Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS1841968 A
Publication typeGrant
Publication date19 Jan 1932
Filing date16 Aug 1924
Priority date16 Aug 1924
Publication numberUS 1841968 A, US 1841968A, US-A-1841968, US1841968 A, US1841968A
InventorsLowry Nelson H
Original AssigneeWilliam J Cameron
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radio-surgical apparatus
US 1841968 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jan. 19, 1932.

LOWRY RADIO SURGICAL APPARATUS Filed Aug. 16 1924 4 Sheets-sheet 1 Jan. 19, 1932. N. H. LowRY 1,841,968

RADIO SURGI CAL APPARATUS Filed Aug. 16, 1924 4 sheets-sheet 2 Jan. 19, 1932. y N, H LQWRY 1,841,968

RADIO SURGICAL APPARATUS Filed Aug. 16 1924 4 Sheets-Sheet 3 Jan. 19, 1932. N. H. LowRY 1,841,968 I RADIO SURGICAL APPARATUS Filed Aug. 1e .Y 1924 4 sheets-sheet 4 E@ fr? /NVENTOR Wav mi; Wafffawnm/ Je, A TTORNE YS Patented Jan. 19, 1932 atea .PTENT if;

NELSON H. LOWBYpOF CHICAGO, JILLINOIS, ASSIGNOR T0 WILLIAM J. CAMERON, 0F 'f1 CAGO, ILLINOIS BrADO-SUICAL APPARATUS Application led August 16, 1924. Serial No. 732,532.

rl`his invention relates to improvements in electro-surgical apparatus which operates by cutting the flesh or other tissue and which may be employed for removing abnormal tissues, for dissecting normal tissues, and for various other surgical purposes. The cutting of the flesh or tissue is eected without carbonization of the tissue by a high frequency electrical discharge such as that which is employed in radio sound transmission. The body of the patient forms one terminal or electrode of a secondary circuit and the other terminal or electrode of this circuit serves as the operating instrument which is manipulated by the surgeon duringthe process of performino` the operation or dissection. This secondary circuit in which these terminals or electrodes are connected,

is inductively related by an adjustable highfrequency oscillation transformer with the.

circuit in which the high frequency oscillations are produced and the frequency of thel higher than any frequency which has heretofore been employed in any form of electrosurgical apparatus. Efforts have heretofore been made to use electrical current discharges for dessication surgery and the like but no satisfactor apparatus has heretofore been produced or surgical dissection and opera'- tions such, for example, as the removal of cancers, tumors, and Y other abnormal growths.

The apparatus of the present invention has vnumerous advantages and distinguishing features. The electrode itself is not sharp and does not itself sever the flesh, since the cutting is effected by an electric discharge of high frequency, but the electrode `may be conveniently manipulated by the surgeon to move the ath of the electric discharge and thereby e ect a rapid separation of the tissue. Although the electrode is not hot, the electrical discharge operates to seal the tissue like a hot iron, thereb preventing the spread of malignant cells uring operations for the removal of cancer growths, for example. The electrical effect also serves to kill cancer cells in the immediate 'vicinity ofthe travel of the electrode. Operations performed by means of this apparatus are quickly, even more quickly than wounds4 which are made by ordinary surgical instruments. The cut surface is not burnedk by the apparatus of this invention, but only slightly dehydrated and this brings about a more rapid healing of the tissues than would otherwise be possible. The apparatus makes possible a greater speed of operation with less fatigue to the patient and also with less fatigue to the surgeon because of: the reduced time of the operation and the fact that no pressure is required on the operating instrument. Another important advantage of the invention is that the dehydration prevents bleeding except from large blood vessels which may readily be held by clamps, so that there is little blood loss and the strength of the patient is conserved, while at the same time the operating field is clear due to the fact that the tissues to be operated on are not saturated with blood. The absence of blood in the field of operation reduces the liabilityof infection and no infectioniis ossible from the o` erating instrument itsel because the woun s are automatically sterilized by the high frequency oscillations as they are being cut.

In addition to the use of the apparatus for the removal of cancerous growths, tumors, ulcers, and malignant lesions of all kinds, the apparatus of the present invention may be employed for all ordinary cautery and fulguration work and with improved results due to the fact that there is less scarring and no burning of the tissue.

Various other objects yand advantages of the invention will appear more clearly from the following specification taken with the accompanying drawings in which one embodiment is illustrated. In the' drawings Figure 1 is a diagrammatic view showing the circuit connections of the apparatus and the princisus pal parts thereof;,Fig. 2 shows an enlarged elevation of the operating handle and elec- Fig. 3 is an enlarged section through the movable operating electrode, taken on the line 3-3 of Fig. 2; Fig. 4 shows a top plan view of the cabinet in which the apparatus is mounted with the cover thereof removed; Fig. 5 shows a partial front elevation of the cabinet and apparatus illustrated in Fig. 4; Fig. 6 shows a front elevation of the apparatus with the front of the cabinet and apparatus carried thereby removed; Fig. 7 shows a transverse section taken on the line 7-7 of Fig. 8 Fig. 8 shows a horizontal section taken on the line 8 8 of Fig. 6; Fig. 9 -shows a vertical section through the high frequency oscillation transformer, and Fig. 10 shows a top plan view of the structure illustrated in Fig. 9 with parts thereof broken awa-y.

In Figure 1 of the drawings there is shown a diagrammatic representation of the electrical circuit connections which are preferably employed inthe radio-surgical apparatus of the present invention. These circuit connections are in some respects similar to the connections which are employed in one form of apparatus for radio sound transmission of the continuous wave type but differ therefrom in certain important features. As shown in the drawings, the apparatus comprises a low frequency transformer 20 having a primary winding 2l, a high voltage secondary winding 22 and a low voltage secondary winding 23. The terminals of the primary winding 21 are connected by conductors 24 to a suitable source of supply 25, which may preferably be a 110 volt, 60 cycle7 alternating current system. A switch 2G is connected in the primary circuitfor controlling the operation of the apparatus. The apparatus comprises two vacuum tubes 27, each comprising a plate 28, a filament 29, and a grid 30, these parts being similar in construction to those commonly employed in radio sound transmission. The high voltage transformer winding 22 has its terminals connected by conductors 31 to the plates 28 of the vacuum tubes, and the middle point of the secondary winding 22 is connected by a conductor 32to one terminal of the primary winding 33 of a high frequency transformer 34, of the variable type as indicated by the inclined arrow 34, which has a secondary winding 35. In order to maintain an exact electrical balance between the divisions of the secondary winding 22 of the transformer 20, condensers 36 are connected between the conductors 31 and the conductor 32 which leads from the middle point of the winding 22, thereby effecting the impression of equal voltages upon the two plates 28 of the vacuum tubes. The low voltage winding 23 of the transformer 20 is connected to the filaments 29 of the vacuum tubes which are arranged in parallel electric circuits. A conductor 38 leads vfrom one terminal of the winding 23 and is connected to branch conductors 38a which lead to one terminal of each of the filaments 29. A conductor 39 leads from the other terminal of the winding 23 to a rheostat 40 and a conductor 41 leads from the other terminal'of the rheostat to the other terminals of each of the filaments `29 so that by varying the adjustment of the rheostat 40 the voltage which is impressed on each of the filaments may be regulated as desired. This voltage is indicated by a voltmeter 44. The middle point of the secondary winding 23 of the transformer 2O has a conductor 42 leading therefrom to the terminal of the primary winding 33 of the high frcquency transformer 3'4 opposite that to which the conductor 32 is connected, it being apparent therefore that the terminals of the primary winding 33 are connected to the middle points of each of the secondary windings of the transformer 20.

The grids 30 of the vacuumtubes 27 are connected by conductors 45 to a common conductor 46 which leads through a non-inductive resistance 47, having a condenser 48 connected in parallel therewith, to another conductor 49 which is connected to one terminal of a variometer 50 comprising two inductive windings 51 and 52 which are connected in series and which are capable of relative angular movement in order to vary their inductive effect. The other terminal of the variometer is connected by a conductor 54 to the conductor 32, previously referred to, which leads to one terminal of the transformer winding 33. The variable transformer 34 may be located in inductive relation to the variometer 50 or oscillations may be set up in the transformer due to the usual feed-back relation commonly existing in radio circuits.

The switch 26 in the supply circuit of the.

transformer 20 controls the operation of the apparatus, andfhaving closed this switch and impressed a suitable voltage on the primary winding 21 of the transformer 20, secondary voltages are induced in the windings 22 and 23 and are impressed thereby on the plates 28 and filaments 29 of the vacuum tubes. The voltage on the filaments is indicated by the voltmeter 44, and is regulated by the rheostat 40 until it reaches the value for which the apparatus is designed, preferably about 10 volts. The voltage which is impressed upon the grids 30 of the vacuum tubes and the inductance of the grid circuit are varied by the regulation of the variometer 50 until the whole circuit is brought into oscillation by reason of the oscillatory discharges which take place between the plates 28 and the filaments 29 through the grids 30 which, in the actual construction of the apparatus, are located between them. These undamped high frequency oscillations, are transmitted through the variometer to the primary winding 33 of the oscillation or high frequency transformer 34 with the result that high frequency oscillations are induced in the seconastuces dary winding 35 of this transformer. The wave length of the oscillations generated by the apparatus may preferably be vapproximately eighty metersor less with a corresponding frequency of about three thousand seven hundred and fifty kilocycles per second. @ne terminal of the secondary winding 35 of the oscillation transformer is connected. by a conductor 55,'leading through a series condenser 56.to a plate 57 constitutinglan indifferent electrode adapted to contact with the body of the patient yconstituting the subject to be operated on. A conductor 58 leads from the other terminal of the secondary winding 35 to the movable operating electrode 60 which, upon being brought in proximity to the body of the patient, represented at 61, completes the secondary circuit of the transformer 34, the high frequency discharge between the terminal of the operating electrode 60 and the body of the patient operating to sever the flesh or tissue so that a cut is produced substantially like that made by a sharp knife. A neon tube 62 is connected to the conductor 58, as shown in Fig. l, to act as an indicator, the 'character of the dischargewithin the tube indicating the existence of a sufficiently active high frequency discharge to permit the use of the apparatus for operating purposes. The operating electrode 60, embodied in the apparatus described above, is constructed as shown more particularly in Figs. 2 and 3. v. It comprises a tubular handle 65 of insulating material having mounted therein a metallic member 66 which terminates in a more or less sharp metallic terminal or electrode proper 67 which is only slightly exposed at the end of the insulating handle so that a point discharge is insured. The

metallic member 66 is curved longitudinally and somewhat elliptical in cross-section, to facilitate its use in small openings. The end of the insulating handle 65 adjacent the terminal 67 is tapered as shown at 65a in order to permit the more ready insertion Aof the in strument" into relatively inaccessible places and at the other end of this operating instrument the metallic conductor 6.6 is connected by a sleeve 68 with the extremity of they conductor 58 leading from the oscillation transformer 34. A11 insulating sleeve or ferrule 69 surrounds the conducting sleeve 68 so that the hand of the surgeon is fully protected by insulating material. In using `the operating electrode 60 on the body of the patient, the point or extremity of the terminal 67 is directed toward the surface to be cut so that the electrical discharge takes place from the point, as distinguished from'the surface or curved sid-e of the terminal. When the extremity of the terminal 67 is brought into proximity with the surface of the flesh or tissue of the patient, a cutting of the iesh or tissue begins immediately due to the high frequency .electrical discharge .which takes place j and this cutting is effected without actual `contact of the terminal 67 with the patient.

ditions for operating purposes being indicated by the character of the discharge in the neon tube. rlhe variable transformer may preferably be constructed as shown in` Fig. 9, where it is shown as comprising an outer stationary sleeve having wound thereon the primary winding 33, and a relatively movable sleeve 76 having wound thereon the secondary winding 35. rlhe windings are arranged on the two sleeves so that they are of the same length longitudinally of the sleeves and the inductive elect is varied by regulating the position of the secondary winding within the primary winding. This is accomplished by means of an adjustable threaded member 77, the threads of which are engaged by prongs 78 formed on a bracket 79 which is secured to the movable sleeve 76. lWhen the adjusting member 77 is rotated, the engagement of the prongs 78 with the threads willeect a corresponding movement of the secondary windingin one direction or the other. The rotation of the adjusting member 77 is effected by means of an insulating cap or handle 80 which is secured to the reduced stem 81 of the adjusting member by 'i porting member 84 having mounted therein a bushing 85 Yin which the part 8l rotates. The roper adjustment of the transformer may e determined by trial of the operating electrode or by observing the neon tube which preferably shows a substantially white light when the proper adjustment of the apparatus is attained. l

The various parts of the apparatus which are sho'wn connectedin the circuit of Fig. l are housed within a box or cabinet having the form illustrated particularly in Figs. 6

4and 7. This cabinet is provided with a cover 91 which is hinged at 92 so that it swings upwardly and toward the right as viewed in Fig. 7 in order to reveal certain parts of the apparatus which must be inspected by the surgeon during the operation of the apparatus. The cover is normally held in closed position by means of a spring latch member 93 which is secured on the inside of the cover and which has a hooked extremity 93a adapted to engage alug k94 secured to the boxor cabinet. The latch mem-- ber 93 is releasedfrom the lug 94 by means of a push-button 95. The top of the box or cabinet is closed beneath the cover by means of the insulating supporting plate 84, previously referredto, and by means of a me-A tallic plate or casting 96 which 1s secured t0 the edges of the box andwhich supports the insulating plate.

The transformer 34 is mounted in the cabinet 90 as shown in Fig. 6 with the outer cylinder 7 5 thereof secured to the insulating plate 84 by means of screws or the like connected to the cross arms 97 which are attached to the upper end of the cylinder as shown in Figs. 8 and l0. The lower end of the transformer 34 is spaced somewhat above the'bottom of the cabinet and the bottom wall has mounted thereon insulating lugs 99 carrying spring contact clips 100 which are connected in the electrical circuit and which are adapted to establish electrical connection with the seondary winding 35 of the transformer through spring vanes 101 which are attached to the cylinder and which have upwardly directed arms within the cylinder terminating in bifurcated parts 102 which are adapted to slide on contact plates 103 which are suitably insulated and connected to the secondary winding so that an electrical connection is made with the secondary winding in all positions of the sleeve 76.

The variometer 50 is located in the cabinet in a position oppositevthat of the transformer 34 and is similarly suspended from the insulating plate 84. The variometer is provided with an operating handle 105 which is located above-the plate 84 so that it is exposed for operation when the cover is lifted upwardly. The casing of the variometer is provided adjacent the lower part thereof with contact terminals 107 which are adapted to be engaged by flexible springs 108 extending upwardly from' an insulating plate 109'located on the insulating lugs 110 secured to the bottom wall of the box or cabinet. In this way an electrical connection is readily made with the terminals of the variometer, it being understood that the springs 108 are connected in the circuit by the conductors heretofore described which are located within the cabinet but are not Vin the grid circuit, is located in an insulating tube 111 mounted on the bottom wall of the casing by means of contact springs 112 which are connected to insulating blocks 113 carried by the bottom wall.

The two vacuum tubes 27'are located in the rear corners of the box and their upper ends project through openings 115 in the plate 96 so that they are exposed when the cover 91 is elevatedfThese vacuum tubes are suitably supported on the bottom wall of the casmg as shown particularly in Fig. 7. u

Between the openings for the vacuum tubes 27, `the plate 96 is provided with an upward projection 116 having a flat face 117 which carries the dial 118 of the voltmeter heretofore referred to. In front of the voltmeter,

the plate 117 is rovided with an opening 119 through whic the neon tube 62 may be observed by the operator, this tube being mounted on a bracket 120 immediately beneath the plate 84, as shown in Fig. 7 The plate 84 also has mounted therein terminal sockets 121 and 122, as shown in Fig. 4, these sockets being located adjacent the front edge of the insulating ,plate 84 and being adapted to receive the terminals of the conductors which lead to the electrode 57 and the movable operating electrode 60, respectively.

Other parts which need to be manipulated by the operator of the apparatus are located conveniently in the front wall of the cabinet, as shown in Fig. 5, these being the devices for regulating the resistance in the filament circuit and the switch for controlling the primary circuit of the transformer 20. As shown in Fig. 8, the end wall of the cabinet is provided with a socket 125 through which a connection can be made with the ordinary 110 volt, 60 cycle, alternating current lighting circuit by which the primary of the transformer 20 is supplied. The connections from the socket 125 are controlled by means of the switch 26 which is operated by a shaft extending through the front wall of the cabinet and controlled by an operating handle 126. This handle has an arrow 127 .thereon which points toward the various positions of the switch which are indicated by the words On and Off mounted on a dial plate 128 located around the handle 126. At the other side of the front wall, there is provided a handle 130 for operating the rheostat 40 by which the voltage on the filaments of the vacuum tubes is regulated. The handle 130 is similarly provided with an arrow 131 pointing toward a dial plate 132 which is mounted around the handle and which markedthereon an arrow 133 to indicate the direction in which the handle should be turned to increase the volt age, this voltage being determined by observation of the voltmeter, as heretofore indicated.` The rheostat 40 is mounted immediately behind the front wall of the cabinet, as shown in F ig. 7, sot-hat the operating handle 130 can be directly connected thereto.

The transformer 20, which is relatively heavy as compared with the other parts of the apparatus, is Vmounted between the vacuum tubes 27 and between the positions occupied by the transformer 34 and the variometer 50, as shown in Fig. 7. The frame of the transformer 20 is secured to the rear wall of the easing by means of screws or other fastening devices 135 which also serve as fastening means forsecuring in place a handle 136 by which the entire apparatus can be carried from one place to another. In'this way the heavy part of the apparatus has a direct connection with the supporting handle. The condensers 36 are mounted above the casing of the transformer and the other condensers 48 65 circuit.

and 56 are loca'ted in proximity to the front Wall of the casing, as 'shown in Fig. 8, so that all of the principal parts of the apparatus are contained within the cabinet. All of the 5 Wiring connections, except those leading for the sake of clearness these conductors have 10 not been shown in the drawings of Figs. 4 to l0 inclusive. In order that the heat generated by the apparatus may be dissipated and the apparatus maintained in a sufficiently cool condition during its operation, the cabi- 15 net 90 is provided with a plurality of ventilating openings which are covered by perforated vcaps 140 having. openings therethrough of suliicient size to permit a thorough ventilation of the interior of the cabinet. The parts of the apparatus of the present invention may be constructed according to various designs and the resistances, inductances, and capacities may have various values and relative values. In one form of apparatus which has heretofore been successfully operated for surgical purposesv of the type hereinbefore referred to, a 110 volt, 60

, cycle alternating current was impressed on the primary of the transformer 20 and the secondaryv windings of the transformer were designed to give 2000 volts across the secondary winding 22, this voltage being equally divided between the two halves of the windin on opposite sides of the conductor 32, while the secondary winding 23 was designed to give a pressure of 10 volts, subject to regulation by the rheostat 40. The condensers 36 had a capacity of .002 microfarads each and the condensers 48 had a capacity of .0003 microfarads, while the resistance 47 in the grid circuit had a resistance of 5000 ohms. In the apparatus referred to, the high frequency oscillation transformer 34 was designed so that the primary winding 33 bore the relation to the secondary winding 35 of 99 to 49 and the condenser 56 employed in the work circuit had a capacity of .002 microfarad. With these proportions, the apparatus operates to cut the flesh or tissue readily without burning.

It will beapparentthat the apparatus not only has the advantages hereinbefore referred to, as well as many others. but that it is compact andmav be used and moved about conveniently. In assembling the apparatus in the cabinet the various devices carried by the c plates 84 and 96 are first assembled thereon and then upon a plying the plates tothe cabinet, the transformer 34 and the variometer 60 50 automatically becori electrically connected to the spring conta vanes carried`4 by the casing. In the use ofthe device, it may be moved .from place to place and, in general, it may be operated from the usual lighting Although one form of apparatus has been shown and described by way of illustration, it will be understood that it may be embodied in .various other forms without departing from the scope of the appended claims.

I claim:

1. In electro-surgical cutting apparatus, an electrical circuit, a vacuum tube device connected in said circuit, said device comprising a plate and a filament and a grid, a source of electric current, means connected to said source for impressing voltages on said plate, said filament, and said grid, said means comprising a plurality of branch circuits, means for varying the voltage impressed on said lament, a variable inductance in the circuit of said grid, a transformer in which high frequency oscillations are produced by the l,operationof said vacuum tube device, means for connecting one terminal of said transformer to a surgical patient, means for connecting another terminal of said transformer to a movable operating electrode, and means for regulating the inductive effect of said transformer.

2. In electro-surgical apparatus, asource of oscillating current, means for connecting one terminal of said source to the surgical subject, a movable electrode connected tothe rounding said electrode and leaving only the extreme tip portion thereof exposedn 3. In electro-surgical apparatus, asource of oscillating current, means for connecting one terminal of said source-to the surgical subject, a movable electrode connected to the other terminal of said source, and aninsulating member surrounding said electrode, and leaving the extreme end portion thereof exvlos posed, said insulating member and said electrode adjacent said exposed portion of-said electrode being curved longitudinally, said exposed portion terminating in a point.

.4. In electro-surgical apparatus, the source of oscillating current, means for connecting one terminal of said source to the surgical subject, a movable electrode connected to the other terminal of said source, and an insulating member surrounding said electrode and leaving the end portion thereof exposed, said exposed extremity of said electrode being elliptical in. cross section.

NELSON H. LowaY.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2835254 *17 Dec 195320 May 1958Coles William ADevice for performing surgical incisions by electronic energy
US3197612 *8 May 196327 Jul 1965Robert W ReichElectric shaver
US3683923 *25 Sep 197015 Aug 1972Valleylab IncElectrosurgery safety circuit
US3812858 *24 Oct 197228 May 1974Sybron CorpDental electrosurgical unit
US3952748 *18 Jul 197427 Apr 1976Minnesota Mining And Manufacturing CompanyElectrosurgical system providing a fulguration current
US4128099 *20 Sep 19775 Dec 1978Richard Wolf GmbhSingle-pole coagulation forceps
US4593691 *13 Jul 198310 Jun 1986Concept, Inc.Electrosurgery electrode
US5571101 *25 May 19955 Nov 1996Ellman; Alan G.Electrosurgical electrode for DCR surgical procedure
US5833643 *18 Nov 199710 Nov 1998Scieran Technologies, Inc.Apparatus for performing ophthalmic procedures
US5989247 *15 May 199623 Nov 1999Smith & Nephew Endoscopy Inc.Electro-surgical instrument with spline connection
US62581115 Aug 199910 Jul 2001Scieran Technologies, Inc.Apparatus and method for performing ophthalmic procedures
US642590529 Nov 200030 Jul 2002Med-Logics, Inc.Method and apparatus for facilitating removal of a corneal graft
US64285081 Feb 20006 Aug 2002Enlighten Technologies, Inc.Pulsed vacuum cataract removal system
US66636442 Jun 200016 Dec 2003Med-Logics, Inc.Cutting blade assembly for a microkeratome
US66992859 Feb 20012 Mar 2004Scieran Technologies, Inc.Eye endoplant for the reattachment of a retina
US670283215 Oct 20029 Mar 2004Med Logics, Inc.Medical device for cutting a cornea that has a vacuum ring with a slitted vacuum opening
US70449484 Dec 200316 May 2006Sherwood Services AgCircuit for controlling arc energy from an electrosurgical generator
US713186020 Nov 20037 Nov 2006Sherwood Services AgConnector systems for electrosurgical generator
US71379801 May 200321 Nov 2006Sherwood Services AgMethod and system for controlling output of RF medical generator
US72556944 Dec 200314 Aug 2007Sherwood Services AgVariable output crest factor electrosurgical generator
US730043521 Nov 200327 Nov 2007Sherwood Services AgAutomatic control system for an electrosurgical generator
US730355727 Dec 20044 Dec 2007Sherwood Services AgVessel sealing system
US731170029 Nov 200025 Dec 2007Med-Logics, Inc.LASIK laminar flow system
US736457724 Jul 200329 Apr 2008Sherwood Services AgVessel sealing system
US739633627 Oct 20048 Jul 2008Sherwood Services AgSwitched resonant ultrasonic power amplifier system
US741643723 Aug 200626 Aug 2008Sherwood Services AgConnector systems for electrosurgical generator
US751389624 Jan 20067 Apr 2009Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US762878616 May 20058 Dec 2009Covidien AgUniversal foot switch contact port
US763790719 Sep 200629 Dec 2009Covidien AgSystem and method for return electrode monitoring
US764849921 Mar 200619 Jan 2010Covidien AgSystem and method for generating radio frequency energy
US765149224 Apr 200626 Jan 2010Covidien AgArc based adaptive control system for an electrosurgical unit
US76514933 Mar 200626 Jan 2010Covidien AgSystem and method for controlling electrosurgical snares
US772260130 Apr 200425 May 2010Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US77317178 Aug 20068 Jun 2010Covidien AgSystem and method for controlling RF output during tissue sealing
US77492176 May 20036 Jul 2010Covidien AgMethod and system for optically detecting blood and controlling a generator during electrosurgery
US776669316 Jun 20083 Aug 2010Covidien AgConnector systems for electrosurgical generator
US77669054 Feb 20053 Aug 2010Covidien AgMethod and system for continuity testing of medical electrodes
US778066223 Feb 200524 Aug 2010Covidien AgVessel sealing system using capacitive RF dielectric heating
US779445728 Sep 200614 Sep 2010Covidien AgTransformer for RF voltage sensing
US78244003 Mar 20062 Nov 2010Covidien AgCircuit for controlling arc energy from an electrosurgical generator
US783448416 Jul 200716 Nov 2010Tyco Healthcare Group LpConnection cable and method for activating a voltage-controlled generator
US790140027 Jan 20058 Mar 2011Covidien AgMethod and system for controlling output of RF medical generator
US792732824 Jan 200719 Apr 2011Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US794703912 Dec 200524 May 2011Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US797232824 Jan 20075 Jul 2011Covidien AgSystem and method for tissue sealing
US797233216 Dec 20095 Jul 2011Covidien AgSystem and method for controlling electrosurgical snares
US801215030 Apr 20046 Sep 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US802566018 Nov 200927 Sep 2011Covidien AgUniversal foot switch contact port
US80340498 Aug 200611 Oct 2011Covidien AgSystem and method for measuring initial tissue impedance
US808000818 Sep 200720 Dec 2011Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US809696127 Jun 200817 Jan 2012Covidien AgSwitched resonant ultrasonic power amplifier system
US810495623 Oct 200331 Jan 2012Covidien AgThermocouple measurement circuit
US810532324 Oct 200631 Jan 2012Covidien AgMethod and system for controlling output of RF medical generator
US811305727 Jun 200814 Feb 2012Covidien AgSwitched resonant ultrasonic power amplifier system
US814748523 Feb 20093 Apr 2012Covidien AgSystem and method for tissue sealing
US81872623 Jun 200929 May 2012Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US820227125 Feb 200919 Jun 2012Covidien AgDual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US82162207 Sep 200710 Jul 2012Tyco Healthcare Group LpSystem and method for transmission of combined data stream
US821622323 Feb 200910 Jul 2012Covidien AgSystem and method for tissue sealing
US822579818 May 201024 Jul 2012Loma Linda UniversityMethod and devices for performing minimally invasive surgery
US822663910 Jun 200824 Jul 2012Tyco Healthcare Group LpSystem and method for output control of electrosurgical generator
US823161623 Aug 201031 Jul 2012Covidien AgTransformer for RF voltage sensing
US824127829 Apr 201114 Aug 2012Covidien AgLaparoscopic apparatus for performing electrosurgical procedures
US826792829 Mar 201118 Sep 2012Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US826792916 Dec 201118 Sep 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US828752828 Mar 200816 Oct 2012Covidien AgVessel sealing system
US82982235 Apr 201030 Oct 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US83035805 Apr 20106 Nov 2012Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US835390518 Jun 201215 Jan 2013Covidien LpSystem and method for transmission of combined data stream
US847544723 Aug 20122 Jul 2013Covidien AgSystem and method for closed loop monitoring of monopolar electrosurgical apparatus
US848599316 Jan 201216 Jul 2013Covidien AgSwitched resonant ultrasonic power amplifier system
US848606124 Aug 201216 Jul 2013Covidien LpImaginary impedance process monitoring and intelligent shut-off
US851233221 Sep 200720 Aug 2013Covidien LpReal-time arc control in electrosurgical generators
US852385523 Aug 20103 Sep 2013Covidien AgCircuit for controlling arc energy from an electrosurgical generator
US855689014 Dec 200915 Oct 2013Covidien AgArc based adaptive control system for an electrosurgical unit
US86473404 Jan 201211 Feb 2014Covidien AgThermocouple measurement system
US866321424 Jan 20074 Mar 2014Covidien AgMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US868501623 Feb 20091 Apr 2014Covidien AgSystem and method for tissue sealing
US873443821 Oct 200527 May 2014Covidien AgCircuit and method for reducing stored energy in an electrosurgical generator
US875333410 May 200617 Jun 2014Covidien AgSystem and method for reducing leakage current in an electrosurgical generator
US877794110 May 200715 Jul 2014Covidien LpAdjustable impedance electrosurgical electrodes
US880816123 Oct 200319 Aug 2014Covidien AgRedundant temperature monitoring in electrosurgical systems for safety mitigation
US896698116 Jul 20133 Mar 2015Covidien AgSwitched resonant ultrasonic power amplifier system
US911390031 Jan 201225 Aug 2015Covidien AgMethod and system for controlling output of RF medical generator
US91196248 Oct 20131 Sep 2015Covidien AgARC based adaptive control system for an electrosurgical unit
US916808931 Jan 201227 Oct 2015Covidien AgMethod and system for controlling output of RF medical generator
US918620030 May 201217 Nov 2015Covidien AgSystem and method for tissue sealing
US927179020 Aug 20131 Mar 2016Coviden LpReal-time arc control in electrosurgical generators
US933302920 Jun 201210 May 2016Teleflex Medical IncorporatedMethod and devices for performing minimally invasive surgery
US947456427 Mar 200625 Oct 2016Covidien AgMethod and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US952203221 May 201420 Dec 2016Covidien AgCircuit and method for reducing stored energy in an electrosurgical generator
US963616514 Feb 20142 May 2017Covidien LpSystems and methods for measuring tissue impedance through an electrosurgical cable
US964266527 Feb 20149 May 2017Covidien AgMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US965567014 Feb 201423 May 2017Covidien LpSystems and methods for measuring tissue impedance through an electrosurgical cable
US20040015163 *1 May 200322 Jan 2004Buysse Steven P.Method and system for controlling output of RF medical generator
US20040147918 *4 Dec 200329 Jul 2004Keppel David S.Variable output crest factor electrosurgical generator
US20040230189 *4 Dec 200318 Nov 2004Keppel David S.Circuit for controlling arc energy from an electrosurgical generator
US20050004564 *30 Apr 20046 Jan 2005Wham Robert H.Method and system for programming and controlling an electrosurgical generator system
US20050021020 *30 Apr 200427 Jan 2005Blaha Derek M.System for activating an electrosurgical instrument
US20050101951 *27 Dec 200412 May 2005Robert WhamVessel sealing system
US20050113818 *20 Nov 200326 May 2005Sartor Joe D.Connector systems for electrosurgical generator
US20050113819 *21 Nov 200326 May 2005Wham Robert H.Automatic control system for an electrosurgical generator
US20050197659 *23 Feb 20058 Sep 2005Bahney Timothy J.Vessel sealing system using capacitive RF dielectric heating
US20050203504 *27 Jan 200515 Sep 2005Wham Robert H.Method and system for controlling output of RF medical generator
US20060079872 *3 Oct 200513 Apr 2006Eggleston Jeffrey LDevices for detecting heating under a patient return electrode
US20060161148 *10 Jan 200620 Jul 2006Robert BehnkeCircuit and method for controlling an electrosurgical generator using a full bridge topology
US20060178664 *3 Mar 200610 Aug 2006Keppel David SCircuit for controlling arc energy from an electrosurgical generator
US20060281360 *23 Aug 200614 Dec 2006Sartor Joe DConnector systems for electrosurgical generator
US20070038209 *24 Oct 200615 Feb 2007Buysse Steven PMethod and system for controlling output of RF medical generator
US20070093800 *30 Apr 200426 Apr 2007Sherwood Services AgMethod and system for programming and controlling an electrosurgical generator system
US20070093801 *21 Oct 200526 Apr 2007Robert BehnkeCircuit and method for reducing stored energy in an electrosurgical generator
US20070173802 *24 Jan 200626 Jul 2007Keppel David SMethod and system for transmitting data across patient isolation barrier
US20070173803 *24 Apr 200626 Jul 2007Wham Robert HSystem and method for terminating treatment in impedance feedback algorithm
US20070173805 *24 Jan 200726 Jul 2007Craig WeinbergMethod and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US20070208339 *3 Mar 20066 Sep 2007Sherwood Services AgSystem and method for controlling electrosurgical snares
US20070225698 *21 Mar 200627 Sep 2007Sherwood Services AgSystem and method for generating radio frequency energy
US20070250052 *24 Apr 200625 Oct 2007Sherwood Services AgArc based adaptive control system for an electrosurgical unit
US20070265612 *10 May 200615 Nov 2007Sherwood Services AgSystem and method for reducing leakage current in an electrosurgical generator
US20070282320 *30 May 20066 Dec 2007Sherwood Services AgSystem and method for controlling tissue heating rate prior to cellular vaporization
US20080071263 *19 Sep 200620 Mar 2008Sherwood Services AgSystem and method for return electrode monitoring
US20080082094 *28 Sep 20063 Apr 2008Sherwood Services AgTransformer for RF voltage sensing
US20080249523 *3 Apr 20079 Oct 2008Tyco Healthcare Group LpController for flexible tissue ablation procedures
US20080281316 *10 May 200713 Nov 2008Tyco Healthcare Group LpAdjustable impedance electrosurgical electrodes
US20080287791 *27 Jun 200820 Nov 2008Orszulak James HSwitched Resonant Ultrasonic Power Amplifier System
US20080287838 *27 Jun 200820 Nov 2008Orszulak James HSwitched Resonant Ultrasonic Power Amplifier System
US20090024120 *16 Jul 200722 Jan 2009Sartor Joe DConnection cable and method for activating a voltage-controlled generator
US20090069801 *7 Sep 200712 Mar 2009Jensen Jeffrey LSystem and method for transmission of combined data stream
US20090082765 *21 Sep 200726 Mar 2009Tyco Healthcare Group LpReal-time arc control in electrosurgical generators
US20090237169 *3 Jun 200924 Sep 2009Covidien AgDual Synchro-Resonant Electrosurgical Apparatus With Bi-Directional Magnetic Coupling
US20090292283 *9 Jun 200926 Nov 2009Tyco Healthcare Group LpSystem and method for tissue sealing
US20090306648 *10 Jun 200810 Dec 2009Podhajsky Ronald JSystem and Method for Output Control of Electrosurgical Generator
US20100042093 *24 Apr 200618 Feb 2010Wham Robert HSystem and method for terminating treatment in impedance feedback algorithm
US20100068949 *18 Nov 200918 Mar 2010Covidien AgUniversal Foot Switch Contact Port
US20100094275 *14 Dec 200915 Apr 2010Covidien AgArc Based Adaptive Control System for an Electrosurgical Unit
US20100094285 *16 Dec 200915 Apr 2010Covidien AgSystem and Method for Controlling Electrosurgical Snares
US20100191233 *5 Apr 201029 Jul 2010Wham Robert HMethod and System for Programming and Controlling an Electrosurgical Generator System
US20100211063 *5 Apr 201019 Aug 2010Wham Robert HMethod and System for Programming and Controlling an Electrosurgical Generator System
US20100318079 *23 Aug 201016 Dec 2010Mcpherson James WTransformer for RF Voltage Sensing
US20110178516 *29 Mar 201121 Jul 2011Covidien AgSystem and Method for Closed Loop Monitoring of Monopolar Electrosurgical Apparatus
US20110202056 *29 Apr 201118 Aug 2011Covidien AgLaparoscopic Apparatus for Performing Electrosurgical Procedures
US20110213366 *18 May 20101 Sep 2011Loma Linda UniversityMethod and devices for performing minimally invasive surgery
USRE403888 May 200317 Jun 2008Covidien AgElectrosurgical generator with adaptive power control
EP2269529A1 *28 Sep 20075 Jan 2011Covidien AGTransformer for RF voltage sensing
EP2432372A4 *18 May 201011 Jan 2017Teleflex Medical IncMethod and devices for performing minimally invasive surgery
WO2010144219A1 *18 May 201016 Dec 2010Loma Linda UniversityMethod and devices for performing minimally invasive surgery
Classifications
U.S. Classification606/45, 606/39
International ClassificationA61B18/12
Cooperative ClassificationA61B18/12, A61B2018/0066, A61B18/1206
European ClassificationA61B18/12G, A61B18/12