EP1887986A2 - Interlocked modular disc nucleus prosthesis - Google Patents

Interlocked modular disc nucleus prosthesis

Info

Publication number
EP1887986A2
EP1887986A2 EP06760355A EP06760355A EP1887986A2 EP 1887986 A2 EP1887986 A2 EP 1887986A2 EP 06760355 A EP06760355 A EP 06760355A EP 06760355 A EP06760355 A EP 06760355A EP 1887986 A2 EP1887986 A2 EP 1887986A2
Authority
EP
European Patent Office
Prior art keywords
modular
segment
modular segment
disc
prosthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06760355A
Other languages
German (de)
French (fr)
Other versions
EP1887986A4 (en
Inventor
Jeffrey C. VERTEBRAL TECHNOLOGIES INC. FELT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertebral Technologies Inc
Original Assignee
Vertebral Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/372,477 external-priority patent/US7591853B2/en
Application filed by Vertebral Technologies Inc filed Critical Vertebral Technologies Inc
Publication of EP1887986A2 publication Critical patent/EP1887986A2/en
Publication of EP1887986A4 publication Critical patent/EP1887986A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30014Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30016Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30075Properties of materials and coating materials swellable, e.g. when wetted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30166H-shaped or I-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/3052Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts unrestrained in only one direction, e.g. moving unidirectionally
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30561Special structural features of bone or joint prostheses not otherwise provided for breakable or frangible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30594Special structural features of bone or joint prostheses not otherwise provided for slotted, e.g. radial or meridian slot ending in a polar aperture, non-polar slots, horizontal or arcuate slots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0019Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell

Definitions

  • the present invention relates generally to an implantable prosthesis for repairing damaged intervertebral discs. More particularly, the present invention relates to an interlocked modular disc nucleus prosthesis of predetermined size and shape.
  • the spinal motion segment consists of a unit of spinal anatomy bounded by two vertebral bodies, including the two vertebral bodies, the interposed intervertebral disc, as well as the attached ligaments, muscles, and the facet joints.
  • the disc consists of the end plates at the top and bottom of the vertebral bones, the soft inner core, called the nucleus and the annulus fibrosis running circumferentially around the nucleus, hi normal discs, the nucleus cushions applied loads, thus protecting the other elements of the spinal motion segment.
  • a normal disc responds to compression forces by bulging outward against the vertebral end plates and the annulus fibrosis.
  • the annulus consists of collagen fibers and a smaller amount of elastic fibers, both of which are effective in resisting tension forces. However, the annulus on its own is not very effective in withstanding compression and shear forces.
  • annulus and facet joints deteriorate, many other effects ensue, including the narrowing of the interspace, bony spur formation, fragmentation of the annulus, fracture and deterioration of the cartilaginous end plates, and deterioration of the cartilage of the facet joints.
  • the annulus and facet joints lose their structural stability and subtle but pathologic motions occur between the spinal bones.
  • Breakdown products of the disc including macroscopic debris, microscopic particles, and noxious biochemical substances build up. These breakdown products stimulate sensitive nerve endings in and around the disc, producing low back pain and sometimes, sciatica. Affected individuals experience muscle spasms, reduced flexibility of the low back, and pain when ordinary movements of the trunk are attempted.
  • spinal fusion has generally been regarded as the most effective surgical treatment to alleviate back pain due to degeneration of a disc. While this treatment is often effective at relieving back pain, all discal motion is lost in the fused spinal motion segment. The loss of motion in the affected spinal segment necessarily limits the overall spinal mobility of the patient. Ultimately, the spinal fusion places greater stress on the discs adjacent the fused segment as these segments attempt to compensate for lack of motion in the fused segment, often leading to early degeneration of these adjacent spinal segments.
  • Total disc replacement is a highly invasive and technically demanding procedure which accesses the disc from an anterior or frontal approach and includes dividing the anterior longitudinal ligament, removing the cartilaginous end plates between the vertebral bone and the disc, large portions of the outer annulus and the complete inner nucleus. Then an artificial total disc prosthesis is carefully placed in the evacuated disc space.
  • UHMWPE ultra high molecular weight polyethylene
  • a summary of the history of early development and designs of artificial discs is set forth in Ray, "The Artificial Disc: Introduction, History and Socioeconomics," dipt. 21, Clinical Efficacy and Outcome in the Diagnosis of Low Back Pain, pgs. 205-225, Raven Press (1992). Examples of these layered total disc replacement devices are shown, for example, in U.S. Patent Nos. 4,911,718, 5,458,643, 5,545,229 and 6,533,818.
  • nucleus replacements are also inert, non-rigid, non-biological replacements.
  • the procedure for implanting a nucleus replacement is less invasive than the procedure for a total disc replacement and generally includes the removal of only the nucleus and replacement of the nucleus with a prosthesis that may be malleable and provide cushioning that mimics a natural disc nucleus.
  • implants used for nucleus replacement include: U.S. Pat. Nos. 4,772,287, 4,904,260, 5,192,326, 5,919,236 and 6,726,721.
  • nucleus replacements utilize hydrogels because of their water imbibing properties that enable these replacements to expand in situ to permit a more complete filling of the evacuated nucleus cavity.
  • hydrogel nucleus disc replacements have generally adopted the use of some form of a jacket or fabric to constrain the hydrogel material.
  • the implant described in U.S. Patent Nos. 4,772,287 and 4,904,260 consists of a block of hydrogel encased in a plastic fabric casing.
  • the implant described in U.S. Pat. No. 5,192,326 consists of hydrogel beads enclosed by a fabric shell.
  • nucleus replacement involves implantation of a balloon or other container into the nucleus, which is then filled with a biocompatible material that hardens in situ. Examples of this in situ approach to nucleus replacement include U.S. Patent Nos. 6,443,988 and 7,001,431.
  • a biocompatible material that hardens in situ. Examples of this in situ approach to nucleus replacement include U.S. Patent Nos. 6,443,988 and 7,001,431.
  • One of the problems with this approach is that the chemical hardening process is exothermic and can generate significant amounts of heat that may cause tissue damage.
  • the balloon may rupture during expansion, causing leakage of material into the disc cavity and surrounding tissues, which may cause undesirable complications.
  • Another technique for nucleus replacement involves implanting a multiplicity of individual support members, such as beads, one at a time in the evacuated disc nucleus cavity until the cavity is full. Examples of this approach include U.S. Patent Nos. 5,702,454 and 5,755,797. Because each of the individual support members or beads is relatively small, there is a possibility that one or more of the individual support members or beads may extrude out of the evacuated disc nucleus cavity. From a mechanical perspective, this technique is limited in the ability to produce consistent and reproduceable results because the location and interaction of the multiplicity of beads or support members is not controlled and the beads or support members can shift during and after implantation.
  • nucleus prosthesis that may be inserted using a minimally invasive procedure and that mimics the characteristics of a natural disc.
  • the present invention provides a method and apparatus for repairing a damaged intervertebral disc nucleus in a minimally invasive manner utilizing a modular disc nucleus prosthesis.
  • the modular disc prosthesis preferably comprises at least three modular segments.
  • each modular segment includes an inner core and an outer shell.
  • the modular segments are selectively interlockable in situ with each other.
  • the modular segments form an implanted unitary device that closely mimics the geometry of the disc nucleus cavity.
  • a modular disc nucleus prosthesis that is adapted to be implanted in an evacuated disc nucleus space includes at least three modular segments each having a width defined by opposing sides, a proximal end, and a distal end.
  • the modular segments are selectively interlockable with each other such that the prosthesis has an extended configuration and an implanted configuration.
  • the proximal end of one side of an outer modular segment is operably positioned proximate the distal end of one of the sides of an intermediate modular segment and the distal end of one side of another outer modular segment is operably positioned proximate the proximal end of another of the sides of an intermediate modular segment.
  • the modular segments are positioned within the evacuated nucleus disc space in a generally side by side relation with the proximal ends of each modular segment adjacent one another and the distal ends of each modular segment adjacent one another so as to define a unitary body having a generally continuous periphery in which an overall width of the modular segments generally corresponds to a width of the evacuated disc nucleus cavity.
  • each modular segment comprises an inner core and an outer shell.
  • Outer shells of modular segments are preferably comprised of polymer material, hi one embodiment, the inner cores of the modular segments are comprised of polyvinyl alcohol (PVA) 5 which can be insert molded into the polymer outer shell.
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • Another aspect of the present invention provides a method for implanting a modular disc nucleus prosthesis.
  • the method is minimally invasive because the modular disc prosthesis is implanted incrementally, so the device can be implanted through an annulotomy much smaller than the size of the implanted configuration of the device.
  • the first modular segment is introduced into the patient's disc space and is placed partway into the disc nucleus space.
  • the second modular segment is then attached to the first modular segment.
  • the first modular segment is mostly inserted into the disc nucleus space
  • the second modular segment is slid up partway into the disc space and the third modular segment is attached to the second modular segment.
  • the first modular segment is completely inserted at this point.
  • the second modular segment is then extended into position along side of the first modular segment and is locked into place in the disc nucleus space.
  • FIG. 1 is a perspective view of a modular disc prosthesis according to the preferred embodiment of the present invention.
  • FIG. 2 is a top view of a modular disc prosthesis according to the preferred embodiment of the present invention.
  • FIG. 3A is a perspective view of a first modular segment according to the preferred embodiment of the present invention.
  • FIG. 3B is a top view of a first modular segment according to the preferred embodiment of the present invention.
  • FIG. 3C is a cross sectional view of a first modular segment according to the preferred embodiment of the present invention.
  • FIG. 4A is a perspective view of a second modular segment according to the preferred embodiment of the present invention.
  • FIG. 4B is a top view of a second modular segment according to the preferred embodiment of the present invention.
  • FIG. 4C is a cross sectional view of a second modular segment according to the preferred embodiment of the present invention.
  • FIG. 5A is a perspective view of a third modular segment according to the preferred embodiment of the present invention.
  • FIG. 5B is a top view of a third modular segment according to the preferred embodiment of the present invention.
  • FIG. 5C is a cross sectional view of a third modular segment according to the preferred embodiment of the present invention.
  • FIG. 6A is a perspective view of a fourth modular segment according to the preferred embodiment of the present invention.
  • FIG. 6B is a top view of a fourth modular segment according to the preferred embodiment of the present invention.
  • FIG. 6C is a cross sectional view of a fourth modular segment according to the preferred embodiment of the present invention.
  • FIG. 7 is a partial view of a modular disc prosthesis according to the preferred embodiment of the present invention.
  • FIG. 8 is a top view of a modular disc prosthesis according to the preferred embodiment of the present invention.
  • FIG. 9 is a perspective view of a modular disc prosthesis according to an alternate embodiment of the present invention.
  • FIG. 10 is a perspective view of a modular disc prosthesis according to an alternate embodiment of the present invention.
  • modular disc prosthesis 100 comprises first 102, second 104, third 106, and fourth 108 interlocking modular segments.
  • first 102 second 104
  • third 106 third 106
  • fourth 108 interlocking modular segments.
  • the preferred embodiment can be easily modified to comprise greater or fewer modular segments, so long as there are at least three modular segments.
  • First modular segment 102 of modular disc prosthesis 100 is preferably comprised of an outer shell 102a and an inner core 102b.
  • Outer shell 102a further includes a locking slide 110 for interlocking with an adjacent modular segment.
  • Second modular segment 104 is depicted in FIGS. 4A-4C.
  • Second modular segment 104 is comprised of an outer shell 104a and an inner core 104b.
  • Outer shell 104a further includes first 112 and second 114 slots into which locking slides of adjacent modular segments are inserted.
  • third modular segment 106 of the preferred embodiment of modular disc prosthesis 100 is shown.
  • Third modular segment 106 is comprised of an outer shell 106a and an inner core 106b.
  • Outer shell 106a further includes first 116 and second 118 locking slides for insertion into slots in adjacent modular segments.
  • the fourth modular segment 108 according to the preferred embodiment of the present invention is shown in FIGS. 6A-6C.
  • Fourth modular segment 108 is comprised of an outer shell 108a and an inner core 108b.
  • Outer shell 108a further includes a slot 120 for connecting to an adjacent modular segment.
  • each modular segment 102, 104, 106, 108 is unique.
  • the two outermost modular segments 102 and 108 have interlocking structure defined on only an inner facing side, whereas the intermediate modular segments 104 and 106 have interlocking structure defined on both side of the width of each module.
  • the unique configuration of each module assures that the order of insertion of the modular segments cannot be mixed up and the proper number of modular segments is used.
  • the four part design comes packaged sterile and ready for assembly at the surgical site.
  • modular segments may be of a uniform design (for example, a slot on one side and a locking slide on the other) in order to allow for the surgeon to freely add or subtract from the total number of modular segments or to select an intermediate modular segment of differing widths to change the size of modular disc prosthesis to better accommodate the disc nucleus space in a particular procedure.
  • modular segments 102, 104, 106, 108 are capable of interlocking with one another by inserting locking slides 110, 116, 118 into slots 112, 114, 120.
  • locking slides 110, 116, 118 and slots 112, 114, 120 have a tongue- in-groove design.
  • Interlocking may be accomplished with ridges, dovetail, ratchet and pawl or any other suitable mechanical interface method.
  • Interlocking may also be complimented by or entirely accomplished by material interface such as by forming the interlocking interface of materials that are hygroscopic and swell in situ or by forming a chemical bond across the interface.
  • the disc nucleus device includes at least one bidirectional locking element to prevent forward and/or backward motion of the components.
  • the disc nucleus prosthesis may include at least two unidirectional locking elements. Wherein at least one of the locking elements prevents forward movement of the components and at least one of the other unidirectional locking elements prevents backward movement of the components.
  • a ratchet release tool or other similar tool may be provided in case separation of modular segments is desired once they are locked together.
  • modular segments can interlock through a variety of other means.
  • modular segments may also be provided with an end block to ensure flush alignment between modular segments.
  • Modular segments are preferably made from polymeric materials, hi the preferred embodiment, outer shells 102a, 104a, 106a, 108 a of modular segments 102, 104, 106, 108 are comprised of polyurethane. hi a preferred embodiment, locking slides, 110, 116, 118 and slots 112, 114, 120 are made from polyurethane with a higher durometer than the rest of outer shell 102, 104a, 106a, 108a to further strengthen the interlocking between adjacent segments.
  • the two different durometer polyurethanes in such an embodiment may be co- polymerized to form a chemical bond between them, hi further alternate embodiments, outer shells may be formed of any other suitable elastomeric biomaterials.
  • inner core 102b, 104b, 106b, 108b of modular segments 102, 104, 106, 108 is comprised of polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the PVA takes on much more water than the polyurethane, which serves two advantages. First, this softens the compression modulus of modular disc prosthesis 100, allowing the device to more closely mimic the properties of a natural disc nucleus. Second, it will swell the prosthesis 100 a small amount once inside the body, allowing the device to more fully fill the disc nucleus space.
  • the inner core may be comprised of any other suitable hygroscopic material.
  • the modular disc nucleus prosthesis is deformable in response to normal physiological forces of 30 to 300 pounds. Because of this deformability, the prosthesis produces a physiologically appropriate amount of loading on the end plates of the intervertebral disc. As a result, the end plates will not excessively deform over time and ultimately conform to the contours of the implant as is the case with many more rigid disc nucleus replacement implants.
  • the modular disc nucleus prosthesis may be introduced through an access tube that is inserted partially into the disc nucleus space.
  • Access tube is at least 3 inches long and preferably about 6 inches long. It should be noted that although the insertion of modular disc prosthesis is described in relation to a preferred four-segment embodiment, embodiments having any other number of segment s would be inserted in a similar fashion.
  • An insertion tool may be used to aid in the insertion and positioning of the modular prosthesis.
  • a tool has a distal end that selectively engages and releases the modular segments and a proximal end containing a means to activate the engagement and release mechanism.
  • the engagement method of the insertion tool may include a full or partial sleeve that provides an interference fit with the outer surface of the modular segments, a rod possessing a tip that can be expanded to interlock in a corresponding cavity within each modular segment, two or more rods with shaped or angled tips that can be inserted and opposed into corresponding cavities within each modular segment, or other similar means apparent to one skilled in the art.
  • the distal end of the insertion tool may also possess a wire, rod, rail, or other means to align a modular segment being inserted with one already positioned at least partly within the disc space.
  • the insertion tool may be made out of any combination of plastics, metals, ceramics, or the like.
  • first modular segment 102 is preferably approximately 80% inserted into the disc nucleus space
  • second modular segment 104 is transposed along the locking slide 110 of first modular segment 102 partway into the disc nucleus space and a distal end of the third modular segment 106 is attached to a proximal end of the second modular segment 104 by sliding locking slide 116 into slot 114 with a third insertion tool.
  • First modular segment 102 is completely inserted at this point and is released from the first insertion tool.
  • Second modular segment 104 is then extended into position along side of first modular segment 102, is locked into place in the disc nucleus space and is released from second insertion tool.
  • Third modular segment 106 is now partway in the disc nucleus space and a distal end of fourth modular segment 108 is attached to a proximal end of third modular segment 106 by sliding slot 120 onto locking slide 118 with a fourth insertion tool.
  • Third modular segment 106 is then completely inserted and locked into place and is released from third insertion tool.
  • fourth modular segment 108 is inserted completely into the disc nucleus space, locked in place with the other modular segments, and released from fourth insertion tool.
  • first modular segment is engaged by a first insertion tool and fully inserted into the nucleus cavity.
  • Second modular segment is then attached to first modular segment using a second insertion tool and is fully inserted into the nucleus cavity.
  • Subsequent modular segments are then attached in the same manner until the modular prosthesis is fully assembled.
  • the insertion tool used with any of the embodiments of the present invention may be designed to engage two or more modular segments simultaneously to avoid requiring multiple insertion tools to perform the implantation procedure.
  • modular disc prosthesis may be implanted using an anterior lateral approach. An anterior lateral approach allows for a larger insertion opening to be used while still being minimally invasive.
  • the prosthesis consists of preformed components that are under direct surgeon control until the device is completely formed, thus, there is little chance of dislocation of the components as the components are inserted.
  • the ability to control the components during insertion is an advantage over devices that employ individual support members, such as beads, which once inserted are beyond the surgeon's control and may move about in the evacuated disc space. Because the components of the present invention remain under the surgeon's direct control, the surgeon is able to place the components more precisely in the evacuated disc space with less chance of the components moving into an undesirable position during insertion of the device.
  • the ability to predetermine the size of the modular disc prosthesis also allows for the nucleus cavity to be more completely filled and provides a greater degree of control over the uniformity of the stress response of the implant as compared to other kinds of minimally invasive implants. Because the stress response of the implant may be controlled, even with an incompetent posterior wall, the prosthesis should remain stable.
  • the ability to tailor the size of the prosthesis and completely fill the nucleus cavity also prohibits the prosthesis from dislodging out of the nucleus cavity after the device is completely implanted as can happen with some hydrogel block implants.
  • Modular disc prosthesis 200 is a three piece implant with tethers 216, 218 to help align the device.
  • Modular disc prosthesis 200 comprises a first modular segment 202 with a slot 208 formed therein, a second modular segment 204 with first 210 and second 212 locking slides, and a third modular segment 206 having a slot 214.
  • Modular disc prosthesis 200 further includes tethers 216, 218 that are threaded through holes 220, 222 in first modular segment 202 and third modular segment 206.
  • tethers 216, 218 may vary and that tethers may be used with modular disc prosthesis having different numbers of modular segments.
  • the outer shell of the modular disc nucleus prosthesis may be modified to provide for elution of medicants.
  • medicants may include analgesics, antibiotics, antineoplastics or bioosteo logics such as bone growth agents. While motion preservation is generally a principle goal in nucleus replacement, in certain indications it may be desirable to promote some bony fusion. Such indications may include nuclear replacements in the cervical spine.
  • the solid polymer outer shell of the modular disc nucleus prosthesis may provide for better and more controllable elution rates than some hydrogel materials.
  • the modular disc nucleus prosthesis may include different elution rates for each polymer material. This would allow for varying elution rates for different medicants.

Abstract

A method and apparatus for repairing a damaged intervertebral disc nucleus in a minimally invasive manner utilizes a modular disc prosthesis. The modular disc prosthesis preferably comprises at least three modular segments. In one embodiment, each modular segment includes an inner core and an outer shell. The modular segments are selectively interlockable in situ with each other. The modular segments form an implanted unitary device that closely mimics the geometry of the disc nucleus cavity.

Description

INTERLOCKED MODULAR DISC NUCLEUS PROSTHESIS
Field of the Invention
[0001] The present invention relates generally to an implantable prosthesis for repairing damaged intervertebral discs. More particularly, the present invention relates to an interlocked modular disc nucleus prosthesis of predetermined size and shape.
Background of the Invention
[0002] The spinal motion segment consists of a unit of spinal anatomy bounded by two vertebral bodies, including the two vertebral bodies, the interposed intervertebral disc, as well as the attached ligaments, muscles, and the facet joints. The disc consists of the end plates at the top and bottom of the vertebral bones, the soft inner core, called the nucleus and the annulus fibrosis running circumferentially around the nucleus, hi normal discs, the nucleus cushions applied loads, thus protecting the other elements of the spinal motion segment. A normal disc responds to compression forces by bulging outward against the vertebral end plates and the annulus fibrosis. The annulus consists of collagen fibers and a smaller amount of elastic fibers, both of which are effective in resisting tension forces. However, the annulus on its own is not very effective in withstanding compression and shear forces.
[0003] As people age the intervertebral discs often degenerate naturally. Degeneration of the intervertebral discs may also occur in people as a result of degenerative disc disease. Degenerative disc disease of the spine is one of the most common conditions causing pain and disability in our population. When a disc degenerates, the nucleus dehydrates. When a nucleus dehydrates, its ability to act as a cushion is reduced. Because the dehydrated nucleus is no longer able to bear loads, the loads are transferred to the annulus and to the facet joints. The annulus and facet joints are not capable of withstanding their increased share of the applied compression and torsional loads, and as such, they gradually deteriorate. As the annulus and facet joints deteriorate, many other effects ensue, including the narrowing of the interspace, bony spur formation, fragmentation of the annulus, fracture and deterioration of the cartilaginous end plates, and deterioration of the cartilage of the facet joints. The annulus and facet joints lose their structural stability and subtle but pathologic motions occur between the spinal bones. [0004] As the annulus loses stability it tends to bulge outward and may develop a tear allowing nucleus material to extrude. Breakdown products of the disc, including macroscopic debris, microscopic particles, and noxious biochemical substances build up. These breakdown products stimulate sensitive nerve endings in and around the disc, producing low back pain and sometimes, sciatica. Affected individuals experience muscle spasms, reduced flexibility of the low back, and pain when ordinary movements of the trunk are attempted.
[0005] Degeneration of a disc is irreversible. In some cases, the body will eventually stiffen the joints of the motion segment, effectively re-stabilizing the discs. Even in the cases where re-stabilization occurs, the process can take many years and patients often continue to experience disabling pain. Extended painful episodes of longer than three months often leads patients to seek a surgical solution for their pain.
[0006] Several methods have been devised to attempt to stabilize the spinal motion segment. Some of these methods include: heating the annular region to destroy nerve endings and strengthen the annulus; applying rigid or semi-rigid support members on the sides of the motion segment or within the disc space; removing and replacing the entire disc with a generally rigid plastic, articulating artificial device; removing and replacing the nucleus; and spinal fusion involving permanently fusing the vertebrae adjacent the affected disc.
[0007] Until recently, spinal fusion has generally been regarded as the most effective surgical treatment to alleviate back pain due to degeneration of a disc. While this treatment is often effective at relieving back pain, all discal motion is lost in the fused spinal motion segment. The loss of motion in the affected spinal segment necessarily limits the overall spinal mobility of the patient. Ultimately, the spinal fusion places greater stress on the discs adjacent the fused segment as these segments attempt to compensate for lack of motion in the fused segment, often leading to early degeneration of these adjacent spinal segments.
[0008] Current developments are focusing on treatments that can preserve some or all of the motion of the affected spinal segment. One of these methods to stabilize the spinal motion segment without the disadvantages of spinal fusion is total disc replacement. Total disc replacement is a highly invasive and technically demanding procedure which accesses the disc from an anterior or frontal approach and includes dividing the anterior longitudinal ligament, removing the cartilaginous end plates between the vertebral bone and the disc, large portions of the outer annulus and the complete inner nucleus. Then an artificial total disc prosthesis is carefully placed in the evacuated disc space. Many of the artificial total disc replacements currently available consist of a generally rigid plastic such as ultra high molecular weight polyethylene ("UHMWPE") as the nucleus that is interposed between two metal plates that are anchored or attached to the vertebral endplates. A summary of the history of early development and designs of artificial discs is set forth in Ray, "The Artificial Disc: Introduction, History and Socioeconomics," dipt. 21, Clinical Efficacy and Outcome in the Diagnosis of Low Back Pain, pgs. 205-225, Raven Press (1992). Examples of these layered total disc replacement devices are shown, for example, in U.S. Patent Nos. 4,911,718, 5,458,643, 5,545,229 and 6,533,818. [0009] These types of artificial total discs have several disadvantages. First, because the artificial disc replacements are relatively large, they require relatively large surgical exposures to accommodate their insertion. The larger the surgical exposure, the higher the chance of infection, hemorrhage or even morbidity. Also, in order to implant the prosthetic, a large portion of the annulus must be removed. Removing a large portion of the annulus reduces the stability of the motion segment, at least until healing occurs around the artificial disc. Further, because the devices are constructed from rigid materials, they can cause serious damage if they were to displace from the disc space and contact local nerve or vascular tissues. Another disadvantage is that rigid artificial disc replacements do not reproduce natural disc mechanics. [0010] An alternative to total disc replacement is nucleus replacement. Like an artificial disc prosthesis, these nucleus replacements are also inert, non-rigid, non-biological replacements. The procedure for implanting a nucleus replacement is less invasive than the procedure for a total disc replacement and generally includes the removal of only the nucleus and replacement of the nucleus with a prosthesis that may be malleable and provide cushioning that mimics a natural disc nucleus. Examples of implants used for nucleus replacement include: U.S. Pat. Nos. 4,772,287, 4,904,260, 5,192,326, 5,919,236 and 6,726,721.
[0011] Nucleus replacements are intended to more closely mimic natural disc mechanics.
To that end, some nucleus replacements utilize hydrogels because of their water imbibing properties that enable these replacements to expand in situ to permit a more complete filling of the evacuated nucleus cavity. However, there is usually a trade-off in that the more expansion the hydrogel achieves, the less structural support the end product can provide. As a result, many hydro gel nucleus disc replacements have generally adopted the use of some form of a jacket or fabric to constrain the hydrogel material. For example, the implant described in U.S. Patent Nos. 4,772,287 and 4,904,260 consists of a block of hydrogel encased in a plastic fabric casing. The implant described in U.S. Pat. No. 5,192,326 consists of hydrogel beads enclosed by a fabric shell. Without the jacket or other form of constraint, the hydrogel is susceptible to displacement because of the slippery nature of the hydrogel. Unfortunately, the jacket or fabric shell will be subject to long term abrasive wear issues that could result in failure of the jacket or shell's ability to constrain the hydrogel and thus the hydrogel may be subject to displacement. [0012] Another approach to nucleus replacement involves implantation of a balloon or other container into the nucleus, which is then filled with a biocompatible material that hardens in situ. Examples of this in situ approach to nucleus replacement include U.S. Patent Nos. 6,443,988 and 7,001,431. One of the problems with this approach is that the chemical hardening process is exothermic and can generate significant amounts of heat that may cause tissue damage. In addition, there is a possibility that the balloon may rupture during expansion, causing leakage of material into the disc cavity and surrounding tissues, which may cause undesirable complications.
[0013] Another technique for nucleus replacement involves implanting a multiplicity of individual support members, such as beads, one at a time in the evacuated disc nucleus cavity until the cavity is full. Examples of this approach include U.S. Patent Nos. 5,702,454 and 5,755,797. Because each of the individual support members or beads is relatively small, there is a possibility that one or more of the individual support members or beads may extrude out of the evacuated disc nucleus cavity. From a mechanical perspective, this technique is limited in the ability to produce consistent and reproduceable results because the location and interaction of the multiplicity of beads or support members is not controlled and the beads or support members can shift during and after implantation.
[0014] Accordingly, there is a need for a nucleus prosthesis that may be inserted using a minimally invasive procedure and that mimics the characteristics of a natural disc.
Summary of the Invention
[0015] The present invention provides a method and apparatus for repairing a damaged intervertebral disc nucleus in a minimally invasive manner utilizing a modular disc nucleus prosthesis. The modular disc prosthesis preferably comprises at least three modular segments. In one embodiment, each modular segment includes an inner core and an outer shell. The modular segments are selectively interlockable in situ with each other. The modular segments form an implanted unitary device that closely mimics the geometry of the disc nucleus cavity. [0016] In one embodiment, a modular disc nucleus prosthesis that is adapted to be implanted in an evacuated disc nucleus space includes at least three modular segments each having a width defined by opposing sides, a proximal end, and a distal end. The modular segments are selectively interlockable with each other such that the prosthesis has an extended configuration and an implanted configuration. In the extended configuration the proximal end of one side of an outer modular segment is operably positioned proximate the distal end of one of the sides of an intermediate modular segment and the distal end of one side of another outer modular segment is operably positioned proximate the proximal end of another of the sides of an intermediate modular segment. In the implanted configuration the modular segments are positioned within the evacuated nucleus disc space in a generally side by side relation with the proximal ends of each modular segment adjacent one another and the distal ends of each modular segment adjacent one another so as to define a unitary body having a generally continuous periphery in which an overall width of the modular segments generally corresponds to a width of the evacuated disc nucleus cavity.
[0017] Preferably, each modular segment comprises an inner core and an outer shell.
Outer shells of modular segments are preferably comprised of polymer material, hi one embodiment, the inner cores of the modular segments are comprised of polyvinyl alcohol (PVA)5 which can be insert molded into the polymer outer shell. This softens the compression modulus of the modular disc prosthesis, allowing the device to more closely mimic the properties of a natural disc nucleus, hi addition, PVA will cause the prosthesis to swell a small amount once inside the body, allowing the device to more fully fill the disc nucleus space. [0018] Another aspect of the present invention provides a method for implanting a modular disc nucleus prosthesis. The method is minimally invasive because the modular disc prosthesis is implanted incrementally, so the device can be implanted through an annulotomy much smaller than the size of the implanted configuration of the device. To implant modular disc prosthesis, the first modular segment is introduced into the patient's disc space and is placed partway into the disc nucleus space. The second modular segment is then attached to the first modular segment. When the first modular segment is mostly inserted into the disc nucleus space the second modular segment is slid up partway into the disc space and the third modular segment is attached to the second modular segment. The first modular segment is completely inserted at this point. The second modular segment is then extended into position along side of the first modular segment and is locked into place in the disc nucleus space. Finally, the third modular segment is inserted completely into the disc nucleus space and is locked in place with the other modular segments. The final implanted side by side configuration of modular segments of the modular disc prosthesis is sized and shaped to mimic the natural disc nucleus. It will be recognized that there may be more than three modular segments and that the modular segments may be attached to one another before or during the operation to form the expanded configuration as described. [0019] Another aspect of the present invention provides an insertion tool for inserting the modular segments of modular disc nucleus prosthesis. Insertion tool has a distal end having a mechanism that selectively engages and releases one or more modular segments and a proximal end having a means to activate the engagement and release mechanism. The distal end of insertion tool may also include a means to align a modular segment being inserted with one already positioned in the disc space.
Brief Description of the Drawings
[0020] The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
[0021] FIG. 1 is a perspective view of a modular disc prosthesis according to the preferred embodiment of the present invention.
[0022] FIG. 2 is a top view of a modular disc prosthesis according to the preferred embodiment of the present invention.
[0023] FIG. 3A is a perspective view of a first modular segment according to the preferred embodiment of the present invention.
[0024] FIG. 3B is a top view of a first modular segment according to the preferred embodiment of the present invention.
[0025] FIG. 3C is a cross sectional view of a first modular segment according to the preferred embodiment of the present invention.
[0026] FIG. 4A is a perspective view of a second modular segment according to the preferred embodiment of the present invention.
[0027] FIG. 4B is a top view of a second modular segment according to the preferred embodiment of the present invention.
[0028] FIG. 4C is a cross sectional view of a second modular segment according to the preferred embodiment of the present invention.
[0029] FIG. 5A is a perspective view of a third modular segment according to the preferred embodiment of the present invention.
[0030] FIG. 5B is a top view of a third modular segment according to the preferred embodiment of the present invention.
[0031] FIG. 5C is a cross sectional view of a third modular segment according to the preferred embodiment of the present invention. [0032] FIG. 6A is a perspective view of a fourth modular segment according to the preferred embodiment of the present invention.
[0033] FIG. 6B is a top view of a fourth modular segment according to the preferred embodiment of the present invention.
[0034] FIG. 6C is a cross sectional view of a fourth modular segment according to the preferred embodiment of the present invention.
[0035] FIG. 7 is a partial view of a modular disc prosthesis according to the preferred embodiment of the present invention.
[0036] FIG. 8 is a top view of a modular disc prosthesis according to the preferred embodiment of the present invention.
[0037] FIG. 9 is a perspective view of a modular disc prosthesis according to an alternate embodiment of the present invention.
[0038] FIG. 10 is a perspective view of a modular disc prosthesis according to an alternate embodiment of the present invention.
Detailed Description of the Drawings
[0039] Referring to FIGS. 1 and 2, there can be seen a modular disc prosthesis 100 according to the preferred embodiment of the present invention, hi this embodiment, modular disc prosthesis 100 comprises first 102, second 104, third 106, and fourth 108 interlocking modular segments. One of skill in the art will recognize that in alternate embodiments the preferred embodiment can be easily modified to comprise greater or fewer modular segments, so long as there are at least three modular segments.
[0040] Referring now to FIGS. 3A-3C there can be seen first modular segment 102 of modular disc prosthesis 100 according to the preferred embodiment of the present invention. First modular segment 102 is preferably comprised of an outer shell 102a and an inner core 102b. Outer shell 102a further includes a locking slide 110 for interlocking with an adjacent modular segment.
[0041] Second modular segment 104 according to the preferred embodiment of the present invention is depicted in FIGS. 4A-4C. Second modular segment 104 is comprised of an outer shell 104a and an inner core 104b. Outer shell 104a further includes first 112 and second 114 slots into which locking slides of adjacent modular segments are inserted. [0042] Referring to FIGS. 5A-5C, third modular segment 106 of the preferred embodiment of modular disc prosthesis 100 is shown. Third modular segment 106 is comprised of an outer shell 106a and an inner core 106b. Outer shell 106a further includes first 116 and second 118 locking slides for insertion into slots in adjacent modular segments. [0043] The fourth modular segment 108 according to the preferred embodiment of the present invention is shown in FIGS. 6A-6C. Fourth modular segment 108 is comprised of an outer shell 108a and an inner core 108b. Outer shell 108a further includes a slot 120 for connecting to an adjacent modular segment.
[0044] As can be seen from the above description and the drawings, each modular segment 102, 104, 106, 108 is unique. The two outermost modular segments 102 and 108 have interlocking structure defined on only an inner facing side, whereas the intermediate modular segments 104 and 106 have interlocking structure defined on both side of the width of each module. The unique configuration of each module assures that the order of insertion of the modular segments cannot be mixed up and the proper number of modular segments is used. The four part design comes packaged sterile and ready for assembly at the surgical site. In alternate embodiments, modular segments may be of a uniform design (for example, a slot on one side and a locking slide on the other) in order to allow for the surgeon to freely add or subtract from the total number of modular segments or to select an intermediate modular segment of differing widths to change the size of modular disc prosthesis to better accommodate the disc nucleus space in a particular procedure.
[0045] As can be seen in FIG. 7, modular segments 102, 104, 106, 108 are capable of interlocking with one another by inserting locking slides 110, 116, 118 into slots 112, 114, 120. In the preferred embodiment, locking slides 110, 116, 118 and slots 112, 114, 120 have a tongue- in-groove design. Interlocking may be accomplished with ridges, dovetail, ratchet and pawl or any other suitable mechanical interface method. Interlocking may also be complimented by or entirely accomplished by material interface such as by forming the interlocking interface of materials that are hygroscopic and swell in situ or by forming a chemical bond across the interface.
[0046] Interlocking may be strengthened by providing locking elements, such as barbs, molded along the locking slides with corresponding locking ridges molded on the edges of slots, hi an embodiment of the present invention, the disc nucleus device includes at least one bidirectional locking element to prevent forward and/or backward motion of the components. In another embodiment, the disc nucleus prosthesis may include at least two unidirectional locking elements. Wherein at least one of the locking elements prevents forward movement of the components and at least one of the other unidirectional locking elements prevents backward movement of the components. A ratchet release tool or other similar tool may be provided in case separation of modular segments is desired once they are locked together. One of skill in the art will recognize that modular segments can interlock through a variety of other means. In addition, modular segments may also be provided with an end block to ensure flush alignment between modular segments.
[0047] Modular segments are preferably made from polymeric materials, hi the preferred embodiment, outer shells 102a, 104a, 106a, 108 a of modular segments 102, 104, 106, 108 are comprised of polyurethane. hi a preferred embodiment, locking slides, 110, 116, 118 and slots 112, 114, 120 are made from polyurethane with a higher durometer than the rest of outer shell 102, 104a, 106a, 108a to further strengthen the interlocking between adjacent segments. The two different durometer polyurethanes in such an embodiment may be co- polymerized to form a chemical bond between them, hi further alternate embodiments, outer shells may be formed of any other suitable elastomeric biomaterials.
[0048] hi the preferred embodiment, inner core 102b, 104b, 106b, 108b of modular segments 102, 104, 106, 108 is comprised of polyvinyl alcohol (PVA). PVA may be insert molded into the polyurethane shell. The PVA takes on much more water than the polyurethane, which serves two advantages. First, this softens the compression modulus of modular disc prosthesis 100, allowing the device to more closely mimic the properties of a natural disc nucleus. Second, it will swell the prosthesis 100 a small amount once inside the body, allowing the device to more fully fill the disc nucleus space. Those of skill in the art will understand how to select a PVA of appropriate hydrophilic characteristic to adjust the resultant compressive modulus of the prosthesis to a physiologically acceptable value. In alternate embodiments, the inner core may be comprised of any other suitable hygroscopic material.
[0049] hi the preferred embodiment, the modular disc nucleus prosthesis is deformable in response to normal physiological forces of 30 to 300 pounds. Because of this deformability, the prosthesis produces a physiologically appropriate amount of loading on the end plates of the intervertebral disc. As a result, the end plates will not excessively deform over time and ultimately conform to the contours of the implant as is the case with many more rigid disc nucleus replacement implants.
[0050] The modular disc nucleus prosthesis may be introduced through an access tube that is inserted partially into the disc nucleus space. Access tube is at least 3 inches long and preferably about 6 inches long. It should be noted that although the insertion of modular disc prosthesis is described in relation to a preferred four-segment embodiment, embodiments having any other number of segment s would be inserted in a similar fashion.
[0051] An insertion tool may be used to aid in the insertion and positioning of the modular prosthesis. Such a tool has a distal end that selectively engages and releases the modular segments and a proximal end containing a means to activate the engagement and release mechanism. The engagement method of the insertion tool may include a full or partial sleeve that provides an interference fit with the outer surface of the modular segments, a rod possessing a tip that can be expanded to interlock in a corresponding cavity within each modular segment, two or more rods with shaped or angled tips that can be inserted and opposed into corresponding cavities within each modular segment, or other similar means apparent to one skilled in the art. The distal end of the insertion tool may also possess a wire, rod, rail, or other means to align a modular segment being inserted with one already positioned at least partly within the disc space. The insertion tool may be made out of any combination of plastics, metals, ceramics, or the like. [0052] Upon inserting the access tube into the disc nucleus space, first modular segment
102, as shown in Figs. 1 and 2, is inserted part way into the disc space using a first insertion tool. A distal end of the second modular segment 104 is then attached to a proximal end of the first modular segment 102 by sliding slot 112 onto locking slide 110 with a second insertion tool. When first modular segment 102 is preferably approximately 80% inserted into the disc nucleus space, the second modular segment 104 is transposed along the locking slide 110 of first modular segment 102 partway into the disc nucleus space and a distal end of the third modular segment 106 is attached to a proximal end of the second modular segment 104 by sliding locking slide 116 into slot 114 with a third insertion tool. First modular segment 102 is completely inserted at this point and is released from the first insertion tool. Second modular segment 104 is then extended into position along side of first modular segment 102, is locked into place in the disc nucleus space and is released from second insertion tool. Third modular segment 106 is now partway in the disc nucleus space and a distal end of fourth modular segment 108 is attached to a proximal end of third modular segment 106 by sliding slot 120 onto locking slide 118 with a fourth insertion tool. Third modular segment 106 is then completely inserted and locked into place and is released from third insertion tool. Finally, fourth modular segment 108 is inserted completely into the disc nucleus space, locked in place with the other modular segments, and released from fourth insertion tool. The final, locked configuration of modular disc prosthesis 100 of this embodiment is shown in FIG. 8. [0053] In another embodiment, first modular segment is engaged by a first insertion tool and fully inserted into the nucleus cavity. Second modular segment is then attached to first modular segment using a second insertion tool and is fully inserted into the nucleus cavity. Subsequent modular segments are then attached in the same manner until the modular prosthesis is fully assembled. Alternatively, the insertion tool used with any of the embodiments of the present invention may be designed to engage two or more modular segments simultaneously to avoid requiring multiple insertion tools to perform the implantation procedure. [0054] Alternatively, modular disc prosthesis may be implanted using an anterior lateral approach. An anterior lateral approach allows for a larger insertion opening to be used while still being minimally invasive.
[0055] The prosthesis consists of preformed components that are under direct surgeon control until the device is completely formed, thus, there is little chance of dislocation of the components as the components are inserted. The ability to control the components during insertion is an advantage over devices that employ individual support members, such as beads, which once inserted are beyond the surgeon's control and may move about in the evacuated disc space. Because the components of the present invention remain under the surgeon's direct control, the surgeon is able to place the components more precisely in the evacuated disc space with less chance of the components moving into an undesirable position during insertion of the device.
[0056] Further, the ability to predetermine the size of the modular disc prosthesis also allows for the nucleus cavity to be more completely filled and provides a greater degree of control over the uniformity of the stress response of the implant as compared to other kinds of minimally invasive implants. Because the stress response of the implant may be controlled, even with an incompetent posterior wall, the prosthesis should remain stable. The ability to tailor the size of the prosthesis and completely fill the nucleus cavity also prohibits the prosthesis from dislodging out of the nucleus cavity after the device is completely implanted as can happen with some hydrogel block implants.
[0057] Referring now to FIGS. 9 and 10 there can be seen an alternate embodiment of modular disc prosthesis 200. Modular disc prosthesis 200 is a three piece implant with tethers 216, 218 to help align the device. Modular disc prosthesis 200 comprises a first modular segment 202 with a slot 208 formed therein, a second modular segment 204 with first 210 and second 212 locking slides, and a third modular segment 206 having a slot 214. Modular disc prosthesis 200 further includes tethers 216, 218 that are threaded through holes 220, 222 in first modular segment 202 and third modular segment 206. One of skill in the art will recognize that the number and location of tethers 216, 218 may vary and that tethers may be used with modular disc prosthesis having different numbers of modular segments.
[0058] In an alternate embodiment, the outer shell of the modular disc nucleus prosthesis may be modified to provide for elution of medicants. Such medicants may include analgesics, antibiotics, antineoplastics or bioosteo logics such as bone growth agents. While motion preservation is generally a principle goal in nucleus replacement, in certain indications it may be desirable to promote some bony fusion. Such indications may include nuclear replacements in the cervical spine.
[0059] The solid polymer outer shell of the modular disc nucleus prosthesis may provide for better and more controllable elution rates than some hydrogel materials. In an alternate embodiment, the modular disc nucleus prosthesis may include different elution rates for each polymer material. This would allow for varying elution rates for different medicants. [0060] Various modifications to the disclosed apparatuses and methods may be apparent to one of skill in the art upon reading this disclosure. The above is not contemplated to limit the scope of the present invention, which is limited only by the claims below.

Claims

CLAMS
1. A modular disc prosthesis that is adapted to be implanted in an evacuated disc nucleus space, the prosthesis comprising: at least three modular segments, each modular segment having a width defined by opposing sides, a proximal end, and a distal end, the modular segments being selectively interlockable with each other such that the prosthesis has: an extended configuration in which the proximal end of one side of an outer modular segment is operably positioned proximate the distal end of one of the sides of an intermediate modular segment and the distal end of one side of another outer modular segment is operably positioned proximate the proximal end of another of the sides of an intermediate modular segment, and an implanted configuration in which the modular segments are positioned within the evacuated nucleus disc space in a generally side by side relation with the proximal ends of each modular segment adjacent one another and the distal ends of each modular segment adjacent one another so as to define a unitary body having a generally continuous periphery in which an overall width of the modular segments generally corresponds to a width of the evacuated nucleus disc space.
2. The modular disc prosthesis of claim 1, further comprising at least two intermediate modular segments wherein the proximal end of one of the sides of one of the intermediate modular segments is operably positioned proximate the distal end of one of the sides of another of the intermediate modular segment.
3. The modular disc prosthesis of claim 1, wherein each modular segment comprises an outer shell and an inner core.
4. The modular disc prosthesis of claim 3, wherein the inner core is comprised of a hydroscopic material and the outer shell is comprised of a polymer.
5. The modular disc prosthesis of claim 4, wherein the outer shell is comprised of a first portion comprised of a lower durometer polymer and a second portion comprised of a higher durometer polymer.
6. The modular disc prosthesis of claim 1, wherein each modular segment comprises an inner portion and an outer portion, the inner portion including structure on at least one side that selectively interlocks with corresponding structure on at least one side of an adjacent modular segment and the outer portion substantially surrounds the inner portion except for the sides having the structure that selectively interlocks adjacent modular segments.
7. The modular disc prosthesis of claim 6, wherein the structures that selectively interlock adjacent modular segments are similar for all modular segments.
8. The modular disc prosthesis of claim 6, wherein the structures that selectively interlock adjacent modular segments comprise a ratchet on one side and a corresponding pawl on another side.
9. The modular disc prosthesis of claim 6, wherein at least a layer of the outer portion further comprises at least one medicant operably carried by the outer portion to be eluted after the prosthesis is implanted.
10. The modular disc prosthesis of claim 1, wherein the widths of the modular segments are substantially similar and define a width of the prosthesis in the expanded position that determines a minimum width of an opening for insertion of the prosthesis into the evacuated disc nucleus space.
11. The modular disc prosthesis of claim 10, wherein the minimum width of the opening for insertion of the prosthesis is less than about 1 cm.
12. The modular disc prosthesis of claim 1, further comprising a tether threaded through an aperture in at least one of the modular segments to aid in aligning the modular disc prosthesis during implantation.
13. A minimally invasive method of implanting a modular disc prosthesis into an evacuated disc nucleus space, the method comprising: inserting a first outer modular segment partway into the evacuated disc nucleus space; selectively attaching a distal end of one side of an intermediate modular segment to an inner side of a proximal end of the outer modular segment; positioning the intermediate modular segment alongside the first outer modular segment until the intermediate modular segment is partially within the evacuated disc nucleus space; selectively attaching a distal end of an imier side of a second outer modular segment to one side of a proximal end of an intermediate modular segment; positioning the intermediate modular segment completely within the evacuated disc nucleus space in a side by side relationship with the first outer modular segment until a distal end of the intermediate modular segment is aligned with the distal end of first outer modular segment; and positioning the second outer modular segment completely within the evacuated disc nucleus space until a distal end of second outer modular segment is aligned with a distal end of an intermediate modular segment.
14. The method of claim 13, further comprising: selectively attaching a distal end of one side of an additional intermediate modular segment to an inner side of a proximal end of the intermediate modular segment; positioning the additional intermediate modular segment alongside the intermediate modular segment until the additional intermediate modular segment is partially within the evacuated disc nucleus space.
15. The method of claim 13, wherein the steps of selectively attaching are all performed prior to the steps of positioning.
16. A minimally invasive method of implanting a modular disc prosthesis into an evacuated disc nucleus space, the method comprising: inserting a first outer modular segment completely into the evacuated disc nucleus space; selectively attaching a distal end of one side of an intermediate modular segment to an inner side of a proximal end of the outer modular segment; positioning the intermediate modular segment completely within the evacuated disc nucleus space in a side by side relationship with the first outer modular segment until a distal end of the intermediate modular segment is aligned with the distal end of the first outer modular segment; selectively attaching a distal end of an inner side of a second outer modular segment to one side of a proximal end of the intermediate modular segment; and positioning the second outer modular segment completely within the evacuated disc nucleus space until a distal end of second outer modular segment is aligned with a distal end of an intermediate modular segment.
17. The method of claim 13, further comprising: selectively attaching a distal end of one side an additional intermediate modular segment to an inner side of a proximal end of the intermediate modular segment; positioning the additional intermediate modular segment alongside the intermediate modular segment until the distal end of the additional intermediate modular segment is aligned with the distal end of the intermediate modular segment.
EP06760355A 2005-05-24 2006-05-24 Interlocked modular disc nucleus prosthesis Withdrawn EP1887986A4 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US68533205P 2005-05-24 2005-05-24
US70045905P 2005-07-19 2005-07-19
US11/372,477 US7591853B2 (en) 2005-03-09 2006-03-09 Rail-based modular disc nucleus prosthesis
US11/372,357 US7267690B2 (en) 2005-03-09 2006-03-09 Interlocked modular disc nucleus prosthesis
PCT/US2006/020150 WO2006127848A2 (en) 2005-03-09 2006-05-24 Interlocked modular disc nucleus prosthesis

Publications (2)

Publication Number Publication Date
EP1887986A2 true EP1887986A2 (en) 2008-02-20
EP1887986A4 EP1887986A4 (en) 2012-05-02

Family

ID=37452809

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06760355A Withdrawn EP1887986A4 (en) 2005-05-24 2006-05-24 Interlocked modular disc nucleus prosthesis
EP06771111.9A Active EP1883378B1 (en) 2005-05-24 2006-05-24 Rail-based modular disc nucleus prosthesis

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06771111.9A Active EP1883378B1 (en) 2005-05-24 2006-05-24 Rail-based modular disc nucleus prosthesis

Country Status (7)

Country Link
EP (2) EP1887986A4 (en)
JP (2) JP4832514B2 (en)
KR (2) KR101330340B1 (en)
CN (2) CN101193608B (en)
BR (2) BRPI0611200A2 (en)
HK (2) HK1116041A1 (en)
WO (1) WO2006127849A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267783A (en) * 2005-07-19 2008-09-17 脊椎科技股份有限公司 Multi-composite disc prosthesis
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
FR2914843B1 (en) * 2007-04-13 2010-04-23 Creaspine INTERVERTEBRAL IMPLANT FOR THE HUMAN OR ANIMAL BODY
US7967866B2 (en) * 2007-11-27 2011-06-28 Warsaw Orthopedic, Inc. Stackable intervertebral devices and methods of use
US7985231B2 (en) * 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
FR2928079A1 (en) * 2008-02-28 2009-09-04 Warsaw Orthopedic Inc Intervertebral disk augmentation implant for treating spinal disc herniation, has deformable external envelope, whose elasticity modulus is equal to specific percentages of elasticity modulus of core part
EP2416710A2 (en) * 2009-04-03 2012-02-15 Mitchell A. Hardenbrook Surgical retractor system
US9132207B2 (en) 2009-10-27 2015-09-15 Spine Wave, Inc. Radiopaque injectable nucleus hydrogel compositions
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
CN106073953B (en) * 2016-08-26 2017-12-08 常州好利医疗科技有限公司 Coordinated type Invasive lumbar fusion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017824A2 (en) * 2000-08-30 2002-03-07 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20030220649A1 (en) * 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
US20040049283A1 (en) * 2002-06-04 2004-03-11 Tushar Patel Medical implant and method of reducing back pain
WO2006051547A2 (en) * 2004-11-15 2006-05-18 Disc-O-Tech Medical Technologies, Ltd. Assembled prosthesis such as a disc

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279097A (en) * 1980-06-02 1981-07-21 Walker Gary W Soft playing disc
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
JP3007903B2 (en) * 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
CN1156255C (en) * 1993-10-01 2004-07-07 美商-艾克罗米德公司 Spinal implant
CA2386399A1 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
JP2004521666A (en) * 2000-08-28 2004-07-22 アドバンスト バイオ サーフェイシズ,インコーポレイティド Methods and systems for enhancing mammalian joints
US6468311B2 (en) 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
US6595998B2 (en) * 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
US7008452B2 (en) * 2003-06-26 2006-03-07 Depuy Acromed, Inc. Dual durometer elastomer artificial disc
KR20070101239A (en) * 2005-01-08 2007-10-16 알파스파인, 아이엔씨. Modular disk device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030220649A1 (en) * 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
WO2002017824A2 (en) * 2000-08-30 2002-03-07 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20040049283A1 (en) * 2002-06-04 2004-03-11 Tushar Patel Medical implant and method of reducing back pain
WO2006051547A2 (en) * 2004-11-15 2006-05-18 Disc-O-Tech Medical Technologies, Ltd. Assembled prosthesis such as a disc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006127848A2 *

Also Published As

Publication number Publication date
EP1883378A4 (en) 2012-05-02
CN101193608B (en) 2012-10-24
BRPI0611201A2 (en) 2010-08-24
WO2006127849A2 (en) 2006-11-30
CN101500513B (en) 2013-08-14
KR101330340B1 (en) 2013-11-15
KR20080025078A (en) 2008-03-19
EP1883378B1 (en) 2020-02-26
JP2008545475A (en) 2008-12-18
BRPI0611200A2 (en) 2010-08-24
JP4832514B2 (en) 2011-12-07
KR20080039846A (en) 2008-05-07
JP2008541875A (en) 2008-11-27
EP1883378A2 (en) 2008-02-06
JP4891991B2 (en) 2012-03-07
HK1134010A1 (en) 2010-04-16
KR101328801B1 (en) 2013-11-13
HK1116041A1 (en) 2008-12-19
EP1887986A4 (en) 2012-05-02
CN101193608A (en) 2008-06-04
CN101500513A (en) 2009-08-05
WO2006127849A3 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US7267690B2 (en) Interlocked modular disc nucleus prosthesis
US11491023B2 (en) Methods and apparatus for minimally invasive modular interbody fusion devices
AU768415B2 (en) Prosthetic spinal disc nucleus having selectively coupled bodies
EP1421921B1 (en) Artificial spinal disc
EP1887986A2 (en) Interlocked modular disc nucleus prosthesis
KR20060056264A (en) Intervertebral disc implant
JP2006515780A (en) Artificial nucleus pulposus and injection method thereof
AU2009200502B2 (en) Artifical spinal disc
EP1906886A2 (en) Multi-composite disc prosthesis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120330

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/44 20060101AFI20120326BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121030