US1980093A - Anchorage device - Google Patents

Anchorage device Download PDF

Info

Publication number
US1980093A
US1980093A US30008A US3000825A US1980093A US 1980093 A US1980093 A US 1980093A US 30008 A US30008 A US 30008A US 3000825 A US3000825 A US 3000825A US 1980093 A US1980093 A US 1980093A
Authority
US
United States
Prior art keywords
thread
section
rib
anchorage device
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US30008A
Inventor
Rosenberg Heyman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US30008A priority Critical patent/US1980093A/en
Application granted granted Critical
Publication of US1980093A publication Critical patent/US1980093A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0057Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the screw having distinct axial zones, e.g. multiple axial thread sections with different pitch or thread cross-sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0021Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being metal, e.g. sheet-metal or aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0068Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw with multiple-threads, e.g. a double thread screws

Definitions

  • This invention relates to improvements in the art of anchorage and in anchorage devices of the type especially adapted for use in metal and other hard substances and materials susceptible of be- 5 ing flowed while cold.
  • This application is a division of my parent application Serial No. 2,874, led January 16, 1925.
  • An object in view is the causing of the flow of the material of work by successive steps into ay l compact, high-frictional relation to the engaging parts of an anchorage device for insuring rm anchorage incident to the application of relatively small stresses.
  • a further object in view is the effecting of an l anchorage with a minimum amount of stress and ⁇ with maximum eiiiciency.
  • the invention comprises certain novel steps and combination of steps in the art of anchorage, and also comprises certain novel constructions combinations and arrangements of parts as subsequently specified and claimed.
  • Figure 1 is, a view in side elevation of an anchorage device especially Well adapted for the practicing of the improved art, and embodying the features of the structural part of the present invention, the structure being shown in engagement with work, and the work being seen in vertical section, the parts being shown on a magniiied scale beyond that of the average commercial device.
  • Figure 2 is a horizontal section taken on the plane indicated by lines 2-2 of Figure l, and
  • Figure 3 is a view similar to Figure 1 of the parts with the anchorage device only partway through the work, the upper portion of the anchorage device being omitted.
  • Figure 4 is a sectional view through the work after the anchorage device has been fully seated and subsequently removed.
  • Figure 5 is a. view similar to Figure 1 dfn slightly modied embodiment, the work being omitted and fragments of the anchorage device being broken away.
  • 1 indicates the body of an anchorage device which is preferably cylindrical and provided at its entering end with a smooth or pilot portion 2 of greater diameter than the diameter of the main portion of the body, the body terminating in a point or entering. cone 3.
  • the body 1 is preferably provided with an appropriate head 4, such as that of the ordinary screw, having the kerf 5 for receiving a rotating instrument.
  • the body 1 is provided with a ribl made up of a section 6 and a section 7, each of said sections being preferably of a length approximately equal to the thickness or depth of the work 8, or at least equal to the distance throughout which the anchorage device is to engage the work when in its seated position.
  • the 'rib making up the sections 6 and 7 in the embodiment shown in Figure 1 is arranged on a thread spiral corresponding with that of an ordinary wood screw thread and extends from the pilot 2 to the head 4.
  • the rib is hardened in the sense in which the term hardened is employed in the metallurgical art to distinguish from soft metals, which is to say that the thread or rib making up the sections 6 and 7 is hardened suilciently for entering metal, such as soft iron or soft steel, substantially without injury to the thread.
  • the method of hardening the thread or rib making up the sections 6 and 'l is susceptible of a wide range of variation, but for ordinary commercial purposes the hardened condition is preferably attained by subjecting the whole anchorage device to a case-hardening process, such as the well known cyanide process.
  • a case-hardening process such as the well known cyanide process.
  • the hardening of the other parts ⁇ of the 'structure beside the thread is an incident to such process, and While adding little, if any, value to the completed structure in no sense detracts therefrom and aiords an inexpensive means of producing a hardened thread.
  • the sections 6 and 7 are alined, and, in fact, continuous of each other, the thread or rib of section 6 tapering into the thread or rib of section 7, it being apparent from Figure 1 that the thread or rib of section 'l outstands from the body 1 a less distance than the thread or rib making up section 6.
  • the rib for section 'l is smaller and of less dimensions in every direction except length and spacing between helices than is the thread or rib making up section 6.
  • the thread or rib making ⁇ up sections 6 and 7 is a continuous spiral of uniform and substantially low pitch.
  • the dimensions of the rib or thread making up section '7 are the same, that is, uniform, throughout the length of the section, and similarly the thread or rib making up section 6 has its dimensions the same, that is, uniform, throughout the length of the section, and variation in dimensions occurs only at the point of junction of the '110 only sufliciently larger to allow passage of the4 pilot therethrough with a snug t.
  • lli'he anchorage device is applied by the introduction of the point 3 into the opening 9, the taper of the point facilitating and assisting in centering the anchorage device and bringing the pilot 2 intoaxial alinement with the opening 9.
  • the pilot is then passed into the opening with a longitudi- :nal thrust of the anchorage device until the entering end of the rib or thread of section 'lI engages the upper part of the work 8.
  • the anchorage device is then revolved while preferably subjected to stress in the direction of its length toward the work 8, as, for instance, by having ⁇ the kerf 5 engaged by a screw-driver and the anchorage device revolved thereby.
  • Thethread of section '7 begins to enter the metal of work 8, severing the same and forming a passageway therein similar to internal threads, and the revolving operation continues until the pilot 2 has passed through the work 8. course, that as soon as the thread has sufficiently entered the work, the longitudinal stress may be no longer required.
  • the anchorage device can, of course, after reaching the final seated position with the section 6 extending throughout the thickness of the work 8 be backed olf by a reverse or withdrawing rotation, but such rotation will be highly resisted by the friction effected by the flowed metal at 10, 10.
  • Figure 5 is illustrated a very slight modified l embodiment in which the body 21 is provided with a low-pitched thread or rib forming sections 26 and 27,.
  • the rib for the section 26 being of greater dimensions than the rib for section 2'7 land tapering into the latter after the manner of the taper of the rib or thread making up section 6 into the rib or thread making up section 7.
  • the body 21 is itself tapered at the place of tapering of the thread, producing a reduced portion 22 which causes the thread of section 27 to have approximately the same relation to that part of the body which it engages as has the thread of section 26 to its part of body 21.
  • pilot willbe of a diameter bearing that relation to the body 21, or larger diameter of the body of the anchorage device, which pilot 2 bears to body 1.
  • the operation of the structure seen in Figure 5 is the same as that described with'respect to the structure seen in Figure 1, except that in instances where metal may be caused to ow by the rib or thread 27 far enough to underhang the larger portion of the body, such flowed material is compressed by the body on reaching and passing the point of such flowed material, and an increased frictional engagement is thus effected.
  • an acceptable embodiment will have an overall longitudinal measurement of one inch; a diameter for the pilot 2 of one hundred thirty-two thousandths of an inch; and the body 1 one hundred eighteen thousandths of an inch.
  • circle capable'of contacting at diametrically opposite points with projected diametrically opposite points of the edge of a helix of rib or thread 7, that is, such a circle as seen in Figure 2 representing said helix, in a structure of the size just mentioned should measure in diameter one hundred forty-six thousandths of an inch, and a corresponding circle for a helix of rib or thread 6 should' have a diameter of one hundred seventy-four thousandths of an inch.
  • an anchorage device having an overall length of one inch should have a pilot one hundred thirty-two thousandths of an inch in diameter, a body 1 one hundred eighteen thousandths of an inch in diameten' a thread or rib.'7 outstanding from the body at any one point a maximum of fourteen thousandthsof an inch, and a thread or rib 6.out-

Description

Patented Nov. 6, 1934 1,980,093 ANCHORAGE DEVICE Heyman Rosenberg, New York, N. Y.
Original application January 16, 1925, Serial No. 2,874. Divided and this application May 13,
1925, Serial No. 30,008
2 Claims.
This invention relates to improvements in the art of anchorage and in anchorage devices of the type especially adapted for use in metal and other hard substances and materials susceptible of be- 5 ing flowed while cold. This application is a division of my parent application Serial No. 2,874, led January 16, 1925.
An object in view is the causing of the flow of the material of work by successive steps into ay l compact, high-frictional relation to the engaging parts of an anchorage device for insuring rm anchorage incident to the application of relatively small stresses.
A further object in view is the effecting of an l anchorage with a minimum amount of stress and `with maximum eiiiciency.
With these and further objects in view as will in part hereinafter become apparent and in part be stated, the invention comprises certain novel steps and combination of steps in the art of anchorage, and also comprises certain novel constructions combinations and arrangements of parts as subsequently specified and claimed.
In the accompanying drawing,-
Figure 1 is, a view in side elevation of an anchorage device especially Well adapted for the practicing of the improved art, and embodying the features of the structural part of the present invention, the structure being shown in engagement with work, and the work being seen in vertical section, the parts being shown on a magniiied scale beyond that of the average commercial device. Figure 2 is a horizontal section taken on the plane indicated by lines 2-2 of Figure l, and
looking along the screw toward the head.
Figure 3 is a view similar to Figure 1 of the parts with the anchorage device only partway through the work, the upper portion of the anchorage device being omitted.
Figure 4 is a sectional view through the work after the anchorage device has been fully seated and subsequently removed.
Figure 5 is a. view similar to Figure 1 dfn slightly modied embodiment, the work being omitted and fragments of the anchorage device being broken away. y
Referring to the drawing by numerals, 1 indicates the body of an anchorage device which is preferably cylindrical and provided at its entering end with a smooth or pilot portion 2 of greater diameter than the diameter of the main portion of the body, the body terminating in a point or entering. cone 3. At the opposite end, the body 1 is preferably provided with an appropriate head 4, such as that of the ordinary screw, having the kerf 5 for receiving a rotating instrument. The body 1 is provided with a ribl made up of a section 6 and a section 7, each of said sections being preferably of a length approximately equal to the thickness or depth of the work 8, or at least equal to the distance throughout which the anchorage device is to engage the work when in its seated position. The 'rib making up the sections 6 and 7 in the embodiment shown in Figure 1 is arranged on a thread spiral corresponding with that of an ordinary wood screw thread and extends from the pilot 2 to the head 4. The rib is hardened in the sense in which the term hardened is employed in the metallurgical art to distinguish from soft metals, which is to say that the thread or rib making up the sections 6 and 7 is hardened suilciently for entering metal, such as soft iron or soft steel, substantially without injury to the thread. The method of hardening the thread or rib making up the sections 6 and 'l is susceptible of a wide range of variation, but for ordinary commercial purposes the hardened condition is preferably attained by subjecting the whole anchorage device to a case-hardening process, such as the well known cyanide process. The hardening of the other parts `of the 'structure beside the thread is an incident to such process, and While adding little, if any, value to the completed structure in no sense detracts therefrom and aiords an inexpensive means of producing a hardened thread.
As will be clear from the dotted showing at the intermediate portion of the anchorage device, as seen in Figure 1, the sections 6 and 7 are alined, and, in fact, continuous of each other, the thread or rib of section 6 tapering into the thread or rib of section 7, it being apparent from Figure 1 that the thread or rib of section 'l outstands from the body 1 a less distance than the thread or rib making up section 6. In other words, the rib for section 'l is smaller and of less dimensions in every direction except length and spacing between helices than is the thread or rib making up section 6. ,The thread or rib making `up sections 6 and 7 is a continuous spiral of uniform and substantially low pitch. The dimensions of therib or thread making up section '7 are the same, that is, uniform, throughout the length of the section, and similarly the thread or rib making up section 6 has its dimensions the same, that is, uniform, throughout the length of the section, and variation in dimensions occurs only at the point of junction of the '110 only sufliciently larger to allow passage of the4 pilot therethrough with a snug t. lli'he anchorage device is applied by the introduction of the point 3 into the opening 9, the taper of the point facilitating and assisting in centering the anchorage device and bringing the pilot 2 intoaxial alinement with the opening 9. The pilot is then passed into the opening with a longitudi- :nal thrust of the anchorage device until the entering end of the rib or thread of section 'lI engages the upper part of the work 8. The anchorage device is then revolved while preferably subjected to stress in the direction of its length toward the work 8, as, for instance, by having `the kerf 5 engaged by a screw-driver and the anchorage device revolved thereby. Thethread of section '7 begins to enter the metal of work 8, severing the same and forming a passageway therein similar to internal threads, and the revolving operation continues until the pilot 2 has passed through the work 8. course, that as soon as the thread has sufficiently entered the work, the longitudinal stress may be no longer required. It will be observed from the showing in Figures 1 and 3 that during the Asteps of the operation thus far described, the ithread or rib making up section 7 will have caused the metal of work 8 to flow to a position overhanging the annular shoulder at the upper end of the pilot 2 resulting from the fact that the pilot 2 is larger in diameter than that of the body 1. The owing of the metal of work 8 thus effected causes it to enter the valleys bee tween the helices of the rib and to frictionally engage the faces of the rib. Nevertheless, since .the rib or thread making up 'section 7 is of rela- ,tively shallow depth, the twisting stress neces sary for forcing the anchorage device into the .Work 8 is comparatively small.
When the anchorage device has reached the position with the pilot 2 extending beyond the work 8, the thread or rib will have reached that point at the upper surface of the work 8 where it tapers from the enlarged rib of section 6. However, as the internal thread produced by section '7 is completed before section 6 begins to enter, continued rotation of the anchorage device will cause section 6 to enter the Work with very little, if any, additional force or torsional stress required than that required for the introduction of section 7. Continued revolution of the anchorage device causes the thread or rib of section 6 to enter the material 8 and to proportionally increase the internal threads being formed therein until they assume the proportions indicated in Figure 4, the metal entered by the larger rib or thread being caused to ilow thereby to a greater extent toward the body 1 than was effected by the action of the smaller section of thread or rib until the material of the work.8 extends in toward the body 1, as indicated at 10, 10, in Figure 4, a distance occupying substantially all of the space represented by the It is obvious, of,`
difference in diameter of the opening 9 and the body 1, whereby the material of work 8 is caused to practically ll the valleys between the helices of section 6 and to proportionally increase frictional resistance to removal of the anchorage device. The anchorage device can, of course, after reaching the final seated position with the section 6 extending throughout the thickness of the work 8 be backed olf by a reverse or withdrawing rotation, but such rotation will be highly resisted by the friction effected by the flowed metal at 10, 10.
It will thus be seen that -in a very simple manner the anchorage is caused to assume a relation to the work without the exercise of any great amount of stress which it will maintain under all ordinary operating conditions.
In Figure 5 is illustrated a very slight modified l embodiment in which the body 21 is provided with a low-pitched thread or rib forming sections 26 and 27,.the rib for the section 26 being of greater dimensions than the rib for section 2'7 land tapering into the latter after the manner of the taper of the rib or thread making up section 6 into the rib or thread making up section 7. But, in the embodiment seen in Figureg, the body 21 is itself tapered at the place of tapering of the thread, producing a reduced portion 22 which causes the thread of section 27 to have approximately the same relation to that part of the body which it engages as has the thread of section 26 to its part of body 21. Where ay pilot is employed, the pilot willbe of a diameter bearing that relation to the body 21, or larger diameter of the body of the anchorage device, which pilot 2 bears to body 1. The operation of the structure seen in Figure 5 is the same as that described with'respect to the structure seen in Figure 1, except that in instances where metal may be caused to ow by the rib or thread 27 far enough to underhang the larger portion of the body, such flowed material is compressed by the body on reaching and passing the point of such flowed material, and an increased frictional engagement is thus effected.
Because of the difficulty of accurately illus trating so small a structure as the average commercial anchorage device, a magnified scalehas been utilized throughout the drawings, and yet, for the purpose of enabling those skilled in the art to understand that the proportions have been as nearly as practically maintained in these mag nied showings, it may be stated that an acceptable embodiment will have an overall longitudinal measurement of one inch; a diameter for the pilot 2 of one hundred thirty-two thousandths of an inch; and the body 1 one hundred eighteen thousandths of an inch. A. circle capable'of contacting at diametrically opposite points with projected diametrically opposite points of the edge of a helix of rib or thread 7, that is, such a circle as seen in Figure 2 representing said helix, in a structure of the size just mentioned should measure in diameter one hundred forty-six thousandths of an inch, and a corresponding circle for a helix of rib or thread 6 should' have a diameter of one hundred seventy-four thousandths of an inch. In other words, an anchorage device having an overall length of one inch should have a pilot one hundred thirty-two thousandths of an inch in diameter, a body 1 one hundred eighteen thousandths of an inch in diameten' a thread or rib.'7 outstanding from the body at any one point a maximum of fourteen thousandthsof an inch, and a thread or rib 6.out-
standing from the body at one point a maximum of twenty-eight thousandths of an inch.
Obviously, a wide range of variation from these measurements is clearly within the spirit, intent and scope of the invention, but the foregoing will give definite data for indicating the preferable lrelative proportions, and it should be noted that while only two sections, 7 and 6, have been illustrated, a number of such sections successively tapering into each other may be utilized for increasing the diameter or diametrical space occupied by the final engaging rib or ribs without substantially increasing the difficulty or stress necessary for locating the anchorage device in its final position.
It should also be apparent that in the practicing of the art embodying the present invention the material of the work is severed in a spiral path and caused to flow in an encircling mass toward the body of the anchorage device, and then, While the anchorage device continues to move, the flow is interrupted; and subsequently the encircling mass is further flowed toward the bOdy.
body and a single continuous thread of constant pitch outstanding therefrom hardened suii'lciently for entering metal, such as soft iron or soft steel, substantially without injury to the thread, said thread comprising' alined and joined sections of geometrically similar cross-section, each section outstanding from the body a constant distance and being of substantially uniform cross section within its own limits throughout its length, the section adjacent the entering end of the body outstanding a less distance than the HEYMAN RosENBERG.
US30008A 1925-01-16 1925-05-13 Anchorage device Expired - Lifetime US1980093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US30008A US1980093A (en) 1925-01-16 1925-05-13 Anchorage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US287425A 1925-01-16 1925-01-16
US30008A US1980093A (en) 1925-01-16 1925-05-13 Anchorage device

Publications (1)

Publication Number Publication Date
US1980093A true US1980093A (en) 1934-11-06

Family

ID=26670990

Family Applications (1)

Application Number Title Priority Date Filing Date
US30008A Expired - Lifetime US1980093A (en) 1925-01-16 1925-05-13 Anchorage device

Country Status (1)

Country Link
US (1) US1980093A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419555A (en) * 1940-04-19 1947-04-29 Charles D Fator Self-threading and locking screw
US3156152A (en) * 1961-09-08 1964-11-10 Reed & Prince Mfg Company Self-tapping driving screw fastener
US3172170A (en) * 1961-09-18 1965-03-09 D B Frampton & Company Composite wood panel
US3661046A (en) * 1970-11-09 1972-05-09 Illinois Tool Works Combination screw
US3703843A (en) * 1971-01-04 1972-11-28 Msl Ind Inc Fastener with improved thread construction
US3726180A (en) * 1972-07-26 1973-04-10 J Rosan Insert with chip entrapment means
US3861269A (en) * 1971-01-04 1975-01-21 Superior Dry Wall Screw Mfg Co Fastener with improved thread construction
US4845818A (en) * 1986-07-16 1989-07-11 Perry Oliver L Device for changing fuel pump on internal combustion engine
US5061136A (en) * 1990-10-03 1991-10-29 Emhart Inc. Masonry screw anchor
US5120171A (en) * 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5226766A (en) * 1990-11-27 1993-07-13 Stuart Surgical Bone screw with improved threads
US5492442A (en) * 1990-11-27 1996-02-20 National Medical Specialty, Inc. Bone screw with improved threads
WO1998018581A1 (en) * 1996-10-25 1998-05-07 Laue Charles E Method of locking a screw threaded joint
US5863167A (en) * 1995-08-22 1999-01-26 Max Co.,Ltd Drilling screw for fixing gypsum board to thin steel plate
US5871486A (en) * 1993-01-21 1999-02-16 Acumed, Inc. Variable pitch bone screw
US5882162A (en) * 1996-11-29 1999-03-16 Max Co., Ltd. Driving screw
US5964768A (en) * 1993-01-21 1999-10-12 Acumed, Inc. Tapered bone screw with continuously varying pitch
US6030162A (en) * 1998-12-18 2000-02-29 Acumed, Inc. Axial tension screw
US6212750B1 (en) * 1991-08-28 2001-04-10 Gary Jack Reed Method of repairing cracks
US6299615B1 (en) 1993-01-21 2001-10-09 Acumed, Inc. System for fusing joints
US6468277B1 (en) 2000-04-04 2002-10-22 Ethicon, Inc. Orthopedic screw and method
US20030014054A1 (en) * 1993-01-21 2003-01-16 Huebner Randall J. System for fusing joints
US20030144664A1 (en) * 1999-12-24 2003-07-31 Remi Cavagna Pedicle screws with inclined channels to hold support rods
US6666638B2 (en) * 2001-02-15 2003-12-23 Phillips Screw Company Deck screw having multiple threaded sections
EP1382865A1 (en) * 2002-07-16 2004-01-21 Bosch Automotive Systems Corporation Self-tapping screw type fastener and push rod for brake booster using the same
US20040197139A1 (en) * 2001-08-06 2004-10-07 Mcgovern Hubert T. Deck screws suitable for use with composite lumber
US20040228705A1 (en) * 2003-05-16 2004-11-18 Abbott-Interfast Corporation. Fasteners for composite material
US20060116686A1 (en) * 2004-11-30 2006-06-01 Stryker Trauma Sa Self-guiding threaded fastener
US7235079B2 (en) 2004-11-18 2007-06-26 Acumed Llc Composite bone fasteners
US20070147973A1 (en) * 2005-12-22 2007-06-28 Cyril Laan Dual threaded screw for composite materials
US20070172333A1 (en) * 2006-01-09 2007-07-26 Tian-Fu Tsau Screw member having two different thread angles formed on a sharp-edged thread
US20080118332A1 (en) * 2006-11-16 2008-05-22 David Lamb Drywall screw
US20090136319A1 (en) * 2007-11-27 2009-05-28 Illinois Tool Works Inc. Threaded screw fastener
US7798755B2 (en) * 2005-04-20 2010-09-21 Erwin Tomm Threaded connector with interlock
USRE42207E1 (en) * 2000-09-19 2011-03-08 Asia Fastening (Us), Inc. Masonry anchor device
US20110137355A1 (en) * 2009-12-08 2011-06-09 Rinner James A Systematic Displacement Bone Screw
US8070786B2 (en) 1993-01-21 2011-12-06 Acumed Llc System for fusing joints
US8419332B2 (en) 2007-10-19 2013-04-16 Atlas Bolt & Screw Company Llc Non-dimpling fastener
US20130218213A1 (en) * 2012-02-22 2013-08-22 Zimmer Spine, Inc. Bone screw including a dual thread closure member
US9161793B2 (en) 1993-01-21 2015-10-20 Acumed Llc Axial tension screw

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419555A (en) * 1940-04-19 1947-04-29 Charles D Fator Self-threading and locking screw
US3156152A (en) * 1961-09-08 1964-11-10 Reed & Prince Mfg Company Self-tapping driving screw fastener
US3172170A (en) * 1961-09-18 1965-03-09 D B Frampton & Company Composite wood panel
US3661046A (en) * 1970-11-09 1972-05-09 Illinois Tool Works Combination screw
US3861269A (en) * 1971-01-04 1975-01-21 Superior Dry Wall Screw Mfg Co Fastener with improved thread construction
US3703843A (en) * 1971-01-04 1972-11-28 Msl Ind Inc Fastener with improved thread construction
US3726180A (en) * 1972-07-26 1973-04-10 J Rosan Insert with chip entrapment means
US4845818A (en) * 1986-07-16 1989-07-11 Perry Oliver L Device for changing fuel pump on internal combustion engine
US5417533A (en) * 1990-07-13 1995-05-23 National Medical Specialty, Inc. Bone screw with improved threads
US5061136A (en) * 1990-10-03 1991-10-29 Emhart Inc. Masonry screw anchor
USRE34969E (en) * 1990-10-03 1995-06-13 Emhart Inc. Masonry screw anchor
US5120171A (en) * 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5226766A (en) * 1990-11-27 1993-07-13 Stuart Surgical Bone screw with improved threads
US5492442A (en) * 1990-11-27 1996-02-20 National Medical Specialty, Inc. Bone screw with improved threads
US6725518B2 (en) 1991-08-28 2004-04-27 Gary Jack Reed Casting repair method
US6212750B1 (en) * 1991-08-28 2001-04-10 Gary Jack Reed Method of repairing cracks
US5964768A (en) * 1993-01-21 1999-10-12 Acumed, Inc. Tapered bone screw with continuously varying pitch
US9161793B2 (en) 1993-01-21 2015-10-20 Acumed Llc Axial tension screw
US5871486A (en) * 1993-01-21 1999-02-16 Acumed, Inc. Variable pitch bone screw
US6299615B1 (en) 1993-01-21 2001-10-09 Acumed, Inc. System for fusing joints
US20030014054A1 (en) * 1993-01-21 2003-01-16 Huebner Randall J. System for fusing joints
US6984235B2 (en) 1993-01-21 2006-01-10 Acumed Llc System for fusing joints
US8070786B2 (en) 1993-01-21 2011-12-06 Acumed Llc System for fusing joints
US5991998A (en) * 1995-08-22 1999-11-30 Max Co., Ltd. Drilling screw and execution method for fixing gypsum board to thin steel plate
US5863167A (en) * 1995-08-22 1999-01-26 Max Co.,Ltd Drilling screw for fixing gypsum board to thin steel plate
WO1998018581A1 (en) * 1996-10-25 1998-05-07 Laue Charles E Method of locking a screw threaded joint
US5882162A (en) * 1996-11-29 1999-03-16 Max Co., Ltd. Driving screw
US6030162A (en) * 1998-12-18 2000-02-29 Acumed, Inc. Axial tension screw
US7303562B2 (en) * 1999-12-24 2007-12-04 Sdgi Holdings, Inc. Pedicle screws with inclined channels to hold support rods
US20030144664A1 (en) * 1999-12-24 2003-07-31 Remi Cavagna Pedicle screws with inclined channels to hold support rods
US7578836B2 (en) 2000-04-04 2009-08-25 Depuy Mitek Orthopedic screw and method
US20060122612A1 (en) * 2000-04-04 2006-06-08 Justin Daniel F Orthopedic screw and method
US6527777B2 (en) 2000-04-04 2003-03-04 Ethicon, Inc. Device for repairing a soft-tissue tear and method
US6468277B1 (en) 2000-04-04 2002-10-22 Ethicon, Inc. Orthopedic screw and method
US6989014B2 (en) 2000-04-04 2006-01-24 Ethicon, Inc. Orthopedic screw and method
USRE42207E1 (en) * 2000-09-19 2011-03-08 Asia Fastening (Us), Inc. Masonry anchor device
US20050265806A1 (en) * 2001-02-15 2005-12-01 Arnold Craven Screw
US6941635B2 (en) 2001-02-15 2005-09-13 Phillips Screw Company Screw for remnant-producing alternative lumber material
US20100196122A1 (en) * 2001-02-15 2010-08-05 Arnold Craven Screw
US20040151559A1 (en) * 2001-02-15 2004-08-05 Arnold Craven Screw
US7695228B2 (en) 2001-02-15 2010-04-13 Phillips Fastener, Llc Screw
US6666638B2 (en) * 2001-02-15 2003-12-23 Phillips Screw Company Deck screw having multiple threaded sections
US20040197139A1 (en) * 2001-08-06 2004-10-07 Mcgovern Hubert T. Deck screws suitable for use with composite lumber
US7189045B2 (en) 2001-08-06 2007-03-13 Omg, Inc. Deck screws suitable for use with composite lumber
US20070147974A1 (en) * 2001-08-06 2007-06-28 Mcgovern Hubert T Deck screw and installation method for composite lumber
US7367768B2 (en) 2001-08-06 2008-05-06 Omg, Inc. Deck screw and installation method for composite lumber
EP1382865A1 (en) * 2002-07-16 2004-01-21 Bosch Automotive Systems Corporation Self-tapping screw type fastener and push rod for brake booster using the same
US20040013493A1 (en) * 2002-07-16 2004-01-22 Bosch Automative System Corporation Self-tapping screw type fastener and push rod for brake booster using the same
US8430618B2 (en) 2003-05-16 2013-04-30 Abbott-Interfast Corporation Fasteners for composite material
US20040228705A1 (en) * 2003-05-16 2004-11-18 Abbott-Interfast Corporation. Fasteners for composite material
US7235079B2 (en) 2004-11-18 2007-06-26 Acumed Llc Composite bone fasteners
US7799062B2 (en) * 2004-11-30 2010-09-21 Stryker Trauma S.A. Self-guiding threaded fastener
US20060116686A1 (en) * 2004-11-30 2006-06-01 Stryker Trauma Sa Self-guiding threaded fastener
US8696281B2 (en) 2005-04-20 2014-04-15 Erwin Tomm Threaded connector with interlock
US7798755B2 (en) * 2005-04-20 2010-09-21 Erwin Tomm Threaded connector with interlock
US20110008129A1 (en) * 2005-04-20 2011-01-13 Erwin Tomm Threaded connector with interlock
US7255523B2 (en) 2005-12-22 2007-08-14 Prime Source Building Products, Inc. Dual threaded screw for composite materials
US20070147973A1 (en) * 2005-12-22 2007-06-28 Cyril Laan Dual threaded screw for composite materials
US20070172333A1 (en) * 2006-01-09 2007-07-26 Tian-Fu Tsau Screw member having two different thread angles formed on a sharp-edged thread
US20080118332A1 (en) * 2006-11-16 2008-05-22 David Lamb Drywall screw
US8419332B2 (en) 2007-10-19 2013-04-16 Atlas Bolt & Screw Company Llc Non-dimpling fastener
US20090136319A1 (en) * 2007-11-27 2009-05-28 Illinois Tool Works Inc. Threaded screw fastener
US20110137355A1 (en) * 2009-12-08 2011-06-09 Rinner James A Systematic Displacement Bone Screw
US8419779B2 (en) 2009-12-08 2013-04-16 James A. Rinner Systematic displacement bone screw
US20130218213A1 (en) * 2012-02-22 2013-08-22 Zimmer Spine, Inc. Bone screw including a dual thread closure member
US20170119445A1 (en) * 2012-02-22 2017-05-04 Zimmer Spine, Inc. Bone screw including a dual thread closure member

Similar Documents

Publication Publication Date Title
US1980093A (en) Anchorage device
US2419555A (en) Self-threading and locking screw
US3233500A (en) Screw with main shank threads of a given pitch merging with threads of unlike pitch on a tapered bottom end of the screw shank
US3429171A (en) Radius spin drill
US1827615A (en) Fastener
US3492908A (en) Thread swaging screw or bolt
US2056309A (en) Clamping arrangement on metallic connecting elements
US3875780A (en) Method of making a thread forming screw
US3045523A (en) Drill point screw having interrupted leading end threads formed by a flat chordal surface
US3943748A (en) Coldwork system with delay split sleeve
CN101460749A (en) Adjustable mechanism
US2562516A (en) Threaded fastener
JPS60116913A (en) Asymmetric shape screw for molding screw thread and its production
US3295572A (en) Screw and screw driver coupling
US65651A (en) davies
US1912517A (en) Means for threading nut blanks
US2242758A (en) Lag screw
US2321379A (en) Combined screw and rivet
US2347360A (en) Self-tapping screw
US3194107A (en) Internally threaded insert with rotation preventing means
US4539832A (en) Hole sizing tool
US4182218A (en) Expansion core anchor
US3949641A (en) Self-drilling screw
US2029514A (en) Thread cutting tool
US2095153A (en) Fastener