US20010024621A1 - Steel composition and chain formed thereof - Google Patents

Steel composition and chain formed thereof Download PDF

Info

Publication number
US20010024621A1
US20010024621A1 US09/773,586 US77358601A US2001024621A1 US 20010024621 A1 US20010024621 A1 US 20010024621A1 US 77358601 A US77358601 A US 77358601A US 2001024621 A1 US2001024621 A1 US 2001024621A1
Authority
US
United States
Prior art keywords
steel
tempering
melt
max
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/773,586
Inventor
Rainer Leppanen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ovako Steel AB
Original Assignee
Ovako Steel AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ovako Steel AB filed Critical Ovako Steel AB
Assigned to OVAKO STEEL AB reassignment OVAKO STEEL AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEPPANEN, RAINER
Publication of US20010024621A1 publication Critical patent/US20010024621A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")

Definitions

  • the present invention relates to a steel, and more specifically a chain type steel, suitable for the production of bars with a diameter of up to about 160 mm, e.g. to be used for the manufacture of heavy anchor chains.
  • a steel for producing anchor chains having the following composition, in wt. %: C 0.03-0.07; Si 0.10-1; Mn 1.2-2.5; Cr 1.8-3; Ni 1.5-3; Mo ⁇ 0.5; Nb, V, Ti total 0-0.10.
  • This steel is claimed to have a yield point of at least 600 Mpa, a rupture limit of at least 900 Mpa at room temperature and an impact toughness of at least 40 Joule at ⁇ 20° C.
  • the restrictions of anchor steels for oil riggs in the ocean are becoming even stricter, and there is a demand for a steel with improved characteristics.
  • JP-61276956 is previously known a low alloy chain link steel including chromium and nickel being processed to obtain a tempered martensitic structure.
  • This steel comprises, in wt. %: C 0.20-0.30; Si 0.10-0.30; Mn 0.70-1.70; Cr 0.40-0.70; Ni 0.75-2.00; Al 0.01-0.05; P ⁇ 0.03; S ⁇ 0.030.
  • This steel is tempered after being quenched or case-hardened by means of carburising so that the microstructure is tempered martensite.
  • the weldability will deteriorate as well as the toughness, and there is a risk for hardening cracks.
  • the absence of Mo means there is a risk for temper embrittlement.
  • Ni is obviously used to compensate for a low Cr content, which makes this steel quite expensive.
  • JP-52006847B is previously known a high stregnth low alloy steel chain manufactured from steel bars containing, in wt. %: C 0.1-0.2; Si 0.1-0.5; Mn 1.0-1.6; Cu 0.1-0.5; Ni 0.5-1.5; Cr 0.3-1.0; Mo 0.2-0.8, P ⁇ 0.02; S>0.015, and acid.sol Al 0.02-0.1.
  • the starting steel bars have a high tensile strength, improved weldability and good workability, and the steel chain produced is tempered at 550-680° C.
  • the low Cr, and the low C content both affect the hardenability, which is deleterious for large diameter anchor chains.
  • An object of the invention is to provide a steel with improved properties and an improved behavior in the steel plant.
  • FIG. 1 is a graph showing the hardness as a function of the tempering temperature for laboratory melt sample materials.
  • FIG. 2 is a graph showing the hardness as a function of the depth underneath the surface, for hardened and not tempered samples of said laboratory melt sample materials.
  • FIG. 3 is a graph showing the hardness as a function of the depth underneath the surface, for hardened and tempered samples of said laboratory melt sample materials.
  • FIG. 4 is a graph showing the jominy hardenability for said laboratory melt sample materials.
  • FIG. 5 is a graph showing the jominy hardenability for a full scale melt material.
  • the steel grade according to the invention is well-suited for manufacture of so called K4 chain with a diameter up to about 160 mm, and is not aggressive towards the melting equipment, and which steels result in very high qualities of the the finished chain.
  • sample material was manufactured as laboratory melts with ingot dimensions of 225 ⁇ 225 mm.
  • the respective ingots were forged into bars with a diameter of 140 mm. This gives a reduction rate of about 3, which is insufficient in normal production. This means that the results from normal production will be significantly better than the test results discussed in the following description.
  • Test samples were produced having two different analyses, MnCrNiMo variant, and MnCrNiMoV, respectively.
  • the steel according to the invention after through hardening, gives a very small difference between surface hardness and hardness at the center.
  • FIG. 1 shows the hardness as a function of the tempering temperature, tempering time 1 hour. Hardening temperatures for the respective melts are 850° C. for melt No. 129 , and 890° C. for melt No. 131 . Sample size 25 ⁇ 25 ⁇ 25 mm.
  • melt No. 129 exhibits a flat curve without breaking points, which makes it less sensitive to variations in tempering temperature fluctuations.
  • the vanadium gives a strong tempering resistance up to 630° C., but at higher temperatures a steep curve is obtained with an increased sensitivity for temperature variations.
  • FIG. 2 shows the hardness as a function of the depth underneath the surface of a hardened not tempered sample with a diameter of 140 mm
  • FIG. 3 shows the hardness after tempering at 615° C. for the melt No. 129 and at 645° C. for melt No. 131 .
  • the hardening temperature for the melt No. 129 was 850° C. and for the melt No. 131 , 890° C., all being quenched in water.
  • melt No. 129 exhibits the best result of the through hardening both for the untempered and the tempered sample.
  • the difference in hardness between surface and center is very small.
  • FIG. 4 shows the result of the jominy test.
  • the austenitization temperature has been the same as with the through hardening test according to item 2 above.
  • the jominy test result corresponds well with the through hardening result according to item 2.
  • Melt No. 129 has the best hardenability.
  • Table II below shows the mechanical properties of hardened and tempered bar samples with a diameter of 140 mm. Heat treatment and taking of samples were made according to normal practice for testing of chain material. The melt No. 129 showing the best results in the hardenability testing and tempering tests has been examined at three different tempering temperatures. TABLE II Mechanical properties Harden. Tempering ReI Rm A5 Z KV, J Melt temp ° C. temp ° C. Mpa Mpa % % ⁇ 40° C. ⁇ 20° C. ⁇ 0° C.
  • the degree of reduction is about 12 times, which fact explains the big differences in performance compared to the laboratory test materials, having a degree of reduction of only about 3 times, but still being improved compared to the prior art.

Abstract

A chain type steel, suitable for the production of bars with a diameter of up to about 160 mm, e.g. to be used for the manufacture of heavy anchor chains, including, in weight-%: C 0.15-0.23 Si 0.10-0.40 Mn 1.00-1.50 P max. 0.025 S max. 0.025 Cr 1.50-2.20 Ni 0.80-1.50 Mo 0.30-0.60 Cu  max. 0.30 Al <0.2 V <0.2 Nb <0.2 Ti <0.2
the balance being Fe.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a steel, and more specifically a chain type steel, suitable for the production of bars with a diameter of up to about 160 mm, e.g. to be used for the manufacture of heavy anchor chains. [0001]
  • In the discussion of the state of the art that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicant expressly reserves the right to demonstrate that such structures and/or methods do not qualify as prior art against the present invention. [0002]
  • For many years the applicant has produced bars for the manufacture of heavy anchor chains primarily used for anchoring of oil riggs. Bar dimensions up to 155 mm diameter have been produced. For these coarse dimensions a very low carbon steel type has been used which causes a number of difficulties in the steel plant, this steel being very aggressive towards the melting equipment. The steel types used for smaller diameter anchor chains, being low alloyed steels, give unsatisfactory mechanical properties for bigger diameter anchor chains, that is for bar diameters above about 130 mm. [0003]
  • Thus, there is a need for an improved steel for making heavy anchor chains, which behaves better in the steel plant. [0004]
  • In e.g. GB 2 110 239 A, a steel for producing anchor chains is disclosed having the following composition, in wt. %: C 0.03-0.07; Si 0.10-1; Mn 1.2-2.5; Cr 1.8-3; Ni 1.5-3; Mo≦0.5; Nb, V, Ti total 0-0.10. This steel is claimed to have a yield point of at least 600 Mpa, a rupture limit of at least 900 Mpa at room temperature and an impact toughness of at least 40 Joule at −20° C. The restrictions of anchor steels for oil riggs in the ocean are becoming even stricter, and there is a demand for a steel with improved characteristics. [0005]
  • Through JP-61276956 is previously known a low alloy chain link steel including chromium and nickel being processed to obtain a tempered martensitic structure. This steel comprises, in wt. %: C 0.20-0.30; Si 0.10-0.30; Mn 0.70-1.70; Cr 0.40-0.70; Ni 0.75-2.00; Al 0.01-0.05; P≦0.03; S≦0.030. This steel is tempered after being quenched or case-hardened by means of carburising so that the microstructure is tempered martensite. At the upper region of the carbon content range, the weldability will deteriorate as well as the toughness, and there is a risk for hardening cracks. The absence of Mo means there is a risk for temper embrittlement. Ni is obviously used to compensate for a low Cr content, which makes this steel quite expensive. [0006]
  • Through JP-52006847B is previously known a high stregnth low alloy steel chain manufactured from steel bars containing, in wt. %: C 0.1-0.2; Si 0.1-0.5; Mn 1.0-1.6; Cu 0.1-0.5; Ni 0.5-1.5; Cr 0.3-1.0; Mo 0.2-0.8, P<0.02; S>0.015, and acid.sol Al 0.02-0.1. The starting steel bars have a high tensile strength, improved weldability and good workability, and the steel chain produced is tempered at 550-680° C. The low Cr, and the low C content both affect the hardenability, which is deleterious for large diameter anchor chains. [0007]
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a steel with improved properties and an improved behavior in the steel plant. [0008]
  • According to one aspect, these and other aspects are obtained with a steel according to the invention, comprising in weight-%: [0009]
    C 0.15-0.23
    Si 0.10-0.40
    Mn 1.00-1.50
    P max. 0.025
    S max. 0.025
    Cr 1.50-2.20
    Ni 0.80-1.50
    Mo 0.30-0.60
    Cu  max. 0.30
    Al < 0.2
    V < 0.2
    Nb < 0.2
    Ti < 0.2
  • the balance being Fe.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing the hardness as a function of the tempering temperature for laboratory melt sample materials. [0011]
  • FIG. 2 is a graph showing the hardness as a function of the depth underneath the surface, for hardened and not tempered samples of said laboratory melt sample materials. [0012]
  • FIG. 3 is a graph showing the hardness as a function of the depth underneath the surface, for hardened and tempered samples of said laboratory melt sample materials. [0013]
  • FIG. 4 is a graph showing the jominy hardenability for said laboratory melt sample materials. [0014]
  • FIG. 5 is a graph showing the jominy hardenability for a full scale melt material.[0015]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The steel grade according to the invention is well-suited for manufacture of so called K4 chain with a diameter up to about 160 mm, and is not aggressive towards the melting equipment, and which steels result in very high qualities of the the finished chain. [0016]
  • For the investigation, sample material was manufactured as laboratory melts with ingot dimensions of 225×225 mm. The respective ingots were forged into bars with a diameter of 140 mm. This gives a reduction rate of about 3, which is insufficient in normal production. This means that the results from normal production will be significantly better than the test results discussed in the following description. [0017]
  • Test samples were produced having two different analyses, MnCrNiMo variant, and MnCrNiMoV, respectively. [0018]
  • The steel according to the invention, after through hardening, gives a very small difference between surface hardness and hardness at the center. [0019]
  • In Table I, the analyses are given for two different steel samples. [0020]
    TABLE I
    Variant C Si Mn P S Cr Ni Mo Cu V Al
    MnCrNiMo 0.20 0.30 1.26 0.008 0.004 1.80 1.25 0.45 0.19 0.022
    No. 129
    MnCrNiMoV 0.19 0.24 1.10 0.007 0.003 1.78 1.20 0.33 0.18 0.10 0.024
    No. 131
  • These two sample steels were analyzed according to the following. [0021]
  • 1. Tempering: [0022]
  • FIG. 1 shows the hardness as a function of the tempering temperature, tempering time 1 hour. Hardening temperatures for the respective melts are 850° C. for melt No. [0023] 129, and 890° C. for melt No. 131. Sample size 25×25×25 mm.
  • As can be seen in FIG. 1 melt No. [0024] 129 exhibits a flat curve without breaking points, which makes it less sensitive to variations in tempering temperature fluctuations. For the melt 131 the vanadium gives a strong tempering resistance up to 630° C., but at higher temperatures a steep curve is obtained with an increased sensitivity for temperature variations.
  • 2. Through hardening: [0025]
  • FIG. 2 shows the hardness as a function of the depth underneath the surface of a hardened not tempered sample with a diameter of 140 mm, and [0026]
  • FIG. 3 shows the hardness after tempering at 615° C. for the melt No. [0027] 129 and at 645° C. for melt No. 131.
  • The hardening temperature for the melt No. [0028] 129 was 850° C. and for the melt No. 131, 890° C., all being quenched in water.
  • As is evident from the diagramms the melt No. [0029] 129 exhibits the best result of the through hardening both for the untempered and the tempered sample. The difference in hardness between surface and center is very small.
  • 3. Jominy: [0030]
  • FIG. 4 shows the result of the jominy test. The austenitization temperature has been the same as with the through hardening test according to item 2 above. [0031]
  • The jominy test result corresponds well with the through hardening result according to item 2. Melt No. [0032] 129 has the best hardenability.
  • 4. Mechanical properties [0033]
  • Table II below shows the mechanical properties of hardened and tempered bar samples with a diameter of 140 mm. Heat treatment and taking of samples were made according to normal practice for testing of chain material. The melt No. [0034] 129 showing the best results in the hardenability testing and tempering tests has been examined at three different tempering temperatures.
    TABLE II
    Mechanical properties
    Harden. Tempering ReI Rm A5 Z KV, J
    Melt temp ° C. temp ° C. Mpa Mpa % % −40° C. −20° C. ±0° C.
    129 850 615 822 917 17 63 83 134 138
    590 857 937 16 72 89 101 142
    570 923 992 15 67 108  102 123
    131 890 645 896 963 17 64 99 122 126
    Demand acc. to DNV 580 860 12 50  50  70
  • The two melt samples show rather similar results. The lowest allowed tempering temperature for chain K4 is 570° C. according to DNV (Det Norske Veritas). As is evident from Table II this demand would not cause any problems, but at the same time does not allow for any substantial reductions of alloy elements. [0035]
  • The impact toughness at −20° C. is close to the demand according to DNV, but only an area reduction rate of 3 is made with the melt sample, while castings in the production will have an area reduction rate of about 12, so this feature will be substantially improved in full scale manufacture. [0036]
  • 5. Testing according to DNV approval rules of a full scale production melt. [0037]
  • Charge analysis for the production of 160 mmø bar: [0038]
    C Si Mn P S Cr Ni Mo Cu
    0.19 0.26 1.19 0.008 0.009 1.75 1.18 0.44 0.14
    Al Sn Sb (ppm) As B (ppm) O (ppm) N (ppm)
    0.015 0.007 2 0.008 1 9.8 72
  • Heat treatment sensitivity analysis [0039]
  • Varied austenitization temperature [0040]
  • Austenitisation 30 min, cooling in water at hardening [0041]
  • Tempering 610° C., 60 min, cooling in water after tempering [0042]
    Sample Austenitisation Rel Rm A5 Z KV - 20° C.
    No. temperature ° C. Mpa Mpa % % J
    1 840 890 958 18 70 over 147*
    2 870 879 957 17 71 over 147*
    3 910 879 957 18 72 over 147*
  • Heat treatment sensitivity analysis [0043]
  • Varied tempering temperature [0044]
  • Austenitisation 870° C., 30 min, cooling in water at hardening [0045]
  • Tempering 60 min, cooling in water after tempering [0046]
    Sample Tempering Rel Rm A5 Z KV - 20° C.
    No. temperature ° C. Mpa Mpa % % J
    6 570 991 1057  16 67 over 147*
    7 590 925 999 17 69 over 147*
    2 610 879 957 17 71 over 147*
    8 630 838 914 20 72 over 147*
    9 650 782 858 21 73 over 147*
  • Heat treatment sensitivity analysis [0047]
  • Varied tempering time [0048]
  • Austenitisation 870° C., 30 min, cooling in water at hardening [0049]
  • Tempering 610° C., cooling in water after tempering [0050]
    Sample Tempering Rel Rm A5 Z KV - 20° C.
    No. time, min Mpa Mpa % % J
    4 30 890 958 18 70 over 147*
    2 60 879 957 17 71 over 147*
    5 90 869 941 18 74 over 147*
  • Testing for temper embrittelment [0051]
  • Varied cooling velocity after tempering [0052]
  • Austenitizing 870° C., 30 min, cooling in water at hardening [0053]
  • Tempering 610° C., 60 min [0054]
    Sample Tempering KV - 0° C. KV - 20° C. KV - 40° C.
    No. temperature ° C. J J J
    2 water 147* 147* 147*
    2L >40 min to 147* 147* 147*
    300° C.
  • The degree of reduction is about 12 times, which fact explains the big differences in performance compared to the laboratory test materials, having a degree of reduction of only about 3 times, but still being improved compared to the prior art. [0055]
  • While the present invention has been described by reference to the above-mentioned embodiments, certain modifications and variations will be evident to those of ordinary skill in the art. Therefore the present invention is to be limited only by the scope and spirit of the appended claims. [0056]

Claims (9)

1. A steel suitable for the production of bars with a diameter of up to about 160 mm comprising, in weight-%: C 0.15-0.23 Si 0.10-0.40 Mn 1.00-1.50 P max. 0.025 S max. 0.025 Cr 1.50-2.20 Ni 0.80-1.50 Mo 0.30-0.60 Cu  max. 0.30 Al <0.2 V <0.2 Nb <0.2 Ti <0.2
the balance being Fe.
2. The steel according to
claim 1
, comprising, in weight-%: C 0.19-0.21 Si 0.20-0.30 Mn 1.15-1.25 P max. 0.015 S max. 0.020 Cr 1.65-1.75 Ni 1.15-1.25 Mo 0.42-0.48 Cu  max. 0.25 Al <0.2 V <0.2 Nb <0.2 Ti <0.2
the balance being Fe.
3. The steel according to
claim 1
, comprising, in weight-%: C 0.18-0.20 Si 0.20-0.30 Mn 1.15-1.25 P max. 0.015 S max. 0.020 Cr 1.65-1.75 Ni 1.15-1.25 Mo 0.30-0.36 Cu  max. 0.25 V 0.10-0.14 Al <0.2 V <0.2 Nb <0.2 Ti <0.2
the balance being Fe.
4. The steel according to
claim 2
, being hardened at 850° C. and tempered at 615° C.
5. The steel according to
claim 3
, hardened at 890° C. and tempered at above 630° C.
6. The steel according to
claim 6
, tempered at 645° C.
7. A chain formed from the steel according to
claim 1
.
8. A chain formed from the steel according to
claim 2
.
9. A chain formed from the steel according to
claim 3
.
US09/773,586 2000-02-14 2001-02-02 Steel composition and chain formed thereof Abandoned US20010024621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0000458-0 2000-02-14
SE0000458A SE515623C2 (en) 2000-02-14 2000-02-14 chains Steel

Publications (1)

Publication Number Publication Date
US20010024621A1 true US20010024621A1 (en) 2001-09-27

Family

ID=20278436

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/773,586 Abandoned US20010024621A1 (en) 2000-02-14 2001-02-02 Steel composition and chain formed thereof

Country Status (5)

Country Link
US (1) US20010024621A1 (en)
EP (1) EP1126042A1 (en)
JP (1) JP2001247933A (en)
CN (1) CN1124360C (en)
SE (1) SE515623C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070666B2 (en) 2002-09-04 2006-07-04 Intermet Corporation Machinable austempered cast iron article having improved machinability, fatigue performance, and resistance to environmental cracking and a method of making the same
US20080035296A1 (en) * 2006-04-23 2008-02-14 Sanyo Special Steel Co., Ltd Process for producing cast steel billet or steel ingot of titanium-added case hardening steel
US20160245367A1 (en) * 2013-12-04 2016-08-25 Schaeffler Technologies AG & Co. KG Chain element
US10947610B2 (en) 2018-08-21 2021-03-16 Exxonmobil Upstream Research Company Mooring chains comprising high manganese steels and associated methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222574B (en) * 2016-08-24 2017-09-19 宁波乾豪金属制品有限公司 A kind of corrosion resistant spring suspension

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526847B2 (en) * 1972-05-19 1977-02-25
SE430424B (en) * 1981-11-24 1983-11-14 Uddeholms Ab Ketting
JPS61276956A (en) * 1985-05-31 1986-12-06 Kito Corp Link chain
JPH03115523A (en) * 1989-09-28 1991-05-16 Kobe Steel Ltd Production of directly quenched type prehardened steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070666B2 (en) 2002-09-04 2006-07-04 Intermet Corporation Machinable austempered cast iron article having improved machinability, fatigue performance, and resistance to environmental cracking and a method of making the same
US7497915B2 (en) 2002-09-04 2009-03-03 Intermet Corporation Machinable austempered cast iron article having improved machinability, fatigue performance, and resistance to environmental cracking
US20080035296A1 (en) * 2006-04-23 2008-02-14 Sanyo Special Steel Co., Ltd Process for producing cast steel billet or steel ingot of titanium-added case hardening steel
US20160245367A1 (en) * 2013-12-04 2016-08-25 Schaeffler Technologies AG & Co. KG Chain element
US11035436B2 (en) * 2013-12-04 2021-06-15 Schaeffler Technologies AG & Co. KG Chain element
US10947610B2 (en) 2018-08-21 2021-03-16 Exxonmobil Upstream Research Company Mooring chains comprising high manganese steels and associated methods

Also Published As

Publication number Publication date
SE0000458D0 (en) 2000-02-14
CN1309188A (en) 2001-08-22
SE0000458L (en) 2001-08-15
CN1124360C (en) 2003-10-15
JP2001247933A (en) 2001-09-14
EP1126042A1 (en) 2001-08-22
SE515623C2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
KR101048946B1 (en) Spring steel, method for producing spring using same and spring produced therefrom
US8197614B2 (en) Spring steel with improved hardenability and pitting resistance
KR20080017365A (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
EP0411515B1 (en) High strength heat-resistant low alloy steels
US6562153B1 (en) Strain-induced type martensitic steel having high hardness and having high fatigue strength
US20220177996A1 (en) High-Hardness Steel Product and Method of Manufacturing the Same
KR20080034958A (en) Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
US4428781A (en) Welded steel chain
EP1048744A1 (en) Bearing steel excellent in rolling fatigue life
KR20020036776A (en) Method of making a weathering grade plate and product therefrom
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
BR112021010529A2 (en) Hot-rolled steel, hot-rolled steel sheet, production method of a hot-rolled steel, use of a seamless steel and tube
US3288600A (en) Low carbon, high strength alloy steel
CA1091959A (en) Heat treatment for improving the toughness of high manganese steels
KR100422408B1 (en) Cu PRECIPITATION STRENGTHENED STEEL AND METHOD FOR PRODUCING THE SAME
US20010024621A1 (en) Steel composition and chain formed thereof
KR102009630B1 (en) Grater
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4657128B2 (en) High strength structural steel with excellent hydrogen embrittlement resistance and toughness and its manufacturing method
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
US20230357909A1 (en) Austenitic stainless steel
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR100467714B1 (en) austenitic stainless steel with good formability and good properties of fatigue
JP2954216B2 (en) Steel for high strength parts

Legal Events

Date Code Title Description
AS Assignment

Owner name: OVAKO STEEL AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEPPANEN, RAINER;REEL/FRAME:011733/0892

Effective date: 20010326

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION