US20010021097A1 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
US20010021097A1
US20010021097A1 US09/792,056 US79205601A US2001021097A1 US 20010021097 A1 US20010021097 A1 US 20010021097A1 US 79205601 A US79205601 A US 79205601A US 2001021097 A1 US2001021097 A1 US 2001021097A1
Authority
US
United States
Prior art keywords
edlc
thrust
pair
mounting gasket
thrust plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/792,056
Other versions
US6392868B2 (en
Inventor
Masako Ohya
Kazuya Mimura
Yutaka Nakazawa
Satoshi Abe
Satoshi Arai
Takashi Yasuda
Toshihisa Nagasawa
Koji Sakata
Mitsuru Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABE, SATOSHI, ARAI, SATOSHI, MIMURA, KAZUYA, NAGASAWA, TOSHIHISA, NAKAZAWA, YUTAKA, OGAWA, MITSURA, OHYA, MASAKO, SAKATA, KOJI, YASUDA, TAKASHI
Publication of US20010021097A1 publication Critical patent/US20010021097A1/en
Application granted granted Critical
Publication of US6392868B2 publication Critical patent/US6392868B2/en
Assigned to NEC TOKIN CORPORATION reassignment NEC TOKIN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEC CORPORATION
Assigned to TOKIN CORPORATION reassignment TOKIN CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NEC TOKIN CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor (EDLC) and, more particularly, to the structure of the thrust plates and the mounting gasket of the EDLC having higher characteristics and a larger capacitance with smaller dimensions.
  • EDLC electric double layer capacitor
  • the EDLCs have been used in a variety of applications, and now are expected for new applications such as a power source for driving a cell motor of a car in combination with a lead battery, and an auxiliary power source in combination with a solar battery.
  • the EDLC is now being developed to have a larger storage capacity with smaller dimensions by taking advantage of the structure of the EDLC having a small thickness.
  • FIGS. 1A and 1B show conventional EDLCs in cross section.
  • the EDLC includes a plurality of unit capacitors or unit cells stacked one on another and each including a pair of polarizing electrodes 30 , a porous separator 40 , a pair of current collectors 20 made of conductive sheet, and a gasket 50 .
  • Each unit cell is supported by a cylindrical mounting gasket 50 for encircling the polarizing electrodes 30 , which sandwich therebetween the porous separator 40 and is sandwiched between the pair of current collectors 20 .
  • the current collectors 20 disposed outermost side of the stacked unit cells are in electric contact with a pair of metallic terminals (not shown) each having an external lead terminal.
  • the polarizing electrodes 30 are impregnated with an electrolytic solution which may be an aqueous or organic solution, and sealed by an packaging overcoat not shown in the drawings.
  • the withstand voltage of the EDLC is generally limited by the electrolysis voltage of the electrolytic solution, and thus a specified number of unit cells are stacked for serial connection depending on the desired withstand voltage, with one of the current collectors of the unit cell being shared with the adjacent unit cell, or in contact with one of the current collectors of the adjacent unit cell.
  • Patent Publications JP-A-55-107225, -5-299295, -8-83596 and -11-135382 describe EDLCs having a lower internal resistance and excellent resistance against mechanical impacts.
  • each unit cell having a pair of carbon electrodes impregnated with electrolytic solution and sandwiching therebetween a porous separator is encapsulated by a laminated packaging overcoat made of organic polymers having a metallic film as a core member under a vacuum ambient.
  • Patent Publication JP-A-5-299295 describes a EDLC wherein a unit cell is formed by thrusting the capacitor elements received in an envelope between a pair of thrust plates, followed by screwing the same.
  • an electric double-layer capacitor including: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between the polarizing electrodes, a pair of current collectors sandwiching therebetween the unit cell, and a pair of lead terminals in electric contact with the current collectors; a pair of thrust plates each disposed on a corresponding one of the current collector for thrusting therebetween the cell assembly, a mounting gasket for receiving the cell assembly together with the thrust plates; and a packaging overcoat for encapsulating the cell assembly, thrust plates and the mounting gasket, each of the thrust plates having a slanted side surface in contact with the packaging overcoat.
  • EDLC electric double-layer capacitor
  • an electric double-layer capacitor comprising: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between the polarizing electrodes, a pair of current collectors sandwiching therebetween the unit cell, and a pair of lead terminals in electric contact with the current collectors; a pair of thrust plates each disposed on a corresponding one of the current collector for thrusting therebetween the cell assembly, a mounting gasket for receiving the cell assembly together with the thrust plates; and a packaging overcoat for encapsulating the cell assembly, thrust plates and the mounting gasket, each of the thrust plates having an effective thrusting area which is equivalent to or smaller than an effective area of the current collector.
  • EDLC electric double-layer capacitor
  • the configuration of the thrust plates affords excellent device characteristics to the EDLC such as an excellent ESR characteristic.
  • FIGS. 1A and 1B are sectional views of conventional EDLCs.
  • FIGS. 2A to 2 C are a sectional view, a top plan view and a sectional view, respectively, of an EDLC according to an embodiment of the present invention, FIGS. 2A and 2C being taken along lines A-A′ and C-C′ shown in FIG. 2B.
  • FIGS. 3A and 3B are a sectional view and a top plan view of an EDLC according to another embodiment of the present invention.
  • FIGS. 4A to 4 C are side views of the thrust plates.
  • FIGS. 4D and 4E are detailed sectional views of the vicinities of the slanted surfaces of the thrust plates.
  • FIGS. 5A to 5 C are side views of the structure of the thrust plates and the lead terminals.
  • FIGS. 6A to 6 E are detailed side or perspective views each showing the detail of the structure of the lead terminals or thrust plates.
  • FIGS. 7A and 7B are sectional views of EDLCs according to other embodiments of the present invention.
  • FIG. 8 is a sectional view of an EDLC according to another embodiment of the present invention.
  • FIGS. 9A and 9B are a sectional view and a top plan view, respectively, of an EDLC according to another embodiment of the present invention.
  • an EDLC includes a pair of unit cells to form a cell assembly, wherein each unit cell has an en block stacked structure including consecutively a current collector 1 , a polarizing electrode 2 , a porous separator 3 , a polarizing electrode 2 and a current collector 1 , which are received in a cylindrical mounting gasket 4 .
  • These unit cells are stacked one on another to form a stacked cell pair, with one of the current collectors 1 of one the unit cells being in contact with one of the current collectors 1 of the other of the unit cells.
  • a pair of thrust plates 5 a are provided on both bottom and top surfaces of the stacked cell pair.
  • the thrust plate 5 a has a top flat surface and four slanted side surfaces which are in contact with a packaging overcoat 8 , and a bottom flat surface which is in contact with the current collector of the stacked cell pair.
  • an EDLC according to a second embodiment of the present invention is similar to the first embodiment except for the structure of the thrust plates, which are designated by 5 b in the second embodiment and have a round slanted surface.
  • the thrust plate 5 a in the first embodiment is shown in FIG. 4A, having a shape similar to a base portion of a pyramid, i.e., a central top flat surface and a four skirt portions 11 a each of a slanted plane.
  • the thrust plate 5 b in the second embodiment is shown in FIG. 3B, and is similar to the thrust plate of FIG. 3A except for the slanted surfaces each having a curvature or round surface 11 b which is convex toward the outside of the EDLC.
  • the thrust plates 5 b sandwich therebetween the stacked cell pair and are thrust by an external force to stack the unit cells together in a close contact during fabrication of the EDLC.
  • the stacked cell pair is encapsulated in a packaging overcoat 8 by a thrust pressure under the vacuum ambient.
  • the slanted surface 11 a or 11 b of the thrust plate 5 a or 5 b shown in FIGS. 4A or 4 B allows the stacked cell pair to be uniformly thrust by the thrust pressure under the vacuum packaging ambient.
  • the slanted surface may be a concave surface 11 b 1 which is concave from the outside, as shown in FIG. 4C. In these configurations of the slanted surfaces, a uniform close contact can be achieved between the unit cells in the stacked cell pair and between the current collector and the thrust plate. A stable ESR characteristic can be achieved by the close contact by the thrust plates.
  • the top flat surface of the thrust plate 5 a or 5 b allows the resultant EDLC to be placed on a working table in a stable posture during handling of the EDLC.
  • Each of the thrust plates 5 a is connected to a lead terminal 7 a or 7 b as shown in FIG. 2B.
  • the thrust plate 5 e may have an en bloc lead terminal 7 a or 7 b.
  • the thickness of the lead terminal 7 a or 7 b shown in FIG. 5A is equivalent to the thickness of the thrust plate 5 e due to the en bloc configuration.
  • the lead terminal 7 a or 7 b has a thickness smaller than the thickness of the thrust plate 5 e.
  • the lead terminal 7 a or 7 b has a terminal plate section 6 a sandwiched between the thrust plate 5 f and the current collector 1 of the stacked cell pair.
  • the thrust plate 5 f may be made of an insulator such as ceramics.
  • the insulator thrust plates such as shown in FIG. 5 C, may be formed as a thrust member assembly, as shown in FIG. 6B, which has a bridge 6 c for coupling the pair of thrust plates 6 a and 6 b at one side of the stacked cell pair.
  • the thrust member assembly allows the stacked cell pair to be sandwiched between the thrust plates 6 a and 6 b with ease and at a stable posture.
  • the terminal plate 6 a or 6 b such as shown in FIG. 5C, has an en bloc lead terminal 7 a or 7 b having bends.
  • the lead terminals 7 a and 7 b extend from the respective terminal plates 6 a and 6 b from the same side of the stacked cell pair toward outside the gasket and then bent twice toward the center of the stacked cell pair to form a common plane, as designated by A-A′ in FIG. 6A.
  • the common plane of the lead terminals 7 a and 7 b allows the overcoat package to be sealed with ease.
  • the chamfer of bend of the lead terminal should be preferably such that a small space is disposed between the edge of the gasket and the bend of the lead terminal, in order to avoid a short circuit failure between the current collector and the lead terminal or the lead terminal and the opposite terminal plate.
  • the chamfer of the bend of the lead terminal 7 a or 7 b is such that the inner corner angle A of the bend, as shown in FIGS. 6D or 6 E, is preferably equal to or above 90 degrees. This improves the ESR characteristic of the resultant EDLC.
  • the chamfer angle A of the lead terminal 7 a or 7 b is shown as somewhat exaggerated.
  • the inner corner angle A of the bend which is above 90 degrees prevents the lead terminal 7 a or 7 b from contacting the current collector 1 exposed from the edge of the mounting gasket, thereby avoiding a short circuit failure and a resultant degradation of the device reliability.
  • inner edge of the mounting gasket 4 a is chamfered or cut out for allowing the L-shaped edge of the mounting gasket to receive the outer lower edge of the thrust plate in the cutout, as indicated by symbol K 1 .
  • the outer edge of the thrust plate 5 c and the inner edge of the mounting gasket 4 a are interdigitated or engaged together.
  • the interdigitaion or engagement at the cutout allows a correct positioning between the mounting gasket 4 a and the thrust plate 5 c. This allows a stable thrusting operation to be applied, which then allows a correct alignment between the layers of the stacked cell pair to prevent deviation in alignment therebetween, and improves the ESR characteristic of the resultant EDLC. Thus, split or break of the electrode plates or current collectors due to the deviation of the thrust plate with respect to the electrodes or collectors can be avoided. In addition, the resultant prevention of the short circuit failure allows a stable operation of the resultant EDLC.
  • the mounting gasket 4 c may have a chamfer or round corner 12 at the outer corner edge thereof, as shown in FIG. 8, at the location where the mounting gasket contacts 4 c with the packaging overcoat 8 . This prevents the crack or split of the packaging overcoat 8 , especially in the case of the packaging overcoat 8 made of a film
  • the edge of the mounting gasket 4 b has a stripe protrusion which is received in a stripe groove formed in the vicinity of the edge of the thrusting plate 5 d for the interdigitation between the mounting gasket 4 b and the thrusting plate 5 d.
  • the mounting gasket 4 c may have a plurality of positioning gaskets 9 received in a plurality of cutouts of the outer edge of the mounting gasket 4 c. This effectively prevents deviation of the mounting plate 5 g with respect to the layers of the stacked cell pair.
  • the positioning gasket 9 has preferably a thickness equivalent to or less than the thickness of the thrusting plate 5 g. This allows the thrusting plate 5 g to provide a uniform thrusting force to the stacked cell pair.
  • the area of the thrusting plate 5 in contact with the stacked cell pair for thrusting the same is preferably equivalent to or larger than the area of the polarizing electrode 2 . This prevents breakage of the current collector 1 and thus resultant leakage of the electrolytic solution, and split or breakage of the polarizing electrodes 2 .
  • the packaging overcoat 8 is in a close contact with the outer slanted surface of the thrusting plate 5 b, 5 a, 5 c or 5 d, irrespective of the slanted surface being a round surface (FIG. 4D) or a planar surface (FIG. 4E) and the packaging overcoat 8 being a resin package or a film package.
  • the packaging overcoat 8 may be a laminated film including an aluminum core layer and a pair of resin layers sandwiching the same therebetween especially in the case of a vacuum packaging operation.
  • the resin layer for the laminated film may be a polyolefine-based film such as made of polyethylene or polypropylene, a polyamide-based film, a polyester-based film such as made of polyethylene terephthalate, or may be combination of these films.
  • the EDLC may have a frame member 10 made of soft resin or elastic rubber between the mounting gasket 4 and the packaging overcoat 8 for encircling the stacked cell pair, as shown in FIG. 9A.
  • the frame member 10 assist the mounting gasket 4 in support of the stacked cell pair with respect to the packaging overcoat 8 .
  • the frame member 10 has preferably an outer edge which is chamfered to have a round edge 12 . This configuration allows prevention of deviation of the stacked cell pair and damage of the packaging overcoat 8 during the vacuum packaging operation, and also functions as a buffer member against an external impact.
  • the frame member 10 may be made of synthetic rubber elastomer such as polystyrene-based thermoplastic elastomer, polyolefine-based thermoplastic elastomer, polydiene-based thermoplastic elastomer, chlorine-based thermoplastic elastomer, and engineering plastic thermoplastic elastomer
  • the current collector, electrolytic solution, polarizing electrode, porous separator and gasket member may be made of other materials other than the materials as exemplified herein.
  • the current collector may be made of rectangular rubber or plastic sheet obtained by kneading conductive carbon powder with butyl rubber or plastic, or made of a metallic foil.
  • the electrolytic solution may be a diluted sulfuric acid aqueous solution, or may be a non-aqueous electrolytic solution wherein tetraethylammonium tetrafluoroborate etc. is solved in a non-aqueous polarizing solvent such as propylene carbonate, diethyl carbonate, ethyl carbonate, and ethyl-methyl carbonate.
  • the polarizing electrode may be preferably an active carbon sheet or an active carbon block wherein active carbon powder is shaped by a binder such as a phenol resin binder, followed by sintering thereof.
  • the porous separator may be preferably made of a woven cloth or an unwoven cloth made of glass fibers, or a porous resin film made of polypropylene polytetrafluoroethylene (PTFE), polyvinilydine fluoride (PVDF).
  • the gasket may be preferably made of a heat-resisting ABS resin or insulating butyl rubber sheet.
  • the self discharge (SD) test was measured, after applying 8 volts for 24 hours at a room temperature, by measuring the voltage ratio of the residual voltage at 24 hours after the stop of the voltage application with respect to the initial voltage directly after the stop of the voltage application.
  • the residual voltage ratio is expressed in terms of percents thereof.
  • the ESR characteristic is obtained as the real part of the impedance measured by an alternate-current-four-terminal method using a test signal having a frequency of 1 kHz.
  • the mean time to failure (MTTF) in the reliability test is measured by 1000 hours of application of 8 volts at a high temperature of 70° C.
  • the MTTF is obtained by measuring the time lengths of the samples between the start of the test and the time instant at which the samples exhibited failures, plotting the time lengths on Wible probability sheet and estimating the level of MTTF thus obtained for the samples, with the MTTF of Embodiment #1 being set at a unit.
  • the number of samples was 50 for each level, and the MTTF of these samples were averaged.
  • Each sample had a stacked cell structure having 10 serial unit cells in the stacked cell structure.
  • the sample of Embodiment #1 had a pair of 0.3-mm-thick thrust plates each having a lead terminal.
  • the effecting area of the thrust plate is equivalent to the contact area of the stacked cells, and the chamfer angle A shown in FIG. 6E was 90 degrees
  • the samples of modifications #1 modified from Embodiment #1 had chamfer angles A of 60, 75, 105 and 135 degrees.
  • samples of modifications #2 modified from Embodiment #1 had chamfer angles A of 75, 90, 105 and 135 degrees.
  • the samples having a chamfer angle of 60 or 75 degrees were comparative examples.
  • Each of two samples of Embodiments #2 had a pair of thick thrust plates each having a lead terminal.
  • the effecting area of the thrust plate is equivalent to the contact area of the stacked cells, and the slanted surface of the thrust plate was a round surface 11 b, as shown in FIG. 4B, having a radius of curvature of 0.05 or 0.1 mm.
  • the samples of modifications #3 modified from Embodiment #2 had slanted planes 11 a, such as shown in FIG. 4A.
  • the chamfer of the edge in modification had 0.05 or 0.1 mm.
  • Embodiment #4 had a positioning gasket 9 , such as shown in FIG. 8, wherein the thickness of the gasket 9 is smaller than the thickness of the thrusting plate.
  • samples of Embodiments and modifications therefrom had excellent characteristics compared to the conventional EDLC. More specifically, samples of the present invention having slanted plane or slanted round surface, having the area of the thrust plate which is smaller of the area of the current collector, the chamfered angle of the lead terminal which is equal to or larger than 90 degrees, or the specific structure of the mounting gasket achieved excellent ESR and SD characteristics.

Abstract

An electric double-layer capacitor has a pair of thrust plates for thrusting a stacked cell pair and a gasket for encapsulating the stacked cell pair together with the thrust plates. The thrust plate has slanted side surfaces for effecting a close contact with a packaging overcoat. The thrust plates and the mounting gasket are coupled together by an interdigitaion relationship.

Description

    BACKGROUND OF THE INVENTION
  • (a) Field of the Invention [0001]
  • The present invention relates to an electric double layer capacitor (EDLC) and, more particularly, to the structure of the thrust plates and the mounting gasket of the EDLC having higher characteristics and a larger capacitance with smaller dimensions. [0002]
  • (b) Description of the Related Art [0003]
  • The EDLCs have been used in a variety of applications, and now are expected for new applications such as a power source for driving a cell motor of a car in combination with a lead battery, and an auxiliary power source in combination with a solar battery. The EDLC is now being developed to have a larger storage capacity with smaller dimensions by taking advantage of the structure of the EDLC having a small thickness. [0004]
  • FIGS. 1A and 1B show conventional EDLCs in cross section. The EDLC includes a plurality of unit capacitors or unit cells stacked one on another and each including a pair of polarizing [0005] electrodes 30, a porous separator 40, a pair of current collectors 20 made of conductive sheet, and a gasket 50. Each unit cell is supported by a cylindrical mounting gasket 50 for encircling the polarizing electrodes 30, which sandwich therebetween the porous separator 40 and is sandwiched between the pair of current collectors 20. The current collectors 20 disposed outermost side of the stacked unit cells are in electric contact with a pair of metallic terminals (not shown) each having an external lead terminal.
  • The polarizing [0006] electrodes 30 are impregnated with an electrolytic solution which may be an aqueous or organic solution, and sealed by an packaging overcoat not shown in the drawings.
  • The withstand voltage of the EDLC is generally limited by the electrolysis voltage of the electrolytic solution, and thus a specified number of unit cells are stacked for serial connection depending on the desired withstand voltage, with one of the current collectors of the unit cell being shared with the adjacent unit cell, or in contact with one of the current collectors of the adjacent unit cell. [0007]
  • Patent Publications JP-A-55-107225, -5-299295, -8-83596 and -11-135382 describe EDLCs having a lower internal resistance and excellent resistance against mechanical impacts. In these EDLCs, each unit cell having a pair of carbon electrodes impregnated with electrolytic solution and sandwiching therebetween a porous separator is encapsulated by a laminated packaging overcoat made of organic polymers having a metallic film as a core member under a vacuum ambient. [0008]
  • Patent Publication JP-A-5-299295 describes a EDLC wherein a unit cell is formed by thrusting the capacitor elements received in an envelope between a pair of thrust plates, followed by screwing the same. [0009]
  • For the EDLCs, it is proposed or suggested in a variety of publications such as mentioned above to reduce the contact resistance in the unit cell as well as stacked unit cells, in view of the trend for obtaining a higher storage capacity with smaller dimension. [0010]
  • In the proposed EDLC, wherein the contact resistance is reduced by using the pair of thrust plates, for example, there is a problem in that it is difficult to achieve a uniform close contact in fact for reducing the contact resistance. In addition, the stacked unit cells are likely to be misaligned at the interface therebetween during the thrusting operation under the vacuum ambient. [0011]
  • Thus, in the conventional EDLC, there occur damages such as split, distortion, or ununiform contact of the electrode layers, and damage or crack of the package. In short, desired equivalent serial resistance (ESR) characteristics or stability thereof as well as desired reliability of the product are not achieved in the conventional EDLC. [0012]
  • SUMMARY OF THE INVENTION
  • In view of the above problems in the conventional EDLCs, it is an object of the present invention to provide a structure for the EDLC which is capable of allowing smaller dimensions and having a larger storage capacity, and reducing and stabilizing the ESR etc. characteristics of the EDLC. [0013]
  • The present invention provides, in one aspect thereof, an electric double-layer capacitor (EDLC) including: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between the polarizing electrodes, a pair of current collectors sandwiching therebetween the unit cell, and a pair of lead terminals in electric contact with the current collectors; a pair of thrust plates each disposed on a corresponding one of the current collector for thrusting therebetween the cell assembly, a mounting gasket for receiving the cell assembly together with the thrust plates; and a packaging overcoat for encapsulating the cell assembly, thrust plates and the mounting gasket, each of the thrust plates having a slanted side surface in contact with the packaging overcoat. [0014]
  • The present invention provide, in another aspect thereof, an electric double-layer capacitor (EDLC) comprising: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between the polarizing electrodes, a pair of current collectors sandwiching therebetween the unit cell, and a pair of lead terminals in electric contact with the current collectors; a pair of thrust plates each disposed on a corresponding one of the current collector for thrusting therebetween the cell assembly, a mounting gasket for receiving the cell assembly together with the thrust plates; and a packaging overcoat for encapsulating the cell assembly, thrust plates and the mounting gasket, each of the thrust plates having an effective thrusting area which is equivalent to or smaller than an effective area of the current collector. [0015]
  • In accordance with the present invention, the configuration of the thrust plates affords excellent device characteristics to the EDLC such as an excellent ESR characteristic.[0016]
  • The above and other objects, features and advantages of the present invention will be more apparent from the following description, referring to the accompanying drawings. [0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B are sectional views of conventional EDLCs. [0018]
  • FIGS. 2A to [0019] 2C are a sectional view, a top plan view and a sectional view, respectively, of an EDLC according to an embodiment of the present invention, FIGS. 2A and 2C being taken along lines A-A′ and C-C′ shown in FIG. 2B.
  • FIGS. 3A and 3B are a sectional view and a top plan view of an EDLC according to another embodiment of the present invention. [0020]
  • FIGS. 4A to [0021] 4C are side views of the thrust plates, and
  • FIGS. 4D and 4E are detailed sectional views of the vicinities of the slanted surfaces of the thrust plates. [0022]
  • FIGS. 5A to [0023] 5C are side views of the structure of the thrust plates and the lead terminals.
  • FIGS. 6A to [0024] 6E are detailed side or perspective views each showing the detail of the structure of the lead terminals or thrust plates.
  • FIGS. 7A and 7B are sectional views of EDLCs according to other embodiments of the present invention. [0025]
  • FIG. 8 is a sectional view of an EDLC according to another embodiment of the present invention. [0026]
  • FIGS. 9A and 9B are a sectional view and a top plan view, respectively, of an EDLC according to another embodiment of the present invention.[0027]
  • PREFERRED EMBODIMENTS OF THE INVENTION
  • Now, the present invention is more specifically described with reference to accompanying drawings, wherein similar constituent elements are designated by similar reference numerals. [0028]
  • Referring to FIGS. 2A to [0029] 2C, an EDLC according to a first embodiment of the present invention includes a pair of unit cells to form a cell assembly, wherein each unit cell has an en block stacked structure including consecutively a current collector 1, a polarizing electrode 2, a porous separator 3, a polarizing electrode 2 and a current collector 1, which are received in a cylindrical mounting gasket 4. These unit cells are stacked one on another to form a stacked cell pair, with one of the current collectors 1 of one the unit cells being in contact with one of the current collectors 1 of the other of the unit cells. A pair of thrust plates 5 a are provided on both bottom and top surfaces of the stacked cell pair. The thrust plate 5 a has a top flat surface and four slanted side surfaces which are in contact with a packaging overcoat 8, and a bottom flat surface which is in contact with the current collector of the stacked cell pair.
  • Referring to FIG. 3A and 3B, an EDLC according to a second embodiment of the present invention is similar to the first embodiment except for the structure of the thrust plates, which are designated by [0030] 5 b in the second embodiment and have a round slanted surface.
  • The [0031] thrust plate 5 a in the first embodiment is shown in FIG. 4A, having a shape similar to a base portion of a pyramid, i.e., a central top flat surface and a four skirt portions 11 a each of a slanted plane.
  • The [0032] thrust plate 5 b in the second embodiment is shown in FIG. 3B, and is similar to the thrust plate of FIG. 3A except for the slanted surfaces each having a curvature or round surface 11 b which is convex toward the outside of the EDLC. The thrust plates 5 b sandwich therebetween the stacked cell pair and are thrust by an external force to stack the unit cells together in a close contact during fabrication of the EDLC.
  • The stacked cell pair is encapsulated in a packaging overcoat [0033] 8 by a thrust pressure under the vacuum ambient. The slanted surface 11 a or 11 b of the thrust plate 5 a or 5 b shown in FIGS. 4A or 4B allows the stacked cell pair to be uniformly thrust by the thrust pressure under the vacuum packaging ambient. The slanted surface may be a concave surface 11 b 1 which is concave from the outside, as shown in FIG. 4C. In these configurations of the slanted surfaces, a uniform close contact can be achieved between the unit cells in the stacked cell pair and between the current collector and the thrust plate. A stable ESR characteristic can be achieved by the close contact by the thrust plates.
  • In addition, the top flat surface of the [0034] thrust plate 5 a or 5 b allows the resultant EDLC to be placed on a working table in a stable posture during handling of the EDLC.
  • Each of the [0035] thrust plates 5 a is connected to a lead terminal 7 a or 7 b as shown in FIG. 2B. In an alternative, as shown in FIG. 5A, the thrust plate 5 e may have an en bloc lead terminal 7 a or 7 b. The thickness of the lead terminal7 a or 7 b shown in FIG. 5A is equivalent to the thickness of the thrust plate 5 e due to the en bloc configuration.
  • In another configuration shown in FIG. 5B, the [0036] lead terminal 7 a or 7 b has a thickness smaller than the thickness of the thrust plate 5 e. In a further alternative, as shown in FIG. 5C, the lead terminal 7 a or 7 b has a terminal plate section 6 a sandwiched between the thrust plate 5 f and the current collector 1 of the stacked cell pair. In this configuration, the thrust plate 5 f may be made of an insulator such as ceramics.
  • The insulator thrust plates, such as shown in FIG. [0037] 5C, may be formed as a thrust member assembly, as shown in FIG. 6B, which has a bridge 6 c for coupling the pair of thrust plates 6 a and 6 b at one side of the stacked cell pair. The thrust member assembly allows the stacked cell pair to be sandwiched between the thrust plates 6 a and 6 b with ease and at a stable posture.
  • Referring to FIG. 6A, the [0038] terminal plate 6 a or 6 b, such as shown in FIG. 5C, has an en bloc lead terminal 7 a or 7 b having bends. The lead terminals 7 a and 7 b extend from the respective terminal plates 6 a and 6 b from the same side of the stacked cell pair toward outside the gasket and then bent twice toward the center of the stacked cell pair to form a common plane, as designated by A-A′ in FIG. 6A. The common plane of the lead terminals 7 a and 7 b allows the overcoat package to be sealed with ease.
  • The chamfer of bend of the lead terminal should be preferably such that a small space is disposed between the edge of the gasket and the bend of the lead terminal, in order to avoid a short circuit failure between the current collector and the lead terminal or the lead terminal and the opposite terminal plate. [0039]
  • The chamfer of the bend of the [0040] lead terminal 7 a or 7 b is such that the inner corner angle A of the bend, as shown in FIGS. 6D or 6E, is preferably equal to or above 90 degrees. This improves the ESR characteristic of the resultant EDLC. In FIG. 6E, the chamfer angle A of the lead terminal 7 a or 7 b is shown as somewhat exaggerated.
  • The inner corner angle A of the bend which is above 90 degrees prevents the [0041] lead terminal 7 a or 7 b from contacting the current collector 1 exposed from the edge of the mounting gasket, thereby avoiding a short circuit failure and a resultant degradation of the device reliability.
  • Referring to FIG. 7A, inner edge of the mounting [0042] gasket 4 a is chamfered or cut out for allowing the L-shaped edge of the mounting gasket to receive the outer lower edge of the thrust plate in the cutout, as indicated by symbol K1. Thus, the outer edge of the thrust plate 5 c and the inner edge of the mounting gasket 4 a are interdigitated or engaged together.
  • The interdigitaion or engagement at the cutout allows a correct positioning between the mounting [0043] gasket 4 a and the thrust plate 5 c. This allows a stable thrusting operation to be applied, which then allows a correct alignment between the layers of the stacked cell pair to prevent deviation in alignment therebetween, and improves the ESR characteristic of the resultant EDLC. Thus, split or break of the electrode plates or current collectors due to the deviation of the thrust plate with respect to the electrodes or collectors can be avoided. In addition, the resultant prevention of the short circuit failure allows a stable operation of the resultant EDLC.
  • The mounting [0044] gasket 4 c may have a chamfer or round corner 12 at the outer corner edge thereof, as shown in FIG. 8, at the location where the mounting gasket contacts 4 c with the packaging overcoat 8. This prevents the crack or split of the packaging overcoat 8, especially in the case of the packaging overcoat 8 made of a film
  • In an alternative, as shown in FIG. 7B, the edge of the mounting [0045] gasket 4 b has a stripe protrusion which is received in a stripe groove formed in the vicinity of the edge of the thrusting plate 5 d for the interdigitation between the mounting gasket 4 b and the thrusting plate 5 d.
  • As shown in FIG. 8, the mounting [0046] gasket 4 c may have a plurality of positioning gaskets 9 received in a plurality of cutouts of the outer edge of the mounting gasket 4 c. This effectively prevents deviation of the mounting plate 5 g with respect to the layers of the stacked cell pair.
  • The [0047] positioning gasket 9 has preferably a thickness equivalent to or less than the thickness of the thrusting plate 5 g. This allows the thrusting plate 5 g to provide a uniform thrusting force to the stacked cell pair.
  • The area of the thrusting plate [0048] 5 in contact with the stacked cell pair for thrusting the same is preferably equivalent to or larger than the area of the polarizing electrode 2. This prevents breakage of the current collector 1 and thus resultant leakage of the electrolytic solution, and split or breakage of the polarizing electrodes 2.
  • Referring to FIGS. 4D and 4E, the [0049] packaging overcoat 8 is in a close contact with the outer slanted surface of the thrusting plate 5 b, 5 a, 5 c or 5 d, irrespective of the slanted surface being a round surface (FIG. 4D) or a planar surface (FIG. 4E) and the packaging overcoat 8 being a resin package or a film package.
  • The [0050] packaging overcoat 8 may be a laminated film including an aluminum core layer and a pair of resin layers sandwiching the same therebetween especially in the case of a vacuum packaging operation.
  • The resin layer for the laminated film may be a polyolefine-based film such as made of polyethylene or polypropylene, a polyamide-based film, a polyester-based film such as made of polyethylene terephthalate, or may be combination of these films. [0051]
  • The EDLC may have a [0052] frame member 10 made of soft resin or elastic rubber between the mounting gasket 4 and the packaging overcoat 8 for encircling the stacked cell pair, as shown in FIG. 9A. The frame member 10 assist the mounting gasket 4 in support of the stacked cell pair with respect to the packaging overcoat 8. The frame member 10 has preferably an outer edge which is chamfered to have a round edge 12. This configuration allows prevention of deviation of the stacked cell pair and damage of the packaging overcoat 8 during the vacuum packaging operation, and also functions as a buffer member against an external impact.
  • The [0053] frame member 10 may be made of synthetic rubber elastomer such as polystyrene-based thermoplastic elastomer, polyolefine-based thermoplastic elastomer, polydiene-based thermoplastic elastomer, chlorine-based thermoplastic elastomer, and engineering plastic thermoplastic elastomer
  • The current collector, electrolytic solution, polarizing electrode, porous separator and gasket member may be made of other materials other than the materials as exemplified herein. [0054]
  • The current collector may be made of rectangular rubber or plastic sheet obtained by kneading conductive carbon powder with butyl rubber or plastic, or made of a metallic foil. The electrolytic solution may be a diluted sulfuric acid aqueous solution, or may be a non-aqueous electrolytic solution wherein tetraethylammonium tetrafluoroborate etc. is solved in a non-aqueous polarizing solvent such as propylene carbonate, diethyl carbonate, ethyl carbonate, and ethyl-methyl carbonate. [0055]
  • The polarizing electrode may be preferably an active carbon sheet or an active carbon block wherein active carbon powder is shaped by a binder such as a phenol resin binder, followed by sintering thereof. The porous separator may be preferably made of a woven cloth or an unwoven cloth made of glass fibers, or a porous resin film made of polypropylene polytetrafluoroethylene (PTFE), polyvinilydine fluoride (PVDF). The gasket may be preferably made of a heat-resisting ABS resin or insulating butyl rubber sheet. [0056]
  • EXAMPLES
  • Samples of the EDLC according to the above embodiments were fabricated, and subjected to tests in comparison with modifications therefrom or comparative examples, the tests including measurement of ESR, self discharge (SD) characteristics in the initial stage after fabrication and a subsequent reliability test including MTTF. [0057]
  • The self discharge (SD) test was measured, after applying 8 volts for 24 hours at a room temperature, by measuring the voltage ratio of the residual voltage at 24 hours after the stop of the voltage application with respect to the initial voltage directly after the stop of the voltage application. The residual voltage ratio is expressed in terms of percents thereof. [0058]
  • The ESR characteristic is obtained as the real part of the impedance measured by an alternate-current-four-terminal method using a test signal having a frequency of 1 kHz. [0059]
  • The mean time to failure (MTTF) in the reliability test is measured by 1000 hours of application of 8 volts at a high temperature of 70° C. The MTTF is obtained by measuring the time lengths of the samples between the start of the test and the time instant at which the samples exhibited failures, plotting the time lengths on Wible probability sheet and estimating the level of MTTF thus obtained for the samples, with the MTTF of [0060] Embodiment #1 being set at a unit.
  • The number of samples was 50 for each level, and the MTTF of these samples were averaged. Each sample had a stacked cell structure having 10 serial unit cells in the stacked cell structure. [0061]
  • The sample of [0062] Embodiment #1 had a pair of 0.3-mm-thick thrust plates each having a lead terminal. The effecting area of the thrust plate is equivalent to the contact area of the stacked cells, and the chamfer angle A shown in FIG. 6E was 90 degrees The samples of modifications #1 modified from Embodiment #1 had chamfer angles A of 60, 75, 105 and 135 degrees. In addition, samples of modifications #2 modified from Embodiment #1 had chamfer angles A of 75, 90, 105 and 135 degrees. The samples having a chamfer angle of 60 or 75 degrees were comparative examples.
  • Each of two samples of [0063] Embodiments #2 had a pair of thick thrust plates each having a lead terminal. The effecting area of the thrust plate is equivalent to the contact area of the stacked cells, and the slanted surface of the thrust plate was a round surface 11 b, as shown in FIG. 4B, having a radius of curvature of 0.05 or 0.1 mm. The samples of modifications #3 modified from Embodiment #2 had slanted planes 11 a, such as shown in FIG. 4A. The chamfer of the edge in modification had 0.05 or 0.1 mm.
  • Each sample of [0064] Embodiment #3 had a frame member 10, such as shown in FIG. 9A, which has a height “L” wherein L>B. L=B or L<B, given B being the thickness of the stacked cells.
  • The sample of [0065] Modification #4 modified from Embodiment #3 had a height “L” wherein L=B, with the chamfer of the edge of the frame member having a radius of curvature of 0.1 mm.
  • The sample of [0066] Embodiment #4 had a positioning gasket 9, such as shown in FIG. 8, wherein the thickness of the gasket 9 is smaller than the thickness of the thrusting plate.
  • The results of the measurements are shown in Table 1. [0067]
    TABLE 1
    LEVEL ESR SD RTTF CF
    EMBODIMENT #
    1 A-90° 1 1 1 INVENTION
    MODIFICATION #
    1 A-60° 4.0 0.75 0.57 COMPARA-
    TIVE
    EXAMPLE
    MODIFICATiON #
    1 A-75° 2.5 0.80 0.73 COMPARA-
    TIVE
    EXAMPLE
    MODIFICATION #
    1 A-105° 0.95 1.2 1.23 INVENTION
    MODIFICATION #
    1 A-135° 0.94 1.34 1.53 INVENTION
    MODIFICATION #
    2 A-75° 1.7 0.9 0.92 COMPARA-
    TIVE
    EXAMPLE
    MODIFICATION #
    2 A-90° 0.96 1.2 1.31 INVENTION
    MODIFICATION #
    2 A-105° 0.88 1.3 2.1 INVENTION
    MODIFICATION #
    2 A-135° 0.85 1.35 2.38 INVENTION
    EMBODIMENT #2 R-0.05 0.88 1.2 1.9 INVENTION
    EMBODIMENT #2 R-0.1 0.82 1.3 2.4 INVENTION
    MODIFICATION #3 C-0.05 0.89 1.35 1.7 INVENTION
    MODIFICATION #3 C-0.1 0.81 1.23 2.3 INVENTION
    MODIFICATION #3 L < B 0.92 1.1 1.63 INVENTION
    MODIFICATION #3 L = B 0.98 0.98 1.32 INVENTION
    MODIFICATION #3 L > B 3.9 0.97 0.39 INVENTION
    MODIFICATION #4 L = B 0.95 0.98 2.04 INVENTION
    EMBODIMENT #
    4 1.03 1.07 1.53 INVENTION
  • As understood from Table 1, the samples of Embodiments and modifications therefrom had excellent characteristics compared to the conventional EDLC. More specifically, samples of the present invention having slanted plane or slanted round surface, having the area of the thrust plate which is smaller of the area of the current collector, the chamfered angle of the lead terminal which is equal to or larger than 90 degrees, or the specific structure of the mounting gasket achieved excellent ESR and SD characteristics. [0068]
  • Since the above embodiments are described only for examples, the present invention is not limited to the above embodiments and various modifications or alterations can be easily made therefrom by those skilled in the art without departing from the scope of the present invention. [0069]

Claims (20)

What is claimed is:
1. An electric double-layer capacitor (EDLC) comprising: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between said polarizing electrodes, a pair of current collectors sandwiching therebetween said unit cell, and a pair of lead terminals in electric contact with said current collectors; a pair of thrust plates each disposed on a corresponding one of said current collector for thrusting therebetween said cell assembly, a mounting gasket for receiving said cell assembly together with said thrust plates; and a packaging overcoat for encapsulating said cell assembly, thrust plates and said mounting gasket, each of said thrust plates having a slanted side surface in contact with said packaging overcoat.
2. The EDLC as defined in
claim 1
, wherein each of said lead terminals extends from a corresponding one of said thrust terminals made of conductive material.
3. The EDLC as defined in
claim 1
, wherein each of said lead terminals has a base plate sandwiched between one of said terminal plates and a corresponding one of said current collectors.
4. The EDLC as defined in
claim 3
, wherein said pair of thrust plates are made of insulator and coupled with one another by a bridge.
5. The EDLC as defined in
claim 1
, wherein an edge of said mounting gasket and an edge of said terminal plate are coupled by an interdigitation relationship.
6. The EDLC as defined in
claim 5
, wherein the edge of said mounting gasket has a stripe cutout for effecting said interdigitaion relationship.
7. The EDLC as defined in claim in
claim 5
, wherein a portion of the edge of said mounting gasket in contact with said packaging overcoat is chamfered to have a round surface.
8. The EDLC as defined in
claim 5
, wherein the edge of said mounting gasket has at least two protrusions and the edge of said thrust plate has at least tow depressions corresponding to said protrusions.
9. The EDLC as defined in
claim 1
, wherein said mounting gasket has a thickness equivalent to or smaller than a thickness of said thrust plate.
10. The EDLC as defined in
claim 1
, wherein said slanted surface of said thrust plate is either convex toward said packaging overcoat, convex toward said cell assembly or a planar surface.
11. The EDLC as defined in
claim 2
, wherein said thrust plate has an effecting thrust area which is equivalent to or smaller than an effective area of said current collector.
12. An electric double-layer capacitor (EDLC) comprising: a cell assembly including at least one unit cell having a pair of polarizing electrodes impregnated with electrolytic solution, and a porous separator sandwiched between said polarizing electrodes, a pair of current collectors sandwiching therebetween said unit cell, and a pair of lead terminals in electric contact with said current collectors; a pair of thrust plates each disposed on a corresponding one of said current collectors for thrusting therebetween said cell assembly, a mounting gasket for receiving said cell assembly together with said thrust plates; and a packaging overcoat for encapsulating said cell assembly, thrust plates and said mounting gasket, each of said thrust plates having an effective thrusting area which is equivalent to or smaller than an effective contact area of said current collector.
13. The EDLC as defined in
claim 12
, wherein an edge of said mounting gasket and an edge of said terminal plate are coupled by an interdigitation relationship.
14. The EDLC as defined in
claim 12
, wherein each of said lead terminals has a terminal plate sandwiched between one of said thrust plates and a corresponding one of said current collectors.
15. The EDLC as defined in
claim 14
, wherein said pair of thrust plates are made of insulator and coupled with one another by a bridge.
16. The EDLC as defined in
claim 12
, wherein said thrust plate has substantially a shape of a base portion of a pyramid.
17. The EDLC as defined in
claim 12
, wherein said thrust plate has an effective thrusting area which is equivalent to or smaller than an effective contact area of said current collector.
18. The EDLC as defined in
claim 1
or
12
, wherein said lead terminals are bent at two bend portions to form a common plane.
19. The EDLC as defined in
claim 18
, wherein said each of said bend portions has a chamfer angle which is equal to 90 degrees or more.
20. The EDLC as defined in
claim 1
or
12
, further comprising a frame member between said gasket and said packaging overcoat.
US09/792,056 2000-02-28 2001-02-26 Electric double layer capacitor Expired - Lifetime US6392868B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000050746A JP3422745B2 (en) 2000-02-28 2000-02-28 Electric double layer capacitor
JP2000-50746 2000-02-28
JP2000-050746 2000-02-28

Publications (2)

Publication Number Publication Date
US20010021097A1 true US20010021097A1 (en) 2001-09-13
US6392868B2 US6392868B2 (en) 2002-05-21

Family

ID=18572499

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/792,056 Expired - Lifetime US6392868B2 (en) 2000-02-28 2001-02-26 Electric double layer capacitor

Country Status (4)

Country Link
US (1) US6392868B2 (en)
JP (1) JP3422745B2 (en)
KR (1) KR100397230B1 (en)
TW (1) TWI242785B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196112A1 (en) * 2004-03-08 2005-09-08 Toshio Takagi Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode
WO2007086569A1 (en) 2006-01-30 2007-08-02 Kyocera Corporation Container for electricity accumulator and battery and electric double layer capacitor employing same
US20080212262A1 (en) * 2006-10-10 2008-09-04 Micallef Joseph A Piezoelectric Ultracapacitor
US20090058223A1 (en) * 2007-09-03 2009-03-05 Micallef Joseph A Piezoelectric Ultracapacitor
US7675729B2 (en) 2003-12-22 2010-03-09 X2Y Attenuators, Llc Internally shielded energy conditioner
US7688565B2 (en) 1997-04-08 2010-03-30 X2Y Attenuators, Llc Arrangements for energy conditioning
US7733621B2 (en) 1997-04-08 2010-06-08 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7768763B2 (en) 1997-04-08 2010-08-03 X2Y Attenuators, Llc Arrangement for energy conditioning
US7782587B2 (en) 2005-03-01 2010-08-24 X2Y Attenuators, Llc Internally overlapped conditioners
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US20110110013A1 (en) * 2007-09-07 2011-05-12 Meidensha Corporation Stacked electric double layer capacitor
US20110110012A1 (en) * 2007-09-14 2011-05-12 Meidensha Corporation Bipolar layered type electric double layer capacitor
US20110116211A1 (en) * 2007-09-06 2011-05-19 Hiroyuki Watanabe Electric double-layer capacitor
US8026777B2 (en) 2006-03-07 2011-09-27 X2Y Attenuators, Llc Energy conditioner structures
WO2014058787A2 (en) * 2012-10-08 2014-04-17 Maxwell Technologies, Inc. Electrolyte for three-volt ultracapacitor
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US9977090B2 (en) 2009-09-30 2018-05-22 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US11355286B2 (en) * 2018-11-19 2022-06-07 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing capacitor component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280264A (en) * 2001-03-19 2002-09-27 Nec Tokin Corp Electric double-layer capacitor and production method therefor
JP3953327B2 (en) 2002-01-21 2007-08-08 Necトーキン株式会社 Batteries and electric double layer capacitors
JP2004186273A (en) * 2002-11-29 2004-07-02 Honda Motor Co Ltd Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
KR101044964B1 (en) * 2004-11-12 2011-06-28 에스케이케미칼주식회사 Solid electrolyte capacitor having plate type anode
JP2008543084A (en) * 2005-05-31 2008-11-27 コーニング インコーポレイテッド Honeycomb cell type ultracapacitor and hybrid capacitor with separator support current collector
CN101263567A (en) * 2005-07-30 2008-09-10 康宁股份有限公司 Cellular honeycomb hybrid capacitors with non-uniform cell geometry
JP2009099704A (en) * 2007-10-16 2009-05-07 Meidensha Corp Stacked electric double-layer capacitor
US8508916B2 (en) 2010-10-13 2013-08-13 Cooper Technologies Company High voltage electric double layer capacitor device and methods of manufacture
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
US10020127B1 (en) * 2017-04-05 2018-07-10 Greatbatch Ltd. Capacitor having multiple anodes housed in a compartmented casing

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856162B2 (en) * 1996-07-30 1999-02-10 日本電気株式会社 Electric double layer capacitor and method of manufacturing the same
US3652902A (en) * 1969-06-30 1972-03-28 Ibm Electrochemical double layer capacitor
JPS55107225A (en) 1979-02-09 1980-08-16 Matsushita Electric Ind Co Ltd Electric double layer capacitor and method of manufacturing same
JP2600939B2 (en) * 1989-12-28 1997-04-16 いすゞ自動車株式会社 Method for manufacturing electrode of electric double layer capacitor
JP3125341B2 (en) * 1991-08-20 2001-01-15 株式会社村田製作所 Multilayer electric double layer capacitors
JPH0546026U (en) * 1991-11-19 1993-06-18 富士電気化学株式会社 Electric double layer capacitor
JPH05234814A (en) * 1992-02-24 1993-09-10 Murata Mfg Co Ltd Electric double layer capacitor
JPH05299295A (en) 1992-04-16 1993-11-12 Nec Corp Electric double-layer capacitor
US5450279A (en) * 1993-05-19 1995-09-12 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
KR950010193A (en) * 1993-09-28 1995-04-26 배순훈 Outlet with safety cover
JP2993343B2 (en) * 1993-12-28 1999-12-20 日本電気株式会社 Polarizing electrode and method of manufacturing the same
GB9412045D0 (en) * 1994-06-16 1994-08-03 Gilmour Alexander Non-aqueous electrochemical cells having novel duplex cathode composition
JP3617081B2 (en) 1994-09-09 2005-02-02 ソニー株式会社 Thin card battery
JPH0963894A (en) * 1995-08-23 1997-03-07 Elna Co Ltd Electric double layer capacitor
JP3070486B2 (en) * 1996-07-30 2000-07-31 日本電気株式会社 Electric double layer capacitor
JP3446862B2 (en) * 1996-07-31 2003-09-16 ワイケイケイ株式会社 Slider for slide fastener with stop device
JP3156655B2 (en) 1997-10-30 2001-04-16 日本電気株式会社 Electric double layer capacitor and method of manufacturing the same
US6208502B1 (en) * 1998-07-06 2001-03-27 Aerovox, Inc. Non-symmetric capacitor
JP3241325B2 (en) * 1998-07-31 2001-12-25 日本電気株式会社 Electric double layer capacitor
US6084766A (en) * 1998-09-29 2000-07-04 General Electric Company Method of making an ultracapacitor electrode

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7733621B2 (en) 1997-04-08 2010-06-08 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US8004812B2 (en) 1997-04-08 2011-08-23 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US8018706B2 (en) 1997-04-08 2011-09-13 X2Y Attenuators, Llc Arrangement for energy conditioning
US9373592B2 (en) 1997-04-08 2016-06-21 X2Y Attenuators, Llc Arrangement for energy conditioning
US7920367B2 (en) 1997-04-08 2011-04-05 X2Y Attenuators, Llc Method for making arrangement for energy conditioning
US9036319B2 (en) 1997-04-08 2015-05-19 X2Y Attenuators, Llc Arrangement for energy conditioning
US8023241B2 (en) 1997-04-08 2011-09-20 X2Y Attenuators, Llc Arrangement for energy conditioning
US7688565B2 (en) 1997-04-08 2010-03-30 X2Y Attenuators, Llc Arrangements for energy conditioning
US9019679B2 (en) 1997-04-08 2015-04-28 X2Y Attenuators, Llc Arrangement for energy conditioning
US7916444B2 (en) 1997-04-08 2011-03-29 X2Y Attenuators, Llc Arrangement for energy conditioning
US8587915B2 (en) 1997-04-08 2013-11-19 X2Y Attenuators, Llc Arrangement for energy conditioning
US7768763B2 (en) 1997-04-08 2010-08-03 X2Y Attenuators, Llc Arrangement for energy conditioning
US7675729B2 (en) 2003-12-22 2010-03-09 X2Y Attenuators, Llc Internally shielded energy conditioner
US20050196112A1 (en) * 2004-03-08 2005-09-08 Toshio Takagi Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode
US7782587B2 (en) 2005-03-01 2010-08-24 X2Y Attenuators, Llc Internally overlapped conditioners
US9001486B2 (en) 2005-03-01 2015-04-07 X2Y Attenuators, Llc Internally overlapped conditioners
US7974062B2 (en) 2005-03-01 2011-07-05 X2Y Attenuators, Llc Internally overlapped conditioners
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US8014119B2 (en) * 2005-03-01 2011-09-06 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US8547677B2 (en) 2005-03-01 2013-10-01 X2Y Attenuators, Llc Method for making internally overlapped conditioners
US20100119934A1 (en) * 2006-01-30 2010-05-13 Kyocera Corporation Container for Electric Energy Storage Device, and Battery and Electric Double Layer Capacitor Using the Same
EP2009716A4 (en) * 2006-01-30 2009-07-15 Kyocera Corp Container for electricity accumulator and battery and electric double layer capacitor employing same
US20090061309A1 (en) * 2006-01-30 2009-03-05 Kyocera Corporation Container for Electric Energy Storage Device, and Battery and Electric Double Layer Capacitor Using the Same
EP2009716A1 (en) * 2006-01-30 2008-12-31 Kyocera Corporation Container for electricity accumulator and battery and electric double layer capacitor employing same
WO2007086569A1 (en) 2006-01-30 2007-08-02 Kyocera Corporation Container for electricity accumulator and battery and electric double layer capacitor employing same
US8026777B2 (en) 2006-03-07 2011-09-27 X2Y Attenuators, Llc Energy conditioner structures
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
US20080212262A1 (en) * 2006-10-10 2008-09-04 Micallef Joseph A Piezoelectric Ultracapacitor
US7815693B2 (en) * 2007-09-03 2010-10-19 Micallef Joseph A Piezoelectric ultracapacitor
US7755257B2 (en) * 2007-09-03 2010-07-13 Micallef Joseph A Piezoelectric ultracapacitor
US20090058223A1 (en) * 2007-09-03 2009-03-05 Micallef Joseph A Piezoelectric Ultracapacitor
US20100236037A1 (en) * 2007-09-03 2010-09-23 Micallef Joseph A Piezoelectric ultracapacitor
US8358496B2 (en) * 2007-09-06 2013-01-22 Meidensha Corporation Electric double-layer capacitor
EP2197008A4 (en) * 2007-09-06 2017-09-27 Meidensha Corporation Electric double-layer capacitor
US20110116211A1 (en) * 2007-09-06 2011-05-19 Hiroyuki Watanabe Electric double-layer capacitor
US8254085B2 (en) 2007-09-07 2012-08-28 Meidensha Corporation Stacked electric double layer capacitor
US20110110013A1 (en) * 2007-09-07 2011-05-12 Meidensha Corporation Stacked electric double layer capacitor
US8218288B2 (en) 2007-09-14 2012-07-10 Meidensha Corporation Bipolar layered type electric double layer capacitor
US20110110012A1 (en) * 2007-09-14 2011-05-12 Meidensha Corporation Bipolar layered type electric double layer capacitor
EP2485313A4 (en) * 2009-09-30 2018-06-20 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US9977090B2 (en) 2009-09-30 2018-05-22 Dai Nippon Printing Co., Ltd. Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
WO2014058787A2 (en) * 2012-10-08 2014-04-17 Maxwell Technologies, Inc. Electrolyte for three-volt ultracapacitor
US9728342B2 (en) 2012-10-08 2017-08-08 Maxwell Technologies, Inc. Coated housing for ultracapacitor
US9715970B2 (en) 2012-10-08 2017-07-25 Maxwell Technologies, Inc. Electrolyte for three-volt ultracapacitor
US9679703B2 (en) 2012-10-08 2017-06-13 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
WO2014058787A3 (en) * 2012-10-08 2014-08-28 Maxwell Technologies, Inc. Electrolyte for three-volt ultracapacitor
US10043615B2 (en) 2012-10-08 2018-08-07 Maxwell Technologies, Inc. Electrode porosity for three-volt ultracapacitor
US10249448B2 (en) 2012-10-08 2019-04-02 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
US10763051B2 (en) 2012-10-08 2020-09-01 Maxwell Technologies, Inc. Carbon surface modification for three-volt ultracapacitor
US11302488B2 (en) 2012-10-08 2022-04-12 Ucap Power, Inc. Carbon surface modification for three-volt ultracapacitor
US11355286B2 (en) * 2018-11-19 2022-06-07 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing capacitor component

Also Published As

Publication number Publication date
KR20010085649A (en) 2001-09-07
TWI242785B (en) 2005-11-01
JP2001244155A (en) 2001-09-07
US6392868B2 (en) 2002-05-21
JP3422745B2 (en) 2003-06-30
KR100397230B1 (en) 2003-09-13

Similar Documents

Publication Publication Date Title
US6392868B2 (en) Electric double layer capacitor
KR100343244B1 (en) Electric double-layer capacitor with collectors of two or more stacked collector sheets
US8420255B2 (en) Storage cell and method of manufacturing same
KR100428693B1 (en) Electric double layer capacitor and battery
KR100321549B1 (en) Electric Double Layer Capacitors
US8130486B2 (en) Electronic component and method of manufacturing the same
US20040233613A1 (en) Electric double layer capacitor and electric double layer capacitor stacked body
KR20210077410A (en) Battery Module
US6532144B2 (en) Electrical double layer capacitor
US7885053B2 (en) Electric double layer capacitor and method for manufacturing same
US7778012B2 (en) Electrolytic capacitor
JP2002280270A (en) Electric double-layer capacitor
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
JP5115204B2 (en) Surface mount square storage cell
US6320741B1 (en) Electrical double layer capacitor
JP2002280264A (en) Electric double-layer capacitor and production method therefor
JP3466117B2 (en) Electric double layer capacitor, basic cell thereof, and method of manufacturing basic cell
JPH07240351A (en) Electrolytic capacitor
KR100735660B1 (en) Electric Double Layer Capacitor
JPH1126322A (en) Electric double layer capacitor
KR200378038Y1 (en) Electric Double Layer Capacitor
JP2004342643A (en) Electric double layer capacitor
JPH1126321A (en) Electric double layer capacitor
JPH11274014A (en) Electrical double layer capacitor
US20230245838A1 (en) Highly-reliable multilayer solid aluminum electrolytic capacitor and method for preparing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHYA, MASAKO;MIMURA, KAZUYA;NAKAZAWA, YUTAKA;AND OTHERS;REEL/FRAME:011714/0321

Effective date: 20010319

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: NEC TOKIN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013067/0124

Effective date: 20020606

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: TOKIN CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEC TOKIN CORPORATION;REEL/FRAME:042879/0135

Effective date: 20170419