EP1840464A1 - Combustion chamber - Google Patents

Combustion chamber Download PDF

Info

Publication number
EP1840464A1
EP1840464A1 EP07101481A EP07101481A EP1840464A1 EP 1840464 A1 EP1840464 A1 EP 1840464A1 EP 07101481 A EP07101481 A EP 07101481A EP 07101481 A EP07101481 A EP 07101481A EP 1840464 A1 EP1840464 A1 EP 1840464A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
burner
control device
computer
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07101481A
Other languages
German (de)
French (fr)
Other versions
EP1840464B1 (en
Inventor
Alexander Dr. Ni
Valter Bellucci
Peter Dr. Flohr
Bruno Dr. Schuermans
Majed Dr. Toqan
Ken-Yves Haffner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1840464A1 publication Critical patent/EP1840464A1/en
Application granted granted Critical
Publication of EP1840464B1 publication Critical patent/EP1840464B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/06Fail safe for flame failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • the invention relates to a combustion chamber, in particular such a gas turbine, with at least two burners, which are connected via controllable fuel valves with a fuel supply.
  • Gas turbines are used, for example, for power generation in power plants, where they drive generators. Such turbines usually have a capacity of more than 50 MW and are designed especially for steady-state continuous operation. In order to operate the gas turbine economically and with low pollutant emissions, in particular NO x , this should on the one hand lean, that is with as little fuel, operated and on the other hand, extinction of the burner can be avoided because a restart of the gas turbine is complicated and expensive.
  • pulsation of the flame in the combustion chamber can occur, in particular in the case of lean operation of the gas turbine, which in the worst case leads to extinguishment of the same.
  • the pulsation of the flame depends on various parameters, such as an air and an associated fuel flow and a combustion chamber temperature.
  • a flame system is desired for the burner or the combustion chamber, which can be called stable and wherein in Brenneraustritts rejoin forms a quasi-stationary pulsation-free ignition zone, which burns stationary even with small fluctuations in the inlet flows, apart from turbulence-related stochastic position fluctuations.
  • the invention deals with the problem of detecting as early as possible at a combustion chamber of a gas turbine of the type mentioned pulsation-prone burner and optionally take appropriate countermeasures, so that a pulsation-free operation of the combustion chamber can be ensured.
  • the invention is based on the general idea, in a combustion chamber, in particular in a combustor of a gas turbine, with multiple burners to provide suitable measuring devices which determine burner specific data, from which a computer and control device can calculate correlation values, a classification of burners in pulsationsgefährdete and not pulsating burner allowed. If the computer and control device classifies a burner as pulsation-endangered due to the values measured in the combustion chamber, then more fuel is supplied to this burner, thereby reducing its pulsation risk.
  • the burners themselves are connected to a fuel supply via controllable fuel valves.
  • the computer and control device In order to process the data arriving from the optical measuring devices and from the pressure sensor, the computer and control device is connected to these on the input side. On the output side, the computer and control device is connected to the controllable fuel valves, whereby a control of at least the pulsation-prone burner is made possible via a modified fuel supply.
  • the computer and control device is further designed such that it calculates a correlation from the chemiluminescent radiation values and the pressures and determines the burner or a combustion group with the highest correlation.
  • the associated fuel valves of the burners thus determined are then opened by the computer and control device, thereby reducing the pulsation tendency of the burners.
  • the combustion chamber according to the invention thus makes it possible to detect pulse-endangered, ie critical burners, at an early stage and to take suitable countermeasures.
  • the optical measuring devices and / or the pressure sensor and / or the fuel valves via a bus, such as a CAN-BUS, communicatively connected to the computer and control device.
  • a bus such as a CAN-BUS
  • Such CAN-BUS systems allow extensive data exchange and appropriate communication between the different, connected and interconnected components.
  • far-reaching networking possibilities are created with such CAN-BUS systems, so that it is also conceivable that further devices for the measurement, acquisition or processing of data as well as for controlling certain parameters of configured devices can be connected.
  • the optical measuring devices each have an optical fiber.
  • the space requirement of such an optical fiber in the combustion chamber is minimal, whereby this can also be installed in places with limited space.
  • a sensor of the optical measuring device is not directly exposed to the high temperatures prevailing in the combustion chamber, which has a positive effect on the life of the optical measuring devices.
  • FIG. 1 shows a highly schematic representation of a combustion chamber according to the invention with associated computer and control device.
  • a highly schematized combustion chamber 1 for example, such a gas turbine, a plurality of burners A to H, which are connected via controllable fuel valves 2 with a fuel supply 3, for example, a fuel line.
  • a fuel supply 3 for example, a fuel line.
  • the number of burners A to H here eight, purely by way of example, so that a combustion chamber 1 with more than eight or less than eight, but at least two burners should be enclosed by the invention.
  • the burners A to H are arranged annularly in the illustrated embodiment and each have at least one optical measuring device 4 for detecting chemiluminescent radiation, in particular for detecting an OH chemiluminescence.
  • the optical measuring devices 4 are connected via corresponding signal lines 5, in particular via a CAN-BUS 8, with a computer and control device 6.
  • the fuel valves 2 connected via corresponding control lines 5 via the CAN-BUS 8 with the computer and control device 6.
  • the optical measuring devices 4 detect light generated in the combustion chamber 1 due to chemical reactions and, according to a preferred embodiment, comprise an optical fiber. The optical fiber thereby falls the task of the light pipe between the burner and the actual optical measuring device.
  • Such an optical fiber may, for example, be a glass fiber which conducts light signals from the burner to the optical measuring device 4.
  • This offers the advantages that the optical measuring device 4 itself does not have to be arranged directly on the burner and is therefore exposed only to a significantly reduced temperature load, and a required space requirement of the optical fiber is significantly lower than the optical measuring device 4, so that they also at low Space can be arranged at almost any location in the vicinity of the burner.
  • a pressure sensor 7 for detecting a pressure in the combustion chamber 1 is arranged and also connected via a corresponding signal line 5 'to an input side of the computer and control device 6.
  • the pressure sensors can also be connected to the computer and control device 6 via the CAN bus 8.
  • the computer and control device 6 is now designed such that it calculates a correlation between the chemiluminescent radiation of each burner A to H and the pressure in the combustion chamber 1 from the measured values arriving from the optical measuring devices 4 and the pressure sensor 7.
  • the computer and control device 6 is connected to the fuel valves 2 associated with each burner A to H.
  • the computer and control device 6 is designed such that it determines the burner or a burner group with the highest correlation between chemiluminescent radiation and combustion chamber pressure and the or the associated fuel valves controls such that the respective burner or the respective burner group more fuel is supplied.
  • the computer and control device 6 opens the respectively associated fuel valve.
  • a high correlation between the optical measured values and the combustion chamber pressure indicates a tendency to pulsate of the respective burner, which is to be reduced according to the invention. The pulsation of the flame on the one hand there is a risk that this extinguished and on the other hand reduces the efficiency of the gas turbine.
  • pulsation-endangered burners can thus be identified. It is conceivable that the computer and control device 6 controls only a single burner with the highest correlation value by opening the associated fuel valve or a whole group of burners, which lie with their respective correlation values above a threshold.
  • the summary of a burner group can either include, for example, the burner A and B, if these two have the two highest correlation values, or the burners can already be summarized in advance to certain groups, such as A, C, E and G, so that controlled them overall when only one of the said burners exceeds the correlation limit.
  • Each of a burner associated measuring device 4 detects a chemiluminescent radiation, for example, an OH radical radiation, while a pressure sensor 7 simultaneously determines the pressure in the combustion chamber 1.
  • the measurement data determined in this way are transmitted via lines 5, 5 ', for example via a CAN-BUS 8, to the computer and control device 6, which calculates a correlation therefrom. If the calculated correlation value exceeds a predefined correlation limit value, the computer and control device 6 opens the associated fuel valve (s) and thereby reduces the risk of pulsation of the associated burner or the associated burner group.
  • the computer and control device 6 reduces the fuel supply of the other, not pulsation-prone burners, ie those burners whose correlation value is below the correlation limit, so that preferably a substantially constant combustion chamber temperature or a substantially constant fuel flow is maintained.
  • the computer and control device 6 controls the fuel valves of the non-pulsation-endangered burners only to the extent that no pulsation danger or pulsation occurs in them.

Abstract

An optical measuring device (4) for detecting chemi-luminescent radiation is assigned to each burner (A-H) that is connectable to a fuel supply (3) via a fuel valve (2). A pressure sensor detects pressure in the combustion chamber (1). A computing and control device (6) identifies the burner or burner group with highest correlation between the chemiluminescent radiation of each burner and the pressure in the combustion chamber, and controls the corresponding fuel valve to feed more fuel to the identified burner or burner group. An independent claim is also included for a method of controlling combustion operation of burners.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Brennkammer, insbesondere eine solche einer Gasturbine, mit zumindest zwei Brennern, welche über steuerbare Brennstoffventile mit einer Brennstoffversorgung verbunden sind.The invention relates to a combustion chamber, in particular such a gas turbine, with at least two burners, which are connected via controllable fuel valves with a fuel supply.

Stand der TechnikState of the art

Gasturbinen werden beispielsweise zur Stromerzeugung in Kraftwerken eingesetzt, wo sie Generatoren antreiben. Derartige Turbinen haben üblicherweise eine Leistung von mehr als 50 MW und sind insbesondere für den stationären Dauerbetrieb ausgelegt. Um die Gasturbine wirtschaftlich und mit geringen Schadstoffemissionen, insbesondere NOx, betreiben zu können, sollte diese einerseits mager, das heißt mit möglichst wenig Brennstoff, betrieben werden und andererseits ein Erlöschen des Brenners vermieden werden, da ein Wiederanfahren der Gasturbine aufwendig und teuer ist.Gas turbines are used, for example, for power generation in power plants, where they drive generators. Such turbines usually have a capacity of more than 50 MW and are designed especially for steady-state continuous operation. In order to operate the gas turbine economically and with low pollutant emissions, in particular NO x , this should on the one hand lean, that is with as little fuel, operated and on the other hand, extinction of the burner can be avoided because a restart of the gas turbine is complicated and expensive.

Hierdurch kann sich jedoch ein Zielkonflikt ergeben, da es insbesondere bei einem mageren Betrieb der Gasturbine zu einem Pulsieren der Flamme in der Brennkammer kommen kann, was im ungünstigsten Falle zum Erlöschen derselben führt. Das Pulsieren der Flamme hängt dabei von verschiedenen Parametern, wie beispielsweise einem Luft- und einem dazugehörigen Brennstoffvolumenstrom sowie einer Brennkammertemperatur ab. Grundsätzlich wird für die Brenner bzw. die Brennkammer ein Flammensystem gewünscht, welches als stabil bezeichnet werden kann und wobei sich in Brenneraustrittsnähe eine quasistationäre pulsationsfreie Zündzone ausbildet, die auch bei geringen Schwankungen der Eintrittsströme, abgesehen von turbulenzbedingten stochastischen Positionsschwankungen, ortsfest brennt.However, this may result in a conflict of objectives, since pulsation of the flame in the combustion chamber can occur, in particular in the case of lean operation of the gas turbine, which in the worst case leads to extinguishment of the same. The pulsation of the flame depends on various parameters, such as an air and an associated fuel flow and a combustion chamber temperature. Basically, a flame system is desired for the burner or the combustion chamber, which can be called stable and wherein in Brenneraustrittsnähe forms a quasi-stationary pulsation-free ignition zone, which burns stationary even with small fluctuations in the inlet flows, apart from turbulence-related stochastic position fluctuations.

Um ein Pulsieren der Flamme in der Brennkammer und damit eventuell ein Erlöschen der Flamme verhindern zu können, ist es wichtig, pulsationsgefährdete Brenner möglichst frühzeitig zu erkennen und entsprechende Gegenmaßnahmen zu ergreifen, da, wie oben erwähnt, ein Wiederanfahren der Gasturbine aufgrund eines Erlöschens der Flamme sehr aufwendig und teuer ist und dadurch die Wirtschaftlichkeit der Gasturbine negativ beeinflusst. Darüber hinaus vermindern pulsierende Brenner auch den Wirkungsgrad der Gasturbine, so dass auch im Hinblick auf eine Leistungsausbeute darauf geachtet werden sollte, dass sich eine quasistationäre, pulsationsfreie Zündzone im Bereich der Brenneraustrittsnähe ausbildet.In order to prevent pulsation of the flame in the combustion chamber and thus possibly extinguishment of the flame, it is important to detect pulsation burner as early as possible and to take appropriate countermeasures, since, as mentioned above, a restart of the gas turbine due to extinction of the flame is very complex and expensive, thereby negatively affecting the economy of the gas turbine. In addition, pulsating burners also reduce the efficiency of the gas turbine, so that care should also be taken with regard to a power yield that a quasi-stationary, pulsation-free ignition zone is formed in the vicinity of the burner outlet.

Darstellung der ErfindungPresentation of the invention

Hier setzt die Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, bei einer Brennkammer einer Gasturbine der eingangs erwähnten Art pulsationsgefährdete Brenner möglichst frühzeitig zu erkennen und gegebenenfalls geeignete Gegenmaßnahmen zu ergreifen, so dass ein pulsationsfreier Betrieb der Brennkammer gewährleistet werden kann.This is where the invention starts. The invention, as characterized in the claims, deals with the problem of detecting as early as possible at a combustion chamber of a gas turbine of the type mentioned pulsation-prone burner and optionally take appropriate countermeasures, so that a pulsation-free operation of the combustion chamber can be ensured.

Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, bei einer Brennkammer, insbesondere bei einer Brennkammer einer Gasturbine, mit mehreren Brennern, geeignete Messvorrichtungen vorzusehen, welche brennerspezifische Daten ermitteln, woraus eine Rechner- und Steuerungseinrichtung Korrelationswerte berechnen kann, die eine Einteilung der Brenner in pulsationsgefährdete und nicht pulsationsgefährdete Brenner erlaubt. Stuft die Rechner- und Steuerungseinrichtung einen Brenner aufgrund der in der Brennkammer gemessenen Werte als pulsationsgefährdet ein, so wird diesem Brenner mehr Brennstoff zugeführt und dadurch dessen Pulsationsgefahr reduziert. Die Erfassung der Daten der Brennkammer zur Beurteilung, ob es sich um einen kritischen, das heißt pulsationsgefährdeten, Brenner handelt, erfolgt einerseits über eine jedem Brenner zugeordnete optische Messvorrichtung, welche zur Erfassung von chemilumineszenter Strahlung ausgebildet ist und andererseits über eine weitere Messvorrichtung in Form eines Drucksensors zur Erfassung eines Brennkammerdruckes. Die Brenner selbst sind über steuerbare Brennstoffventile mit einer Brennstoffversorgung verbunden. Um die von den optischen Messeinrichtungen und von dem Drucksensor eingehenden Daten zu verarbeiten, ist die Rechner- und Steuerungseinrichtung mit diesen eingangsseitig verbunden. Ausgangsseitig ist die Rechner- und Steuerungseinrichtung mit den steuerbaren Brennstoffventilen verbunden, wodurch eine Steuerung zumindest der pulsationsgefährdeten Brenner über eine geänderte Brennstoffzufuhr ermöglicht wird. Die Rechner- und Steuerungseinrichtung ist weiter derart ausgebildet, dass sie aus den chemilumineszenten Strahlungswerten und den Drücken eine Korrelation berechnet und den Brenner bzw. eine Brenngruppe mit der höchsten Korrelation ermittelt. Das bzw. die zugehörigen Brennstoffventile der derart ermittelten Brenner werden daraufhin von der Rechner- und Steuerungseinrichtung geöffnet und dadurch die Pulsationsneigung der Brenner reduziert. Durch die erfindungsgemäße Brennkammer ist es somit möglich, pulsationsgefährdete, also kritische Brenner, frühzeitig zu erkennen und geeignete Gegenmaßnahmen zu ergreifen.The invention is based on the general idea, in a combustion chamber, in particular in a combustor of a gas turbine, with multiple burners to provide suitable measuring devices which determine burner specific data, from which a computer and control device can calculate correlation values, a classification of burners in pulsationsgefährdete and not pulsating burner allowed. If the computer and control device classifies a burner as pulsation-endangered due to the values measured in the combustion chamber, then more fuel is supplied to this burner, thereby reducing its pulsation risk. The detection of the data of the combustion chamber to assess whether it is a critical, that is pulsation, burners, on the one hand via an associated optical burner each measuring device, which is designed to detect chemiluminescent radiation and on the other hand via a further measuring device in the form of a Pressure sensor for detecting a combustion chamber pressure. The burners themselves are connected to a fuel supply via controllable fuel valves. In order to process the data arriving from the optical measuring devices and from the pressure sensor, the computer and control device is connected to these on the input side. On the output side, the computer and control device is connected to the controllable fuel valves, whereby a control of at least the pulsation-prone burner is made possible via a modified fuel supply. The computer and control device is further designed such that it calculates a correlation from the chemiluminescent radiation values and the pressures and determines the burner or a combustion group with the highest correlation. The associated fuel valves of the burners thus determined are then opened by the computer and control device, thereby reducing the pulsation tendency of the burners. The combustion chamber according to the invention thus makes it possible to detect pulse-endangered, ie critical burners, at an early stage and to take suitable countermeasures.

Dies erlaubt einen insgesamt mageren Betrieb der Brennkammer und damit niedrige Emissionswerte, wobei gleichzeitig ein Erlöschen der Flamme in der Brennkammer wirkungsvoll ausgeschlossen werden kann. Dies erhöht zum einen den Wirkungsgrad und zum anderen die Wirtschaftlichkeit der mit der erfindungsgemäßen Brennkammer ausgestatteten Gasturbine.This allows an overall lean operation of the combustion chamber and thus low emission levels, while at the same time extinguishing the flame in the combustion chamber can be effectively excluded. On the one hand, this increases the efficiency and, on the other hand, the economic efficiency of the gas turbine equipped with the combustion chamber according to the invention.

Zweckmäßig sind die optischen Messvorrichtungen und/oder der Drucksensor und/oder die Brennstoffventile über einen BUS, wie einen CAN-BUS, mit der Rechner- und Steuerungseinrichtung kommunizierend verbunden. Derartige CAN-BUS-Systeme erlauben einen umfangreichen Datenaustausch und eine entsprechende Kommunikation zwischen den unterschiedlichen, angeschlossenen und miteinander vernetzten Komponenten. Insbesondere werden mit derartigen CAN-BUS-Systemen weitreichende Vernetzungsmöglichkeiten geschaffen, so dass auch denkbar ist, das weitere Geräte zur Messung, Erfassung oder Verarbeitung von Daten sowie zur Steuerung bestimmter Parameter ausgebildete Vorrichtungen angeschlossen werden können.Suitably, the optical measuring devices and / or the pressure sensor and / or the fuel valves via a bus, such as a CAN-BUS, communicatively connected to the computer and control device. Such CAN-BUS systems allow extensive data exchange and appropriate communication between the different, connected and interconnected components. In particular, far-reaching networking possibilities are created with such CAN-BUS systems, so that it is also conceivable that further devices for the measurement, acquisition or processing of data as well as for controlling certain parameters of configured devices can be connected.

Bei einer bevorzugten Ausführungsform der erfindungsgemäßen Lösung weisen die optischen Messvorrichtungen jeweils eine optische Faser auf. Dies bietet den Vorteil, dass die optische Messvorrichtung nicht direkt in der Brennkammer angeordnet werden muss, sondern lediglich über eine derartige optische Faser mit der Brennkammer verbunden sein muss. Darüber hinaus ist der Platzbedarf einer derartigen optischen Faser in der Brennkammer minimal, wodurch dies auch an Stellen mit geringem Platzangebot eingebaut werden kann. Darüber hinaus ist eine Sensorik der optischen Messvorrichtung nicht direkt den hohen in der Brennkammer herrschenden Temperaturen ausgesetzt, was sich positiv auf die Lebensdauer der optischen Messvorrichtungen auswirkt.In a preferred embodiment of the solution according to the invention, the optical measuring devices each have an optical fiber. This offers the advantage that the optical measuring device does not have to be arranged directly in the combustion chamber, but only has to be connected to the combustion chamber via such an optical fiber. In addition, the space requirement of such an optical fiber in the combustion chamber is minimal, whereby this can also be installed in places with limited space. In addition, a sensor of the optical measuring device is not directly exposed to the high temperatures prevailing in the combustion chamber, which has a positive effect on the life of the optical measuring devices.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der dazugehörigen Figurenbeschreibung anhand der Zeichnung.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawing and from the associated description of the figures with reference to the drawing.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert.A preferred embodiment of the invention is illustrated in the drawing and will be explained in more detail in the following description.

Die einzige Fig. 1 zeigt eine stark schematisierte Darstellung einer erfindungsgemäßen Brennkammer mit zugehöriger Rechner- und Steuerungseinrichtung.The only Fig. 1 shows a highly schematic representation of a combustion chamber according to the invention with associated computer and control device.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend Fig. 1 weist eine stark schematisierte Brennkammer 1, beispielsweise eine solche einer Gasturbine, mehrere Brenner A bis H auf, welche über steuerbare Brennstoffventile 2 mit einer Brennstoffversorgung 3, beispielsweise einer Brennstoffleitung, verbunden sind. Dabei ist die Anzahl der Brenner A bis H, hier acht, rein exemplarisch zu verstehen, so dass auch eine Brennkammer 1 mit mehr als acht bzw. weniger als acht, mindestens jedoch zwei Brennern von der Erfindung mit umschlossen sein soll.1, a highly schematized combustion chamber 1, for example, such a gas turbine, a plurality of burners A to H, which are connected via controllable fuel valves 2 with a fuel supply 3, for example, a fuel line. Here, the number of burners A to H, here eight, purely by way of example, so that a combustion chamber 1 with more than eight or less than eight, but at least two burners should be enclosed by the invention.

Die Brenner A bis H sind in dem dargestellten Ausführungsbeispiel ringförmig angeordnet und weisen jeweils wenigstens eine optische Messvorrichtung 4 zur Erfassung von chemilumineszenter Strahlung, insbesondere zur Erfassung einer OH-Chemilumineszenz, auf. Die optischen Messvorrichtungen 4 sind über entsprechende Signalleitungen 5, insbesondere über einen CAN-BUS 8, mit einer Rechner- und Steuerungseinrichtung 6 verbunden. Darüber hinaus können auch die Brennstoffventile 2 über entsprechende Steuerleitungen 5 über den CAN-BUS 8 mit der Rechner- und Steuerungseinrichtung 6 verbunden sein. Die optischen Messvorrichtungen 4 erfassen in der Brennkammer 1 aufgrund von chemischen Reaktionen erzeugtes Licht und weisen gemäß einer bevorzugten Ausführungsform eine optische Faser auf. Der optischen Faser fällt dabei die Aufgabe der Lichtleitung zwischen dem Brenner und der eigentlichen optischen Messvorrichtung zu. Eine derartige optische Faser kann beispielsweise eine Glasfaser sein, welche Lichtsignale vom Brenner zur optischen Messvorrichtung 4 leitet. Dies bietet die Vorteile, dass die optische Messvorrichtung 4 selbst nicht direkt am Brenner angeordnet werden muss und dadurch lediglich einer deutlich reduzierten Temperaturbelastung ausgesetzt ist, und ein benötigter Platzbedarf der optischen Faser deutlich geringer ist als der optischen Messvorrichtung 4, so dass diese auch bei geringem Platzangebot an nahezu jeder beliebigen Stelle in der Umgebung des Brenners angeordnet werden kann.
Des weiteren ist ein Drucksensor 7 zur Erfassung eines Druckes in der Brennkammer 1 angeordnet und ebenfalls über eine entsprechende Signalleitung 5' mit einer Eingangsseite der Rechner- und Steuerungseinrichtung 6 verbunden.
Optional können die Drucksensoren auch über den CAN-BUS 8 mit der Rechner- und Steuerungseinrichtung 6 verbunden sein. Erfindungsgemäß ist die Rechner- und Steuerungseinrichtung 6 nun derart ausgebildet, dass sie aus dem von den optischen Messvorrichtungen 4 und dem Drucksensor 7 eingehenden Messwerten eine Korrelation zwischen der chemilumineszenten Strahlung eines jeden Brenners A bis H und des Drucks in der Brennkammer 1 berechnet. Ausgangsseitig ist die Rechner- und Steuerungseinrichtung 6 mit den jedem Brenner A bis H zugehörigen Brennstoffventilen 2 verbunden.
The burners A to H are arranged annularly in the illustrated embodiment and each have at least one optical measuring device 4 for detecting chemiluminescent radiation, in particular for detecting an OH chemiluminescence. The optical measuring devices 4 are connected via corresponding signal lines 5, in particular via a CAN-BUS 8, with a computer and control device 6. Furthermore can also be the fuel valves 2 connected via corresponding control lines 5 via the CAN-BUS 8 with the computer and control device 6. The optical measuring devices 4 detect light generated in the combustion chamber 1 due to chemical reactions and, according to a preferred embodiment, comprise an optical fiber. The optical fiber thereby falls the task of the light pipe between the burner and the actual optical measuring device. Such an optical fiber may, for example, be a glass fiber which conducts light signals from the burner to the optical measuring device 4. This offers the advantages that the optical measuring device 4 itself does not have to be arranged directly on the burner and is therefore exposed only to a significantly reduced temperature load, and a required space requirement of the optical fiber is significantly lower than the optical measuring device 4, so that they also at low Space can be arranged at almost any location in the vicinity of the burner.
Furthermore, a pressure sensor 7 for detecting a pressure in the combustion chamber 1 is arranged and also connected via a corresponding signal line 5 'to an input side of the computer and control device 6.
Optionally, the pressure sensors can also be connected to the computer and control device 6 via the CAN bus 8. According to the invention, the computer and control device 6 is now designed such that it calculates a correlation between the chemiluminescent radiation of each burner A to H and the pressure in the combustion chamber 1 from the measured values arriving from the optical measuring devices 4 and the pressure sensor 7. On the output side, the computer and control device 6 is connected to the fuel valves 2 associated with each burner A to H.

Weiter ist die Rechner- und Steuerungseinrichtung 6 derart ausgebildet, dass diese den Brenner oder einer Brennergruppe mit der höchsten Korrelation zwischen chemilumineszenter Strahlung und Brennkammerdruck ermittelt und das bzw. die zugehörigen Brennstoffventile derart steuert, dass dem jeweiligen Brenner oder der jeweiligen Brennergruppe mehr Brennstoff zugeführt wird. Erreicht somit die Korrelation zwischen den eingehenden optischen Messwerten und dem eingehenden Brennkammerdruck einen bestimmten Grenzwert, so öffnet die Rechner- und Steuerungseinrichtung 6 das jeweils zugehörige Brennstoffventil. Eine hohe Korrelation zwischen den optischen Messwerten und dem Brennkammerdruck zeigt dabei eine Pulsationsneigung des jeweiligen Brenners an, welche erfindungsgemäß reduziert werden soll. Durch das Pulsieren der Flamme besteht zum einen die Gefahr, dass diese erlöscht und zum anderen reduziert sich der Wirkungsgrad der Gasturbine. Durch eine hohe Korrelation zwischen chemilumineszenten Strahlungswerten und Druckwerten in der Brennkammer 1 können somit pulsationsgefährdete Brenner identifiziert werden. Dabei ist denkbar, dass die Rechner- und Steuerungseinrichtung 6 lediglich einen einzelnen Brenner mit dem jeweils höchsten Korrelationswert durch Öffnen des zugehörigen Brennstoffventils steuert oder aber eine ganze Gruppe von Brennern, welche mit ihren jeweiligen Korrelationswerten über einem Grenzwert liegen.Next, the computer and control device 6 is designed such that it determines the burner or a burner group with the highest correlation between chemiluminescent radiation and combustion chamber pressure and the or the associated fuel valves controls such that the respective burner or the respective burner group more fuel is supplied. Thus, if the correlation between the incoming optical measurements and the incoming combustion chamber pressure reaches a certain limit, then the computer and control device 6 opens the respectively associated fuel valve. A high correlation between the optical measured values and the combustion chamber pressure indicates a tendency to pulsate of the respective burner, which is to be reduced according to the invention. The pulsation of the flame on the one hand there is a risk that this extinguished and on the other hand reduces the efficiency of the gas turbine. As a result of a high correlation between chemiluminescent radiation values and pressure values in the combustion chamber 1, pulsation-endangered burners can thus be identified. It is conceivable that the computer and control device 6 controls only a single burner with the highest correlation value by opening the associated fuel valve or a whole group of burners, which lie with their respective correlation values above a threshold.

Die Zusammenfassung zu einer Brennergruppe kann entweder beispielsweise den Brenner A und B umfassen, sofern diese beiden die beiden höchsten Korrelationswerte aufweisen oder die Brenner können bereits vorab zu bestimmten Gruppen, beispielsweise zu A, C, E und G zusammengefasst werden, so dass diese insgesamt gesteuert werden, wenn lediglich einer der genannten Brenner den Korrelationsgrenzwert überschreitet.The summary of a burner group can either include, for example, the burner A and B, if these two have the two highest correlation values, or the burners can already be summarized in advance to certain groups, such as A, C, E and G, so that controlled them overall when only one of the said burners exceeds the correlation limit.

Damit die Gasturbine nicht überhitzt, werden beim Öffnen eines bzw. mehrerer Brennstoffventile 2 die anderen anteilsmäßig gedrosselt, so dass eine im wesentlichen konstante Brennkammertemperatur oder ein im wesentlichen konstanter Brennstoffstrom eingehalten werden kann. Bei einem Steuerungsvorgang durch die Rechner- und/oder Steuerungseinrichtung 6 wird somit den pulsationsgefährdeten Brennern mehr Brennstoff zugeführt und gleichzeitig den nicht pulsationsgefährdeten Brenner weniger Brennstoff. Dabei kann die Rechner- und Steuerungseinrichtung 6 die Brennstoffventile 2, wie oben erwähnt, erst ab einem bestimmten vordefinierten Korrelationswert öffnen, so dass bei einer Korrelation bei der noch keine Pulsationsneigung auftritt, keine Steuerung erfolgt. Selbstredend steuert die Rechner- und Steuerungseinrichtung 6 die Brennstoffventile der nicht pulsationsgefährdeten Brenner nur soweit entgegen, dass bei diesen keine Pulsation eintritt.
Im Folgenden soll kurz ein erfindungsgemäßes Verfahren zur Steuerung eines Verbrennungsvorganges in oben beschriebener Gasturbine erläutert werden:
So that the gas turbine does not overheat, when opening one or more fuel valves 2, the others are proportionally throttled, so that a substantially constant combustion chamber temperature or a substantially constant fuel flow can be maintained. In a control operation by the computer and / or control device 6 thus the pulsationsgefährdeten burners more fuel is supplied and at the same time the non-pulsation burner less fuel. In this case, the computer and control device 6, the fuel valves 2, as mentioned above, open only from a certain predefined correlation value, so that at a correlation at which no pulsation tendency occurs, no control takes place. Needless to say, the computer and control device 6 controls the fuel valves of the non-pulsation-endangered burners only to the extent that no pulsation occurs in them.
In the following, a method according to the invention for controlling a combustion process in the above-described gas turbine will be briefly explained:

Die jeweils einem Brenner zugeordnete Messvorrichtung 4 erfasst eine chemilumineszente Strahlung, beispielsweise eine OH-Radikalstrahlung, während ein Drucksensor 7 gleichzeitig den Druck in der Brennkammer 1 ermittelt. Die derart ermittelten Messdaten werden über Leitungen 5, 5' beispielsweise über einen CAN-BUS 8, an die Rechner- und Steuerungseinrichtung 6 übertragen, welche daraus eine Korrelation berechnet. Überschreitet der berechnete Korrelationswert einen vordefinierten Korrelationsgrenzwert, öffnet die Rechner- und Steuerungseinrichtung 6 das/die zugehörige(n) Brennstoffventil(e) und reduziert dadurch die Pulsionsgefahr des zugehörigen Brenners bzw. der zugehörigen Brennergruppe. Gleichzeitig reduziert die Rechner- und Steuerungseinrichtung 6 die Brennstoffzufuhr der anderen, nicht pulsationsgefährdeten Brenner, also jener Brenner, deren Korrelationswert unterhalb des Korrelationsgrenzwertes liegt, so dass vorzugsweise eine im wesentlichen konstante Brennkammertemperatur oder ein im wesentlicher konstanter Brennstoffstrom eingehalten wird. Generell steuert die Rechner- und Steuerungseinrichtung 6 die Brennstoffventile der nicht pulsationsgefährdeten Brenner lediglich soweit entgegen, dass bei diesen keine Pulsationsgefahr bzw. keine Pulsation auftritt.Each of a burner associated measuring device 4 detects a chemiluminescent radiation, for example, an OH radical radiation, while a pressure sensor 7 simultaneously determines the pressure in the combustion chamber 1. The measurement data determined in this way are transmitted via lines 5, 5 ', for example via a CAN-BUS 8, to the computer and control device 6, which calculates a correlation therefrom. If the calculated correlation value exceeds a predefined correlation limit value, the computer and control device 6 opens the associated fuel valve (s) and thereby reduces the risk of pulsation of the associated burner or the associated burner group. At the same time, the computer and control device 6 reduces the fuel supply of the other, not pulsation-prone burners, ie those burners whose correlation value is below the correlation limit, so that preferably a substantially constant combustion chamber temperature or a substantially constant fuel flow is maintained. In general, the computer and control device 6 controls the fuel valves of the non-pulsation-endangered burners only to the extent that no pulsation danger or pulsation occurs in them.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennkammercombustion chamber
22
Brennstoffventilfuel valve
33
Brennstoffversorgung/BrennstoffleitungFuel supply / fuel line
44
optische Messvorrichtungoptical measuring device
55
Leitung/Steuerleitung/Signalleitung/ Control cable / signal line
66
Rechnung- und SteuerungseinrichtungInvoice and control device
77
Drucksensorpressure sensor
88th
CAN-BUSCAN-BUS
A bis HA to H
Brennerburner

Claims (9)

Brennkammer (1), insbesondere einer Gasturbine, - mit zumindest zwei Brennern (A-H), welche über steuerbare Brennstoffventile (2) mit einer Brennstoffversorgung (3) verbunden sind, - wobei jedem Brenner (A-H) wenigstens eine optische Messvorrichtung (4) zur Erfassung von chemilumineszenter Strahlung und der Brennkammer (1) ein Drucksensor (7) zur Erfassung eines Drucks zugeordnet sind, - mit einer Rechner- und Steuerungseinrichtung (6), welche einerseits mit den optischen Messvorrichtungen (4) und dem Drucksensor (7) und andererseits mit den steuerbaren Brennstoffventilen (2) verbunden ist, - wobei die Rechner- und Steuerungseinrichtung (6) derart ausgebildet ist, dass sie aus den von den optischen Messvorrichtungen (4) und dem Drucksensor (7) eingehenden Messwerten eine Korrelation zwischen der chemilumineszenten Strahlung eines jeden Brenners (A-H) und des Drucks in der Brennkammer (1) berechnet, - wobei die Rechner- und Steuerungseinrichtung (6) weiter derart ausgebildet ist, dass diese den Brenner (A-H) oder eine Brennergruppe mit der höchsten Korrelation ermittelt und das/die zugehörige(n) Brennstoffventil(e) (2) derart steuert, dass dem jeweiligen Brenner (A-H) oder der jeweiligen Brennergruppe mehr Brennstoff zugeführt wird. Combustion chamber (1), in particular a gas turbine, - With at least two burners (AH), which are connected via controllable fuel valves (2) with a fuel supply (3), - wherein each burner (AH) at least one optical measuring device (4) for detecting chemiluminescent radiation and the combustion chamber (1) are assigned a pressure sensor (7) for detecting a pressure, - With a computer and control device (6) which is connected on the one hand with the optical measuring devices (4) and the pressure sensor (7) and on the other hand with the controllable fuel valves (2), - wherein the computer and control device (6) is designed such that it from the optical measuring devices (4) and the pressure sensor (7) incoming measurements, a correlation between the chemiluminescent radiation of each burner (AH) and the pressure in the Combustion chamber (1) calculated, - Wherein the computer and control device (6) is further designed such that it determines the burner (AH) or a burner group with the highest correlation and controls the associated (s) fuel valve (s) (2) such that the each burner (AH) or the respective burner group more fuel is supplied. Brennkammer nach Anspruch 1,
dadurch gekennzeichnet,
dass die optischen Messvorrichtungen (4) und/oder der Drucksensor (7) und/oder die Brennstoffventile (2) über einen BUS, beispielsweise einen CAN-BUS (8), mit der Rechner- und Steuerungseinrichtung (6) kommunizierend verbunden sind.
Combustion chamber according to claim 1,
characterized,
in that the optical measuring devices (4) and / or the pressure sensor (7) and / or the fuel valves (2) are connected via a BUS, for example a CAN-BUS (8), are communicatively connected to the computer and control device (6).
Brennkammer nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die optischen Messvorrichtungen (4) zur Erfassung einer OH-Chemilumineszenz ausgebildet sind.
Combustion chamber according to claim 1 or 2,
characterized,
in that the optical measuring devices (4) are designed to detect OH chemiluminescence.
Brennkammer nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die optischen Messvorrichtungen (4) eine optische Faser aufweisen.
Combustion chamber according to one of claims 1 to 3,
characterized,
in that the optical measuring devices (4) comprise an optical fiber.
Brennkammer nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die Rechner- und Steuerungseinrichtung (6) so ausgebildet ist, dass sie zur Einhaltung einer im wesentlichen konstanten Brennkammertemperatur oder eines im wesentlichen konstanten Brennstoffstroms die Brennstoffventile (2) der nicht pulsationsgefährdeten Brenner anteilsmäßig entsprechend denen der pulsationsgefährdeten Brenner entgegensteuert.
Combustion chamber according to one of claims 1 to 4,
characterized,
in that the computer and control device (6) is designed such that, in order to maintain a substantially constant combustion chamber temperature or a substantially constant fuel flow, it counteracts proportionally the fuel valves (2) of the non-pulsation-prone burners corresponding to those of the pulsation-prone burners.
Verfahren zur Steuerung eines Verbrennungsvorgangs mit zumindest zwei Brennern (A-H), insbesondere bei einer Gasturbine, mit zumindest folgenden Verfahrensschritten: 6.1 eine jeweils einem Brenner (A-H) zugeordnete optische Messvorrichtung (4) erfasst eine chemilumineszente Strahlung, während ein Drucksensor (7) gleichzeitig einen Druck in der Brennkammer (1) ermittelt, 6.2 eine eingangsseitig mit den optischen Messvorrichtungen (4) und dem Drucksensor (7) und ausgangsseitig mit den steuerbaren Brennstoffventilen (2) verbundene Rechner- und Steuerungseinrichtung (6) berechnet aus den von den optischen Messvorrichtungen (4) und dem Drucksensor (7) eingehenden Messwerten eine Korrelation zwischen der chemilumineszenten Strahlung eines jeden Brenners (A-H) und dem Druck in der Brennkammer (1), 6.3 die Rechner- und Steuerungseinrichtung (6) ermittelt den Brenner (A-H) oder eine Brennergruppe mit der höchsten Korrelation und öffnet das/die zugehörige(n) Brennstoffventil(e) (2). Method for controlling a combustion process with at least two burners (AH), in particular in a gas turbine, with at least the following method steps: 6.1 each one burner (AH) associated optical measuring device (4) detects a chemiluminescent radiation, while a pressure sensor (7) simultaneously detects a pressure in the combustion chamber (1), 6.2 an input side with the optical measuring devices (4) and the pressure sensor (7) and the output side with the controllable fuel valves (2) connected computing and control device (6) calculated from the of the optical measuring devices (4) and the pressure sensor (7) incoming Measurements show a correlation between the chemiluminescent radiation of each burner (AH) and the pressure in the combustion chamber (1), 6.3 the computer and control device (6) determines the burner (AH) or a burner group with the highest correlation and opens the associated (s) fuel valve (s) (2). Verfahren nach Anspruch 6,
dadurch gekennzeichnet,
dass zur Einhaltung einer im wesentlichen konstanten Brennkammertemperatur oder eines im wesentlichen konstanten Brennstoffstroms die Rechner- und Steuerungseinrichtung (6) die Brennstoffventile (2) der nicht pulsationsgefährdeten Brenner anteilsmäßig entsprechend denen der pulsationsgefährdeten Brenner entgegensteuert.
Method according to claim 6,
characterized,
in that, in order to maintain a substantially constant combustion chamber temperature or a substantially constant fuel flow, the computer and control device (6) counteracts the fuel valves (2) of the non-pulsation-prone burners in proportion to those of the pulsation-prone burners.
Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass die Rechner- und Steuerungseinrichtung (6) die Brennstoffventile (2) erst ab einem vordefinierten Korrelationswert öffnet.
Method according to claim 6 or 7,
characterized,
in that the computer and control device (6) opens the fuel valves (2) only from a predefined correlation value.
Verfahren nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass die Rechner- und Steuerungseinrichtung (6) die Brennstoffventile (2) der nicht pulsationsgefährdeten Brenner nur soweit entgegensteuert, dass bei diesen keine Pulsation eintritt.
Method according to one of claims 6 to 8,
characterized,
in that the computer and control device (6) counteracts the fuel valves (2) of the non-pulsation-endangered burners only to the extent that no pulsation occurs in them.
EP07101481.5A 2006-03-30 2007-01-31 Combustion chamber Not-in-force EP1840464B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006015230A DE102006015230A1 (en) 2006-03-30 2006-03-30 combustion chamber

Publications (2)

Publication Number Publication Date
EP1840464A1 true EP1840464A1 (en) 2007-10-03
EP1840464B1 EP1840464B1 (en) 2017-06-28

Family

ID=38197487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07101481.5A Not-in-force EP1840464B1 (en) 2006-03-30 2007-01-31 Combustion chamber

Country Status (3)

Country Link
US (1) US7901203B2 (en)
EP (1) EP1840464B1 (en)
DE (1) DE102006015230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757460A1 (en) * 2019-06-28 2020-12-30 Ansaldo Energia Switzerland AG Gas turbine engine with active protection from flame extinction and method of operating a gas turbine engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016018A1 (en) * 2007-04-03 2008-10-09 Sms Demag Ag burner arrangement
DE102011117603A1 (en) 2010-11-17 2012-05-24 Alstom Technology Ltd. Combustion chamber and method for damping pulsations
DE102011118411A1 (en) * 2010-12-09 2012-06-14 Alstom Technology Ltd. Combustion chamber and method for supplying fuel to a combustion chamber
US9885609B2 (en) * 2014-05-23 2018-02-06 United Technologies Corporation Gas turbine engine optical system
US9964455B2 (en) 2014-10-02 2018-05-08 General Electric Company Methods for monitoring strain and temperature in a hot gas path component
US9395301B2 (en) 2014-10-02 2016-07-19 General Electric Company Methods for monitoring environmental barrier coatings
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
CN113915007A (en) * 2021-11-11 2022-01-11 西安热工研究院有限公司 Novel combustion pressure pulsation control system of gas turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1162824A (en) * 1965-09-07 1969-08-27 Honeywell Inc Flame Failure Safety System
US5544478A (en) * 1994-11-15 1996-08-13 General Electric Company Optical sensing of combustion dynamics
WO2005010437A1 (en) * 2003-07-24 2005-02-03 Alstom Technology Ltd Method for reducing nox emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method
WO2005093326A2 (en) * 2004-03-29 2005-10-06 Alstom Technology Ltd Gas turbine combustion chamber and corresponding operating method
WO2005093327A1 (en) * 2004-03-29 2005-10-06 Alstom Technology Ltd Combustion chamber for a gas turbine and associated operating method
EP1621811A1 (en) * 2004-07-29 2006-02-01 ALSTOM Technology Ltd Operating Method for a Combustion Apparatus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913647A (en) * 1986-03-19 1990-04-03 Honeywell Inc. Air fuel ratio control
JPH01244214A (en) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol Method and device for monitoring and controlling air ratio of burner in operation
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
FR2711769B1 (en) * 1993-10-29 1995-12-08 Air Liquide Combustion process in an industrial oven.
US5706643A (en) 1995-11-14 1998-01-13 United Technologies Corporation Active gas turbine combustion control to minimize nitrous oxide emissions
US5755819A (en) * 1996-05-24 1998-05-26 General Electric Company Photodiode array for analysis of multi-burner gas combustors
US5978525A (en) * 1996-06-24 1999-11-02 General Electric Company Fiber optic sensors for gas turbine control
EP0918152A1 (en) 1997-11-24 1999-05-26 Abb Research Ltd. Method and apparatus for controlling thermo-acoustic vibratins in combustion chambers
US6464489B1 (en) * 1997-11-24 2002-10-15 Alstom Method and apparatus for controlling thermoacoustic vibrations in a combustion system
DE19928226A1 (en) 1999-05-07 2001-02-01 Abb Alstom Power Ch Ag Process for suppressing or controlling thermoacoustic vibrations in a combustion system and combustion system for carrying out the process
US6468069B2 (en) * 1999-10-25 2002-10-22 Jerome H. Lemelson Automatically optimized combustion control
US6702571B2 (en) * 2001-09-05 2004-03-09 Gas Technology Institute Flex-flame burner and self-optimizing combustion system
US6742341B2 (en) 2002-07-16 2004-06-01 Siemens Westinghouse Power Corporation Automatic combustion control for a gas turbine
US7454892B2 (en) * 2002-10-30 2008-11-25 Georgia Tech Research Corporation Systems and methods for detection and control of blowout precursors in combustors using acoustical and optical sensing
JP2007524065A (en) * 2004-01-12 2007-08-23 コンバスチョン・サイエンス・アンド・エンジニアリング・インコーポレイテッド Systems and methods for flame stabilization and control
US7194382B2 (en) * 2004-02-06 2007-03-20 Georgia Tech Research Corporation Systems and methods for detection of combustor stability margin
US7334413B2 (en) * 2004-05-07 2008-02-26 Rosemount Aerospace Inc. Apparatus, system and method for observing combustion conditions in a gas turbine engine
US7484369B2 (en) 2004-05-07 2009-02-03 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1162824A (en) * 1965-09-07 1969-08-27 Honeywell Inc Flame Failure Safety System
US5544478A (en) * 1994-11-15 1996-08-13 General Electric Company Optical sensing of combustion dynamics
WO2005010437A1 (en) * 2003-07-24 2005-02-03 Alstom Technology Ltd Method for reducing nox emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method
WO2005093326A2 (en) * 2004-03-29 2005-10-06 Alstom Technology Ltd Gas turbine combustion chamber and corresponding operating method
WO2005093327A1 (en) * 2004-03-29 2005-10-06 Alstom Technology Ltd Combustion chamber for a gas turbine and associated operating method
EP1621811A1 (en) * 2004-07-29 2006-02-01 ALSTOM Technology Ltd Operating Method for a Combustion Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757460A1 (en) * 2019-06-28 2020-12-30 Ansaldo Energia Switzerland AG Gas turbine engine with active protection from flame extinction and method of operating a gas turbine engine

Also Published As

Publication number Publication date
US20070224559A1 (en) 2007-09-27
US7901203B2 (en) 2011-03-08
EP1840464B1 (en) 2017-06-28
DE102006015230A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
EP1840464B1 (en) Combustion chamber
EP0915406B1 (en) Method for monitoring the supply system of a gas turbine with a plurality of burners and device for carrying out this method
EP1621811B1 (en) Operating Method for a Combustion Apparatus
DE2842460C3 (en) Device for controlling the flare gas supply
DE102004057985B4 (en) Gas turbine combustor
DE10142514B4 (en) Method for detecting a flashback in a gas turbine system, and gas turbine system
DE102005000978B4 (en) Device for controlling the pollutant emissions of a self-igniting internal combustion engine
EP1840465A2 (en) Burner system with staged fuel injection
EP2955349B1 (en) Method for operating a combustion engine and exhaust gas aftertreatment device of such combustion engine
DE112014001000T5 (en) Gas turbine system, control and gas turbine operation method
CH706152A1 (en) Gas turbine plant with a waste heat boiler arrangement with exhaust gas recirculation.
EP3417207B1 (en) Burner unit and device for the temperature control of objects
EP2071156B1 (en) Fuel distribution system for a gas turbine with multistage burner arrangement
EP0969192B1 (en) Method to equalize the fuel distribution in a gas turbine with several burners
EP1934528B1 (en) Method and device for monitoring the deposition of solid particles, in particular in the fuel line of a gas turbine
DE102010060136A1 (en) Method for regulating amount of air supplied to exhaust gas burner in exhaust line of diesel engine of vehicle, involves operating compressor, so that pressure at nozzle input side corresponds to specific times of pressure at nozzle output
EP2918912B1 (en) Burner
EP3369994B1 (en) Method for determining the cause of an ignition failure at the burner of a boiler
EP4071408B1 (en) Method and assembly for observing flames in a combustion chamber of a heater operable with hydrogen or hydrogen-containing fuel gas
EP4215815A1 (en) Device and use of a flow rate of a heating system and an ionisation signal of a heating system
EP4045851B1 (en) Method for controlling a combustor
EP2716973A2 (en) Device for generating heat from at least one energy carrier medium, with the addition of air
DE102022125151A1 (en) Method for controlling a fluid, control and computer program
EP2907988A1 (en) Method for operating a compressor line and the same
DE102014001208A1 (en) Verdämmungserkennung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080326

17Q First examination report despatched

Effective date: 20080509

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 905209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015726

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170628

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015726

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180122

Year of fee payment: 12

Ref country code: GB

Payment date: 20180119

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180119

Year of fee payment: 12

Ref country code: IT

Payment date: 20180129

Year of fee payment: 12

26N No opposition filed

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 905209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015726

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628