B2 (en) 2007-12-20 2024-02-13 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245894A1 (en) * 1996-05-20 2005-11-03 Medtronic Vascular, Inc. Methods and apparatuses for drug delivery to an intravascular occlusion
ATE382309T1 (en) 1997-11-07 2008-01-15 Salviac Ltd EMBOLIC PROTECTION DEVICE
US7491216B2 (en) 1997-11-07 2009-02-17 Salviac Limited Filter element with retractable guidewire tip
US6423032B2 (en) * 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US20050131453A1 (en) * 1998-03-13 2005-06-16 Parodi Juan C. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6908474B2 (en) * 1998-05-13 2005-06-21 Gore Enterprise Holdings, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6146370A (en) * 1999-04-07 2000-11-14 Coaxia, Inc. Devices and methods for preventing distal embolization from the internal carotid artery using flow reversal by partial occlusion of the external carotid artery
US7037320B2 (en) 2001-12-21 2006-05-02 Salviac Limited Support frame for an embolic protection device
US6964672B2 (en) 1999-05-07 2005-11-15 Salviac Limited Support frame for an embolic protection device
US6918921B2 (en) 1999-05-07 2005-07-19 Salviac Limited Support frame for an embolic protection device
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US6482172B1 (en) 2000-02-09 2002-11-19 Jeffrey J. Thramann Flow-by channel catheter and method of use
GB2369575A (en) 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
US6964670B1 (en) 2000-07-13 2005-11-15 Advanced Cardiovascular Systems, Inc. Embolic protection guide wire
US6506203B1 (en) 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US20040243175A1 (en) * 2001-03-12 2004-12-02 Don Michael T. Anthony Vascular obstruction removal system and method
US7806906B2 (en) * 2001-03-12 2010-10-05 Don Michael T Anthony Vascular filter with improved strength and flexibility
US7604612B2 (en) * 2001-05-01 2009-10-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US7374560B2 (en) 2001-05-01 2008-05-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US6599307B1 (en) 2001-06-29 2003-07-29 Advanced Cardiovascular Systems, Inc. Filter device for embolic protection systems
US7338510B2 (en) 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US6902540B2 (en) * 2001-08-22 2005-06-07 Gerald Dorros Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6929634B2 (en) * 2001-08-22 2005-08-16 Gore Enterprise Holdings, Inc. Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6592606B2 (en) 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US7241304B2 (en) 2001-12-21 2007-07-10 Advanced Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
AU2003225532A1 (en) * 2002-01-24 2003-09-02 The Johns Hopkins University Methods and devices for percutaneous and surgical interventions
US7503904B2 (en) * 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
US7223253B2 (en) * 2002-07-29 2007-05-29 Gore Enterprise Holdings, Inc. Blood aspiration system and methods of use
US6887220B2 (en) 2002-09-12 2005-05-03 Gore Enterprise Holdings, Inc. Catheter having a compliant member configured to regulate aspiration rates
US7331973B2 (en) 2002-09-30 2008-02-19 Avdanced Cardiovascular Systems, Inc. Guide wire with embolic filtering attachment
US7252675B2 (en) 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US20040088000A1 (en) 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
ITRM20020596A1 (en) * 2002-11-27 2004-05-28 Mauro Ferrari IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS.
US7625337B2 (en) 2003-01-17 2009-12-01 Gore Enterprise Holdings, Inc. Catheter assembly
US9433745B2 (en) * 2003-01-17 2016-09-06 W.L. Gore & Associates, Inc. Puncturing tool for puncturing catheter shafts
US8016752B2 (en) 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US7131981B2 (en) * 2003-03-25 2006-11-07 Angiodynamics, Inc. Device and method for converting a balloon catheter into a cutting balloon catheter
US7632291B2 (en) * 2003-06-13 2009-12-15 Trivascular2, Inc. Inflatable implant
EP1673131B1 (en) * 2003-07-17 2010-03-10 Cordis Corporation Devices for percutaneously treating aortic valve stenosis
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
EP1750619B1 (en) * 2004-05-25 2013-07-24 Covidien LP Flexible vascular occluding device
EP2419048A4 (en) 2004-05-25 2014-04-09 Covidien Lp Vascular stenting for aneurysms
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
EP1786502A2 (en) * 2004-07-15 2007-05-23 Incumed Device and method for treating a blood vessel
US7617232B2 (en) * 2004-09-02 2009-11-10 Microsoft Corporation Centralized terminology and glossary development
WO2006055826A2 (en) 2004-11-18 2006-05-26 Chang David W Endoluminal delivery of anesthesia
CN101076290B (en) 2004-12-09 2011-11-23 铸造品股份有限公司 Aortic valve repair
US9320831B2 (en) * 2005-03-04 2016-04-26 W. L. Gore & Associates, Inc. Polymer shrink tubes and novel uses therefor
US20060229638A1 (en) * 2005-03-29 2006-10-12 Abrams Robert M Articulating retrieval device
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US8702744B2 (en) * 2005-05-09 2014-04-22 Nexeon Medsystems, Inc. Apparatus and methods for renal stenting
JP4945714B2 (en) 2005-05-25 2012-06-06 タイコ ヘルスケア グループ リミテッド パートナーシップ System and method for supplying and deploying an occlusion device in a conduit
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20070100279A1 (en) * 2005-11-03 2007-05-03 Paragon Intellectual Properties, Llc Radiopaque-balloon microcatheter and methods of manufacture
US7766893B2 (en) * 2005-12-07 2010-08-03 Boston Scientific Scimed, Inc. Tapered multi-chamber balloon
US8172792B2 (en) * 2005-12-27 2012-05-08 Tyco Healthcare Group Lp Embolic protection systems for bifurcated conduits
WO2007100556A1 (en) 2006-02-22 2007-09-07 Ev3 Inc. Embolic protection systems having radiopaque filter mesh
US20070225750A1 (en) * 2006-03-10 2007-09-27 Brooke Ren Embolic protection systems
US8398695B2 (en) * 2006-11-03 2013-03-19 Boston Scientific Scimed, Inc. Side branch stenting system using a main vessel constraining side branch access balloon and side branching stent
US8414611B2 (en) * 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Main vessel constraining side-branch access balloon
US20100286791A1 (en) * 2006-11-21 2010-11-11 Goldsmith David S Integrated system for the ballistic and nonballistic infixion and retrieval of implants
US8430837B2 (en) 2007-02-05 2013-04-30 Boston Scientific Scimed, Inc. Thrombectomy apparatus and method
PL2124831T3 (en) 2007-03-15 2017-03-31 Ortho-Space Ltd. Prosthetic devices
JP5564416B2 (en) * 2007-03-29 2014-07-30 ボストン サイエンティフィック リミテッド Lumen reentry device
US20080294233A1 (en) * 2007-04-25 2008-11-27 Staniloae S Cezar Proximal protection balloon catheter method and device
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US20090032027A1 (en) * 2007-07-30 2009-02-05 Mccachren Brian Christopher Multiple balloon endotracheal tube cuff
US8506512B2 (en) * 2007-12-20 2013-08-13 Angio Dynamics Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US20170136158A1 (en) 2015-10-16 2017-05-18 Angiodynamics, Inc. Systems and Methods for Removing Undesirable Material Within a Circulatory System
US8613717B2 (en) 2007-12-20 2013-12-24 Angiodynamics, Inc. Systems and methods for removing and fragmenting undesirable material within a circulatory system
US20110213392A1 (en) * 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
EP2231256B1 (en) * 2007-12-20 2018-05-30 Vortex Medical Systems for removing undesirable material within a circulatory system
US8734374B2 (en) 2007-12-20 2014-05-27 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system during a surgical procedure
US20130304082A1 (en) * 2007-12-20 2013-11-14 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulaton system utilizing a balloon catheter
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
EP2496298A1 (en) * 2008-06-12 2012-09-12 Ahmed Riaz A catheter
US9510854B2 (en) 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US9326843B2 (en) 2009-01-16 2016-05-03 Claret Medical, Inc. Intravascular blood filters and methods of use
ES2516066T3 (en) 2009-01-16 2014-10-30 Claret Medical, Inc. Intravascular blood filter
WO2011034718A2 (en) 2009-09-21 2011-03-24 Claret Medical, Inc. Intravascular blood filters and methods of use
US20170202657A1 (en) 2009-01-16 2017-07-20 Claret Medical, Inc. Intravascular blood filters and methods of use
EP2391303A4 (en) * 2009-01-29 2020-09-09 Boston Scientific Scimed, Inc. Illuminated intravascular blood filter
US8974489B2 (en) 2009-07-27 2015-03-10 Claret Medical, Inc. Dual endovascular filter and methods of use
WO2011025855A2 (en) 2009-08-28 2011-03-03 Si Therapies Ltd. Inverted balloon neck on catheter
US20110224606A1 (en) * 2010-03-10 2011-09-15 Shibaji Shome Method and apparatus for remote ischemic conditioning during revascularization
US10335577B2 (en) * 2010-05-19 2019-07-02 Nfinium Vascular Technologies, Llc Augmented delivery catheter and method
EP2399639A1 (en) 2010-06-25 2011-12-28 ECP Entwicklungsgesellschaft mbH System for introducing a pump
US9623228B2 (en) 2010-08-12 2017-04-18 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
AU2011349578B2 (en) 2010-12-23 2016-06-30 Twelve, Inc. System for mitral valve repair and replacement
US9345565B2 (en) 2010-12-30 2016-05-24 Claret Medical, Inc. Steerable dual filter cerebral protection system
JP5872692B2 (en) 2011-06-21 2016-03-01 トゥエルヴ, インコーポレイテッド Artificial therapy device
EP2741694B1 (en) 2011-08-11 2017-02-15 Boston Scientific Scimed, Inc. Expandable scaffold with cutting elements mounted thereto
WO2013057566A2 (en) 2011-10-18 2013-04-25 Ortho-Space Ltd. Prosthetic devices and methods for using same
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
CA3090422C (en) 2011-10-19 2023-08-01 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9364255B2 (en) 2011-11-09 2016-06-14 Boston Scientific Scimed, Inc. Medical cutting devices and methods of use
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US10342699B2 (en) 2012-08-03 2019-07-09 J.D. Franco & Co., Llc Systems and methods for treating eye diseases
WO2017156333A1 (en) 2016-03-09 2017-09-14 J.D. Franco & Co. Systems and methods for treating eye diseases using retrograde blood flow
EP2897536B1 (en) 2012-09-24 2020-08-19 Inari Medical, Inc. Device for treating vascular occlusion
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US10272269B2 (en) 2012-11-13 2019-04-30 Silk Road Medical, Inc. Devices and methods for endoluminal delivery of either fluid or energy for denervation
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9693789B2 (en) 2013-03-29 2017-07-04 Silk Road Medical, Inc. Systems and methods for aspirating from a body lumen
CN108294846A (en) 2013-05-20 2018-07-20 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
US11759186B2 (en) * 2018-06-08 2023-09-19 David S. Goldsmith Ductus side-entry and prosthetic disorder response systems
US9533125B2 (en) 2013-10-01 2017-01-03 Boston Scientific Scimed, Inc. Balloon catheter and method of manufacture
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
US10182801B2 (en) 2014-05-16 2019-01-22 Silk Road Medical, Inc. Vessel access and closure assist system and method
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
CA2939315C (en) 2014-06-09 2018-09-11 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
EP3240507A4 (en) 2014-12-29 2018-12-05 Ocudyne LLC Apparatus and method for treating eye diseases
US9566144B2 (en) 2015-04-22 2017-02-14 Claret Medical, Inc. Vascular filters, deflectors, and methods
CN107708610A (en) 2015-04-30 2018-02-16 丝绸之路医药公司 System and method for being treated through conduit aorta petal
US10603195B1 (en) * 2015-05-20 2020-03-31 Paul Sherburne Radial expansion and contraction features of medical devices
KR20180038544A (en) 2015-08-11 2018-04-16 모키타 메디칼 게엠베하 아이.지알. System and method for removing air from a medical device
US10610394B2 (en) 2015-08-11 2020-04-07 Mokita Medical Gmbh Systems and methods for using perfluorocarbons to remove gases from medical devices
EP3337428A1 (en) 2015-08-21 2018-06-27 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US10959761B2 (en) 2015-09-18 2021-03-30 Ortho-Space Ltd. Intramedullary fixated subacromial spacers
AU2016341439B2 (en) 2015-10-23 2021-07-08 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US9700332B2 (en) 2015-10-23 2017-07-11 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
JP2018537229A (en) 2015-12-18 2018-12-20 イナリ メディカル, インコーポレイテッド Catheter shaft and related devices, systems, and methods
US11786140B2 (en) 2019-08-21 2023-10-17 Corflow Therapeutics Ag Controlled-flow infusion catheter and method
WO2017120229A1 (en) * 2016-01-04 2017-07-13 Corflow Therapeutics Ag System and methods for treating mvo
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
EP3448316B1 (en) 2016-04-29 2023-03-29 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors
CA3037713A1 (en) 2016-09-24 2018-03-29 J.D. Franco & Co., Llc Systems and methods for single puncture percutaneous reverse blood flow
USD916281S1 (en) 2016-10-17 2021-04-13 Angiodynamics, Inc. Reinforcement arms and collar for a cannula tip
WO2018080590A1 (en) 2016-10-24 2018-05-03 Inari Medical Devices and methods for treating vascular occlusion
DE202017106887U1 (en) 2016-11-14 2017-12-05 Cathaway Medical (2012) Ltd. Catheter with asymmetrical cross section
AU2017370691A1 (en) 2016-12-08 2019-07-04 J.D. Franco & Co., Llc Methods and devices for treating an eye using a filter
WO2018140371A1 (en) 2017-01-25 2018-08-02 Rmvidlund Llc Blood vessel access and closure devices and related methods of use
US11045981B2 (en) 2017-01-30 2021-06-29 Ortho-Space Ltd. Processing machine and methods for processing dip-molded articles
CN110831545B (en) 2017-02-22 2022-06-07 波士顿科学国际有限公司 System and method for protecting cerebral blood vessels
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10898212B2 (en) 2017-05-07 2021-01-26 J.D. Franco & Co., Llc Devices and methods for treating an artery
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11000682B2 (en) 2017-09-06 2021-05-11 Inari Medical, Inc. Hemostasis valves and methods of use
EP3684247A1 (en) 2017-09-19 2020-07-29 Corflow Therapeutics AG Intracoronary characterization of microvascular obstruction (mvo) and myocardial infarction
US10779929B2 (en) 2017-10-06 2020-09-22 J.D. Franco & Co., Llc Treating eye diseases by deploying a stent
US10172634B1 (en) 2017-10-16 2019-01-08 Michael Bruce Horowitz Catheter based retrieval device with proximal body having axial freedom of movement
US20220104840A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
US20220104839A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
CN111565673A (en) 2017-10-27 2020-08-21 波士顿科学医学有限公司 System and method for protecting cerebral blood vessels
US10398880B2 (en) 2017-11-02 2019-09-03 J.D. Franco & Co., Llc Medical systems, devices, and related methods
US10758254B2 (en) 2017-12-15 2020-09-01 J.D. Franco & Co., Llc Medical systems, devices, and related methods
EP3727192B1 (en) 2017-12-19 2023-03-08 Boston Scientific Scimed, Inc. System for protecting the cerebral vasculature
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11478249B2 (en) 2018-02-23 2022-10-25 J.D. Franco & Co., Llc Ophthalmic artery therapy under reverse flow
EP3761892A1 (en) 2018-03-09 2021-01-13 Corflow Therapeutics AG System for diagnosing and treating microvascular obstructions
WO2019199672A1 (en) 2018-04-09 2019-10-17 Boston Scientific Scimed, Inc. Cutting balloon basket
CN112334093A (en) 2018-04-26 2021-02-05 波士顿科学国际有限公司 System for protecting cerebral blood vessels
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
EP3836855A4 (en) 2018-08-13 2022-08-10 Inari Medical, Inc. System for treating embolism and associated devices and methods
JP2021535778A (en) 2018-08-21 2021-12-23 ボストン サイエンティフィック サイムド, インコーポレイテッドBoston Scientific Scimed, Inc. A system to protect the cerebrovascular system
JP2022501115A (en) 2018-09-21 2022-01-06 コルフロウ セラピューティクス アーゲー Equipment for assessing microvascular dysfunction
US10668258B1 (en) 2018-12-31 2020-06-02 J.D. Franco & Co., Llc Intravascular devices, systems, and methods to address eye disorders
US11185334B2 (en) 2019-03-28 2021-11-30 DePuy Synthes Products, Inc. Single lumen reduced profile occlusion balloon catheter
EP4044938A4 (en) 2019-10-16 2023-11-15 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11844893B2 (en) 2021-01-17 2023-12-19 Inspire M.D Ltd. Shunts with blood-flow indicators
USD972723S1 (en) 2021-03-17 2022-12-13 Angiodynamics, Inc. Reinforcement arms and collar for an expandable cannula tip

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE433445B (en) * 1981-04-16 1984-05-28 Erik Gustav Percy Nordqvist urinary catheter
US4794928A (en) 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US4781681A (en) * 1987-09-15 1988-11-01 Gv Medical, Inc. Inflatable tip for laser catheterization
US4921478A (en) * 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
DE68915150T2 (en) * 1989-01-30 1994-10-13 Bard Inc C R Quickly replaceable coronary catheter.
DE8910603U1 (en) 1989-09-06 1989-12-07 Guenther, Rolf W., Prof. Dr.
AU6376190A (en) 1989-10-25 1991-05-02 C.R. Bard Inc. Occluding catheter and methods for treating cerebral arteries
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5766151A (en) * 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5484412A (en) * 1994-04-19 1996-01-16 Pierpont; Brien E. Angioplasty method and means for performing angioplasty
DE4440035C2 (en) 1994-11-10 1998-08-06 Wolf Gmbh Richard Morcellating instrument
US6180059B1 (en) * 1995-06-05 2001-01-30 Therox, Inc. Method for the preparation and delivery of gas-enriched fluids
US5549626A (en) * 1994-12-23 1996-08-27 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Vena caval filter
DE69626105T2 (en) * 1995-03-30 2003-10-23 Heartport Inc ENDOVASCULAR CATHETER FOR LEADING FROM THE HEART
US5833650A (en) * 1995-06-05 1998-11-10 Percusurge, Inc. Catheter apparatus and method for treating occluded vessels
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US6228052B1 (en) * 1996-02-29 2001-05-08 Medtronic Inc. Dilator for introducer system having injection port
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5794629A (en) * 1996-11-27 1998-08-18 The Regents Of The University Of California Method for treating ischemic brain stroke
US6295989B1 (en) 1997-02-06 2001-10-02 Arteria Medical Science, Inc. ICA angioplasty with cerebral protection
AU6688398A (en) * 1997-03-06 1998-09-22 Percusurge, Inc. Intravascular aspiration system
US6059745A (en) * 1997-05-20 2000-05-09 Gelbfish; Gary A. Thrombectomy device and associated method
US5919163A (en) * 1997-07-14 1999-07-06 Delcath Systems, Inc. Catheter with slidable balloon
US5941896A (en) * 1997-09-08 1999-08-24 Montefiore Hospital And Medical Center Filter and method for trapping emboli during endovascular procedures
US6013085A (en) 1997-11-07 2000-01-11 Howard; John Method for treating stenosis of the carotid artery
US6042559A (en) * 1998-02-24 2000-03-28 Innercool Therapies, Inc. Insulated catheter for selective organ perfusion
US6540712B1 (en) * 1998-03-13 2003-04-01 Arteria Medical Science, Inc. Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
US6206868B1 (en) * 1998-03-13 2001-03-27 Arteria Medical Science, Inc. Protective device and method against embolization during treatment of carotid artery disease
US6423032B2 (en) * 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
AR017498A1 (en) * 1998-03-13 2001-09-12 Arteria Medical Science Llc DEVICE FOR PROTECTION AGAINST EMBOLIZATIONS, IN ANGIOPLASTIA DE CAROTIDA
US6165199A (en) * 1999-01-12 2000-12-26 Coaxia, Inc. Medical device for removing thromboembolic material from cerebral arteries and methods of use
US6161547A (en) * 1999-01-15 2000-12-19 Coaxia, Inc. Medical device for flow augmentation in patients with occlusive cerebrovascular disease and methods of use
US6458139B1 (en) * 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels

Cited By (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993324B2 (en) 1999-03-01 2011-08-09 Coaxia, Inc. Cerebral perfusion augmentation
US20090247884A1 (en) * 1999-03-01 2009-10-01 Barbut Denise R Cerebral perfusion augmentation
US20100222736A1 (en) * 1999-12-22 2010-09-02 Boston Scientific Scimed, Inc. Endoluminal occlusion-irrigation catheter with aspiration capabilities and methods of use
US8152782B2 (en) 1999-12-22 2012-04-10 Boston Scientific Scimed, Inc. Endoluminal occlusion-irrigation catheter with aspiration capabilities and methods of use
US20060041304A1 (en) * 1999-12-22 2006-02-23 Yue-Teh Jang Endoluminal occlusion-irrigation catheter with aspiration capabilities and methods of use
US7731683B2 (en) 1999-12-22 2010-06-08 Boston Scientific Scimed, Inc. Endoluminal occlusion-irrigation catheter with aspiration capabilities and methods of use
US20050090854A1 (en) * 2001-05-01 2005-04-28 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US8137374B2 (en) 2001-05-01 2012-03-20 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US8034023B2 (en) 2001-05-01 2011-10-11 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US20020165573A1 (en) * 2001-05-01 2002-11-07 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US7867216B2 (en) 2001-05-01 2011-01-11 St. Jude Medical, Cardiology Division, Inc. Emboli protection device and related methods of use
US20100234855A1 (en) * 2001-05-01 2010-09-16 Wahr Dennis W Emboli protection devices and related methods of use
US20100106179A1 (en) * 2001-05-01 2010-04-29 Barbut Denise R Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US6830579B2 (en) * 2001-05-01 2004-12-14 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US7635376B2 (en) 2001-05-01 2009-12-22 Coaxia, Inc. Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US7654978B2 (en) 2001-05-01 2010-02-02 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US8430845B2 (en) 2001-05-01 2013-04-30 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US20100094330A1 (en) * 2001-05-01 2010-04-15 Barbut Denise R Devices and methods for preventing distal embolization using flow reversal and perfusion augmentation within the cerebral vasculature
US7549974B2 (en) 2002-06-01 2009-06-23 The Board Of Trustees Of The Leland Stanford Junior University Device and method for medical interventions of body lumens
EP1545685A1 (en) * 2002-06-27 2005-06-29 Gore Enterprise Holdings, Inc. Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
EP1545685A4 (en) * 2002-06-27 2006-04-19 Gore Enterprise Holdings Inc Catheter having a funnel-shaped occlusion balloon of uniform thickness and methods of manufacture
AU2007200632B2 (en) * 2002-06-27 2010-06-03 W. L. Gore & Associates, Inc. A catheter
US20110130784A1 (en) * 2002-07-12 2011-06-02 Ev3 Inc. Catheter with occluding cuff
US8721674B2 (en) 2002-07-12 2014-05-13 Covidien Lp Catheter with occluding cuff
US10136906B2 (en) 2002-07-12 2018-11-27 Covidien Lp Catheter with occluding cuff
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US20070213765A1 (en) * 2002-07-12 2007-09-13 Adams Daniel O Device to create proximal stasis
US7887560B2 (en) 2002-07-12 2011-02-15 Ev3 Inc. Catheter with occluding cuff
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US11849954B2 (en) 2003-11-21 2023-12-26 Silk Road Medical, Inc. Method and apparatus for treating an arterial lesion
US10722239B2 (en) 2003-11-21 2020-07-28 Silk Road Medical, Inc. Method and apparatus for treating an arterial lesion
US7998104B2 (en) 2003-11-21 2011-08-16 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US8002728B2 (en) 2003-11-21 2011-08-23 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US8870805B2 (en) 2003-11-21 2014-10-28 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US9662118B2 (en) 2003-11-21 2017-05-30 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US11918226B2 (en) 2003-11-21 2024-03-05 Silk Road Medical, Inc. Method and apparatus for treating an arterial lesion
US10188399B2 (en) 2003-11-21 2019-01-29 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US20090018455A1 (en) * 2003-11-21 2009-01-15 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US8414516B2 (en) 2003-11-21 2013-04-09 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US9526504B2 (en) 2003-11-21 2016-12-27 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US8343089B2 (en) 2003-11-21 2013-01-01 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US10779835B2 (en) 2003-11-21 2020-09-22 Silk Road Medical, Inc. Method and apparatus for treating a carotid artery
US10799331B2 (en) * 2004-03-25 2020-10-13 David L Hauser System for removing a thrombus from a blood vessel
US20180325647A1 (en) * 2004-03-25 2018-11-15 David L Hauser System for removing a thrombus from a blood vessel
US7947030B2 (en) * 2004-12-30 2011-05-24 Reynaldo Calderon Retrograde perfusion of tumor sites
US20060149393A1 (en) * 2004-12-30 2006-07-06 Reynaldo Calderon Computerized system for monitored retrograde perfusion of tumor sites
US20060149219A1 (en) * 2004-12-30 2006-07-06 Reynaldo Calderon Retrograde perfusion of tumor sites
US7914514B2 (en) * 2004-12-30 2011-03-29 Reynaldo Calderon Computerized system for monitored retrograde perfusion of tumor sites
US8221348B2 (en) 2005-07-07 2012-07-17 St. Jude Medical, Cardiology Division, Inc. Embolic protection device and methods of use
US20100312262A1 (en) * 2006-08-21 2010-12-09 Variomed Ag Device And Method For Reducing Or Removing Stenoses
US8858585B2 (en) 2006-08-21 2014-10-14 Variomed Ag Device and method for reducing or removing stenoses
US10286139B2 (en) 2007-07-18 2019-05-14 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8157760B2 (en) 2007-07-18 2012-04-17 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10543307B2 (en) 2007-07-18 2020-01-28 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US10485917B2 (en) 2007-07-18 2019-11-26 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10085864B2 (en) 2007-07-18 2018-10-02 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9011364B2 (en) 2007-07-18 2015-04-21 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10426885B2 (en) 2007-07-18 2019-10-01 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8784355B2 (en) 2007-07-18 2014-07-22 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8740834B2 (en) 2007-07-18 2014-06-03 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
EP4088770A1 (en) 2007-07-18 2022-11-16 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US11364332B2 (en) 2007-07-18 2022-06-21 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9833555B2 (en) 2007-07-18 2017-12-05 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9655755B2 (en) 2007-07-18 2017-05-23 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9259215B2 (en) 2007-07-18 2016-02-16 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9789242B2 (en) 2007-07-18 2017-10-17 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10952882B2 (en) 2007-07-18 2021-03-23 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US10709832B2 (en) 2007-07-18 2020-07-14 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
EP2497520A1 (en) 2007-07-18 2012-09-12 Silk Road Medical, INC. Systems for establishing retrograde carotid arterial blood flow
US11589880B2 (en) 2007-12-20 2023-02-28 Angiodynamics, Inc. System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure
US11896246B2 (en) 2007-12-20 2024-02-13 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter
US20110213290A1 (en) * 2007-12-20 2011-09-01 Vortex Medical Systems and Methods for Removing Undesirable Material Within a Circulatory System
US10226598B2 (en) 2008-02-05 2019-03-12 Silk Road Medical, Inc. Interventional catheter system and methods
US9669191B2 (en) 2008-02-05 2017-06-06 Silk Road Medical, Inc. Interventional catheter system and methods
US11364369B2 (en) 2008-02-05 2022-06-21 Silk Road Medical, Inc. Interventional catheter system and methods
EP3789069A1 (en) 2008-02-05 2021-03-10 Silk Road Medical, Inc. Systems for establishing retrograde carotid arterial blood flow
US9011467B2 (en) 2008-08-13 2015-04-21 Silk Road Medical, Inc. Suture delivery device
US10357242B2 (en) 2008-08-13 2019-07-23 Silk Road Medical, Inc. Suture delivery device
US9179909B2 (en) 2008-08-13 2015-11-10 Silk Road Medical, Inc. Suture delivery device
US11389155B2 (en) 2008-08-13 2022-07-19 Silk Road Medical, Inc. Suture delivery device
US8574245B2 (en) 2008-08-13 2013-11-05 Silk Road Medical, Inc. Suture delivery device
US8162879B2 (en) 2008-09-22 2012-04-24 Tyco Healthcare Group Lp Double balloon catheter and methods for homogeneous drug delivery using the same
US20100082012A1 (en) * 2008-09-22 2010-04-01 Foxhollow Technologies, Inc. Double balloon catheter and methods for homogeneous drug delivery using the same
US8603064B2 (en) 2008-09-22 2013-12-10 Covidien Lp Double balloon catheter and methods for homogeneous drug delivery using the same
US11103627B2 (en) 2008-12-23 2021-08-31 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11654222B2 (en) * 2008-12-23 2023-05-23 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US20200282127A1 (en) * 2008-12-23 2020-09-10 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10226563B2 (en) 2008-12-23 2019-03-12 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US20100228269A1 (en) * 2009-02-27 2010-09-09 Garrison Michi E Vessel closure clip device
US9138527B2 (en) 2009-06-03 2015-09-22 Silk Road Medical, Inc. System and methods for controlling retrograde carotid arterial blood flow
US8545432B2 (en) 2009-06-03 2013-10-01 Silk Road Medical, Inc. System and methods for controlling retrograde carotid arterial blood flow
US20110213459A1 (en) * 2010-02-26 2011-09-01 Garrison Michi E Systems and methods for transcatheter aortic valve treatment
US8545552B2 (en) 2010-02-26 2013-10-01 Silk Road Medical, Inc. Systems and methods for transcatheter aortic valve treatment
US10363393B2 (en) * 2011-04-05 2019-07-30 Thermopeutix Inc. Microcatheter with distal tip portion and proximal solution lumen
WO2012156924A1 (en) * 2011-05-17 2012-11-22 Cardioflow Ltd. Vascular occlusion and aspiration device
US10646239B2 (en) 2011-08-05 2020-05-12 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10327790B2 (en) 2011-08-05 2019-06-25 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11871944B2 (en) 2011-08-05 2024-01-16 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10743893B2 (en) 2011-08-05 2020-08-18 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10722251B2 (en) 2011-08-05 2020-07-28 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US9993622B2 (en) 2012-05-16 2018-06-12 Endovascular Development AB Assembly with a guide tube, a fixator for attaching to a blood vessel, and a pump
US10159479B2 (en) 2012-08-09 2018-12-25 Silk Road Medical, Inc. Suture delivery device
US10881393B2 (en) 2012-08-09 2021-01-05 Silk Road Medical, Inc. Suture delivery device
US11839372B2 (en) 2012-08-09 2023-12-12 Silk Road Medical, Inc. Suture delivery device
WO2014039334A1 (en) * 2012-09-05 2014-03-13 Medtronic Vascular Galway Integrated dilation balloon and valve prosthesis delivery system
US9414752B2 (en) 2012-11-09 2016-08-16 Elwha Llc Embolism deflector
US9295393B2 (en) 2012-11-09 2016-03-29 Elwha Llc Embolism deflector
CN111714755A (en) * 2013-07-18 2020-09-29 马里兰大学,巴尔的摩 Self-expanding cannula
US20210121659A1 (en) * 2013-07-18 2021-04-29 University Of Maryland, Baltimore Self-expanding cannula
US20160158489A1 (en) * 2013-07-18 2016-06-09 Zhongjun Wu Self-expanding cannula
EP3021928B1 (en) * 2013-07-18 2022-10-19 University of Maryland, Baltimore Self-expanding cannula
US10912920B2 (en) * 2013-07-18 2021-02-09 University Of Maryland, Baltimore Self-expanding cannula
EP4180082A1 (en) * 2013-07-18 2023-05-17 University of Maryland, Baltimore Self-expanding cannula
US20150119977A1 (en) * 2013-10-30 2015-04-30 The Regents Of The University Of Michigan System and method to limit cerebral ischemia
US9492637B2 (en) 2013-12-23 2016-11-15 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9561345B2 (en) 2013-12-23 2017-02-07 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11318282B2 (en) 2013-12-23 2022-05-03 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11534575B2 (en) 2013-12-23 2022-12-27 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10213582B2 (en) 2013-12-23 2019-02-26 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10864351B2 (en) 2013-12-23 2020-12-15 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10384034B2 (en) 2013-12-23 2019-08-20 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9861783B2 (en) 2013-12-23 2018-01-09 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US10471233B2 (en) 2013-12-23 2019-11-12 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US11291799B2 (en) 2013-12-23 2022-04-05 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US10569049B2 (en) 2013-12-23 2020-02-25 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US20150250481A1 (en) * 2014-03-10 2015-09-10 Trivascular, Inc. Inflatable occlusion wire-balloon for aortic applications
US11484328B2 (en) 2014-03-11 2022-11-01 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US11446045B2 (en) 2014-06-13 2022-09-20 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US20170105743A1 (en) * 2014-06-13 2017-04-20 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10682152B2 (en) 2014-06-13 2020-06-16 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10441301B2 (en) 2014-06-13 2019-10-15 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10792056B2 (en) * 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US11076876B2 (en) 2014-06-30 2021-08-03 Neuravi Limited System for removing a clot from a blood vessel
US10864357B2 (en) 2014-09-04 2020-12-15 Silk Road Medical, Inc. Methods and devices for transcarotid access
US11759613B2 (en) 2014-09-04 2023-09-19 Silk Road Medical, Inc. Methods and devices for transcarotid access
US9399118B2 (en) 2014-09-04 2016-07-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
US10039906B2 (en) 2014-09-04 2018-08-07 Silk Road Medical, Inc. Methods and devices for transcarotid access
US11027104B2 (en) 2014-09-04 2021-06-08 Silk Road Medical, Inc. Methods and devices for transcarotid access
US9241699B1 (en) 2014-09-04 2016-01-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
US9662480B2 (en) 2014-09-04 2017-05-30 Silk Road Medical, Inc. Methods and devices for transcarotid access
US9126018B1 (en) 2014-09-04 2015-09-08 Silk Road Medical, Inc. Methods and devices for transcarotid access
US11806032B2 (en) 2015-02-04 2023-11-07 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11793529B2 (en) 2015-02-04 2023-10-24 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11633571B2 (en) 2015-02-04 2023-04-25 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US11433226B2 (en) 2015-04-10 2022-09-06 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10238853B2 (en) 2015-04-10 2019-03-26 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US20180242978A1 (en) * 2015-07-24 2018-08-30 Route 92 Medical, Inc. Methods of intracerebral implant delivery
US11147699B2 (en) * 2015-07-24 2021-10-19 Route 92 Medical, Inc. Methods of intracerebral implant delivery
US11547415B2 (en) 2016-07-22 2023-01-10 Route 92 Medical, Inc. Endovascular interventions in neurovascular anatomy
US11395667B2 (en) * 2016-08-17 2022-07-26 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
KR102537017B1 (en) 2016-11-28 2023-05-30 뉴라비 리미티드 Devices and methods for removal of acute blockages from blood vessels
CN108113734A (en) * 2016-11-28 2018-06-05 尼尔拉维有限公司 For removing the apparatus and method of acute tamper from blood vessel
KR20180061015A (en) * 2016-11-28 2018-06-07 뉴라비 리미티드 Devices and methods for removal of acute blockages from blood vessels
US10918504B2 (en) 2017-02-21 2021-02-16 Silk Road Medical, Inc. Vascular implant
US11141259B2 (en) 2017-11-02 2021-10-12 Silk Road Medical, Inc. Fenestrated sheath for embolic protection during transcarotid carotid artery revascularization
US11864988B2 (en) 2017-11-02 2024-01-09 Silk Road Medical, Inc. Fenestrated sheath for embolic protection during transcarotid carotid artery revascularization
US11925770B2 (en) 2018-05-17 2024-03-12 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11229770B2 (en) 2018-05-17 2022-01-25 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11607523B2 (en) 2018-05-17 2023-03-21 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
CN113365689A (en) * 2019-01-31 2021-09-07 马宝海德医疗有限责任公司 Carotid stent implantation system and method
US11311304B2 (en) 2019-03-04 2022-04-26 Neuravi Limited Actuated clot retrieval catheter
US11529495B2 (en) 2019-09-11 2022-12-20 Neuravi Limited Expandable mouth catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11648020B2 (en) 2020-02-07 2023-05-16 Angiodynamics, Inc. Device and method for manual aspiration and removal of an undesirable material
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
CN111228635A (en) * 2020-03-10 2020-06-05 刘睿方 Microcatheter assembly for chronic total occlusion of coronary artery
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam

Also Published As

Publication number Publication date
US20020087119A1 (en) 2002-07-04
US6423032B2 (en) 2002-07-23
US6905490B2 (en) 2005-06-14

Similar Documents

Publication Publication Date Title
US6423032B2 (en) Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6540712B1 (en) Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
US7927347B2 (en) Apparatus and methods for reducing embolization during treatment of carotid artery disease
CA2380350C (en) Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
US20050131453A1 (en) Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6582396B1 (en) Puncture resistant balloon for use in carotid artery procedures and methods of use
US6645222B1 (en) Puncture resistant branch artery occlusion device and methods of use
US6206868B1 (en) Protective device and method against embolization during treatment of carotid artery disease
EP1390093B1 (en) Emboli protection devices
US6929634B2 (en) Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6936060B2 (en) Apparatus and methods for removing emboli during a surgical procedure
US8419679B2 (en) Embolic protection systems for bifurcated conduits
AU2008229661B2 (en) Apparatus for removing emboli during an angioplasty or stenting procedure
JP2014503254A (en) Clot removal apparatus and removal method
JP2004535253A (en) Catheters for removing emboli from saphenous vein grafts and native coronary arteries
JP2011087971A (en) Method and low profile apparatus for reducing embolization during treatment of carotid artery disease
AU2005202496B2 (en) Apparatus for removing emboli during an angioplasty or stenting procedure

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARTERIA MEDICAL SCIENCE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARODI, JUAN CARLOS;REEL/FRAME:010414/0245

Effective date: 19991112

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ARTERIA MEDICAL SCIENCE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATES, MARK C.;REEL/FRAME:013305/0814

Effective date: 20020620

CC Certificate of correction
AS Assignment

Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARTERIA MEDICAL SCIENCE, INC.;REEL/FRAME:016526/0319

Effective date: 20041118

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130

FPAY Fee payment

Year of fee payment: 12