US20010011763A1 - Tab type semiconductor device - Google Patents

Tab type semiconductor device Download PDF

Info

Publication number
US20010011763A1
US20010011763A1 US09/733,623 US73362300A US2001011763A1 US 20010011763 A1 US20010011763 A1 US 20010011763A1 US 73362300 A US73362300 A US 73362300A US 2001011763 A1 US2001011763 A1 US 2001011763A1
Authority
US
United States
Prior art keywords
semiconductor device
pad
pattern
insulating base
conductive pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/733,623
Inventor
Toshihiro Ushijima
Isao Baba
Takamitsu Sumiyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUMIYOSHI, TAKAMITSU, BABA, ISAO, USHIJIMA, TOSHIHIRO
Publication of US20010011763A1 publication Critical patent/US20010011763A1/en
Priority to US10/278,272 priority Critical patent/US6909184B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out

Definitions

  • the present invention relates to semiconductor devices, and more particularly to a TAB type ball grid array semiconductor device.
  • FIG. 1A is a plan view showing a conventional TAB type
  • FIG. 1B is a sectional view taken along the line 1 B- 1 B of FIG. 1A
  • FIG. 1C is a sectional view taken along the line 1 C- 1 C of FIG. 1A.
  • a Cu pattern 2 comprising copper (Cu) is formed on the surface of a polyimide tape (an insulating base) 1 .
  • the Cu pattern 2 is formed by allowing, for example, a copper foil to adhere to the polyimide tape 1 , for example, with an adhesive agent and etching the Cu foil by using as a mask a resist layer having a pattern corresponding to, for example, the Cu pattern 2 .
  • a solder resist layer 3 is formed, and this solder resist layer 3 is covered at least except for a wire bonding portion 2 WB, and a ball pad portion 2 BP.
  • an adhesive agent layer 4 is formed on the rear surface of the polyimide tape 1 .
  • a protection tape 5 is allowed to adhere to the adhesive agent layer 4 .
  • a semiconductor chip 6 is mounted on the TAB tape and is allowed to adhere to the TAB tape via the adhesive agent layer 4 .
  • the semiconductor chip 6 In allowing the semiconductor chip 6 to adhere to the TAB tape, as shown in FIG. 2A, the semiconductor chip 6 is picked up from the wafer-chip tray of the mounting device, and the semiconductor chip 6 is placed on a lower mold 22 of a pressurizing device.
  • a concave portion 20 is a portion where no Cu pattern 2 is formed.
  • a convex portion 21 is a portion where the Cu pattern 2 is formed.
  • an intersection angle ⁇ between the solder resist layer 3 and the wire bonding portion 2 WB is less than 90 degrees.
  • a first object of the invention is to provide a semiconductor device having a reduced difference in adherence force between an insulating base and a chip, and a stable adherence.
  • a second object of the invention is to provide a semiconductor device which suppresses the generation of bubbles and which has a high reliability against the erosion of a conductive pattern.
  • a semiconductor device comprising: a semiconductor chip having a pad; an insulating base which adheres to the semiconductor chip; a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and an electrically floating island-like portion formed on the insulating base.
  • the uneven configuration can be alleviated which results from the presence and absence of the conductive layer by providing the electrically floating island-like portion on the insulating base. Consequently, the difference in the pressure distribution can be alleviated as compared with the conventional example, so that a difference in the adherence force between the insulating base and the chip can be reduced. Consequently, a semiconductor device having a stable adherence force can be obtained.
  • a semiconductor device comprising: a semiconductor chip having a pad; an insulating base which adheres to the semiconductor chip; and a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion and having a tend portion with a different width.
  • the uneven configuration resulting from the presence and absence of the conductive pattern can be alleviated by providing the extended portion mutually different width on the wiring portion of the conductive pattern. Consequently, in the same manner as the first aspect of the invention, the difference in the pressure distribution can be alleviated as compared with the conventional example with the result that the adherence force between the tape and the chip can be reduced. Thus, the semiconductor device having a stable adherence can be obtained.
  • a semiconductor device comprising: a semiconductor chip; an insulating base which adheres onto the semiconductor chip; a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and a covering layer which covers the conductive pattern formed on the insulating base at least except for the bonding portion and the pad portion; wherein an intersection angle between the edge of the covering layer and the bonding portion is 90 degrees or more.
  • the covering layer less involves bubbles on the conductive pattern particularly in the vicinity of the bonding portion at the time of forming the covering layer by setting an intersection angle between the covering layer and the terminal portion to 90 degrees or more. Consequently, a semiconductor device which suppresses the generation of bubbles and which has a high reliability against the corrosion of the conductive pattern can be obtained.
  • FIG. 1A is a plan view showing a conventional TAB tape.
  • FIG. 1B is a sectional view taken along the line 1 B- 1 B of FIG. 1A.
  • FIG. 1C is a sectional view taken along the line 1 C- 1 C of FIG. 1A.
  • FIGS. 2A, 2B and 2 C are sectional views showing a heat pressurizing step respectively.
  • FIG. 3A is a plan view showing a conventional TAB tape.
  • FIG. 3B is a sectional view taken along the line 3 B- 3 B of FIG. 3A.
  • FIG. 4A is a plan view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 4B is a sectional view taken along the line 4 B- 4 b of FIG. 4A.
  • FIG. 4C is a sectional view showing the state after the completion of the device.
  • FIGS. 5A, 5B, 5 C and 5 D are sectional views showing a method for manufacturing the semiconductor device according to the present invention respectively.
  • FIG. 6A is a plan view showing a first basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 6B is a sectional view taken along the line 6 B- 6 B of FIG. 6A.
  • FIG. 6C is a sectional view taken along the line 6 C- 6 C of FIG. 5A.
  • FIGS. 7A, 7B and 7 C are sectional views showing the heat pressurizing step respectively.
  • FIGS. 8A, 8B, 8 C and 8 D are plan views showing basic patterns of an island-like portion respectively.
  • FIG. 9A is a plan view showing a second basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 9B is a sectional view taken along the line 9 B- 9 B of FIG. 9A.
  • FIG. 9C is a sectional view taken along the line 9 C- 9 C of FIG. 9A.
  • FIGS. 10A, 10B, and 10 C are sectional views showing the heat pressurizing step respectively.
  • FIGS. 11A, 11B, 11 C and 11 D are plan views showing basic patterns of an expanded portion respectively.
  • FIG. 12A is a plan view showing a third basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 12B is a sectional view taken along the line 12 B- 12 B of FIG. 12A.
  • FIGS. 13A and 13B are plan views showing a printing step respectively.
  • FIGS. 14A and 14 b are plan views showing basic patterns of a bonding portion respectively.
  • FIG. 15 is a plan view showing a semiconductor device according to a reference example of the present invention.
  • FIG. 16 is a plan view showing a semiconductor device according to a second embodiment of the present invention.
  • FIG. 17 is a plan view showing a semiconductor device according to a third embodiment of the present invention.
  • FIG. 18 is a plan view showing a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 19 is a plan view showing a semiconductor device according to a fifth embodiment of the present invention.
  • FIG. 20 is a plan view showing a semiconductor device according to the present invention.
  • FIG. 21 is a plan view showing a semiconductor device according to a sixth embodiment of the present invention.
  • FIG. 4A is a plan view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 4B is a sectional view taken along the line 4 B- 4 B of FIG. 4A.
  • a Cu pattern (a conductive pattern) 2 comprising copper (Cu) is formed on the surface of a polyimide (an insulating base) 1 .
  • the Cu pattern 2 includes a wire bonding portion 2 WB, a ball pad portion 2 BP, and a wiring portion 2 WB.
  • the ball pad portion 2 BP is arranged in a matrix-like configuration on a pad area 12 set approximately in the center of the polyimide tape 1 .
  • the wiring portion 2 WR connects the wire bonding portion 2 WB and the ball pad portion 2 BP.
  • solder resist layer (covering layer) 3 is formed on the main surface of the polyimide tape 1 .
  • the solder resist layer 3 covers the Cu pattern 2 at least except for the wire bonding portion 2 WB, and the ball pad portion 2 BP.
  • the polyimide tape 1 has an open hole 8 to which a pad 7 of a semiconductor chip 6 is exposed.
  • the wire bonding portion 2 WB is connected to the pad 7 which is exposed to the hole 8 via a bonding wire 9 comprising, for example, gold (Au).
  • an adhesive layer 4 is formed, and the polyimide tape 1 is connected to the semiconductor chip 6 via the adhesive layer 4 .
  • An example of the adhesive agent of the layer 4 is an acryl-epoxy resin adhesive.
  • a silicone resin adhesive or the like can be used.
  • FIG. 4C is a sectional view showing a state after the completion of the semiconductor device.
  • a shield resin 10 is formed for shielding the bonding wire 9 and the pad 7 from the outside. Furthermore, on the ball pad portion 2 BP, for example, a solder bump (also referred to as a solder ball) 11 comprising solder is formed.
  • the solder bump 11 constitutes an outside electrode of the semiconductor chip 6 .
  • An example of the thickness of the polyimide tape 1 in this state is about 0.075 mm ⁇ 0.008 mm.
  • An example of thickness of the adhesive agent layer 4 is 0.05 mm ⁇ 0.01 mm.
  • An example of the thickness of the chip 6 is 0.38 mm ⁇ 0.02 mm.
  • a solder bump 11 ′ formed on the peripheral area 13 on the outside of the pad area 12 is referred to as an option ball, and has a function of heightening the mechanical strength of the TAB type ball grid array semiconductor device.
  • the solder bump (the option ball) 11 ′ is formed on the option pad portion 2 BP′, and the option pad portion 2 BP′ is formed on the peripheral area 13 .
  • FIGS. 5A, 5B, 5 C and 5 D are sectional views showing a method for manufacturing the semiconductor device according to the present invention.
  • a screen 51 having a window 50 corresponding to the solder resist layer formation pattern is allowed to come close to the Cu pattern 2 .
  • a squeegee 52 is allowed to move in a direction shown by an arrow so that a paste-like solder resist 53 is printed on the tape 1 via the screen 51 thereby forming the solder resist layer 3 .
  • the TAB tape is completed.
  • the semiconductor chip 6 is placed on a lower mold 22 .
  • an upper mold 23 is allowed to come down so that the TAB tape is heat pressurized to the chip 6 .
  • the chip 6 is adhered to the TAB tape.
  • the wire bonding portion 2 WB of the Cu pattern 2 is connected to the pad 7 of the chip 6 with the bonding wire 9 .
  • the bonding wire 9 and the pad 7 are shielded with resin 10 , and a solder bump 11 is formed on the ball pad portion 2 BP with the result that the semiconductor device according to the present invention is completed.
  • the semiconductor device according to the first embodiment of the semiconductor device includes mainly three elements.
  • FIG. 6A is a plan view showing a first basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 6B is a sectional view taken along the line 6 B- 6 B of FIG. 6A.
  • FIG. 6C is a sectional view taken along the line 6 C- 6 C of FIG. 6A.
  • the Cu pattern 2 in the first embodiment has, as shown in FIGS. 6A through 6C, an electrically floating island-like portion 2 IL in addition to the wire bonding portion 2 WB, the ball pad portion 2 BP, the wiring portion 2 WR.
  • the island-like portion 2 IL is arranged between the wiring portions 2 WR or ball pad portions 2 BP.
  • the Cu pattern 2 has the island-like portion 2 IL so that the area of a convex portion 21 increases and the uneven configuration resulting from the presence and the absence of the Cu pattern 2 can be alleviated.
  • a difference in the pressure distribution applied to the chip 6 can be alleviated as compared, for example, with the conventional example shown in FIG. 2C.
  • the adherence force between the TAB tape and the chip 6 can be made small with the result that a semiconductor device having a stable adherence can be obtained.
  • a region for arranging the island-like portion 2 IL is arranged along the peripheral area 13 at least outside of the pad area 12 , namely along the peripheral portion of the chip 6 .
  • FIGS. 8A, 8B, 8 C and 8 D are plan views showing basic patterns of the island-like portion respectively.
  • This influence can be minimized by changing the design of the island-like portion 2 IL into a stripe pattern shown in FIG. 8B, a checker pattern shown in FIG. 8C and a lattice-like (matrix-like) pattern shown in FIG. 8D, instead of a planer pattern shown in FIG. 8A.
  • patterns shown in FIGS. 8B through 8D have a gap therebetween.
  • the parasitic capacity of the wiring portion 2 WR can be reduced so that the electric characteristic of the wiring portion 2 WR, particularly, the influence upon the RCL characteristic can be minimized.
  • the electric characteristic of the wiring portion 2 WR can be adjusted.
  • FIG. 9A is a plan view showing a second basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 9B is a sectional view taken along the line 9 B- 9 B of FIG. 9A.
  • FIG. 9C is a sectional view taken along the line 9 C- 9 C of FIG. 9A.
  • the Cu pattern 2 in the first embodiment has, as shown in FIGS. 9A through 9C, has a tend portion 2 WRW having a widened width at least on a portion of the wiring portion 2 WR.
  • the tend portion 2 WRW reduces a gap D between the wiring portions 2 WRW and the ball pad portions 2 BP.
  • the Cu pattern 2 has a tend portion 2 WRW so that the area of the convex portion 21 can be increased in the same manner as the case in which the island-like portion 2 IL is provided. Consequently, at the time of heat pressurizing step shown in FIGS. 10A through 10C, a difference in the pressure distribution applied to the chip 6 can be alleviated as compared with conventional example shown in FIG. 2C. Consequently, a difference in the adherence between the TAB tape and the chip 6 can be made small with the result that a semiconductor device having a stable adherence can be obtained.
  • a portion for providing the tend portion 2 WRW is arranged at least along an outside peripheral area 13 of a pad area 12 , namely along the peripheral portion of the chip 6 .
  • the tend portion 2 WRW can be obtained by expanding, for example, the width of the wiring portion 2 WR with the result that there is an advantage that the tend portion 2 WRW can be easily provided on a portion where the island-like portion 2 IL can be provided with difficulty, and the wiring density is high.
  • the island-like portion 2 IL and the tend portion 2 WRW may be respectively provided appropriately in consideration of the electric characteristic of the semiconductor device.
  • One example of an appropriate arrangement is such that, as shown in FIG. 4A, the island-like portion 2 IL is provided in the peripheral portion 13 where the wiring density is relatively rough, and the tend portion 2 WRW is provided on a pad area 12 where the wiring density is relatively dense.
  • FIGS. 11A, 11B, 11 C and 11 D are plan views showing basic patterns of the expanded portion respectively.
  • the configuration of the basic patterns of the tend portion 2 WRW is, as shown in FIG. 11A, a fin-like configuration which projects either to one side or both sides of the wiring portion 2 WRW, or the fin-like configuration which is expanded of the wiring portion.
  • the expanded portion 2 WRW having a fin-like configuration is provided on route of the wiring portion 2 WR so as to reduce a gap D between adjacent wiring portion 2 WR as shown in FIG. 11A.
  • the fin-like configuration is provided so as to extend between separate Cu patterns 2 so that a gap between the ball pad portions of these separate Cu pattern 2 is reduced.
  • the fin-like expanded portion 2 WRW is provided so as to reduce the gap between the wiring portions 2 WR.
  • the fin-like tend portion 2 WRW may be provided at the end of the wiring portion 2 WR as shown in FIG. 11D.
  • Vickers hardness of 170 HV is preferable. Setting the hardness to such level is based on the viewpoint of suppressing the collapse of the Cu pattern 2 .
  • FIG. 12A is a plan view showing a third basic pattern of the TAB tape provided in the semiconductor device according to the present invention.
  • FIG. 12B is a sectional view taken along the line 12 B- 12 B of FIG. 12A.
  • an intersection angle ⁇ between the wire bonding portion 2 WB and an edge of the solder resist layer 3 is maintained at 90 degrees or more.
  • the bubbles are hardly involved at the time of printing in the Cu pattern 2 in the vicinity of the wire bonding portion 2 WB as compared with the conventional example in which a portion is generated which has an intersection angle of 90 degrees or less shown in FIG. 3A by maintaining the intersection angle ⁇ of 90 degrees.
  • the bubbles are involved with difficulty, the bubbles are generated with difficulty in the solder resist layer 3 and between the solder resist layer 3 and the polyimide tape 1 so that the situation of the corrosion of the Cu pattern 2 is suppressed with the lapse of time. As a consequence, a semiconductor device having a high reliability against the erosion of the conductive pattern can be obtained.
  • FIGS. 13A and 13B are plan views showing an example of a step of printing a solder resist onto the tape 1 having the above Cu pattern 2 .
  • a screen 51 having a window 50 corresponding to the solder resist layer formation pattern is allowed to come close to the Cu pattern 2 .
  • the squeegee 52 is moved along the direction of an arrow in FIG. 13B. Specifically, the squeegee 52 is moved from the wire bonding portion 2 WB to the wiring port ion 2 WR, with the result that the paste-like solder resist layer 53 is printed on the tape 1 via the window 50 of the screen 51 . As a consequence, the solder resist layer 3 is formed where bubbles are generated with difficulty.
  • FIGS. 14A and 14B are plan views showing the basic patterns of the bonding portion respectively.
  • the Cu pattern 2 shown in FIG. 14A is a case in which the intersection angle ⁇ is maintained at 90 degrees.
  • the Cu pattern 2 shown in FIG. 14B is a case in which intersection angle ⁇ is maintained at 90 degrees or more.
  • the configuration of the wire bonding portion 2 WB may be formed in a tapered configuration toward the end.
  • FIG. 15 is a plan view showing a semiconductor device according to a reference example of the present invention.
  • FIG. 16 is a plan view showing a semiconductor device according to a second embodiment of the present invention.
  • the semiconductor device according to the second embodiment is an example in which an island-like portion 2 IL is further provided on the Cu pattern 2 in the reference example shown in FIG. 15.
  • the island-like portion 2 IL of the embodiment is provided outside of the pad area 12 , namely, in the peripheral area 13 .
  • the second embodiment is an example in which the option pad 2 BP′ shown in the first embodiment is not provided.
  • FIG. 17 is a plan view showing a semiconductor device according to a third embodiment of the present invention.
  • the semiconductor device according to the third embodiment is an example in which the tend area 2 WRW is further provided outside of the pad area 12 , namely, on the Cu pattern 2 of the reference example.
  • the tend portion 2 WRW of the embodiment is provided outside of the pad area 12 , namely the peripheral area 13 .
  • FIG. 18 is a plan view showing a semiconductor device according to a fourth embodiment of the present invention.
  • the semiconductor device according to the fourth embodiment of the present invention is an example in which the island-like portion 2 IL and the tend portion 2 WRW are further provided respectively on the Cu pattern 2 of the reference example shown in FIG. 15.
  • the island-like portion 2 IL and the tend portion 2 WRW are provided respectively on the outside of the pad area 12 , namely in the peripheral area 13 .
  • FIG. 19 is a plan view showing a semiconductor device according to a fifth embodiment of the present invention.
  • the semiconductor device according to the fifth embodiment of the present invention is an example in which the tend portion 2 WRW is provided on the Cu pattern 2 of the reference example shown in FIG. 15. And, at the same time, the tend portion 2 WRW is provided in the pad area 12 , and the peripheral area 13 respectively.
  • the expanded portion 2 WRW is provided over the while pad area 12 and the peripheral area 13 .
  • FIG. 20 is a plan view showing a semiconductor device according to the present invention.
  • FIG. 21 is a plan view showing the semiconductor device according to the sixth embodiment of the present invention.
  • FIGS. 20 and 21 are plan views showing the semiconductor device as seen from the side of the chip 6 not from the side of the tape 1 .
  • the shield resin 10 is present only on the periphery of the open hole 8 of the tape 1 .
  • the shielded resin 10 is allowed to present on the whole periphery of the chip 6 so that the adherence of the chip 6 and the tape 1 can be further stabilized.
  • copper can be replaced with copper alloy or other conductive material.
  • the hardness may be at least 170 HV or more.
  • pad arrangement of the semiconductor chip an example is shown wherein the pad is arranged on the periphery of the chip, and on the center of the chip.
  • the pad arrangement is provided either on the periphery of the chip or in the center of thee chip.
  • the first to the sixth embodiments can be practiced as a single entity.
  • the embodiments can be practiced by a combination of the embodiments in various manners.
  • a semiconductor device which has a reduced difference in adherence force between the tape and the chip, and which has a stable adherence.
  • a semiconductor device which suppresses the generation of bubbles and which has a high reliability against the erosion of the conductive pattern.

Abstract

There is disclosed a TAB style BGA type semiconductor device. This semiconductor device comprises a semiconductor chip on which an integrated circuit is formed, and a polyimide tape which has a conductive pattern and which is allowed to adhere to the semiconductor chip. The conductive pattern includes a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to the outside electrode, and an electrically floating island-like portion in addition to a wiring portion for connecting the bonding portion and the pad portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 11-351902, filed Dec. 10, 1999, the entire contents of which are incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to semiconductor devices, and more particularly to a TAB type ball grid array semiconductor device. [0002]
  • FIG. 1A is a plan view showing a conventional TAB type, FIG. 1B is a sectional view taken along the line [0003] 1B-1B of FIG. 1A. FIG. 1C is a sectional view taken along the line 1C-1C of FIG. 1A.
  • As shown in FIGS. 1A through 1C, a [0004] Cu pattern 2 comprising copper (Cu) is formed on the surface of a polyimide tape (an insulating base) 1. The Cu pattern 2 is formed by allowing, for example, a copper foil to adhere to the polyimide tape 1, for example, with an adhesive agent and etching the Cu foil by using as a mask a resist layer having a pattern corresponding to, for example, the Cu pattern 2. On the surface of the polyimide tape 1, a solder resist layer 3 is formed, and this solder resist layer 3 is covered at least except for a wire bonding portion 2WB, and a ball pad portion 2BP.
  • On the rear surface of the [0005] polyimide tape 1, an adhesive agent layer 4 is formed. A protection tape 5 is allowed to adhere to the adhesive agent layer 4.
  • A [0006] semiconductor chip 6 is mounted on the TAB tape and is allowed to adhere to the TAB tape via the adhesive agent layer 4.
  • In allowing the [0007] semiconductor chip 6 to adhere to the TAB tape, as shown in FIG. 2A, the semiconductor chip 6 is picked up from the wafer-chip tray of the mounting device, and the semiconductor chip 6 is placed on a lower mold 22 of a pressurizing device.
  • Next, as shown in FIG. 2B, after the position of the TAB tape having the [0008] protection tape 5 peeled off and the position the semiconductor chip 6 is corrected, an upper mold 23 is allowed to come down so that the chip 6 is bonded onto the TAB tape.
  • However, with the conventional TAB tape, as shown in FIGS. 1B, 1C or FIG. 2B, an uneven configuration is generated on the surface where the [0009] Cu pattern 2 is formed with the presence and absence of the Cu pattern 2. A concave portion 20 is a portion where no Cu pattern 2 is formed. A convex portion 21 is a portion where the Cu pattern 2 is formed.
  • Therefore, when the [0010] chip 6 is heat pressurized to the TAB tape, the pressure is concentrated on the convex portion 21 as shown in FIG. 2C with the result that the pressure is applied to the concave portion 22 with greater difficulty. A difference in this pressure distribution generates a difference in the adherence force between the TAB tape and the chip 6 which will lead to the peeling off of the TAB tape from the chip 6 later.
  • Furthermore, with the conventional TAB tape, as shown in FIG. 3A and FIG. 3B, there arises an intersection angle θ between the [0011] solder resist layer 3 and the wire bonding portion 2WB is less than 90 degrees.
  • Consequently, when the solder resist is printed on the TAB tape, a disuniformity is generated in the flow of the paste-like solder resist in the [0012] Cu pattern 2 particularly in the vicinity of the wire bonding portion 2WB, so that bubbles 24 are easily involved in the solder resist layer 3.
  • When bubbles are generated in the [0013] solder resist layer 3, and between the solder resist layer 3 and the polyimide tape 1. Water infiltrates into the bubbles from the outside so that the Cu pattern 2 is eroded with the lapse of time.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention has been made in view of the above circumstances. A first object of the invention is to provide a semiconductor device having a reduced difference in adherence force between an insulating base and a chip, and a stable adherence. [0014]
  • Furthermore, a second object of the invention is to provide a semiconductor device which suppresses the generation of bubbles and which has a high reliability against the erosion of a conductive pattern. [0015]
  • In order to attain the first object of the invention, according to a first aspect of the present invention, there is provided a semiconductor device comprising: a semiconductor chip having a pad; an insulating base which adheres to the semiconductor chip; a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and an electrically floating island-like portion formed on the insulating base. [0016]
  • According to the semiconductor device having the above structure, the uneven configuration can be alleviated which results from the presence and absence of the conductive layer by providing the electrically floating island-like portion on the insulating base. Consequently, the difference in the pressure distribution can be alleviated as compared with the conventional example, so that a difference in the adherence force between the insulating base and the chip can be reduced. Consequently, a semiconductor device having a stable adherence force can be obtained. [0017]
  • In order to attain a first object of the invention, according to a second aspect of the invention, there is provided a semiconductor device comprising: a semiconductor chip having a pad; an insulating base which adheres to the semiconductor chip; and a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion and having a tend portion with a different width. [0018]
  • According to the semiconductor device having the above structure, the uneven configuration resulting from the presence and absence of the conductive pattern can be alleviated by providing the extended portion mutually different width on the wiring portion of the conductive pattern. Consequently, in the same manner as the first aspect of the invention, the difference in the pressure distribution can be alleviated as compared with the conventional example with the result that the adherence force between the tape and the chip can be reduced. Thus, the semiconductor device having a stable adherence can be obtained. [0019]
  • In order to attain the second object, according to a third aspect of the present invention, there is provided a semiconductor device comprising: a semiconductor chip; an insulating base which adheres onto the semiconductor chip; a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and a covering layer which covers the conductive pattern formed on the insulating base at least except for the bonding portion and the pad portion; wherein an intersection angle between the edge of the covering layer and the bonding portion is 90 degrees or more. [0020]
  • According to the semiconductor device having the above structure, the covering layer less involves bubbles on the conductive pattern particularly in the vicinity of the bonding portion at the time of forming the covering layer by setting an intersection angle between the covering layer and the terminal portion to 90 degrees or more. Consequently, a semiconductor device which suppresses the generation of bubbles and which has a high reliability against the corrosion of the conductive pattern can be obtained. [0021]
  • Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter. [0022]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention. [0023]
  • FIG. 1A is a plan view showing a conventional TAB tape. [0024]
  • FIG. 1B is a sectional view taken along the line [0025] 1B-1B of FIG. 1A.
  • FIG. 1C is a sectional view taken along the [0026] line 1C-1C of FIG. 1A.
  • FIGS. 2A, 2B and [0027] 2C are sectional views showing a heat pressurizing step respectively.
  • FIG. 3A is a plan view showing a conventional TAB tape. [0028]
  • FIG. 3B is a sectional view taken along the [0029] line 3B-3B of FIG. 3A.
  • FIG. 4A is a plan view showing a semiconductor device according to a first embodiment of the present invention. [0030]
  • FIG. 4B is a sectional view taken along the [0031] line 4B-4 b of FIG. 4A.
  • FIG. 4C is a sectional view showing the state after the completion of the device. [0032]
  • FIGS. 5A, 5B, [0033] 5C and 5D are sectional views showing a method for manufacturing the semiconductor device according to the present invention respectively.
  • FIG. 6A is a plan view showing a first basic pattern of the TAB tape provided in the semiconductor device according to the present invention. [0034]
  • FIG. 6B is a sectional view taken along the [0035] line 6B-6B of FIG. 6A.
  • FIG. 6C is a sectional view taken along the [0036] line 6C-6C of FIG. 5A.
  • FIGS. 7A, 7B and [0037] 7C are sectional views showing the heat pressurizing step respectively.
  • FIGS. 8A, 8B, [0038] 8C and 8D are plan views showing basic patterns of an island-like portion respectively.
  • FIG. 9A is a plan view showing a second basic pattern of the TAB tape provided in the semiconductor device according to the present invention. [0039]
  • FIG. 9B is a sectional view taken along the [0040] line 9B-9B of FIG. 9A.
  • FIG. 9C is a sectional view taken along the [0041] line 9C-9C of FIG. 9A.
  • FIGS. 10A, 10B, and [0042] 10C are sectional views showing the heat pressurizing step respectively.
  • FIGS. 11A, 11B, [0043] 11C and 11D are plan views showing basic patterns of an expanded portion respectively.
  • FIG. 12A is a plan view showing a third basic pattern of the TAB tape provided in the semiconductor device according to the present invention. [0044]
  • FIG. 12B is a sectional view taken along the [0045] line 12B-12B of FIG. 12A.
  • FIGS. 13A and 13B are plan views showing a printing step respectively. [0046]
  • FIGS. 14A and 14[0047] b are plan views showing basic patterns of a bonding portion respectively.
  • FIG. 15 is a plan view showing a semiconductor device according to a reference example of the present invention. [0048]
  • FIG. 16 is a plan view showing a semiconductor device according to a second embodiment of the present invention. [0049]
  • FIG. 17 is a plan view showing a semiconductor device according to a third embodiment of the present invention. [0050]
  • FIG. 18 is a plan view showing a semiconductor device according to a fourth embodiment of the present invention. [0051]
  • FIG. 19 is a plan view showing a semiconductor device according to a fifth embodiment of the present invention. [0052]
  • FIG. 20 is a plan view showing a semiconductor device according to the present invention. [0053]
  • FIG. 21 is a plan view showing a semiconductor device according to a sixth embodiment of the present invention. [0054]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, embodiments of the present invention will be explained by referring to the drawings. In the explanation, common portions are denoted by common reference numerals over all the drawings. [0055]
  • (First Embodiment) [0056]
  • FIG. 4A is a plan view showing a semiconductor device according to a first embodiment of the present invention. FIG. 4B is a sectional view taken along the [0057] line 4B-4B of FIG. 4A.
  • As shown in FIGS. 4A and 4B, a Cu pattern (a conductive pattern) [0058] 2 comprising copper (Cu) is formed on the surface of a polyimide (an insulating base) 1. The Cu pattern 2 includes a wire bonding portion 2WB, a ball pad portion 2BP, and a wiring portion 2WB. The ball pad portion 2BP is arranged in a matrix-like configuration on a pad area 12 set approximately in the center of the polyimide tape 1. The wiring portion 2WR connects the wire bonding portion 2WB and the ball pad portion 2BP.
  • On the main surface of the [0059] polyimide tape 1, a solder resist layer (covering layer) 3 is formed. The solder resist layer 3 covers the Cu pattern 2 at least except for the wire bonding portion 2WB, and the ball pad portion 2BP. The polyimide tape 1 has an open hole 8 to which a pad 7 of a semiconductor chip 6 is exposed. The wire bonding portion 2WB is connected to the pad 7 which is exposed to the hole 8 via a bonding wire 9 comprising, for example, gold (Au).
  • On the rear surface of the [0060] polyimide tape 1, an adhesive layer 4 is formed, and the polyimide tape 1 is connected to the semiconductor chip 6 via the adhesive layer 4. An example of the adhesive agent of the layer 4 is an acryl-epoxy resin adhesive. In addition, a silicone resin adhesive or the like can be used.
  • FIG. 4C is a sectional view showing a state after the completion of the semiconductor device. [0061]
  • On the [0062] open hole 8, a shield resin 10 is formed for shielding the bonding wire 9 and the pad 7 from the outside. Furthermore, on the ball pad portion 2BP, for example, a solder bump (also referred to as a solder ball) 11 comprising solder is formed. The solder bump 11 constitutes an outside electrode of the semiconductor chip 6. An example of the thickness of the polyimide tape 1 in this state is about 0.075 mm± 0.008 mm. An example of thickness of the adhesive agent layer 4 is 0.05 mm±0.01 mm. An example of the thickness of the chip 6 is 0.38 mm±0.02 mm.
  • Furthermore, a [0063] solder bump 11′ formed on the peripheral area 13 on the outside of the pad area 12 is referred to as an option ball, and has a function of heightening the mechanical strength of the TAB type ball grid array semiconductor device.
  • The solder bump (the option ball) [0064] 11′ is formed on the option pad portion 2BP′, and the option pad portion 2BP′ is formed on the peripheral area 13.
  • FIGS. 5A, 5B, [0065] 5C and 5D are sectional views showing a method for manufacturing the semiconductor device according to the present invention.
  • In the beginning, as shown in FIG. 5A, there is prepared the [0066] polyimide tape 1 on which the Cu pattern 2 is formed.
  • Next, as shown in FIG. 5B, a [0067] screen 51 having a window 50 corresponding to the solder resist layer formation pattern is allowed to come close to the Cu pattern 2. Next, a squeegee 52 is allowed to move in a direction shown by an arrow so that a paste-like solder resist 53 is printed on the tape 1 via the screen 51 thereby forming the solder resist layer 3. As a consequence, the TAB tape is completed.
  • Next, as shown in FIG. 5C, the [0068] semiconductor chip 6 is placed on a lower mold 22. Next, after the position of the TAB tape having the protection tape 5 peeled off and the position of the chip 6 are corrected, an upper mold 23 is allowed to come down so that the TAB tape is heat pressurized to the chip 6. As a consequence, the chip 6 is adhered to the TAB tape.
  • Next, as shown in FIG. 5D, the wire bonding portion [0069] 2WB of the Cu pattern 2 is connected to the pad 7 of the chip 6 with the bonding wire 9. Next, the bonding wire 9 and the pad 7 are shielded with resin 10, and a solder bump 11 is formed on the ball pad portion 2BP with the result that the semiconductor device according to the present invention is completed.
  • The semiconductor device according to the first embodiment of the semiconductor device includes mainly three elements. [0070]
  • The elements will be explained in order hereinafter. [0071]
  • (First element) [0072]
  • FIG. 6A is a plan view showing a first basic pattern of the TAB tape provided in the semiconductor device according to the present invention. FIG. 6B is a sectional view taken along the [0073] line 6B-6B of FIG. 6A. FIG. 6C is a sectional view taken along the line 6C-6C of FIG. 6A.
  • The [0074] Cu pattern 2 in the first embodiment has, as shown in FIGS. 6A through 6C, an electrically floating island-like portion 2IL in addition to the wire bonding portion 2WB, the ball pad portion 2BP, the wiring portion 2WR. The island-like portion 2IL is arranged between the wiring portions 2WR or ball pad portions 2BP.
  • The [0075] Cu pattern 2 has the island-like portion 2IL so that the area of a convex portion 21 increases and the uneven configuration resulting from the presence and the absence of the Cu pattern 2 can be alleviated. As a consequence, at the time of the heat pressurizing step shown in FIGS. 7A through 7C, a difference in the pressure distribution applied to the chip 6 can be alleviated as compared, for example, with the conventional example shown in FIG. 2C. As a consequence, the adherence force between the TAB tape and the chip 6 can be made small with the result that a semiconductor device having a stable adherence can be obtained.
  • It is preferable that a region for arranging the island-like portion [0076] 2IL is arranged along the peripheral area 13 at least outside of the pad area 12, namely along the peripheral portion of the chip 6.
  • In the peripheral portion of the [0077] chip 6, an adherence with the TAB tape is heightened by arranging the island-like portion 2IL in the peripheral area 13 in this manner, a stronger pressure endurance can be obtained against the separation.
  • FIGS. 8A, 8B, [0078] 8C and 8D are plan views showing basic patterns of the island-like portion respectively.
  • By the way, when the [0079] Cu pattern 2 has an island-like portion 2IL, it is feared that the parasitic capacity of the wiring portion 2WR increases, and the electric characteristic of the wiring portion 2WR, particularly, the RCL characteristic is affected.
  • This influence can be minimized by changing the design of the island-like portion [0080] 2IL into a stripe pattern shown in FIG. 8B, a checker pattern shown in FIG. 8C and a lattice-like (matrix-like) pattern shown in FIG. 8D, instead of a planer pattern shown in FIG. 8A. For example, patterns shown in FIGS. 8B through 8D have a gap therebetween. For the portion of this gap, for example, the parasitic capacity of the wiring portion 2WR can be reduced so that the electric characteristic of the wiring portion 2WR, particularly, the influence upon the RCL characteristic can be minimized. Furthermore, by changing the design of the island-like portion 2IL, the electric characteristic of the wiring portion 2WR can be adjusted.
  • (Second element) [0081]
  • FIG. 9A is a plan view showing a second basic pattern of the TAB tape provided in the semiconductor device according to the present invention. FIG. 9B is a sectional view taken along the [0082] line 9B-9B of FIG. 9A. FIG. 9C is a sectional view taken along the line 9C-9C of FIG. 9A.
  • The [0083] Cu pattern 2 in the first embodiment has, as shown in FIGS. 9A through 9C, has a tend portion 2WRW having a widened width at least on a portion of the wiring portion 2WR. The tend portion 2WRW reduces a gap D between the wiring portions 2WRW and the ball pad portions 2BP.
  • The [0084] Cu pattern 2 has a tend portion 2WRW so that the area of the convex portion 21 can be increased in the same manner as the case in which the island-like portion 2IL is provided. Consequently, at the time of heat pressurizing step shown in FIGS. 10A through 10C, a difference in the pressure distribution applied to the chip 6 can be alleviated as compared with conventional example shown in FIG. 2C. Consequently, a difference in the adherence between the TAB tape and the chip 6 can be made small with the result that a semiconductor device having a stable adherence can be obtained.
  • Preferably, a portion for providing the tend portion [0085] 2WRW is arranged at least along an outside peripheral area 13 of a pad area 12, namely along the peripheral portion of the chip 6.
  • Furthermore, the tend portion [0086] 2WRW can be obtained by expanding, for example, the width of the wiring portion 2WR with the result that there is an advantage that the tend portion 2WRW can be easily provided on a portion where the island-like portion 2IL can be provided with difficulty, and the wiring density is high.
  • In the case where the expanded portion [0087] 2WRW is provided on a portion where the wiring density is dense, a large tend portion 2WRW is required, and the capacity of the wiring portion 2WR largely increases.
  • The island-like portion [0088] 2IL and the tend portion 2WRW may be respectively provided appropriately in consideration of the electric characteristic of the semiconductor device. One example of an appropriate arrangement is such that, as shown in FIG. 4A, the island-like portion 2IL is provided in the peripheral portion 13 where the wiring density is relatively rough, and the tend portion 2WRW is provided on a pad area 12 where the wiring density is relatively dense.
  • FIGS. 11A, 11B, [0089] 11C and 11D are plan views showing basic patterns of the expanded portion respectively.
  • The configuration of the basic patterns of the tend portion [0090] 2WRW is, as shown in FIG. 11A, a fin-like configuration which projects either to one side or both sides of the wiring portion 2WRW, or the fin-like configuration which is expanded of the wiring portion. The expanded portion 2WRW having a fin-like configuration is provided on route of the wiring portion 2WR so as to reduce a gap D between adjacent wiring portion 2WR as shown in FIG. 11A. Otherwise, as shown in FIG. 11B, the fin-like configuration is provided so as to extend between separate Cu patterns 2 so that a gap between the ball pad portions of these separate Cu pattern 2 is reduced. Otherwise, as shown in FIG. 11C, the fin-like expanded portion 2WRW is provided so as to reduce the gap between the wiring portions 2WR. Furthermore, the fin-like tend portion 2WRW may be provided at the end of the wiring portion 2WR as shown in FIG. 11D.
  • As the hardness of such tend portion [0091] 2WRW and the Cu pattern 2 including the island-like portion 2IL, Vickers hardness of 170 HV is preferable. Setting the hardness to such level is based on the viewpoint of suppressing the collapse of the Cu pattern 2.
  • Besides, one example of the tend portion [0092] 2WRW according to the present invention, and the wiring density in the case where the Cu pattern 2 including the island-like portion 2IL is provided is Cu pattern area/tape area=68.5%. The conventional wiring density is Cu pattern area/tape area=45.7%. From this viewpoint, when the wiring density (Cu pattern area/tape area) exceeds the wiring density=45.7%, the adherence is heightened as compared with the conventional device.
  • (Third element) [0093]
  • FIG. 12A is a plan view showing a third basic pattern of the TAB tape provided in the semiconductor device according to the present invention. FIG. 12B is a sectional view taken along the [0094] line 12B-12B of FIG. 12A.
  • With respect to the [0095] Cu pattern 2 according to the first embodiment, as shown in FIGS. 12A and 12B, an intersection angle θ between the wire bonding portion 2WB and an edge of the solder resist layer 3 is maintained at 90 degrees or more. The bubbles are hardly involved at the time of printing in the Cu pattern 2 in the vicinity of the wire bonding portion 2WB as compared with the conventional example in which a portion is generated which has an intersection angle of 90 degrees or less shown in FIG. 3A by maintaining the intersection angle θ of 90 degrees. As a result of the fact that the bubbles are involved with difficulty, the bubbles are generated with difficulty in the solder resist layer 3 and between the solder resist layer 3 and the polyimide tape 1 so that the situation of the corrosion of the Cu pattern 2 is suppressed with the lapse of time. As a consequence, a semiconductor device having a high reliability against the erosion of the conductive pattern can be obtained.
  • FIGS. 13A and 13B are plan views showing an example of a step of printing a solder resist onto the [0096] tape 1 having the above Cu pattern 2.
  • As shown in FIG. 13A, a [0097] screen 51 having a window 50 corresponding to the solder resist layer formation pattern is allowed to come close to the Cu pattern 2.
  • Next, as shown in FIG. 13B, the [0098] squeegee 52 is moved along the direction of an arrow in FIG. 13B. Specifically, the squeegee 52 is moved from the wire bonding portion 2WB to the wiring port ion 2WR, with the result that the paste-like solder resist layer 53 is printed on the tape 1 via the window 50 of the screen 51. As a consequence, the solder resist layer 3 is formed where bubbles are generated with difficulty.
  • FIGS. 14A and 14B are plan views showing the basic patterns of the bonding portion respectively. [0099]
  • The [0100] Cu pattern 2 shown in FIG. 14A is a case in which the intersection angle θ is maintained at 90 degrees. The Cu pattern 2 shown in FIG. 14B is a case in which intersection angle θ is maintained at 90 degrees or more. In the case where the intersection angle θ is maintained at 90 degrees or more, the configuration of the wire bonding portion 2WB may be formed in a tapered configuration toward the end.
  • Next, another embodiment of the present invention will be explained. [0101]
  • (Second Embodiment) [0102]
  • FIG. 15 is a plan view showing a semiconductor device according to a reference example of the present invention. FIG. 16 is a plan view showing a semiconductor device according to a second embodiment of the present invention. [0103]
  • As shown in FIG. 16, the semiconductor device according to the second embodiment is an example in which an island-like portion [0104] 2IL is further provided on the Cu pattern 2 in the reference example shown in FIG. 15. The island-like portion 2IL of the embodiment is provided outside of the pad area 12, namely, in the peripheral area 13.
  • Incidentally, the second embodiment is an example in which the option pad [0105] 2BP′ shown in the first embodiment is not provided.
  • (Third Embodiment) [0106]
  • FIG. 17 is a plan view showing a semiconductor device according to a third embodiment of the present invention. [0107]
  • As shown in FIG. 17, the semiconductor device according to the third embodiment is an example in which the tend area [0108] 2WRW is further provided outside of the pad area 12, namely, on the Cu pattern 2 of the reference example. The tend portion 2WRW of the embodiment is provided outside of the pad area 12, namely the peripheral area 13.
  • (Fourth Embodiment) [0109]
  • FIG. 18 is a plan view showing a semiconductor device according to a fourth embodiment of the present invention. [0110]
  • As shown in FIG. 18, the semiconductor device according to the fourth embodiment of the present invention is an example in which the island-like portion [0111] 2IL and the tend portion 2WRW are further provided respectively on the Cu pattern 2 of the reference example shown in FIG. 15. The island-like portion 2IL and the tend portion 2WRW are provided respectively on the outside of the pad area 12, namely in the peripheral area 13.
  • (Fifth Embodiment) [0112]
  • FIG. 19 is a plan view showing a semiconductor device according to a fifth embodiment of the present invention. [0113]
  • As shown in FIG. 19, the semiconductor device according to the fifth embodiment of the present invention is an example in which the tend portion [0114] 2WRW is provided on the Cu pattern 2 of the reference example shown in FIG. 15. And, at the same time, the tend portion 2WRW is provided in the pad area 12, and the peripheral area 13 respectively. In particular, in the fifth embodiment, the expanded portion 2WRW is provided over the while pad area 12 and the peripheral area 13.
  • (Sixth Embodiment) [0115]
  • FIG. 20 is a plan view showing a semiconductor device according to the present invention. FIG. 21 is a plan view showing the semiconductor device according to the sixth embodiment of the present invention. Incidentally, FIGS. 20 and 21 are plan views showing the semiconductor device as seen from the side of the [0116] chip 6 not from the side of the tape 1.
  • As shown in FIG. 20, when the semiconductor devices according to the first to the fifth embodiments are observed from the side of the [0117] chip 6, the shield resin 10 is present only on the periphery of the open hole 8 of the tape 1.
  • In the sixth embodiment, as shown in FIG. 21, the shielded [0118] resin 10 is allowed to present on the whole periphery of the chip 6 so that the adherence of the chip 6 and the tape 1 can be further stabilized.
  • In the above description, the present invention has been explained with respect to the first to the sixth embodiments of the present invention. The present invention is not restricted thereto, and the invention can be modified in various ways within the scope of not departing from the gist of the invention. [0119]
  • For example, as a [0120] conductive pattern 2, copper (Cu) is given, copper can be replaced with copper alloy or other conductive material. Furthermore, in the case where copper is replaced with copper alloy or other conductive material, preferably, the hardness may be at least 170 HV or more.
  • Furthermore, as a pad arrangement of the semiconductor chip, an example is shown wherein the pad is arranged on the periphery of the chip, and on the center of the chip. The pad arrangement is provided either on the periphery of the chip or in the center of thee chip. [0121]
  • Furthermore, as a semiconductor product formed in the semiconductor chip, products which requires a compact package such as a SRAM, FLAS, H-EEPROM, DRAM, mixedly mounted DRAM, CPU or the like are particularly preferable. [0122]
  • Furthermore, the first to the sixth embodiments can be practiced as a single entity. However, the embodiments can be practiced by a combination of the embodiments in various manners. [0123]
  • As has been described above, according to the present invention, a semiconductor device can be provided which has a reduced difference in adherence force between the tape and the chip, and which has a stable adherence. [0124]
  • Furthermore, a semiconductor device can be provided which suppresses the generation of bubbles and which has a high reliability against the erosion of the conductive pattern. [0125]
  • Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. [0126]

Claims (20)

What is claimed is:
1. A semiconductor device comprising:
a semiconductor chip having a pad;
an insulating base which adheres to the semiconductor chip;
a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and
an electrically floating island-like portion formed on the insulating base.
2. The semiconductor device according to
claim 1
, wherein the electrically floating island-like portion includes at least one of a planar pattern, a stripe pattern, a checker pattern and a mesh pattern.
3. The semiconductor device according to
claim 1
, wherein the electrically floating island-like pattern is arranged at least in a pad area of the insulating base where the pad portion is arranged in a matrix-like configuration.
4. The semiconductor device according to
claim 1
, wherein the electrically floating island-like pattern is arranged at least outside of a pad area of the insulating base where the pad portion is arranged in a matrix-like configuration.
5. The semiconductor device according to
claim 4
, wherein the conductive pattern includes an option pad portion arranged outside of the pad area.
6. The semiconductor device according to
claim 1
, wherein the electrically floating island-like pattern is constituted of the same material as the conductive material constituting the conductive pattern.
7. The semiconductor device according to
claim 6
, wherein the conductive material has a vikers hardness of at least 170 HV.
8. The semiconductor device according to
claim 1
, wherein the insulating base is a part of TAB tape.
9. A semiconductor device comprising:
a semiconductor chip having a pad;
an insulating base which adheres to the semiconductor chip; and
a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion and having a tend portion with a different width.
10. The semiconductor device according to
claim 9
, wherein the configuration of the tend portion is a fin-like configuration.
11. The semiconductor device according to
claim 10
, wherein the tend portion of the fin-like configuration extends between the conductive pattern and another conductive pattern.
12. The semiconductor device according to
claim 9
, wherein the tend portion is arranged at least in a pad area of the insulating base where the pad portion is arranged in a matrix-like configuration.
13. The semiconductor device according to
claim 9
, wherein the tend portion is arranged at least outside of a pad area of the insulating base where the pad portion is arranged in a matrix-like configuration.
14. The semiconductor device according to
claim 13
, wherein the conductive pattern includes an option pad portion arranged outside of the pad area.
15. The semiconductor device according to
claim 9
, wherein the conductive material constituting the conductive pattern has a hardness of at least 170 HV.
16. The semiconductor device according to
claim 9
, wherein the insulating base is a part of TAB tape.
17. A semiconductor device comprising:
a semiconductor chip;
an insulating base which adheres onto the semiconductor chip;
a conductive pattern formed on the insulating base, the conductive pattern including a bonding portion connected to the pad of the semiconductor chip, a pad portion connected to an outside electrode, and a wiring portion connecting the bonding portion and the pad portion; and
a covering layer which covers the conductive pattern formed on the insulating base at least except for the bonding portion and the pad portion;
wherein an intersection angle between the edge of the covering layer and the bonding portion is 90 degrees or more.
18. The semiconductor device according to
claim 17
, wherein the configuration of the bonding portion is a tapered configuration which becomes thinner toward the tip of the bonding portion.
19. The semiconductor device according to
claim 17
, wherein the covering layer is a resist.
20. The semiconductor device according to
claim 18
, wherein the covering layer is formed by printing.
US09/733,623 1999-12-10 2000-12-07 Tab type semiconductor device Abandoned US20010011763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/278,272 US6909184B2 (en) 1999-12-10 2002-10-22 TAB type semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35190299 1999-12-10
JP11-351902 1999-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/278,272 Continuation US6909184B2 (en) 1999-12-10 2002-10-22 TAB type semiconductor device

Publications (1)

Publication Number Publication Date
US20010011763A1 true US20010011763A1 (en) 2001-08-09

Family

ID=18420405

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/733,623 Abandoned US20010011763A1 (en) 1999-12-10 2000-12-07 Tab type semiconductor device
US10/278,272 Expired - Fee Related US6909184B2 (en) 1999-12-10 2002-10-22 TAB type semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/278,272 Expired - Fee Related US6909184B2 (en) 1999-12-10 2002-10-22 TAB type semiconductor device

Country Status (3)

Country Link
US (2) US20010011763A1 (en)
CN (2) CN1601740A (en)
TW (1) TW469552B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029632A1 (en) * 1997-04-08 2003-02-13 Anthony Anthony A. Arrangement for energy conditioning
US20060027912A1 (en) * 2002-11-11 2006-02-09 Tatsuo Kataoka Film carrier tape for mounting of electronic part
US20060103027A1 (en) * 2004-11-18 2006-05-18 Seiko Epson Corporation Electronic component and method for manufacturing the same
US20060108699A1 (en) * 2004-11-24 2006-05-25 Seiko Epson Corporation Electronic part and method for manufacturing the same
US7675729B2 (en) 2003-12-22 2010-03-09 X2Y Attenuators, Llc Internally shielded energy conditioner
US7688565B2 (en) 1997-04-08 2010-03-30 X2Y Attenuators, Llc Arrangements for energy conditioning
US7733621B2 (en) 1997-04-08 2010-06-08 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7768763B2 (en) 1997-04-08 2010-08-03 X2Y Attenuators, Llc Arrangement for energy conditioning
US7782587B2 (en) 2005-03-01 2010-08-24 X2Y Attenuators, Llc Internally overlapped conditioners
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US8026777B2 (en) 2006-03-07 2011-09-27 X2Y Attenuators, Llc Energy conditioner structures
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544880B1 (en) * 1999-06-14 2003-04-08 Micron Technology, Inc. Method of improving copper interconnects of semiconductor devices for bonding
JP2002336246A (en) * 2001-05-14 2002-11-26 Fuji Photo Film Co Ltd Ultrasonic imaging method and ultrasonic imaging device
US7579681B2 (en) * 2002-06-11 2009-08-25 Micron Technology, Inc. Super high density module with integrated wafer level packages
JP4056360B2 (en) * 2002-11-08 2008-03-05 沖電気工業株式会社 Semiconductor device and manufacturing method thereof
US20050253993A1 (en) * 2004-05-11 2005-11-17 Yi-Ru Chen Flat panel display and assembly process of the flat panel display
JP2009105139A (en) * 2007-10-22 2009-05-14 Shinko Electric Ind Co Ltd Wiring board and manufacturing method thereof, and semiconductor device
KR100951940B1 (en) * 2009-08-14 2010-04-09 (주)인터플렉스 Method of manufacturing flexible printed circuit board
KR102214512B1 (en) * 2014-07-04 2021-02-09 삼성전자 주식회사 Printed circuit board and semiconductor package using the same
US10861773B2 (en) * 2017-08-30 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and manufacturing method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105937A (en) 1989-09-19 1991-05-02 Nec Corp Semiconductor device
JPH03227541A (en) 1990-02-01 1991-10-08 Hitachi Ltd Semiconductor device
US5574415A (en) 1992-06-11 1996-11-12 Peterson; Robert K. Method of fabricating microwave interconnects and packaging and the interconnects and packaging
US5278105A (en) 1992-08-19 1994-01-11 Intel Corporation Semiconductor device with dummy features in active layers
US5981384A (en) 1995-08-14 1999-11-09 Micron Technology, Inc. Method of intermetal dielectric planarization by metal features layout modification
JP2894254B2 (en) * 1995-09-20 1999-05-24 ソニー株式会社 Semiconductor package manufacturing method
JPH09213832A (en) 1996-01-30 1997-08-15 Sumitomo Kinzoku Electro Device:Kk Ceramic plate board and manufacture thereof
JP2843315B1 (en) 1997-07-11 1999-01-06 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP3346985B2 (en) * 1996-06-20 2002-11-18 東芝マイクロエレクトロニクス株式会社 Semiconductor device
JP3638778B2 (en) 1997-03-31 2005-04-13 株式会社ルネサステクノロジ Semiconductor integrated circuit device and manufacturing method thereof
JPH1140698A (en) 1997-07-22 1999-02-12 Shinko Electric Ind Co Ltd Wiring board
JP3310617B2 (en) 1998-05-29 2002-08-05 シャープ株式会社 Resin-sealed semiconductor device and method of manufacturing the same
US6428641B1 (en) * 1998-08-31 2002-08-06 Amkor Technology, Inc. Method for laminating circuit pattern tape on semiconductor wafer
JP2000100814A (en) * 1998-09-18 2000-04-07 Hitachi Ltd Semiconductor device
US6351011B1 (en) * 1998-12-08 2002-02-26 Littlefuse, Inc. Protection of an integrated circuit with voltage variable materials
US6204559B1 (en) 1999-11-22 2001-03-20 Advanced Semiconductor Engineering, Inc. Ball grid assembly type semiconductor package having improved chip edge support to prevent chip cracking
US6242815B1 (en) 1999-12-07 2001-06-05 Advanced Semiconductor Engineering, Inc. Flexible substrate based ball grid array (BGA) package

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768763B2 (en) 1997-04-08 2010-08-03 X2Y Attenuators, Llc Arrangement for energy conditioning
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7920367B2 (en) 1997-04-08 2011-04-05 X2Y Attenuators, Llc Method for making arrangement for energy conditioning
US9373592B2 (en) 1997-04-08 2016-06-21 X2Y Attenuators, Llc Arrangement for energy conditioning
US7688565B2 (en) 1997-04-08 2010-03-30 X2Y Attenuators, Llc Arrangements for energy conditioning
US9036319B2 (en) 1997-04-08 2015-05-19 X2Y Attenuators, Llc Arrangement for energy conditioning
US9019679B2 (en) 1997-04-08 2015-04-28 X2Y Attenuators, Llc Arrangement for energy conditioning
US8587915B2 (en) 1997-04-08 2013-11-19 X2Y Attenuators, Llc Arrangement for energy conditioning
US7916444B2 (en) 1997-04-08 2011-03-29 X2Y Attenuators, Llc Arrangement for energy conditioning
US20050016761A9 (en) * 1997-04-08 2005-01-27 Anthony Anthony A. Arrangement for energy conditioning
US20030029632A1 (en) * 1997-04-08 2003-02-13 Anthony Anthony A. Arrangement for energy conditioning
US7733621B2 (en) 1997-04-08 2010-06-08 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US8004812B2 (en) 1997-04-08 2011-08-23 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US8023241B2 (en) 1997-04-08 2011-09-20 X2Y Attenuators, Llc Arrangement for energy conditioning
US8018706B2 (en) 1997-04-08 2011-09-13 X2Y Attenuators, Llc Arrangement for energy conditioning
US20060027912A1 (en) * 2002-11-11 2006-02-09 Tatsuo Kataoka Film carrier tape for mounting of electronic part
US7675729B2 (en) 2003-12-22 2010-03-09 X2Y Attenuators, Llc Internally shielded energy conditioner
US7535108B2 (en) * 2004-11-18 2009-05-19 Seiko Epson Corporation Electronic component including reinforcing member
US20060103027A1 (en) * 2004-11-18 2006-05-18 Seiko Epson Corporation Electronic component and method for manufacturing the same
US7704793B2 (en) 2004-11-24 2010-04-27 Seiko Epson Corporation Electronic part and method for manufacturing the same
US20080132001A1 (en) * 2004-11-24 2008-06-05 Munehide Saimen Electronic part and method for manufacturing the same
US7348679B2 (en) * 2004-11-24 2008-03-25 Seiko Epson Corporation Electronic part having reinforcing member
US20060108699A1 (en) * 2004-11-24 2006-05-25 Seiko Epson Corporation Electronic part and method for manufacturing the same
US7974062B2 (en) 2005-03-01 2011-07-05 X2Y Attenuators, Llc Internally overlapped conditioners
US8014119B2 (en) * 2005-03-01 2011-09-06 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US7782587B2 (en) 2005-03-01 2010-08-24 X2Y Attenuators, Llc Internally overlapped conditioners
US8547677B2 (en) 2005-03-01 2013-10-01 X2Y Attenuators, Llc Method for making internally overlapped conditioners
US9001486B2 (en) 2005-03-01 2015-04-07 X2Y Attenuators, Llc Internally overlapped conditioners
US8026777B2 (en) 2006-03-07 2011-09-27 X2Y Attenuators, Llc Energy conditioner structures

Also Published As

Publication number Publication date
US20030042588A1 (en) 2003-03-06
TW469552B (en) 2001-12-21
CN1601740A (en) 2005-03-30
CN1210794C (en) 2005-07-13
US6909184B2 (en) 2005-06-21
CN1300101A (en) 2001-06-20

Similar Documents

Publication Publication Date Title
US6909184B2 (en) TAB type semiconductor device
US6593647B2 (en) Semiconductor device
US6858919B2 (en) Semiconductor package
US8102037B2 (en) Leadframe for semiconductor package
US6861734B2 (en) Resin-molded semiconductor device
US6489182B2 (en) Method of fabricating a wire arrayed chip size package
US20040063252A1 (en) Method of making semiconductor device
KR100282003B1 (en) Chip scale package
US6455355B1 (en) Method of mounting an exposed-pad type of semiconductor device over a printed circuit board
US6740978B2 (en) Chip package capable of reducing moisture penetration
JPH11191602A (en) Semiconductor device and its manufacture
JP2001024133A (en) Lead frame, resin sealed semiconductor device employing it and manufacture thereof
JP2803656B2 (en) Semiconductor device
JP2533011B2 (en) Surface mount semiconductor device
JP3657877B2 (en) Semiconductor device
JP2000340732A (en) Lead frame for semiconductor device and semiconductor device using the same
JP3174238B2 (en) Semiconductor device and method of manufacturing the same
US11842951B2 (en) Semiconductor device for improving heat dissipation and mounting structure thereof
JP2597139B2 (en) IC module for IC card
JPH032345B2 (en)
JP2005167269A (en) Semiconductor device
JPH07122701A (en) Semiconductor device, its manufacture, and lead frame for pga
JP3103741B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP2004063567A (en) Semiconductor device and manufacturing method therefor, circuit board, and electronic apparatus
JP2726648B2 (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:USHIJIMA, TOSHIHIRO;BABA, ISAO;SUMIYOSHI, TAKAMITSU;REEL/FRAME:011663/0526;SIGNING DATES FROM 20001122 TO 20001124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION