US20010013434A1 - Adherent Robot - Google Patents

Adherent Robot Download PDF

Info

Publication number
US20010013434A1
US20010013434A1 US09/783,834 US78383401A US2001013434A1 US 20010013434 A1 US20010013434 A1 US 20010013434A1 US 78383401 A US78383401 A US 78383401A US 2001013434 A1 US2001013434 A1 US 2001013434A1
Authority
US
United States
Prior art keywords
robot
vacuum
vacuum cup
lubricant
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/783,834
Inventor
Kathleen Hopkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/783,834 priority Critical patent/US20010013434A1/en
Publication of US20010013434A1 publication Critical patent/US20010013434A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S180/00Motor vehicles
    • Y10S180/901Devices for traversing vertical surfaces

Definitions

  • This invention relates to remotely controlled devices.
  • the remotely controlled devices are able to adhere to flat or curved surfaces, including significantly inclined and even backwardly leaning surfaces, and to maneuver on them to perform a variety of tasks.
  • the invention includes the use of specially designed vacuum cups and a lubricant to facilitate sliding on the surface.
  • Our invention is particularly designed to meet the needs of the shipbuilding industry, in that our robots are adept at climbing the sides of ships' hulls to inspect, clean (including scraping and/or removing of barnacles and ocean scum), paint, and weld them and to perform any other function one may wish to perform on a ship's hull from a readily manipulable, adherent robot, even on a very steep or even backwardly slanted surface. While my invention is particularly good for performing such tasks on ships' hulls, it may be used in any environment requiring such a remotely controlled device, whether or not the surface tends to curve backwardly and upwards. Various approaches have been proposed for accomplishing such tasks. See, for example, Perego's U.S. Pat. No. 3,973,711, describing a magnetic crawler for soldering.
  • Raviv and Davidovitz propose a “vehicle with vacuum traction” which facilitates the sliding of a vacuum cup along a surface, while the vacuum is supporting a certain amount of weight, either by using a low surface friction material in the vacuum cup itself, particularly the rim portion, or by placing a flexible sheet of low surface friction material under the cup.
  • a low surface friction material in the vacuum cup itself, particularly the rim portion, or by placing a flexible sheet of low surface friction material under the cup.
  • the vehicle preferably has at least one, but frequently a plurality of vacuum cups, preferably specially designed as described herein, including means for feeding lubricant to the surface, and particularly to the surface occupied by the vacuum cup(s).
  • a plurality of vacuum cups preferably specially designed as described herein, including means for feeding lubricant to the surface, and particularly to the surface occupied by the vacuum cup(s).
  • my system does not require vacuum cup materials having low coefficients of friction, or a sheet of low friction plastic interposed between the vehicle and the surface, and is not unduly subject to wear.
  • Our invention includes one or more vacuum cups comprising a flexible, (preferably shallow bell-shaped) body, a port therein for a vacuum source, at least substantially annular ridge, preferably two or more concentric ridges, projecting downwardly therefrom for intimately contacting a base surface, and at least one port for introducing lubricant to the interface of at least one of the ridges and the base surface.
  • Our invention also includes a remotely controlled vehicle including a chassis, at least one vacuum cup as described above, and means for attaching a task-performing device to the chassis. Movement is provided by independently powered wheels which may be mounted separately or in modules together with the vacuum cups.
  • the chassis may be rigid or more or less articulated or hinged. If it is articulated or hinged, the points of articulation or hinging may be powered or not. As will be seen below, a boomerang shape is preferred.
  • Our invention is useful not only for performing remote tasks on the hulls of ships, but also for inspecting, cleaning and painting, for example, domes, water towers, chemical plants and reactors, storage tanks including large petroleum product storage tanks, bridges and difficultly accessible surfaces on the inside and outside of buildings and other structures.
  • FIGS. 1 a, 1 b, and 1 c are side sectional views of our preferred vacuum cup assembly, showing the effect of the application of vacuum.
  • FIGS. 1 d, 1 e, and 1 f are expanded views of portions of the vacuum cup as increasing vacuum is applied.
  • FIGS. 2 a and 2 b are underneath and sectional views of a preferred form of our robot unit, showing placement of the vacuum cup assemblies and wheel modules.
  • FIG. 3 is a side view of our robot in motion on a ship's hull, performing the task of painting.
  • FIGS. 4 a - 4 d represent a sequence of positions of a preferred robot approaching a ship hull and beginning its ascent to a position for use.
  • FIGS. 5 a and 5 b illustrate a vacuum cup assembly used in the invention.
  • FIGS. 6 and 7 show caravans of robots for performing sequential functions on a work surface.
  • FIG. 8 is a section of part of a preferred design of our invention, in which opposiing compressed springs assure that the vacuum cup assembly and the body of the robot maintain a stable relationship.
  • the vacuum cup assembly comprises a vacuum cup 1 made of a flexible, resilient material and a tubular central stem 2 in which is mounted a filter 3 .
  • the outer end 4 of stem 2 is adapted to be attached to a vacuum supply.
  • On the bottom of the vacuum cup 1 is a series of (preferably more than one, as shown) concentric ridges 5 , 6 , 7 , 8 , and 9 .
  • Near the outer edge of cup 1 is a port 10 for lubricant supply, adapted for attachment to a tube or the like for supplying liquid lubricant to the underside of the vacuum cup 1 .
  • lubricant is caused to flow, from a source not shown, through port 10 into space 11 defined by outermost ridge 9 and the edge 12 of the vacuum cup 1 .
  • Vacuum may be applied before the beginning of lubricant flow (preferably gradually if it is before) or after the flow begins.
  • the vacuum cup 1 begins to flatten and adhere to the surface.
  • lubricant is present in all the spaces 30 . 31 , 32 , and 33 between the ridges 5 , 6 , 7 , 8 , and 9 .
  • the vacuum cup assembly adheres tenaciously to the surface 13 but, because of the presence of the lubricant on surface 13 , between the ridges 5 - 9 and underneath them, the vacuum cup assembly can slide on surface 13 relatively easily.
  • Filter 3 is not essential to the operation of the vacuum cup assembly but is preferred because the vacuum continually draws stray particles from the surface and the air, as well as some lubricant, into the vacuum system. Filter 3 will minimize down time caused by fouling of the vacuum system.
  • a lubricant source near the edge of vacuum cup 1 is preferred, particularly after startup and the unit is proceeding more or less in a single direction, it is not essential that the lubricant contact the bottom surface of the vacuum cup 1 at an outermost point.
  • Port 10 may be located at a point nearer the center of the vacuum cup 1 , as the flow of lubricant is to be coordinated with the application of vacuum and the variable directional movement of the robot as a whole, so that a dry portion of vacuum cup 1 will not unnecessarily be forced to move against the work surface. More than one lubricant outlet such as port 10 may be used.
  • the coordination of vacuum, lubricant flow, and power and direction to the wheels see the discussion with respect to FIGS.
  • the body of vacuum cup 1 is generally conical and shallow, more or less as depicted.
  • the sliding friction, F S changes as a function of the reaction force due to the suction cup, R SC .
  • the reaction force R SC is the tendency of the suction cup to release itself, primarily due to its resilience, from the work surface, but it is also influenced by the weight of the robot, the strength of the vacuum, and the inner and outer areas of the suction cup. Generally the reaction force conforms to the following relationship:
  • R SC p a ( A o ) ⁇ N ⁇ p v ( A I )
  • R SC is the reaction force due to the suction cup characteristics
  • p v is the vacuum pressure applied to the suction cup
  • p a is the atmospheric pressure acting on the outside of the suction cup
  • a o is the outside area of the suction cup
  • a I is the inside area of the suction cup
  • N is the normal force acting or load applied to the suction cup, usually the vehicle weight.
  • the main variable available for control of a single vacuum cup is the vacuum pressure applied, which generally will be maintained sufficient to overcome the forces tending to release the vacuum cup; however, this will not always be the case where there is more than one vacuum cup assembly, and the microprocessor should be programmed to manipulate the robot accordingly.
  • the sliding friction, F S varies with the number of concentric ridges actually in contact with the working surface under a given vacuum pressure, as well as the viscosity and lubricity of the lubricant, the frictional characteristics of the working surface and the composition (frictional characteristics) of the vacuum cup body.
  • Sliding function F S is used as a factor in determining the motive power delivered to the wheels.
  • robot body 14 is shown in its preferred boomerang shape, viewed from the underside.
  • body 14 On the body 14 are vacuum cup assemblies 15 and wheel assemblies 16 .
  • Utility socket 17 located on the top surface of body 14 , is shown as a dotted line; utility socket 17 is for placement of various kinds of tools, welders, spray tubes or nozzles, dispensers, and the like. They may be in the form of extensible arms so their functions may be performed on portions of the underlying surface somewhat remote from the body 14 .
  • Body 14 may also have linking sites 18 for linking the robot bodies together if desired.
  • the boomerang shape is preferred because it enables us to place wheels and vacuum cups in trailing and spaced-apart relation to a lead module 19 of a vacuum cup assembly 15 and wheels 16 .
  • the basic configuration of the lead module 19 and the (at least two) trailing modules 20 and 21 in our preferred configuration is more or less triangular.
  • the modules form the general shape of an equilateral triangle—that is, the three modules 19 , 20 , and 21 are at the apexes of a triangle, so that as the lead module 19 ascends an inclined or backwardly leaning surface, steering is more controllable than it would be if the rear of the robot were not in contact with the work surface at spaced apart points.
  • Vacuum cup assembly 15 a is seen to have articulating means 22 for application to a surface which does not conform to the convex curve of body 14 .
  • Wheel assemblies 16 (not shown in FIG. 2 b ) can be extended also so the wheels 19 can reach and make contact on the surface.
  • FIG. 3 our robot is seen to be in motion, carrying out a painting task.
  • the robot is on a hull surface 100 , traveling upwards.
  • Two vacuum cup assemblies 101 are shown, fully applied—that is, a full vacuum is drawn on them through vacuum lines 102 which may lead to an optional manifold or chamber 103 .
  • Vacuum pump 122 is shown to be mounted on the robot body, connected to chamber 103 , but chamber 103 may alternatively or in addition be connected by an air line to a remote vacuum source not shown.
  • Lubricant is intermittently or continuously applied to the advancing sides of vacuum cup assemblies 101 by pump 106 through ducts 107 to form a film between the work surface and the vacuum cup, the ultimate lubricant source being a reservoir not shown connected to pump 106 through flexible tube 109 .
  • lubricant is fed through ducts 107 , it spreads underneath the vacuum cup assemblies 101 , enabling the vacuum cup assemblies 101 to slide freely on surface 100 when motive force is applied through wheels 110 .
  • Wheels 110 are urged outward by springs 111 so they will contact surface 100 even if it is convex as the surface 100 may be. The outward urging of the wheels is in conflict with the action of the vacuum cups, but both are controlled appropriately by a microprocessor not shown.
  • Driving force is applied to wheels 110 by motors 112 .
  • Motors 112 can apply variable turning force to wheels 110 and also can turn the wheels 110 to reorient the robot's direction of movement.
  • Each wheel may have its own controller, but a single controller may be used for all wheels on the robot.
  • the controller may receive directions by flexible wire or by radio from a remote microprocesor.
  • a berth in the form of utility socket 114 is equipped with a paint reservoir and pump containing paint tube 116 leading to spray nozzle 117 for spraying paint behind the robot as it moves.
  • the orientation of turret 115 can be controlled by a motor not shown in the utility socket 114 .
  • the motor may in turn be controlled by its own controller, not shown, or a central controller located on the robot which may control all functions of the robot—that is, the orientation and powering of wheels 110 , variations in vacuum strength to each of the vacuum assemblies, the flow of lubricant to each of the vacuum assemblies, the vacuum source 104 , and paint pump 118 , as well as the position of turret 115 .
  • FIGS. 4 a - 4 d this series of figures is designed to show how my robot can approach a backwardly inclined surface such as a ship's hull and begin to ascend it to perform a task.
  • the robot 14 is moved from right to left, as depicted, by locomotion provided by wheels 40 contacting horizontal surface or floor 41 ; the wheels 40 are controlled to direct the robot in the leftward direction by an operator and microprocessor not shown, through radio signals received by antenna 42 and/or wires not shown.
  • the signals are further processed on the robot by a receiver not shown and utilized to manipulate the wheels 40 —that is to both steer and power them.
  • FIG. 4 a the robot 14 is moved from right to left, as depicted, by locomotion provided by wheels 40 contacting horizontal surface or floor 41 ; the wheels 40 are controlled to direct the robot in the leftward direction by an operator and microprocessor not shown, through radio signals received by antenna 42 and/or wires not shown.
  • the signals are further processed on the robot by a receiver not shown and utilized
  • module 44 containing wheels and a vacuum cup assembly on the upper left of robot 14 has made contact with the ship's hull 43 .
  • the microprocessor and/or one or more algorithms in a suitable form detects the resistance caused by ship's hull 43 and begins rotating the wheels in contact with ship's hull 43 , at the same time also activating the vacuum in the vacuum cup assembly including the step of feeding lubricant to it.
  • the module 44 is able to articulate or tilt to accommodate the angle of ship's hull 43 or other surface.
  • wheels 40 While the wheels in module 44 tend to propel robot 14 upward and backward, following the contour of ship's hull 43 , wheels 40 will cease to propel the robot 14 in a leftward direction, as this may tend to jam the robot 14 into the acute angle formed by ship's hull 43 and horizontal surface 41 . If the angle is significantly less than that shown, wheels 40 on horizontal surface 41 must be free to rotate in a backwards direction while robot 14 makes its initial upward move on the ship's hull 43 .
  • robot 14 has become adhered to ship's hull 43 by at least two vacuum cup assemblies.
  • the wheels on horizontal surface 41 may be reactivated to assist in pushing robot 14 leftward, if they had been inactivated.
  • the robot 14 becomes oriented soon as shown in FIG. 4 c, with vacuum cup assemblies and wheel sets 46 and 47 in contact with ship's hull 43 .
  • the workings of these sets of wheels and vacuum assemblies will tend to lift the entire robot 14 from horizontal surface 41 ; however, wheel set 45 at the back corner of robot 14 should continue to push to the left in order to assure orientation of robot 14 on ship's hull 43 .
  • module 46 of wheels and a vacuum cup assembly (the uppermost set in contact with the ship's hull) should be released and wheel set and vacuum assembly module 47 (the other ones in contact with the ship's hull) should be directed to slide backwards (that is, in a downward direction on the ship's hull) as the lower end of the robot 14 proceeds leftward and orients robot 14 to an orientation permitting adherence of a maximum number of vacuum cup assemblies and wheel assemblies, as shown in FIG. 4 d.
  • This entire procedure may be assisted by a sensor for detecting contact with ship's hull 43 . After the position of FIG. 4 d is attained, the robot will be ready for any of numerous tasks including ones requiring carrying significant weights of equipment.
  • FIGS. 5 a and 5 b wheels 60 are seen to be driven by motor/gear assembly 61 , with a spring 62 between to urge the wheels toward the surface 63 .
  • a module chassis 64 permits appropriate orientation and alignment of vacuum cup 65 , and the individual vacuum pump and motor 66 .
  • FIG. 5 b is a view from underneath.
  • FIG. 6 illustrates the use of linkages 70 , 71 , 72 , 73 , 74 , and 75 , to connect three robot bodies 77 , 78 , and 79 in a caravan or train so that sequential tasks may be performed.
  • robot body 77 distributes cleaning fluid through spray nozzle 80 onto the work surface
  • the following robot body 78 employs a brush 81 to abrade the work surface having been spread with cleaning fluid
  • the last robot body 79 sprays a rinse solution onto the work surface through nozzle 82 after the brush 81 has assisted the cleaning solution.
  • vacuum cup 1 is attached to stem 2 which carries vacuum line 102 through to the vacuum cup 1 .
  • Filter 3 is placed in the vacuum conduit as shown, but may be placed further up in the stem assembly.
  • Lower housing 201 and upper housing 203 hold compressed springs 202 and 204 , which may work against each other to provide flexibility and stability to the position of the vacuum cup 1 to the robot body 14 .
  • Stem 2 is able to move vertically through body 14 .
  • vacuum line 102 are shown a vacuum pump 122 , check valve 200 , and vacuum chamber 103 . Additional valves may be placed in vacuum line 102 between chamber 103 and stem 2 , or elsewhere.
  • Filter 3 minimizes the fluid picked up in vacuum line 102 and guards against solid particles being sucked up into the mechanism.
  • Vacuum chamber 103 prevents abrupt changes in the strength of the vacuum reaching the vacuum cup 1 , which could lead to loss of adhesion to the surface.
  • the preferred construction has a plurality of vacuum cups 1 , and as each may be subject to different tensions, springs 202 and 204 are useful to stabilize the unit and inhibit counterproductive forces between vacuum assemblies. It will be understood that the level of body 14 with respect to the working surface may be slightly different from vacuum cup to vacuum cup.
  • Fatty acids, glycerols, triglycerols, graphite lubricant, vegetable and mineral oil, and petroleum oils may be used.
  • the lubricant will be nonflammable and readily removed from the work surface by water.

Abstract

A robot capable of moving against gravity uses at least one vacuum cup assembly having means for applying a lubricant on the working surface so the cup may slide on the surface as the robot is maneuvered with the aid of powered wheels. The wheels and vacuum cup assemblies are coordinated to move on varied surfaces. The robot module may be equipped with various task-performing assemblies, and may be employed in caravans, trains, or separately in swarms. The vacuum cup assemblies include a pair of springs working against each other to provide stability and flexibility at the point of attachment to the body of the robot.

Description

    RELATED APPLICATION
  • This application is a continuation-in-part of copending application Ser. No. 09/505,409 filed Feb. 16, 2000. [0001]
  • TECHNICAL FIELD
  • This invention relates to remotely controlled devices. The remotely controlled devices are able to adhere to flat or curved surfaces, including significantly inclined and even backwardly leaning surfaces, and to maneuver on them to perform a variety of tasks. The invention includes the use of specially designed vacuum cups and a lubricant to facilitate sliding on the surface. [0002]
  • BACKGROUND OF THE INVENTION
  • Our invention is particularly designed to meet the needs of the shipbuilding industry, in that our robots are adept at climbing the sides of ships' hulls to inspect, clean (including scraping and/or removing of barnacles and ocean scum), paint, and weld them and to perform any other function one may wish to perform on a ship's hull from a readily manipulable, adherent robot, even on a very steep or even backwardly slanted surface. While my invention is particularly good for performing such tasks on ships' hulls, it may be used in any environment requiring such a remotely controlled device, whether or not the surface tends to curve backwardly and upwards. Various approaches have been proposed for accomplishing such tasks. See, for example, Perego's U.S. Pat. No. 3,973,711, describing a magnetic crawler for soldering. [0003]
  • It has been known to make and use remotely controlled devices which adhere to a surface by vacuum. See, for example, Lisec's U.S. Pat. No. 4,667,555 disclosing such a device for cutting glass, the more versatile traveling device of Urakami described in U.S. Pat. No. 4,926,957, and Ochiai's U.S. Pat. No. 4,785,902, showing suction cups which can be slightly tilted to maneuver the device which carries them. The reader may also be interested in U.S. Pat. Nos. 4,817,653, 5,293,887, and 4,828,059, also generally within the field. [0004]
  • In U.S. Pat. No. 4,971,591, Raviv and Davidovitz propose a “vehicle with vacuum traction” which facilitates the sliding of a vacuum cup along a surface, while the vacuum is supporting a certain amount of weight, either by using a low surface friction material in the vacuum cup itself, particularly the rim portion, or by placing a flexible sheet of low surface friction material under the cup. One cannot rely on the low surface friction of such a material for long, however, under industrial use conditions. [0005]
  • See also the device of Lange and Kerr described in U.S. Pat. No. 5,890,250. They use a “grabber/slider vacuum cup” in a cleaning system which sprays cleaning and rinsing liquids on the surface. Wolfe et al, in U.S. Pat. No. 5,429,009, coordinate the movement and activation of several vacuum cups to manipulate a robot on a surface. [0006]
  • Such prior art machines and devices are generally not very effective on rough or slimy surfaces. The art is in need of a reliable, versatile robot capable of performing various tasks on inhospitable and steeply inclined surfaces. [0007]
  • SUMMARY OF THE INVENTION
  • We have designed a robotic vehicle for use on steep inclines and even upside down, which will maneuver and move easily over the surface, and is capable of performing all sorts of tasks. The vehicle preferably has at least one, but frequently a plurality of vacuum cups, preferably specially designed as described herein, including means for feeding lubricant to the surface, and particularly to the surface occupied by the vacuum cup(s). Unlike the Raviv et al patent discussed above, my system does not require vacuum cup materials having low coefficients of friction, or a sheet of low friction plastic interposed between the vehicle and the surface, and is not unduly subject to wear. [0008]
  • Our invention includes one or more vacuum cups comprising a flexible, (preferably shallow bell-shaped) body, a port therein for a vacuum source, at least substantially annular ridge, preferably two or more concentric ridges, projecting downwardly therefrom for intimately contacting a base surface, and at least one port for introducing lubricant to the interface of at least one of the ridges and the base surface. [0009]
  • Our invention also includes a remotely controlled vehicle including a chassis, at least one vacuum cup as described above, and means for attaching a task-performing device to the chassis. Movement is provided by independently powered wheels which may be mounted separately or in modules together with the vacuum cups. The chassis may be rigid or more or less articulated or hinged. If it is articulated or hinged, the points of articulation or hinging may be powered or not. As will be seen below, a boomerang shape is preferred. [0010]
  • Our invention is useful not only for performing remote tasks on the hulls of ships, but also for inspecting, cleaning and painting, for example, domes, water towers, chemical plants and reactors, storage tanks including large petroleum product storage tanks, bridges and difficultly accessible surfaces on the inside and outside of buildings and other structures. [0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1[0012] a, 1 b, and 1 c are side sectional views of our preferred vacuum cup assembly, showing the effect of the application of vacuum. FIGS. 1d, 1 e, and 1 f are expanded views of portions of the vacuum cup as increasing vacuum is applied.
  • FIGS. 2[0013] a and 2 b are underneath and sectional views of a preferred form of our robot unit, showing placement of the vacuum cup assemblies and wheel modules.
  • FIG. 3 is a side view of our robot in motion on a ship's hull, performing the task of painting. [0014]
  • FIGS. 4[0015] a-4 d represent a sequence of positions of a preferred robot approaching a ship hull and beginning its ascent to a position for use.
  • FIGS. 5[0016] a and 5 b illustrate a vacuum cup assembly used in the invention.
  • FIGS. 6 and 7 show caravans of robots for performing sequential functions on a work surface. [0017]
  • FIG. 8 is a section of part of a preferred design of our invention, in which opposiing compressed springs assure that the vacuum cup assembly and the body of the robot maintain a stable relationship. [0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring first to FIGS. 1[0019] a and 1 d, the vacuum cup assembly comprises a vacuum cup 1 made of a flexible, resilient material and a tubular central stem 2 in which is mounted a filter 3. The outer end 4 of stem 2 is adapted to be attached to a vacuum supply. On the bottom of the vacuum cup 1 is a series of (preferably more than one, as shown) concentric ridges 5, 6, 7, 8, and 9. Near the outer edge of cup 1 is a port 10 for lubricant supply, adapted for attachment to a tube or the like for supplying liquid lubricant to the underside of the vacuum cup 1. In the initial stage of application, lubricant is caused to flow, from a source not shown, through port 10 into space 11 defined by outermost ridge 9 and the edge 12 of the vacuum cup 1.
  • Vacuum may be applied before the beginning of lubricant flow (preferably gradually if it is before) or after the flow begins. Referring to FIGS. 1[0020] b and 1 e, with the application of vacuum, the vacuum cup 1 begins to flatten and adhere to the surface. As lubricant continues to flow, it accumulates to a degree in space 11 and is drawn into the space between ridges 8 and 9, passing under ridge 9. With the full application of vacuum as depicted in FIGS. 1c and 1 f, lubricant is present in all the spaces 30. 31, 32, and 33 between the ridges 5, 6, 7, 8, and 9. The vacuum cup assembly adheres tenaciously to the surface 13 but, because of the presence of the lubricant on surface 13, between the ridges 5-9 and underneath them, the vacuum cup assembly can slide on surface 13 relatively easily. Filter 3 is not essential to the operation of the vacuum cup assembly but is preferred because the vacuum continually draws stray particles from the surface and the air, as well as some lubricant, into the vacuum system. Filter 3 will minimize down time caused by fouling of the vacuum system. In a different preferred configuration, we do not use a filter in the vacuum cup assembly, but pass the vacuum air through a device for removing lubricant from the air and recycling it; this may be done either in individual units for each vacuum cup assembly or, preferably, in a central area where the lubricant is collected.
  • While a lubricant source near the edge of [0021] vacuum cup 1 is preferred, particularly after startup and the unit is proceeding more or less in a single direction, it is not essential that the lubricant contact the bottom surface of the vacuum cup 1 at an outermost point. Port 10 may be located at a point nearer the center of the vacuum cup 1, as the flow of lubricant is to be coordinated with the application of vacuum and the variable directional movement of the robot as a whole, so that a dry portion of vacuum cup 1 will not unnecessarily be forced to move against the work surface. More than one lubricant outlet such as port 10 may be used. The coordination of vacuum, lubricant flow, and power and direction to the wheels (see the discussion with respect to FIGS. 2a and 2 b) may be accomplished more or less automatically by appropriately written software or by manual input to the systems which operate each. Any appropriate software and/or control system capable of such coordination may be used. Preferably, the body of vacuum cup 1 is generally conical and shallow, more or less as depicted. As a major objective of our invention is to move the robot while the vacuum cup assembly or assemblies provide adherence to a work surface, it is important to understand the relationship of certain variables relating to the suction cups. For example, the sliding friction, FS, changes as a function of the reaction force due to the suction cup, RSC. The reaction force RSC is the tendency of the suction cup to release itself, primarily due to its resilience, from the work surface, but it is also influenced by the weight of the robot, the strength of the vacuum, and the inner and outer areas of the suction cup. Generally the reaction force conforms to the following relationship:
  • ΣF hor. =R SC +N+p v(A I)−p a(A o)=0
  • R SC =p a(A o)−N−p v(A I)
  • where R[0022] SC is the reaction force due to the suction cup characteristics, pv is the vacuum pressure applied to the suction cup, pa is the atmospheric pressure acting on the outside of the suction cup, Ao is the outside area of the suction cup, AI is the inside area of the suction cup, and N is the normal force acting or load applied to the suction cup, usually the vehicle weight. The main variable available for control of a single vacuum cup is the vacuum pressure applied, which generally will be maintained sufficient to overcome the forces tending to release the vacuum cup; however, this will not always be the case where there is more than one vacuum cup assembly, and the microprocessor should be programmed to manipulate the robot accordingly. The sliding friction, FS varies with the number of concentric ridges actually in contact with the working surface under a given vacuum pressure, as well as the viscosity and lubricity of the lubricant, the frictional characteristics of the working surface and the composition (frictional characteristics) of the vacuum cup body. Sliding function FS is used as a factor in determining the motive power delivered to the wheels.
  • Referring now to FIG. 2[0023] a, robot body 14 is shown in its preferred boomerang shape, viewed from the underside. On the body 14 are vacuum cup assemblies 15 and wheel assemblies 16. Utility socket 17, located on the top surface of body 14, is shown as a dotted line; utility socket 17 is for placement of various kinds of tools, welders, spray tubes or nozzles, dispensers, and the like. They may be in the form of extensible arms so their functions may be performed on portions of the underlying surface somewhat remote from the body 14. Body 14 may also have linking sites 18 for linking the robot bodies together if desired. The boomerang shape is preferred because it enables us to place wheels and vacuum cups in trailing and spaced-apart relation to a lead module 19 of a vacuum cup assembly 15 and wheels 16. Thus the basic configuration of the lead module 19 and the (at least two) trailing modules 20 and 21 in our preferred configuration is more or less triangular. Preferably the modules form the general shape of an equilateral triangle—that is, the three modules 19, 20, and 21 are at the apexes of a triangle, so that as the lead module 19 ascends an inclined or backwardly leaning surface, steering is more controllable than it would be if the rear of the robot were not in contact with the work surface at spaced apart points. It will be appreciated that this stabilizing effect will be facilitated when the robot moves in any direction, and that the relative positions of the working parts—the wheels and vacuum cup assemblies—are significant. Any frame shape (boomerang, triangle, delta or other) for the robot body which accomplishes the desired spacing and achieves the desired stability will suffice. We intend to include in our invention any device for articulation of the body (a body of any shape), such as one or more hinges or motorized hinges which may divide the body into parts. The flexing of the hinges may be controlled remotely along with the other functions of the robot. Modules 19, 20, and 21 may be turned independently in any direction; wheels 16 may also be turned independently in any direction.
  • As seen in FIG. 2[0024] b, the under side of body 14 is shown in a preferred convex form, but may assume other shapes depending on the kinds of surfaces on which the robot will be used. Vacuum cup assembly 15 a is seen to have articulating means 22 for application to a surface which does not conform to the convex curve of body 14. Wheel assemblies 16 (not shown in FIG. 2b) can be extended also so the wheels 19 can reach and make contact on the surface.
  • In FIG. 3, our robot is seen to be in motion, carrying out a painting task. The robot is on a [0025] hull surface 100, traveling upwards. Two vacuum cup assemblies 101 are shown, fully applied—that is, a full vacuum is drawn on them through vacuum lines 102 which may lead to an optional manifold or chamber 103. Vacuum pump 122 is shown to be mounted on the robot body, connected to chamber 103, but chamber 103 may alternatively or in addition be connected by an air line to a remote vacuum source not shown. Lubricant is intermittently or continuously applied to the advancing sides of vacuum cup assemblies 101 by pump 106 through ducts 107 to form a film between the work surface and the vacuum cup, the ultimate lubricant source being a reservoir not shown connected to pump 106 through flexible tube 109. As lubricant is fed through ducts 107, it spreads underneath the vacuum cup assemblies 101, enabling the vacuum cup assemblies 101 to slide freely on surface 100 when motive force is applied through wheels 110. Wheels 110 are urged outward by springs 111 so they will contact surface 100 even if it is convex as the surface 100 may be. The outward urging of the wheels is in conflict with the action of the vacuum cups, but both are controlled appropriately by a microprocessor not shown. Driving force is applied to wheels 110 by motors 112. Motors 112 can apply variable turning force to wheels 110 and also can turn the wheels 110 to reorient the robot's direction of movement. Each wheel may have its own controller, but a single controller may be used for all wheels on the robot. The controller may receive directions by flexible wire or by radio from a remote microprocesor. As the purpose of the illustrated excursion is to apply paint to a ship's hull (surface 100), a berth in the form of utility socket 114 is equipped with a paint reservoir and pump containing paint tube 116 leading to spray nozzle 117 for spraying paint behind the robot as it moves. The orientation of turret 115 can be controlled by a motor not shown in the utility socket 114. The motor may in turn be controlled by its own controller, not shown, or a central controller located on the robot which may control all functions of the robot—that is, the orientation and powering of wheels 110, variations in vacuum strength to each of the vacuum assemblies, the flow of lubricant to each of the vacuum assemblies, the vacuum source 104, and paint pump 118, as well as the position of turret 115.
  • It should be noted that while [0026] vacuum cup assemblies 101 adhere to surface 100 with a significant tenaciousness as a function of the applied vacuum, wheels 110 must apply traction to move the robot forward, and accordingly the springloaded downward force on wheels 101 is balanced so as not to overcome the vacuum applied in the vacuum cup assemblies 101. This is made possible not only by the programmed microprocessor, but by the use of our lubricant, which permits excellent adhesion by vacuum while also facilitating the sliding of the vacuum cup assemblies on the lubricated surface 100.
  • Referring now to FIGS. 4[0027] a-4 d, this series of figures is designed to show how my robot can approach a backwardly inclined surface such as a ship's hull and begin to ascend it to perform a task. In FIG. 4a, the robot 14 is moved from right to left, as depicted, by locomotion provided by wheels 40 contacting horizontal surface or floor 41; the wheels 40 are controlled to direct the robot in the leftward direction by an operator and microprocessor not shown, through radio signals received by antenna 42 and/or wires not shown. The signals are further processed on the robot by a receiver not shown and utilized to manipulate the wheels 40—that is to both steer and power them. At the point illustrated in FIG. 4a, module 44 containing wheels and a vacuum cup assembly on the upper left of robot 14 has made contact with the ship's hull 43. The microprocessor and/or one or more algorithms in a suitable form detects the resistance caused by ship's hull 43 and begins rotating the wheels in contact with ship's hull 43, at the same time also activating the vacuum in the vacuum cup assembly including the step of feeding lubricant to it. The module 44 is able to articulate or tilt to accommodate the angle of ship's hull 43 or other surface. While the wheels in module 44 tend to propel robot 14 upward and backward, following the contour of ship's hull 43, wheels 40 will cease to propel the robot 14 in a leftward direction, as this may tend to jam the robot 14 into the acute angle formed by ship's hull 43 and horizontal surface 41. If the angle is significantly less than that shown, wheels 40 on horizontal surface 41 must be free to rotate in a backwards direction while robot 14 makes its initial upward move on the ship's hull 43.
  • At the position of FIG. 4[0028] b, robot 14 has become adhered to ship's hull 43 by at least two vacuum cup assemblies. The wheels on horizontal surface 41 may be reactivated to assist in pushing robot 14 leftward, if they had been inactivated. The robot 14 becomes oriented soon as shown in FIG. 4c, with vacuum cup assemblies and wheel sets 46 and 47 in contact with ship's hull 43. The workings of these sets of wheels and vacuum assemblies will tend to lift the entire robot 14 from horizontal surface 41; however, wheel set 45 at the back corner of robot 14 should continue to push to the left in order to assure orientation of robot 14 on ship's hull 43. This means that module 46 of wheels and a vacuum cup assembly (the uppermost set in contact with the ship's hull) should be released and wheel set and vacuum assembly module 47 (the other ones in contact with the ship's hull) should be directed to slide backwards (that is, in a downward direction on the ship's hull) as the lower end of the robot 14 proceeds leftward and orients robot 14 to an orientation permitting adherence of a maximum number of vacuum cup assemblies and wheel assemblies, as shown in FIG. 4d. This entire procedure may be assisted by a sensor for detecting contact with ship's hull 43. After the position of FIG. 4d is attained, the robot will be ready for any of numerous tasks including ones requiring carrying significant weights of equipment.
  • In FIGS. 5[0029] a and 5 b, wheels 60 are seen to be driven by motor/gear assembly 61, with a spring 62 between to urge the wheels toward the surface 63. A module chassis 64 permits appropriate orientation and alignment of vacuum cup 65, and the individual vacuum pump and motor 66. FIG. 5b is a view from underneath. FIG. 6 illustrates the use of linkages 70, 71, 72, 73, 74, and 75, to connect three robot bodies 77, 78, and 79 in a caravan or train so that sequential tasks may be performed. As seen, robot body 77 distributes cleaning fluid through spray nozzle 80 onto the work surface, the following robot body 78 employs a brush 81 to abrade the work surface having been spread with cleaning fluid, and the last robot body 79 sprays a rinse solution onto the work surface through nozzle 82 after the brush 81 has assisted the cleaning solution.
  • Referring now to FIG. 8, [0030] vacuum cup 1 is attached to stem 2 which carries vacuum line 102 through to the vacuum cup 1. Filter 3 is placed in the vacuum conduit as shown, but may be placed further up in the stem assembly. Lower housing 201 and upper housing 203 hold compressed springs 202 and 204, which may work against each other to provide flexibility and stability to the position of the vacuum cup 1 to the robot body 14. Stem 2 is able to move vertically through body 14. In vacuum line 102 are shown a vacuum pump 122, check valve 200, and vacuum chamber 103. Additional valves may be placed in vacuum line 102 between chamber 103 and stem 2, or elsewhere. Filter 3 minimizes the fluid picked up in vacuum line 102 and guards against solid particles being sucked up into the mechanism. Vacuum chamber 103 prevents abrupt changes in the strength of the vacuum reaching the vacuum cup 1, which could lead to loss of adhesion to the surface. As indicated above, the preferred construction has a plurality of vacuum cups 1, and as each may be subject to different tensions, springs 202 and 204 are useful to stabilize the unit and inhibit counterproductive forces between vacuum assemblies. It will be understood that the level of body 14 with respect to the working surface may be slightly different from vacuum cup to vacuum cup.
  • We may use any suitable liquid lubricant which may be fed through the vacuum cup as shown and illustrated, to spread on the work surface, for the vacuum cups to contact. Fatty acids, glycerols, triglycerols, graphite lubricant, vegetable and mineral oil, and petroleum oils may be used. Preferably the lubricant will be nonflammable and readily removed from the work surface by water. [0031]

Claims (33)

1. A vacuum cup assembly including a vacuum cup comprising a stem member and a flexible, substantially conical body, a port in said body for a vacuum source, at least two annular ridges projecting downwardly from said body for intimately contacting a base surface, and at least one port for introducing lubricant to an interface of at least one of said ridges and the base surface.
2. A vacuum cup assembly of
claim 1
including a filter in said vacuum source port.
3. A vacuum cup assembly of
claim 1
wherein said flexible body has at least three annular ridges, said annular ridges being substantially concentric.
4. A vacuum cup assembly of
claim 1
mounted on a chassis including means for attaching a task-performing device to said chassis.
5. A vacuum cup assembly of
claim 4
including powered wheels for moving said chassis.
6. A vacuum cup assembly of
claim 5
wherein said wheels are powered by motors on said vehicle and are capable of being independently steered.
7. Method of manipulating a robot on a working surface comprising drawing a vacuum on at least one vacuum cup having a flexible surface for adhering to a working surface, feeding a lubricant to said flexible surface to form a film between said flexible surface and said working surface, and activating a locomotion means to propel said robot in a desired direction.
8. Method of
claim 7
wherein said locomotion means are wheels.
9. Method of
claim 7
wherein the reaction force RSC of said vacuum cup is determined at least partly by the relationship
R SC =p a(A o)−N−p v(A I)
where RSC is the reaction force, pv is the vacuum pressure applied to the suction cup, pa is the atmospheric pressure acting on the outside of the suction cup, Ao is the outside area of the suction cup, AI is the inside area of the suction cup, and N is the normal force acting or load applied to the suction cup, usually the vehicle weight.
10. A robot comprising at least one robot module comprising (a) a locomotion section comprising locomotion means for moving said module on a work surface, and (b) a slidable adherence section for adhering said module to a work surface while said module is moving thereon.
11. A robot of
claim 10
wherein said locomotion section comprises at least one wheel, a motor therefor, and means for steering said wheel.
12. A robot of
claim 10
wherein said slidable adherence section comprises a vacuum cup having a top side and an underside, a lubricant port therein, and a duct for delivering lubricant through said duct to the underside of said vacuum cup.
13. A robot of
claim 10
wherein said slidable adherence section comprises a vacuum cup having a stem member, a flexible, substantially conical body, a port in said body for a vacuum source, at least two substantially concentric annular ridges projecting downwardly therefrom for intimately contacting a base surface, and at least one port for introducing lubricant to the interface of at least one of said ridges and the base surface.
14. A robot of
claim 10
including at least one spring for urging said wheel toward said work surface.
15. A robot of
claim 10
including a berth for a specific task-performing device.
16. A robot of
claim 10
including an antenna for receiving control signals.
17. A robot of
claim 10
including a flexible tube for connection to a remote source of vacuum.
18. A robot of
claim 10
including a flexible wire for connection to a remote source of electric power.
19. A robot of
claim 10
including a flexible tube for connection to a remote source of lubricant.
20. A robot of
claim 10
including a microprocessor for controlling at least one function on said robot.
21. A robot comprising at least one robot module comprising (a) a locomotion section comprising locomotion means for moving said module on a work surface, (b) a robot body, and (c) a slidable adherence section for adhering said module to a work surface while said module is moving thereon, said slidable adherence section including a pair of opposing springs for flexibly stabilizing the distance of said robot body from a working surface.
22. A robot of
claim 21
wherein said opposing springs are on opposite sides of said robot body.
23. A robot of
claim 21
wherein said slidable adherence section comprises at least one vacuum cup.
24. A robot of
claim 21
wherein said slidable adherence section comprises at least two vacuum cups.
25. A robot of
claim 22
including a stem on said vacuum cup for holding a passage for a source of vacuum to said vacuum cup, said springs are coil springs, and said stem passes through said opposing springs.
26. A robot of
claim 21
wherein said locomotion section comprises at least one wheel turned by an electric motor.
27. A robot of
claim 23
wherein said vacuum cup comprises a stem member and a flexible, substantially conical body, a port in said body for a vacuum source, at least two annular ridges projecting downwardly from said body for intimately contacting a workpiece surface, and at least one port for introducing lubricant to an interface of at least one of said ridges and said workpiece surface.
28. A robot of
claim 23
wherein said stem member defines a vacuum passage for providing vacuum to said vacuum cup.
29. A vacuum cup assembly for a robot having a robot body, comprising a vacuum cup, a stem member thereon, said stem member passing through at least a portion of said robot body, a lower stem housing below said robot body portion, an upper stem housing above said robot body portion, and springs within said upper and lower stem housings for flexibly stabilizing said vacuum cup assembly with respect to said robot body.
30. A vacuum cup assembly of
claim 29
wherein said stem member defines a passage from a source of vacuum to said vacuum cup.
31. A vacuum cup assembly of
claim 29
wherein said vacuum cup includes a port for feeding lubricant to said vacuum cup.
32. A vacuum cup assembly of
claim 30
including a filter in said passage.
33. A vacuum cup assembly of
claim 29
wherein said springs are coil springs and said stem passes through said springs.
US09/783,834 2000-02-16 2001-02-14 Adherent Robot Abandoned US20010013434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/783,834 US20010013434A1 (en) 2000-02-16 2001-02-14 Adherent Robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/505,409 US6276478B1 (en) 2000-02-16 2000-02-16 Adherent robot
US09/783,834 US20010013434A1 (en) 2000-02-16 2001-02-14 Adherent Robot

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/505,409 Continuation-In-Part US6276478B1 (en) 2000-02-16 2000-02-16 Adherent robot

Publications (1)

Publication Number Publication Date
US20010013434A1 true US20010013434A1 (en) 2001-08-16

Family

ID=24010184

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/505,409 Expired - Fee Related US6276478B1 (en) 2000-02-16 2000-02-16 Adherent robot
US09/783,834 Abandoned US20010013434A1 (en) 2000-02-16 2001-02-14 Adherent Robot

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/505,409 Expired - Fee Related US6276478B1 (en) 2000-02-16 2000-02-16 Adherent robot

Country Status (2)

Country Link
US (2) US6276478B1 (en)
WO (1) WO2001060638A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048081A1 (en) * 2001-09-09 2003-03-13 Advanced Robotic Vehicles, Inc. Surface adhering tool carrying robot
US20080077276A1 (en) * 2006-07-31 2008-03-27 Pedro Montero Sanjuan Crawler robot equipped with a work unit, and governing equipment for such crawler robots
WO2008054462A2 (en) * 2006-02-24 2008-05-08 Donald Rodocker Underwater crawler vehicle having search and identification capabilities and methods of use
US20100018551A1 (en) * 2008-07-23 2010-01-28 Gallegos Frank J Wind Turbine Tower Washing Apparatus and Method
US20110192665A1 (en) * 2008-10-10 2011-08-11 Xiaoqi Chen Non-contact lifting and locomotion device
US20110271469A1 (en) * 2005-02-18 2011-11-10 Andrew Ziegler Autonomous surface cleaning robot for wet and dry cleaning
US20120006352A1 (en) * 2009-11-23 2012-01-12 Searobotics Corporation Robotic submersible cleaning system
US20130061696A1 (en) * 2011-09-12 2013-03-14 Honeywell International Inc. System for the automated inspection of structures at height
US20150107915A1 (en) * 2013-10-21 2015-04-23 Areva Inc. Vacuum Stepper Robot
CN104590416A (en) * 2014-12-12 2015-05-06 华南理工大学 Vacuum negative pressure adsorption system and method for multi-legged wall climbing robot
WO2015081013A1 (en) * 2013-11-26 2015-06-04 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9193402B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9193068B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
CN105235763A (en) * 2015-10-16 2016-01-13 燕山大学 Parallel-connected wall-climbing robot comprising six variable branches
US9282867B2 (en) 2012-12-28 2016-03-15 Irobot Corporation Autonomous coverage robot
US9483055B2 (en) 2012-12-28 2016-11-01 Irobot Corporation Autonomous coverage robot
US20190337581A1 (en) * 2017-01-18 2019-11-07 Panasonic Intellectual Property Management Co., Ltd. Wall surface suction-type travel device
US11185996B2 (en) * 2015-08-26 2021-11-30 Berkshire Grey, Inc. Systems and methods for providing vacuum valve assemblies for end effectors
CN114222699A (en) * 2019-08-16 2022-03-22 太田宽 Conveying device
US11408401B2 (en) * 2019-04-11 2022-08-09 General Electric Company Robotic access system including robotic fan crawler for wind blade inspection and maintenance
US11554505B2 (en) 2019-08-08 2023-01-17 Berkshire Grey Operating Company, Inc. Systems and methods for providing, in programmable motion devices, compliant end effectors with noise mitigation
US11865700B2 (en) 2018-07-27 2024-01-09 Berkshire Grey Operating Company, Inc. Systems and methods for efficiently exchanging end effector tools

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1013559C2 (en) * 1999-11-11 2001-05-28 Peter Alexander Josephus Pas System for producing hydrogen from water using a water stream such as a wave stream or tidal stream.
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6793026B1 (en) 2000-08-22 2004-09-21 I Robot Corporation Wall-climbing robot
US6742617B2 (en) * 2000-09-25 2004-06-01 Skywalker Robotics, Inc. Apparatus and method for traversing compound curved and other surfaces
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) * 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US6554241B1 (en) * 2002-02-19 2003-04-29 Smart Robotics Vacuum cup
US8386081B2 (en) * 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) * 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
DE10314379B4 (en) * 2003-03-29 2007-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Self-propelled device
US6964312B2 (en) * 2003-10-07 2005-11-15 International Climbing Machines, Inc. Surface traversing apparatus and method
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
WO2005089346A2 (en) * 2004-03-15 2005-09-29 The University Of Vermont And State Agricultural College Systems comprising a mechanically actuated magnetic on-off attachment device
JP2008508572A (en) 2004-06-24 2008-03-21 アイロボット コーポレーション Portable robot programming and diagnostic tools
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
JP4745729B2 (en) * 2005-06-21 2011-08-10 川崎重工業株式会社 Friction stir welding equipment
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot system
KR101300493B1 (en) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 Coverage robot mobility
ES2706727T3 (en) 2005-12-02 2019-04-01 Irobot Corp Robot system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
US7520356B2 (en) * 2006-04-07 2009-04-21 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
ATE523131T1 (en) * 2006-05-19 2011-09-15 Irobot Corp WASTE REMOVAL FROM CLEANING ROBOTS
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR101414321B1 (en) 2007-05-09 2014-07-01 아이로보트 코퍼레이션 Autonomous coverage robot
US7934575B2 (en) * 2007-12-20 2011-05-03 Markus Waibel Robotic locomotion method and mobile robot
US9440717B2 (en) * 2008-11-21 2016-09-13 Raytheon Company Hull robot
US8342281B2 (en) * 2008-11-21 2013-01-01 Raytheon Company Hull robot steering system
US9254898B2 (en) * 2008-11-21 2016-02-09 Raytheon Company Hull robot with rotatable turret
US8393421B2 (en) 2009-10-14 2013-03-12 Raytheon Company Hull robot drive system
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8960117B2 (en) 2012-09-07 2015-02-24 Pgs Geophysical As Method and apparatus to facilitate cleaning marine survey equipment
US9051028B2 (en) 2012-09-14 2015-06-09 Raytheon Company Autonomous hull inspection
EP3287242B1 (en) 2012-09-21 2021-10-20 iRobot Corporation Proximity sensor for a mobile robot
US20140083449A1 (en) 2012-09-27 2014-03-27 Michael Bo Erneland Ultrasonic Cleaning of Marine Geophysical Equipment
CN105774933B (en) * 2016-03-22 2018-01-26 京东方科技集团股份有限公司 The method of work of mobile platform and mobile platform
CN106741270B (en) * 2016-12-23 2019-06-28 南京工程学院 The wall-climbing robot of biped coordination actuation
FR3066993B1 (en) * 2017-06-02 2021-04-02 Erylon ROBOTIZED DEVICE
CA2973216A1 (en) * 2017-07-13 2019-01-13 Inuktun Services Ltd Magnetically adhering robot
EP3622935B1 (en) * 2018-09-12 2021-07-14 TRUMPF Medizin Systeme GmbH + Co. KG Magnetic suspension system
JP7176918B2 (en) * 2018-10-05 2022-11-22 東京計器株式会社 adsorption device
US10919589B1 (en) 2020-04-21 2021-02-16 International Climbing Machines, Inc. Hybrid surface-traversing apparatus and method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1092133A (en) * 1965-03-04 1967-11-22 Exxon Research Engineering Co Apparatus for manoeuvring on a submerged surface
US3601248A (en) * 1968-08-16 1971-08-24 Rohr Corp Walking seal having liquid sealed sliding connections
IT981863B (en) 1973-04-03 1974-10-10 Cie Italiana Montaggi Ind Spa DEVICE FOR RETAINING AND CONTROLLED MOVEMENT ALONG THE WORKING PATH OF WELDING TOOLS
FR2256657A5 (en) * 1973-12-28 1975-07-25 Phoceenne Sous Marine Psm
FR2333583A1 (en) * 1975-12-01 1977-07-01 Nal Pour Expl Oceans Centre DEVICE FOR APPLYING A COATING TO A SUBMERSIBLE SURFACE
US4095378A (en) * 1975-12-18 1978-06-20 Uragami Fukashi Device capable of suction-adhering to a wall surface and moving therealong
FI75512C (en) 1984-08-14 1988-07-11 Gss General Sea Safety Ltd Oy Procedure, device and piece to be welded for conducting a weld joint underwater.
AT386595B (en) 1985-02-25 1988-09-12 Lisec Peter Glastech Ind GLASS CUTTING TABLE
US4669915A (en) * 1985-11-19 1987-06-02 Shell Offshore Inc. Manipulator apparatus with flexible membrane for gripping submerged objects
JPS63195072A (en) 1987-02-06 1988-08-12 Ishikawajima Kensa Keisoku Kk Adsorption element for travel truck
US4926957A (en) 1987-04-01 1990-05-22 Uragami Fukashi Device capable of suction-adhering to a wall surface and moving therealong
US4971591A (en) 1989-04-25 1990-11-20 Roni Raviv Vehicle with vacuum traction
US5161631A (en) * 1989-11-27 1992-11-10 Uragami Fukashi Suction device capable of moving along a surface
US5194032A (en) 1991-05-03 1993-03-16 Garfinkel Henry A Mobile toy with zero-gravity system
US5451135A (en) 1993-04-02 1995-09-19 Carnegie Mellon University Collapsible mobile vehicle
US5429009A (en) 1993-05-20 1995-07-04 Carnegie Mellon University Robot with cruciform geometry
KR100384194B1 (en) * 1995-03-22 2003-08-21 혼다 기켄 고교 가부시키가이샤 Adsorption wall walking device
US5890250A (en) 1996-02-02 1999-04-06 Sky Robitics, Inc. Robotic washing apparatus
US5811055A (en) * 1996-02-06 1998-09-22 Geiger; Michael B. Torch mounted gas scavaging system for manual and robotic welding and cutting torches
US5947051A (en) * 1997-06-04 1999-09-07 Geiger; Michael B. Underwater self-propelled surface adhering robotically operated vehicle
US5897796A (en) 1997-06-16 1999-04-27 Chrysler Corporation Method and apparatus for in-situ laser welding of hemmed joints

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048081A1 (en) * 2001-09-09 2003-03-13 Advanced Robotic Vehicles, Inc. Surface adhering tool carrying robot
US20050113975A1 (en) * 2001-09-09 2005-05-26 Advanced Robotic Vehicles, Inc. Method for inspection of objects using surface adhering robot
US20050119789A1 (en) * 2001-09-09 2005-06-02 Advanced Robotic Vehicles, Inc. Method for fabricating sliding vacuum cups
US7076335B2 (en) 2001-09-09 2006-07-11 Advanced Robotic Vehicles, Inc. Method for inspection of objects using surface adhering robot
US7155307B2 (en) * 2001-09-09 2006-12-26 Seemann Henry R Surface adhering tool carrying robot
US7280890B2 (en) 2001-09-09 2007-10-09 Advanced Robotics Vehicles, Inc. Method for fabricating sliding vacuum cups
US20110271469A1 (en) * 2005-02-18 2011-11-10 Andrew Ziegler Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8774966B2 (en) * 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
WO2008054462A2 (en) * 2006-02-24 2008-05-08 Donald Rodocker Underwater crawler vehicle having search and identification capabilities and methods of use
WO2008054462A3 (en) * 2006-02-24 2008-12-11 Donald Rodocker Underwater crawler vehicle having search and identification capabilities and methods of use
US20080077276A1 (en) * 2006-07-31 2008-03-27 Pedro Montero Sanjuan Crawler robot equipped with a work unit, and governing equipment for such crawler robots
US8019472B2 (en) * 2006-07-31 2011-09-13 Airbus Operations, S.L. Crawler robot equipped with a work unit, and governing equipment for such crawler robots
US20100018551A1 (en) * 2008-07-23 2010-01-28 Gallegos Frank J Wind Turbine Tower Washing Apparatus and Method
US8057605B2 (en) * 2008-07-23 2011-11-15 Gallegos Frank J Wind turbine tower washing apparatus and method
US20110192665A1 (en) * 2008-10-10 2011-08-11 Xiaoqi Chen Non-contact lifting and locomotion device
US8506719B2 (en) * 2009-11-23 2013-08-13 Searobotics Corporation Robotic submersible cleaning system
US20120006352A1 (en) * 2009-11-23 2012-01-12 Searobotics Corporation Robotic submersible cleaning system
US20130061696A1 (en) * 2011-09-12 2013-03-14 Honeywell International Inc. System for the automated inspection of structures at height
US8640558B2 (en) * 2011-09-12 2014-02-04 Honeywell International Inc. System for the automated inspection of structures at height
US9282867B2 (en) 2012-12-28 2016-03-15 Irobot Corporation Autonomous coverage robot
US10162359B2 (en) 2012-12-28 2018-12-25 Irobot Corporation Autonomous coverage robot
US9483055B2 (en) 2012-12-28 2016-11-01 Irobot Corporation Autonomous coverage robot
US20150107915A1 (en) * 2013-10-21 2015-04-23 Areva Inc. Vacuum Stepper Robot
WO2015081013A1 (en) * 2013-11-26 2015-06-04 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9193068B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9193402B2 (en) 2013-11-26 2015-11-24 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US9751207B2 (en) * 2013-11-26 2017-09-05 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
US20160052126A1 (en) * 2013-11-26 2016-02-25 Elwha Llc Structural assessment, maintenance, and repair apparatuses and methods
CN104590416A (en) * 2014-12-12 2015-05-06 华南理工大学 Vacuum negative pressure adsorption system and method for multi-legged wall climbing robot
US11185996B2 (en) * 2015-08-26 2021-11-30 Berkshire Grey, Inc. Systems and methods for providing vacuum valve assemblies for end effectors
US11660763B2 (en) 2015-08-26 2023-05-30 Berkshire Grey Operating Company, Inc. Systems and methods for providing vacuum valve assemblies for end effectors
CN105235763A (en) * 2015-10-16 2016-01-13 燕山大学 Parallel-connected wall-climbing robot comprising six variable branches
US20190337581A1 (en) * 2017-01-18 2019-11-07 Panasonic Intellectual Property Management Co., Ltd. Wall surface suction-type travel device
US10696338B2 (en) * 2017-01-18 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Wall surface suction-type travel device
US11865700B2 (en) 2018-07-27 2024-01-09 Berkshire Grey Operating Company, Inc. Systems and methods for efficiently exchanging end effector tools
US11408401B2 (en) * 2019-04-11 2022-08-09 General Electric Company Robotic access system including robotic fan crawler for wind blade inspection and maintenance
US11554505B2 (en) 2019-08-08 2023-01-17 Berkshire Grey Operating Company, Inc. Systems and methods for providing, in programmable motion devices, compliant end effectors with noise mitigation
CN114222699A (en) * 2019-08-16 2022-03-22 太田宽 Conveying device

Also Published As

Publication number Publication date
US6276478B1 (en) 2001-08-21
WO2001060638A1 (en) 2001-08-23

Similar Documents

Publication Publication Date Title
US6276478B1 (en) Adherent robot
US7280890B2 (en) Method for fabricating sliding vacuum cups
US11286012B2 (en) Tracked climbing machine with compliant suspension apparatus
US7099746B2 (en) Robotic apparatuses, systems and methods
US6742617B2 (en) Apparatus and method for traversing compound curved and other surfaces
EP2646314B1 (en) A surface-cleaning device and vehicle
US6134734A (en) Aircraft maintenance apparatus and method of maintaining aircraft
US5135015A (en) Pressurized fluid cleaning device
US20020121561A1 (en) Aircraft maintenance apparatus and method of maintaining aircraft
US9359027B2 (en) Traction robot
EP1976710A2 (en) Vacuum traction device
US8505663B2 (en) Traction robot
JP2002524680A (en) Exterior surface treatment system and method
US4030440A (en) Boat cleaning machine
ES8605607A1 (en) Device for cleaning a ground surface, particularly for removing dog faeces.
US5201953A (en) Vehicular paint applicator for corrugated surfaces
US5504969A (en) Self-propelled machine for cleaning and disinfecting transportation vehicles
EP4273029A2 (en) Navigator
KR102582214B1 (en) Crawler robot
CN210386311U (en) Robot for industrial application of television shell
JP2603082Y2 (en) Aircraft cleaning equipment
CN114455023A (en) Wall-climbing robot and control method thereof
CN114472272A (en) Supporting surface cleaning device
Ross et al. Robotic apparatuses, systems and methods
JPH0516589U (en) Underwater work robot with obstacle removal device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION