EP2738195A1 - Polymer and organic electronic device - Google Patents

Polymer and organic electronic device Download PDF

Info

Publication number
EP2738195A1
EP2738195A1 EP13194928.1A EP13194928A EP2738195A1 EP 2738195 A1 EP2738195 A1 EP 2738195A1 EP 13194928 A EP13194928 A EP 13194928A EP 2738195 A1 EP2738195 A1 EP 2738195A1
Authority
EP
European Patent Office
Prior art keywords
polymer
light
formula
repeat units
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13194928.1A
Other languages
German (de)
French (fr)
Other versions
EP2738195B1 (en
Inventor
Kiran Kamtekar
Annette Steudel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cambridge Display Technology Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Cambridge Display Technology Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Display Technology Ltd, Sumitomo Chemical Co Ltd filed Critical Cambridge Display Technology Ltd
Publication of EP2738195A1 publication Critical patent/EP2738195A1/en
Application granted granted Critical
Publication of EP2738195B1 publication Critical patent/EP2738195B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/19Definition of the polymer structure partially conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • C08G2261/5242Luminescence phosphorescent electrophosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • OLEDs organic light emitting diodes
  • OLEDs organic photoresponsive devices
  • organic transistors organic transistors
  • memory array devices organic transistors and memory array devices.
  • Devices containing active organic materials offer benefits such as low weight, low power consumption and flexibility.
  • use of soluble organic materials allows use of solution processing in device manufacture, for example inkjet printing or spin-coating.
  • An OLED may comprise a substrate carrying an anode, a cathode and one or more organic light-emitting layers between the anode and cathode.
  • Holes are injected into the device through the anode and electrons are injected through the cathode during operation of the device. Holes in the highest occupied molecular orbital (HOMO) and electrons in the lowest unoccupied molecular orbital (LUMO) of a light-emitting material combine to form an exciton that releases its energy as light.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • a light emitting layer may comprise a semiconducting host material and a light-emitting dopant wherein energy is transferred from the host material to the light-emitting dopant.
  • a semiconducting host material and a light-emitting dopant wherein energy is transferred from the host material to the light-emitting dopant.
  • J. Appl. Phys. 65, 3610, 1989 discloses a host material doped with a fluorescent light-emitting dopant (that is, a light-emitting material in which light is emitted via decay of a singlet exciton).
  • Phosphorescent dopants are also known (that is, a light-emitting dopant in which light is emitted via decay of a triplet exciton).
  • a hole-transporting layer may be provided between the anode and light-emitting layer of an OLED.
  • Suitable light-emitting materials include small molecule, polymeric and dendrimeric materials.
  • Suitable light-emitting polymers include poly(arylene vinylenes) such as poly(p-phenylene vinylenes) and polymers containing arylene repeat units, such as fluorene repeat units. Blue light-emitting fluorene homopolymer is disclosed in WO 97/05184 .
  • WO 00/53656 discloses a method of forming a conjugated polymer by reacting a monomer carrying halide reactive functional groups and a monomer carrying boron derivative reactive functional groups in the presence of a palladium catalyst.
  • WO 2005/013386 discloses an organic light-emitting device comprising a host polymer material and a luminescent metal complex wherein the polymer material may comprise non-planar repeat units or partially or fully non-conjugated repeat units in order to reduce conjugation of the polymer.
  • WO 2011/141709 discloses a light-emitting composition
  • a host polymer comprises conjugating repeat units and non-conjugating repeat units in a backbone of the polymer.
  • the non-conjugating repeat units comprise an at least partially saturated ring having at least one ring atom that breaks any conjugation path between repeat units linked to the non- conjugating repeat units.
  • WO 2010/085676 discloses host materials for electrophosphorescent devices.
  • JP 2005/158561 discloses non-conjugated polymers containing an electron transporting compound.
  • WO 2012/048778 discloses polymers formed by polymerization of the following monomers:
  • the invention provides a polymer comprising repeat units of formula (I) and one or more co-repeat units:
  • the invention provides a monomer of formula (Im): wherein LG is a leaving group capable of leaving in a coupling reaction to form a carbon-carbon bond between Ar 1 and an aromatic or heteroaromatic group, and Ar 1 , R 1 , R 2 , p and Sp are as described in the first aspect.
  • the invention provides a method of forming a polymer according to the first aspect, the method comprising the step of polymerising a monomer according to the second aspect and one or more co-monomers for forming the one or more respective co-repeat units.
  • the invention provides a composition comprising a polymer according to the first aspect and at least one light-emitting dopant.
  • the invention provides a formulation comprising a polymer according to the first aspect or a composition according to the fourth aspect and at least one solvent.
  • the invention provides an organic light-emitting device comprising an anode, a cathode and one or more organic layers between the anode and cathode including a light-emitting layer wherein at least one of the one or more organic layers comprises a polymer according to the first aspect.
  • the organic light-emitting layer comprises a composition according to the fourth aspect.
  • the organic layers comprise a hole-transporting layer between the anode and the light-emitting layer, the hole-transporting layer comprising a polymer according to the first aspect.
  • the invention provides a method of forming an organic light-emitting device according to the sixth aspect, the method comprising the step of forming the light-emitting layer over one of the anode and the cathode and forming the other of the anode and the cathode over the light-emitting layer
  • Figure 1 illustrates an OLED 100 according to an embodiment of the invention comprising an anode 101, a cathode 105 and a light-emitting layer 103 between the anode and cathode.
  • the device 100 is supported on a substrate 107, for example a glass or plastic substrate.
  • One or more further layers may be provided between the anode 101 and cathode 105, for example hole-transporting layers, electron transporting layers, hole blocking layers and electron blocking layers.
  • the device may contain more than one light-emitting layer.
  • Preferred device structures include:
  • At least one of a hole-transporting layer and hole injection layer is present.
  • both a hole injection layer and hole-transporting layer are present.
  • Light-emitting materials include red, green and blue light-emitting materials.
  • a blue emitting material may have a photoluminescent spectrum with a peak in the range of 400-490 nm, optionally 420-490 nm.
  • a green emitting material may have a photoluminescent spectrum with a peak in the range of more than 490nm up to 580 nm, optionally more than 490 nm up to 540 nm.
  • a red emitting material may optionally have a peak in its photoluminescent spectrum of more than 580 nm up to 630 nm, optionally 585-625 nm.
  • Light-emitting layer 103 may contain a polymer of the invention.
  • the polymer may be doped with one or more luminescent dopants.
  • the light-emitting layer 103 may consist essentially of the polymer and the one or more luminescent dopants, or may contain one or more further materials, for example one or more charge-transporting materials or one or more further light-emitting materials.
  • the singlet or triplet energy level of the host material is preferably no more than 0.1 eV below that of the light-emitting material, and is more preferably about the same or higher than that of the light-emitting material in order to avoid quenching of luminescence from the light-emitting dopant.
  • light-emitting layer 103 contains a polymer of the invention and at least one of green and blue phosphorescent light-emitting materials.
  • a charge-transporting layer adjacent to a phosphorescent light-emitting layer preferably contains a charge-transporting material having a T 1 excited state energy level that is no more than 0.1 eV lower than, preferably the same as or higher than, the T 1 excited state energy level of the phosphorescent light-emitting material(s) of the invention in order to avoid quenching of triplet excitons migrating from the light-emitting layer into the charge-transporting layer.
  • a polymer of the invention may be used as a charge-transporting material in a charge-transporting layer.
  • a hole-transporting layer comprises or consists essentially of the polymer.
  • Triplet energy levels may be measured from the energy onset of the phosphorescence spectrum measured by low temperature phosphorescence spectroscopy ( Y.V. Romaovskii et al, Physical Review Letters, 2000, 85 (5), p1027 , A. van Dijken et al, Journal of the American Chemical Society, 2004, 126, p7718 ).
  • the polymer contains non-conjugating repeat units of formula (I)
  • the repeat units of formula (I) contain aromatic or heteroaromatic groups Ar 1 spaced apart by a spacer group Sp.
  • the spacer group does not provide any conjugation path between the two groups Ar 1 , and therefore does not provide any conjugation path between repeat units on either side of the non-conjugating repeat units of formula (I).
  • the groups Ar 1 are capable of conjugating to aromatic or heteroaromatic groups of repeat units adjacent to the repeat unit of formula (I).
  • the present inventors have found that even this relatively limited extent of conjugation between the repeat unit of formula (I) and an adjacent repeat unit can result in poor device performance, particularly when the polymer is used as a host for a dopant with a high excited state energy level, such as a phosphorescent green or blue light-emitting material.
  • this poor device performance may be due to a reduction in singlet and triplet excited state energy levels upon conjugation.
  • substituents R 1 on the groups Ar 1 adjacent to the positions through which the repeat units of formula (I) are linked to adjacent repeat units steric hindrance may be created between the groups Ar 1 and the aromatic groups bound of adjacent repeat units that are bound to Ar 1 , creating a twist between repeat units of formula (I) and adjacent repeat units and reducing the extent of conjugation therebetween.
  • the relatively high triplet excited state energy level may make the polymers of the invention suitable for use as hosts for phosphorescent light-emitting materials, including red, green and blue phosphorescent light-emitting materials, and / or as charge-transporting materials adjacent to light-emitting layers containing phosphorescent light-emitting materials
  • the polystyrene-equivalent number-average molecular weight (Mn) measured by gel permeation chromatography of the polymers described herein may be in the range of about 1x10 3 to 1x10 8 , and preferably 1x10 4 to 5x10 6 .
  • the polystyrene-equivalent weight-average molecular weight (Mw) of the polymers described herein may be 1x10 3 to 1x10 8 , and preferably 1x10 4 to 1x10 7 .
  • Polymers as described herein are suitably amorphous polymers.
  • Polymers as described herein may be formed by a polymerisation carried out in the presence of a metal catalyst.
  • Suzuki polymerisation for example as described in WO 00/53656 or US 5777070 which allows formation of C-C bonds between two aromatic or heteroaromatic groups, and so enables formation of polymers having conjugation extending across two or more repeat units.
  • Suzuki polymerisation takes place in the presence of a palladium complex catalyst and a base.
  • a monomer for forming repeat units RU1 having leaving groups LG1 such as boronic acid or boronic ester groups undergoes polymerisation with a monomer for forming repeat units RU2 having leaving groups LG2 such as halogen, preferably bromine or iodine; sulfonic acid; or sulfonic ester to form a carbon-carbon bond between Arylene 1 and Arylene 2: n LG ⁇ 1 - RU ⁇ 1 - LG ⁇ 1 + n LG ⁇ 2 - RU ⁇ 2 - LG ⁇ 2 ⁇ - RU ⁇ 1 - RU ⁇ 2 n -
  • Exemplary boronic esters have formula (IV): wherein R 6 in each occurrence is independently a C 1-20 alkyl group, * represents the point of attachment of the boronic ester to an aromatic ring of the monomer, and the two groups R 6 may be linked to form a ring. In a preferred embodiment, the two groups R 6 are linked to form the pinacol ester of boronic acid:
  • one of LG1 and LG2 is bromine or iodine and the other is a boronic acid or boronic ester.
  • This selectivity means that the ordering of repeat units in the polymer backbone can be controlled such that all or substantially all RU1 repeat units formed by polymerisation of LG1-RU1-LG1 are adjacent, on both sides, to RU2 repeat units.
  • an AB copolymer is formed by copolymerisation of two monomers in a 1:1 ratio, however it will be appreciated that more than two or more than two monomers may be used in the polymerisation, and any ratio of monomers may be used.
  • the base may be an organic or inorganic base.
  • exemplary organic bases include tetraalkylammonium hydroxides, carbonates and bicarbonates.
  • exemplary inorganic bases include metal (for example alkali or alkali earth) hydroxides, carbonates and bicarbonates.
  • the palladium complex catalyst may be a palladium (0) or palladium (II) compound.
  • catalysts are tetrakis(triphenylphosphine)palladium (0) and palladium (II) acetate mixed with a phosphine.
  • a phosphine may be provided, either as a ligand of the palladium compound catalyst or as a separate compound added to the polymerisation mixture.
  • exemplary phosphines include triarylphosphines, for example triphenylphosphines wherein each phenyl may independently be unsubstituted or substituted with one or more substituents, for example one or more C 1-5 alkyl or C 1-5 alkoxy groups.
  • triphenylphospine and tris(ortho-methoxytriphenyl) phospine are particularly preferred.
  • the polymerisation reaction may take place in a single organic liquid phase in which all components of the reaction mixture are soluble.
  • the reaction may take place in a two-phase aqueous-organic system, in which case a phase transfer agent may be used.
  • the reaction may take place in an emulsion formed by mixing a two-phase aqueous-organic system with an emulsifier.
  • the polymer may be end-capped by addition of an end-capping reactant.
  • Suitable end-capping reactants are aromatic or heteroaromatic materials substituted with only one leaving group.
  • the end-capping reactants may include reactants substituted with a halogen for reaction with a boronic acid or boronic ester group at a polymer chain end, and reactants substituted with a boronic acid or boronic ester for reaction with a halogen at a polymer chain end.
  • Exemplary end-capping reactants are halobenzenes, for example bromobenzene, and phenylboronic acid. End-capping reactants may be added during or at the end of the polymerisation reaction.
  • Ar 1 of formula (I) is preferably an aryl group, more preferably phenylene.
  • Phenylene groups Ar 1 may be 1,2- , 1,3- or 1,4-linked phenylene, preferably 1,4-linked phenylene.
  • R 1 and (where present) R 2 include C 1-40 hydrocarbyl, -OR 11 SR 11 ,-NR 11 2 , and -SiR 11 3 wherein R 11 in each occurrence is a substituent, preferably C 1-40 hydrocarbyl.
  • R 1 is a C 1-40 hydrocarbyl, which may the same or different in each occurrence.
  • Exemplary hydrocarbyl groups R 1 , R 2 and R 11 include C 1-20 alkyl; unsubstituted phenyl; phenyl substituted with one or more C 1-20 alkyl groups; and a branched or linear chain of phenyl groups wherein each phenyl is unsubstituted or substituted with one or more C 1-20 alkyl groups.
  • C 1-20 alkyl is preferred.
  • Alkyl groups as described anywhere herein includes linear, branched and cyclic alkyl groups.
  • a C 3-20 branched alkyl group including alkyl groups containing one or more C atoms selected from secondary and tertiary carbon atoms, may provide more steric hindrance and therefore a greater degree of twisting than a corresponding linear alkyl group.
  • Sp of formula (I) may contain a single non-conjugating atom only between the two groups Ar 1 , or Sp may contain non-conjugating chain of at least 2 atoms separating the two groups Ar 1 .
  • a non-conjugating atom may be, for example, -CR 4 2 - or -SiR 4 2 - wherein R 4 in each occurrence is H or a substituent, optionally a substituent R 11 as described above, for example C 1-20 alkyl.
  • the spacer chain Sp contains at least one sp 3 -hybridised carbon atom separating the two groups Ar 1 .
  • Preferred groups Sp are selected from C 1-20 alkyl wherein one or more non-adjacent C atoms are replaced with O.
  • An oligo-ether chain for example a chain of formula-O(CH 2 CH 2 O) n - may be provided, wherein n is from 1-5.
  • Repeat units of formula (I) may be provided in an amount in the range of 1 - 50 mol %, optionally 20-50 mol %.
  • the polymer may contain two or more different repeat units of formula (I).
  • the repeat unit of formula (I) may have formula (Ia) or (Ib):
  • Exemplary repeat units of formula (I) include the following: wherein R 11 in each occurrence is independently H or a substituent.
  • Polymers of the invention contain repeat units of formula (I) and one or more co-repeat units. Some or all of the co-repeat units contain an aromatic or heteroaromatic group that is bound to Ar 1 of repeat units of formula (I).
  • Exemplary co-repeat units include arylene or heteroarylene repeat units that may be unsubstituted or substituted with one or more substituents, and charge-transporting repeat units containing aromatic or heteroaromatic groups.
  • Co-repeat units include repeat units that may be directly adjacent to repeat units of formula (I) and repeat units that may be spaced apart from repeat units of formula (I).
  • the copolymer may contain repeat units of formula (I) and adjacent co-repeat units only in the form of a regioregular AB copolymer of repeat units of formula (I) and adjacent co-repeat units, or it may contain repeat units of formula (I), co-repeat units adjacent to repeat units of formula (I), and one or more further co-repeat units
  • co-repeat units include arylene repeat units, for example 1,2-, 1,3- and 1,4-phenylene repeat units, 3,6- and 2,7- linked fluorene repeat units, indenofluorene, naphthalene, anthracene and phenanthrene repeat units, and stilbene repeat units, each of which may be unsubstituted or substituted with one or more substitutents, for example one or more C 1-30 hydrocarbyl substituents.
  • arylene repeat units for example 1,2-, 1,3- and 1,4-phenylene repeat units, 3,6- and 2,7- linked fluorene repeat units, indenofluorene, naphthalene, anthracene and phenanthrene repeat units, and stilbene repeat units, each of which may be unsubstituted or substituted with one or more substitutents, for example one or more C 1-30 hydrocarbyl substituents.
  • arylene repeat units such as phenylene repeat units of formula (III):
  • each R 3 may independently be selected from the group consisting of:
  • R 3 comprises an aryl or heteroaryl group, or a linear or branched chain of aryl or heteroaryl groups
  • the or each aryl or heteroaryl group may be substituted with one or more substituents R 7 selected from the group consisting of:
  • Substituted N may be -NR 9 - wherein R 9 is as described above.
  • each R 3 where present is independently selected from C 1-40 hydrocarbyl, and is more preferably selected from C 1-20 alkyl; unusubstituted phenyl; phenyl substituted with one or more C 1-20 alkyl groups; a linear or branched chain of phenyl groups, wherein each phenyl may be unsubstituted or substituted with one or more substituents; and a crosslinkable group.
  • exemplary repeat units of formula (III) include the following:
  • a particularly preferred repeat unit of formula (III) has formula (IIIa):
  • Substituents R 3 of formula (IIIa) are adjacent to linking positions of the repeat unit, which may cause steric hindrance between the repeat unit of formula (IIIa) and adjacent repeat units, resulting in the repeat unit of formula (IIIa) twisting out of plane relative to one or both adjacent repeat units.
  • Exemplary repeat units where n is 2 or 3 include the following:
  • a preferred repeat unit has formula (IIIb):
  • the two R 3 groups of formula (IIIb) may cause steric hindrance between the phenyl rings they are bound to, resulting in twisting of the two phenyl rings relative to one another.
  • a further class of arylene repeat units are optionally substituted fluorene repeat units, such as repeat units of formula (IV): wherein R 3 in each occurrence is the same or different and is a substituent as described with reference to formula (III), and wherein the two groups R 3 may be linked to form a ring; R 8 is a substituent; and d is 0, 1, 2 or 3.
  • the aromatic carbon atoms of the fluorene repeat unit may be unsubstituted, or may be substituted with one or more substituents R 8 .
  • Particularly preferred substituents include C 1-20 alkyl and substituted or unsubstituted aryl, for example phenyl.
  • Optional substituents for the aryl include one or more C 1-20 alkyl groups.
  • Substituted N may be -NR 5 - wherein R 5 is C 1-20 alkyl; unsubstituted phenyl; or phenyl substituted with one or more C 1-20 alkyl groups.
  • the extent of conjugation of repeat units of formula (IV) to aryl or heteroaryl groups of adjacent repeat units may be controlled by (a) linking the repeat unit through the 3- and / or 6- positions to limit the extent of conjugation across the repeat unit, and / or (b) substituting the repeat unit with one or more substituents R 8 in or more positions adjacent to the linking positions in order to create a twist with the adjacent repeat unit or units, for example a 2,7-linked fluorene carrying a C 1-20 alkyl substituent in one or both of the 3- and 6-positions.
  • the repeat unit of formula (IV) may be an optionally substituted 2,7-linked repeat unit of formula (IVa):
  • the repeat unit of formula (IVa) is not substituted in a position adjacent to the 2- or 7-position.
  • Linkage through the 2- and 7-positions and absence of substituents adjacent to these linking positions provides a repeat unit that is capable of providing a relatively high degree of conjugation across the repeat unit.
  • the repeat unit of formula (IV) may be an optionally substituted 3,6-linked repeat unit of formula (IVb)
  • the extent of conjugation across a repeat unit of formula (IVb) may be relatively low as compared to a repeat unit of formula (IVa).
  • Another exemplary arylene repeat unit has formula (V): wherein R 3 , R 8 and d are as described with reference to formula (III) and (IV) above. Any of the R 3 groups may be linked to any other of the R 3 groups to form a ring. Aromatic carbon atoms of the repeat unit of formula (V) may be unsubstituted, or may be substituted with one or more substituents.
  • Repeat units of formula (V) may have formula (Va) or (Vb):
  • arylene co-repeat units include: phenanthrene repeat units; naphthalene repeat units; anthracene repeat units; and perylene repeat units.
  • Each of these arylene repeat units may be linked to adjacent repeat units through any two of the aromatic carbon atoms of these units. Specific exemplary linkages include 9,10-anthracene; 2,6-anthracene; 1,4-naphthalene; 2,6-naphthalene; 2,7-phenanthrene; and 2,5-perylene.
  • Each of these repeat units may be substituted or unsubstituted, for example substituted with one or more C 1-40 hydrocarbyl groups.
  • the polymer preferably contains one or more charge-transporting repeat units.
  • charge-transporting repeat units include repeat units of materials disclosed in, for example, Shirota and Kageyama, Chem. Rev. 2007, 107, 953-1010
  • Exemplary hole transporting repeat units may be repeat units of materials having a electron affinity of 2.9 eV or lower and an ionisation potential of 5.8 eV or lower, preferably 5.7 eV or lower.
  • Preferred hole-transporting repeat units are (hetero)arylamine repeat units, including repeat units of formula (VII): wherein Ar 8 and Ar 9 in each occurrence are independently selected from substituted or unsubstituted aryl or heteroaryl, g is greater than or equal to 1, preferably 1 or 2, R 13 is H or a substituent, preferably a substituent, and c and d are each independently 1, 2 or 3.
  • R 13 which may be the same or different in each occurrence when g > 1, is preferably selected from the group consisting of alkyl, for example C 1-20 alkyl, Ar 10 , a branched or linear chain of Ar 10 groups, or a crosslinkable unit that is bound directly to the N atom of formula (VIII) or spaced apart therefrom by a spacer group, wherein Ar 10 in each occurrence is independently optionally substituted aryl or heteroaryl.
  • Exemplary spacer groups are C 1-20 alkyl, phenyl and phenyl-C 1-20 alkyl.
  • Ar 8 , Ar 9 and, if present, Ar 10 in the repeat unit of Formula (IX) may be linked by a direct bond or a divalent linking atom or group to another of Ar 8 , Ar 9 and Ar 10 .
  • Preferred divalent linking atoms and groups include O, S; substituted N; and substituted C.
  • any of Ar 8 , Ar 9 and, if present, Ar 10 may be substituted with one or more substituents.
  • substituents R 10 are substituents R 10 , wherein each R 10 may independently be selected from the group consisting of:
  • Preferred repeat units of formula (VII) have formulae 1-3:
  • R 13 is Ar 10 and each of Ar 8 , Ar 9 and Ar 10 are independently and optionally substituted with one or more C 1-20 alkyl groups.
  • Ar 8 , Ar 9 and Ar 10 are preferably phenyl.
  • the central Ar 9 group of formula (I) linked to two N atoms is a polycyclic aromatic that may be unsubstituted or substituted with one or more substituents R 10 .
  • exemplary polycyclic aromatic groups are naphthalene, perylene, anthracene and fluorene.
  • Ar 8 and Ar 9 are phenyl, each of which may be substituted with one or more C 1-20 alkyl groups, and R 13 is -(Ar 10 ) r wherein r is at least 2 and wherein the group -(Ar 10 ) r forms a linear or branched chain of aromatic or heteroaromatic groups, for example 3,5-diphenylbenzene wherein each phenyl may be substituted with one or more C 1-20 alkyl groups.
  • c, d and g are each 1 and Ar 8 and Ar 9 are phenyl linked by an oxygen atom to form a phenoxazine ring.
  • Amine repeat units may be provided in a molar amount in the range of about 0.5 mol % up to about 50 mol %, optionally about 1-25 mol %, optionally about 1-10 mol %.
  • the polymer may contain one, two or more different repeat units of formula (VII).
  • Amine repeat units may provide hole-transporting and / or light-emitting functionality.
  • Preferred fluorescent light-emitting amine repeat units include a blue light-emitting repeat unit of formula (VIIa) and a green light-emitting repeat unit formula (VIIb):
  • R 13 of formula (VIIa) is preferably a hydrocarbyl, preferably C 1-20 alkyl, phenyl that is unsubstituted or substituted with one or more C 1-20 alkyl groups, or a branched or linear chain of phenyl groups wherein each said phenyl group is unsubstituted or substituted with one or more C 1-20 alkyl groups.
  • the repeat unit of formula (VIIb) may be unsubstituted or one or more of the rings of the repeat unit of formula (VIIb) may be substituted with one or more substituents R 15 , preferably one or more C 1-20 alkyl groups.
  • Another preferred charge-transporting repeat unit has formula (VIII): wherein Ar 8 , Ar 9 and Ar 10 are as described with reference to formula (VII) above, and may each independently be substituted with one or more substituents described with reference to Ar 8 , Ar 9 and Ar 10 , and z in each occurrence is independently at least 1, optionally 1, 2 or 3, preferably 1, and Y is N or CR 14 , wherein R 14 is H or a substituent, preferably H or C 1-10 alkyl.
  • Ar 8 , Ar 9 and Ar 10 of formula (VIII) are each phenyl, each phenyl being optionally and independently substituted with one or more C 120 alkyl groups.
  • all 3 groups Y are N.
  • At least one of Ar 8 , Ar 9 and Ar 10 is preferably a heteroaromatic group comprising N.
  • Ar 8 , Ar 9 and Ar 10 may independently be substituted with one or more substituents.
  • Ar 8 , Ar 9 and Ar 10 are phenyl in each occurrence.
  • Exemplary substituents include R 5 as described above with reference to formula (V), for example C 1-20 alkyl or alkoxy.
  • Ar 10 of formula (VIII) is preferably phenyl, and is optionally substituted with one or more C 1-20 alkyl groups or a crosslinkable unit.
  • z is 1 and each of Ar 8 , Ar 9 and Ar 10 is unsubstituted phenyl or phenyl substituted with one or more C 1-20 alkyl groups.
  • a particularly preferred repeat unit of formula (VIII) has formula (VIIIa), which may be unsubstituted or substituted with one or more substituents R 5 , preferably one or more C 120 alkyl groups:
  • An OLED may contain one or more light-emitting layers.
  • a light-emitting layer may contain a polymer comprising repeat units of formula (I).
  • Suitable light-emitting materials for a light-emitting layer include polymeric, small molecule and dendritic light-emitting materials, each of which may be fluorescent or phosphorescent.
  • a light-emitting layer of an OLED may be unpatterned, or may be patterned to form discrete pixels. Each pixel may be further divided into subpixels.
  • the light-emitting layer may contain a single light-emitting material, for example for a monochrome display or other monochrome device, or may contain materials emitting different colours, in particular red, green and blue light-emitting materials for a full-colour display.
  • a light-emitting layer may contain a mixture of more than one light-emitting material, for example a mixture of light-emitting materials that together provide white light emission.
  • a white-emitting OLED may contain a single, white-emitting layer or may contain two or more layers that emit different colours which, in combination, produce white light.
  • the light emitted from a white-emitting OLED may have CIE x coordinate equivalent to that emitted by a black body at a temperature in the range of 2500-9000K and a CIE y coordinate within 0.05 or 0.025 of the CIE y co-ordinate of said light emitted by a black body, optionally a CIE x coordinate equivalent to that emitted by a black body at a temperature in the range of 2700-6000K.
  • Exemplary fluorescent polymeric light-emitting materials include polymers comprising one or more of arylene repeat units, arylene vinylene repeat units and arylamine repeat units.
  • Exemplary phosphorescent light-emitting materials include metal complexes.
  • a phosphorescent material may be a material comprising a substituted or unsubstituted complex of formula (IX): ML 1 q L 2 r L 3 s (IX)
  • Heavy elements M induce strong spin-orbit coupling to allow rapid intersystem crossing and emission from triplet or higher states.
  • Suitable heavy metals M include d-block metals, in particular those in rows 2 and 3 i.e. elements 39 to 48 and 72 to 80, in particular ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum and gold. Iridium is particularly preferred.
  • Exemplary ligands L 1 , L 2 and L 3 include carbon or nitrogen donors such as porphyrin or bidentate ligands of formula (X): wherein Ar 5 and Ar 6 may be the same or different and are independently selected from substituted or unsubstituted aryl or heteroaryl; X 1 and Y 1 may be the same or different and are independently selected from carbon or nitrogen; and Ar 5 and Ar 6 may be fused together.
  • X porphyrin or bidentate ligands of formula (X): wherein Ar 5 and Ar 6 may be the same or different and are independently selected from substituted or unsubstituted aryl or heteroaryl; X 1 and Y 1 may be the same or different and are independently selected from carbon or nitrogen; and Ar 5 and Ar 6 may be fused together.
  • Ligands wherein X 1 is carbon and Y 1 is nitrogen are preferred, in particular ligands in which Ar 5 is a single ring or fused heteroaromatic of N and C atoms only, for example pyridyl or isoquinoline, and Ar 6 is a single ring or fused aromatic, for example phenyl or naphthyl.
  • Ar 5 may be selected from phenyl, fluorene, naphthyl and Ar 6 are selected from quinoline, isoquinoline, thiophene and benzothiophene.
  • Ar 5 may be selected from phenyl or fluorene and Ar 6 may be pyridine.
  • Ar 5 may be selected from phenyl and Ar 6 may be selected from imidazole, pyrazole, triazole and tetrazole.
  • Each of Ar 5 and Ar 6 may carry one or more substituents. Two or more of these substituents may be linked to form a ring, for example an aromatic ring.
  • ligands suitable for use with d-block elements include diketonates, in particular acetylacetonate (acac), tetrakis-(pyrazol-1-yl)borate, 2-carboxypyridyl, triarylphosphines and pyridine, each of which may be substituted.
  • diketonates in particular acetylacetonate (acac), tetrakis-(pyrazol-1-yl)borate, 2-carboxypyridyl, triarylphosphines and pyridine, each of which may be substituted.
  • substituents include groups R 13 as described above with reference to Formula (VII). Particularly preferred substituents include fluorine or trifluoromethyl which may be used to blue-shift the emission of the complex, for example as disclosed in WO 02/45466 , WO 02/44189 , US 2002-117662 and US 2002-182441 ; alkyl or alkoxy groups, for example C 1-20 alkyl or alkoxy, which may be as disclosed in JP 2002-324679 ; carbazole which may be used to assist hole transport to the complex when used as an emissive material, for example as disclosed in WO 02/81448 ; and dendrons which may be used to obtain or enhance solution processability of the metal complex, for example as disclosed in WO 02/66552 .
  • a light-emitting dendrimer typically comprises a light-emitting core bound to one or more dendrons, wherein each dendron comprises a branching point and two or more dendritic branches.
  • the dendron is at least partially conjugated, and at least one of the branching points and dendritic branches comprises an aryl or heteroaryl group, for example a phenyl group.
  • the branching point group and the branching groups are all phenyl, and each phenyl may independently be substituted with one or more substituents, for example alkyl or alkoxy.
  • a dendron may have optionally substituted formula (XI)
  • the dendron may be a first, second, third or higher generation dendron.
  • G 1 may be substituted with two or more second generation branching groups G 2 , and so on, as in optionally substituted formula (XIa):
  • a preferred dendron is a substituted or unsubstituted dendron of formula (XIb):
  • BP and / or any group G may be substituted with one or more substituents, for example one or more C 1-20 alkyl or alkoxy groups.
  • Phosphorescent light-emitting materials may be provided in a light-emitting layer with a host material.
  • the host material may be a host polymer of the invention.
  • the phosphorescent light-emitting material may be physically mixed with the host polymer or may be covalently bound thereto.
  • the phosphorescent light-emitting material may be provided in a side-chain, main chain or end-group of the polymer. Where the phosphorescent material is provided in a polymer side-chain, the phosphorescent material may be directly bound to the backbone of the polymer or spaced apart therefrom by a spacer group, for example a C 1-20 alkyl spacer group in which one or more non-adjacent C atoms may be replaced by O or S.
  • a composition of the present invention may consist of or may comprise a polymer of the invention comprising repeat units of formula (I) with a phosphorescent light-emitting material bound to the polymer.
  • the phosphorescent light-emitting material(s) may make up about 0.05 wt % up to about 50 wt %, optionally about 1-40 wt % of a host / phosphorescent light-emitting material composition.
  • the phosphorescent light-emitting material(s) may make up about 0.01 - 25 mol % of the material.
  • a hole transporting layer may be provided between the anode and the light-emitting layer or layers.
  • an electron transporting layer may be provided between the cathode and the light-emitting layer or layers.
  • an electron blocking layer may be provided between the anode and the light-emitting layer and a hole blocking layer may be provided between the cathode and the light-emitting layer.
  • Transporting and blocking layers may be used in combination. Depending on its HOMO and LUMO levels, a single layer may both transport one of holes and electrons and block the other of holes and electrons.
  • a charge-transporting layer or charge-blocking layer may be crosslinked, particularly if a layer overlying that charge-transporting or charge-blocking layer is deposited from a solution.
  • the crosslinkable group used for this crosslinking may be a crosslinkable group comprising a reactive double bond such and a vinyl or acrylate group, or a benzocyclobutane group.
  • a hole transporting layer located between the anode and the light-emitting layers preferably has a HOMO level of less than or equal to 5.5 eV, more preferably around 4.8-5.5 eV or 5.1-5.3 eV as measured by cyclic voltammetry.
  • the HOMO level of the hole transport layer may be selected so as to be within 0.2 eV, optionally within 0.1 eV, of an adjacent layer (such as a light-emitting layer) in order to provide a small barrier to hole transport between these layers.
  • an electron transporting layer located between the light-emitting layers and cathode preferably has a LUMO level of around 2.5-3.5 eV as measured by cyclic voltammetry.
  • a layer of a silicon monoxide or silicon dioxide or other thin dielectric layer having thickness in the range of 0.2-2nm may be provided between the light-emitting layer nearest the cathode and the cathode.
  • HOMO and LUMO levels may be measured using cyclic voltammetry.
  • a hole transporting layer may contain a homopolymer or copolymer comprising a repeat unit of formula (VII) as described above, for example a copolymer comprising one or more amine repeat units of formula (VII) and one or more arylene repeat units, for example one or more arylene repeat units selected from formulae (III), (IV) and (V).
  • An electron transporting layer may contain a polymer comprising a chain of optionally substituted arylene repeat units, such as a chain of fluorene repeat units.
  • the T 1 energy level of the material or materials of that layer are preferably higher than that of the phosphorescent emitter in the adjacent light-emitting layer.
  • a conductive hole injection layer which may be formed from a conductive organic or inorganic material, may be provided between the anode 101 and the light-emitting layer 103 of an OLED as illustrated in Figure 1 to assist hole injection from the anode into the layer or layers of semiconducting polymer.
  • doped organic hole injection materials include optionally substituted, doped poly(ethylene dioxythiophene) (PEDT), in particular PEDT doped with a charge-balancing polyacid such as polystyrene sulfonate (PSS) as disclosed in EP 0901176 and EP 0947123 , polyacrylic acid or a fluorinated sulfonic acid, for example Nafion ®; polyaniline as disclosed in US 5723873 and US 5798170 ; and optionally substituted polythiophene or poly(thienothiophene).
  • conductive inorganic materials include transition metal oxides such as VOx, MoOx and RuOx as disclosed in Journal of Physics D: Applied Physics (1996), 29(11), 2750-2753 .
  • the cathode 105 is selected from materials that have a workfunction allowing injection of electrons into the light-emitting layer of the OLED. Other factors influence the selection of the cathode such as the possibility of adverse interactions between the cathode and the light-emitting material.
  • the cathode may consist of a single material such as a layer of aluminium. Alternatively, it may comprise a plurality of conductive materials such as metals, for example a bilayer of a low workfunction material and a high workfunction material such as calcium and aluminium, for exampleas disclosed in WO 98/10621 .
  • the cathode may comprise elemental barium, for example as disclosed in WO 98/57381 , Appl. Phys. Lett.
  • the cathode may comprise a thin (e.g. 1-5 nm) layer of metal compound, in particular an oxide or fluoride of an alkali or alkali earth metal, between the organic layers of the device and one or more conductive cathode layers to assist electron injection, for example lithium fluoride as disclosed in WO 00/48258 ; barium fluoride as disclosed in Appl. Phys. Lett. 2001, 79(5), 2001 ; and barium oxide.
  • the cathode preferably has a workfunction of less than 3.5 eV, more preferably less than 3.2 eV, most preferably less than 3 eV. Work functions of metals can be found in, for example, Michaelson, J. Appl. Phys. 48(11), 4729, 1977 .
  • the cathode may be opaque or transparent.
  • Transparent cathodes are particularly advantageous for active matrix devices because emission through a transparent anode in such devices is at least partially blocked by drive circuitry located underneath the emissive pixels.
  • a transparent cathode comprises a layer of an electron injecting material that is sufficiently thin to be transparent. Typically, the lateral conductivity of this layer will be low as a result of its thinness. In this case, the layer of electron injecting material is used in combination with a thicker layer of transparent conducting material such as indium tin oxide.
  • a transparent cathode device need not have a transparent anode (unless, of course, a fully transparent device is desired), and so the transparent anode used for bottom-emitting devices may be replaced or supplemented with a layer of reflective material such as a layer of aluminium.
  • transparent cathode devices are disclosed in, for example, GB 2348316 .
  • the substrate preferably has good barrier properties for prevention of ingress of moisture and oxygen into the device.
  • the substrate is commonly glass, however alternative substrates may be used, in particular where flexibility of the device is desirable.
  • the substrate may comprise one or more plastic layers, for example a substrate of alternating plastic and dielectric barrier layers or a laminate of thin glass and plastic.
  • the device may be encapsulated with an encapsulant (not shown) to prevent ingress of moisture and oxygen.
  • encapsulants include a sheet of glass, films having suitable barrier properties such as silicon dioxide, silicon monoxide, silicon nitride or alternating stacks of polymer and dielectric or an airtight container.
  • a transparent encapsulating layer such as silicon monoxide or silicon dioxide may be deposited to micron levels of thickness, although in one preferred embodiment the thickness of such a layer is in the range of 20-300 nm.
  • a getter material for absorption of any atmospheric moisture and / or oxygen that may permeate through the substrate or encapsulant may be disposed between the substrate and the encapsulant.
  • a formulation suitable for forming a charge-transporting or light-emitting layer may be formed from the polymer of the invention, any further components of the layer such as light-emitting dopants, and one or more suitable solvents.
  • the formulation may be a solution of the polymer and any other components in the one or more solvents, or may be a dispersion in the one or more solvents in which one or more components are not dissolved.
  • the formulation is a solution.
  • Solvents suitable for dissolving semiconducting polymers, particularly polymers comprising alkyl substituents include benzenes substituted with one or more C 1-10 alkyl or C 1-10 alkoxy groups, for example toluene, xylenes and methylanisoles.
  • a charge-tranporting or light-emitting layer of an OLED may be formed by depositing the formulation containing a polymer as described herein and evaporating the one or more solvents.
  • Particularly preferred solution deposition techniques including printing and coating techniques such spin-coating and inkjet printing.
  • Spin-coating is particularly suitable for devices wherein patterning of the light-emitting layer is unnecessary - for example for lighting applications or simple monochrome segmented displays.
  • Inkjet printing is particularly suitable for high information content displays, in particular full colour displays.
  • a device may be inkjet printed by providing a patterned layer over the first electrode and defining wells for printing of one colour (in the case of a monochrome device) or multiple colours (in the case of a multicolour, in particular full colour device).
  • the patterned layer is typically a layer of photoresist that is patterned to define wells as described in, for example, EP 0880303 .
  • the ink may be printed into channels defined within a patterned layer.
  • the photoresist may be patterned to form channels which, unlike wells, extend over a plurality of pixels and which may be closed or open at the channel ends.
  • solution deposition techniques include dip-coating, roll printing and screen printing.
  • the dropping funnel was charged with a solution of 1,4-diiodobutane (13.8 mL, 105 mmol) in dry THF (140 mL) which was then added dropwise over 0.75 h. The resulting slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of water. The mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO 4 , filtered and concentrated to yield an orange oil.
  • the dropping funnel was charged with a solution of IPPB (50 mL, 235 mmol) in dry THF (100 mL) which was then added dropwise over 0.75 h. The resulting slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of HCl in ether. The solvent was removed, diethyl ether added, the mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO 4 , filtered and concentrated to yield an orange oil.
  • the product was triturated with 500 mL acetonitrile for 1 h in an ice-bath and filtered as a white solid before being recrystallised from acetonitrile to yield a white powder.
  • the solid was dissolved in a 2:1 (v/v) mixture of DCM and hexanes and passed through a plug of florisil(R) (diameter 11 cm, height 4 cm) on silica (diameter 11 cm, height 7 cm) and then recrystallised from acetonitrile three times to give a white powder which was filtered and dried in the oven (13 g, 24%).
  • HPLC indicated a purity of 99.67%
  • the dropping funnel was charged with a solution of 1,4-diiodobutane (15.7 mL, 119 mmol) in dry THF (160 mL) which was then added dropwise over 0.75 h. The resulting pale yellow slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of water. The mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO 4 , filtered and concentrated to yield an off-white solid.
  • the dropping funnel was charged with a solution of iPPB (33 mL, 161 mmol) in dry THF (60 mL) which was then added dropwise over 0.5 h.
  • the resulting slurry was allowed to warm to room temperature and stirred for 12 h.
  • the reaction was quenched by addition of HCL in ether.
  • the THF was removed, diethyl ether added, the mixture was transferred to a separating funnel and the layers were separated.
  • the aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO 4 , filtered and concentrated to yield a white solid.
  • the product was triturated with 500 mL methanol for 0.5 h.
  • the filtered solid was purified by chromatography on silica using a gradient of DCM in hexanes as the eluant.
  • the product-containing fractions were concentrated and recrystallised from acetonitrile to yield a white powder that was dried in the oven (20.44 g, 53%). HPLC indicated the purity was 99.77%
  • Monomer 12 is described in JP2012-137538 .
  • Monomer 10 is described in JP2012-137537 .
  • Polymer Example 1 includes the following repeating structures:
  • Polymer Example 2 includes the following repeating structures:
  • Comparative Polymer 1 includes the following repeating structure:
  • Comparative Monomer 8 (Comparative Monomer 2) was prepared as described in WO 2011/141714 . Comparative Polymer 2 includes the following repeating structure:
  • Comparative Polymer 3 includes the following repeating structures:
  • Comparative Polymer 4 includes the following repeating structures:
  • Blue Phosphorescent Emitter 1 The core of Blue Phosphorescent Emitter 1 is disclosed in W02004/101707 . Formation of dendrons is described in WO 02/066552 .
  • Stage 1 material (8.50 g) and 3,5-bis(4-tert-butylphenyl)phenyl-1-boronic acid pinacol ester (15.50 g) were dissolved in toluene (230 mL). The solution was purged with nitrogen for 1 h before 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (66 mg) and tris(dibenzylidene)dipalladium (75 mg) were added using 10 mL of nitrogen-purged toluene.
  • a substrate carrying ITO was cleaned using UV / Ozone.
  • the hole injection layer was formed by spin-coating an aqueous formulation of a hole-injection material available from Plextronics, Inc.
  • a hole transporting layer was formed to a thickness of 20 nm by spin-coating Hole-Transporting Polymer 1 and crosslinking the polymer by heating.
  • a light-emitting layer was formed by depositing a light-emitting composition of a host polymer (65 wt %) and Green Phosphorescent Emitter 1, illustrated below (35 wt %), by spin-coating from o-xylene solution a thickness of 75 nm.
  • Green Phosphorescent Emitter 1 is a dendrimeric phosphorescent emitter, as described in WO 02/066552 .
  • a cathode was formed by evaporation of a first layer of a metal fluoride to a thickness of about 2 nm, a second layer of aluminium to a thickness of about 200 nm and a third layer of silver.
  • Hole-Transporting Polymer 1 was formed by Suzuki polymerisation as described in WO 00/53656 of the following monomers:
  • devices containing Polymer Examples 1 and 2 as host polymer both reach a brightness of 1000 cd / m 2 at a lower voltage; have higher conductivity as shown by the voltage required to reach a current of 10 mA / cm 2 ; and are more efficient than a device containing Comparative Polymer 2 as host polymer.
  • Performance of devices containing Polymer Examples 1 and 2 is comparable to performance of the device containing Comparative Polymer 3.
  • Table 3 Polymer V at 1kcd/m 2 J at 1kcd/m 2 V at 10mA/cm 2 Efficiency Lm/W at 1kcd/m 2 Efficiency Cd/A at 1kcd/m 2 EQE at 1kcd/m 2 (%) Max EQE (%) Polymer Example 1 4.75 1.3 6.78 49.16 74.63 20.68 21.31 Polymer Example 2 4.45 1.4 6.48 50.59 72.48 20.02 20.52 Comparative Polymer 2 5.46 1.6 7.37 36.12 62.5 17.39 17.58 Comparative Polymer 3 4.44 1.4 6.19 50.93 71.85 19.8 20.68
  • a device was prepared as described for the green device examples above except that the light-emitting layer was formed by spin-coating a mixture of Polymer Example 1 and Blue Phosphorescent Emitter 1 (36 mol %)
  • a device was prepared as described in Blue Device Example 1, except that Polymer Example 1 was replaced with Comparative Polymer 2.
  • a device containing a light-emitting layer of a mixture of Polymer Example 1 and Blue Phosphorescent Emitter 1 (36 wt %) was prepared as described for the green device examples above.
  • the hole-transporting layer was formed by Suzuki polymerization of the following monomers, as described in WO 00/53656 :
  • a device was prepared as described in Blue Device Example 2, except that Polymer Example 1 was replaced with Comparative Polymer 2.
  • T70 and T50 are the time taken for luminance to fall to 70% and 50% respectively of a starting luminance.
  • Table 5 Device V at 1000 cd/m 2 J (mA /cm 2 ) at 1000 cd/m2 V at 10 mA/cm 2 Eff. (Lm/W) at 1kcd/m2 Eff.
  • the polymers of the invention are more conductive than the comparative polymers, as is shown by the higher current density values for the inventive polymers.
  • a substrate carrying ITO was cleaned using UV / Ozone.
  • a hole injection layer was formed to a thickness of about 35 nm by spin-coating an aqueous formulation of a hole-injection material available from Plextronics, Inc.
  • a hole transporting layer was formed to a thickness of about 22 nm by spin-coating Hole-Transporting Polymer 1 and crosslinking the polymer by heating.
  • a light-emitting layer was formed by depositing a light-emitting composition containing a host polymer doped with red, green and blue light-emitting metal complexes to a thickness of about 75 nm by spin-coating.
  • a cathode was formed by evaporation of a first layer of a sodium fluoride to a thickness of about 2 nm, a second layer of aluminium to a thickness of about 100 nm and a third layer of silver to a thickness of about 100 nm.
  • the blue light-emitting metal complex was complex selected from Blue Phosphorescent Emitter 1 and Blue Phosphorescent Emitter 2; the green emitting metal complex was Green Phosphorescent Emitter 1 described above; and the red-emitting metal complex was Red Phosphorescent Emitter 1, as described in WO/2012/153082 .
  • the composition of white device examples and comparative white devices is provided in Table 6.
  • Table 6 Host polymer Blue emitter Light-emitting layer composition ( wt %) V at 1kcd/m2 J at 1kcd/m2 V at 10mA/cm2 White Device Example 1 Polymer Example 3 Blue 1 53 : 45 : 1 : 1 5.87 3.50 6.8 Comparative White Device 1 Comparative Polymer 2 Blue 1 53 : 45 : 1 : 1 6.71 3.7 7.69
  • the light-emitting layer composition given in Table 6 is the Host Polymer : Blue Emitter : Green Emitter : Red Emitter ratio.
  • Table 6 shows that devices of the invention have higher conductivity than the comparative devices.
  • Hole-transporting polymers of the invention containing repeat units of formula (I) and hole-transporting amine repeat units, and comparative hole-transporting polymers, were prepared by Suzuki polymerisation as described in WO 00/53656 using monomers as shown in Table 7.
  • Polymer Example 10 has a HOMO level of 5.14 eV and a LUMO level of about 1.9 eV as measured by cyclic voltammetry.
  • Polymer Example 11 has a HOMO level of 5.05 eV and a LUMO level of about 1.9 eV as measured by cyclic voltammetry.
  • a 95:5 weight % composition of Polymer Example 10 and Green Phosphorescent Emitter 1 was dissolved in mixed xylenes and cast by spin-coating on a glass substrate.
  • a comparative composition containing Comparative Polymer 10 in place of Polymer Example 10 was cast in the same way.
  • photoluminescence quantum yield (PLQY) for the exemplary composition is much higher than that of the comparative composition, indicating that the exemplary polymer causes little or no quenching of phosphorescence of the green phosphorescent emitter.
  • the exemplary hole-transporting polymers may be used as hole-transporting materials of a hole-transporting layer without causing significant quenching of phosphorescence from an adjacent light-emitting layer.
  • Table 8 Polymer PLQY/ % CIE X CIE Y Comparative Polymer 10 48 0.296 0.629 Polymer Example 10 74 0.291 0.635
  • a 95:5 weight % composition of Polymer Example 11 and Blue Phosphorescent Emitter 1 was dissolved in mixed xylenes and cast by spin-coating on a glass substrate.
  • a comparative composition containing Comparative Polymer 11 in place of Polymer Example 11 was cast in the same way.
  • photoluminescence quantum yield (PLQY) for the exemplary composition is much higher than that of the comparative composition, indicating that the exemplary polymer causes little or no quenching of phosphorescence of the blue phosphorescent emitter.
  • the exemplary hole-transporting polymers may be used as hole-transporting materials of a hole-transporting layer without causing significant quenching of phosphorescence from an adjacent light-emitting layer.
  • Table 9 Polymer PLQY/ % CIE X CIE Y Comparative Polymer 11 7 0.169 0.115 Polymer Example 11 42 0.157 0.285
  • a blue light-emitting device was prepared as described for the Green Device Examples, except that the hole-transporting layer was formed by spin-coating and cross-linking Polymer Example 10 and the light-emitting layer was formed by spin-coating Polymer Example 1 (55 weight %) and Blue Phosphorescent Emitter 1 (45 weight %).
  • the device emitted light having a peak at 473 nm.
  • a blue light-emitting device was prepared as described for the Blue Device Example 3, except that Polymer Example 11 was used to form the hole-transporting layer.
  • the device emitted light having a peak at 476 nm.

Abstract

A polymer comprising repeat units of formula (I) and one or more co-repeat units:
Figure imga0001
Ar1 in each occurrence independently represent an aryl or heteroaryl group;
R1 and R2 in each occurrence independently represent a substituent;
p independently in each occurrence is 0 or a positive integer;
Sp represents a spacer group comprising at least one carbon or silicon atom spacing the two groups Ar1 apart; and
each group Ar1 is bound to an aromatic group of a co-repeat unit.
The polymer may form a charge-transporting layer of an OLED or may be a host material used with a luminescent dopant in a light-emitting layer of an OLED.

Description

    Background of the Invention
  • Electronic devices containing active organic materials are attracting increasing attention for use in devices such as organic light emitting diodes (OLEDs), organic photoresponsive devices (in particular organic photovoltaic devices and organic photosensors), organic transistors and memory array devices. Devices containing active organic materials offer benefits such as low weight, low power consumption and flexibility. Moreover, use of soluble organic materials allows use of solution processing in device manufacture, for example inkjet printing or spin-coating.
  • An OLED may comprise a substrate carrying an anode, a cathode and one or more organic light-emitting layers between the anode and cathode.
  • Holes are injected into the device through the anode and electrons are injected through the cathode during operation of the device. Holes in the highest occupied molecular orbital (HOMO) and electrons in the lowest unoccupied molecular orbital (LUMO) of a light-emitting material combine to form an exciton that releases its energy as light.
  • A light emitting layer may comprise a semiconducting host material and a light-emitting dopant wherein energy is transferred from the host material to the light-emitting dopant. For example, J. Appl. Phys. 65, 3610, 1989 discloses a host material doped with a fluorescent light-emitting dopant (that is, a light-emitting material in which light is emitted via decay of a singlet exciton).
  • Phosphorescent dopants are also known (that is, a light-emitting dopant in which light is emitted via decay of a triplet exciton).
  • A hole-transporting layer may be provided between the anode and light-emitting layer of an OLED.
  • Suitable light-emitting materials include small molecule, polymeric and dendrimeric materials. Suitable light-emitting polymers include poly(arylene vinylenes) such as poly(p-phenylene vinylenes) and polymers containing arylene repeat units, such as fluorene repeat units. Blue light-emitting fluorene homopolymer is disclosed in WO 97/05184 .
  • WO 00/53656 discloses a method of forming a conjugated polymer by reacting a monomer carrying halide reactive functional groups and a monomer carrying boron derivative reactive functional groups in the presence of a palladium catalyst.
  • WO 2005/013386 discloses an organic light-emitting device comprising a host polymer material and a luminescent metal complex wherein the polymer material may comprise non-planar repeat units or partially or fully non-conjugated repeat units in order to reduce conjugation of the polymer.
  • WO 2011/141709 discloses a light-emitting composition comprising a host polymer and a light-emitting dopant wherein the host polymer comprises conjugating repeat units and non-conjugating repeat units in a backbone of the polymer. The non-conjugating repeat units comprise an at least partially saturated ring having at least one ring atom that breaks any conjugation path between repeat units linked to the non- conjugating repeat units.
  • WO 2010/085676 discloses host materials for electrophosphorescent devices. A copolymer formed by copolymerization of 1,6-bis(3-(4,4,5,5-tetramethyl-[1,3,2]-dioxaborolan-2-yl)phenoxyl)hexane and 2-(4-(3-(3,6-dibromocarbazol-9-yl)propyl)phenyl)-4,6-di(3-methylphenyl)-1,3,5-triazine is disclosed.
  • JP 2005/158561 discloses non-conjugated polymers containing an electron transporting compound.
  • US 2011/095269 discloses the following polymer:
    Figure imgb0001
  • WO 2012/048778 discloses polymers formed by polymerization of the following monomers:
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
  • US 7898163 discloses a monomer having the following formula:
    Figure imgb0005
  • Summary of the Invention
  • In a first aspect the invention provides a polymer comprising repeat units of formula (I) and one or more co-repeat units:
    Figure imgb0006
    • wherein Ar1 in each occurrence independently represents an aryl or heteroaryl group;
    • R1 and R2 in each occurrence independently represent a substituent;
    • p independently in each occurrence is 0 or a positive integer;
    • Sp represents a spacer group comprising at least one carbon or silicon atom spacing the two groups Ar1 apart; and
    • each group Ar1 is bound to an aromatic group of a co-repeat unit.
  • In a second aspect the invention provides a monomer of formula (Im):
    Figure imgb0007
    wherein LG is a leaving group capable of leaving in a coupling reaction to form a carbon-carbon bond between Ar1 and an aromatic or heteroaromatic group, and Ar1, R1, R2, p and Sp are as described in the first aspect.
  • In a third aspect the invention provides a method of forming a polymer according to the first aspect, the method comprising the step of polymerising a monomer according to the second aspect and one or more co-monomers for forming the one or more respective co-repeat units.
  • In a fourth aspect the invention provides a composition comprising a polymer according to the first aspect and at least one light-emitting dopant.
  • In a fifth aspect the invention provides a formulation comprising a polymer according to the first aspect or a composition according to the fourth aspect and at least one solvent.
  • In a sixth aspect the invention provides an organic light-emitting device comprising an anode, a cathode and one or more organic layers between the anode and cathode including a light-emitting layer wherein at least one of the one or more organic layers comprises a polymer according to the first aspect.
  • In an embodiment of the sixth aspect, the organic light-emitting layer comprises a composition according to the fourth aspect.
  • In an embodiment of the sixth aspect, the organic layers comprise a hole-transporting layer between the anode and the light-emitting layer, the hole-transporting layer comprising a polymer according to the first aspect.
  • In a seventh aspect the invention provides a method of forming an organic light-emitting device according to the sixth aspect, the method comprising the step of forming the light-emitting layer over one of the anode and the cathode and forming the other of the anode and the cathode over the light-emitting layer
  • Description of the Drawings
  • The invention will now be described in more detail with reference to the drawings in which:
    • Figure 1 illustrates an OLED according to an embodiment of the invention.
    Detailed Description of the Invention
  • Figure 1 illustrates an OLED 100 according to an embodiment of the invention comprising an anode 101, a cathode 105 and a light-emitting layer 103 between the anode and cathode. The device 100 is supported on a substrate 107, for example a glass or plastic substrate.
  • One or more further layers may be provided between the anode 101 and cathode 105, for example hole-transporting layers, electron transporting layers, hole blocking layers and electron blocking layers. The device may contain more than one light-emitting layer. Preferred device structures include:
    • Anode / Hole-injection layer / Light-emitting layer / Cathode
    • Anode / Hole transporting layer / Light-emitting layer / Cathode
    • Anode / Hole-injection layer / Hole-transporting layer / Light-emitting layer / Cathode
    • Anode / Hole-injection layer / Hole-transporting layer / Light-emitting layer / Electron-transporting layer / Cathode.
  • Preferably, at least one of a hole-transporting layer and hole injection layer is present. Preferably, both a hole injection layer and hole-transporting layer are present.
  • Light-emitting materials include red, green and blue light-emitting materials.
  • A blue emitting material may have a photoluminescent spectrum with a peak in the range of 400-490 nm, optionally 420-490 nm.
  • A green emitting material may have a photoluminescent spectrum with a peak in the range of more than 490nm up to 580 nm, optionally more than 490 nm up to 540 nm.
  • A red emitting material may optionally have a peak in its photoluminescent spectrum of more than 580 nm up to 630 nm, optionally 585-625 nm.
  • Light-emitting layer 103 may contain a polymer of the invention. The polymer may be doped with one or more luminescent dopants. The light-emitting layer 103 may consist essentially of the polymer and the one or more luminescent dopants, or may contain one or more further materials, for example one or more charge-transporting materials or one or more further light-emitting materials. When used as a host material for one or more light-emitting dopants, the singlet or triplet energy level of the host material is preferably no more than 0.1 eV below that of the light-emitting material, and is more preferably about the same or higher than that of the light-emitting material in order to avoid quenching of luminescence from the light-emitting dopant.
  • In a preferred embodiment, light-emitting layer 103 contains a polymer of the invention and at least one of green and blue phosphorescent light-emitting materials.
  • A charge-transporting layer adjacent to a phosphorescent light-emitting layer preferably contains a charge-transporting material having a T1 excited state energy level that is no more than 0.1 eV lower than, preferably the same as or higher than, the T1 excited state energy level of the phosphorescent light-emitting material(s) of the invention in order to avoid quenching of triplet excitons migrating from the light-emitting layer into the charge-transporting layer. Accordingly, a polymer of the invention may be used as a charge-transporting material in a charge-transporting layer. In one preferred arrangement, a hole-transporting layer comprises or consists essentially of the polymer. Triplet energy levels may be measured from the energy onset of the phosphorescence spectrum measured by low temperature phosphorescence spectroscopy (Y.V. Romaovskii et al, Physical Review Letters, 2000, 85 (5), p1027, A. van Dijken et al, Journal of the American Chemical Society, 2004, 126, p7718).
  • The polymer contains non-conjugating repeat units of formula (I)
    Figure imgb0008
  • The repeat units of formula (I) contain aromatic or heteroaromatic groups Ar1 spaced apart by a spacer group Sp. The spacer group does not provide any conjugation path between the two groups Ar1, and therefore does not provide any conjugation path between repeat units on either side of the non-conjugating repeat units of formula (I).
  • However the groups Ar1 are capable of conjugating to aromatic or heteroaromatic groups of repeat units adjacent to the repeat unit of formula (I). The present inventors have found that even this relatively limited extent of conjugation between the repeat unit of formula (I) and an adjacent repeat unit can result in poor device performance, particularly when the polymer is used as a host for a dopant with a high excited state energy level, such as a phosphorescent green or blue light-emitting material.
  • Without wishing to be bound by any theory, it is believed that this poor device performance may be due to a reduction in singlet and triplet excited state energy levels upon conjugation. By providing substituents R1 on the groups Ar1 adjacent to the positions through which the repeat units of formula (I) are linked to adjacent repeat units, steric hindrance may be created between the groups Ar1 and the aromatic groups bound of adjacent repeat units that are bound to Ar1, creating a twist between repeat units of formula (I) and adjacent repeat units and reducing the extent of conjugation therebetween. The relatively high triplet excited state energy level may make the polymers of the invention suitable for use as hosts for phosphorescent light-emitting materials, including red, green and blue phosphorescent light-emitting materials, and / or as charge-transporting materials adjacent to light-emitting layers containing phosphorescent light-emitting materials
  • The polystyrene-equivalent number-average molecular weight (Mn) measured by gel permeation chromatography of the polymers described herein may be in the range of about 1x103 to 1x108, and preferably 1x104 to 5x106. The polystyrene-equivalent weight-average molecular weight (Mw) of the polymers described herein may be 1x103 to 1x108, and preferably 1x104 to 1x107.
  • Polymers as described herein are suitably amorphous polymers.
  • Polymer synthesis
  • Polymers as described herein may be formed by a polymerisation carried out in the presence of a metal catalyst.
  • One method of forming conjugated or partially conjugated polymers is Suzuki polymerisation, for example as described in WO 00/53656 or US 5777070 which allows formation of C-C bonds between two aromatic or heteroaromatic groups, and so enables formation of polymers having conjugation extending across two or more repeat units. Suzuki polymerisation takes place in the presence of a palladium complex catalyst and a base.
  • As illustrated in Scheme 1, in the Suzuki polymerisation process a monomer for forming repeat units RU1 having leaving groups LG1 such as boronic acid or boronic ester groups undergoes polymerisation with a monomer for forming repeat units RU2 having leaving groups LG2 such as halogen, preferably bromine or iodine; sulfonic acid; or sulfonic ester to form a carbon-carbon bond between Arylene 1 and Arylene 2: n LG 1 - RU 1 - LG 1 + n LG 2 - RU 2 - LG 2 - RU 1 - RU 2 n -
    Figure imgb0009
  • Scheme 1
  • Exemplary boronic esters have formula (IV):
    Figure imgb0010
    wherein R6 in each occurrence is independently a C1-20 alkyl group, * represents the point of attachment of the boronic ester to an aromatic ring of the monomer, and the two groups R6 may be linked to form a ring. In a preferred embodiment, the two groups R6 are linked to form the pinacol ester of boronic acid:
    Figure imgb0011
  • It will be understood by the skilled person that a monomer LG1-RU1-LG1 will not polymerise to form a direct carbon-carbon bond with another monomer LG1-RU1-LG1. A monomer LG2-RU2-LG2 will not polymerise to form a direct carbon-carbon bond with another monomer LG2-RU2-LG2.
  • Preferably, one of LG1 and LG2 is bromine or iodine and the other is a boronic acid or boronic ester.
  • This selectivity means that the ordering of repeat units in the polymer backbone can be controlled such that all or substantially all RU1 repeat units formed by polymerisation of LG1-RU1-LG1 are adjacent, on both sides, to RU2 repeat units.
  • In the example of Scheme 1 above, an AB copolymer is formed by copolymerisation of two monomers in a 1:1 ratio, however it will be appreciated that more than two or more than two monomers may be used in the polymerisation, and any ratio of monomers may be used.
  • The base may be an organic or inorganic base. Exemplary organic bases include tetraalkylammonium hydroxides, carbonates and bicarbonates. Exemplary inorganic bases include metal (for example alkali or alkali earth) hydroxides, carbonates and bicarbonates.
  • The palladium complex catalyst may be a palladium (0) or palladium (II) compound.
  • Particularly preferred catalysts are tetrakis(triphenylphosphine)palladium (0) and palladium (II) acetate mixed with a phosphine.
  • A phosphine may be provided, either as a ligand of the palladium compound catalyst or as a separate compound added to the polymerisation mixture. Exemplary phosphines include triarylphosphines, for example triphenylphosphines wherein each phenyl may independently be unsubstituted or substituted with one or more substituents, for example one or more C1-5 alkyl or C1-5 alkoxy groups.
  • Particularly preferred are triphenylphospine and tris(ortho-methoxytriphenyl) phospine.
  • The polymerisation reaction may take place in a single organic liquid phase in which all components of the reaction mixture are soluble. The reaction may take place in a two-phase aqueous-organic system, in which case a phase transfer agent may be used. The reaction may take place in an emulsion formed by mixing a two-phase aqueous-organic system with an emulsifier.
  • The polymer may be end-capped by addition of an end-capping reactant. Suitable end-capping reactants are aromatic or heteroaromatic materials substituted with only one leaving group. The end-capping reactants may include reactants substituted with a halogen for reaction with a boronic acid or boronic ester group at a polymer chain end, and reactants substituted with a boronic acid or boronic ester for reaction with a halogen at a polymer chain end. Exemplary end-capping reactants are halobenzenes, for example bromobenzene, and phenylboronic acid. End-capping reactants may be added during or at the end of the polymerisation reaction.
  • Non-conjugating repeat units
  • Ar1 of formula (I) is preferably an aryl group, more preferably phenylene. Phenylene groups Ar1 may be 1,2- , 1,3- or 1,4-linked phenylene, preferably 1,4-linked phenylene.
  • Exemplary groups R1 and (where present) R2 include C1-40 hydrocarbyl, -OR11 SR11,-NR11 2, and -SiR11 3 wherein R11 in each occurrence is a substituent, preferably C1-40 hydrocarbyl.
  • Optionally, R1 is a C1-40 hydrocarbyl, which may the same or different in each occurrence.
  • Exemplary hydrocarbyl groups R1, R2 and R11 include C1-20 alkyl; unsubstituted phenyl; phenyl substituted with one or more C1-20 alkyl groups; and a branched or linear chain of phenyl groups wherein each phenyl is unsubstituted or substituted with one or more C1-20 alkyl groups. C1-20 alkyl is preferred.
  • One or more non-adjacent C atoms of R1 and, where present, R2 may independently be replaced with -O-, -S-, -NR11-, -SiR11 2-, C(=O) or -COO-.
  • Alkyl groups as described anywhere herein includes linear, branched and cyclic alkyl groups. In the case of R1, a C3-20 branched alkyl group, including alkyl groups containing one or more C atoms selected from secondary and tertiary carbon atoms, may provide more steric hindrance and therefore a greater degree of twisting than a corresponding linear alkyl group.
  • Sp of formula (I) is optionally a C1-20 alkyl group wherein one or more non-adjacent C atoms of the alkyl group may be replaced with O, S, -NR11-, -SiR11 2-, -C(=O)- or -COO- and wherein R11 in each occurrence is independently H or a substituent.
  • Sp of formula (I) may contain a single non-conjugating atom only between the two groups Ar1, or Sp may contain non-conjugating chain of at least 2 atoms separating the two groups Ar1.
  • A non-conjugating atom may be, for example, -CR4 2- or -SiR4 2- wherein R4 in each occurrence is H or a substituent, optionally a substituent R11 as described above, for example C1-20 alkyl.
  • A spacer chain Sp may contain two or more atoms separating the two groups Ar1, for example a C1-20 alkyl chain wherein one or more non-adjacent C atoms of the chain may be replaced with O, S, -NR11-, -SiR11 2-, -C(=O)- or -COO-. Preferably, the spacer chain Sp contains at least one sp3-hybridised carbon atom separating the two groups Ar1.
  • Preferred groups Sp are selected from C1-20 alkyl wherein one or more non-adjacent C atoms are replaced with O. An oligo-ether chain, for example a chain of formula-O(CH2CH2O)n- may be provided, wherein n is from 1-5.
  • Repeat units of formula (I) may be provided in an amount in the range of 1 - 50 mol %, optionally 20-50 mol %. The polymer may contain two or more different repeat units of formula (I).
  • The repeat unit of formula (I) may have formula (Ia) or (Ib):
    Figure imgb0012
  • Exemplary repeat units of formula (I) include the following:
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    wherein R11 in each occurrence is independently H or a substituent.
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
  • Co-repeat units
  • Polymers of the invention contain repeat units of formula (I) and one or more co-repeat units. Some or all of the co-repeat units contain an aromatic or heteroaromatic group that is bound to Ar1 of repeat units of formula (I).
  • Exemplary co-repeat units include arylene or heteroarylene repeat units that may be unsubstituted or substituted with one or more substituents, and charge-transporting repeat units containing aromatic or heteroaromatic groups.
  • Co-repeat units include repeat units that may be directly adjacent to repeat units of formula (I) and repeat units that may be spaced apart from repeat units of formula (I). The copolymer may contain repeat units of formula (I) and adjacent co-repeat units only in the form of a regioregular AB copolymer of repeat units of formula (I) and adjacent co-repeat units, or it may contain repeat units of formula (I), co-repeat units adjacent to repeat units of formula (I), and one or more further co-repeat units
  • Exemplary co-repeat units include arylene repeat units, for example 1,2-, 1,3- and 1,4-phenylene repeat units, 3,6- and 2,7- linked fluorene repeat units, indenofluorene, naphthalene, anthracene and phenanthrene repeat units, and stilbene repeat units, each of which may be unsubstituted or substituted with one or more substitutents, for example one or more C1-30 hydrocarbyl substituents.
  • One preferred class of arylene repeat units is phenylene repeat units, such as phenylene repeat units of formula (III):
    Figure imgb0036
    • wherein q in each occurrence is independently 0, 1, 2, 3 3 or 4, optionally 1 or 2; n is 1, 2 or 3; and R3 independently in each occurrence is a substituent.
  • Where present, each R3 may independently be selected from the group consisting of:
    • alkyl, optionally C1-20 alkyl, wherein one or more non-adjacent C atoms may be replaced with optionally substituted aryl or heteroaryl, O, S, substituted N, C=O or -COO-, and one or more H atoms may be replaced with F;
    • aryl and heteroaryl groups that may be unsubstituted or substituted with one or more substituents, preferably phenyl substituted with one or more C1-20 alkyl groups;
    • a linear or branched chain of aryl or heteroaryl groups, each of which groups may independently be substituted, for example a group of formula -(Ar3)r wherein each Ar3 is independently an aryl or heteroaryl group and r is at least 2, preferably a branched or linear chain of phenyl groups each of which may be unsubstituted or substituted with one or more C1-20 alkyl groups; and
    • a crosslinkable-group, for example a group comprising a double bond such and a vinyl or acrylate group, or a benzocyclobutane group.
  • In the case where R3 comprises an aryl or heteroaryl group, or a linear or branched chain of aryl or heteroaryl groups, the or each aryl or heteroaryl group may be substituted with one or more substituents R7 selected from the group consisting of:
    • alkyl, for example C1-20 alkyl, wherein one or more non-adjacent C atoms may be replaced with O, S, substituted N, C=O and -COO- and one or more H atoms of the alkyl group may be replaced with F;
    • NR9 2, OR9, SR9, SiR9 3 and
    • fluorine, nitro and cyano;
    wherein each R9 is independently selected from the group consisting of alkyl, preferably C1-20 alkyl; and aryl or heteroaryl, preferably phenyl, optionally substituted with one or more C1-20 alkyl groups.
  • Substituted N, where present, may be -NR9- wherein R9 is as described above.
  • Preferably, each R3 where present, is independently selected from C1-40hydrocarbyl, and is more preferably selected from C1-20 alkyl; unusubstituted phenyl; phenyl substituted with one or more C1-20 alkyl groups; a linear or branched chain of phenyl groups, wherein each phenyl may be unsubstituted or substituted with one or more substituents; and a crosslinkable group.
  • If n is 1 then exemplary repeat units of formula (III) include the following:
    Figure imgb0037
  • A particularly preferred repeat unit of formula (III) has formula (IIIa):
    Figure imgb0038
  • Substituents R3 of formula (IIIa) are adjacent to linking positions of the repeat unit, which may cause steric hindrance between the repeat unit of formula (IIIa) and adjacent repeat units, resulting in the repeat unit of formula (IIIa) twisting out of plane relative to one or both adjacent repeat units.
  • Exemplary repeat units where n is 2 or 3 include the following:
    Figure imgb0039
  • A preferred repeat unit has formula (IIIb):
    Figure imgb0040
  • The two R3 groups of formula (IIIb) may cause steric hindrance between the phenyl rings they are bound to, resulting in twisting of the two phenyl rings relative to one another.
  • A further class of arylene repeat units are optionally substituted fluorene repeat units, such as repeat units of formula (IV):
    Figure imgb0041
    wherein R3 in each occurrence is the same or different and is a substituent as described with reference to formula (III), and wherein the two groups R3 may be linked to form a ring; R8 is a substituent; and d is 0, 1, 2 or 3.
  • The aromatic carbon atoms of the fluorene repeat unit may be unsubstituted, or may be substituted with one or more substituents R8. Exemplary substituents R8 are alkyl, for example C1-20 alkyl, wherein one or more non-adjacent C atoms may be replaced with O, S, NH or substituted N, C=O and -COO-, optionally substituted aryl, optionally substituted heteroaryl, alkoxy, alkylthio, fluorine, cyano and arylalkyl. Particularly preferred substituents include C1-20 alkyl and substituted or unsubstituted aryl, for example phenyl. Optional substituents for the aryl include one or more C1-20 alkyl groups.
  • Substituted N, where present, may be -NR5- wherein R5 is C1-20 alkyl; unsubstituted phenyl; or phenyl substituted with one or more C1-20 alkyl groups.
  • The extent of conjugation of repeat units of formula (IV) to aryl or heteroaryl groups of adjacent repeat units may be controlled by (a) linking the repeat unit through the 3- and / or 6- positions to limit the extent of conjugation across the repeat unit, and / or (b) substituting the repeat unit with one or more substituents R8 in or more positions adjacent to the linking positions in order to create a twist with the adjacent repeat unit or units, for example a 2,7-linked fluorene carrying a C1-20 alkyl substituent in one or both of the 3- and 6-positions.
  • The repeat unit of formula (IV) may be an optionally substituted 2,7-linked repeat unit of formula (IVa):
    Figure imgb0042
  • Optionally, the repeat unit of formula (IVa) is not substituted in a position adjacent to the 2- or 7-position. Linkage through the 2- and 7-positions and absence of substituents adjacent to these linking positions provides a repeat unit that is capable of providing a relatively high degree of conjugation across the repeat unit.
  • The repeat unit of formula (IV) may be an optionally substituted 3,6-linked repeat unit of formula (IVb)
    Figure imgb0043
  • The extent of conjugation across a repeat unit of formula (IVb) may be relatively low as compared to a repeat unit of formula (IVa).
  • Another exemplary arylene repeat unit has formula (V):
    Figure imgb0044
    wherein R3, R8 and d are as described with reference to formula (III) and (IV) above. Any of the R3 groups may be linked to any other of the R3 groups to form a ring. Aromatic carbon atoms of the repeat unit of formula (V) may be unsubstituted, or may be substituted with one or more substituents.
  • Repeat units of formula (V) may have formula (Va) or (Vb):
    Figure imgb0045
  • Further arylene co-repeat units include: phenanthrene repeat units; naphthalene repeat units; anthracene repeat units; and perylene repeat units. Each of these arylene repeat units may be linked to adjacent repeat units through any two of the aromatic carbon atoms of these units. Specific exemplary linkages include 9,10-anthracene; 2,6-anthracene; 1,4-naphthalene; 2,6-naphthalene; 2,7-phenanthrene; and 2,5-perylene. Each of these repeat units may be substituted or unsubstituted, for example substituted with one or more C1-40 hydrocarbyl groups.
  • The polymer preferably contains one or more charge-transporting repeat units. Exemplary charge-transporting repeat units include repeat units of materials disclosed in, for example, Shirota and Kageyama, Chem. Rev. 2007, 107, 953-1010
  • Exemplary hole transporting repeat units may be repeat units of materials having a electron affinity of 2.9 eV or lower and an ionisation potential of 5.8 eV or lower, preferably 5.7 eV or lower.
  • Preferred hole-transporting repeat units are (hetero)arylamine repeat units, including repeat units of formula (VII):
    Figure imgb0046
    wherein Ar8 and Ar9 in each occurrence are independently selected from substituted or unsubstituted aryl or heteroaryl, g is greater than or equal to 1, preferably 1 or 2, R13 is H or a substituent, preferably a substituent, and c and d are each independently 1, 2 or 3.
  • R13, which may be the same or different in each occurrence when g > 1, is preferably selected from the group consisting of alkyl, for example C1-20 alkyl, Ar10, a branched or linear chain of Ar10 groups, or a crosslinkable unit that is bound directly to the N atom of formula (VIII) or spaced apart therefrom by a spacer group, wherein Ar10 in each occurrence is independently optionally substituted aryl or heteroaryl. Exemplary spacer groups are C1-20 alkyl, phenyl and phenyl-C1-20 alkyl.
  • Any of Ar8, Ar9 and, if present, Ar10 in the repeat unit of Formula (IX) may be linked by a direct bond or a divalent linking atom or group to another of Ar8, Ar9 and Ar10. Preferred divalent linking atoms and groups include O, S; substituted N; and substituted C.
  • Any of Ar8, Ar9 and, if present, Ar10 may be substituted with one or more substituents. Exemplary substituents are substituents R10, wherein each R10 may independently be selected from the group consisting of:
    • substituted or unsubstituted alkyl, optionally C1-20 alkyl, wherein one or more non-adjacent C atoms may be replaced with optionally substituted aryl or heteroaryl, O, S, substituted N, C=O or -COO- and one or more H atoms may be replaced with F; and
    • a crosslinkable group attached directly to the fluorene unit or spaced apart therefrom by a spacer group, for example a group comprising a double bond such and a vinyl or acrylate group, or a benzocyclobutane group
  • Preferred repeat units of formula (VII) have formulae 1-3:
    Figure imgb0047
  • In one preferred arrangement, R13 is Ar10 and each of Ar8, Ar9 and Ar10 are independently and optionally substituted with one or more C1-20 alkyl groups. Ar8, Ar9 and Ar10 are preferably phenyl.
  • In another preferred arrangement, the central Ar9 group of formula (I) linked to two N atoms is a polycyclic aromatic that may be unsubstituted or substituted with one or more substituents R10. Exemplary polycyclic aromatic groups are naphthalene, perylene, anthracene and fluorene.
  • In another preferred arrangement, Ar8 and Ar9 are phenyl, each of which may be substituted with one or more C1-20 alkyl groups, and R13 is -(Ar10)r wherein r is at least 2 and wherein the group -(Ar10)r forms a linear or branched chain of aromatic or heteroaromatic groups, for example 3,5-diphenylbenzene wherein each phenyl may be substituted with one or more C1-20 alkyl groups.In another preferred arrangement, c, d and g are each 1 and Ar8 and Ar9 are phenyl linked by an oxygen atom to form a phenoxazine ring.
  • Amine repeat units may be provided in a molar amount in the range of about 0.5 mol % up to about 50 mol %, optionally about 1-25 mol %, optionally about 1-10 mol %.
  • The polymer may contain one, two or more different repeat units of formula (VII).
  • Amine repeat units may provide hole-transporting and / or light-emitting functionality. Preferred fluorescent light-emitting amine repeat units include a blue light-emitting repeat unit of formula (VIIa) and a green light-emitting repeat unit formula (VIIb):
    Figure imgb0048
  • R13 of formula (VIIa) is preferably a hydrocarbyl, preferably C1-20 alkyl, phenyl that is unsubstituted or substituted with one or more C1-20 alkyl groups, or a branched or linear chain of phenyl groups wherein each said phenyl group is unsubstituted or substituted with one or more C1-20 alkyl groups.
  • The repeat unit of formula (VIIb) may be unsubstituted or one or more of the rings of the repeat unit of formula (VIIb) may be substituted with one or more substituents R15, preferably one or more C1-20 alkyl groups.
  • Another preferred charge-transporting repeat unit has formula (VIII):
    Figure imgb0049
    wherein Ar8, Ar9 and Ar10 are as described with reference to formula (VII) above, and may each independently be substituted with one or more substituents described with reference to Ar8, Ar9 and Ar10, and z in each occurrence is independently at least 1, optionally 1, 2 or 3, preferably 1, and Y is N or CR14, wherein R14 is H or a substituent, preferably H or C1-10 alkyl. Preferably, Ar8, Ar9 and Ar10 of formula (VIII) are each phenyl, each phenyl being optionally and independently substituted with one or more C120 alkyl groups.
  • In one preferred embodiment, all 3 groups Y are N.
  • If all 3 groups Y are CR14 then at least one of Ar8, Ar9 and Ar10 is preferably a heteroaromatic group comprising N.
  • Each of Ar8, Ar9 and Ar10 may independently be substituted with one or more substituents. In one arrangement, Ar8, Ar9 and Ar10 are phenyl in each occurrence. Exemplary substituents include R5 as described above with reference to formula (V), for example C1-20 alkyl or alkoxy.
  • Ar10 of formula (VIII) is preferably phenyl, and is optionally substituted with one or more C1-20 alkyl groups or a crosslinkable unit.
  • Preferably, z is 1 and each of Ar8, Ar9 and Ar10 is unsubstituted phenyl or phenyl substituted with one or more C1-20 alkyl groups.
  • A particularly preferred repeat unit of formula (VIII) has formula (VIIIa), which may be unsubstituted or substituted with one or more substituents R5, preferably one or more C120 alkyl groups:
    Figure imgb0050
  • Light-emitting layers
  • An OLED may contain one or more light-emitting layers. A light-emitting layer may contain a polymer comprising repeat units of formula (I).
  • Suitable light-emitting materials for a light-emitting layer include polymeric, small molecule and dendritic light-emitting materials, each of which may be fluorescent or phosphorescent.
  • A light-emitting layer of an OLED may be unpatterned, or may be patterned to form discrete pixels. Each pixel may be further divided into subpixels. The light-emitting layer may contain a single light-emitting material, for example for a monochrome display or other monochrome device, or may contain materials emitting different colours, in particular red, green and blue light-emitting materials for a full-colour display.
  • A light-emitting layer may contain a mixture of more than one light-emitting material, for example a mixture of light-emitting materials that together provide white light emission.
  • A white-emitting OLED may contain a single, white-emitting layer or may contain two or more layers that emit different colours which, in combination, produce white light. The light emitted from a white-emitting OLED may have CIE x coordinate equivalent to that emitted by a black body at a temperature in the range of 2500-9000K and a CIE y coordinate within 0.05 or 0.025 of the CIE y co-ordinate of said light emitted by a black body, optionally a CIE x coordinate equivalent to that emitted by a black body at a temperature in the range of 2700-6000K.
  • Exemplary fluorescent polymeric light-emitting materials include polymers comprising one or more of arylene repeat units, arylene vinylene repeat units and arylamine repeat units.
  • Exemplary phosphorescent light-emitting materials include metal complexes. A phosphorescent material may be a material comprising a substituted or unsubstituted complex of formula (IX):

            ML1 qL2 rL3 s     (IX)

    • wherein M is a metal; each of L1, L2 and L3 is a coordinating group; q is a positive integer; r and s are each independently 0 or a positive integer; and the sum of (a. q) + (b. r) + (c.s) is equal to the number of coordination sites available on M, wherein a is the number of coordination sites on L1, b is the number of coordination sites on L2 and c is the number of coordination sites on L3.
  • Heavy elements M induce strong spin-orbit coupling to allow rapid intersystem crossing and emission from triplet or higher states. Suitable heavy metals M include d-block metals, in particular those in rows 2 and 3 i.e. elements 39 to 48 and 72 to 80, in particular ruthenium, rhodium, palladium, rhenium, osmium, iridium, platinum and gold. Iridium is particularly preferred.
  • Exemplary ligands L1, L2 and L3 include carbon or nitrogen donors such as porphyrin or bidentate ligands of formula (X):
    Figure imgb0051
    wherein Ar5 and Ar6 may be the same or different and are independently selected from substituted or unsubstituted aryl or heteroaryl; X1 and Y1 may be the same or different and are independently selected from carbon or nitrogen; and Ar5 and Ar6 may be fused together. Ligands wherein X1 is carbon and Y1 is nitrogen are preferred, in particular ligands in which Ar5 is a single ring or fused heteroaromatic of N and C atoms only, for example pyridyl or isoquinoline, and Ar6 is a single ring or fused aromatic, for example phenyl or naphthyl.
  • To achieve red emission, Ar5 may be selected from phenyl, fluorene, naphthyl and Ar6 are selected from quinoline, isoquinoline, thiophene and benzothiophene.
  • To achieve green emission, Ar5 may be selected from phenyl or fluorene and Ar6 may be pyridine.
  • To achieve blue emission, Ar5 may be selected from phenyl and Ar6 may be selected from imidazole, pyrazole, triazole and tetrazole.
  • Examples of bidentate ligands are illustrated below:
    Figure imgb0052
    Figure imgb0053
  • Each of Ar5 and Ar6 may carry one or more substituents. Two or more of these substituents may be linked to form a ring, for example an aromatic ring.
  • Other ligands suitable for use with d-block elements include diketonates, in particular acetylacetonate (acac), tetrakis-(pyrazol-1-yl)borate, 2-carboxypyridyl, triarylphosphines and pyridine, each of which may be substituted.
  • Exemplary substituents include groups R13 as described above with reference to Formula (VII). Particularly preferred substituents include fluorine or trifluoromethyl which may be used to blue-shift the emission of the complex, for example as disclosed in WO 02/45466 , WO 02/44189 , US 2002-117662 and US 2002-182441 ; alkyl or alkoxy groups, for example C1-20 alkyl or alkoxy, which may be as disclosed in JP 2002-324679 ; carbazole which may be used to assist hole transport to the complex when used as an emissive material, for example as disclosed in WO 02/81448 ; and dendrons which may be used to obtain or enhance solution processability of the metal complex, for example as disclosed in WO 02/66552 .
  • A light-emitting dendrimer typically comprises a light-emitting core bound to one or more dendrons, wherein each dendron comprises a branching point and two or more dendritic branches. Preferably, the dendron is at least partially conjugated, and at least one of the branching points and dendritic branches comprises an aryl or heteroaryl group, for example a phenyl group. In one arrangement, the branching point group and the branching groups are all phenyl, and each phenyl may independently be substituted with one or more substituents, for example alkyl or alkoxy.
  • A dendron may have optionally substituted formula (XI)
    Figure imgb0054
    • wherein BP represents a branching point for attachment to a core and G1 represents first generation branching groups.
  • The dendron may be a first, second, third or higher generation dendron. G1 may be substituted with two or more second generation branching groups G2, and so on, as in optionally substituted formula (XIa):
    Figure imgb0055
    • wherein u is 0 or 1; v is 0 if u is 0 or may be 0 or 1 if u is 1; BP represents a branching point for attachment to a core and G1, G2 and G3 represent first, second and third generation dendron branching groups. In one preferred embodiment, each of BP and G1, G2 ... Gn is phenyl, and each phenyl BP, G1, G2 ... Gn-1 is a 3,5-linked phenyl
    .
  • A preferred dendron is a substituted or unsubstituted dendron of formula (XIb):
    Figure imgb0056
    • wherein * represents an attachment point of the dendron to a core.
  • BP and / or any group G may be substituted with one or more substituents, for example one or more C1-20 alkyl or alkoxy groups.
  • Phosphorescent light-emitting materials may be provided in a light-emitting layer with a host material. The host material may be a host polymer of the invention.
  • The phosphorescent light-emitting material may be physically mixed with the host polymer or may be covalently bound thereto. The phosphorescent light-emitting material may be provided in a side-chain, main chain or end-group of the polymer. Where the phosphorescent material is provided in a polymer side-chain, the phosphorescent material may be directly bound to the backbone of the polymer or spaced apart therefrom by a spacer group, for example a C1-20 alkyl spacer group in which one or more non-adjacent C atoms may be replaced by O or S. It will therefore be appreciated that a composition of the present invention may consist of or may comprise a polymer of the invention comprising repeat units of formula (I) with a phosphorescent light-emitting material bound to the polymer.
  • In the case where one or more phosphorescent light-emitting materials are mixed with a host material, the phosphorescent light-emitting material(s) may make up about 0.05 wt % up to about 50 wt %, optionally about 1-40 wt % of a host / phosphorescent light-emitting material composition.
  • In the case where one or more phosphorescent light-emitting materials are bound to a host material, for example a host polymer, the phosphorescent light-emitting material(s) may make up about 0.01 - 25 mol % of the material.
  • Charge transporting and charge blocking layers
  • In the case of an OLED, a hole transporting layer may be provided between the anode and the light-emitting layer or layers. Likewise, an electron transporting layer may be provided between the cathode and the light-emitting layer or layers.
  • Similarly, an electron blocking layer may be provided between the anode and the light-emitting layer and a hole blocking layer may be provided between the cathode and the light-emitting layer. Transporting and blocking layers may be used in combination. Depending on its HOMO and LUMO levels, a single layer may both transport one of holes and electrons and block the other of holes and electrons.
  • A charge-transporting layer or charge-blocking layer may be crosslinked, particularly if a layer overlying that charge-transporting or charge-blocking layer is deposited from a solution. The crosslinkable group used for this crosslinking may be a crosslinkable group comprising a reactive double bond such and a vinyl or acrylate group, or a benzocyclobutane group.
  • If present, a hole transporting layer located between the anode and the light-emitting layers preferably has a HOMO level of less than or equal to 5.5 eV, more preferably around 4.8-5.5 eV or 5.1-5.3 eV as measured by cyclic voltammetry. The HOMO level of the hole transport layer may be selected so as to be within 0.2 eV, optionally within 0.1 eV, of an adjacent layer (such as a light-emitting layer) in order to provide a small barrier to hole transport between these layers.
  • If present, an electron transporting layer located between the light-emitting layers and cathode preferably has a LUMO level of around 2.5-3.5 eV as measured by cyclic voltammetry. For example, a layer of a silicon monoxide or silicon dioxide or other thin dielectric layer having thickness in the range of 0.2-2nm may be provided between the light-emitting layer nearest the cathode and the cathode. HOMO and LUMO levels may be measured using cyclic voltammetry.
  • A hole transporting layer may contain a homopolymer or copolymer comprising a repeat unit of formula (VII) as described above, for example a copolymer comprising one or more amine repeat units of formula (VII) and one or more arylene repeat units, for example one or more arylene repeat units selected from formulae (III), (IV) and (V).
  • An electron transporting layer may contain a polymer comprising a chain of optionally substituted arylene repeat units, such as a chain of fluorene repeat units.
  • If a hole- or electron-transporting layer is adjacent a light-emitting layer containing a phosphorescent material then the T1 energy level of the material or materials of that layer are preferably higher than that of the phosphorescent emitter in the adjacent light-emitting layer.
  • Hole injection layers
  • A conductive hole injection layer, which may be formed from a conductive organic or inorganic material, may be provided between the anode 101 and the light-emitting layer 103 of an OLED as illustrated in Figure 1 to assist hole injection from the anode into the layer or layers of semiconducting polymer. Examples of doped organic hole injection materials include optionally substituted, doped poly(ethylene dioxythiophene) (PEDT), in particular PEDT doped with a charge-balancing polyacid such as polystyrene sulfonate (PSS) as disclosed in EP 0901176 and EP 0947123 , polyacrylic acid or a fluorinated sulfonic acid, for example Nafion ®; polyaniline as disclosed in US 5723873 and US 5798170 ; and optionally substituted polythiophene or poly(thienothiophene). Examples of conductive inorganic materials include transition metal oxides such as VOx, MoOx and RuOx as disclosed in Journal of Physics D: Applied Physics (1996), 29(11), 2750-2753.
  • Cathode
  • The cathode 105 is selected from materials that have a workfunction allowing injection of electrons into the light-emitting layer of the OLED. Other factors influence the selection of the cathode such as the possibility of adverse interactions between the cathode and the light-emitting material. The cathode may consist of a single material such as a layer of aluminium. Alternatively, it may comprise a plurality of conductive materials such as metals, for example a bilayer of a low workfunction material and a high workfunction material such as calcium and aluminium, for exampleas disclosed in WO 98/10621 . The cathode may comprise elemental barium, for example as disclosed in WO 98/57381 , Appl. Phys. Lett. 2002, 81(4), 634 and WO 02/84759 . The cathode may comprise a thin (e.g. 1-5 nm) layer of metal compound, in particular an oxide or fluoride of an alkali or alkali earth metal, between the organic layers of the device and one or more conductive cathode layers to assist electron injection, for example lithium fluoride as disclosed in WO 00/48258 ; barium fluoride as disclosed in Appl. Phys. Lett. 2001, 79(5), 2001; and barium oxide. In order to provide efficient injection of electrons into the device, the cathode preferably has a workfunction of less than 3.5 eV, more preferably less than 3.2 eV, most preferably less than 3 eV. Work functions of metals can be found in, for example, Michaelson, J. Appl. Phys. 48(11), 4729, 1977.
  • The cathode may be opaque or transparent. Transparent cathodes are particularly advantageous for active matrix devices because emission through a transparent anode in such devices is at least partially blocked by drive circuitry located underneath the emissive pixels. A transparent cathode comprises a layer of an electron injecting material that is sufficiently thin to be transparent. Typically, the lateral conductivity of this layer will be low as a result of its thinness. In this case, the layer of electron injecting material is used in combination with a thicker layer of transparent conducting material such as indium tin oxide.
  • It will be appreciated that a transparent cathode device need not have a transparent anode (unless, of course, a fully transparent device is desired), and so the transparent anode used for bottom-emitting devices may be replaced or supplemented with a layer of reflective material such as a layer of aluminium. Examples of transparent cathode devices are disclosed in, for example, GB 2348316 .
  • Encapsulation
  • Organic optoelectronic devices tend to be sensitive to moisture and oxygen. Accordingly, the substrate preferably has good barrier properties for prevention of ingress of moisture and oxygen into the device. The substrate is commonly glass, however alternative substrates may be used, in particular where flexibility of the device is desirable. For example, the substrate may comprise one or more plastic layers, for example a substrate of alternating plastic and dielectric barrier layers or a laminate of thin glass and plastic.
  • The device may be encapsulated with an encapsulant (not shown) to prevent ingress of moisture and oxygen. Suitable encapsulants include a sheet of glass, films having suitable barrier properties such as silicon dioxide, silicon monoxide, silicon nitride or alternating stacks of polymer and dielectric or an airtight container. In the case of a transparent cathode device, a transparent encapsulating layer such as silicon monoxide or silicon dioxide may be deposited to micron levels of thickness, although in one preferred embodiment the thickness of such a layer is in the range of 20-300 nm. A getter material for absorption of any atmospheric moisture and / or oxygen that may permeate through the substrate or encapsulant may be disposed between the substrate and the encapsulant.
  • Formulation processing
  • A formulation suitable for forming a charge-transporting or light-emitting layer may be formed from the polymer of the invention, any further components of the layer such as light-emitting dopants, and one or more suitable solvents.
  • The formulation may be a solution of the polymer and any other components in the one or more solvents, or may be a dispersion in the one or more solvents in which one or more components are not dissolved. Preferably, the formulation is a solution.
  • Solvents suitable for dissolving semiconducting polymers, particularly polymers comprising alkyl substituents, include benzenes substituted with one or more C1-10 alkyl or C1-10 alkoxy groups, for example toluene, xylenes and methylanisoles.
  • A charge-tranporting or light-emitting layer of an OLED may be formed by depositing the formulation containing a polymer as described herein and evaporating the one or more solvents.
  • Particularly preferred solution deposition techniques including printing and coating techniques such spin-coating and inkjet printing.
  • Spin-coating is particularly suitable for devices wherein patterning of the light-emitting layer is unnecessary - for example for lighting applications or simple monochrome segmented displays.
  • Inkjet printing is particularly suitable for high information content displays, in particular full colour displays. A device may be inkjet printed by providing a patterned layer over the first electrode and defining wells for printing of one colour (in the case of a monochrome device) or multiple colours (in the case of a multicolour, in particular full colour device). The patterned layer is typically a layer of photoresist that is patterned to define wells as described in, for example, EP 0880303 .
  • As an alternative to wells, the ink may be printed into channels defined within a patterned layer. In particular, the photoresist may be patterned to form channels which, unlike wells, extend over a plurality of pixels and which may be closed or open at the channel ends.
  • Other solution deposition techniques include dip-coating, roll printing and screen printing.
  • Examples Synthesis of Monomer Example 1
  • Figure imgb0057
  • Stage 1
  • An oven-dried 3 L 4-neck flask fitted with an internal thermometer, N2 bubbler, overhead stirrer and oven-dried mL pressure-equalising dropping funnel was charged with 1,4-dibromo-2,5-diethylbenzene (70 g, 240 mmol) and dry THF (700 mL). The solution was cooled with stirring to <-70 °C to produce a white slurry. s-Butyllithium (335 mL, 1.4 M, 465 mmol) was charged to the dropping funnel and added dropwise over the space of 1.5 h ensuring the reaction temperature did not exceed -70 °C. The slurry was stirred for 3 h after which GCMS confirmed the lithiation was complete. The dropping funnel was charged with a solution of 1,4-diiodobutane (13.8 mL, 105 mmol) in dry THF (140 mL) which was then added dropwise over 0.75 h. The resulting slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of water. The mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO4, filtered and concentrated to yield an orange oil. The product was triturated with 500 mL methanol for 0.5 h and filtered as a white solid before being recrystallised from toluene/IPA to yield a white powder that was dried in the oven (24.21 g, 48%). GCMS indicated a purity of ∼96% and the material was taken to the next stage without further purification
  • Stage 2
  • An oven-dried 2 L 4-neck flask fitted with an internal thermometer, N2 bubbler, overhead stirrer and oven-dried mL pressure-equalising dropping funnel was charged with Stage 1 material (45 g, 94 mmol) and dry THF (450 mL). The solution was cooled with stirring to <-70 °C to produce a white slurry. n-Butyllithium (96 mL, 2.5 M, 225 mmol) was charged to the dropping funnel and added dropwise over the space of 0.75 h ensuring the reaction temperature did not exceed -70 °C. The slurry was stirred for 5 h after which GCMS confirmed the lithiation was complete. The dropping funnel was charged with a solution of IPPB (50 mL, 235 mmol) in dry THF (100 mL) which was then added dropwise over 0.75 h. The resulting slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of HCl in ether. The solvent was removed, diethyl ether added, the mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO4, filtered and concentrated to yield an orange oil. The product was triturated with 500 mL acetonitrile for 1 h in an ice-bath and filtered as a white solid before being recrystallised from acetonitrile to yield a white powder. The solid was dissolved in a 2:1 (v/v) mixture of DCM and hexanes and passed through a plug of florisil(R) (diameter 11 cm, height 4 cm) on silica (diameter 11 cm, height 7 cm) and then recrystallised from acetonitrile three times to give a white powder which was filtered and dried in the oven (13 g, 24%). HPLC indicated a purity of 99.67%
  • 1H NMR (referenced to CDCl3 peak at 7.26 ppm): 7.57 (2H, s), 6.98 (2H, s), 2.84-2.88 (4H, m), 2.61-2.64 (8H, m), 1.67 (4H, m), 1.32 (24H, s), 1.17-1.21 (12H, m)
  • Synthesis of Monomer Example 2
  • Figure imgb0058
  • Stage 1
  • An oven-dried 3 L 4-neck flask fitted with an internal thermometer, N2 bubbler, overhead stirrer and oven-dried pressure-equalising dropping funnel was charged with 1,4-dibromo-2,5-dimethylbenzene (70 g, 265 mmol) and dry THF (700 mL). The solution was cooled with stirring to <-70 °C to produce a white slurry. s-Butyllithium (370 mL, 1.4 M, 518 mmol) was charged to the dropping funnel and added dropwise over the space of 2 h ensuring the reaction temperature did not exceed -70 °C. The slurry was stirred for 2 h after which GCMS confirmed the lithiation was complete. The dropping funnel was charged with a solution of 1,4-diiodobutane (15.7 mL, 119 mmol) in dry THF (160 mL) which was then added dropwise over 0.75 h. The resulting pale yellow slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of water. The mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO4, filtered and concentrated to yield an off-white solid. The product was triturated with 300 mL methanol for 2 h and recrystallised from toluene/IPA to yield a white powder that was dried in the oven (31.86 g, 63%). GCMS indicated a purity of ∼96% and the material was taken to the next stage without further purification
  • Stage2
  • An oven-dried 2 L 4-neck flask fitted with an internal thermometer, N2 bubbler, overhead stirrer and oven-dried pressure-equalising dropping funnel was charged with Stage 1 material (31.5 g, 74 mmol) and dry THF (350 mL). The solution was cooled with stirring to <-70 °C to produce a white slurry. n-Butyllithium (62 mL, 2.5 M, 155 mmol) was charged to the dropping funnel and added dropwise over the space of 0.5 h ensuring the reaction temperature did not exceed -70 °C. The slurry was stirred for 4.5 h. The dropping funnel was charged with a solution of iPPB (33 mL, 161 mmol) in dry THF (60 mL) which was then added dropwise over 0.5 h. The resulting slurry was allowed to warm to room temperature and stirred for 12 h. The reaction was quenched by addition of HCL in ether. The THF was removed, diethyl ether added, the mixture was transferred to a separating funnel and the layers were separated. The aqueous layer was extracted with diethyl ether and the combined organics were washed with water, dried with MgSO4, filtered and concentrated to yield a white solid. The product was triturated with 500 mL methanol for 0.5 h. The filtered solid was purified by chromatography on silica using a gradient of DCM in hexanes as the eluant. The product-containing fractions were concentrated and recrystallised from acetonitrile to yield a white powder that was dried in the oven (20.44 g, 53%). HPLC indicated the purity was 99.77%
  • 1H NMR (referenced to CDCl3 peak at 7.26 ppm): 7.53 (2H, s), 6.93 (2H, s), 2.59 (4H, m), 2.47 (6H, s), 2.26 (6H, s), 1.62 (4H, m), 1.33 (24H, s)
  • Host Polymer Examples
  • Polymers were prepared by Suzuki polymerisation as described in WO 00/53656 of a polymerisation mixture containing the molar percentages of monomers given in Table 1. Table 1
    Polymer Diester monomer Dihalo monomers Viscosity average molecular weight Weight average molecular weight Peak average molecular weight Number average molecular weight Pd
    (mol %) (mol %) (Mz) (Mw) (Mp) (Mn)
    Polymer Example 1 Monomer Example 1 (50) 3 (5) 1,280,00 0 630,000 770,000 21,000 30.0 0
    4 (45)
    Polymer Example 2 Monomer Example 2 (50) 3 (9) 111,000 64,000 71,000 15,000 4.16
    4 (41)
    Comparative Polymer 1 Comparative Monomer 1 (50) 6 (50) 455,000 256,000 224,000 96,000 2.78
    Comparative Polymer 2 Monomer 7 (50) Comparative Monomer 2 (50) 571,000 235,000 177,000 17,600 13.4 0
    Comparative Polymer 3 7(50) 6 (28.5)
    3 (21.5)
    Polymer Example 3 Monomer Example 1 (50) 4 (25)
    3 (25)
    Polymer Example 4 Monomer Example 1 (50) 4 (10)
    3 (40)
    Polymer Example 5 Monomer Example 1 (50) 4 (35)
    10 (15)
    Polymer Example 6 Monomer Example 1 (50) 4 (30)
    11 (20)
    Polymer Example 7 Monomer Example 1 (50) 4 (32)
    12 (18)
    Polymer Example 8 Monomer Example 1 (50) 4 (32)
    13 (18)
    Comparative Polymer 4 9 (50) 3 (5)
    4 (45)
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
  • Monomer 12 is described in JP2012-137538 . Monomer 10 is described in JP2012-137537 .
  • Polymer Example 1 includes the following repeating structures:
    Figure imgb0068
    Figure imgb0069
  • Polymer Example 2 includes the following repeating structures:
    Figure imgb0070
    Figure imgb0071
  • Comparative Polymer 1 includes the following repeating structure:
    Figure imgb0072
  • Monomer 8 (Comparative Monomer 2) was prepared as described in WO 2011/141714 . Comparative Polymer 2 includes the following repeating structure:
    Figure imgb0073
  • Comparative Polymer 3 includes the following repeating structures:
    Figure imgb0074
    Figure imgb0075
  • Comparative Polymer 4 includes the following repeating structures:
    Figure imgb0076
    Figure imgb0077
  • Composition Examples
  • A composition of 95 mol % of a polymer as described above and 5 mol % of Blue Phosphorescent Emitter 1, illustrated below, was dissolved in o-xylene and cast as a film by spin-coating.
    Figure imgb0078
  • Blue Phosphorescent Emitter 1
  • The core of Blue Phosphorescent Emitter 1 is disclosed in W02004/101707 . Formation of dendrons is described in WO 02/066552 .
  • Synthesis of Blue Phosphorescent Emitter 1 Stage 1:
  • Figure imgb0079
  • fac-Tris(1-methyl-5-phenyl-3-propyl-[1,2,4]triazolyl)iridium-(III) (1.1 g) (Shih-Chun Lo et al., Chem. Mater. 2006, 18, 5119-5129) (1.1 g) was dissolved in DCM (100 mL) under a flow of nitrogen. N-Bromosuccinimide (0.93 g) was added as a solid and the mixture was stirred at room temperature with protection from light. After 24 h HPLC analysis showed ∼94% product and ∼6% dibromide intermediate.
  • A further 50 mg of NBS was added and stirring continued for 16 hours. A further 50 mg of NBS was added and stirring continued for 24 h. HPLC indicated over 99% product. Warm water was added and stirred for 0.5 h. The layers were separated and the organic layer passed through a plug of celite eluting with DCM. The filtrate was concentrated to ∼15 mL and hexane was added to the DCM solution to precipitate the product as a yellow solid in 80% yield.
  • Stage 2:
  • Figure imgb0080
  • Stage 1 material (8.50 g) and 3,5-bis(4-tert-butylphenyl)phenyl-1-boronic acid pinacol ester (15.50 g) were dissolved in toluene (230 mL). The solution was purged with nitrogen for 1 h before 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (66 mg) and tris(dibenzylidene)dipalladium (75 mg) were added using 10 mL of nitrogen-purged toluene. A 20wt% solution of tetraethylammonium hydroxide in water (60 mL) was added in one portion and the mixture as stirred for 20 h with the heating bath set to 105 °C. T.L.C. analysis indicated all the stage material had been consumed and only one fluorescent spot was observed. The reaction mixture was cooled and filtered into a separating funnel. The layers were separated and the aqueous layer extracted with toluene. The organic extracts were washed with water, dried with magnesium sulphate, filtered and concentrated to yield the crude product as a yellow/orange solid. Pure compound was obtained by column chromatography eluting with a gradient of ethyl acetate in hexanes followed by precipitation from DCM/methanol. HPLC indicated a purity of 99.75% and a yield of 80% (11.32g). 1H NMR (referenced to CDCl3): 7.83 (3H, d), 7.76 (6H, s), 7.73 (3H, s) 7.63 (12H, d) 7.49 (12H, d), 7.21 (3H, dd), 6.88 (3H, d), 4.28 (9H, s), 2.25 (3H, m), 1.98 (3H, m), 1.4-1.5 (57H, m), 1.23 (3H, m), 0.74 (9H, t)
  • With reference to Table 2, it can be seen that photoluminescent quantum yield (PLQY) of the films are comparable for compositions containing Polymer Example 1 and Comparative Polymer 2, whereas the PLQY values of compositions containing Comparative Polymers 1 and 3 are much lower. Without wishing to be bound by any theory, it is believed that the extended conjugation between adjacent phenyl groups in the backbones of Comparative Polymers 1, 3 and 4 results in a low triplet energy level and quenching of phosphorescence. Table 2
    Polymer PLQY (%) CIE x CIE y
    Polymer Example 1 63 0.158 0.308
    Comparative Polymer 1 7 0.189 0.173
    Comparative Polymer 2 76 0.157 0.299
    Comparative Polymer 3 15 0.177 0.307
    Comparative Polymer 4 6 0.156 0.302
  • Green Device Examples
  • Organic light-emitting devices having the following structure were prepared:
    • ITO / HIL / HTL / LE / Cathode
    wherein ITO is an indium-tin oxide anode; HIL is a hole-injecting layer; HTL is a hole-transporting layer; LE is a light-emitting layer; and the cathode comprises a layer of metal fluoride in contact with the light-emitting layer and a layer of aluminium formed over the layer of metal fluoride.
  • To form the device, a substrate carrying ITO was cleaned using UV / Ozone. The hole injection layer was formed by spin-coating an aqueous formulation of a hole-injection material available from Plextronics, Inc. A hole transporting layer was formed to a thickness of 20 nm by spin-coating Hole-Transporting Polymer 1 and crosslinking the polymer by heating. A light-emitting layer was formed by depositing a light-emitting composition of a host polymer (65 wt %) and Green Phosphorescent Emitter 1, illustrated below (35 wt %), by spin-coating from o-xylene solution a thickness of 75 nm. Green Phosphorescent Emitter 1 is a dendrimeric phosphorescent emitter, as described in WO 02/066552 . A cathode was formed by evaporation of a first layer of a metal fluoride to a thickness of about 2 nm, a second layer of aluminium to a thickness of about 200 nm and a third layer of silver.
    Figure imgb0081
  • Green Phosphorescent Emitter 1
  • Hole-Transporting Polymer 1 was formed by Suzuki polymerisation as described in WO 00/53656 of the following monomers:
    Figure imgb0082
    Figure imgb0083
  • With reference to Table 3, it can be seen that devices containing Polymer Examples 1 and 2 as host polymer both reach a brightness of 1000 cd / m2 at a lower voltage; have higher conductivity as shown by the voltage required to reach a current of 10 mA / cm2; and are more efficient than a device containing Comparative Polymer 2 as host polymer.
  • Performance of devices containing Polymer Examples 1 and 2 is comparable to performance of the device containing Comparative Polymer 3. Table 3
    Polymer V at 1kcd/m2 J at 1kcd/m2 V at 10mA/cm2 Efficiency Lm/W at 1kcd/m2 Efficiency Cd/A at 1kcd/m2 EQE at 1kcd/m2 (%) Max EQE (%)
    Polymer Example 1 4.75 1.3 6.78 49.16 74.63 20.68 21.31
    Polymer Example 2 4.45 1.4 6.48 50.59 72.48 20.02 20.52
    Comparative Polymer 2 5.46 1.6 7.37 36.12 62.5 17.39 17.58
    Comparative Polymer 3 4.44 1.4 6.19 50.93 71.85 19.8 20.68
  • The time taken for brightness of these devices to fall to 70% (T70) and to 50% (T50) of a starting luminance of 5,000 cd/m2 is shown in Table 4. Polymer Examples 1 and 2 both have higher lifetimes than Comparative Polymer 2. The lifetime of Comparative Polymer 3 is slightly higher than Polymer Examples 1 or 2, but this polymer gives poor efficiency when used with a blue phosphorescent emitter, as shown in Table 2 above. Table 4
    Host polymer T70 (hours T50 (hours) J (mA/cm2)
    Comparative Polymer 2 2.67 10.31 7.63
    Polymer Example 1 5.12 21.80 7.08
    Polymer Example 2 4.81 24.96 6.77
    Comparative Polymer 3 6.33 30.17 6.99
  • Blue Device Example 1
  • A device was prepared as described for the green device examples above except that the light-emitting layer was formed by spin-coating a mixture of Polymer Example 1 and Blue Phosphorescent Emitter 1 (36 mol %)
  • Comparative Blue Device 1
  • A device was prepared as described in Blue Device Example 1, except that Polymer Example 1 was replaced with Comparative Polymer 2.
  • Blue Device Example 2
  • A device containing a light-emitting layer of a mixture of Polymer Example 1 and Blue Phosphorescent Emitter 1 (36 wt %) was prepared as described for the green device examples above. The hole-transporting layer was formed by Suzuki polymerization of the following monomers, as described in WO 00/53656 :
    Figure imgb0084
  • Comparative Blue Device 2
  • A device was prepared as described in Blue Device Example 2, except that Polymer Example 1 was replaced with Comparative Polymer 2.
  • Data for blue devices are provided in Table 5, in which T70 and T50 are the time taken for luminance to fall to 70% and 50% respectively of a starting luminance. Table 5
    Device V at 1000 cd/m2 J (mA /cm2) at 1000 cd/m2 V at 10 mA/cm2 Eff. (Lm/W) at 1kcd/m2 Eff. (Cd/A) at 1kcd/m2 EQE at 1kcd/m2 (%) Max EQE (%) T70 (hours) T50 (hours)
    Comparative Blue Device 1 6.34 3.2 7.61 15.38 31.02 17.52 19.04 2.05 8.41
    Blue Device Example 1 6.11 3.6 7.28 14.13 27.53 13.43 15.91 1.13 5.60
    Blue Device Example 2 5.79 7.8 6 6.98 12.88 5.86 6.14 14.52 36.66
    Comparative Blue Device 2 5.91 7.4 6.19 7.05 13.42 7.87 8.47 7.91 25.99
  • The polymers of the invention are more conductive than the comparative polymers, as is shown by the higher current density values for the inventive polymers.
  • White Devices - General Process
  • Organic light-emitting devices having the following structure were prepared:
    • ITO / HIL / HTL / LEL / Cathode
    wherein ITO is an indium-tin oxide anode; HIL is a hole-injecting layer comprising a hole-injecting material, HTL is a hole-transporting layer, and LEL is a light-emitting layer containing a metal complex and a host polymer and formed by spin-coating.
  • A substrate carrying ITO was cleaned using UV / Ozone. A hole injection layer was formed to a thickness of about 35 nm by spin-coating an aqueous formulation of a hole-injection material available from Plextronics, Inc. A hole transporting layer was formed to a thickness of about 22 nm by spin-coating Hole-Transporting Polymer 1 and crosslinking the polymer by heating. A light-emitting layer was formed by depositing a light-emitting composition containing a host polymer doped with red, green and blue light-emitting metal complexes to a thickness of about 75 nm by spin-coating. A cathode was formed by evaporation of a first layer of a sodium fluoride to a thickness of about 2 nm, a second layer of aluminium to a thickness of about 100 nm and a third layer of silver to a thickness of about 100 nm.
  • The blue light-emitting metal complex was complex selected from Blue Phosphorescent Emitter 1 and Blue Phosphorescent Emitter 2; the green emitting metal complex was Green Phosphorescent Emitter 1 described above; and the red-emitting metal complex was Red Phosphorescent Emitter 1, as described in WO/2012/153082 .
    Figure imgb0085
    Figure imgb0086
  • The composition of white device examples and comparative white devices is provided in Table 6. Table 6
    Host polymer Blue emitter Light-emitting layer composition (wt %) V at 1kcd/m2 J at 1kcd/m2 V at 10mA/cm2
    White Device Example 1 Polymer Example 3 Blue 1 53 : 45 : 1 : 1 5.87 3.50 6.8
    Comparative White Device 1 Comparative Polymer 2 Blue 1 53 : 45 : 1 : 1 6.71 3.7 7.69
    White Device Example 2 Polymer Example 3 Blue 2 63 : 35 : 1 : 1 5.87 3.30 6.9
    Comparative White Device 2 Comparative Polymer 2 Blue 2 63 : 35 : 1 : 1 7.22 3.3 8.59
  • The light-emitting layer composition given in Table 6 is the Host Polymer : Blue Emitter : Green Emitter : Red Emitter ratio.
  • Table 6 shows that devices of the invention have higher conductivity than the comparative devices.
  • Hole-transporting polymer examples
  • Hole-transporting polymers of the invention containing repeat units of formula (I) and hole-transporting amine repeat units, and comparative hole-transporting polymers, were prepared by Suzuki polymerisation as described in WO 00/53656 using monomers as shown in Table 7. Table 7
    Polymer Diester monomer Dihalo monomers Viscosity average Weight average Peak average Number average Pd
    (mol %) (mol %) molecular weight (Mz) molecular weight (Mw) molecular weight (Mp) molecular weight (Mn)
    Polymer Example 10 Monomer Example 1 (50) 15 (42.5) 498,000 243,000 243,000 16,000 14.83
    16 (7.5)
    Comparative Polymer 10 7 (50) 15 (42.5) 403,000 224,000 215,000 43,000 5.22
    16 (7.5)
    Polymer Example 11 Monomer Example 1 (50) 17 (42.5) 367,000 187,000 182,000 108,000 9.08
    16 (7.5)
    Comparative Polymer 11 7 (50) 17 (40) 352,000 147,000 118,000 15,000 10.08
    18 (5)
    19 (5)
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
  • Energy levels
  • Polymer Example 10 has a HOMO level of 5.14 eV and a LUMO level of about 1.9 eV as measured by cyclic voltammetry.
  • Polymer Example 11 has a HOMO level of 5.05 eV and a LUMO level of about 1.9 eV as measured by cyclic voltammetry.
  • Photoluminescence measurements - phosphorescent green blends
  • A 95:5 weight % composition of Polymer Example 10 and Green Phosphorescent Emitter 1 was dissolved in mixed xylenes and cast by spin-coating on a glass substrate. For the purpose of comparison, a comparative composition containing Comparative Polymer 10 in place of Polymer Example 10 was cast in the same way.
  • With reference to Table 8, photoluminescence quantum yield (PLQY) for the exemplary composition is much higher than that of the comparative composition, indicating that the exemplary polymer causes little or no quenching of phosphorescence of the green phosphorescent emitter. This indicates that the exemplary hole-transporting polymers may be used as hole-transporting materials of a hole-transporting layer without causing significant quenching of phosphorescence from an adjacent light-emitting layer. Table 8
    Polymer PLQY/ % CIE X CIE Y
    Comparative Polymer 10 48 0.296 0.629
    Polymer Example 10 74 0.291 0.635
  • Photoluminescence measurements - phosphorescent blue blends
  • A 95:5 weight % composition of Polymer Example 11 and Blue Phosphorescent Emitter 1 was dissolved in mixed xylenes and cast by spin-coating on a glass substrate. For the purpose of comparison, a comparative composition containing Comparative Polymer 11 in place of Polymer Example 11 was cast in the same way.
  • With reference to Table 9, photoluminescence quantum yield (PLQY) for the exemplary composition is much higher than that of the comparative composition, indicating that the exemplary polymer causes little or no quenching of phosphorescence of the blue phosphorescent emitter. This indicates that the exemplary hole-transporting polymers may be used as hole-transporting materials of a hole-transporting layer without causing significant quenching of phosphorescence from an adjacent light-emitting layer. Table 9
    Polymer PLQY/ % CIE X CIE Y
    Comparative Polymer 11 7 0.169 0.115
    Polymer Example 11 42 0.157 0.285
  • Blue Device Example 3
  • A blue light-emitting device was prepared as described for the Green Device Examples, except that the hole-transporting layer was formed by spin-coating and cross-linking Polymer Example 10 and the light-emitting layer was formed by spin-coating Polymer Example 1 (55 weight %) and Blue Phosphorescent Emitter 1 (45 weight %). The device emitted light having a peak at 473 nm.
  • Blue Device Example 4
  • A blue light-emitting device was prepared as described for the Blue Device Example 3, except that Polymer Example 11 was used to form the hole-transporting layer. The device emitted light having a peak at 476 nm.
  • Although the present invention has been described in terms of specific exemplary embodiments, it will be appreciated that various modifications, alterations and/or combinations of features disclosed herein will be apparent to those skilled in the art without departing from the scope of the invention as set forth in the following claims.

Claims (15)

  1. A polymer comprising repeat units of formula (I) and one or more co-repeat units:
    Figure imgb0090
    Ar1 in each occurrence independently represent an aryl or heteroaryl group;
    R1 and R2 in each occurrence independently represent a substituent;
    p independently in each occurrence is 0 or a positive integer;
    Sp represents a spacer group comprising at least one carbon or silicon atom spacing the two groups Ar1 apart; and
    each group Ar1 is bound to an aromatic group of a co-repeat unit.
  2. A polymer according to claim 1 wherein Ar1 is an aryl group, optionally a phenyl group, and the Ar1 groups may be the same or different.
  3. A polymer according to claim 2 wherein the repeat unit of formula (I) has formula (Ia):
    Figure imgb0091
  4. A polymer according to claim 2 wherein the repeat unit of formula (I) has formula (Ib):
    Figure imgb0092
  5. A polymer according to any preceding claim wherein Sp represents a C1-20 alkyl chain wherein one or more non-adjacent C atoms of the chain may be replaced with O, S, -NR11-, -SiR11 2-, -C(=O)- or -COO- and wherein R11 in each occurrence is independently H or a substituent.
  6. A polymer according to any preceding claim wherein the one or more co-repeat units include a charge-transporting repeat unit.
  7. A polymer according to claim 6 wherein the charge-transporting repeat unit has formula (VII):
    Figure imgb0093
    wherein Ar8 and Ar9 in each occurrence are independently selected from substituted or unsubstituted aryl or heteroaryl, g is greater than or equal to 1, R13 is H or a substituent, c and d are each independently 1, 2 or 3; and any two of Ar8, Ar9 and R13 directly linked to the same N atom may be linked by a direct bond or a divalent linking group.
  8. A polymer according to claim 6 wherein the charge-transporting repeat unit has formula (VIII):
    Figure imgb0094
    wherein Ar8, Ar9 and Ar10 are in each occurrence independently selected from substituted or unsubstituted aryl or heteroaryl; z in each occurrence is independently at least 1, optionally 1, 2 or 3, preferably 1, and Y is N or CR14, wherein R14 is H or a substituent, preferably H or C1-10 alkyl.
  9. A monomer of formula (Im):
    Figure imgb0095
    wherein LG is a leaving group capable of leaving in a coupling reaction to form a carbon-carbon bond between Ar1 and an aromatic or heteroaromatic group, and Ar1, R1, R2, p and Sp are as defined in any of claims 1-5.
  10. A monomer according to claim 9 wherein each LG is independently selected from the group consisting of halogens; boronic acids; boronic esters; sulfonic acids; and sulfonic esters.
  11. A method of forming a polymer according to any of claims 1-8 comprising the step of polymerising a monomer according to claim 9 or 10 and one or more co-monomers for forming the one or more respective co-repeat units.
  12. A composition comprising a polymer according to any of claims 1-8 and at least one light-emitting dopant, optionally a phosphorescent dopant.
  13. A formulation comprising a polymer according to any of claim 1-8 or a composition according to claim 12 and at least one solvent.
  14. An organic light-emitting device comprising an anode, a cathode and one or more organic layers between the anode and cathode including a light-emitting layer wherein at least one of the one or more organic layers comprises a polymer according to any of claims 1-8.
  15. A method of forming an organic light-emitting device according to claim 14 comprising the step of forming the light-emitting layer over one of the anode and the cathode and forming the other of the anode and the cathode over the light-emitting layer.
EP13194928.1A 2012-11-30 2013-11-28 Polymer and organic electronic device Active EP2738195B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1221624.8A GB2508410A (en) 2012-11-30 2012-11-30 Polymer and organic electronic device

Publications (2)

Publication Number Publication Date
EP2738195A1 true EP2738195A1 (en) 2014-06-04
EP2738195B1 EP2738195B1 (en) 2018-04-25

Family

ID=49674209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13194928.1A Active EP2738195B1 (en) 2012-11-30 2013-11-28 Polymer and organic electronic device

Country Status (5)

Country Link
US (1) US9812644B2 (en)
EP (1) EP2738195B1 (en)
JP (1) JP6266962B2 (en)
CN (1) CN103848978B (en)
GB (1) GB2508410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527596A (en) * 2014-06-27 2015-12-30 Cambridge Display Tech Ltd Polymer and organic light-emitting device
WO2016087843A1 (en) * 2014-12-02 2016-06-09 Cambridge Display Technology Limited Organic Light-Emitting Device
GB2597797A (en) * 2020-08-07 2022-02-09 Sumitomo Chemical Co Light-emitting marker

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090317B2 (en) * 2012-06-19 2017-03-08 住友化学株式会社 Polymer compound and light emitting device using the same
US9318715B2 (en) * 2014-05-21 2016-04-19 E I Du Point De Nemours And Company Hole transport composition without luminance quenching
EP3674343A1 (en) 2014-08-28 2020-07-01 Sumitomo Chemical Company, Limited Polymer compound and light-emitting element using same
GB2530748A (en) * 2014-09-30 2016-04-06 Cambridge Display Tech Ltd Organic Light Emitting Device
GB2535699A (en) 2015-02-18 2016-08-31 Cambridge Display Tech Ltd Organic light-emitting polymer and device
US20180212180A1 (en) * 2015-08-21 2018-07-26 Dow Global Technologies Llc Polymeric charge transfer layer and organic electronic device containing same
JP6769020B2 (en) * 2015-09-30 2020-10-14 日立化成株式会社 Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
CN105524114A (en) * 2015-12-24 2016-04-27 石家庄诚志永华显示材料有限公司 Series of deep blue metal iridium phosphorescence OLED materials
CN107799658B (en) * 2016-08-29 2021-05-28 株式会社半导体能源研究所 Light-emitting element, light-emitting device, electronic device, lighting device, and organometallic complex
WO2018114882A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Materials for electronic devices

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005184A1 (en) 1995-07-28 1997-02-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US5723873A (en) 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
WO1998010621A1 (en) 1996-09-04 1998-03-12 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
US5777070A (en) 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
US5798170A (en) 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
EP0880303A1 (en) 1996-11-25 1998-11-25 Seiko Epson Corporation Method of producing organic el elements, organic el elements and organic el display device
WO1998057381A1 (en) 1997-06-10 1998-12-17 Uniax Corporation Ultra-thin layer alkaline earth metals as stable electron-injecting cathodes for polymer light emitting diodes
EP0901176A2 (en) 1997-08-29 1999-03-10 Cambridge Display Technology Limited Electroluminescent device
EP0947123A1 (en) 1996-07-29 1999-10-06 Cambridge Display Technology Limited Electroluminescent devices with electrode protection
WO2000048258A1 (en) 1999-02-12 2000-08-17 Cambridge Display Technology Ltd. Opto-electrical devices
WO2000053656A1 (en) 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
WO2002044189A1 (en) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
WO2002045466A1 (en) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
US20020117662A1 (en) 2000-12-25 2002-08-29 Fuji Photo Film Co., Ltd. Novel indole derivative, material for light-emitting device and light-emitting device using the same
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
WO2002081448A1 (en) 2001-04-05 2002-10-17 Sankyo Company, Limited Benzamidine derivative
WO2002084759A1 (en) 2001-04-17 2002-10-24 Koninklijke Philips Electronics N.V. Led comprising a conductive transparent polymer layer with low sulfate and high metal ion content
EP1253180A2 (en) * 2001-04-27 2002-10-30 Sumitomo Chemical Company, Limited Polymeric fluorescent substance and polymer light-emitting device using the same
JP2002324679A (en) 2001-04-26 2002-11-08 Honda Motor Co Ltd Organic electroluminescent element
US20020182441A1 (en) 2000-08-11 2002-12-05 Trustee Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
WO2004101707A1 (en) 2003-05-16 2004-11-25 Isis Innovation Limited Organic phosphorescent material and organic optoelectronic device
WO2005013386A2 (en) 2003-08-01 2005-02-10 Cdt Oxford Limited Copolymers for electroluminescent devices comprising charge transporting units, metal complexes as phosphorescent units and/or aliphatic units
JP2005158561A (en) 2003-11-27 2005-06-16 Fuji Xerox Co Ltd Organic electroluminescent element
KR100811058B1 (en) * 2005-05-11 2008-03-06 (주)루디스 A highly polymerized compound for emitting light and organic electroluminecent diode using that compound
WO2010085676A1 (en) 2009-01-22 2010-07-29 University Of Rochester Hybrid host materials for electrophosphorescent devices
US7898163B2 (en) 2001-02-21 2011-03-01 Cambridge Display Technology Limited (Partially) conjugated polymer, process for its preparation and use in electroluminescent devices
US20110095269A1 (en) 2007-11-19 2011-04-28 E. I. Du Pont De Nemours And Company Electroactive materials
WO2011141714A1 (en) 2010-05-14 2011-11-17 Cambridge Display Technology Limited Organic light-emitting polymer and device
WO2011141709A1 (en) 2010-05-14 2011-11-17 Cambridge Display Technology Limited Polymer, polymer composition and organic light-emitting device
WO2012048778A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescence devices
WO2012153082A1 (en) 2011-05-12 2012-11-15 Cambridge Display Technology Limited Organic light emissive material and device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648380B2 (en) * 1997-05-12 2005-05-18 株式会社リコー Electrophotographic photoreceptor
JP3882327B2 (en) * 1998-03-17 2007-02-14 チッソ株式会社 Alignment agent for antiferroelectric liquid crystal display element, alignment film using the alignment agent, and antiferroelectric liquid crystal display element having the alignment film
JP2002108250A (en) * 2000-09-29 2002-04-10 Sharp Corp Active matrix driven self-luminous display device and manufacturing method therefor
US6573651B2 (en) * 2000-12-18 2003-06-03 The Trustees Of Princeton University Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films
TWI293964B (en) * 2001-02-05 2008-03-01 Sumitomo Chemical Co Polymeric fluorescent substance, production thereof and polymer light-emitting device
DE10343606A1 (en) * 2003-09-20 2005-04-14 Covion Organic Semiconductors Gmbh White-emitting copolymers, their preparation and use
GB2463077B (en) * 2008-09-02 2012-11-07 Sumitomo Chemical Co Electroluminescent material and device
JP2012077293A (en) * 2010-09-09 2012-04-19 Ricoh Co Ltd New carbazole polymer, and method for producing the same
GB2484537A (en) * 2010-10-15 2012-04-18 Cambridge Display Tech Ltd Light-emitting composition

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723873A (en) 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
WO1997005184A1 (en) 1995-07-28 1997-02-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US5798170A (en) 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
EP0947123A1 (en) 1996-07-29 1999-10-06 Cambridge Display Technology Limited Electroluminescent devices with electrode protection
WO1998010621A1 (en) 1996-09-04 1998-03-12 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
EP0880303A1 (en) 1996-11-25 1998-11-25 Seiko Epson Corporation Method of producing organic el elements, organic el elements and organic el display device
WO1998057381A1 (en) 1997-06-10 1998-12-17 Uniax Corporation Ultra-thin layer alkaline earth metals as stable electron-injecting cathodes for polymer light emitting diodes
EP0901176A2 (en) 1997-08-29 1999-03-10 Cambridge Display Technology Limited Electroluminescent device
US5777070A (en) 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
WO2000048258A1 (en) 1999-02-12 2000-08-17 Cambridge Display Technology Ltd. Opto-electrical devices
WO2000053656A1 (en) 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
US20020182441A1 (en) 2000-08-11 2002-12-05 Trustee Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
WO2002044189A1 (en) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
WO2002045466A1 (en) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
US20020117662A1 (en) 2000-12-25 2002-08-29 Fuji Photo Film Co., Ltd. Novel indole derivative, material for light-emitting device and light-emitting device using the same
WO2002066552A1 (en) 2001-02-20 2002-08-29 Isis Innovation Limited Metal-containing dendrimers
US7898163B2 (en) 2001-02-21 2011-03-01 Cambridge Display Technology Limited (Partially) conjugated polymer, process for its preparation and use in electroluminescent devices
WO2002081448A1 (en) 2001-04-05 2002-10-17 Sankyo Company, Limited Benzamidine derivative
WO2002084759A1 (en) 2001-04-17 2002-10-24 Koninklijke Philips Electronics N.V. Led comprising a conductive transparent polymer layer with low sulfate and high metal ion content
JP2002324679A (en) 2001-04-26 2002-11-08 Honda Motor Co Ltd Organic electroluminescent element
EP1253180A2 (en) * 2001-04-27 2002-10-30 Sumitomo Chemical Company, Limited Polymeric fluorescent substance and polymer light-emitting device using the same
WO2004101707A1 (en) 2003-05-16 2004-11-25 Isis Innovation Limited Organic phosphorescent material and organic optoelectronic device
WO2005013386A2 (en) 2003-08-01 2005-02-10 Cdt Oxford Limited Copolymers for electroluminescent devices comprising charge transporting units, metal complexes as phosphorescent units and/or aliphatic units
JP2005158561A (en) 2003-11-27 2005-06-16 Fuji Xerox Co Ltd Organic electroluminescent element
KR100811058B1 (en) * 2005-05-11 2008-03-06 (주)루디스 A highly polymerized compound for emitting light and organic electroluminecent diode using that compound
US20110095269A1 (en) 2007-11-19 2011-04-28 E. I. Du Pont De Nemours And Company Electroactive materials
WO2010085676A1 (en) 2009-01-22 2010-07-29 University Of Rochester Hybrid host materials for electrophosphorescent devices
WO2011141714A1 (en) 2010-05-14 2011-11-17 Cambridge Display Technology Limited Organic light-emitting polymer and device
WO2011141709A1 (en) 2010-05-14 2011-11-17 Cambridge Display Technology Limited Polymer, polymer composition and organic light-emitting device
WO2012048778A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescence devices
WO2012153082A1 (en) 2011-05-12 2012-11-15 Cambridge Display Technology Limited Organic light emissive material and device

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A. VAN DIJKEN ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, 2004, pages 7718
APPL. PHYS. LETT., vol. 79, no. 5, 2001, pages 2001
APPL. PHYS. LETT., vol. 81, no. 4, 2002, pages 634
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 8 September 2006 (2006-09-08), SHIN, SEON HO ET AL: "Light emitting polymer compound containing triphenylamine as main chain, and organic electroluminescent device containing the polymer", XP002721547, retrieved from STN Database accession no. 2006:919644 *
J. APPL. PHYS., vol. 65, 1989, pages 3610
JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 29, no. 11, 1996, pages 2750 - 2753
MICHAELSON, J. APPL. PHYS., vol. 48, no. 11, 1977, pages 4729
REMMERS M ET AL: "SYNTHESIS, OPTICAL ABSORPTION AND FLUORESCENCE OF NEW POLY( P-PHENYLENE)-RELATED POLYMERS", MACROMOLECULAR: RAPID COMMUNICATIONS, WILEY VCH VERLAG, WEINHEIM, DE, vol. 17, no. 4, 1 April 1996 (1996-04-01), pages 239 - 252, XP000598233, ISSN: 1022-1336, DOI: 10.1002/MARC.1996.030170406 *
SHIH-CHUN LO ET AL., CHEM. MATER., vol. 18, 2006, pages 5119 - 5129
SHIROTA; KAGEYAMA, CHEM. REV., vol. 107, 2007, pages 953 - 1010
Y.V. ROMAOVSKII ET AL., PHYSICAL REVIEW LETTERS, vol. 85, no. 5, 2000, pages 1027
YINGFENG YU ET AL: "Synthesis of blue light emitting copolymers by oxidative coupling reaction", SYNTHETIC METALS, vol. 135-136, 1 April 2003 (2003-04-01), pages 201 - 202, XP055106253, ISSN: 0379-6779, DOI: 10.1016/S0379-6779(02)00647-1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527596A (en) * 2014-06-27 2015-12-30 Cambridge Display Tech Ltd Polymer and organic light-emitting device
US9873831B2 (en) 2014-06-27 2018-01-23 Cambridge Display Technology Limited Polymer and organic light-emitting device
WO2016087843A1 (en) * 2014-12-02 2016-06-09 Cambridge Display Technology Limited Organic Light-Emitting Device
CN107004771A (en) * 2014-12-02 2017-08-01 剑桥显示技术有限公司 Organic luminescent device
CN107004771B (en) * 2014-12-02 2021-02-05 剑桥显示技术有限公司 Organic light emitting device
US11024818B2 (en) 2014-12-02 2021-06-01 Cambridge Display Technology Limited Organic light-emitting device
GB2597797A (en) * 2020-08-07 2022-02-09 Sumitomo Chemical Co Light-emitting marker
WO2022029327A1 (en) * 2020-08-07 2022-02-10 Cambridge Display Technology Limited Light-emitting marker

Also Published As

Publication number Publication date
JP6266962B2 (en) 2018-01-24
JP2014111765A (en) 2014-06-19
CN103848978B (en) 2018-01-12
EP2738195B1 (en) 2018-04-25
US20140151660A1 (en) 2014-06-05
CN103848978A (en) 2014-06-11
GB2508410A (en) 2014-06-04
US9812644B2 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
EP2738195B1 (en) Polymer and organic electronic device
EP2746359B1 (en) Polymer and organic light-emitting device
KR102144603B1 (en) Polymer and device
US10580992B2 (en) Polymer comprising an unsymmetric diarylaminofluoren unit
WO2013114118A2 (en) Polymer
US9963550B2 (en) Polymers and organic electronic device
US20140252339A1 (en) Light emitting composition and device
US10290810B2 (en) Polymer and organic electronic device
US20160315265A1 (en) 4,7-phenanthroline containing polymer and organic electronic device
US9873831B2 (en) Polymer and organic light-emitting device
WO2016132112A1 (en) Compound, composition and organic light-emitting device
WO2015079261A1 (en) Polymer and organic light-emitting device
US20170309837A1 (en) Polymer and organic light-emitting device
GB2525219A (en) Polymer and organic light-emitting device
GB2521005A (en) Polymer and organic electronic device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141125

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED

Owner name: SUMITOMO CHEMICAL CO., LTD

17Q First examination report despatched

Effective date: 20161116

RIC1 Information provided on ipc code assigned before grant

Ipc: C08K 5/3472 20060101ALN20171128BHEP

Ipc: C08K 5/56 20060101ALN20171128BHEP

Ipc: C09D 165/00 20060101ALI20171128BHEP

Ipc: C08G 61/02 20060101AFI20171128BHEP

Ipc: C08L 65/00 20060101ALI20171128BHEP

Ipc: C08G 61/12 20060101ALI20171128BHEP

Ipc: C07F 5/02 20060101ALI20171128BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 992819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013036381

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013036381

Country of ref document: DE

Representative=s name: VENNER SHIPLEY GERMANY LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013036381

Country of ref document: DE

Representative=s name: VENNER SHIPLEY LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013036381

Country of ref document: DE

Representative=s name: PIOTROWICZ, PAWEL JAN ANDRZEJ, DR., GB

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180425

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 992819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013036381

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131128

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013036381

Country of ref document: DE

Representative=s name: VENNER SHIPLEY GERMANY LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013036381

Country of ref document: DE

Representative=s name: VENNER SHIPLEY LLP, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221128

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527