US20010007335A1 - Method of manufacturing an enclosed transceiver - Google Patents

Method of manufacturing an enclosed transceiver Download PDF

Info

Publication number
US20010007335A1
US20010007335A1 US09/775,716 US77571601A US2001007335A1 US 20010007335 A1 US20010007335 A1 US 20010007335A1 US 77571601 A US77571601 A US 77571601A US 2001007335 A1 US2001007335 A1 US 2001007335A1
Authority
US
United States
Prior art keywords
film
battery
transceiver
conductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/775,716
Other versions
US6325294B2 (en
Inventor
Mark Tuttle
John Tuttle
Rickie Lake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Round Rock Research LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/775,716 priority Critical patent/US6325294B2/en
Publication of US20010007335A1 publication Critical patent/US20010007335A1/en
Application granted granted Critical
Publication of US6325294B2 publication Critical patent/US6325294B2/en
Priority to US10/729,584 priority patent/USRE42773E1/en
Assigned to KEYSTONE TECHNOLOGY SOLUTIONS, LLC reassignment KEYSTONE TECHNOLOGY SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to ROUND ROCK RESEARCH, LLC reassignment ROUND ROCK RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEYSTONE TECHNOLOGY SOLUTIONS, LLC
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/758Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using a signal generator powered by the interrogation signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07786Antenna details the antenna being of the HF type, such as a dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/35Network arrangements, protocols or services for addressing or naming involving non-standard use of addresses for implementing network functionalities, e.g. coding subscription information within the address or functional addressing, i.e. assigning an address to a function
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5038Address allocation for local use, e.g. in LAN or USB networks, or in a controller area network [CAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5046Resolving address allocation conflicts; Testing of addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5084Providing for device mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5092Address allocation by self-assignment, e.g. picking addresses at random and testing if they are already in use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/2402Laminated, e.g. MCM-L type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/604Address structures or formats
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
    • Y10T156/103Encasing or enveloping the configured lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • Y10T29/49171Assembling electrical component directly to terminal or elongated conductor with encapsulating

Definitions

  • the present invention relates generally to a process for manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag.
  • RFID radio frequency identification
  • RFID radio frequency identification
  • a system for handling baggage in an airport terminal is a typical application.
  • Such a system incorporates radio frequency identification (RFID) between interrogators and transceivers.
  • RFID radio frequency identification
  • each baggage tag is an enclosed, battery operated transceiver.
  • Bar code identification and OCR techniques are labor intensive and may, for example, require several airline employees or postal workers to physically manipulate the article and/or the bar code readers to read these bar codes before the transported article reaches its final destination.
  • the cost of bar code readers and optical character readers is high, limiting the number of locations at which these readers can be used.
  • both bar code readers and optical character readers tend to be highly unreliable.
  • the general purpose and principal object of the present invention is to provide a novel alternative approach to all of the above prior art RFID, OCR, and bar code type location tracking and data storage systems.
  • This new approach as described and claimed herein represents a fundamental breakthrough in the field of article transport control in a wide variety of fields, of which the fields of airline baggage transport, delivery of parcels and mail, and inventory control are only three examples.
  • This new device includes, in combination, an integrated circuit (IC) which is mounted in an approximately one inch square package and is encapsulated, for example laminated, in a flexible or rigid thin film material. This material may also include a suitable adhesive backing for reliably securing the package to an outer surface or printed label of an article of interest.
  • IC integrated circuit
  • the IC includes therein a receiver section for driving suitable control logic and memory for decoding and staring input information such as an identification number, the baggage owner's name, point of origin, weight, size, route, destination, and the like.
  • This memory includes, but is not limited to, PROMS, EPROMs, EEPROMs, SRAMS, DRAMs, and ferroelectric memory devices.
  • the IC also includes a transmitter section therein operative for transmitting this information to an interrogator upon subsequent IC interrogation.
  • An RF antenna is placed in a desired geometrical configuration (for example, monopole, dipole, loop, bow-tie, or dual-dipole) and incorporated within or on the thin film material and adjacent to the IC in an essentially two dimensional structure, neglecting the approximately 30 mil thickness dimension of the completed structure.
  • a desired geometrical configuration for example, monopole, dipole, loop, bow-tie, or dual-dipole
  • a thin battery is connected to the IC for providing power to the IC.
  • the IC also incorporates circuitry to allow for operation in a sleep mode during transit and in storage in order to conserve power.
  • an operator may encode data into the IC or interrogate the IC by signaling the IC from a remote location to thereby “wake up” the IC without engaging in any hands-on operation.
  • the integrated circuit receiver and transmitter are operated in a spread spectrum mode and in the frequency range of 200 Mhz to 10 GHz, with the range of 800 MHz to 8 GHz being the range of most importance. This operation has the effect of avoiding errors or improper operation due to extraneous signal sources and other sources of interference, multipathing, and reflected radiation from the surrounding environment.
  • Another object of this invention is to provide an RFID system and method of operation of the type described which utilizes RF transmitting and receiving sections on a single IC.
  • Such a system has applications for tracking people or articles in both storage and transit.
  • Another object of this invention is to provide an electronic device of the type described which does not include bulky hybrid circuits, use modulation techniques described above for passive RFID tags, nor require scanning of bar codes, bar code readers, optical character readers, or especially clean operating environments.
  • Another object of this invention is to provide an electronic device of the type described which may be manufactured using integrated circuit fabrication and packaging processes.
  • Another object of this invention is to provide an electronic device of the type described which may be reliably and economically manufactured at high yields and at a high performance to price figure of merit.
  • Another object of this invention is to provide an RFID device of the type described which is field writable and has a transmission range greater than five (5) feet.
  • Another object of this invention is to provide a novel assembly process for manufacturing the RFID electronic device described herein.
  • Another object is to provide a manufacturing process of the type described which is conducive to high speed automation.
  • Another object is to provide an enclosed electronic device of the type described which is further conducive to high speed product usage, since these RFID devices may be supplied to the customer in a tape and reel format, a fan fold format, or a sheet format.
  • Another object of this invention is to provide an RFID device of the type described which may be powered with the use of an RF coil and capacitor and without the use of a battery.
  • Such device is also referred to herein as the “passive” device embodiment.
  • the term “passive” refers only to the fact that no battery is used, whereas the electrical circuitry on the IC is indeed active while being powered by the RF coil and capacitor combination.
  • Another object of this invention is to provide a non-contact method of object and person detection and location which can serve as a replacement for metal-to-metal contact in smart card applications and as a replacement for magnetic strip, bar code, and other types of contact-powered electronics.
  • This novel method of object detection and location represents a significant saving of time and manual effort. For example, consider the time and effort involved when a person must first remove a smart card from a pocket or billfold and then insert the card in a card reader device before being allowed entry into a secured area within a building.
  • Another object of this invention is to provide an electronic device, system, and communication method of the type described which represents, in novel combination, a fundamental breakthrough in many diverse fields of article shipment, including the parcel post and postal fields, the airline industry, inventory control for many manufacturing industries, security, waste management, personnel, and the like.
  • an enclosed electrical assembly of the present invention includes a rigid or flexible thin film support member having an integrated circuit (IC) disposed thereon and an antenna incorporated within the IC or positioned adjacent to the IC within a predetermined area of the thin support member; means on the IC for receiving and encoding data relating to the article being stored or shipped; and means on the IC for reading the stored data and transmitting this data to an operator at a remote location.
  • IC integrated circuit
  • a base member and a cover member each having conductive patterns developed thereon connect the IC in series with two thin film batteries.
  • two batteries By arranging two batteries with the IC, no substantial current flows through a laminated or folded portion of the assembly. Smaller signal levels, lower power operation, and longer useful life of the assembly results.
  • antenna coupling is also provided to the IC without current flow through a laminated or folded portion of the assembly. Greater sensitivity in receiving and lower losses in transmitting result.
  • an RFID device has two modes of operation are provided with a wake-up circuit.
  • the wake-up circuit senses in-band energy and switches from a sleep mode to an operating (waked) mode.
  • the sleep mode being useful during transit and storage of the RFID device to conserve battery power.
  • the IC includes receiver and transmitter sections characterized by spread spectrum modulation.
  • Spread spectrum modulation reduces data transmission and reception errors, reduces the possibility of improper operation in response to extraneous signal sources, reflected radiation from a surrounding noisy environment, and other interference. Battery power is thereby conserved.
  • the enclosure includes an adhesive on an outer surface thereof.
  • the adhesive permits reliable and convenient securing of a device of the present invention to an article being transported or stored.
  • the frequencies of radio communication, modulation scheme, geometry of the antenna, capacity of the battery, and electrical properties of the enclosure cooperate for omnidirectional communication between an enclosed transceiver of the present invention and a distant interrogator.
  • No manual manipulation of the interrogator or transceiver is required for area-wide communication such as confirming the contents of a delivery vehicle or verifying inventory in place, to name a few examples.
  • a plurality of transceivers are enclosed and laminated between a pair of films.
  • One side of one of the films has adhesive capability.
  • the transceivers are separated and arranged on a backing.
  • a roll or tape of the backing having transceivers removably attached thereto is enclosed in an RF tight dispenser.
  • the dispenser provides convenient access to unprogrammed transceivers for use on articles to be shipped.
  • a transceiver communicates with an interrogator in the area for establishing transceiver identity, shipping authorization, destination or storage criteria, date of issue, and similar information.
  • FIG. 1A and FIG. 1B are functional block diagrams of enclosed transceivers of the present invention.
  • FIG. 2 is a perspective view of an enclosed transceiver as shown in FIG. 1A.
  • FIG. 3 is a plan view showing the conductive patterns on the base and cover members used in FIG. 2, including dotted line outlines of the locations for the IC and batteries.
  • FIG. 4A through FIG. 4D are cross sectional views taken along lines 4 - 4 of FIG. 3 showing four processing steps used in constructing the enclosed transceiver shown in FIG. 3.
  • FIG. 5A is a perspective view of an alternate embodiment of the invention wherein the IC is mounted on a parallel plate capacitor which in turn is mounted on a battery.
  • FIG. 5B is an enlarged portion of FIG. 5A.
  • FIG. 6A through FIG. 6E are cross sectional views taken along lines 6 - 6 of FIG. 5 showing five processing steps used in constructing the embodiment shown in FIG. 5.
  • FIG. 7 is a cross-sectional view showing an arrangement of battery and capacitor alternate to the embodiment shown in FIG. 5.
  • FIG. 8 is a perspective view of another alternate embodiment of the present invention having battery surfaces defining and performing the function of a bow-tie antenna.
  • FIG. 9 shows an alternate, passive device embodiment of the present invention in partially cut-away perspective view wherein the battery has been altogether eliminated and further wherein a capacitor is periodically charged from an external source in a manner described below to provide operating power to the IC.
  • FIG. 10 is a top view of a web of enclosed transceivers of the present invention.
  • FIG. 11 is an exploded perspective view of the top and bottom films used to construct one of the enclosed transceivers shown in FIG. 10.
  • FIG. 12 is a cross-sectional view taken along lines 12 - 12 of FIG. 11 showing a portion of the web shown in FIG. 10 and illustrating electrical coupling to and between the films.
  • FIG. 13A is a process flow diagram showing the steps of the present invention used to manufacture an enclosed transceiver.
  • FIG. 13B is a process flow diagram showing the steps of the present invention used to manufacture another enclosed transceiver.
  • each functional block diagram a single line between functional blocks represents one or more signals.
  • a person of ordinary skill in the art will recognize that portions of the perspective views and cross-sectional views are enlarged for clarity.
  • FIG. 1A and FIG. 1B are functional block diagrams of enclosed transceivers of the present invention.
  • Enclosed transceiver 1 includes a pair of batteries 2 and 3 , a dipole antenna 4 and 5 , and an integrated circuit (IC) 11 .
  • Batteries 2 and 3 are in series connection through line 6 and cooperate as powering means for supplying power to IC 11 through lines 8 and 9 .
  • IC 11 is a four terminal device operating as communicating means for transmitting and receiving radio signals.
  • Dipole antenna 4 and 5 couples radio signals between IC 11 and the communications medium which separates enclosed transceiver 11 from an interrogator, not shown. The interrogator is located up to 400 feet from enclosed transceiver 11 .
  • Integrated circuit 11 is a transceiver including wake-up circuit 12 , receiver 13 , transmitter 14 , control logic 15 , and memory 16 . Each of these functional circuits receives power signals VCC and GND on lines 8 and 9 . When a received signal has substantial in-band energy as detected by wake-up circuit 12 , control logic 15 enables receiver 13 for receiving and decoding a radio signal on antenna 4 and 5 . Received data is provided by receiver 13 to control logic 15 . Control logic 15 writes received data into memory 16 . Control logic 15 also processes (i.e. decodes, tests, or edits) the received data with data stored in memory 16 and determines whether a response transmission is appropriate and the content of such a response.
  • control logic 15 also processes (i.e. decodes, tests, or edits) the received data with data stored in memory 16 and determines whether a response transmission is appropriate and the content of such a response.
  • control logic 15 reads transmit data from memory 16 and enables transmitter 14 for sending the transmit data as a second radio signal on antenna 4 and 5 .
  • Control logic 15 operates as a controller for reading data from and writing data to memory 16 .
  • Antenna 4 and 5 matches the medium to the receiver and to the transmitter for improved receiver sensitivity, and reduced transmission losses.
  • Dipole antenna 4 and 5 has a toroidal antenna pattern with a null along the axis of the toroid.
  • FIG. 1B is a functional block diagram of an alternate enclosed transceiver of the present invention. Like numbered elements correspond to elements already described with reference to FIG. 1A.
  • Enclosed transceiver 18 includes loop antenna 19 , battery 20 , and integrated circuit 21 .
  • Loop antenna 19 provides near omnidirectional communication capability as will be discussed with reference to FIG. 11.
  • Battery 20 is connected to antenna line 22 to reduce the number of terminals required to connect integrated circuit 21 into enclosed transceiver 18 and to improve the omnidirectional nature of the antenna pattern. A novel enclosure implements this connection to be discussed below.
  • Integrated circuit 21 is a three terminal device providing the same functions as integrated circuit 11 already described with reference to FIG. 1A.
  • a data call-up operation consider the events surrounding checking baggage or mailing a package.
  • an airline agent or postal worker operates an interrogator.
  • the interrogator transmits information to receiver 13 via an RF communication link concerning data such as the owner's name, an ID number, point of origin, weight, size, route, destination, amount of postage prepaid, billing information for debit, postage, handling, or storage costs due, time stamp, and the like.
  • This received data is coupled to control logic 15 for processing, encoding, and storage in memory 16 .
  • Stored data is made available for call up by an interrogator at one or more points along the shipment route.
  • an interrogator upon reaching a point of shipment destination, an interrogator calls up stored data and uses it at the point of destination for insuring that the item of luggage or shipment is most assuredly and efficiently put in the hands of the desired receiver at the earliest possible time.
  • an interrogator at the destination point sends interrogation signals to the enclosed transceiver 1 where they are received by antenna 4 and 5 and first processed by sleep/wake up circuit 12 .
  • Wake-up circuit 12 operates to bring integrated circuit 11 out of a “sleep” made into a “waked” mode wherein receiver 13 receives and decodes signals to provide received data to control logic 15 .
  • control logic 15 With integrated. circuit 11 now in “waked” mode, memory 16 is read by control logic 15 to call-up transmit data, i.e. the above six pieces of information relating to the shipped article. Control logic 15 then couples the transmit data to transmitter 14 and enables transmitter 14 for sending transmit data to the interrogator.
  • Receiver 13 and transmitter 14 preferably employ one of the well known spread spectrum modulation techniques including for example: (1) direct sequencing, (2) frequency hopping, (3) pulsed FM or chirped modulation, (4) time hopping, or (5) time-frequency hopping used with pulse amplitude modulation, simple amplitude modulation or binary phase shift keying.
  • spread spectrum modulation techniques including for example: (1) direct sequencing, (2) frequency hopping, (3) pulsed FM or chirped modulation, (4) time hopping, or (5) time-frequency hopping used with pulse amplitude modulation, simple amplitude modulation or binary phase shift keying.
  • the communication circuitry of an interrogator (not shown) is designed to conform to the modulation technique, message encoding, and modes of operation described for the enclosed transceivers of the present invention. Interrogator design is understood by those skilled in the art and, therefore, is not described herein.
  • FIG. 2 is a perspective view of an enclosed transceiver as shown in FIG. 1A.
  • Enclosed transceiver 1 includes a base support layer 30 upon which an integrated circuit 32 is disposed on the near end of layer 30 and connected to a dipole antenna consisting of a pair of conductive strips 34 and 36 extending laterally from IC 32 . These conductive strips 34 and 36 will typically be screen printed on the upper surface of base support layer 30 .
  • a pair of rectangularly shaped batteries 38 and 40 are positioned as shown adjacent to IC 32 and are also disposed on the upper surface of base support member 30 . Rectangular batteries 38 and 40 are electrically connected in series to power IC 32 in a manner more particularly described below. Assembly of enclosed transceiver 1 is completed by the folding over of an outer or upper cover member 42 which is sealed to the exposed edge surface portions of the base member 30 to thereby provide an hermetically sealed and completed package. When cover member 42 is folded over onto base member 30 , conductive strip 50 is attached to batteries 38 and 40 using conductive epoxy. Conductive strip 50 provides means for coupling a pole of battery 38 to a pole of battery 40 ; thus accomplishing the series electrical connection of batteries 38 and 40 .
  • Integrated circuit 32 has transmitter, memory, control logic, and receiver stages therein and is powered by batteries 38 and 40 during the transmission and reception of data to and from an interrogator to provide the interrogator with the various above information and identification parameters concerning the article, animal or person to which the enclosed transceiver is attached.
  • FIG. 3 is a plan view showing the conductive patterns on the base and cover members used in FIG. 2, including dotted line outlines of the locations for the IC and batteries.
  • base 30 and cover 42 are joined at an intersecting line 44 .
  • Dipole antenna strips 34 and 36 are shown positioned on each side of IC 32 .
  • Two conductive strips 46 and 48 serve to connect the bottoms of batteries 38 and 40 to IC 32 .
  • Conductive strip 50 is provided on the upwardly facing inside surface of top cover 42 , so that, when cover 42 is folded at intersecting line 44 , the outer boundary 52 of cover 42 is ready to be sealed with the outer boundary 54 of base support member 30 .
  • conductive strip 50 bonded by the conductive epoxy to batteries 38 and 40 , completes the series electrical connection used to connect batteries 38 and 40 in series with each other and further in series circuit with integrated circuit 32 through conductive strips 46 and 48 .
  • FIG. 4A through FIG. 4D are cross sectional views taken along lines 4 - 4 of FIG. 3 showing four processing steps used in constructing the enclosed transceiver shown in FIG. 3.
  • FIG. 4A shows in cross sectional view IC 32 bonded to base support member 30 by means of a spot or button of conductive epoxy material 56 .
  • Conductive strip 48 is shown in cross section on the upper surface of base support member 30 .
  • battery 40 is aligned in place as indicated earlier in FIG. 2 and has the right hand end thereof bonded and connected to the upper surface of conductive strip 48 by means of a spot of conductive epoxy applied to the upper surface of conductive strip 48 , but not numbered in this figure.
  • a stiffener material 58 is applied as shown over the upper and side surfaces of IC 32 .
  • the stiffener material will preferably be an insulating material such as “glob-top” epoxy to provide a desired degree of stiffness to the package as completed.
  • a spot of conductive epoxy is applied to each end of conductive strip 50 , and then cover layer material 42 with the conductive epoxy thereon is folded over onto batteries 38 and 40 and base member 30 to cure and heat seal and, thus, complete and seal the package in the configuration shown in FIG. 4D.
  • FIG. 5A is a perspective view of an alternate embodiment of the invention wherein the IC is mounted on a parallel plate capacitor which in turn is mounted on a battery.
  • FIG. 5B is an enlarged portion of FIG. 5A.
  • the enclosed transceiver shown includes the combination of battery 60 , capacitor 62 , and IC 64 .
  • inrush current requirements for IC 64 exceed the capability of battery 60 to supply surge current, for example, due to inductive coupling or battery structure, inrush current is supplied by capacitor 62 .
  • the structure of battery 60 is in direct contact with the upper surface 66 of a base support member 68 .
  • the structure of parallel plate capacitor 62 is positioned intermediate to the upper surface of the structure of battery 60 and the bottom surface of IC 64 .
  • an exposed capacitor bottom plate area 65 is provided on the left hand side of this structure and an exposed battery bottom plate area 67 is provided on the right hand side of the battery-capacitor-chip structure.
  • a plurality of antenna lines 70 , 72 , 74 , and 76 form two dipole antennas connected to opposite corners of IC 64 in a generally X-shaped configuration and extend as shown from IC 64 to the four corners of the package.
  • Upper polymer cover 77 is sealed in place as shown to hermetically seal all of the previously identified elements of the package between base support member 68 and polymer cover 77 .
  • FIG. 6A through FIG. 6E are cross sectional views taken along lines 6 - 6 of FIG. 5 showing five processing steps used in constructing the embodiment shown in FIG. 5.
  • Base starting material includes a first or base polymer layer 78 , such as polyester or polyethylene, which is laminated with a relatively impermeable material such as metal film, PVDC, or silicon nitride.
  • Base layer 78 is coated on the bottom surface thereof with a suitable adhesive film 80 which will be used for the device adhesion during device usage. If the adhesive is sufficiently impermeable, the impermeable coating may be omitted.
  • the battery connection and attachment are made on the upper surface of base layer 78 using a spot of conductive epoxy. Conductive epoxy is also used at interface 94 between battery 60 and capacitor 62 and interface 98 between capacitor 62 and IC 64 .
  • a thin film battery consisting of parallel plates 84 and 86 is placed on base layer 78 .
  • a capacitor comprising parallel plates 90 and 92 is attached onto battery layer 84 using a conductive epoxy.
  • Bottom plate 92 of capacitor 62 is somewhat larger in lateral extent than ton capacitor plate 90 in order to facilitate the necessary electrical connection of battery 60 and capacitor 62 to integrated circuit 96 .
  • IC 96 corresponds to IC 64 in FIGS. 5A and 5B.
  • IC 96 is then attached to top capacitor plate 90 with a conductive epoxy at interface 98 , thereby providing an electrical connection.
  • the bottom surface of IC 96 is metallized to facilitate this connection.
  • an epoxy cure heat step or metallization anneal step is used to enhance the sealing between the various above stacked elements.
  • prefabricated insulating layer 100 is now laid over the battery/capacitor/IC stack in the geometry shown.
  • Layer 100 includes openings 102 , 104 , 110 , and 112 therein for receiving a conductive polymer material as will be described below in the following stage of the process.
  • Prefabricated holes 102 , 104 , 110 , and 112 in layer 100 are aligned, respectively, to the battery contact, to the capacitor contact, and to the contacts on the top of IC 96 .
  • Layer 100 is then sealed to base polymer layer 78 using, for example, a conventional heating or adhesive step.
  • a conductive polymer material 108 is deposited in openings 102 and 104 in the lower regions of layer 100 and extended up into the upper openings 110 and 112 of layer 100 to make electrical contact as indicated on the upper surface of IC 96 .
  • the shaped conductive epoxy material 108 may also be preformed utilizing a stamping tool or silk screening techniques and is applied as shown over the upper surface of layer 100 .
  • Conductive epoxy material 108 forms the innermost region of the antenna structure extending from IC 96 out in the dual dipole geometry as previously described with reference to FIGS. 5A and 5B. However, the complete antenna geometry shown in FIG. 5A is outside the lateral bounds of the fragmented cross sectional views shown in FIGS. 6A through 6E. At this point in the process, an epoxy cure heat step is optional.
  • polymer insulating layer 114 is formed on the upper surface of layer 100 in the geometry shown and further extends over the exposed upper surfaces of the conductive epoxy polymer antenna material 108 . Layer 114 is then sealed to layer 100 using either heat or adhesive sealing. Layer 114 provides a final hermetic seal for the completed device shown in cross section in FIG. 6E.
  • FIG. 7 is a cross-sectional view showing an arrangement of battery and capacitor alternate to the embodiment shown in FIG. 5.
  • the battery and capacitor are mounted side-by-side under the IC.
  • the electrical connection for battery 118 and capacitor 120 to integrated circuit 96 is provided by positioning the battery 118 and capacitor 120 in the co-planar configuration shown on the surface of base polymer layer 78 .
  • the bottom plate of battery 118 is connected through conductive epoxy layer 128 to the top surface of IC 96 .
  • the bottom plate of parallel plate capacitor 120 is connected through conductive epoxy layer 128 to the top surface of the IC 96 .
  • a small space 126 is provided as shown to electrically isolate battery 118 and capacitor 120 .
  • conductive material 128 is extended as shown between the left side opening 130 in the layer 100 and a lower opening 132 in layer 100 .
  • layer 114 is then extended over the top surface of layer 100 in the geometry shown.
  • Conductive polymer material 128 extends to connect the crossed antenna structure of FIG. 5 to IC 96 shown in FIG. 7.
  • FIG. 8 is a perspective view of another alternate embodiment of the present invention having battery surfaces defining and performing the function of a bow-tie antenna.
  • IC 138 is centrally positioned as shown on the upper surface of base support member 140 and is electrically connected to two triangularly shaped batteries 142 and 144 , also disposed on the upper surface of base support member 140 .
  • Batteries 142 and 144 are connected in series with IC 138 when protective cover member 146 is sealed over the top surfaces of the two batteries 142 and 144 and the IC 138 using processing steps previously described.
  • the entire outer surfaces of the two batteries 142 and 144 serve as a “bow tie” antenna structure for the enclosed transceiver.
  • the top and bottom surfaces of batteries 142 and 144 are coupled together.
  • Batteries 142 and 144 are connected in series with the IC 138 to provide DC operating power therefor in a manner previously described.
  • the dual use of the batteries as power supplies and antenna structures minimizes the number of terminals required to connect IC 138 into an enclosed transceiver.
  • FIG. 9 shows an alternate, passive device embodiment of the present invention in partially cut-away perspective view wherein the battery has been altogether eliminated and further wherein a capacitor is periodically charged from an external source in a manner described below to provide operating power to the IC.
  • This embodiment is known as the passive or battery-less device embodiment, since it contains no battery therein. Instead, operating power is provided by a capacitor structure identified as component 148 located beneath IC 150 . A charge on capacitor 148 is maintained by conventional RF charging circuits (not shown) on IC 150 which are energized from a remote source.
  • the enclosed transceiver shown in FIG. 9 includes a first loop antenna 152 for receiving RF charging signals for capacitor 148 and a dipole antenna formed of conductive strips 154 and 156 for receiving and transmitting data to and from IC 150 .
  • capacitor 148 and IC 150 are positioned and hermetically sealed between a base cover member 157 and a top cover member 158 .
  • FIG. 10 is a top view of a web of enclosed transceivers of the present invention.
  • Laminated sheet 200 includes 36 enclosed transceivers 210 simultaneously manufactured in a plurality of cavities as already described.
  • Sheet 200 in a preferred embodiment includes 252 enclosed transceivers, each approximately 1.5 inches square.
  • sheet 200 includes one folded film as illustrated in FIGS. 2, 3, and 4 ; three coextensive films 114 , 100 , and 78 as illustrated in FIGS. 6 and 7; or two coextensive films as is apparent from FIGS. 8 and 9, and FIGS. 11 and 12 to be discussed below.
  • Sheet 200 in one embodiment is sectioned to obtain individual enclosed transceivers by interstitial cutting, perforation and tearing, or sheering; sectioning being simultaneous with or following the step of sealing each enclosed cavity by lamination, embossing, hot stamping or the like.
  • enclosed transceivers are manufactured in a continuous strip, for example, one enclosure.
  • a large number of finished devices, or webs are stored on a take-up reel (not shown) supporting a corresponding large plurality of the devices.
  • storage on a take-up reel not only makes the present process conducive to high speed automated manufacturing, but in addition makes the process compatible to high speed manual or automated product dispensing and use.
  • Large numbers of enclosed transceivers may be supplied easily to a user in a conventional tape and reel format. The user can readily detatch one device at a time for immediate attaching to an article. Alternatively, enclosed transceivers are manufactured and shipped in sheets and later sectioned by the customer.
  • devices are cut from the tape or sheet from which they were manufactured and then removably mounted on a backing.
  • the backing in one embodiment is in tape format and in another equivalent embodiment is in sheet format.
  • enclosed transceivers are more effectively stored in a cache for dispensing individually.
  • the cache not shown, includes means for dispensing (i.e. separately providing a transceiver on demand) and shielding means for preventing signal reception by enclosed transceivers within the cache. If shielding were not included, a supply of transceivers located within communicating range of an interrogator would soon expend battery capacity by processing signals including, for example, wake-up signals.
  • Means for dispensing includes, for example, mechanical devices for feeding a tape or sheet through an opening and mechanical devices for separating shielding materials from a tape or sheet.
  • the former dispensing means in one embodiment of the cache, cooperates with shielding across the opening including conductive rollers, separating brushes, separating fingers, and the like.
  • the latter dispensing means in another embodiment of the cache, cooperates with conductive backing material, or conductive foam as a backing or cover layer arranged to shield the exposed edges of a roll containing transceivers.
  • FIG. 11 is an exploded perspective view of the top and bottom films used to construct one of the enclosed transceivers shown in FIG. 10.
  • the embodiment shown corresponds to enclosed transceiver 18 shown in FIG. 1B.
  • Top film 214 includes area 222 for lamination onto the top surface (pole) of battery 20 ; strip 218 for loop antenna 19 ; and, contact area 226 .
  • Each of these three features in a preferred embodiment, is formed of conductive ink. In an alternate and equivalent embodiment, these three features are formed of conductive epoxy.
  • Bottom film 230 includes area 238 for lamination onto the bottom surface (pole) of battery 20 ; strip 234 for loop antenna 19 ; contact area 254 ; and contact points 242 , 246 , and 250 for connecting integrated circuit 21 to the battery and antenna.
  • Each of these six features in a preferred embodiment, is formed of conductive ink, though conductive epoxy is equivalent.
  • Contact 246 is intentionally misaligned with respect to area 222 to prevent shorting battery 20 .
  • strips 218 and 234 are aligned to coincide, as are contact areas 226 and 254 , respectively. These strips and contact areas when joined by lamination cooperate as means for coupling power from battery 20 to IC 21 and, simultaneously, for electrically matching IC 21 to the communications medium by forming loop antenna 19 .
  • contacts 242 , 246 , and 250 correspond respectively to lines 24 , 23 , and 22 shown in FIG. 1B.
  • FIG. 12 is a cross-sectional view taken along lines 12 - 12 of FIG. 11 showing a portion of the web shown in FIG. 10 and illustrating electrical coupling to and between the films.
  • the completed assembly includes similarly numbered elements already discussed with reference to FIG. 11.
  • IC 390 is prepared for assembly by forming conductive bumps 306 and 314 to terminals on its lower surface.
  • bumps are formed of conductive epoxy.
  • metallic bumps, such as gold, are formed by conventional integrated circuit processes.
  • IC 390 as shown is in a “flip chip” packaging orientation having substantially all circuitry formed on the surface facing film 230 . Prior to assembly, a puddle of conductive epoxy is applied to contacts 250 and 242 .
  • IC 390 is then located atop contacts 250 and 242 so that bumps 306 and 314 are surrounded within puddles 302 and 310 .
  • the film is then heated to set all conductive epoxy including puddles 302 and 310 , as well as strips and areas including the antenna and contact areas 226 and 254 , formed of conductive epoxy.
  • top film 214 is aligned over bottom film 230 so that contact areas 226 and 254 are pressed together.
  • FIG. 13A is a process flow diagram showing the steps of the present invention used to manufacture an enclosed transceiver of the type shown in FIGS. 10 - 12 .
  • the manufacturing process begins with a polyester film used for the bottom and for the top.
  • Material for the bottom in a first embodiment is identical to the top and includes film with dimensional stability, for example, polyester film that has been heat stabilized or pre-shrunk.
  • film with dimensional stability for example, polyester film that has been heat stabilized or pre-shrunk.
  • These materials, though inexpensive, are porous to substances that degrade the life and functions of the battery and integrated circuit. This disadvantage is resolved in a preferred embodiment by coating the outer surfaces of the material used for the top and bottom film with a barrier material
  • barrier material such as a silicon nitride deposit
  • CVD chemical vapor deposition
  • the deposit provides a hermetic barrier to prevent water vapor and other contaminants from affecting (e.g. oxidizing) battery and transceiver components.
  • the resulting thickness of the deposit is from 400 to 10,000 angstroms.
  • coating on both sides of the film prevents pin holes in each deposit from aligning in a way that defeats hermeticity.
  • the thickness of the deposit and the manner of formation are design choices based on the selection of materials for the film and the deposit, as well as the system requirements for hermeticity over time.
  • an alternate and equivalent embodiment uses other barrier materials including silicon oxide and silicon nitride deposited at a thickness of 100 to 400 angstroms.
  • the barrier material is formed in such an embodiment using one of the processes including evaporation, deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition.
  • a nitride film is sputtered on the outside portion of a top and bottom base support layer.
  • Each base support layer preferably comprises a polymer material such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidene chloride (PVDC). Formation of the barrier material deposit can be deferred until the enclosed transceiver is encapsulated, provided that environmental concerns such as contamination, over heating, and changes in pressure are addressed.
  • PVDC polyvinylidene chloride
  • a laminate adhesive is applied to the inner surfaces of the top and bottom films.
  • the laminate adhesive is activated in a later manufacturing step to cause the top and bottom layers to adhere.
  • the adhesive is tack free at room temperature and selected to match laminating equipment heat and pressure capabilities.
  • butyl acrylate is extruded onto the films to cover the entire inside surface of each film.
  • the adhesive is screen printed for economy.
  • conductors are screen printed onto the films.
  • the conductors are formed on top of laminate adhesive. Areas such as grid conductors 222 and 238 shown in FIG. 11 for contacting the battery are, consequently, interspersed with areas of exposed laminate adhesive to provide a more durable enclosure.
  • a polymer thick film ink is employed. High conductivity is provided by such inks that include copper or silver constituents. The ink preferably provides a stable surface for electrical butt contact formations. A low oxidation rate at storage temperature is desirable, though oxidation could be minimal in a controlled manufacturing environment.
  • Printed circuits on the top layer are arranged to perform multiple functions when the top and bottom layers are joined.
  • a conductor on the top layer completes series or parallel circuits for devices having contacts in two planes.
  • Conductor 50 in FIG. 2 is one example.
  • a conductor on the top layer completes an antenna structure for the transceiver integrated circuit, as illustrated in FIG. 8.
  • Third, a single conductor in the top layer accomplishes both the first and second functions. See, for example, the conductor in FIG. 11 identified as areas 226 , 222 , and 216 .
  • conductors are formed in a subtractive process, for example, chemical etching.
  • a positive screen print process energy and material are conserved.
  • Printed circuit technology is applied in another embodiment wherein the step of attaching the integrated circuit and the battery to a base material includes soldering and brazing.
  • the base material in such an embodiment is one of a wide variety of printed circuit materials including polyimide and glass-epoxy materials.
  • step 440 the top and bottom base support layers are cut from the roll or web to form sheets as illustrated in FIG. 10 to facilitate use of automated component placement machinery.
  • Each sheet is attached, in step 450 , to a carrier panel for compatibility with conveyor based manufacturing facilities.
  • step 460 a carrier with sheet attached is loaded into a magazine or placed onto a conveyor for automated manufacturing. Steps 440 - 460 , in an alternate embodiment of the manufacturing process of the present invention, are omitted as unnecessary when continuous manufacturing from roll stock is desirable.
  • step 470 those portions of conductors that are to make electrical contact with the integrated circuit are prepared with a coating or puddle of conductive epoxy.
  • conductive epoxy In a preferred embodiment, silver filled epoxy is employed that remains wet at room temperature until thermally cured. Application of the epoxy is by screen printing. In an alternate embodiment, epoxy is applied by dispensing.
  • step 480 integrated circuit die are placed so that epoxy bumps previously formed on the integrated circuit enter the puddles formed in step seven.
  • the arrangement of the integrated circuit face down on the bottom film is commonly referred to as “flip-chip” orientation.
  • integrated circuits are also placed in contact puddles formed on the top, i.e. cover layer. All die on the sheet are placed and aligned in this step 480 prior to proceeding with subsequent cure.
  • step 490 a batch of panels is heated to set the epoxy applied in step seven.
  • a conveyor based oven supports continuous curing. Curing temperature and duration are design choices that match the epoxy curing requirements.
  • curing is performed at 150 degrees Celsius for 3 to 5 minutes. The cure is selected so as not to interfere with the characteristics of the laminate adhesive applied in step 420 .
  • an encapsulation material commonly called “glob top epoxy” is applied over the integrated circuit.
  • Suitable nonconductive materials include those providing a stiffening property to protect the integrated circuit and the electrical connections thereto from mechanical damage.
  • step 510 the encapsulating material is cured.
  • the encapsulating material is cured with ultraviolet radiation.
  • An alternate and equivalent embodiment employs a thermal curing process. The ultraviolet cure is preferred for rapid manufacturing.
  • use of a thermal cure in step 510 may permit use of a partial thermal cure in step 490 , later perfected by additional thermal cure duration provided in step 510 .
  • step 520 the battery or batteries are aligned and placed on the base support film.
  • connection is made using conductive tape having adhesive on both sides of the tape.
  • Such tape commonly includes conductive particles in the adhesive.
  • the top or cover film is aligned over the bottom or base film.
  • the top film is folded over the base film.
  • the base film and top film are aligned for continuous lamination.
  • step 540 the top cover film is pressed onto the bottom base film and heat is applied to activate the adhesive applied in step 420 .
  • heat is applied to activate the adhesive applied in step 420 .
  • butyl acrylate adhesive a temperature of from 95 to 110 degrees Celsius is preferred.
  • the seal provided by automated lamination equipment may be incomplete or have weaknesses caused, for example, by insufficient heat or pressure at a point in an area to be sealed. Enclosing components of varying thicknesses can result in air pockets surrounding such components that, if too near the periphery, can also lead to weaknesses and voids.
  • the preferred process includes step 550 wherein the periphery of each transceiver on a sheet is subject to a second application of heat and pressure for activating laminate adhesive applied in step 420 .
  • the additional heat and pressure in such a localized periphery can deform the films to form minute bosses.
  • the step is called embossing.
  • the aspect of the effective application of heat and pressure is more important than the extent of consequential deformation.
  • each enclosure is evacuated.
  • Lamination for such an embodiment is conducted in an evacuated environment.
  • Embossing in yet another embodiment is also conducted in an evacuated environment.
  • step 540 the circuitry of the battery powered transceiver is active by virtue of the completed circuits formed when the top cover layer is aligned and butt contacts are formed with components and the base layer. Functional tests of multiple or individual transceivers are now feasible.
  • transceivers are functionally tested.
  • a pair of grounded plates with surface features are placed on both sides of a sheet of enclosed transceivers so that each transceiver operates inside a shielded cavity.
  • the wavelength used for testing is selected such that leakage through the thickness of the embossed seal is negligible. Plates similar to the embossing die used in step 550 are used in one embodiment.
  • Each cavity includes an antenna for transmitting stimulus signals and for receiving response signals for measuring the quality of each transceiver. Measurements include, for example, receiver sensitivity, transmitted spectrum, message handling capability, self-testing, and response timing.
  • step 570 the sheet of tested transceivers is sheered in two dimensions to singulate or separate the transceivers from one another.
  • a backing material is applied to one side of the sheet prior to singulation. Singulation for this embodiment is accomplished by kiss cutting through the top and base films leaving the transceivers attached to the backing material. Transceivers, whether attached to the backing or loose are then sorted based on the results of functional testing performed in step 560 and additional testing as needed.
  • FIG. 13B is a process flow diagram showing the steps of the present invention used to manufacture another enclosed transceiver of the types shown in FIGS. 2 - 9 .
  • This embodiment of the method of the present invention includes nine (9) processing steps or fabrication stages which are used in the overall manufacturing process and in the construction of an enclosed transceiver.
  • a circuit pattern is initially formed on a base layer material.
  • This base layer material is preferably a polymer such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidene chloride (PVDC).
  • PVDC polyvinylidene chloride
  • the circuit pattern is cured and a conductive epoxy material is applied.
  • an integrated circuit chip is aligned onto the base layer.
  • two (2) batteries are aligned onto the base layer. In an alternate enclosed transceiver, the batteries are stacked vertically in either a series or parallel electrical connection.
  • the epoxy applied in step 612 is cured.
  • step 620 a stiffener material is applied.
  • epoxy is applied to the top surface of the battery and then the top half of the base layer is folded over the bottom half so that the top half forms the top cover.
  • step 624 the epoxy material applied in step 622 is cured.
  • step 626 the package is sealed to complete manufacturing of the package.
  • an enclosed transceiver used as an RFID device has utility directed to a wide variety of applications including, but not limited to, airline baggage (luggage, freight, and mail); parcel post (Federal Express and United Parcel Service); U.S. Mail; manufacturing; inventory; personnel security.
  • a “sticker” refers generally to a label, tag, marker, stamp, identifier, packing slip, invoice, package seal, tape, band, clasp, medallion, emblem, shield, and escutcheon regardless of printed or handwritten material thereon.
  • Mechanical coupling of a “sticker” so defined to an article, person, plant, or animal is not restricted to adhesive but is intended to broadly include all forms of fastening, tieing, and securing.

Abstract

The present invention teaches a method of manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag. Structurally, in one embodiment, the tag comprises an integrated circuit (IC) chip, and an RF antenna mounted on a thin film substrate powered by a thin film battery. A variety of antenna geometries are compatible with the above tag construction. These include monopole antennas, dipole antennas, dual dipole antennas, a combination of dipole and loop antennas. Further, in another embodiment, the antennas are positioned either within the plane of the thin film battery or superjacent to the thin film battery.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation-in-part of and claims priority from, U.S. patent application Ser. No. 899,777 filed on Jun. 17, 1992. [0001]
  • TECHNICAL FIELD
  • The present invention relates generally to a process for manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag. [0002]
  • BACKGROUND
  • In the field of radio frequency identification (“RFID”), communication systems have been developed utilizing relatively large packages whose size is on the order of that of a cigarette package or a substantial fraction thereof, and generally speaking, have been fabricated using hybrid circuit fabrication techniques. These relatively large electronic packages have been affixed, for example, to railroad cars to reflect RF signals in order to monitor the location and movement of such cars. [0003]
  • With respect to an enclosed electronic apparatus, a system for handling baggage in an airport terminal is a typical application. Such a system incorporates radio frequency identification (RFID) between interrogators and transceivers. Further, each baggage tag is an enclosed, battery operated transceiver. [0004]
  • Other smaller passive RFID packages have been developed for applications in the field of transportation, including the tracking of automobiles. These packages include reflective systems of the type produced by Amtech Inc. of Dallas, Tex. However, these reflective passive RFID packages which operate by modulating the impedance of an antenna are inefficient in operation, require large amounts of power to operate, and have a limited data handling capability. [0005]
  • In still other applications of article location and tracking, such as in the postal service or in the field of airline baggage handling and transport, it has not been practical or feasible to use the above relatively large and expensive RFID hybrid packages on smaller articles of transport such as letters, boxed mail shipments or airline luggage. Accordingly, in these latter areas of transport monitoring, as well as many other areas such as inventory control of stored articles, article location and tracking methods have traditionally employed bar code identification and optical character recognition (OCR) techniques which are well known in the art. [0006]
  • Bar code identification and OCR techniques are labor intensive and may, for example, require several airline employees or postal workers to physically manipulate the article and/or the bar code readers to read these bar codes before the transported article reaches its final destination. In addition, the cost of bar code readers and optical character readers is high, limiting the number of locations at which these readers can be used. Furthermore, both bar code readers and optical character readers tend to be highly unreliable. [0007]
  • In yet further and somewhat unrelated fields of: (1) animal tracking and (2) plant tracking, other types of passive RFID tags have been developed by Hughes/IDI/Destron of Irvine, Calif. These tags utilize a coil wrapped around a ferrite core. Such passive RFID tags have a very limited range, on the order of nine (9) inches, have a very limited data handling capability, and are not field programmable. In addition, these tags are limited in data storage capacity and are slow in operation. [0008]
  • In view of the problems described above and related problems that consequently become apparent to those skilled in the applicable arts, the need remains for enclosed electronic apparatus including transceivers wherein the enclosure is inexpensive, readily manufactured in high volume, appropriate in size for use as a stamp, label, or tag, and, in the case of transceivers, operable over distances of several hundred feet without regard for the spacial orientation of the enclosure. [0009]
  • SUMMARY
  • The general purpose and principal object of the present invention is to provide a novel alternative approach to all of the above prior art RFID, OCR, and bar code type location tracking and data storage systems. This new approach as described and claimed herein represents a fundamental breakthrough in the field of article transport control in a wide variety of fields, of which the fields of airline baggage transport, delivery of parcels and mail, and inventory control are only three examples. [0010]
  • To accomplish this purpose and object, we have invented and developed a new and improved radio frequency identification device, an associated electrical system, and a method for communicating with a remote RFID device from a local interrogator and controller. The size of this new device will typically be on the order of one inch square and 0.03 inches thick, or only slightly larger and slightly thicker than a postage stamp. This device includes, in combination, an integrated circuit (IC) which is mounted in an approximately one inch square package and is encapsulated, for example laminated, in a flexible or rigid thin film material. This material may also include a suitable adhesive backing for reliably securing the package to an outer surface or printed label of an article of interest. The IC includes therein a receiver section for driving suitable control logic and memory for decoding and staring input information such as an identification number, the baggage owner's name, point of origin, weight, size, route, destination, and the like. This memory includes, but is not limited to, PROMS, EPROMs, EEPROMs, SRAMS, DRAMs, and ferroelectric memory devices. The IC also includes a transmitter section therein operative for transmitting this information to an interrogator upon subsequent IC interrogation. An RF antenna is placed in a desired geometrical configuration (for example, monopole, dipole, loop, bow-tie, or dual-dipole) and incorporated within or on the thin film material and adjacent to the IC in an essentially two dimensional structure, neglecting the approximately 30 mil thickness dimension of the completed structure. [0011]
  • Advantageously, a thin battery is connected to the IC for providing power to the IC. The IC also incorporates circuitry to allow for operation in a sleep mode during transit and in storage in order to conserve power. Thus, at shipment points of origin, destination, and locations in transit, an operator may encode data into the IC or interrogate the IC by signaling the IC from a remote location to thereby “wake up” the IC without engaging in any hands-on operation. [0012]
  • In a preferred embodiment of the invention, the integrated circuit receiver and transmitter are operated in a spread spectrum mode and in the frequency range of 200 Mhz to 10 GHz, with the range of 800 MHz to 8 GHz being the range of most importance. This operation has the effect of avoiding errors or improper operation due to extraneous signal sources and other sources of interference, multipathing, and reflected radiation from the surrounding environment. [0013]
  • Accordingly, it is a further object of this invention to provide an RFID electronic device of the type described and method of fabricating such device. [0014]
  • Another object of this invention is to provide an RFID system and method of operation of the type described which utilizes RF transmitting and receiving sections on a single IC. Such a system has applications for tracking people or articles in both storage and transit. [0015]
  • Another object of this invention is to provide an electronic device of the type described which does not include bulky hybrid circuits, use modulation techniques described above for passive RFID tags, nor require scanning of bar codes, bar code readers, optical character readers, or especially clean operating environments. [0016]
  • Another object of this invention is to provide an electronic device of the type described which may be manufactured using integrated circuit fabrication and packaging processes. [0017]
  • Another object of this invention is to provide an electronic device of the type described which may be reliably and economically manufactured at high yields and at a high performance to price figure of merit. [0018]
  • Another object of this invention is to provide an RFID device of the type described which is field writable and has a transmission range greater than five (5) feet. [0019]
  • Another object of this invention is to provide a novel assembly process for manufacturing the RFID electronic device described herein. [0020]
  • Another object is to provide a manufacturing process of the type described which is conducive to high speed automation. [0021]
  • Another object is to provide an enclosed electronic device of the type described which is further conducive to high speed product usage, since these RFID devices may be supplied to the customer in a tape and reel format, a fan fold format, or a sheet format. [0022]
  • Another object of this invention is to provide an RFID device of the type described which may be powered with the use of an RF coil and capacitor and without the use of a battery. Such device is also referred to herein as the “passive” device embodiment. However, the term “passive” refers only to the fact that no battery is used, whereas the electrical circuitry on the IC is indeed active while being powered by the RF coil and capacitor combination. [0023]
  • Another object of this invention is to provide a non-contact method of object and person detection and location which can serve as a replacement for metal-to-metal contact in smart card applications and as a replacement for magnetic strip, bar code, and other types of contact-powered electronics. This novel method of object detection and location represents a significant saving of time and manual effort. For example, consider the time and effort involved when a person must first remove a smart card from a pocket or billfold and then insert the card in a card reader device before being allowed entry into a secured area within a building. [0024]
  • Another object of this invention is to provide an electronic device, system, and communication method of the type described which represents, in novel combination, a fundamental breakthrough in many diverse fields of article shipment, including the parcel post and postal fields, the airline industry, inventory control for many manufacturing industries, security, waste management, personnel, and the like. [0025]
  • Accordingly, an enclosed electrical assembly of the present invention includes a rigid or flexible thin film support member having an integrated circuit (IC) disposed thereon and an antenna incorporated within the IC or positioned adjacent to the IC within a predetermined area of the thin support member; means on the IC for receiving and encoding data relating to the article being stored or shipped; and means on the IC for reading the stored data and transmitting this data to an operator at a remote location. [0026]
  • According to a first aspect of such an assembly, a base member and a cover member each having conductive patterns developed thereon connect the IC in series with two thin film batteries. By arranging two batteries with the IC, no substantial current flows through a laminated or folded portion of the assembly. Smaller signal levels, lower power operation, and longer useful life of the assembly results. [0027]
  • According to another aspect, antenna coupling is also provided to the IC without current flow through a laminated or folded portion of the assembly. Greater sensitivity in receiving and lower losses in transmitting result. [0028]
  • According to another aspect of the present invention, an RFID device has two modes of operation are provided with a wake-up circuit. The wake-up circuit senses in-band energy and switches from a sleep mode to an operating (waked) mode. The sleep mode being useful during transit and storage of the RFID device to conserve battery power. [0029]
  • According to another aspect of such an RFID device, the IC includes receiver and transmitter sections characterized by spread spectrum modulation. Use of spread spectrum modulation reduces data transmission and reception errors, reduces the possibility of improper operation in response to extraneous signal sources, reflected radiation from a surrounding noisy environment, and other interference. Battery power is thereby conserved. [0030]
  • According to another aspect of the present invention, the enclosure includes an adhesive on an outer surface thereof. The adhesive permits reliable and convenient securing of a device of the present invention to an article being transported or stored. [0031]
  • According to yet another aspect of the present invention, by enclosing a transceiver in film, an extremely light weight, durable, and thin package results. Such a package is appropriate for use in replacement of or in conjunction with the conventional handwritten label, conventional hand-cancelled or postage-metered stamp, and the conventional baggage tag. [0032]
  • According to another aspect of the present invention, the frequencies of radio communication, modulation scheme, geometry of the antenna, capacity of the battery, and electrical properties of the enclosure cooperate for omnidirectional communication between an enclosed transceiver of the present invention and a distant interrogator. No manual manipulation of the interrogator or transceiver is required for area-wide communication such as confirming the contents of a delivery vehicle or verifying inventory in place, to name a few examples. [0033]
  • According to an aspect of another embodiment of the present invention, a plurality of transceivers are enclosed and laminated between a pair of films. One side of one of the films has adhesive capability. The transceivers are separated and arranged on a backing. A roll or tape of the backing having transceivers removably attached thereto is enclosed in an RF tight dispenser. The dispenser provides convenient access to unprogrammed transceivers for use on articles to be shipped. When removed from the dispenser, a transceiver communicates with an interrogator in the area for establishing transceiver identity, shipping authorization, destination or storage criteria, date of issue, and similar information. By shielding transceivers within the dispenser from wake-up signals, battery power is conserved. [0034]
  • These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims. [0035]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1A and FIG. 1B are functional block diagrams of enclosed transceivers of the present invention. [0036]
  • FIG. 2 is a perspective view of an enclosed transceiver as shown in FIG. 1A. [0037]
  • FIG. 3 is a plan view showing the conductive patterns on the base and cover members used in FIG. 2, including dotted line outlines of the locations for the IC and batteries. [0038]
  • FIG. 4A through FIG. 4D are cross sectional views taken along lines [0039] 4-4 of FIG. 3 showing four processing steps used in constructing the enclosed transceiver shown in FIG. 3.
  • FIG. 5A is a perspective view of an alternate embodiment of the invention wherein the IC is mounted on a parallel plate capacitor which in turn is mounted on a battery. [0040]
  • FIG. 5B is an enlarged portion of FIG. 5A. [0041]
  • FIG. 6A through FIG. 6E are cross sectional views taken along lines [0042] 6-6 of FIG. 5 showing five processing steps used in constructing the embodiment shown in FIG. 5.
  • FIG. 7 is a cross-sectional view showing an arrangement of battery and capacitor alternate to the embodiment shown in FIG. 5. [0043]
  • FIG. 8 is a perspective view of another alternate embodiment of the present invention having battery surfaces defining and performing the function of a bow-tie antenna. [0044]
  • FIG. 9 shows an alternate, passive device embodiment of the present invention in partially cut-away perspective view wherein the battery has been altogether eliminated and further wherein a capacitor is periodically charged from an external source in a manner described below to provide operating power to the IC. [0045]
  • FIG. 10 is a top view of a web of enclosed transceivers of the present invention. [0046]
  • FIG. 11 is an exploded perspective view of the top and bottom films used to construct one of the enclosed transceivers shown in FIG. 10. [0047]
  • FIG. 12 is a cross-sectional view taken along lines [0048] 12-12 of FIG. 11 showing a portion of the web shown in FIG. 10 and illustrating electrical coupling to and between the films.
  • FIG. 13A is a process flow diagram showing the steps of the present invention used to manufacture an enclosed transceiver. [0049]
  • FIG. 13B is a process flow diagram showing the steps of the present invention used to manufacture another enclosed transceiver. [0050]
  • In each functional block diagram, a single line between functional blocks represents one or more signals. A person of ordinary skill in the art will recognize that portions of the perspective views and cross-sectional views are enlarged for clarity. [0051]
  • DESCRIPTION
  • FIG. 1A and FIG. 1B are functional block diagrams of enclosed transceivers of the present invention. [0052] Enclosed transceiver 1 includes a pair of batteries 2 and 3, a dipole antenna 4 and 5, and an integrated circuit (IC) 11. Batteries 2 and 3 are in series connection through line 6 and cooperate as powering means for supplying power to IC 11 through lines 8 and 9. As will be discussed below, the series connection of two batteries simplifies conductor patterns in the enclosure. IC 11 is a four terminal device operating as communicating means for transmitting and receiving radio signals. Dipole antenna 4 and 5 couples radio signals between IC 11 and the communications medium which separates enclosed transceiver 11 from an interrogator, not shown. The interrogator is located up to 400 feet from enclosed transceiver 11.
  • [0053] Integrated circuit 11 is a transceiver including wake-up circuit 12, receiver 13, transmitter 14, control logic 15, and memory 16. Each of these functional circuits receives power signals VCC and GND on lines 8 and 9. When a received signal has substantial in-band energy as detected by wake-up circuit 12, control logic 15 enables receiver 13 for receiving and decoding a radio signal on antenna 4 and 5. Received data is provided by receiver 13 to control logic 15. Control logic 15 writes received data into memory 16. Control logic 15 also processes (i.e. decodes, tests, or edits) the received data with data stored in memory 16 and determines whether a response transmission is appropriate and the content of such a response. If a response is appropriate, control logic 15 reads transmit data from memory 16 and enables transmitter 14 for sending the transmit data as a second radio signal on antenna 4 and 5. Control logic 15 operates as a controller for reading data from and writing data to memory 16. Antenna 4 and 5 matches the medium to the receiver and to the transmitter for improved receiver sensitivity, and reduced transmission losses. Dipole antenna 4 and 5 has a toroidal antenna pattern with a null along the axis of the toroid.
  • FIG. 1B is a functional block diagram of an alternate enclosed transceiver of the present invention. Like numbered elements correspond to elements already described with reference to FIG. 1A. Enclosed [0054] transceiver 18 includes loop antenna 19, battery 20, and integrated circuit 21. Loop antenna 19 provides near omnidirectional communication capability as will be discussed with reference to FIG. 11.
  • [0055] Battery 20 is connected to antenna line 22 to reduce the number of terminals required to connect integrated circuit 21 into enclosed transceiver 18 and to improve the omnidirectional nature of the antenna pattern. A novel enclosure implements this connection to be discussed below. Integrated circuit 21 is a three terminal device providing the same functions as integrated circuit 11 already described with reference to FIG. 1A.
  • As an example of a data call-up operation, consider the events surrounding checking baggage or mailing a package. When an enclosed transceiver of the present invention is placed on the outside surface of a piece of luggage by the airlines or on a package for shipment by the postal service, an airline agent or postal worker operates an interrogator. The interrogator transmits information to [0056] receiver 13 via an RF communication link concerning data such as the owner's name, an ID number, point of origin, weight, size, route, destination, amount of postage prepaid, billing information for debit, postage, handling, or storage costs due, time stamp, and the like. This received data is coupled to control logic 15 for processing, encoding, and storage in memory 16. Stored data is made available for call up by an interrogator at one or more points along the shipment route.
  • For example, upon reaching a point of shipment destination, an interrogator calls up stored data and uses it at the point of destination for insuring that the item of luggage or shipment is most assuredly and efficiently put in the hands of the desired receiver at the earliest possible time. Specifically, an interrogator at the destination point sends interrogation signals to the [0057] enclosed transceiver 1 where they are received by antenna 4 and 5 and first processed by sleep/wake up circuit 12. Wake-up circuit 12 operates to bring integrated circuit 11 out of a “sleep” made into a “waked” mode wherein receiver 13 receives and decodes signals to provide received data to control logic 15.
  • With integrated. [0058] circuit 11 now in “waked” mode, memory 16 is read by control logic 15 to call-up transmit data, i.e. the above six pieces of information relating to the shipped article. Control logic 15 then couples the transmit data to transmitter 14 and enables transmitter 14 for sending transmit data to the interrogator.
  • [0059] Receiver 13 and transmitter 14 preferably employ one of the well known spread spectrum modulation techniques including for example: (1) direct sequencing, (2) frequency hopping, (3) pulsed FM or chirped modulation, (4) time hopping, or (5) time-frequency hopping used with pulse amplitude modulation, simple amplitude modulation or binary phase shift keying.
  • The communication circuitry of an interrogator (not shown) is designed to conform to the modulation technique, message encoding, and modes of operation described for the enclosed transceivers of the present invention. Interrogator design is understood by those skilled in the art and, therefore, is not described herein. [0060]
  • FIG. 2 is a perspective view of an enclosed transceiver as shown in FIG. 1A. [0061] Enclosed transceiver 1 includes a base support layer 30 upon which an integrated circuit 32 is disposed on the near end of layer 30 and connected to a dipole antenna consisting of a pair of conductive strips 34 and 36 extending laterally from IC 32. These conductive strips 34 and 36 will typically be screen printed on the upper surface of base support layer 30.
  • A pair of rectangularly shaped [0062] batteries 38 and 40 are positioned as shown adjacent to IC 32 and are also disposed on the upper surface of base support member 30. Rectangular batteries 38 and 40 are electrically connected in series to power IC 32 in a manner more particularly described below. Assembly of enclosed transceiver 1 is completed by the folding over of an outer or upper cover member 42 which is sealed to the exposed edge surface portions of the base member 30 to thereby provide an hermetically sealed and completed package. When cover member 42 is folded over onto base member 30, conductive strip 50 is attached to batteries 38 and 40 using conductive epoxy. Conductive strip 50 provides means for coupling a pole of battery 38 to a pole of battery 40; thus accomplishing the series electrical connection of batteries 38 and 40. Integrated circuit 32 has transmitter, memory, control logic, and receiver stages therein and is powered by batteries 38 and 40 during the transmission and reception of data to and from an interrogator to provide the interrogator with the various above information and identification parameters concerning the article, animal or person to which the enclosed transceiver is attached.
  • FIG. 3 is a plan view showing the conductive patterns on the base and cover members used in FIG. 2, including dotted line outlines of the locations for the IC and batteries. During the initial manufacturing stage for the enclosed transceiver, [0063] base 30 and cover 42 are joined at an intersecting line 44. Dipole antenna strips 34 and 36 are shown positioned on each side of IC 32. Two conductive strips 46 and 48 serve to connect the bottoms of batteries 38 and 40 to IC 32. Conductive strip 50 is provided on the upwardly facing inside surface of top cover 42, so that, when cover 42 is folded at intersecting line 44, the outer boundary 52 of cover 42 is ready to be sealed with the outer boundary 54 of base support member 30. Simultaneously, conductive strip 50 bonded by the conductive epoxy to batteries 38 and 40, completes the series electrical connection used to connect batteries 38 and 40 in series with each other and further in series circuit with integrated circuit 32 through conductive strips 46 and 48.
  • FIG. 4A through FIG. 4D are cross sectional views taken along lines [0064] 4-4 of FIG. 3 showing four processing steps used in constructing the enclosed transceiver shown in FIG. 3. FIG. 4A shows in cross sectional view IC 32 bonded to base support member 30 by means of a spot or button of conductive epoxy material 56. Conductive strip 48 is shown in cross section on the upper surface of base support member 30.
  • In FIG. 4B, [0065] battery 40 is aligned in place as indicated earlier in FIG. 2 and has the right hand end thereof bonded and connected to the upper surface of conductive strip 48 by means of a spot of conductive epoxy applied to the upper surface of conductive strip 48, but not numbered in this figure.
  • In FIG. 4C, a [0066] stiffener material 58 is applied as shown over the upper and side surfaces of IC 32. The stiffener material will preferably be an insulating material such as “glob-top” epoxy to provide a desired degree of stiffness to the package as completed. Next, a spot of conductive epoxy is applied to each end of conductive strip 50, and then cover layer material 42 with the conductive epoxy thereon is folded over onto batteries 38 and 40 and base member 30 to cure and heat seal and, thus, complete and seal the package in the configuration shown in FIG. 4D.
  • FIG. 5A is a perspective view of an alternate embodiment of the invention wherein the IC is mounted on a parallel plate capacitor which in turn is mounted on a battery. FIG. 5B is an enlarged portion of FIG. 5A. The enclosed transceiver shown includes the combination of [0067] battery 60, capacitor 62, and IC 64. When inrush current requirements for IC 64 exceed the capability of battery 60 to supply surge current, for example, due to inductive coupling or battery structure, inrush current is supplied by capacitor 62. The structure of battery 60 is in direct contact with the upper surface 66 of a base support member 68. The structure of parallel plate capacitor 62 is positioned intermediate to the upper surface of the structure of battery 60 and the bottom surface of IC 64. In order to facilitate making electrical contacts to capacitor 62 and battery 60, respectively, an exposed capacitor bottom plate area 65 is provided on the left hand side of this structure and an exposed battery bottom plate area 67 is provided on the right hand side of the battery-capacitor-chip structure. A plurality of antenna lines 70, 72, 74, and 76 form two dipole antennas connected to opposite corners of IC 64 in a generally X-shaped configuration and extend as shown from IC 64 to the four corners of the package. Upper polymer cover 77 is sealed in place as shown to hermetically seal all of the previously identified elements of the package between base support member 68 and polymer cover 77.
  • FIG. 6A through FIG. 6E are cross sectional views taken along lines [0068] 6-6 of FIG. 5 showing five processing steps used in constructing the embodiment shown in FIG. 5. Base starting material includes a first or base polymer layer 78, such as polyester or polyethylene, which is laminated with a relatively impermeable material such as metal film, PVDC, or silicon nitride. Base layer 78 is coated on the bottom surface thereof with a suitable adhesive film 80 which will be used for the device adhesion during device usage. If the adhesive is sufficiently impermeable, the impermeable coating may be omitted. The battery connection and attachment are made on the upper surface of base layer 78 using a spot of conductive epoxy. Conductive epoxy is also used at interface 94 between battery 60 and capacitor 62 and interface 98 between capacitor 62 and IC 64.
  • Referring now to FIG. 6B, a thin film battery consisting of [0069] parallel plates 84 and 86 is placed on base layer 78. Next, a capacitor comprising parallel plates 90 and 92 is attached onto battery layer 84 using a conductive epoxy. Bottom plate 92 of capacitor 62 is somewhat larger in lateral extent than ton capacitor plate 90 in order to facilitate the necessary electrical connection of battery 60 and capacitor 62 to integrated circuit 96. IC 96 corresponds to IC 64 in FIGS. 5A and 5B. IC 96 is then attached to top capacitor plate 90 with a conductive epoxy at interface 98, thereby providing an electrical connection. The bottom surface of IC 96 is metallized to facilitate this connection. In an alternate and equivalent fabrication process, an epoxy cure heat step or metallization anneal step is used to enhance the sealing between the various above stacked elements.
  • Referring now to FIG. 6C, prefabricated insulating [0070] layer 100 is now laid over the battery/capacitor/IC stack in the geometry shown. Layer 100 includes openings 102, 104, 110, and 112 therein for receiving a conductive polymer material as will be described below in the following stage of the process. Prefabricated holes 102, 104, 110, and 112 in layer 100 are aligned, respectively, to the battery contact, to the capacitor contact, and to the contacts on the top of IC 96. Layer 100 is then sealed to base polymer layer 78 using, for example, a conventional heating or adhesive step.
  • Referring now to FIG. 6D, a [0071] conductive polymer material 108 is deposited in openings 102 and 104 in the lower regions of layer 100 and extended up into the upper openings 110 and 112 of layer 100 to make electrical contact as indicated on the upper surface of IC 96. The shaped conductive epoxy material 108 may also be preformed utilizing a stamping tool or silk screening techniques and is applied as shown over the upper surface of layer 100. Conductive epoxy material 108 forms the innermost region of the antenna structure extending from IC 96 out in the dual dipole geometry as previously described with reference to FIGS. 5A and 5B. However, the complete antenna geometry shown in FIG. 5A is outside the lateral bounds of the fragmented cross sectional views shown in FIGS. 6A through 6E. At this point in the process, an epoxy cure heat step is optional.
  • Referring now to FIG. 5, [0072] polymer insulating layer 114 is formed on the upper surface of layer 100 in the geometry shown and further extends over the exposed upper surfaces of the conductive epoxy polymer antenna material 108. Layer 114 is then sealed to layer 100 using either heat or adhesive sealing. Layer 114 provides a final hermetic seal for the completed device shown in cross section in FIG. 6E.
  • FIG. 7 is a cross-sectional view showing an arrangement of battery and capacitor alternate to the embodiment shown in FIG. 5. As shown in FIG. 7, the battery and capacitor are mounted side-by-side under the IC. The electrical connection for [0073] battery 118 and capacitor 120 to integrated circuit 96 is provided by positioning the battery 118 and capacitor 120 in the co-planar configuration shown on the surface of base polymer layer 78. The bottom plate of battery 118 is connected through conductive epoxy layer 128 to the top surface of IC 96. The bottom plate of parallel plate capacitor 120 is connected through conductive epoxy layer 128 to the top surface of the IC 96. A small space 126 is provided as shown to electrically isolate battery 118 and capacitor 120. In addition, in this embodiment of the invention, conductive material 128 is extended as shown between the left side opening 130 in the layer 100 and a lower opening 132 in layer 100. In a manner similar to that described above with reference to FIGS. 6A through 6E, layer 114 is then extended over the top surface of layer 100 in the geometry shown. Conductive polymer material 128 extends to connect the crossed antenna structure of FIG. 5 to IC 96 shown in FIG. 7.
  • FIG. 8 is a perspective view of another alternate embodiment of the present invention having battery surfaces defining and performing the function of a bow-tie antenna. [0074] IC 138 is centrally positioned as shown on the upper surface of base support member 140 and is electrically connected to two triangularly shaped batteries 142 and 144, also disposed on the upper surface of base support member 140. Batteries 142 and 144 are connected in series with IC 138 when protective cover member 146 is sealed over the top surfaces of the two batteries 142 and 144 and the IC 138 using processing steps previously described.
  • In the embodiment of the invention shown in FIG. 8, the entire outer surfaces of the two [0075] batteries 142 and 144 serve as a “bow tie” antenna structure for the enclosed transceiver. At communication wavelengths, the top and bottom surfaces of batteries 142 and 144 are coupled together. Batteries 142 and 144 are connected in series with the IC 138 to provide DC operating power therefor in a manner previously described. Moreover, the dual use of the batteries as power supplies and antenna structures minimizes the number of terminals required to connect IC 138 into an enclosed transceiver.
  • FIG. 9 shows an alternate, passive device embodiment of the present invention in partially cut-away perspective view wherein the battery has been altogether eliminated and further wherein a capacitor is periodically charged from an external source in a manner described below to provide operating power to the IC. This embodiment is known as the passive or battery-less device embodiment, since it contains no battery therein. Instead, operating power is provided by a capacitor structure identified as [0076] component 148 located beneath IC 150. A charge on capacitor 148 is maintained by conventional RF charging circuits (not shown) on IC 150 which are energized from a remote source.
  • The enclosed transceiver shown in FIG. 9 includes a [0077] first loop antenna 152 for receiving RF charging signals for capacitor 148 and a dipole antenna formed of conductive strips 154 and 156 for receiving and transmitting data to and from IC 150. As in previous embodiments, capacitor 148 and IC 150 are positioned and hermetically sealed between a base cover member 157 and a top cover member 158.
  • FIG. 10 is a top view of a web of enclosed transceivers of the present invention. [0078] Laminated sheet 200 includes 36 enclosed transceivers 210 simultaneously manufactured in a plurality of cavities as already described. Sheet 200 in a preferred embodiment includes 252 enclosed transceivers, each approximately 1.5 inches square. Alternatively, sheet 200 includes one folded film as illustrated in FIGS. 2, 3, and 4; three coextensive films 114, 100, and 78 as illustrated in FIGS. 6 and 7; or two coextensive films as is apparent from FIGS. 8 and 9, and FIGS. 11 and 12 to be discussed below. Sheet 200, in one embodiment is sectioned to obtain individual enclosed transceivers by interstitial cutting, perforation and tearing, or sheering; sectioning being simultaneous with or following the step of sealing each enclosed cavity by lamination, embossing, hot stamping or the like. Alternatively enclosed transceivers are manufactured in a continuous strip, for example, one enclosure.
  • After manufacturing has been completed, a large number of finished devices, or webs are stored on a take-up reel (not shown) supporting a corresponding large plurality of the devices. Advantageously, storage on a take-up reel not only makes the present process conducive to high speed automated manufacturing, but in addition makes the process compatible to high speed manual or automated product dispensing and use. Large numbers of enclosed transceivers may be supplied easily to a user in a conventional tape and reel format. The user can readily detatch one device at a time for immediate attaching to an article. Alternatively, enclosed transceivers are manufactured and shipped in sheets and later sectioned by the customer. [0079]
  • In yet another embodiment, devices are cut from the tape or sheet from which they were manufactured and then removably mounted on a backing. The backing in one embodiment is in tape format and in another equivalent embodiment is in sheet format. When mounted to a backing, enclosed transceivers are more effectively stored in a cache for dispensing individually. The cache, not shown, includes means for dispensing (i.e. separately providing a transceiver on demand) and shielding means for preventing signal reception by enclosed transceivers within the cache. If shielding were not included, a supply of transceivers located within communicating range of an interrogator would soon expend battery capacity by processing signals including, for example, wake-up signals. Means for dispensing includes, for example, mechanical devices for feeding a tape or sheet through an opening and mechanical devices for separating shielding materials from a tape or sheet. The former dispensing means, in one embodiment of the cache, cooperates with shielding across the opening including conductive rollers, separating brushes, separating fingers, and the like. The latter dispensing means, in another embodiment of the cache, cooperates with conductive backing material, or conductive foam as a backing or cover layer arranged to shield the exposed edges of a roll containing transceivers. [0080]
  • FIG. 11 is an exploded perspective view of the top and bottom films used to construct one of the enclosed transceivers shown in FIG. 10. The embodiment shown corresponds to [0081] enclosed transceiver 18 shown in FIG. 1B. Top film 214 includes area 222 for lamination onto the top surface (pole) of battery 20; strip 218 for loop antenna 19; and, contact area 226. Each of these three features, in a preferred embodiment, is formed of conductive ink. In an alternate and equivalent embodiment, these three features are formed of conductive epoxy. Bottom film 230 includes area 238 for lamination onto the bottom surface (pole) of battery 20; strip 234 for loop antenna 19; contact area 254; and contact points 242, 246, and 250 for connecting integrated circuit 21 to the battery and antenna. Each of these six features, in a preferred embodiment, is formed of conductive ink, though conductive epoxy is equivalent.
  • [0082] Contact 246 is intentionally misaligned with respect to area 222 to prevent shorting battery 20. However, strips 218 and 234 are aligned to coincide, as are contact areas 226 and 254, respectively. These strips and contact areas when joined by lamination cooperate as means for coupling power from battery 20 to IC 21 and, simultaneously, for electrically matching IC 21 to the communications medium by forming loop antenna 19. Thus, contacts 242, 246, and 250 correspond respectively to lines 24, 23, and 22 shown in FIG. 1B.
  • Unlike the antenna pattern of the dipole antenna shown in FIGS. 1A, 2, [0083] 3, and 9, there is no null in the antenna pattern for loop antenna 19, due in part to the conductive structure of battery 20 being connected to one side of loop antenna 19. The combined loop antenna and battery structure is also preferred over the dipole in that the combination provides an antenna pattern that is less subject to variation over a broad range of frequencies.
  • FIG. 12 is a cross-sectional view taken along lines [0084] 12-12 of FIG. 11 showing a portion of the web shown in FIG. 10 and illustrating electrical coupling to and between the films. The completed assembly includes similarly numbered elements already discussed with reference to FIG. 11. IC 390 is prepared for assembly by forming conductive bumps 306 and 314 to terminals on its lower surface. In a preferred embodiment, bumps are formed of conductive epoxy. In an alternate embodiment, metallic bumps, such as gold, are formed by conventional integrated circuit processes. IC 390 as shown is in a “flip chip” packaging orientation having substantially all circuitry formed on the surface facing film 230. Prior to assembly, a puddle of conductive epoxy is applied to contacts 250 and 242. IC 390 is then located atop contacts 250 and 242 so that bumps 306 and 314 are surrounded within puddles 302 and 310. The film is then heated to set all conductive epoxy including puddles 302 and 310, as well as strips and areas including the antenna and contact areas 226 and 254, formed of conductive epoxy. Finally, top film 214 is aligned over bottom film 230 so that contact areas 226 and 254 are pressed together.
  • FIG. 13A is a process flow diagram showing the steps of the present invention used to manufacture an enclosed transceiver of the type shown in FIGS. [0085] 10-12. The manufacturing process begins with a polyester film used for the bottom and for the top. Material for the bottom in a first embodiment is identical to the top and includes film with dimensional stability, for example, polyester film that has been heat stabilized or pre-shrunk. These materials, though inexpensive, are porous to substances that degrade the life and functions of the battery and integrated circuit. This disadvantage is resolved in a preferred embodiment by coating the outer surfaces of the material used for the top and bottom film with a barrier material
  • In the [0086] first step 410, barrier material, such as a silicon nitride deposit, is formed on the outer surface by sputtering, or by chemical vapor deposition (CVD), preferably plasma enhanced CVD. The deposit provides a hermetic barrier to prevent water vapor and other contaminants from affecting (e.g. oxidizing) battery and transceiver components. In a first embodiment the resulting thickness of the deposit is from 400 to 10,000 angstroms. In another embodiment, where thin deposits are desirable, coating on both sides of the film prevents pin holes in each deposit from aligning in a way that defeats hermeticity. The thickness of the deposit and the manner of formation are design choices based on the selection of materials for the film and the deposit, as well as the system requirements for hermeticity over time. For example an alternate and equivalent embodiment uses other barrier materials including silicon oxide and silicon nitride deposited at a thickness of 100 to 400 angstroms. The barrier material is formed in such an embodiment using one of the processes including evaporation, deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition.
  • In another embodiment of the present invention, a nitride film is sputtered on the outside portion of a top and bottom base support layer. Each base support layer preferably comprises a polymer material such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidene chloride (PVDC). Formation of the barrier material deposit can be deferred until the enclosed transceiver is encapsulated, provided that environmental concerns such as contamination, over heating, and changes in pressure are addressed. [0087]
  • In [0088] step 420, a laminate adhesive is applied to the inner surfaces of the top and bottom films. The laminate adhesive is activated in a later manufacturing step to cause the top and bottom layers to adhere. Preferably, the adhesive is tack free at room temperature and selected to match laminating equipment heat and pressure capabilities. In a preferred embodiment, butyl acrylate is extruded onto the films to cover the entire inside surface of each film. In another embodiment, the adhesive is screen printed for economy.
  • In [0089] step 430, conductors are screen printed onto the films. In a preferred embodiment, the conductors are formed on top of laminate adhesive. Areas such as grid conductors 222 and 238 shown in FIG. 11 for contacting the battery are, consequently, interspersed with areas of exposed laminate adhesive to provide a more durable enclosure. In this embodiment, a polymer thick film ink is employed. High conductivity is provided by such inks that include copper or silver constituents. The ink preferably provides a stable surface for electrical butt contact formations. A low oxidation rate at storage temperature is desirable, though oxidation could be minimal in a controlled manufacturing environment.
  • Printed circuits on the top layer are arranged to perform multiple functions when the top and bottom layers are joined. First, a conductor on the top layer completes series or parallel circuits for devices having contacts in two planes. [0090] Conductor 50 in FIG. 2 is one example. Second, a conductor on the top layer completes an antenna structure for the transceiver integrated circuit, as illustrated in FIG. 8. Third, a single conductor in the top layer accomplishes both the first and second functions. See, for example, the conductor in FIG. 11 identified as areas 226, 222, and 216.
  • In an alternate embodiment, conductors are formed in a subtractive process, for example, chemical etching. By using a positive screen print process, energy and material are conserved. Printed circuit technology is applied in another embodiment wherein the step of attaching the integrated circuit and the battery to a base material includes soldering and brazing. The base material in such an embodiment is one of a wide variety of printed circuit materials including polyimide and glass-epoxy materials. [0091]
  • In [0092] step 440, the top and bottom base support layers are cut from the roll or web to form sheets as illustrated in FIG. 10 to facilitate use of automated component placement machinery. Each sheet is attached, in step 450, to a carrier panel for compatibility with conveyor based manufacturing facilities. At step 460, a carrier with sheet attached is loaded into a magazine or placed onto a conveyor for automated manufacturing. Steps 440-460, in an alternate embodiment of the manufacturing process of the present invention, are omitted as unnecessary when continuous manufacturing from roll stock is desirable.
  • In [0093] step 470, those portions of conductors that are to make electrical contact with the integrated circuit are prepared with a coating or puddle of conductive epoxy. In a preferred embodiment, silver filled epoxy is employed that remains wet at room temperature until thermally cured. Application of the epoxy is by screen printing. In an alternate embodiment, epoxy is applied by dispensing.
  • In [0094] step 480, integrated circuit die are placed so that epoxy bumps previously formed on the integrated circuit enter the puddles formed in step seven. The arrangement of the integrated circuit face down on the bottom film is commonly referred to as “flip-chip” orientation. In an alternate and equivalent embodiment, integrated circuits are also placed in contact puddles formed on the top, i.e. cover layer. All die on the sheet are placed and aligned in this step 480 prior to proceeding with subsequent cure.
  • In [0095] step 490, a batch of panels is heated to set the epoxy applied in step seven. In an alternate embodiment, a conveyor based oven supports continuous curing. Curing temperature and duration are design choices that match the epoxy curing requirements. In a preferred embodiment, curing is performed at 150 degrees Celsius for 3 to 5 minutes. The cure is selected so as not to interfere with the characteristics of the laminate adhesive applied in step 420.
  • In [0096] step 500, an encapsulation material, commonly called “glob top epoxy” is applied over the integrated circuit. Suitable nonconductive materials include those providing a stiffening property to protect the integrated circuit and the electrical connections thereto from mechanical damage.
  • In [0097] step 510, the encapsulating material is cured. In a preferred embodiment, the encapsulating material is cured with ultraviolet radiation. An alternate and equivalent embodiment, employs a thermal curing process. The ultraviolet cure is preferred for rapid manufacturing. However, use of a thermal cure in step 510 may permit use of a partial thermal cure in step 490, later perfected by additional thermal cure duration provided in step 510.
  • In [0098] step 520, the battery or batteries are aligned and placed on the base support film. In an embodiment including stacked battery cells, connection is made using conductive tape having adhesive on both sides of the tape. Such tape commonly includes conductive particles in the adhesive.
  • In [0099] step 530, the top or cover film is aligned over the bottom or base film. In an embodiment including a folded film, the top film is folded over the base film. In an alternate embodiment employing continuous manufacturing from roll stock, the base film and top film are aligned for continuous lamination.
  • In [0100] step 540, the top cover film is pressed onto the bottom base film and heat is applied to activate the adhesive applied in step 420. For butyl acrylate adhesive a temperature of from 95 to 110 degrees Celsius is preferred.
  • In applications where the transceiver is to be used in harsh environments, the seal provided by automated lamination equipment may be incomplete or have weaknesses caused, for example, by insufficient heat or pressure at a point in an area to be sealed. Enclosing components of varying thicknesses can result in air pockets surrounding such components that, if too near the periphery, can also lead to weaknesses and voids. In such applications, the preferred process includes step [0101] 550 wherein the periphery of each transceiver on a sheet is subject to a second application of heat and pressure for activating laminate adhesive applied in step 420. The additional heat and pressure in such a localized periphery can deform the films to form minute bosses. Thus, the step is called embossing. The aspect of the effective application of heat and pressure is more important than the extent of consequential deformation.
  • In an alternate embodiment, each enclosure is evacuated. Lamination for such an embodiment is conducted in an evacuated environment. Embossing in yet another embodiment is also conducted in an evacuated environment. [0102]
  • After [0103] step 540, the circuitry of the battery powered transceiver is active by virtue of the completed circuits formed when the top cover layer is aligned and butt contacts are formed with components and the base layer. Functional tests of multiple or individual transceivers are now feasible.
  • In [0104] step 560, transceivers are functionally tested. To prevent interference between tests of individual transceivers, a pair of grounded plates with surface features are placed on both sides of a sheet of enclosed transceivers so that each transceiver operates inside a shielded cavity. The wavelength used for testing is selected such that leakage through the thickness of the embossed seal is negligible. Plates similar to the embossing die used in step 550 are used in one embodiment. Each cavity includes an antenna for transmitting stimulus signals and for receiving response signals for measuring the quality of each transceiver. Measurements include, for example, receiver sensitivity, transmitted spectrum, message handling capability, self-testing, and response timing.
  • In [0105] step 570, the sheet of tested transceivers is sheered in two dimensions to singulate or separate the transceivers from one another. In an alternate and equivalent embodiment, a backing material is applied to one side of the sheet prior to singulation. Singulation for this embodiment is accomplished by kiss cutting through the top and base films leaving the transceivers attached to the backing material. Transceivers, whether attached to the backing or loose are then sorted based on the results of functional testing performed in step 560 and additional testing as needed.
  • FIG. 13B is a process flow diagram showing the steps of the present invention used to manufacture another enclosed transceiver of the types shown in FIGS. [0106] 2-9. This embodiment of the method of the present invention includes nine (9) processing steps or fabrication stages which are used in the overall manufacturing process and in the construction of an enclosed transceiver.
  • In one embodiment the nine steps are performed sequentially as follows. In [0107] step 610, a circuit pattern is initially formed on a base layer material. This base layer material is preferably a polymer such as a polyester film that is laminated with a barrier layer material such as polyethylene and/or polyvinylidene chloride (PVDC). In step 612, the circuit pattern is cured and a conductive epoxy material is applied. In step 614 an integrated circuit chip is aligned onto the base layer. In step 616, two (2) batteries are aligned onto the base layer. In an alternate enclosed transceiver, the batteries are stacked vertically in either a series or parallel electrical connection. In step 618, the epoxy applied in step 612 is cured. In step 620, a stiffener material is applied. In step 622 epoxy is applied to the top surface of the battery and then the top half of the base layer is folded over the bottom half so that the top half forms the top cover. In step 624, the epoxy material applied in step 622 is cured. Finally, in step 626, the package is sealed to complete manufacturing of the package.
  • Various modifications may be made in and to the above described embodiments without departing from the spirit and scope of this invention. For example, various modifications and changes may be made in the antenna configurations, battery arrangements (such as battery stacking), device materials, device fabrication steps, and the functional block diagrams without departing from the scope of this invention. The various off-chip components such as the antenna, battery, and capacitor are manufactured on-chip in alternate and equivalent embodiments. As a second example, the antenna in another alternate and equivalent embodiment is formed on the outer surface or within the outer film. In such an arrangement, coupling to the antenna is through the capacitance of the outer film as a dielectric. When formed on the exterior, the material comprising the antenna also provides hermeticity to the film for protecting the enclosed transceiver. Accordingly, these and equivalent structural modifications are within the scope of the following appended claims. [0108]
  • As previously suggested, an enclosed transceiver used as an RFID device has utility directed to a wide variety of applications including, but not limited to, airline baggage (luggage, freight, and mail); parcel post (Federal Express and United Parcel Service); U.S. Mail; manufacturing; inventory; personnel security. [0109]
  • While the particular invention has been described with reference to illustrative embodiments, this description is not meant to be construed in a limiting sense. It is understood that although the present invention has been described in a preferred embodiment, various modifications of the illustrative embodiments, as well as additional embodiments of the invention, will be apparent to persons skilled in the art, upon reference to this description without departing from the spirit of the invention, as recited in the claims appended hereto. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention. [0110]
  • The words and phrases used in the claims are intended to be broadly construed. A “sticker” refers generally to a label, tag, marker, stamp, identifier, packing slip, invoice, package seal, tape, band, clasp, medallion, emblem, shield, and escutcheon regardless of printed or handwritten material thereon. Mechanical coupling of a “sticker” so defined to an article, person, plant, or animal is not restricted to adhesive but is intended to broadly include all forms of fastening, tieing, and securing. [0111]

Claims (24)

What is claimed is:
1. A method of manufacturing an enclosed device comprising the steps of:
providing a first film having a base portion and a cover portion, the cover portion comprising a conductor;
sealing the cover portion to the base portion to encapsulate an integrated circuit and a battery, wherein sealing electrically couples the conductor, the integrated circuit, and the battery.
2. The method of
claim 1
wherein the step of sealing comprises the step of folding the cover portion onto the base portion.
3. The method of
claim 1
wherein the integrated circuit comprises a transceiver.
4. The method of
claim 3
wherein the conductor is characterized by an antenna geometry.
5. The method of
claim 3
wherein a surface of the battery is characterized by an antenna geometry.
6. The method of
claim 1
further comprising the step of laminating a plurality of layers to form the first film.
7. The method of
claim 1
further comprising the step of coating a polymer film with a barrier material to form the first film.
8. The method of
claim 7
wherein the barrier material is a material of the set consisting of silicon oxide, silicon nitride, a fluorohalocarbon, and perchlorotetrafluoroethylene.
9. The method of
claim 7
wherein the polymer film is polyester.
10. A method of manufacturing an enclosed device comprising the steps of:
providing a first film having an inner and an outer surface;
providing a second film having an inner and an outer surface, the inner surface comprising a conductor;
sealing the second film to the first film to encapsulate an integrated circuit and a battery between a portion of the inner surface of the first film and a portion of the inner surface of the second film, wherein sealing electrically couples the conductor, the integrated circuit, and the battery.
11. The method of
claim 10
further comprising the step of coating at least one of the outer surface of the first film and the outer surface of the second film with a material for preventing contamination of the enclosed device.
12. The method of
claim 10
further comprising the step of coating the inner and outer surface of the first film and the inner and outer surface of the second film with a material for preventing contamination of the enclosed device.
13. The method of
claim 10
wherein the material is a material of the set consisting of silicon oxide, silicon nitride, a fluorohalocarbon, and perchlorotetrafluoroethylene.
14. The method of
claim 10
wherein the step of coating comprises a process of the set consisting of sputtering, deposition, evaporation, chemical vapor deposition, and plasma enhanced chemical vapor deposition.
15. The method of
claim 11
further comprising the step of applying adhesive superjacent to the inner surface of the first film.
16. The method of
claim 15
wherein the conductor is printed superjacent to the adhesive.
17. The method of
claim 16
wherein the shape of the conductor comprises an aperture for exposing adhesive through the aperture.
18. The method of
claim 10
wherein the integrated circuit comprises a transceiver for receiving a signal.
19. The method of
claim 18
wherein the conductor is characterized by an antenna geometry, the conductor conducts battery power to the integrated circuit, and the conductor receives the signal.
20. The method of
claim 10
wherein the step of sealing comprises:
pressing together the first film and the second film; and
pressing together a portion of the first film and a portion of the second film, the portion of the first film and the portion of the second film circmscribing at least one of the integrated circuit and the battery.
21. A method of manufacturing an enclosed transceiver comprising the steps of:
preparing a first film from a first polymer film, the first polymer film having a first inner side and a first outer side, the step of preparing comprising:
applying a first layer of barrier material to the first inner side for reducing the porosity of the first polymer film;
applying a second layer of nonconductive adhesive, the second layer covering a portion of the first layer; and
selectively applying a third layer of conductive adhesive to form a first conductor on a portion of the second layer;
preparing a second film from a second polymer film, the second polymer film having a second inner side and a second outer side, the step of preparing comprising:
applying a third layer of barrier material to the second inner side for reducing the porosity of the second polymer film;
applying a fourth layer of nonconductive adhesive, the fourth layer covering a portion of the third layer; and
selectively applying a fifth layer of conductive adhesive to form a second conductor on a portion of the fourth layer;
adhering an integrated circuit transceiver and a battery to the first conductor; and
sealing the first film to the second film to encapsulate the transceiver and the battery between a portion of the first inner side and the second inner side, wherein sealing electrically couples the second conductor to the transceiver thereby powering the transceiver to receive a signal.
22. The method of
claim 21
wherein the step of adhering the further comprises the step of applying a second material superjacent to the integrated circuit for stiffening, and exposing the second material to ultraviolet radiation for curing the second material.
23. The method of
claim 21
wherein a portion of the battery is coupled to the integrated circuit for an antenna.
24. A method for testing a transceiver, the transceiver formed in a sheet, the method comprising the steps of:
pressing the sheet between a first shield and a second shield, the first shield and the second shield forming a cavity enclosing a transceiver, the first shield comprising a test antenna; and
receiving a signal through the test antenna for determining the quality of the transceiver.
US09/775,716 1992-06-17 2001-02-01 Method of manufacturing an enclosed transceiver Ceased US6325294B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/775,716 US6325294B2 (en) 1992-06-17 2001-02-01 Method of manufacturing an enclosed transceiver
US10/729,584 USRE42773E1 (en) 1992-06-17 2003-12-04 Method of manufacturing an enclosed transceiver

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US89977792A 1992-06-17 1992-06-17
US13767793A 1993-10-14 1993-10-14
US60268696A 1996-02-16 1996-02-16
US08/781,107 US5776278A (en) 1992-06-17 1997-01-09 Method of manufacturing an enclosed transceiver
US09/008,215 US6220516B1 (en) 1992-06-17 1998-01-16 Method of manufacturing an enclosed transceiver
US09/775,716 US6325294B2 (en) 1992-06-17 2001-02-01 Method of manufacturing an enclosed transceiver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/008,215 Continuation US6220516B1 (en) 1992-06-17 1998-01-16 Method of manufacturing an enclosed transceiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/729,584 Reissue USRE42773E1 (en) 1992-06-17 2003-12-04 Method of manufacturing an enclosed transceiver

Publications (2)

Publication Number Publication Date
US20010007335A1 true US20010007335A1 (en) 2001-07-12
US6325294B2 US6325294B2 (en) 2001-12-04

Family

ID=27385062

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/781,107 Expired - Lifetime US5776278A (en) 1992-06-17 1997-01-09 Method of manufacturing an enclosed transceiver
US09/008,215 Expired - Lifetime US6220516B1 (en) 1992-06-17 1998-01-16 Method of manufacturing an enclosed transceiver
US09/775,716 Ceased US6325294B2 (en) 1992-06-17 2001-02-01 Method of manufacturing an enclosed transceiver

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/781,107 Expired - Lifetime US5776278A (en) 1992-06-17 1997-01-09 Method of manufacturing an enclosed transceiver
US09/008,215 Expired - Lifetime US6220516B1 (en) 1992-06-17 1998-01-16 Method of manufacturing an enclosed transceiver

Country Status (1)

Country Link
US (3) US5776278A (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487681B1 (en) * 1992-11-20 2002-11-26 Micron Technology, Inc. In-sheet transceiver testing
WO2003052684A1 (en) * 2001-11-28 2003-06-26 Orga Kartensysteme Gmbh Foil battery with integrated component for use in a chip card
GB2388744A (en) * 2002-03-01 2003-11-19 Btg Int Ltd An RFID tag
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
US20040131897A1 (en) * 2003-01-02 2004-07-08 Jenson Mark L. Active wireless tagging system on peel and stick substrate
US20040132406A1 (en) * 2003-01-03 2004-07-08 Scott Jeff W. Tags, wireless communication systems, tag communication methods, and wireless communications methods
US20040266486A1 (en) * 2003-06-30 2004-12-30 Matsushita Electric Industrial Co., Ltd. Noncontact IC card reader/writer integrated with antenna
US6869019B1 (en) * 1999-10-13 2005-03-22 Rohm Co., Ltd. Communication device
FR2863388A1 (en) * 2003-12-04 2005-06-10 Francois Charles Oberthur Fidu Secure document e.g. passport, manufacturing process, involves presenting cavity on back side of paper sheet and embossment on opposite side of back side corresponding to cavity
US20050143883A1 (en) * 2003-12-24 2005-06-30 Honda Motor Co., Ltd. Vehicle management system
US20050190043A1 (en) * 2004-02-26 2005-09-01 Honda Motor Co., Ltd. Tag mounting method and tagged vehicle component
US20060007003A1 (en) * 2003-02-14 2006-01-12 Honda Motor Co., Ltd. Motor vehicle mounted with ic tag and control system for the same
EP1431929A3 (en) * 2002-12-18 2006-01-18 Pitney Bowes Inc. Method and system for tagging a mailpiece
US20060039577A1 (en) * 2004-08-18 2006-02-23 Jorge Sanguino Method and apparatus for wireless communication using an inductive interface
US20060068842A1 (en) * 2004-08-18 2006-03-30 Jorge Sanguino Wireless communications adapter for a hearing assistance device
US20060071792A1 (en) * 2004-10-05 2006-04-06 Caron Michael R Radio frequency identification tag and method of making the same
US20060118229A1 (en) * 2003-05-01 2006-06-08 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US20060164213A1 (en) * 2005-01-26 2006-07-27 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
US20060176179A1 (en) * 2005-01-26 2006-08-10 Battelle Memorial Institute Bendable, active radio-frequency sensor tags and a system of same
US20070012244A1 (en) * 2005-07-15 2007-01-18 Cymbet Corporation Apparatus and method for making thin-film batteries with soft and hard electrolyte layers
US20070024444A1 (en) * 2003-08-11 2007-02-01 Sony Corporation Radio communication system and wireless communication device
US20070069021A1 (en) * 2005-09-27 2007-03-29 Palo Alto Research Center Incorporated Smart floor tiles/carpet for tracking movement in retail, industrial and other environments
US20070120681A1 (en) * 2004-03-12 2007-05-31 Shunpei Yamazaki Semiconductor device
US20070215695A1 (en) * 2006-03-15 2007-09-20 Fleming Trane Device and system for presenting and facilitating payment of a restaurant bill
US20070230727A1 (en) * 2006-03-29 2007-10-04 Micro Ear Technology, Inc. D/B/A Micro-Tech Wireless communication system using custom earmold
EP1843431A1 (en) * 2005-01-24 2007-10-10 Fujitsu Ltd. Antenna and rfid tag mounted with same
US20070290928A1 (en) * 2006-05-19 2007-12-20 Industrial Technology Research Institute Broadband antenna
US20080103944A1 (en) * 2006-10-30 2008-05-01 Mobile Logistics Management L.L.C. Intelligent Pallet
US20080211629A1 (en) * 2004-03-16 2008-09-04 Dupont Teijin Films U.S. Limited Partnership Polymeric Film Substrate for Use in Radio-Frequency Responsive
US20090055854A1 (en) * 2006-05-18 2009-02-26 David Howell Wright Methods and apparatus for cooperator installed meters
US20090136839A1 (en) * 2007-11-28 2009-05-28 Front Edge Technology, Inc. Thin film battery comprising stacked battery cells and method
US20090174527A1 (en) * 2008-01-09 2009-07-09 Robert Stewart Surface mount capacitor used as a substrate flip-chip carrier in a radio frequency identification tag
US20100097280A1 (en) * 2008-10-20 2010-04-22 Smartrac Ip B.V. Transponder device
US7776478B2 (en) 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
US20100227214A1 (en) * 2005-03-25 2010-09-09 Front Edge Technology, Inc. Thin film battery with protective packaging
US7931989B2 (en) 2005-07-15 2011-04-26 Cymbet Corporation Thin-film batteries with soft and hard electrolyte layers and method
US8044508B2 (en) 2000-03-24 2011-10-25 Cymbet Corporation Method and apparatus for integrated-circuit battery devices
US20110266352A1 (en) * 2007-03-23 2011-11-03 Zih Corp. Rfid tag with reduced detuning characteristics
US8503708B2 (en) 2010-04-08 2013-08-06 Starkey Laboratories, Inc. Hearing assistance device with programmable direct audio input port
US8515114B2 (en) 2007-01-03 2013-08-20 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US8679674B2 (en) 2005-03-25 2014-03-25 Front Edge Technology, Inc. Battery with protective packaging
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US8865340B2 (en) 2011-10-20 2014-10-21 Front Edge Technology Inc. Thin film battery packaging formed by localized heating
US8864954B2 (en) 2011-12-23 2014-10-21 Front Edge Technology Inc. Sputtering lithium-containing material with multiple targets
US8870069B2 (en) 2012-08-22 2014-10-28 Symbol Technologies, Inc. Co-located antenna arrangement
US9036823B2 (en) 2006-07-10 2015-05-19 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9356320B2 (en) 2012-10-15 2016-05-31 Front Edge Technology Inc. Lithium battery having low leakage anode
US9635147B2 (en) 2014-07-09 2017-04-25 The Regents Of The University Of Michigan Protocol for an electronic device to receive a data packet from an external device
US9774961B2 (en) 2005-06-05 2017-09-26 Starkey Laboratories, Inc. Hearing assistance device ear-to-ear communication using an intermediate device
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US20180019513A1 (en) * 2016-07-12 2018-01-18 Isolynx, Llc Planar flexible rf tag and charging device
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10003379B2 (en) 2014-05-06 2018-06-19 Starkey Laboratories, Inc. Wireless communication with probing bandwidth
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
US10212682B2 (en) 2009-12-21 2019-02-19 Starkey Laboratories, Inc. Low power intermittent messaging for hearing assistance devices
US10377507B2 (en) 2015-07-23 2019-08-13 Simon TREMBLAY Multifunctional motorized box and landing pad for automatic drone package delivery
WO2020041795A1 (en) * 2018-08-24 2020-02-27 32 Technologies Llc Enhanced location tracking using ultra-wideband
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices
WO2020232293A1 (en) * 2019-05-14 2020-11-19 CoreKinect LLC System and method for flexible asset tracking tag
US10957886B2 (en) 2018-03-14 2021-03-23 Front Edge Technology, Inc. Battery having multilayer protective casing
EP3882014A1 (en) * 2020-03-18 2021-09-22 Japan Aviation Electronics Industry, Limited Device and forming method of device
KR20210117143A (en) * 2020-03-18 2021-09-28 니혼 고꾸 덴시 고교 가부시끼가이샤 Device and forming method of device
US11315809B2 (en) 2020-08-03 2022-04-26 Japan Aviation Electronics Industry, Limited Device and forming method of device
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497140A (en) * 1992-08-12 1996-03-05 Micron Technology, Inc. Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US5776278A (en) * 1992-06-17 1998-07-07 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US6045652A (en) * 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
USRE42773E1 (en) 1992-06-17 2011-10-04 Round Rock Research, Llc Method of manufacturing an enclosed transceiver
US7158031B2 (en) 1992-08-12 2007-01-02 Micron Technology, Inc. Thin, flexible, RFID label and system for use
US6496382B1 (en) * 1995-05-19 2002-12-17 Kasten Chase Applied Research Limited Radio frequency identification tag
ES2159061T3 (en) * 1996-08-05 2001-09-16 Gemplus Card Int PERFECTING A MEMORY CARD CARRYING OUT PROCESS.
US6362737B1 (en) * 1998-06-02 2002-03-26 Rf Code, Inc. Object Identification system with adaptive transceivers and methods of operation
US6329213B1 (en) 1997-05-01 2001-12-11 Micron Technology, Inc. Methods for forming integrated circuits within substrates
US6024285A (en) 1997-08-19 2000-02-15 Micron Technology, Inc. Wireless communication devices and methods of forming wireless communication devices
US6339385B1 (en) 1997-08-20 2002-01-15 Micron Technology, Inc. Electronic communication devices, methods of forming electrical communication devices, and communication methods
US6329915B1 (en) * 1997-12-31 2001-12-11 Intermec Ip Corp RF Tag having high dielectric constant material
US6025087A (en) * 1998-02-19 2000-02-15 Micron Technology, Inc. Battery mounting and testing apparatuses, methods of forming battery mounting and testing apparatuses, battery-powered test configured electronic devices, and methods of forming battery-powered test configured electronic devices
US6166638A (en) * 1998-04-03 2000-12-26 Intermec Ip Corp. RF/ID transponder with squinted beam radiation pattern using dipole-over-ground plane antenna
US6232153B1 (en) * 1998-06-04 2001-05-15 Ramtron International Corporation Plastic package assembly method for a ferroelectric-based integrated circuit
US6876295B1 (en) 1998-12-16 2005-04-05 Symbol Technologies, Inc. Wireless communication devices configurable via passive tags
CA2302957C (en) * 1999-03-24 2009-06-30 Morgan Adhesives Company Circuit chip connector and method of connecting a circuit chip
US6891110B1 (en) 1999-03-24 2005-05-10 Motorola, Inc. Circuit chip connector and method of connecting a circuit chip
US8052061B2 (en) * 2002-08-07 2011-11-08 Vanguard Identification Systems, Inc. Permanent RFID luggage tag with security features
US7845569B1 (en) 1999-06-16 2010-12-07 Vanguard Identification Systems, Inc. Permanent RFID luggage tag with security features
US7204652B2 (en) * 1999-06-16 2007-04-17 Vanguard Identification Systems, Inc. Printed planar radio frequency identification elements
US8654018B2 (en) * 2005-04-06 2014-02-18 Vanguard Identificaiton Systems, Inc. Printed planar RFID element wristbands and like personal identification devices
US8585852B2 (en) * 1999-06-16 2013-11-19 Vanguard Identification Systems, Inc. Methods of making printed planar radio frequency identification elements
US6994262B1 (en) * 1999-06-16 2006-02-07 Vanguard Identification Systems, Inc. Printed sheet products with integral, removable, radio frequency identification elements
US6714121B1 (en) 1999-08-09 2004-03-30 Micron Technology, Inc. RFID material tracking method and apparatus
US6147662A (en) * 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6843720B2 (en) * 1999-09-13 2005-01-18 Sierra Design Group Apparatus and method for dispensing prizes
US6609969B1 (en) * 1999-09-13 2003-08-26 Sierra Design Group Apparatus and method for dispensing of awards
US6557758B1 (en) 1999-10-01 2003-05-06 Moore North America, Inc. Direct to package printing system with RFID write/read capability
US7006116B1 (en) * 1999-11-16 2006-02-28 Nokia Corporation Tangibly encoded media identification in a book cover
US6512478B1 (en) * 1999-12-22 2003-01-28 Rockwell Technologies, Llc Location position system for relay assisted tracking
FI112288B (en) * 2000-01-17 2003-11-14 Rafsec Oy Procedure for producing an input path for smart labels
US6478229B1 (en) * 2000-03-14 2002-11-12 Harvey Epstein Packaging tape with radio frequency identification technology
FI112287B (en) * 2000-03-31 2003-11-14 Rafsec Oy Procedure for producing product sensor and product sensor
US20020020491A1 (en) * 2000-04-04 2002-02-21 Price David M. High speed flip chip assembly process
US6329944B1 (en) * 2000-05-12 2001-12-11 Northrop Grumman Corporation Tag communication protocol & system
FI111881B (en) * 2000-06-06 2003-09-30 Rafsec Oy A smart card web and a method for making it
US6975834B1 (en) * 2000-10-03 2005-12-13 Mineral Lassen Llc Multi-band wireless communication device and method
KR100392372B1 (en) * 2000-10-11 2003-07-22 한국전자통신연구원 Power supply device capable of remote-charging thin film battery and device having the same
FI113809B (en) * 2000-11-01 2004-06-15 Rafsec Oy Method for making a smart sticker and a smart sticker
DE10056148A1 (en) * 2000-11-13 2002-05-23 Infineon Technologies Ag Contactless data medium has data processing unit and at least two reception antennas for each different transmission region, whereby at least two of the antennas form a unit
FI112121B (en) * 2000-12-11 2003-10-31 Rafsec Oy Smart sticker web, process for making it, process for making a carrier web, and component of a smart sticker on a smart sticker web
US6923378B2 (en) * 2000-12-22 2005-08-02 Digimarc Id Systems Identification card
US7149884B2 (en) * 2001-01-25 2006-12-12 Dell Products L.P. Method and system for configuring a computer system via a wireless communication link
DE10114235A1 (en) * 2001-03-22 2002-09-26 Form Orange Produktentwicklung Spherical object identification method e.g. for pool balls, uses electronic identification chip and cooperating sensors
GB0112454D0 (en) * 2001-05-23 2001-07-11 Astrium Ltd A module
FI112550B (en) * 2001-05-31 2003-12-15 Rafsec Oy Smart label and smart label path
FI117331B (en) * 2001-07-04 2006-09-15 Rafsec Oy Method of manufacturing an injection molded product
US7112138B2 (en) * 2001-08-03 2006-09-26 Igt Player tracking communication mechanisms in a gaming machine
US8784211B2 (en) 2001-08-03 2014-07-22 Igt Wireless input/output and peripheral devices on a gaming machine
US7927212B2 (en) 2001-08-03 2011-04-19 Igt Player tracking communication mechanisms in a gaming machine
US8210927B2 (en) 2001-08-03 2012-07-03 Igt Player tracking communication mechanisms in a gaming machine
WO2003025831A2 (en) * 2001-09-14 2003-03-27 Roke Manor Research Limited Tag and tagging system
CA2460840C (en) * 2001-09-18 2011-12-20 Nagraid S.A. Thin electronic label and method for making same
DE10156073B4 (en) * 2001-11-16 2008-08-21 Giesecke & Devrient Gmbh Foil battery for portable data carriers with antenna function
US6837427B2 (en) * 2001-11-21 2005-01-04 Goliath Solutions, Llc. Advertising compliance monitoring system
US7374096B2 (en) 2001-11-21 2008-05-20 Goliath Solutions, Llc Advertising compliance monitoring system
US6951305B2 (en) * 2001-11-21 2005-10-04 Goliath Solutions, Llc. Advertising compliance monitoring system
US6854657B2 (en) * 2001-11-28 2005-02-15 General Instrument Corporation Dual battery configuration and method of using the same to provide a long-term power solution in a programmable smart card
DK1456810T3 (en) 2001-12-18 2011-07-18 L 1 Secure Credentialing Inc Multiple image security features to identify documents and methods of producing them
FI119401B (en) * 2001-12-21 2008-10-31 Upm Raflatac Oy Smart label web and process for its manufacture
US7728048B2 (en) 2002-12-20 2010-06-01 L-1 Secure Credentialing, Inc. Increasing thermal conductivity of host polymer used with laser engraving methods and compositions
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
CA2469956C (en) * 2001-12-24 2009-01-27 Digimarc Id Systems, Llc Contact smart cards having a document core, contactless smart cards including multi-layered structure, pet-based identification document, and methods of making same
EP1459239B1 (en) 2001-12-24 2012-04-04 L-1 Secure Credentialing, Inc. Covert variable information on id documents and methods of making same
AU2002364036A1 (en) 2001-12-24 2003-07-15 Digimarc Id Systems, Llc Laser etched security features for identification documents and methods of making same
EP1459246B1 (en) 2001-12-24 2012-05-02 L-1 Secure Credentialing, Inc. Method for full color laser marking of id documents
US7976384B2 (en) * 2002-02-27 2011-07-12 Igt Contactless card reading in a gaming machine
AU2003221894A1 (en) 2002-04-09 2003-10-27 Digimarc Id Systems, Llc Image processing techniques for printing identification cards and documents
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
JP4178285B2 (en) * 2002-08-09 2008-11-12 豊丸産業株式会社 Game machine
JP2004084258A (en) * 2002-08-26 2004-03-18 Toyomaru Industry Co Ltd Locking system, game machine, and device control system
US6726099B2 (en) * 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
US6906436B2 (en) * 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
US7294209B2 (en) * 2003-01-02 2007-11-13 Cymbet Corporation Apparatus and method for depositing material onto a substrate using a roll-to-roll mask
US20040131760A1 (en) * 2003-01-02 2004-07-08 Stuart Shakespeare Apparatus and method for depositing material onto multiple independently moving substrates in a chamber
US6995674B2 (en) * 2003-02-28 2006-02-07 Saxon, Inc. Package assembly
ATE491190T1 (en) 2003-04-16 2010-12-15 L 1 Secure Credentialing Inc THREE-DIMENSIONAL DATA STORAGE
US7064663B2 (en) * 2003-04-30 2006-06-20 Basix Holdings, Llc Radio frequency object locator system
US20040238623A1 (en) * 2003-05-09 2004-12-02 Wayne Asp Component handling device having a film insert molded RFID tag
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
JP3892826B2 (en) * 2003-05-26 2007-03-14 株式会社東芝 Power amplifier and wireless communication apparatus using the same
US7230321B2 (en) * 2003-10-13 2007-06-12 Mccain Joseph Integrated circuit package with laminated power cell having coplanar electrode
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
US7211351B2 (en) * 2003-10-16 2007-05-01 Cymbet Corporation Lithium/air batteries with LiPON as separator and protective barrier and method
US20050104718A1 (en) * 2003-11-19 2005-05-19 First Data Corporation Automated preparation of radio-frequency devices for distribution
US20060108421A1 (en) * 2003-12-03 2006-05-25 Becker Robert C RFID tag having multiple transceivers
US7768405B2 (en) 2003-12-12 2010-08-03 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
JP2007518246A (en) * 2004-01-06 2007-07-05 シンベット コーポーレーション Layered barrier structure comprising one or more layers having a boundary and method of manufacturing the barrier structure
US7755484B2 (en) * 2004-02-12 2010-07-13 Avery Dennison Corporation RFID tag and method of manufacturing the same
US7348887B1 (en) 2004-06-15 2008-03-25 Eigent Technologies, Llc RFIDs embedded into semiconductors
DE102004038072A1 (en) * 2004-07-28 2006-03-23 Varta Microbattery Gmbh Galvanic element
US7237712B2 (en) * 2004-12-01 2007-07-03 Alfred E. Mann Foundation For Scientific Research Implantable device and communication integrated circuit implementable therein
TWI331634B (en) 2004-12-08 2010-10-11 Infinite Power Solutions Inc Deposition of licoo2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7712674B1 (en) 2005-02-22 2010-05-11 Eigent Technologies Llc RFID devices for verification of correctness, reliability, functionality and security
US7546137B2 (en) * 2005-02-28 2009-06-09 Sirit Technologies Inc. Power control loop and LO generation method
US7760104B2 (en) * 2005-04-08 2010-07-20 Entegris, Inc. Identification tag for fluid containment drum
US7703685B2 (en) * 2005-04-08 2010-04-27 Kabushiki Kaisha Sato Label application device
JP2006324074A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Information recording method on battery and its device
US8753097B2 (en) 2005-11-21 2014-06-17 Entegris, Inc. Method and system for high viscosity pump
EP1974232A1 (en) * 2006-01-13 2008-10-01 Sonja Deola Filament or tape with a sequence of radiofrequency identification integrated circuits (rfid) having independent antenna circuits
US7423516B2 (en) * 2006-05-04 2008-09-09 Goliath Solutions, Llc Systems and methods for approximating the location of an RFID tag
US7310070B1 (en) 2006-08-23 2007-12-18 Goliath Solutions, Llc Radio frequency identification shelf antenna with a distributed pattern for localized tag detection
US20080062046A1 (en) * 2006-09-08 2008-03-13 Intelleflex Corporation Mounting structure for matching an rf integrated circuit with an antenna and rfid device implementing same
EP2067163A4 (en) 2006-09-29 2009-12-02 Infinite Power Solutions Inc Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
CA2616696A1 (en) * 2006-12-29 2008-06-29 Vanguard Identification Systems, Inc. Printed planar rfid element wristbands and like personal identification devices
US8429085B2 (en) * 2007-06-22 2013-04-23 Visa U.S.A. Inc. Financial transaction token with onboard power source
US7859415B2 (en) * 2007-11-16 2010-12-28 Rcd Technology Inc. RFID based identification device
US8314706B2 (en) * 2007-11-16 2012-11-20 Rcd Technology Corporation Coupled radio frequency identification (RFID) and biometric device
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
KR20150128817A (en) 2007-12-21 2015-11-18 사푸라스트 리써치 엘엘씨 Method for sputter targets for electrolyte films
JP5705549B2 (en) 2008-01-11 2015-04-22 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film encapsulation for thin film batteries and other devices
US9324071B2 (en) * 2008-03-20 2016-04-26 Visa U.S.A. Inc. Powering financial transaction token with onboard power source
CN101983469B (en) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
WO2010019577A1 (en) 2008-08-11 2010-02-18 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
JP5650646B2 (en) 2008-09-12 2015-01-07 インフィニット パワー ソリューションズ, インコーポレイテッド Energy device with integral conductive surface for data communication via electromagnetic energy and method for data communication via electromagnetic energy
US8508193B2 (en) * 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US20100092806A1 (en) * 2008-10-14 2010-04-15 Honeywell International Inc. Miniature powered antenna for wireless communications and related system and method
US8503949B2 (en) * 2008-10-17 2013-08-06 Honeywell International Inc. Miniature fiber radio transceiver and related method
US9224084B2 (en) 2009-04-01 2015-12-29 Vanguard Identification Systems, Inc. Smart device programmable electronic luggage tag
US8033462B2 (en) 2009-04-01 2011-10-11 Awarepoint Corporation Wireless tracking system and method for sterilizable object
US9918537B2 (en) 2009-04-01 2018-03-20 Vanguard Identification Systems Smart device programmable electronic luggage tag and bag mountings therefore
KR101792287B1 (en) 2009-09-01 2017-10-31 사푸라스트 리써치 엘엘씨 Printed circuit board with integrated thin film battery
US8684705B2 (en) 2010-02-26 2014-04-01 Entegris, Inc. Method and system for controlling operation of a pump based on filter information in a filter information tag
US8727744B2 (en) 2010-02-26 2014-05-20 Entegris, Inc. Method and system for optimizing operation of a pump
KR101930561B1 (en) 2010-06-07 2018-12-18 사푸라스트 리써치 엘엘씨 Rechargeable high-density electrochemical device
TWI563351B (en) 2010-10-20 2016-12-21 Entegris Inc Method and system for pump priming
US9178569B2 (en) 2011-11-28 2015-11-03 Tata Consultancy Services Limited System and method for simultaneous wireless charging, tracking and monitoring of equipments
US9129200B2 (en) * 2012-10-30 2015-09-08 Raytheon Corporation Protection system for radio frequency communications
CN106971218B (en) * 2017-03-31 2020-07-28 深圳市阿尔艾富信息技术股份有限公司 RFID electronic tag
US10896302B2 (en) 2017-11-02 2021-01-19 Counted, Llc Systems and methods for tracking items using bonding materials
US11001466B2 (en) 2017-11-02 2021-05-11 Counted, Llc Trackable, packetized distrubution system
AU2018408521A1 (en) * 2018-02-09 2020-10-01 NanoThings, Inc. Item status tracking system and method
MA53539A (en) * 2018-09-03 2021-12-08 Saint Gobain VEHICLE WINDOW EQUIPPED WITH A TRANSPONDER
CA3157630C (en) * 2019-11-07 2023-07-11 Alexander T. Farkas Wireless charging system and associated methods
JP2022092661A (en) * 2020-12-11 2022-06-23 日本航空電子工業株式会社 Device and method of manufacturing device

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK134666B (en) * 1970-02-20 1976-12-20 Svejsecentralen Method for marking and later locating, identifying and registering physical objects as well as electronic marking devices for use in performing the method.
US3706094A (en) * 1970-02-26 1972-12-12 Peter Harold Cole Electronic surveillance system
US4049969A (en) * 1970-03-19 1977-09-20 The United States Of America As Represented By The Secretary Of The Air Force Passive optical transponder
US3750167A (en) * 1971-07-22 1973-07-31 Gen Dynamics Corp Postal tracking system
US3849633A (en) * 1972-01-04 1974-11-19 Westinghouse Electric Corp Object identifying apparatus
US3832530A (en) * 1972-01-04 1974-08-27 Westinghouse Electric Corp Object identifying apparatus
US4075632A (en) 1974-08-27 1978-02-21 The United States Of America As Represented By The United States Department Of Energy Interrogation, and detection system
FR2337381A1 (en) * 1975-12-31 1977-07-29 Honeywell Bull Soc Ind PORTABLE CARD FOR ELECTRICAL SIGNAL PROCESSING SYSTEM AND PROCESS FOR MANUFACTURING THIS CARD
US4226361A (en) * 1978-10-27 1980-10-07 Taylor Leonard H Positive identification system for authenticating the identity of a card user
AT374596B (en) * 1979-04-20 1984-05-10 Enander Bengt TO FIND AVALANCHE VICTIMS, ANSWERS TO BE WEARED ON THE BODY
AU533981B2 (en) * 1980-01-25 1983-12-22 Unisearch Limited Remote temperature reading
DE3009179A1 (en) * 1980-03-11 1981-09-24 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD AND DEVICE FOR GENERATING THE REPLY SIGNAL OF A DEVICE FOR AUTOMATICALLY IDENTIFYING OBJECTS AND / OR LIVING BEINGS
US4756717A (en) * 1981-08-24 1988-07-12 Polaroid Corporation Laminar batteries and methods of making the same
US4453074A (en) * 1981-10-19 1984-06-05 American Express Company Protection system for intelligent cards
JPS59103163A (en) * 1982-12-03 1984-06-14 Casio Comput Co Ltd Sheet type miniature electronic device
US4484355A (en) * 1983-04-11 1984-11-20 Ritron, Inc. Handheld transceiver with frequency synthesizer and sub-audible tone squelch system
US4827395A (en) * 1983-04-21 1989-05-02 Intelli-Tech Corporation Manufacturing monitoring and control systems
US4918631A (en) * 1984-09-07 1990-04-17 Casio Computer Co., Ltd. Compact type electronic information card
US4649233A (en) * 1985-04-11 1987-03-10 International Business Machines Corporation Method for establishing user authenication with composite session keys among cryptographically communicating nodes
NL8501542A (en) * 1985-05-30 1986-12-16 Philips Nv LOAD-COUPLED DEVICE.
US4783646A (en) * 1986-03-07 1988-11-08 Kabushiki Kaisha Toshiba Stolen article detection tag sheet, and method for manufacturing the same
US4746830A (en) * 1986-03-14 1988-05-24 Holland William R Electronic surveillance and identification
US4777563A (en) * 1986-05-02 1988-10-11 Toshiba Battery Co., Ltd. Thin type electronic instrument
DE3786836T2 (en) 1986-05-30 1994-01-13 Sharp Kk Microwave data transmission device.
US4724427A (en) * 1986-07-18 1988-02-09 B. I. Incorporated Transponder device
JPS63149191A (en) * 1986-12-15 1988-06-21 日立マクセル株式会社 Ic card
US4854328A (en) * 1987-03-23 1989-08-08 Philip Pollack Animal monitoring telltale and information system
US4827110A (en) * 1987-06-11 1989-05-02 Fluoroware, Inc. Method and apparatus for monitoring the location of wafer disks
US4746618A (en) * 1987-08-31 1988-05-24 Energy Conversion Devices, Inc. Method of continuously forming an array of photovoltaic cells electrically connected in series
JPH01157896A (en) * 1987-09-28 1989-06-21 Mitsubishi Electric Corp Noncontact type ic card and noncontact type card reader writer
US5144314A (en) * 1987-10-23 1992-09-01 Allen-Bradley Company, Inc. Programmable object identification transponder system
US5302954A (en) * 1987-12-04 1994-04-12 Magellan Corporation (Australia) Pty. Ltd. Identification apparatus and methods
US4908502A (en) * 1988-02-08 1990-03-13 Pitney Bowes Inc. Fault tolerant smart card
FR2631725B1 (en) * 1988-05-20 1990-07-27 Guena Jean RADIO SYSTEM FOR TRANSMITTING DATA TO A PASSIVE END
JPH01303910A (en) * 1988-06-01 1989-12-07 Hitachi Ltd Solid-state electronic element, its manufacture and device utilizing the element
US4882294A (en) * 1988-08-17 1989-11-21 Delco Electronics Corporation Process for forming an epitaxial layer having portions of different thicknesses
US4911217A (en) * 1989-03-24 1990-03-27 The Goodyear Tire & Rubber Company Integrated circuit transponder in a pneumatic tire for tire identification
EP0409016A3 (en) * 1989-07-10 1992-07-01 Csir System and method for locating labelled objects
FR2651347A1 (en) * 1989-08-22 1991-03-01 Trt Telecom Radio Electr SINGLE NUMBER GENERATION METHOD FOR MICROCIRCUIT BOARD AND APPLICATION TO COOPERATION OF THE BOARD WITH A HOST SYSTEM.
US5200362A (en) * 1989-09-06 1993-04-06 Motorola, Inc. Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film
US5023573A (en) * 1989-09-21 1991-06-11 Westinghouse Electric Corp. Compact frequency selective limiter configuration
FR2654237B1 (en) * 1989-11-03 1992-01-17 Europ Rech Electr Lab METHOD FOR PROTECTING AGAINST THE UNAUTHORIZED INHIBITION OF WRITING OF CERTAIN MEMORY ZONES OF A MICROPROCESSOR CARD, AND DEVICE FOR IMPLEMENTING SAME.
US5095240A (en) * 1989-11-13 1992-03-10 X-Cyte, Inc. Inductively coupled saw device and method for making the same
US5166502A (en) * 1990-01-05 1992-11-24 Trend Plastics, Inc. Gaming chip with implanted programmable identifier means and process for fabricating same
US5619066A (en) * 1990-05-15 1997-04-08 Dallas Semiconductor Corporation Memory for an electronic token
US5008776A (en) * 1990-06-06 1991-04-16 Sgs-Thomson Microelectronics, Inc. Zero power IC module
US5274221A (en) * 1990-06-22 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Non-contact integrated circuit card
JPH0454581A (en) * 1990-06-22 1992-02-21 Mitsubishi Electric Corp Non-contact card
JPH0475191A (en) 1990-07-17 1992-03-10 Mitsubishi Electric Corp Ic card
SE9002493L (en) * 1990-07-24 1991-09-02 Staffan Gunnarsson VEHICLE DEVICE MAINTAINS POSITIONING BY AUTOMATIC FUELING
JPH0496520A (en) * 1990-08-13 1992-03-27 Sharp Corp Data transmitter
JPH04321190A (en) * 1991-04-22 1992-11-11 Mitsubishi Electric Corp Antenna circuit and its production for non-contact type portable storage
US5340968A (en) * 1991-05-07 1994-08-23 Nippondenso Company, Ltd. Information storage medium with electronic and visual areas
US5153710A (en) * 1991-07-26 1992-10-06 Sgs-Thomson Microelectronics, Inc. Integrated circuit package with laminated backup cell
US5148504A (en) * 1991-10-16 1992-09-15 At&T Bell Laboratories Optical integrated circuit designed to operate by use of photons
US5572226A (en) * 1992-05-15 1996-11-05 Micron Technology, Inc. Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels
US5497140A (en) * 1992-08-12 1996-03-05 Micron Technology, Inc. Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US5326652A (en) * 1993-01-25 1994-07-05 Micron Semiconductor, Inc. Battery package and method using flexible polymer films having a deposited layer of an inorganic material
DE4319878A1 (en) * 1992-06-17 1993-12-23 Micron Technology Inc High frequency identification system card - has integrated circuit chip or carrier layer sealed by top layer and coupled to batteries and antenna system
US5776278A (en) * 1992-06-17 1998-07-07 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
FR2702067B1 (en) * 1993-02-23 1995-04-14 Schlumberger Ind Sa Method and device for manufacturing memory cards.
GB9307252D0 (en) * 1993-04-07 1993-06-02 Plessey Telecomm Method and apparatus for verifying the integrity of a smart card
US5624468A (en) * 1993-06-02 1997-04-29 Micron Technology, Inc. Method for fabricating a leadless battery employing an alkali metal anode and polymer film inks
US5350645A (en) * 1993-06-21 1994-09-27 Micron Semiconductor, Inc. Polymer-lithium batteries and improved methods for manufacturing batteries
US5820716A (en) 1993-11-05 1998-10-13 Micron Technology, Inc. Method for surface mounting electrical components to a substrate
US5432027A (en) * 1994-03-02 1995-07-11 Micron Communications, Inc. Button-type battery having bendable construction, and angled button-type battery
US5480462A (en) * 1994-03-02 1996-01-02 Micron Communications, Inc. Method of forming button-type battery lithium electrodes
US5486431A (en) * 1994-03-02 1996-01-23 Micron Communications, Inc. Method of producing button-type batteries and spring-biased concave button-type battery
US5603157A (en) 1994-03-02 1997-02-18 Micron Communications, Inc. Methods of producing button-type batteries and a plurality of battery terminal housing members
US5547781A (en) 1994-03-02 1996-08-20 Micron Communications, Inc. Button-type battery with improved separator and gasket construction
US5471212A (en) 1994-04-26 1995-11-28 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
US5494495A (en) * 1994-10-11 1996-02-27 Micron Communications, Inc. Method of forming button-type batteries
US5605467A (en) * 1995-01-19 1997-02-25 Eaton Corporation Cover for battery compartment and communications port
JP3519491B2 (en) * 1995-03-31 2004-04-12 株式会社東海理化電機製作所 IC card
US5649296A (en) 1995-06-19 1997-07-15 Lucent Technologies Inc. Full duplex modulated backscatter system
US5725967A (en) * 1995-08-15 1998-03-10 Micron Communications, Inc. Battery container and method of manufacture
US5558679A (en) * 1995-08-21 1996-09-24 Micron Communications, Inc. Method for mounting a battery on a substrate
US5612513A (en) * 1995-09-19 1997-03-18 Micron Communications, Inc. Article and method of manufacturing an enclosed electrical circuit using an encapsulant
US5937512A (en) 1996-01-11 1999-08-17 Micron Communications, Inc. Method of forming a circuit board
JP4229408B2 (en) * 1999-05-31 2009-02-25 トッパン・フォームズ株式会社 Non-contact IC card thin antenna

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42872E1 (en) * 1992-11-20 2011-10-25 Round Rock Research, Llc Method and apparatus for communicating with RFID devices coupled to a roll of flexible material
USRE43918E1 (en) * 1992-11-20 2013-01-08 Round Rock Research, Llc Method and apparatus for RFID communication
USRE43935E1 (en) * 1992-11-20 2013-01-15 Round Rock Research, Llc Method and apparatus for RFID communication
US6487681B1 (en) * 1992-11-20 2002-11-26 Micron Technology, Inc. In-sheet transceiver testing
USRE43940E1 (en) * 1992-11-20 2013-01-22 Round Rock Research, Llc Method and apparatus for RFID communication
US6869019B1 (en) * 1999-10-13 2005-03-22 Rohm Co., Ltd. Communication device
US8637349B2 (en) 2000-03-24 2014-01-28 Cymbet Corporation Method and apparatus for integrated-circuit battery devices
US8044508B2 (en) 2000-03-24 2011-10-25 Cymbet Corporation Method and apparatus for integrated-circuit battery devices
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
WO2003052684A1 (en) * 2001-11-28 2003-06-26 Orga Kartensysteme Gmbh Foil battery with integrated component for use in a chip card
GB2388744A (en) * 2002-03-01 2003-11-19 Btg Int Ltd An RFID tag
EP1431929A3 (en) * 2002-12-18 2006-01-18 Pitney Bowes Inc. Method and system for tagging a mailpiece
US7835996B2 (en) 2002-12-18 2010-11-16 Pitney Bowes Inc. Dual metering method for enhanced mail security
US7603144B2 (en) * 2003-01-02 2009-10-13 Cymbet Corporation Active wireless tagging system on peel and stick substrate
US20040131897A1 (en) * 2003-01-02 2004-07-08 Jenson Mark L. Active wireless tagging system on peel and stick substrate
US20040132406A1 (en) * 2003-01-03 2004-07-08 Scott Jeff W. Tags, wireless communication systems, tag communication methods, and wireless communications methods
US20070001810A1 (en) * 2003-01-03 2007-01-04 Scott Jeff W Tags, wireless communication systems, tag communication methods, and wireless communications methods
US7106173B2 (en) 2003-01-03 2006-09-12 Battelle Memorial Institute Tags, wireless communication systems, tag communication methods, and wireless communications methods
US7764173B2 (en) 2003-02-14 2010-07-27 Honda Motor Co., Ltd. IC tag equipped vehicle and management system thereof
US20060007003A1 (en) * 2003-02-14 2006-01-12 Honda Motor Co., Ltd. Motor vehicle mounted with ic tag and control system for the same
US8038072B2 (en) 2003-05-01 2011-10-18 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US20060118229A1 (en) * 2003-05-01 2006-06-08 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US7694883B2 (en) * 2003-05-01 2010-04-13 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US8128001B2 (en) 2003-05-01 2012-03-06 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US20100181383A1 (en) * 2003-05-01 2010-07-22 Brother Kogyo Kabushiki Kaisha RFID label, method for producing the RFID label, device for producing the RFID label, sheet member (tag sheet) used for the RFID label, and cartridge attached to the device for producing the RFID label
US20040266486A1 (en) * 2003-06-30 2004-12-30 Matsushita Electric Industrial Co., Ltd. Noncontact IC card reader/writer integrated with antenna
US7457637B2 (en) * 2003-06-30 2008-11-25 Matsushita Electric Industrial Co., Ltd. Noncontact recording medium reader/writer
US20070024444A1 (en) * 2003-08-11 2007-02-01 Sony Corporation Radio communication system and wireless communication device
US7986234B2 (en) * 2003-08-11 2011-07-26 Sony Corporation Wireless communication system and wireless communication apparatus
WO2005056305A1 (en) * 2003-12-04 2005-06-23 Francois Charles Oberthur Fiduciaire Method for producing a security document and a corresponding document
FR2863388A1 (en) * 2003-12-04 2005-06-10 Francois Charles Oberthur Fidu Secure document e.g. passport, manufacturing process, involves presenting cavity on back side of paper sheet and embossment on opposite side of back side corresponding to cavity
US20050143883A1 (en) * 2003-12-24 2005-06-30 Honda Motor Co., Ltd. Vehicle management system
US20050190043A1 (en) * 2004-02-26 2005-09-01 Honda Motor Co., Ltd. Tag mounting method and tagged vehicle component
US20070120681A1 (en) * 2004-03-12 2007-05-31 Shunpei Yamazaki Semiconductor device
US8159043B2 (en) * 2004-03-12 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN101615619B (en) * 2004-03-12 2011-11-30 株式会社半导体能源研究所 Semiconductor device
US8546912B2 (en) 2004-03-12 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20080211629A1 (en) * 2004-03-16 2008-09-04 Dupont Teijin Films U.S. Limited Partnership Polymeric Film Substrate for Use in Radio-Frequency Responsive
US20060068842A1 (en) * 2004-08-18 2006-03-30 Jorge Sanguino Wireless communications adapter for a hearing assistance device
US7813762B2 (en) 2004-08-18 2010-10-12 Micro Ear Technology, Inc. Wireless communications adapter for a hearing assistance device
US20060039577A1 (en) * 2004-08-18 2006-02-23 Jorge Sanguino Method and apparatus for wireless communication using an inductive interface
US7221277B2 (en) * 2004-10-05 2007-05-22 Tracking Technologies, Inc. Radio frequency identification tag and method of making the same
USRE41563E1 (en) * 2004-10-05 2010-08-24 Michael Caron, Inc. Radio frequency identification tag and method of making the same
US20060071792A1 (en) * 2004-10-05 2006-04-06 Caron Michael R Radio frequency identification tag and method of making the same
US20070279313A1 (en) * 2005-01-24 2007-12-06 Manabu Kai Antenna and RFID tag with same mounted
US7667658B2 (en) 2005-01-24 2010-02-23 Fujitsu Limited Antenna and RFID tag with same mounted
EP1843431A1 (en) * 2005-01-24 2007-10-10 Fujitsu Ltd. Antenna and rfid tag mounted with same
EP1843431A4 (en) * 2005-01-24 2009-04-15 Fujitsu Ltd Antenna and rfid tag mounted with same
US7683761B2 (en) 2005-01-26 2010-03-23 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
US20060164213A1 (en) * 2005-01-26 2006-07-27 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
US20060176179A1 (en) * 2005-01-26 2006-08-10 Battelle Memorial Institute Bendable, active radio-frequency sensor tags and a system of same
US8679674B2 (en) 2005-03-25 2014-03-25 Front Edge Technology, Inc. Battery with protective packaging
US8168322B2 (en) 2005-03-25 2012-05-01 Front Edge Technology, Inc. Thin film battery with protective packaging
US8475955B2 (en) 2005-03-25 2013-07-02 Front Edge Technology, Inc. Thin film battery with electrical connector connecting battery cells
US20100227214A1 (en) * 2005-03-25 2010-09-09 Front Edge Technology, Inc. Thin film battery with protective packaging
US9774961B2 (en) 2005-06-05 2017-09-26 Starkey Laboratories, Inc. Hearing assistance device ear-to-ear communication using an intermediate device
US20100316913A1 (en) * 2005-07-15 2010-12-16 Klaassen Jody J THIN-FILM BATTERIES WITH POLYMER AND LiPON ELECTROLYTE LAYERS AND METHOD
US7931989B2 (en) 2005-07-15 2011-04-26 Cymbet Corporation Thin-film batteries with soft and hard electrolyte layers and method
US7939205B2 (en) 2005-07-15 2011-05-10 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
US20070012244A1 (en) * 2005-07-15 2007-01-18 Cymbet Corporation Apparatus and method for making thin-film batteries with soft and hard electrolyte layers
US7776478B2 (en) 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
US20070069021A1 (en) * 2005-09-27 2007-03-29 Palo Alto Research Center Incorporated Smart floor tiles/carpet for tracking movement in retail, industrial and other environments
US20070215695A1 (en) * 2006-03-15 2007-09-20 Fleming Trane Device and system for presenting and facilitating payment of a restaurant bill
US7370794B2 (en) * 2006-03-15 2008-05-13 Fleming Trane Device and system for presenting and facilitating payment of a restaurant bill
US8027638B2 (en) 2006-03-29 2011-09-27 Micro Ear Technology, Inc. Wireless communication system using custom earmold
US20070230727A1 (en) * 2006-03-29 2007-10-04 Micro Ear Technology, Inc. D/B/A Micro-Tech Wireless communication system using custom earmold
US20090055854A1 (en) * 2006-05-18 2009-02-26 David Howell Wright Methods and apparatus for cooperator installed meters
US20070290928A1 (en) * 2006-05-19 2007-12-20 Industrial Technology Research Institute Broadband antenna
US7589675B2 (en) * 2006-05-19 2009-09-15 Industrial Technology Research Institute Broadband antenna
US11064302B2 (en) 2006-07-10 2021-07-13 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US10051385B2 (en) 2006-07-10 2018-08-14 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US10469960B2 (en) 2006-07-10 2019-11-05 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US9510111B2 (en) 2006-07-10 2016-11-29 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US9036823B2 (en) 2006-07-10 2015-05-19 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US11678128B2 (en) 2006-07-10 2023-06-13 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US10728678B2 (en) 2006-07-10 2020-07-28 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US20080103944A1 (en) * 2006-10-30 2008-05-01 Mobile Logistics Management L.L.C. Intelligent Pallet
US20100017347A1 (en) * 2006-10-30 2010-01-21 Mobile Logistics Management L.L.C. Intelligent pallet
US11765526B2 (en) 2007-01-03 2023-09-19 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US9854369B2 (en) 2007-01-03 2017-12-26 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US8515114B2 (en) 2007-01-03 2013-08-20 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US10511918B2 (en) 2007-01-03 2019-12-17 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US11218815B2 (en) 2007-01-03 2022-01-04 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US9282416B2 (en) 2007-01-03 2016-03-08 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US8717175B2 (en) * 2007-03-23 2014-05-06 Zih Corp. RFID tag with reduced detuning characteristics
US20110266352A1 (en) * 2007-03-23 2011-11-03 Zih Corp. Rfid tag with reduced detuning characteristics
US20090136839A1 (en) * 2007-11-28 2009-05-28 Front Edge Technology, Inc. Thin film battery comprising stacked battery cells and method
US20090174527A1 (en) * 2008-01-09 2009-07-09 Robert Stewart Surface mount capacitor used as a substrate flip-chip carrier in a radio frequency identification tag
WO2009089474A1 (en) * 2008-01-09 2009-07-16 Allflex Usa, Inc. Surface mount capacitor used as a substrate flip-chip carrier in a radio frequency identification tag
US20100097280A1 (en) * 2008-10-20 2010-04-22 Smartrac Ip B.V. Transponder device
WO2010045992A1 (en) * 2008-10-20 2010-04-29 Smartrac Ip B.V. Transponder device
US11019589B2 (en) 2009-12-21 2021-05-25 Starkey Laboratories, Inc. Low power intermittent messaging for hearing assistance devices
US10212682B2 (en) 2009-12-21 2019-02-19 Starkey Laboratories, Inc. Low power intermittent messaging for hearing assistance devices
US8503708B2 (en) 2010-04-08 2013-08-06 Starkey Laboratories, Inc. Hearing assistance device with programmable direct audio input port
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US10199682B2 (en) 2011-06-29 2019-02-05 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US8865340B2 (en) 2011-10-20 2014-10-21 Front Edge Technology Inc. Thin film battery packaging formed by localized heating
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US8864954B2 (en) 2011-12-23 2014-10-21 Front Edge Technology Inc. Sputtering lithium-containing material with multiple targets
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US8870069B2 (en) 2012-08-22 2014-10-28 Symbol Technologies, Inc. Co-located antenna arrangement
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US9356320B2 (en) 2012-10-15 2016-05-31 Front Edge Technology Inc. Lithium battery having low leakage anode
US10003379B2 (en) 2014-05-06 2018-06-19 Starkey Laboratories, Inc. Wireless communication with probing bandwidth
US9635147B2 (en) 2014-07-09 2017-04-25 The Regents Of The University Of Michigan Protocol for an electronic device to receive a data packet from an external device
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
US10377507B2 (en) 2015-07-23 2019-08-13 Simon TREMBLAY Multifunctional motorized box and landing pad for automatic drone package delivery
US20180019513A1 (en) * 2016-07-12 2018-01-18 Isolynx, Llc Planar flexible rf tag and charging device
US11171405B2 (en) * 2016-07-12 2021-11-09 Isolynx, Llc Planar flexible RF tag and charging device
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices
US10957886B2 (en) 2018-03-14 2021-03-23 Front Edge Technology, Inc. Battery having multilayer protective casing
US20210327243A1 (en) * 2018-08-24 2021-10-21 32 Technologies Llc Enhanced location tracking using ultra-wideband
WO2020041795A1 (en) * 2018-08-24 2020-02-27 32 Technologies Llc Enhanced location tracking using ultra-wideband
US11545017B2 (en) * 2018-08-24 2023-01-03 32 Technologies Llc Enhanced location tracking using ultra-wideband
US11126901B2 (en) 2019-05-14 2021-09-21 CoreKinect LLC System and method for flexible asset tracking tag
WO2020232293A1 (en) * 2019-05-14 2020-11-19 CoreKinect LLC System and method for flexible asset tracking tag
EP3882014A1 (en) * 2020-03-18 2021-09-22 Japan Aviation Electronics Industry, Limited Device and forming method of device
US11469150B2 (en) 2020-03-18 2022-10-11 Japan Aviation Electronics Industry, Limited Device and forming method of device
KR102495771B1 (en) * 2020-03-18 2023-02-06 니혼 고꾸 덴시 고교 가부시끼가이샤 Device and forming method of device
KR20210117143A (en) * 2020-03-18 2021-09-28 니혼 고꾸 덴시 고교 가부시끼가이샤 Device and forming method of device
US11315809B2 (en) 2020-08-03 2022-04-26 Japan Aviation Electronics Industry, Limited Device and forming method of device

Also Published As

Publication number Publication date
US6325294B2 (en) 2001-12-04
US6220516B1 (en) 2001-04-24
US5776278A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
US6045652A (en) Method of manufacturing an enclosed transceiver
US5779839A (en) Method of manufacturing an enclosed transceiver
US5776278A (en) Method of manufacturing an enclosed transceiver
US7649463B2 (en) Radio frequency identification device and method
US5448110A (en) Enclosed transceiver
US6741178B1 (en) Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US6037879A (en) Wireless identification device, RFID device, and method of manufacturing wireless identification device
US5497140A (en) Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US6018299A (en) Radio frequency identification tag having a printed antenna and method
US6768415B1 (en) Wireless identification device, RFID device with push-on/push-off switch, method of manufacturing wireless identification device
US20080007462A1 (en) Wireless Identification Device, RFID Device With Push-on/Push-off Switch, and Method of Manufacturing Wireless Identification Device
KR101313926B1 (en) Base material for rfid tag adapted to metallic material
US20060055541A1 (en) RFID tag having a silicon micro processing chip for radio frequency identification and a method of making the same
JPH11509024A (en) Contactless electronic modules for cards or labels
WO2000026856A2 (en) Radio frequency identification system
US20060012482A1 (en) Radio frequency identification tag having an inductively coupled antenna
WO2000021031A1 (en) Rfid tag having dipole over ground plane antenna
USRE42773E1 (en) Method of manufacturing an enclosed transceiver
WO2002099764A1 (en) Capacitively powered data communication system with tag and circuit carrier apparatus for use therein
WO2000023941A1 (en) Wireless identification device, rfid device, and method of manufacturing a wireless identification device
WO2008029534A1 (en) Wireless ic tag

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
RF Reissue application filed

Effective date: 20031204

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: KEYSTONE TECHNOLOGY SOLUTIONS, LLC, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:019825/0542

Effective date: 20070628

Owner name: KEYSTONE TECHNOLOGY SOLUTIONS, LLC,IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:019825/0542

Effective date: 20070628

RF Reissue application filed

Effective date: 20070904

RF Reissue application filed

Effective date: 20070904

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881

Effective date: 20091222

Owner name: MICRON TECHNOLOGY, INC.,IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881

Effective date: 20091222