EP1844881A2 - Method for producing open pored construction elements made of metal, plastic or ceramic with an ordered foam grid structure - Google Patents

Method for producing open pored construction elements made of metal, plastic or ceramic with an ordered foam grid structure Download PDF

Info

Publication number
EP1844881A2
EP1844881A2 EP07007332A EP07007332A EP1844881A2 EP 1844881 A2 EP1844881 A2 EP 1844881A2 EP 07007332 A EP07007332 A EP 07007332A EP 07007332 A EP07007332 A EP 07007332A EP 1844881 A2 EP1844881 A2 EP 1844881A2
Authority
EP
European Patent Office
Prior art keywords
core
lattice planes
lattice
core lattice
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07007332A
Other languages
German (de)
French (fr)
Other versions
EP1844881B1 (en
EP1844881A3 (en
Inventor
Ulrich Munz
Bernd Kuhs
Raimund Strub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laempe & Mossner GmbH
Kurtz GmbH
Original Assignee
Laempe & Mossner GmbH
Kurtz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laempe & Mossner GmbH, Kurtz GmbH filed Critical Laempe & Mossner GmbH
Publication of EP1844881A2 publication Critical patent/EP1844881A2/en
Publication of EP1844881A3 publication Critical patent/EP1844881A3/en
Application granted granted Critical
Publication of EP1844881B1 publication Critical patent/EP1844881B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/005Casting metal foams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/081Casting porous metals into porous preform skeleton without foaming

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Catalysts (AREA)

Abstract

Production of light open-pore components made from metal, metal alloys, plastic or ceramic of random geometry comprises pouring the liquid material into a casting device (01), positioning a core stack (04) in a casting mold (03), casting and removing the core. The core stack is formed as a regular multi-dimensional core lattice (09) with defined core lattice surfaces (12) each formed by single regular core bodies (10).

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von offenporigen leichten Bauteilen aus Metall, Metalllegierungen, Kunststoff oder Keramik beliebiger Geometrie nach der Lehre des Anspruchs 1.The invention relates to a method for the production of open-pored lightweight components made of metal, metal alloys, plastic or ceramic of any geometry according to the teaching of claim 1.

Zur Herstellung von Bauteilen hoher Festigkeit und Steifigkeit bei geringen Dichten sind aus dem Stand der Technik Verfahren bekannt, bei denen Metalle mit geeigneten Treibmitteln, z.B. Gasen, im flüssigen Zustand aufgeschäumt werden, um Bauteile mit oben genannten Merkmalen herzustellen. Diese bekannten Verfahren haben jedoch den Nachteil, dass durch das Einpressen der Gase während des Aufschäumvorganges Blasen entstehen, die unterschiedliche, nicht klar definierte bzw. vorhersagbare oder gewünschte Größen erreichen. Somit entstehen mittels dieser Verfahren Bauteile, die nur schwer einschätzbare mechanische Eigenschaften besitzen. Daneben dringen die Blasen bis an die Oberfläche der Bauteile und lassen keine definierte Außenhautdicke entstehen, welche für eine berechenbare statische Funktion notwendig wäre.For the manufacture of high strength and low density structural members, processes are known in the prior art in which metals are treated with suitable blowing agents, e.g. Gases, are foamed in the liquid state to produce components with the above features. However, these known methods have the disadvantage that bubbles are produced by the injection of the gases during the foaming process, which reach different, not clearly defined or predictable or desired sizes. Thus, by means of these methods, components are produced which have difficult to assess mechanical properties. In addition, the bubbles penetrate to the surface of the components and do not create a defined outer skin thickness, which would be necessary for a calculable static function.

Daneben sind Verfahren bekannt, bei denen Gießinnenformen aus amorphen ungeordneten Gitterstrukturen hergestellt werden, die in einer Gießvorrichtung ausgegossen werden. Mit Hilfe dieser Gießinnenformen aus verbundenen Einzelkugeln lassen sich Bauteile mit offener oder geschlossener Außenwand herstellen, die eine amorphe undefinierte Gitterstruktur im Inneren aufweisen, da der im Gießverfahren verwendete Kernstapel aus einer Anhäufung ungeordnet miteinander verbundener Kugeln gebildet wird. Auch in diesem Fall ist aufgrund der Unvorhersehbarkeit des ungeordneten Gitteraufbaus im Inneren der Bauteile eine klare Definition der mechanischen Eigenschaften des Bauteils unmöglich.In addition, methods are known in which casting molds are produced from amorphous disordered lattice structures which are poured out in a casting apparatus. With the help of these casting molds Connected single spheres can be used to produce components with an open or closed outer wall, which have an amorphous undefined lattice structure in the interior, since the core stack used in the casting process is formed from an accumulation of disorderedly interconnected spheres. Also in this case, a clear definition of the mechanical properties of the component is impossible due to the unpredictability of the disordered lattice structure inside the components.

Aufgabe der Erfindung ist es, ein Verfahren vorzuschlagen, das die Herstellung von leichten Bauteilen aus Metall, Metalllegierungen, Kunststoff oder Keramik beliebiger Geometrie ermöglicht, bei dem durch einen klar definierten inneren Gitteraufbau des Kernstapels mechanische Anforderungen, wie Dichte, Steifigkeit oder Festigkeit des Bauteils vorhersagbar sind, und bei Bedarf eine definierte Außenhaut gewünschter Dicke hergestellt werden kann.The object of the invention is to propose a method which allows the production of lightweight components made of metal, metal alloys, plastic or ceramic arbitrary geometry, in which by a clearly defined inner lattice structure of the core stack mechanical requirements, such as density, rigidity or strength of the component predictable are, and if necessary, a defined outer skin desired thickness can be produced.

Solche Bauteile können unter dem Überbegriff "leicht und steif" und/oder "energie- und schallabsorbierend" überall dort eingesetzt werden, wo beispielsweise bewegende Massen entsprechende Eigenschaften aufweisen müssen, z.B. im Fahrzeugbau für Straße oder Schiene, im Flugzeugbau oder Maschinenbau/Kinematik. Weiterhin sind so erzeugte Bauteile durch die offenporige und geordnete Schaumgitterstruktur auch besonders für Wärmetauscher jeglicher Art geeignet, da sie zwei einfach zusammenhängende Sphären voneinander trennen.Such components can be used under the umbrella term "light and stiff" and / or "energy and sound absorbing" everywhere where, for example, moving masses must have corresponding properties, e.g. in vehicle construction for road or rail, in aircraft or mechanical engineering / kinematics. Furthermore, components produced in this way are particularly suitable for heat exchangers of any type because of the open-pored and ordered foam grid structure, since they separate two spheres which are simply connected.

Diese Aufgabe wird durch ein Verfahren nach der Lehre des Anspruchs 1 gelöst.This object is achieved by a method according to the teaching of claim 1.

Erfindungsgemäß wird bei Anwendung des Verfahrens zur Herstellung von leichten offenporigen Bauteilen aus Metall, Metalllegierungen, Kunststoff oder Keramik beliebiger Geometrie das Bauteil durch Eingießen flüssigen Materials in eine Gießvorrichtung hergestellt. Hierzu befindet sich in der Gießform der Gießvorrichtung ein Kernstapel, der gelagert, abgegossen und entkernt wird. Dieser Kernstapel ist als regelmäßiges mehrdimensionales Kerngitter mit definierten Kerngitterebenen ausgebildet, bei dem jede Gitterebene aus einzelnen regelmäßigen Kernkörpern aufgebaut ist. Dies bedeutet, dass in dem Verfahren eine aus dem Stand der Technik bekannte Gießvorrichtung verwendet werden kann, bei der sich jedoch die Gießinnenform als Kernstapel dadurch unterscheidet, dass sie als regelmäßiges geordnetes Kerngitter aufgebaut ist. Hierbei besteht das Kerngitter aus mindestens einer Kerngitterebene, die sich jeweils aus einzelnen regelmäßigen Kernkörpern zusammensetzt. Form, Größe und Anzahl der Kernkörper sowie deren Abstand bestimmen die Porosität und die mechanischen Eigenschaften der aus dem Verfahren hervorgehenden Bauteile. Eine geschlossene Außenhülle der Bauteile kann dadurch erzeugt werden, dass der Kernstapel einen gewissen Abstand von der Außenwand der Gießform aufweist, der dann mit dem flüssigen Material ausgefüllt wird und die geschlossene Außenwand bildet. Der Abstand zwischen dem Kernstapel und der Außenwand der Gießform bestimmt dabei die Dicke der Bauteilaußenwand. Somit kann mit Hilfe des Verfahrens eine makroskopische regelmäßige Gitterstruktur des Materials erzeugt werden, so dass das Bauelement eine makroskopische Tragwerksstruktur aufweist und die tragwerkstypischen Vorteile, nämlich geringe Dichte, hohe Steifigkeit und hohe Festigkeit, mit den mikroskopischen Eigenschaften des Materials kombiniert. Die Anwendung des Verfahrens dient somit der Herstellung von Bauteilen, die metamaterialtypische Eigenschaften aufweisen, d.h. deren charakteristische Parameter nicht nur von den Parametern des Ursprungsmaterials sondern auch von dem definierten makroskopischen Aufbau des Bauteils bestimmt wird.According to the invention, the component is produced by pouring liquid material into a casting device when using the method for producing lightweight porous components made of metal, metal alloys, plastic or ceramic of any geometry. For this purpose, there is a core stack in the casting mold of the casting apparatus stored, drained and gutted. This core stack is designed as a regular multi-dimensional core lattice with defined core lattice planes, in which each lattice plane is composed of individual regular core bodies. This means that in the method, a casting device known from the prior art can be used, but in which the casting mold as a core stack differs in that it is constructed as a regular ordered core lattice. Here, the core lattice consists of at least one core lattice plane, which is composed of individual regular core bodies. Shape, size and number of core bodies and their spacing determine the porosity and the mechanical properties of the resulting from the process components. A closed outer shell of the components can be produced in that the core stack has a certain distance from the outer wall of the mold, which is then filled with the liquid material and forms the closed outer wall. The distance between the core stack and the outer wall of the mold determines the thickness of the component outer wall. Thus, with the aid of the method, a macroscopic regular lattice structure of the material can be produced, so that the component has a macroscopic structural structure and combines the structural advantages, namely low density, high rigidity and high strength, with the microscopic properties of the material. The application of the method thus serves to produce components which have metamaterialtypische properties, ie whose characteristic parameters not only determined by the parameters of the original material but also by the defined macroscopic structure of the component.

In einer besonders ausgezeichneten Ausführungsform werden zur Herstellung des Kerngitters einzelne Kerngitterebenen als durch Stege verbundene, kugelförmige, mehreckige oder sonstige voluminöse Kernkörper frei zu bestimmender Dimension in zwei oder mehreren Schichten gitterversetzt so miteinander verbunden, dass die vorher geschlichteten oder mit Kleber versehenen Kernkörper der einzelnen Ebenen mittels Binder- oder Kleberbrücken kontaktieren. Somit werden zunächst durch ein Kernbüchsenwerkzeug definierte Gitterebenen hergestellt. Eine Kerngitterebene ist dadurch gekennzeichnet, dass die kugelförmigen, mehreckigen oder sonstigen voluminösen Einzelkörper frei zu bestimmender Dimension mit Stegen untereinander verbunden sind. Die Kernkörper können somit jede beliebige Form aufweisen und von einer klassischen Kugelform abweichen, insbesondere können sie abgeflachtkugelförmig, mehreckig oder sonstig beliebig gestaltet sein. Eine Gitterebene kann aus zwei oder mehreren miteinander verbundenen Körpern bestehen und kann sowohl planeben als auch in sphärischer Ebene oder sonstig beliebig gekrümmt sein. Somit wird ein Kernstapel aus einzelnen Kerngitterebenen aufgebaut und kann so Schicht für Schicht das Bauteil ausfüllen.In a particularly excellent embodiment, individual core lattice planes are connected to one another in the form of lattice-like, globular, polygonal or other voluminous core bodies of freely dimensioned dimension in two or more layers in such a way that the previously lightened ones are connected by webs or contact with adhesive core body of the individual levels by means of binder or adhesive bridges. Thus, first defined by a Kernbüchsenwerkzeug lattice planes are produced. A core lattice plane is characterized in that the spherical, polygonal or other voluminous individual bodies of freely determinable dimension are interconnected with webs. The core body can thus have any shape and deviate from a classic spherical shape, in particular they can be flattened spherical, polygonal or otherwise arbitrarily designed. A lattice plane may consist of two or more interconnected bodies and may be both plane and in the spherical plane or otherwise arbitrarily curved. Thus, a core stack is built up of individual core lattice planes and can thus fill the component layer by layer.

Das Verfahren zur Herstellung der einzelnen Kerngitterebenen ist prinzipiell beliebig durchführbar. Als besonders vorteilhaft hat es sich erwiesen, die einzelnen Kerngitterebenen in einem ersten Arbeitsgang durch Verbinden der Kernkörper zu festen planaren, gebogenen oder beliebig gekrümmten Platten auszuformen. Erst durch Aufeinanderschichten der einzelnen Kerngitterebenen, insbesondere der sie darstellenden Platten, wird eine gewünschte Form des Kerngitters erzeugt. Durch solch einen schichtweisen Aufbau ist es vorteilhaft möglich, das Kerngitter unabhängig und nach der Herstellung der einzelnen Kerngitterebenen herzustellen, insbesondere ist es denkbar, Kerngitterebenen vorzufertigen, bei Bedarf in eine gewünschte Form zuzuschneiden und zu einem Kerngitter zusammenzusetzen. Dies ermöglicht eine günstige, rationelle und schnelle Herstellung des Kerngitters aus vorgefertigten Kerngitterebenen, insbesondere aus vorgefertigten Platten.The method for producing the individual core lattice planes can in principle be carried out arbitrarily. It has proved to be particularly advantageous to form the individual core lattice planes in a first operation by connecting the core body to solid planar, curved or arbitrarily curved plates. Only by stacking the individual core lattice planes, in particular the plates representing them, is a desired shape of the core lattice generated. By such a layered structure, it is advantageously possible to produce the core grid independently and after the production of the individual core lattice planes; in particular, it is conceivable to prefabricate core lattice planes, to cut them into a desired shape if necessary and to assemble them into a core lattice. This allows a cheap, efficient and fast production of the core lattice from prefabricated core lattice planes, in particular from prefabricated plates.

Grundsätzlich können die einzelnen Kerngitterebenen im ersten Arbeitsgang beliebig hergestellt werden. Anknüpfend an die oben skizzierte Ausführungsform ist es jedoch vorteilhaft, dass benachbarte Kernkörper durch Stege in einem einzigen Formgebungsverfahren zur Herstellung der Kerngitterebenen verbunden werden. Durch Stegverbindungen wird eine zuverlässige Fixierung der Kernkörper in der Kerngitterebene erreicht, so dass eine planare oder beliebig gekrümmte Form der Kerngitterebene stabil hergestellt werden kann.In principle, the individual core lattice planes can be produced as desired in the first work step. However, following on from the embodiment outlined above, it is advantageous that adjacent core bodies be joined by webs in a single molding process for the production of the core lattice planes. By bridge connections a reliable fixation of the core body is achieved in the core lattice plane, so that a planar or arbitrarily curved shape of the core lattice plane can be made stable.

Nachdem einzelne Kerngitterebenen nach den oben dargestellten Ausführungsformen hergestellt worden sind, müssen sie zur Erstellung eines Kernkörpers miteinander verbunden werden. Dies kann auf beliebige Weise geschehen, als besonders einfach erweist sich dies durch Verbindung der einzelnen Kerngitterebenen durch ein geeignetes Bindemittel und Härteverfahren, wie sie bei der Schaffung von Kernkörpern in der Gießereitechnik bereits bekannt sind. So kann beispielsweise eine Behandlung mit heißer Luft, mit Kohlendioxid oder mit einem Amin oder auch lediglich eine Wärmebehandlung durch Mikrowellen geeignet sein, die Kerngitterebenen miteinander zu verbinden. Als Bindemittel stehen viele unterschiedliche Gießereibindemittel auf organischer und anorganischer Basis zur Verfügung, die sich durch die Wärmeeinwirkung des heißen Metalls, Kunststoffs oder sonstigem gießfähigen Materials zersetzen, oder sie müssen wasserlöslich sein, um sich nach dem Abgießen des Gießmaterials wieder aus dem Bauteil entfernen zu lassen.After individual core lattice planes have been fabricated according to the embodiments presented above, they must be interconnected to form a core body. This can be done in any way, as this is particularly easy by connecting the individual core lattice planes by a suitable binder and hardening process, as they are already known in the creation of core bodies in the foundry technology. For example, a treatment with hot air, with carbon dioxide or with an amine, or else only a heat treatment by microwaves, may be suitable for connecting the core lattice planes to one another. As binders, many different organic and inorganic foundry binders are available which decompose by the action of heat of the hot metal, plastic or other pourable material, or they must be water-soluble to be removed from the component after pouring the casting material ,

Das Verfahren zur Herstellung der einzelnen Kerngitterebenen kann dabei beliebig ausgeführt werden. Die Körper innerhalb der Kerngitterstruktur haben dabei jedoch eine definierte Größe, beispielsweise 10 mm und können in einem Gitternetz hergestellt werden. Dabei kann beispielsweise ein geeigneter Gießereikernsand mit einem bekannten Kernsandbinder versetzt werden und dieses Kerngitterebenen-Ausgangsmaterial durch ein geeignetes Kernherstellungsverfahren geformt und ausgehärtet werden. Zur Herstellung der einzelnen Kerngitterebenen ist es dabei besonders vorteilhaft, dass bekannte Betaset-, Coldbox-, Hotbox- oder Croning-Verfahren mit organischen Binderanteilen verwendet werden. Mit diesen bekannten Verfahren zur Herstellung von Gießformen können ohne besondere Umstellung des Gießereiprozesses kostengünstig und einfach die Kerngitterebenen hergestellt werden.The process for producing the individual core lattice planes can be carried out arbitrarily. However, the bodies within the core grid structure have a defined size, for example 10 mm, and can be produced in a grid. In this case, for example, a suitable foundry core sand can be mixed with a known core sand binder and this core lattice layer starting material can be shaped and cured by a suitable core production process. To produce the individual core lattice planes, it is particularly advantageous that known betaset, coldbox, hotbox or croning processes with organic binder fractions are used. With these known methods for producing casting molds can be produced inexpensively and easily the core lattice planes without special conversion of the foundry process.

Dabei ist es besonders günstig, wenn bei der Herstellung der Kerngitterebenen wasserlösliche anorganische Binderanteile auf der Basis von Magnesiumsulfat, Phosphat oder Silikat oder einer Mischung aus diesen verwendet werden. Diese anorganischen Binder eignen sich vorzüglich, in preisgünstiger und einfacher Weise robuste Kerngitterebenen herzustellen, die zu komplexen Kernstapeln zusammengesetzt werden können.It is particularly advantageous if water-soluble inorganic binder components based on magnesium sulfate, phosphate or silicate or a mixture of these are used in the production of the core lattice planes. These inorganic binders are eminently suitable for inexpensively and easily producing robust core lattice planes which can be assembled into complex core stacks.

Das Material, das zum Aufbau der einzelnen Kerngitterebenen verwendet wird, kann prinzipiell beliebig aus dem Bereich der Materialien, die herkömmlicherweise für Gießinnenformen verwendet werden, ausgewählt werden. Jedoch hat es sich bevorzugt gezeigt, dass sich zur Herstellung von Kerngitterebenen anorganische Mehle oder Sande, die insbesondere aus Quarz, Feldspat, Aluminiumoxid, Schamott, Olivin, Chromerz, Ton, Kaolin, Flussspat, Silikat oder Bentonit oder einer Mischung aus diesen bestehen, eignen. Aus diesen Materialien können besonders einfach Kernkörper hergestellt werden, und mit den oben angesprochenen Kernsandbindern verbunden werden, so dass sich besonders haltbare und leicht bearbeitbare Kerngitterebenen herstellen lassen.The material used to construct the individual core lattice planes can, in principle, be arbitrarily selected from the range of materials conventionally used for casting molds. However, it has preferably been found that inorganic flours or sands, which consist in particular of quartz, feldspar, aluminum oxide, chamotte, olivine, chrome ore, clay, kaolin, fluorspar, silicate or bentonite or a mixture of these, are suitable for the production of core lattice planes , From these materials, core bodies can be produced in a particularly simple manner, and connected to the above-mentioned core sand binders, so that it is possible to produce particularly durable and easily machinable core lattice planes.

Alternativ zu den oben angesprochenen Materialien ist es jedoch auch möglich, dass zur Herstellung der Kerngitterebenen Salze verwendet werden, insbesondere Natriumchlorid (NaCl), Kaliumchlorid (KCl), Kaliumsulfat (K2SO4) oder Magnesiumsulfat (Mg2SO4). Alternativ zu den oben dargestellten Mineralien können aus diesen Salzen die einzelnen Kerngitterebenen aufgebaut werden.However, as an alternative to the materials mentioned above, it is also possible that salts are used to prepare the core lattice planes, in particular sodium chloride (NaCl), potassium chloride (KCl), potassium sulfate (K 2 SO 4 ) or magnesium sulfate (Mg 2 SO 4 ). As an alternative to the minerals described above, the individual core lattice planes can be built up from these salts.

Form und Größe der Kernkörper innerhalb des Kerngitters können prinzipiell beliebig gewählt sein. Besonders vorteilhaft hat es sich jedoch herausgestellt, wenn die Kernkörper eine Größe von 1 mm bis 30 cm aufweisen. Insbesondere ist es besonders vorteilhaft, falls die Kernkörper einen Durchmesser von etwa 5 mm bis 20 mm aufweisen.The shape and size of the core body within the core grid can in principle be chosen arbitrarily. However, it has turned out to be particularly advantageous if the core bodies have a size of 1 mm to 30 cm. In particular, it is particularly advantageous if the core body has a diameter of about 5 mm to 20 mm.

Nachdem nun einzelne Kerngitterebenen ausgehärtet sind, werden sie mit einem Bindemittel oder Kleber beschichtet bzw. geschlichtet und in zwei oder mehreren Ebenen übereinander gestapelt, so dass die Kernkörper der einzelnen Ebenen gitterversetzt miteinander kontaktieren. Mittels der erzeugbaren Schlichter-/Kleberbrücken werden die Kernkörper an den Kontaktpunkten/Kontaktflächen miteinander verbunden. Dies kann prinzipiell beliebig durchgeführt werden, es hat sich jedoch als besonders vorteilhaft gezeigt, wenn die Kerngitterebenen teil- oder satzweise in einer mehrteiligen Sandwich-Kernbüchse hergestellt werden, wobei die Kerngitterebenen darin geschlichtet, miteinander montiert und in der Kernbüchse abgelegt werden.Now that individual core lattice planes are cured, they are coated or sized with a binder or adhesive and stacked on top of each other in two or more planes so that the core bodies of the individual planes contact one another in a grid-offset manner. By means of the producible sizer / adhesive bridges, the core bodies are connected to one another at the contact points / contact surfaces. This can in principle be carried out arbitrarily, but it has been shown to be particularly advantageous if the core lattice planes are produced in part or in sets in a multipart sandwich core bushing, wherein the core lattice planes are sized therein, assembled with one another and deposited in the core bushing.

Dabei hat es sich als besonders bevorzugt herausgestellt, wenn bei der Herstellung der Kerngitterebenen die verwendeten Kerngitterrahmen Bestandteile eines Werkzeugs, bevorzugt eines robotergesteuerten Werkzeugs, sind, die innerhalb eines Kernherstellungswerkzeugs angeordnet sind und das Schlichten, Montieren und Ablegen des Kerngitters außerhalb des Kernherstellungswerkzeugs vollzogen wird. Dies bedeutet, dass die einzelnen Kerngitterebenen mittels eines Kerngitterrahmens innerhalb eines Kernherstellungswerkzeugs hergestellt werden, bevorzugt durch ein robotergesteuertes Werkzeug, das den Kerngitterrahmen umfasst. Darauf folgend werden die einzelnen Kerngitterebenen aus dem Kernherstellungswerkzeug entnommen und das Schlichten, Montieren und Ablegen des Kerngitters wird außerhalb des Kernherstellungswerkzeugs durchgeführt.It has been found to be particularly preferred if, during the production of the core lattice planes, the core lattice frames used are components of a tool, preferably a robot-controlled tool, which are arranged within a core production tool and the finishing, assembly and removal of the core lattice is performed outside the core production tool. This means that the individual core lattice planes are produced by means of a core lattice frame within a core making tool, preferably by a robot controlled tool comprising the core lattice frame. Subsequently, the individual core lattice planes are removed from the core manufacturing tool, and the sizing, assembly and deposition of the core lattice is performed outside the core manufacturing tool.

Um die Herstellungsgeschwindigkeit und Effektivität bei der Herstellung des Kerngitters zu beschleunigen, hat es sich als besonders vorteilhaft erwiesen, wenn mindestens zwei Roboter im Takt arbeiten, wobei ein Roboter im Kernherstellungswerkzeug für die Kernherstellung arbeitet, während der zweite Roboter das Schlichten, Montieren und Ablegen des Kerngitters vollzieht. Hierdurch ist es möglich, dass simultan eine Kerngitterebene durch einen Roboter hergestellt wird, während außerhalb des Kernherstellungswerkzeugs ein zweiter Roboter bereits hergestellte Kerngitterebenen miteinander montiert, schlichtet und ablegt. Somit ist eine maximale Arbeitseffektivität und Produktivität bei der Herstellung des Kernstapels gegeben.In order to accelerate the production speed and efficiency in the production of the core grid, it has proven to be particularly advantageous if at least two robots work in tact, with one robot working in the core-making tool for core production, while the second robot is the finishing, assembling and depositing of the core Kerngitters completes. This makes it possible for a core lattice plane to be simultaneously produced by a robot while outside of the core manufacturing tool, a second robot already assembled, finished and deposited together core lattice planes. Thus, there is maximum work efficiency and productivity in the production of the core stack.

Der so hergestellte Kerngitterstapel kann nun wiederum in eine Gießform, z.B. eine Kokille, gelagert werden. Durch die Hohlräume zwischen den Kernkörpern der einzelnen Kerngitterschichten und über den Abstand zwischen dem montierten Kerngebilde und der Formwand lässt sich die spätere Geometrie und Außenwanddicke des Gussteils bestimmen. Durch ein geeignetes Gießverfahren werden so diese Hohlräume mit Metall, Kunststoff, Metalllegierungen oder einer keramischen Masse ausgefüllt. Vorzugsweise wird bei der Befüllung mit Metall das gesamte Kerngebilde vorher, z.B. in einem Ofen, erhitzt, um die Fließfähigkeit des Metalls bis in alle feinen Zwischenräume zu gewährleisten.The core lattice stack thus produced may in turn be transformed into a casting mold, e.g. a mold, to be stored. Through the cavities between the core bodies of the individual core lattice layers and over the distance between the assembled core structure and the mold wall, the later geometry and outer wall thickness of the casting can be determined. By a suitable casting process so these cavities are filled with metal, plastic, metal alloys or a ceramic mass. Preferably, when filled with metal, the entire core is pre-formed, e.g. in an oven, heated to ensure the fluidity of the metal to all fine interstices.

Während des Gießvorgangs ist es dabei vorteilhaft, dass das flüssige Material über den statischen Druck bis zur Höhe des Materialsumpfs in die Form fließt und danach durch ein Vakuum, das von einer Vakuumstation erzeugt wird, so weit in die Form gezogen wird, bis es die Form ausfüllt. Somit wird der Gießvorgang in zwei Phasen ausgeführt. Das flüssige Material läuft bis zur Höhe des Materialsumpfs in die Gießform, wobei der Materialsumpf durch Einströmen flüssigen Materials aus einem Ofen erzeugt wird. Nachdem der Pegel des flüssigen Materials innerhalb der Gießform durch statischen Druck die Höhe des Materialsumpfs erreicht hat, zieht eine Vakuumpumpe durch ein Vakuum das Material höher in die Form hinein, so dass letztendlich die gesamte Form von flüssigem Material ausgefüllt ist.During the casting process, it is advantageous that the liquid material flows through the static pressure to the level of the material sump in the mold and then pulled by a vacuum generated by a vacuum station, so far into the mold until it is the mold fills. Thus, the casting process is carried out in two phases. The liquid material runs up to the level of the material sump in the mold, wherein the material sump is generated by flowing liquid material from a furnace. After the level of liquid material within the mold has reached the level of the material sump by static pressure, a vacuum pump pulls the material higher into the mold by a vacuum, so that eventually the entire shape of liquid material is filled.

Nach dem Aushärten der Metallschmelze, des Kunststoffs oder der keramischen Masse kann dann sämtliches Kernmaterial durch Vibration, Strahlen oder durch Aufschwemmen mit Wasser aus dem Bauteil entfernt werden. Dazu wird mindestens eine Seite des Bauteils ohne Außenhaut erzeugt, oder es wird nachträglich die Außenhaut an geeigneter Stelle wieder geöffnet, z.B. aufgebohrt, so dass sich sämtliches Kernmaterial rückstandslos entfernen lässt, da sämtliche über die Binder-/Schlichterbrücken kontaktierten Kernkörper miteinander in Verbindung stehen.After curing of the molten metal, of the plastic or of the ceramic mass, all the core material can then be removed from the component by vibration, blasting or by floating with water. For this purpose, at least one side of the component is generated without outer skin, or it is subsequently the outer skin at a suitable location reopened, eg drilled out, so that all core material can be removed without leaving any residue, since all the core bodies contacted via the binder / intermediate bridges are in communication with each other.

Hierdurch können nun Bauteile definierter Außenhaut, definierter Porengröße und im Prozess wiederholbarer geordneter Schaumgitterstruktur hergestellt werden. Dies ist mit den bereits bekannten Verfahren aus dem Stand der Technik nicht möglich.In this way, it is now possible to produce components of defined outer skin, defined pore size and, in the process, repeatable ordered foam lattice structure. This is not possible with the already known methods of the prior art.

Im Folgenden wird das Verfahren und der Aufbau eines aus dem Verfahren hervorgehenden Bauteils an Hand von Zeichnungen näher erläutert.The method and structure of a component resulting from the method will be explained in more detail below with reference to drawings.

Es zeigen:

Fig. 1
in schematischer Darstellung eine Gießvorrichtung des erfindungsgemäßen Verfahrens;
Fig. 2
in schematischer Schnittdarstellung den Aufbau eines Kernstapels;
Fig. 3
in schematischer Darstellung einen Schnitt durch ein aus dem erfindungsgemäßen Verfahren hervorgehendes Bauteil.
  • In Fig. 1 ist eine Gießvorrichtung 01 schematisch dargestellt, in der eine Gießform 03 enthalten ist. In die Gießform 03 kann durch eine Gießzuführung 06 flüssiges Material aus einem Ofen eingefüllt werden, wobei das flüssige Material einen Gießsumpf 07 bildet. Dabei fließt das flüssige Material bis zur Höhe des statischen Drucks des Gießsumpfs 07 in die Gießform 03. Die Gießvorrichtung 01 ist so aufgebaut, dass die Gießform 03 an einer Trennfuge 05 geteilt werden kann, um das gegossene Bauteil aus der Gießform 03 zu entnehmen. Im Inneren der Gießform 03 befindet sich ein Kernstapel 04, der aus einzelnen Kerngitterebenen, die aus einzelnen Kernkörpern zusammengestellt sind, besteht und ein regelmäßiges Kerngitter bildet. Mit Hilfe einer Vakuumstation 02 wird durch eine Vakuumabführung 06 im Inneren der Gießform 03 ein Vakuum erzeugt, so dass das flüssige Material innerhalb des Kernstapels 04 hinaufgezogen wird, um die gesamte Gießform 03 auszufüllen.
  • Fig. 2 zeigt schematisch einen Schnitt durch den Kernstapel 03 der Fig. 1. Der Kernstapel 03 besteht dabei aus einem Kerngitter 09, bei dem einzelne, in diesem Fall kugelförmig ausgebildete Kernkörper 10 durch Brücken 11 miteinander verbunden sind. Die Brücken 11 der einzelnen Kerngitterebenen 12 können als Stege ausgebildet sein und beispielsweise durch ein Betaset-, Coldbox-, Hotbox- oder Croning-Verfahren mit organischen Binderanteilen hergestellt werden. Die einzelnen Kerngitterebenen werden dann mit Hilfe von Kleberbrücken durch Binder- oder Kleberbrücken miteinander kontaktiert.
  • Fig. 3 zeigt schematisch einen Schnitt durch ein Bauteil 13, das durch Eingießen von flüssigem Material in den Kernstapel 03, der aus dem Kerngitter 09 besteht, hervorgeht. Deutlich ist das ausgefüllte Material um die einzelnen Kernkörper zu erkennen.
Show it:
Fig. 1
a schematic representation of a casting apparatus of the method according to the invention;
Fig. 2
in a schematic sectional view of the structure of a core stack;
Fig. 3
a schematic representation of a section through an emerging from the process according to the invention component.
  • In Fig. 1 , a casting apparatus 01 is shown schematically, in which a mold 03 is included. In the mold 03, liquid material can be filled from a furnace through a casting feed 06, wherein the liquid material forms a casting sump 07. In this case, the liquid material flows up to the level of the static pressure of the casting sump 07 into the casting mold 03. The casting apparatus 01 is constructed such that the casting mold 03 can be divided at a parting line 05 in order to remove the cast component from the casting mold 03. Inside the mold 03 is a core stack 04, which consists of individual core lattice planes, which are composed of individual core bodies, and forms a regular core lattice. With the help of a vacuum station 02 by a vacuum discharge 06 in the interior of the mold 03, a vacuum is generated so that the liquid material is pulled up within the core stack 04 to fill the entire mold 03.
  • 2 shows schematically a section through the core stack 03 of FIG. 1. The core stack 03 consists of a core grid 09, in which individual, in this case spherically formed core body 10 are connected by bridges 11. The bridges 11 of the individual core lattice planes 12 may be embodied as webs and be produced, for example, by a betaset, coldbox, hotbox or croning process with organic binder fractions. The individual core lattice planes are then contacted with the help of adhesive bridges by binder or adhesive bridges.
  • Fig. 3 shows schematically a section through a component 13, which emerges by pouring liquid material into the core stack 03, which consists of the core grid 09. The filled material is clearly visible around the individual core bodies.

Claims (15)

Verfahren zur Herstellung von leichten offenporigen Bauteilen aus Metall, Metalllegierungen, Kunststoff oder Keramik beliebiger Geometrie,
gekennzeichnet dadurch,
dass das Bauteil durch Eingießen flüssigen Materials in eine Gießvorrichtung (01) hergestellt wird, wobei ein Kernstapel (04) in einer Gießform (03) gelagert, abgegossen und entkernt wird, und der Kernstapel (04) als regelmäßiges mehrdimensionales Kerngitter (09) mit definierten Kerngitterebenen (12) ausgebildet ist, bei dem jede Kerngitterebene (12) aus einzelnen regelmäßigen Kernkörpern (10) aufgebaut wird.
Process for the production of lightweight open-pore components made of metal, metal alloys, plastic or ceramic of any geometry,
characterized by
in that the component is produced by pouring liquid material into a casting apparatus (01), wherein a core stack (04) is stored, poured and cored in a casting mold (03), and the core stack (04) is defined as a regular multidimensional core grid (09) Core lattice planes (12) is formed, wherein each core lattice plane (12) of individual regular core bodies (10) is constructed.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zur Herstellung des Kerngitters (09) einzelne Kerngitterebenen (12) als durch Stege verbundene, kugelförmige, mehreckige, oder sonstige voluminöse Kernkörper (10) frei zu bestimmender Dimension in zwei oder mehreren Schichten gitterversetzt so miteinander verbunden werden, dass die vorher geschlichteten oder mit Kleber versehenen Kernkörper (10) der einzelnen Ebenen (12) miteinander mittels Binder- oder Kleberbrücken kontaktieren.
Method according to claim 1,
characterized,
that for the production of the core grid (09) individual core lattice planes (12) connected by webs, spherical, polygonal, or other voluminous core body (10) freely determinable dimension in two or more layers gridded are connected together so that the previously sized or with Adhesive provided core body (10) of the individual levels (12) contact each other by means of binder or adhesive bridges.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass zur Herstellung des Kerngitters die Kernkörper (10) in einem ersten Arbeitsgang in einer Kerngitterebene (12) miteinander insbesondere zu festen planaren, gebogenen oder beliebig gekrümmten Platten verbunden werden, und erst durch Aufeinanderschichten der einzelnen Kerngitterebenen (10), insbesondere der Platten, die gewünschte Form des Kerngitters (09) erzeugt wird.
Method according to claim 1 or 2,
characterized,
that the core body (10) in a first operation in a core lattice plane (12) are connected to each other in particular to solid planar, curved or arbitrarily curved plates, and only by stacking the individual core lattice planes (10), in particular the plates, the desired shape of the core grid (09) is generated.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
dass in dem ersten Arbeitsgang zur Herstellung des Kerngitters benachbarte Kernkörper (10) durch Stege in einem einzigen Formgebungsverfahren zur Herstellung der Kerngitterebenen (12) verbunden werden.
Method according to claim 3,
characterized,
that in the first operation for manufacturing the core lattice adjacent core bodies (10) are connected by webs in a single molding method for manufacturing the core lattice planes (12).
Verfahren nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet,
dass die Verbindung der einzelnen Kerngitterebenen (12) durch ein geeignetes Bindemittel und Härteverfahren erfolgt.
Method according to one of claims 2 to 4,
characterized,
in that the connection of the individual core lattice planes (12) takes place by means of a suitable binder and hardening method.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass die Kerngitterebenen (12) durch bekannte Betaset-, Coldbox-, Hotbox-, oder Croning-Verfahren mit organischen Binderanteilen hergestellt werden.
Method according to one of the preceding claims,
characterized,
that the core lattice planes (12) are prepared by known Betaset-, coldbox, hotbox or Croning process with organic binder components.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass die Kerngitterebenen (12) durch Verfahren mit wasserlöslichen, anorganischen Binderanteilen auf der Basis von Magnesiumsulfat, Phosphat oder Silikat oder einer Mischung aus diesen hergestellt werden.
Method according to one of the preceding claims,
characterized,
in that the core lattice planes (12) are produced by processes with water-soluble, inorganic binder constituents based on magnesium sulfate, phosphate or silicate or a mixture of these.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass das zur Herstellung der Kerngitterebenen (12) verwendete Material ein anorganisches Mehl oder Sand ist, insbesondere Quarz, Feldspat, Aluminiumoxid, Schamott, Olivin, Chromerz, Ton, Kaolin, Flussspat, Silikat oder Bentonit oder eine Mischung aus diesen.
Method according to one of the preceding claims,
characterized,
that the material used for manufacturing the core lattice planes (12) is an inorganic flour or sand, especially quartz, feldspar, alumina, chamotte, olivine, chromium ore, clay, kaolin, fluorspar, silicate or bentonite or a mixture of these.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass das zur Herstellung der Kerngitterebenen (12) verwendete Material ein Salz ist, insbesondere NaCl, KCl, K2SO4 oder Mg2SO4.
Method according to one of claims 1 to 7,
characterized,
that for manufacturing the core lattice planes (12) material used is a salt, in particular NaCl, KCl, K 2 SO 4 or Mg 2 SO 4.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass die Kernkörper (10) innerhalb des Kerngitters (09) einen Durchmesser von 1mm bis 30cm aufweisen.
Method according to one of the preceding claims,
characterized,
that the core body (10) within the core lattice (09) have a diameter of 1mm to 30cm.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass die Kernkörper (10) innerhalb des Kerngitters (09) einen Durchmesser von 5mm bis 20mm aufweisen.
Method according to claim 9,
characterized,
that the core body (10) within the core lattice (09) have a diameter of 5mm to 20mm.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass die Kerngitterebenen (12) teil- oder satzweise in einer mehrteiligen Sandwich-Kernbüchse hergestellt werden, wobei die Kerngitterebenen (12) geschlichtet, miteinander montiert und in der Kernbüchse abgelegt werden.
Method according to one of the preceding claims,
characterized,
in that the core lattice planes (12) are produced in part or in sets in a multipart sandwich core bushing, wherein the core lattice planes (12) are leveled, assembled with one another and deposited in the core bushing.
Verfahren nach Anspruch 12,
dadurch gekennzeichnet,
dass die zur Herstellung der Kerngitterebenen (12) verwendeten Kerngitterrahmen Bestandteile eines Werkzeugs, bevorzugt eines robotergesteuerten Werkzeuges, innerhalb eines Kernherstellungswerkzeugs sind, und das Schlichten, Montieren und Ablegen des Kerngitters außerhalb des Kernherstellungswerkzeugs vollzogen wird.
Method according to claim 12,
characterized,
in that the core lattice frames used to make the core lattice planes (12) are components of a tool, preferably a robotic tool, within a core making tool, and the finishing, assembly and removal of the core lattice is performed outside the core making tool.
Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
dass mindestens zwei Roboter im Takt arbeiten, wobei ein Roboter im Kernherstellungswerkzeug für die Kernherstellung arbeitet, während der zweite Roboter das Schlichten, Montieren und Ablegen des Kerngitters vollzieht.
Method according to claim 13,
characterized,
that at least two robots work in tandem, with one robot working in the core-making tool for core-making, while the second robot performs the sizing, assembly and removal of the core grid.
Verfahren nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet,
dass das flüssige Material während des Eingießvorgangs über den statischen Druck bis zur Höhe des Materialsumpfes in die Form fließt, und danach durch ein Vakuum, das von einer Vakuumstation (02) erzeugt wird, so weit in die Form gezogen wird, bis es die Form ausfüllt.
Method according to one of the preceding claims,
characterized,
that the liquid material to the amount of material sump flows during the potting process by the static pressure in the mold, and thereafter through a vacuum produced by a vacuum station (02) is drawn so far in the mold until it fills the mold ,
EP07007332A 2006-04-10 2007-04-10 Method for producing open pored construction elements made of metal, plastic or ceramic with an ordered foam grid structure Not-in-force EP1844881B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006017104A DE102006017104A1 (en) 2006-04-10 2006-04-10 Production of light open-pore components made from e.g. metal comprises pouring the liquid material into a casting device, positioning a core stack in a casting mold, casting and removing the core

Publications (3)

Publication Number Publication Date
EP1844881A2 true EP1844881A2 (en) 2007-10-17
EP1844881A3 EP1844881A3 (en) 2007-11-21
EP1844881B1 EP1844881B1 (en) 2010-01-27

Family

ID=38157540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07007332A Not-in-force EP1844881B1 (en) 2006-04-10 2007-04-10 Method for producing open pored construction elements made of metal, plastic or ceramic with an ordered foam grid structure

Country Status (6)

Country Link
US (1) US7588069B2 (en)
EP (1) EP1844881B1 (en)
JP (1) JP2007275992A (en)
AT (1) ATE456410T1 (en)
DE (2) DE102006017104A1 (en)
ES (1) ES2338468T3 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588069B2 (en) 2006-04-10 2009-09-15 Kurtz Gmbh Method for manufacturing open porous components of metal, plastic or ceramic with orderly foam lattice structure
WO2012089935A1 (en) * 2010-12-29 2012-07-05 Filtrauto Preform for producing a metal foam
WO2013144881A3 (en) * 2012-03-27 2013-12-12 Universidade Do Minho Light-weight metallic structure and respective production method
DE102013019309A1 (en) * 2012-11-14 2014-05-15 Technische Universität Bergakademie Freiberg Casting porous cellular metal parts, comprises mixing preform of space-holding salt granules with binder, adding starch to mixture, introducing mixture into mold, and curing mold by flowing carbon dioxide/hot air to form preform
WO2015039730A1 (en) * 2013-09-17 2015-03-26 Daimler Ag Cast component having at least one porous metal body formed by a casting core
CN108620561A (en) * 2018-05-14 2018-10-09 重庆大学 The intensifying method of MgFe compound casting combination interfaces
FR3069294A1 (en) * 2017-07-19 2019-01-25 Ntn-Snr Roulements METHOD FOR MANUFACTURING A MONOBLOC MONOBLOC METAL RING OF SMOOTH OR BEARING BEARING, AND BEARING COMPRISING AT LEAST ONE RING OBTAINED BY THE PROCESS

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932705B1 (en) * 2008-06-19 2011-02-11 C T I F Ct Tech Des Ind De La Fonderie PREFORM AND PROCESS FOR MOLDING SOLID CELLULAR STRUCTURE MATERIAL
EP2260937A1 (en) * 2009-06-12 2010-12-15 DSM IP Assets B.V. Device for processing and conditioning of material transported through the device
GB201113506D0 (en) * 2011-08-05 2011-09-21 Materialise Nv Impregnated lattice structure
CN102489686B (en) * 2011-12-28 2015-03-11 昆明理工大学 Method for preparing ceramic particle enhanced steel-base composite material cast by evaporative pattern casting die
CN104148616B (en) * 2014-08-04 2016-10-05 吴建化 The casting method that a kind of metal grill reinforcement merges with Metal Substrate
WO2016100598A1 (en) * 2014-12-19 2016-06-23 Maynard Steel Casting Company Steel foam and method for manufacturing steel foam
US9623480B2 (en) 2014-12-19 2017-04-18 Hathibelagal M. Roshan Steel foam and method for manufacturing steel foam
US10493522B2 (en) 2014-12-19 2019-12-03 Maynard Steel Casting Company Steel foam and method for manufacturing steel foam
US10898331B2 (en) * 2015-07-17 2021-01-26 Purdue Research Foundation Bioresorbable porous metals for orthopaedic applications
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9579714B1 (en) * 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
KR101809970B1 (en) 2016-06-21 2018-01-26 한국생산기술연구원 A metallic plate including iron and lightweight metal and a method for manufacturing the same
US11230503B2 (en) 2017-06-27 2022-01-25 General Electric Company Resin for production of porous ceramic stereolithography and methods of its use
JP2019171441A (en) * 2018-03-29 2019-10-10 アート金属工業株式会社 Base-metal-integrated open porous metal and method of manufacturing the same
CN108580852B (en) * 2018-05-14 2020-04-24 重庆大学 Method for enhancing AlFe composite casting bonding interface by lattice material
US20190351642A1 (en) * 2018-05-15 2019-11-21 Divergent Technologies, Inc. Self-supporting lattice structure
CN108555268B (en) * 2018-06-04 2020-07-28 张勇 Hydraulic device for preparing foamed aluminum by seepage method and application method thereof
JP7267809B2 (en) * 2019-03-29 2023-05-02 アート金属工業株式会社 Manufacturing method of regular open porous metal integrated with base metal
CN112355277B (en) * 2019-10-29 2022-02-08 沈阳铸造研究所有限公司 High-melting-point Kelvin structure lattice metal and preparation method and application thereof
CN111496194B (en) * 2020-04-22 2023-07-11 陈万红 Porous pouring member and production process thereof
CN116104893B (en) * 2023-01-03 2023-07-28 中国机械总院集团沈阳铸造研究所有限公司 High-damping variable-rigidity lattice composite structure shock absorber and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155331A (en) 1994-05-27 2000-12-05 Eos Gmbh Electro Optical Systems Method for use in casting technology
EP1174200A2 (en) 2000-07-20 2002-01-23 Adam Opel Ag Casting process and core to be used therein
WO2002026419A1 (en) 2000-09-25 2002-04-04 Generis Gmbh Method for producing a part using a deposition technique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2419498A1 (en) * 1978-03-08 1979-10-05 Merlin Gerin CAST COMPOSITE SHIELD
DE19653149A1 (en) * 1996-12-19 1998-06-25 Bayerische Motoren Werke Ag Workpiece made of a lightweight material and process for producing the workpiece
US6767619B2 (en) * 2001-05-17 2004-07-27 Charles R. Owens Preform for manufacturing a material having a plurality of voids and method of making the same
DE102006002227A1 (en) * 2006-01-16 2007-07-19 Bernd Kuhs Process for producing open-pored components made of metal, plastic or ceramic
DE102006017104A1 (en) 2006-04-10 2007-10-11 Kurtz Gmbh Production of light open-pore components made from e.g. metal comprises pouring the liquid material into a casting device, positioning a core stack in a casting mold, casting and removing the core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155331A (en) 1994-05-27 2000-12-05 Eos Gmbh Electro Optical Systems Method for use in casting technology
EP1174200A2 (en) 2000-07-20 2002-01-23 Adam Opel Ag Casting process and core to be used therein
WO2002026419A1 (en) 2000-09-25 2002-04-04 Generis Gmbh Method for producing a part using a deposition technique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. GROTE; P. BUSSE: "Materialwissenschaft und Werkstofftechnik", vol. 31, 2000, VCH VERLAGSGESELLSCHAFT, article "Giesstechnische Herstellung offenporiger Metallschwämme mittels mineralischer Platzhalter", pages: 415 - 418

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588069B2 (en) 2006-04-10 2009-09-15 Kurtz Gmbh Method for manufacturing open porous components of metal, plastic or ceramic with orderly foam lattice structure
WO2012089935A1 (en) * 2010-12-29 2012-07-05 Filtrauto Preform for producing a metal foam
FR2969938A1 (en) * 2010-12-29 2012-07-06 Filtrauto PREFORM FOR REALIZING A METAL FOAM
CN103442828A (en) * 2010-12-29 2013-12-11 费尔特劳脱公司 Preform for producing a metal foam
CN103442828B (en) * 2010-12-29 2016-05-25 费尔特劳脱公司 For the production of the precast body of foam metal
WO2013144881A3 (en) * 2012-03-27 2013-12-12 Universidade Do Minho Light-weight metallic structure and respective production method
DE102013019309A1 (en) * 2012-11-14 2014-05-15 Technische Universität Bergakademie Freiberg Casting porous cellular metal parts, comprises mixing preform of space-holding salt granules with binder, adding starch to mixture, introducing mixture into mold, and curing mold by flowing carbon dioxide/hot air to form preform
DE102013019309B4 (en) * 2012-11-14 2014-07-24 Technische Universität Bergakademie Freiberg Method for casting open-pored cellular metal parts
WO2015039730A1 (en) * 2013-09-17 2015-03-26 Daimler Ag Cast component having at least one porous metal body formed by a casting core
US10300524B2 (en) 2013-09-17 2019-05-28 Daimler Ag Casting component having at least one porous metal body formed by a casting core
FR3069294A1 (en) * 2017-07-19 2019-01-25 Ntn-Snr Roulements METHOD FOR MANUFACTURING A MONOBLOC MONOBLOC METAL RING OF SMOOTH OR BEARING BEARING, AND BEARING COMPRISING AT LEAST ONE RING OBTAINED BY THE PROCESS
CN108620561A (en) * 2018-05-14 2018-10-09 重庆大学 The intensifying method of MgFe compound casting combination interfaces

Also Published As

Publication number Publication date
EP1844881B1 (en) 2010-01-27
DE102006017104A1 (en) 2007-10-11
US7588069B2 (en) 2009-09-15
ATE456410T1 (en) 2010-02-15
EP1844881A3 (en) 2007-11-21
ES2338468T3 (en) 2010-05-07
US20070296106A1 (en) 2007-12-27
JP2007275992A (en) 2007-10-25
DE502007002714D1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
EP1844881B1 (en) Method for producing open pored construction elements made of metal, plastic or ceramic with an ordered foam grid structure
DE60311824T2 (en) casting process
EP1808241B1 (en) Method for producing open pored construction elements made of metal, plastic or ceramic
WO2004112988A2 (en) Method for the layered construction of models
DE102012016309A1 (en) Method for manufacturing core layer of light component for use in e.g. vehicle, involves forming core layer comprising support portion integrally connected with functional portion in additive manufacturing process
DE112019006038T5 (en) LIGHTWEIGHT MODEL FORMED ON A SANDCAST MOLD AND SANDCAST LIGHTWEIGHT CONSTRUCTION METHOD USING THE SANDCAST
EP1366808A2 (en) Structure comprising assembled elements and process for its construction
WO2016091629A1 (en) Method for manufacturing a compressor impeller
WO2015014711A1 (en) Salt core and additive manufacturing method for producing salt cores
EP1070151B1 (en) Positioning arm for positioning and assembling systems and method for producing positioning arms
WO2016124502A1 (en) Method and device for additively producing components
DE102014214527A1 (en) Salt cores and generative manufacturing processes for the production of salt cores
DE19851250C2 (en) Process for producing open-pore, metallic lattice structures and composite cast parts and use thereof
EP3768447A1 (en) Method for producing a casting mould for filling with melt and casting mould
DE10014744B4 (en) Process for the production of metallic molds
EP0305653B1 (en) Foundry model and process for manufacturing a hollow cast piece
EP3659791A1 (en) Foam sealing strip and method for producing a foam sealing strip
DE102015217452A1 (en) Method for producing a cast metallic bearing housing
EP1457358B1 (en) Cast article with permanent core and process for manufacture of said core
DE102017118960B4 (en) foaming
EP3705209A1 (en) Component and method for producing same
DE102022106740B4 (en) METHOD FOR PRODUCING A CERAMIC FILTER FOR METAL CASTING
EP1172165A1 (en) Process for manufacturing coolant channels in thermally stressed forming tools and forming tools obtained thereby
EP3666414B1 (en) Method and casting mould for manufacturing metal cast workpieces
DE19513410C2 (en) Process for producing a molded part from the melt of a metallic material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080311

17Q First examination report despatched

Effective date: 20080411

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007002714

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338468

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: KUHS, BERND

Effective date: 20100430

Owner name: LAEMPE & MOSSNER G.M.B.H.

Effective date: 20100430

Owner name: KURTZ G.M.B.H.

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100410

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002714

Country of ref document: DE

Representative=s name: PATRONUS IP PATENT- & RECHTSANWAELTE BERNHARD , DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150422

Year of fee payment: 9

Ref country code: GB

Payment date: 20150423

Year of fee payment: 9

Ref country code: ES

Payment date: 20150427

Year of fee payment: 9

Ref country code: DE

Payment date: 20150417

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150422

Year of fee payment: 9

Ref country code: IT

Payment date: 20150429

Year of fee payment: 9

Ref country code: FR

Payment date: 20150422

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002714

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 456410

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160410

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160410

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160410

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160410

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181205