EP1803152A2 - Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere - Google Patents

Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere

Info

Publication number
EP1803152A2
EP1803152A2 EP05815527A EP05815527A EP1803152A2 EP 1803152 A2 EP1803152 A2 EP 1803152A2 EP 05815527 A EP05815527 A EP 05815527A EP 05815527 A EP05815527 A EP 05815527A EP 1803152 A2 EP1803152 A2 EP 1803152A2
Authority
EP
European Patent Office
Prior art keywords
handle
substrate
polymer
adhesion
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05815527A
Other languages
German (de)
English (en)
Inventor
Marek Kostrzewa
Léa Di Cioccio
Marc Zussy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1803152A2 publication Critical patent/EP1803152A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the invention relates to the use of a polymer handle to manufacture, clean and maintain thumbnails, electronic circuits or other objects of micrometric or millimeter size before transferring them to a destination substrate and integrating them with this substrate by molecular adhesion or other bonding technique.
  • the invention is, in particular, in the field of the heterogeneous integration of photonics on silicon and concerns mainly the collective manufacture of chips and / or silicon vignettes, InP and / or another material so to postpone them on a so-called host substrate. It is also possible to use this invention for transfer and collective technological treatment of any other object, or even a thin film.
  • Intra-chip or inter-chip electrical interconnections become a very important limitation in the pursuit of miniaturization and increased performance of integrated circuits.
  • the foreseeable limitations are caused by the increase of the propagation delays in the lines and the power consumption of the line amplifiers and will concern the distribution of the clock and the longest signals or groups of signals.
  • Optical solutions must potentially allow to lift these locks. However, they involve an important research effort in the field of technology.
  • CMOS components carry information between photonic transmitters and receivers (micro-laser source and detector).
  • the detectors being located in H-TREE structure, no delay between the detectors is generated. In areas close to the detector location, signal distribution is via metal interconnects.
  • the thin film transfer technology makes it possible to obtain this type of hetero-structure by "full-plate” molecular bonding. This can be found in the book “Wafer Bonding: Applications and Technology", Springer 2004, Chapter 7, published by U. G ⁇ sele and M. Alexe.
  • the optoelectronic components are located in the very specific places on the CMOS component and they have a size close to a few tens of square micrometers, we are therefore particularly interested in the transfer of size thumbnails of a component rather than transfer of a layer of the diameter of a substrate. It is obvious that the transfer of vignettes is much more advantageous economically as the transfer of entire substrates. On the other hand, molecular bonding of vignettes requires special preparation.
  • bonding technologies for postponing chips such as epoxy adhesive bonding, eutectic soldering or "flip-chip” bonding.
  • the choice of bonding technology depends on the desired application.
  • this bonding consists of preparing two surfaces in such a way that a simple contact at room temperature is sufficient to ensure very good adhesion.
  • the bonding technique must be compatible with the technique of transfer of chips.
  • the wafer is first glued on an elastic tape.
  • the chip separation is obtained by mechanical and / or laser sawing, chemical etching, ion etching or the like. Fleas are ready to be transferred to another substrate after being separated.
  • a cutting machine is used to cut the substrate into square chips.
  • the substrate to be cut is glued on a plastic film which ensures the mechanical strength.
  • the depth of the cut can vary from a few micrometers to the total thickness of the substrate. We can therefore control the depth of the cut and cut the entire substrate or just the "pre ⁇ cut”.
  • the machine is used to index the distances between saw cuts, which allows automatic cutting.
  • the cuts are possible in two directions (parallel and perpendicular).
  • the United States Patent No. 6,500,047 is available in this regard.
  • the appropriate grinding tools In order to obtain a low roughness of the rear face, it is possible to use the appropriate grinding tools.
  • another plastic film can be glued to the ground side of the chips and the first plastic film can then be removed. This makes it possible to expose the front face of the chips and, depending on the need, to stick them on a destination substrate by the front face or by the rear face.
  • the separated chips can be transferred using a suction machine ("pick and place" technique).
  • the chips are then brought onto the wafer or they must be fixed by so-called hybridization tools.
  • hybridization tools Currently, the pick and place machine is the best known hybridization tool. So that the head of the machine "pick and place” can suck the chip (catch it) and to facilitate the detachment of the chip from its ribbon, we can use a "stylus". This stylus lifts the chip through the plastic film (from the back).
  • the stylet (or the multi-stylus) can pierce this film and take off the chip or lift the chip by deforming the plastic film but without damaging it.
  • the stylet can be replaced and / or reinforced by an air jet or a jet of water.
  • the use of this kind of tool can damage fleas or vignettes when they are fine.
  • the peeling of the chips can also be obtained thanks to the specific properties of plastic films.
  • the plastic film can be heated locally and in this case the film must be sensitive to heat treatment (see US Pat. No. 5,893,746).
  • UV radiation can also be used to locally irradiate a UV-sensitive film. This treatment locally changes the adhesion of the film and facilitates the detachment of the chip.
  • DBG technology for "Dicing Before
  • the head of the "pick and place” machine comes into contact with the chip to be transferred. Thanks to the suction system, the chip comes off its ribbon and is placed on the substrate of destination on which a layer of glue (usually an epoxy glue) is filed.
  • glue usually an epoxy glue
  • the donor substrate containing components or circuits, can be planarized and bonded to another substrate by molecular adhesion
  • WO-A-03/081664 Another technique, disclosed in WO-A-03/081664, is based on the use of a handle.
  • the weakened zone is formed in the donor substrate containing the components.
  • the assembly of this donor substrate on another so-called substrate-handle substrate takes place by gluing with an adhesive which allows easy peeling.
  • the donor substrate is then separated by cleavage along a weakened zone.
  • a handle substrate with a thin layer containing components to be transferred is obtained.
  • the use of a substrate-handle (or stiffener) allows the preparation of thin surface for final bonding on a destination substrate. After this bonding, the substrate-handle can be easily removed.
  • the handle being rigid, the transfer is done in a collective manner, that is to say that all components are transferred simultaneously.
  • WO-A-02/082 502 discloses a method of selectively transferring at least one element from an initial support to a final support. This method comprises the steps of manufacturing chips on an initial substrate, planarizing the initial substrate with the chips, transferring this substrate to another substrate-stiffening handle, removing the initial substrate, separating the chips and weakening the handle substrate around the chips to be transferred (by chemical etching for example).
  • This embrittlement allows the selective gripping of the chips, because the weakened zones break under pressure, or under suction and the chip removed can be placed and fixed on a final substrate.
  • the disadvantages of this technique are as follows: after each pick of the chip, the substrate-handle (stiffener) becomes more fragile, the substrate-handle by breaking (cleavage) produces particles that can be troublesome for the rest of the molecular bonding technology.
  • a transfer method using a polymer handle as a self-supporting substrate to ensure the mechanical strength of stickers, chips, plates, thin layers or other objects of micrometric or millimeter size.
  • the subject of the invention is therefore a method for transferring at least one object of micrometric or millimetric size to a receiving substrate by means of a handle, characterized in that it comprises the following steps:
  • the transfer concerns a plurality of vignettes made in a thin layer integral with an initial substrate
  • the step of contacting and adhering a sticker comprises using a stylus to press said sticker onto the face of the receiving substrate.
  • the object is a thin layer relaxed by undulation on an initial substrate
  • a step of removing the initial substrate after the step of fixing the handle on the thin layer the step contacting and adhesion of the thin layer being obtained after deformation of the structure in the plane of the superposition.
  • the transfer concerns a plurality of cut out vignettes already separated from an initial manufacturing substrate
  • the fixing of the polymer handle is done by gluing a first face of the stickers on the handle, the step of contacting and adhesion of a sticker being obtained after deformation of the handle in the direction of the superposition.
  • the step of contacting and adhesion of a sticker comprises the use of a stylus for pressing said sticker on the face of the receiving substrate.
  • the polymer of the handle is advantageously PDMS.
  • the adhesion of said face of the object to said face of the receiving substrate may be adhesion by molecular bonding.
  • Removal of the polymer handle may include deformation of the handle.
  • FIGS. 1A to 1D illustrate steps of a chip transfer method, according to the present invention
  • FIGS. 2A to 2F illustrate steps of a method for transferring a thin film having a complicated morphology, according to the present invention
  • FIGS. 3A to 3C illustrate steps of a method for transferring chips already cut, according to the present invention.
  • the invention makes it possible in particular to manufacture electronic chips in a collective manner by taking into account the specific nature of the objects to be bonded and in particular the surface preparation (small vignettes, fragility of the material, thin bonding interface, chemical preparation , mechanical surface treatment, etc.)
  • the chips made on the surface of a substrate are pre-cut mechanically or by chemical etching and / or plasma.
  • the depth of the engraving or the line of the saw blade roughly determines the final thickness of transferred vignettes, these vignettes can be subsequently thinned.
  • a polymer is deposited in the liquid state.
  • This polymer is advantageously polydimethylsiloxane (PMDS) or any other polymer having similar or similar properties. Since the polymer is a viscous material, the spreading is done spontaneously or with a spin. In both cases, the polymer penetrates the spacings between the vignettes.
  • the use of a spinner leads to greater deposition homogeneity, but does not allow to obtain thicknesses greater than about 30 microns. In order to obtain a homogeneous and thick deposit at the same time, one solution is to make the deposit in several times.
  • a plate for example in silicon
  • the homogeneity of the distance between the plate and the substrate supplying the vignettes can be ensured by support via wedges whose thickness is chosen according to the needs.
  • Figs. 1A to 1D illustrate steps of a chip transfer method according to the present invention.
  • Figure IA shows, in side view and in section, a substrate 1 (for example silicon or InP) on one side of which chips 2 were manufactured and pre-cut, for example by mechanical saw.
  • the chips have for example a section of 2 mm ⁇ 2 mm and a thickness of 100 ⁇ m.
  • the thickness of the pre-cut can vary from the initial thickness of the substrate up to about ten micrometers.
  • FIG. 1B shows the structure obtained after depositing, by spin coating or direct pouring, the PDMS polymer.
  • the thickness of the polymer is chosen to be equal to 520 ⁇ m. This thickness makes it possible to obtain a good mechanical strength of the vignettes and an elasticity of the polymer sufficient for the rest of the process.
  • the deposit of the polymer can be done directly on the plate ensuring the homogeneity of the thickness so that its removal is done directly.
  • the supplier of PDMS announces that the polymerization of a precursor and a prepolymer is at room temperature or at the annealing temperature. After polymerization, the chip-supplying substrate is removed mechanically
  • Figure IC shows the structure thus obtained.
  • the back side of the chips (the one opposite the polymer) has been polished to obtain well separated chips.
  • a self-supporting substrate made of polymer or handle, smooth on one side and with paving vignettes on the other side.
  • the surface of the polymer being smooth, this handle can be maintained as a silicon substrate.
  • the polymer protects one side of the vignettes or chips and at the same time allows a preparation of the other face of the vignettes in a collective manner.
  • This preparation can consist of:
  • the polymer handle being elastic, it can be mounted on a suitable ring and can be slightly stretched to increase the separation distance between the stickers and to allow them to take off in an even easier way.
  • the handle 3 is then placed above the receiving substrate 4 (see FIG ID) on which one or more thumbnails must be glued.
  • the receiving substrate is advantageously placed on a micrometer table. Thumbnail positioning can be achieved with the desired accuracy and can be followed by an infrared camera.
  • a stylus 5 presses and deforms the handle 3 at the location corresponding to the center of the sticker to be transferred.
  • the polymer deforms while the vignette, which is rigid, does not follow this elastic deformation. The detachment of the chip then takes place.
  • this stylus may have a different geometric shape and may consist of one or more points. If necessary it can be replaced by a jet of water, an air jet. It may comprise a heating or cooling system, a displacement and rotation system.
  • the refinement of the positioning can be done by the chemical etching of the vignettes. Since the transferred vignettes are larger than the area needed for the component to be manufactured, the material can be removed if needed.
  • the major advantage of the polymer handle over an adhesive tape is that the ribbons are dedicated to a single and well defined use such as sawing, transfer, rectification. It is not possible to find a ribbon that can both withstand thinning, chemical treatment, UV and / or thermal treatment for the collective preparation of chips, and then be used as a handle for postponing chips .
  • the polymer handle can be used in the case where the vignettes have reliefs or in the case where the morphology of the surface or the topology do not allow to use an adhesive tape. Since the polymer is liquid at the time of deposition, it adapts easily to the topology of the objects to be transferred. This technique can therefore be used for transfer and / or treatment of surface of all kinds of micrometric objects whose topology of the back face is complicated.
  • the handle can be used with or without stiffener support.
  • a stiffener support may be useful for a grinding or polishing operation and unnecessary for chemical treatment or insolation.
  • the handle according to the invention can also be used to perform a plate or layer transfer having dimensions (in the longitudinal direction) larger than thumbnails or chips, in particular for the transfer of deformed thin layers and having a morphology particularly complicated. It has been demonstrated that the thin compressive layers deposited on a viscous material relax by undulation.
  • the use of a polymer such as PDMS can be implemented to planarize and transfer such a thin layer on a receiving substrate.
  • Figs. 2A to 2F illustrate steps of a method of transferring a thin film having a complicated morphology, according to the present invention.
  • FIG. 2A shows, in side view and in section, a substrate 11 (for example of silicon) successively supporting a viscous layer 12 (for example made of glass, wax, resin or another polymer) and a thin layer 13 30 nm thick for example (for example SiGe or III-V material).
  • the thin layer 13 has a complicated morphology due to the fact that this thin layer was a layer initially constrained in compression and which was relaxed by undulation in the presence of the underlying viscous layer 12.
  • FIG. 2B shows the structure of FIG. 2A on which a layer of PDMS 14 forming a handle has been deposited on the thin layer 13.
  • the substrate 11 and the viscous layer 12 are then removed to leave only the thin layer 13 adhering to the handle 14 (see Figure 2C).
  • the substrate may for example be removed by removal of the viscous layer, this elimination taking place for example in a suitable solvent or by heating or by chemical attacks depending on the material of the viscous layer.
  • the thin layer 13 which had relaxed by waving, can relax since the polymer handle 14 can be deformed, its small thickness and the thinness of the thin layer allowing it (see Figure 2D). It is also possible, alternatively, to relax the thin layer 13 by an external mechanical action for example by means of a suitable ring, as described above.
  • the relaxed thin layer 13 is then bonded to a receiving substrate 15 (see FIG. 2E) and the polymer handle is then removed (see FIG. 2F), for example by mechanical separation from an edge or by etching. plasma.
  • the polymer handle according to the invention can also be used to prepare and paste already cut out stickers. This is illustrated in FIGS. 3A to 3C.
  • FIG. 3A shows, in side view, thumbnails 21 (for example chips in InP) already cut and separated.
  • FIG. 3B shows the vignettes 21 glued on a layer 22 of PDMS by their rear face.
  • a solid PDMS support (already polymerized) typically from one to a few hundred micrometers and deposit on this support a thinner layer (typically a few micrometers) of viscous PDMS.
  • the thumbnails are then arranged on this layer where they sink slightly.
  • the viscous layer of PDMS is then polymerized, thus ensuring the cohesion of the assembly.
  • the vignettes then undergo a chemical preparation for example to make them compatible with the subsequent bonding.
  • the superimposed structure obtained is a deformable structure in the direction of the superposition.
  • FIG. 3C shows the deposition of a sticker 21 on a reception substrate 23, for example a silicon substrate covered with a layer of silicon oxide. Deposition can be done using vertical guides 24 playing the same role as the ring mentioned above and a stylet or pointer 25.
  • the polymer handle 22 is deformed above the location chosen for the sticker to be deposited. The contacting of the sticker with the receiving substrate takes place. The molecular bonding is carried out and the sticker is detached from the handle during the removal thereof, the molecular bonding having a force adhesion greater than bonding with the handle.

Abstract

L'invention concerne un procédé de transfert d'au moins un objet (2) de taille micrométrique ou millimétrique vers un substrat de réception (4) au moyen d'une poignée (3) . Le procédé comprend les étapes suivantes : - fixation d'une poignée en polymère (3) sur ledit objet (2) afin de pouvoir obtenir une structure, constituée de la poignée (3) et de l'objet (2) superposés, déformable, - préparation de surface de la face de l'objet (2) opposée à la poignée (3) en vue de son adhésion sur une face du substrat de réception (4) , - mise en contact et adhésion de ladite face de l'objet (2) sur ladite face du substrat de réception (4) après déformation d'au moins la poignée (3) , - retrait de la poignée en polymère (3) .

Description

PROCEDE DE TRANSFERT D'AU MOINS UN OBJET DE TAILLE MICROMETRIQtJE OU MILLIMETRIQUE AU MOYEN D'UNE POIGNEE
EN POLYMERE
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne l'utilisation d'une poignée en polymère pour fabriquer, nettoyer et maintenir des vignettes, des circuits électroniques ou d'autres objets de taille micrométrique ou millimétrique avant de les reporter sur un substrat de destination et de les intégrer avec ce substrat par adhésion moléculaire ou par une autre technique de collage. L'invention se situe, en particulier, dans le domaine de l'intégration hétérogène de la photonique sur silicium et concerne principalement la fabrication collective de puces et/ou de vignettes de silicium, d' InP et/ou d'un autre matériau afin de les reporter sur un substrat dit hôte. II est aussi possible d'utiliser cette invention pour un transfert et un traitement technologique collectif de tout autre objet, voire un film mince.
ÉTAT DE LA TECHNIQUE ANTERIEURE
Les interconnexions électriques intra-chip ou inter-ch±p deviennent une limitation très importante dans la poursuite de la miniaturisation et de l'augmentation des performances des circuits intégrés. Les limitations prévisibles ont pour causes l'augmentation des temps de propagation dans les lignes et de la consommation électrique des amplificateurs de ligne et concerneront la distribution de l'horloge et des signaux ou des groupes de signaux les plus longs. Des solutions optiques doivent permettre potentiellement de lever ces verrous. Elles impliquent cependant un effort de recherche important dans le domaine de la technologie.
Il est indispensable de s'intéresser au remplacement d'un certain nombre de liens électriques (le premier entre eux étant le signal d'horloge) par les liens optiques. Plusieurs études ont démontré que la distribution de signal d'horloge dans un système commandé par un ou plusieurs processeurs consomme environ 40% d'énergie même si ce système n'exécute aucun programme, ce qui conduit à la dissipation de puissance très importante et en conséquence d'une part ne permet pas une miniaturisation plus importante et d' autre part oblige à désigner les circuit de refroidissement dont le concept est souvent gênant pour le bon fonctionnement du système. De toute manière, l'intégration de plusieurs niveaux de métallisation et la miniaturisation deviennent technologiquement de plus en plus difficiles ou même impossibles Une des solutions est de remplacer une partie de circuit électronique de distribution d'horloge par la distribution optique (en conséquence on obtiendra une diminution de niveaux de métallisation) . Les principes de cette idée sont les suivantes : des guides d'ondes optiques situés au- dessus des composants CMOS véhiculent des informations entre des émetteurs et récepteurs photoniques (source micro-laser et détecteur) . Les détecteurs étant localisés en structure H-TREE, aucun délai entre les détecteurs n'est généré. Dans les zones voisines de la localisation de détecteur, la distribution de signal se fait par le biais des interconnexions métalliques.
Afin d'assurer ce couplage électro-optique, il faut savoir intégrer des hétérostructures de matériaux III-V par épitaxie sur substrat de silicium par exemple. Cette intégration est indispensable parce que seuls les alliages en matériaux III-V (In, Ga, As, P) permettent de réaliser les composants optoélectroniques performants. En revanche, La technologie sur silicium étant bien connue et développée, elle permet d'enchaîner les procédés technologiques des fabrication des interconnexions optiques .
En effet, la technologie de report de couches minces permet d'obtenir ce type d'hétéro- structure par collage moléculaire « pleine plaque ». On peut se référer à ce sujet au livre « Wafer bonding : Applications and Technology », Springer 2004, chapitre 7, publié par U. Gδsele et M. Alexe.
Puisque les composants optoélectroniques sont localisés dans les endroits bien précis sur le composant CMOS et qu'ils ont une taille proche de quelques dizaines de micromètres carrés on s'intéresse donc plus particulièrement au transfert de vignettes de taille d'un composant plutôt qu'au report d'une couche du diamètre d'un substrat. Il est évident que le transfert des vignettes est beaucoup plus avantageux économiquement que le transfert de substrats entiers. En revanche, le collage moléculaire des vignettes exige une préparation particulière.
Il existe différentes technologies de collage pour le report de puces comme le collage par colle époxy, soudure eutectique ou le collage par technologie « flip-chip ». Le choix de technologie de collage est fonction de l'application voulue.
Chaque type de collage assure des propriétés de l'interface de collage différentes
(conductivité thermique et électrique, stabilité thermique, transparence à certaines longueurs d'onde etc.) . Dans le cas du collage moléculaire de puces, ce collage consiste à préparer deux surfaces de telle manière qu'une simple mise en contact à la température ambiante soit suffisante pour assurer une très bonne adhésion.
La technique de collage doit être compatible avec la technique de report de puces. Actuellement, seule la technologie « pick and place > permet un report individuel de puces à la fois séquentiel et automatisé. Avant de commencer des séquences « pick and place » le substrat est collé sur un film adhésif et les puces sont préparées par les techniques de séparation.
Dans une procédure standard de préparation de puces la plaquette est d' abord collée sur un ruban élastique. La séparation de puces est obtenue par un sciage mécanique et/ou à laser, gravure chimique, gravure ionique ou autre. Les puces sont prêtes à être transférées sur un autre substrat après avoir été séparées .
Concernant le sciage mécanique, une machine de découpe permet de découper le substrat en puces carrées. Le substrat à découper est collé sur un film plastique qui lui assure la tenue mécanique. La profondeur de la découpe peut varier de quelques micromètres jusqu'à l'épaisseur totale du substrat. On peut donc contrôler la profondeur de la découpe et découper le substrat entier ou juste le « pré¬ découper ». La machine permet d'indexer les distances entre les traits de scie ce qui autorise d'effectuer une découpe automatique. Les découpes sont possibles dans deux directions (parallèle et perpendiculaire) . On peut consulter à ce propos le brevet des Etats-Unis No. 6 500 047.
Une autre technique de découpe est divulguée par les brevets des Etats-Unis No. 6 676 491 et 6 709 953. Cette technique de préparation de puces fines consiste à découper un substrat semi-conducteur en plusieurs carrés de la taille voulue. La découpe se fait sur une épaisseur inférieure à l'épaisseur du substrat. Lors de l'action de découpe, la profondeur de sciage peut varier de quelques dizaines de micromètres jusqu'à l'épaisseur totale du substrat. Puisque le substrat est scié sur une profondeur inférieure à son épaisseur, il est possible de coller un film plastique sur la face sciée. Les puces peuvent être libérées par meulage, c'est-à-dire par amincissement en face arrière de la plaque ou elles ont été préparées en face avant. L'enlèvement de la matière s'arrête au moment de la séparation des puces. Le film plastique collé avant assure la tenue mécanique. Afin d'obtenir une faible rugosité de la face arrière il est possible d'utiliser les outils de rectification adaptés. En fonction du besoin, un autre film plastique peut être collé sur la face rectifiée des puces et le premier film plastique peut être ensuite enlevé. Cela permet d'exposer la face avant des puces, et en fonction du besoin les coller sur un substrat de destination par la face avant ou par la face arrière. Les puces séparées peuvent être transférées à l'aide d'une machine à aspiration (technique « pick and place ») .
Les puces sont ensuite amenées sur la plaquette ou elles doivent être fixées par des outils dits d'hybridation. Actuellement, la machine de type « pick and place » est l'outil d'hybridation le plus connu. Afin que la tête de la machine « pick and place » puisse aspirer la puce (l'attraper) et afin de faciliter le décollement de la puce de son ruban, on peut utiliser un « stylet ». Ce stylet vient soulever la puce à travers le film plastique (par la face arrière) .
Le stylet (ou le multi-stylet) peut percer ce film et décoller la puce ou soulever la puce en déformant le film plastique mais sans le détériorer. Le stylet peut être remplacé et/ou renforcé par un jet d'air ou un jet d'eau. En revanche, l'utilisation de ce genre d' outil peut endommager les puces ou les vignettes quand elles sont fines. Le décollement des puces peut être aussi obtenu grâce aux propriétés spécifiques de films plastiques. On peut réchauffer localement le film plastique et dans ce cas le film doit être sensible au traitement thermique (voir le brevet US-A- 5 893 746) . On peut aussi utiliser le rayonnement UV pour insoler localement un film sensible aux UV. Ce traitement change localement l'adhésion du film et facilite le décollement de la puce. La technologie DBG (pour « Dicing Before
Grinding ») exige l'utilisation de films plastiques ayant des propriétés différentes parce que la plupart du temps les puces sont manipulées à chacune de ces étapes en les collant sur des rubans. En fonction des applications et/ou des étapes, les films en plastique assurent une adhésion plus ou moins importante. Ils peuvent changer leur adhérence en fonction de la température, de l'insolation (UV) etc.. Les inconvénients des rubans sont le plus souvent de ne supporter qu'une seule des opérations et, particulièrement, les films en plastique ne résistent pas au traitement chimique et thermique en même temps .
Le report individuel des puces se fait donc par la technique « pick and place ».
Afin de coller une puce sur un substrat, la tête de la machine « pick and place » entre en contact avec la puce à transférer. Grâce au système d'aspiration, la puce se décolle de son ruban et est posée sur le substrat de destination sur lequel une couche de colle (habituellement une colle époxy) est déposée. Le décollement des puces est possible grâce aux propriétés physiques des rubans (leur adhérence en fonction de la température, de l'insolation, etc..) .
Dans l'assemblage des puces, on utilise le plus souvent des colles époxydes. Les techniques de collage via ce type de colles ne permettent pas de contrôler parfaitement l'épaisseur de la colle, ce qui peut changer localement la transmission de la lumière. De plus, la température maximale d'un traitement thermique des structures ainsi collées est limitée. Cependant, pour des applications d'assemblage, cette technique est quand même très efficace. La machine de report des puces est dotée d'un système permettant d'effectuer un dépôt de la colle époxy ou d'une résine. Les autres techniques de collage
(métallique, alliage, polymère, etc..) n'assurent pas l'interface de collage voulue (interface transparente pour la lumière, fine, etc..) en termes d'interconnexions optiques. Pour des applications dans le domaine des interconnexions optiques, ces limitations doivent être résolues. L'utilisation du procédé d'adhésion moléculaire est un moyen prometteur pour atteindre les objectifs de l'intégration 3D parce qu'il permet d'obtenir des interfaces de collage très fines, transparentes pour la lumière et parce qu'il est compatible avec les traitements thermiques, même aux températures élevées. Enfin, c'est une technique généralement bien maîtrisée. Le collage moléculaire exige une préparation particulière des faces à assembler. Les moyens utilisés pour la préparation collective de puces doivent supporter la préparation chimique et le polissage mécano-chimique, ou d'autres types de traitement comme le greffage de surface, etc.. Concernant l'intégration 3D (collage direct) par report de type « pleine plaque », il existe des techniques permettant de reporter des composants
(réalisés sur un substrat) sur un substrat de destination (voir en particulier le brevet des Etats- Unis No. 6 627 531) . Le substrat donneur, contenant des composants ou des circuits, peut être planarisé et collé sur un autre substrat par adhésion moléculaire
(technique dite du « wafer bonding » en anglais) .
Ensuite, il est possible d'amincir mécaniquement le substrat donneur par sa face arrière. Même pour un report localisé des composants, cette technique impose le report d'une plaque entière.
Une autre technique, divulguée dans le document WO-A-03/081664, est basée sur l'utilisation d'une poignée. Ici, la zone fragilisée est formée dans le substrat donneur contenant les composants. Ensuite, l'assemblage de ce substrat donneur sur un autre substrat dit substrat-poignée a lieu par collage avec une colle qui permet un décollement facile. Le substrat donneur est ensuite séparé par clivage selon une zone fragilisée. On obtient un substrat-poignée avec une couche mince contenant des composants à transférer. L'utilisation d'un substrat-poignée (ou raidisseur) permet la préparation de surface mince pour le collage définitif sur un substrat de destination. Après ce collage, le substrat-poignée peut être facilement enlevé. La poignée étant rigide, le transfert se fait d'une manière collective, c'est-à-dire que tous les composants sont transférés simultanément.
Le document WO-A-02/082 502 divulgue un procédé de transfert sélectif d'au moins un élément d'un support initial sur un support final. Ce procédé comprend les étapes consistant à fabriquer des puces sur un substrat initial, planariser le substrat initial avec les puces, transférer ce substrat sur un autre substrat-poignée raidisseur, éliminer le substrat initial, séparer les puces et fragiliser le substrat- poignée autour des puces à transférer (par gravure chimique par exemple) . Cette fragilisation permet la préhension sélective des puces, car les zones fragilisées se rompent sous pression, ou sous aspiration et la puce prélevée peut être posée et fixée sur un substrat final. Les inconvénients de cette technique sont les suivantes : après chaque prélèvement de la puce, le substrat-poignée (raidisseur) devient plus fragile, le substrat-poignée en se rompant (se clivant) produit des particules qui peuvent être gênantes pour la suite de la technologie de collage moléculaire.
EXPOSÉ DE L'INVENTION
Pour remédier aux inconvénients de l'art antérieur, il est proposé, par la présente invention, un procédé de transfert utilisant une poignée en polymère en tant que substrat auto-portant, permettant d'assurer la tenue mécanique de vignettes, de puces, de plaques, de couches minces ou d'autres objets de taille micrométrique ou millimétrique.
L'invention a donc pour objet un procédé de transfert d'au moins un objet de taille micrométrique ou millimétrique vers un substrat de réception au moyen d'une poignée, caractérisé en ce qu'il comprend les étapes suivantes :
- fixation d'une poignée en polymère sur ledit objet afin de pouvoir obtenir une structure, constituée de la poignée et de l'objet superposés, déformable, comprenant le dépôt du polymère à l'état liquide sur ledit objet et la polymérisation du polymère,
- préparation de surface de la face de l'objet opposée à la poignée en vue de son adhésion sur une face du substrat de réception,
- mise en contact et adhésion de ladite face de l'objet sur ladite face du substrat de réception après déformation d'au moins la poignée, - retrait de la poignée en polymère.
Selon un premier mode de mise en œuvre, si le transfert concerne une pluralité de vignettes réalisés dans une couche mince solidaire d'un substrat initial, il est prévu une étape de prédécoupe des vignettes avant la fixation de la poignée en polymère et une étape d'élimination du substrat initial jusqu'à obtenir des vignettes séparées les unes des autres, l'étape de mise en contact et d'adhésion d'une vignette étant obtenue après déformation de la poignée dans la direction de la superposition. Avantageusement, l'étape de mise en contact et d'adhésion d'une vignette comprend l'utilisation d'un stylet pour plaquer ladite vignette sur la face du substrat de réception. Selon un autre aspect particulier, si l'objet est une couche mince relaxée par ondulation sur un substrat initial, il est prévu une étape d'élimination du substrat initial après l'étape de fixation de la poignée sur la couche mince, l'étape de mise en contact et d'adhésion de la couche mince étant obtenue après déformation de la structure dans le plan de la superposition. Selon un deuxième mode de mise en œuvre, le transfert concerne une pluralité de vignettes découpées et déjà séparées d'un substrat initial de fabrication, la fixation de la poignée en polymère se fait par collage d'une première face des vignettes sur la poignée, l'étape de mise en contact et d'adhésion d'une vignette étant obtenue après déformation de la poignée dans la direction de la superposition. Avantageusement, l'étape de mise en contact et d'adhésion d'une vignette comprend l'utilisation d'un stylet pour plaquer ladite vignette sur la face du substrat de réception.
Le polymère de la poignée est avantageusement du PDMS.
L'adhésion de ladite face de l'objet sur ladite face du substrat de réception peut être une adhésion par collage moléculaire.
Le retrait de la poignée en polymère peut comprendre la déformation de la poignée.
BRÈVE DESCRIPTION DES DESSINS L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- les figures IA à ID illustrent des étapes d'un procédé de transfert de puces, selon la présente invention,
- les figures 2A à 2F illustrent des étapes d'un procédé de transfert d'une couche mince ayant une morphologie compliquée, selon la présente invention, - les figures 3A à 3C illustrent des étapes d'un procédé de transfert de puces déjà découpées, selon la présente invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'invention permet en particulier la fabrication de puces électroniques de façon collective en prenant en compte le caractère spécifique des objets à coller et notamment la préparation de surface (vignettes de petite taille, fragilité du matériau, interface de collage de faible épaisseur, préparation chimique, traitement mécanique de surface, etc..)
Selon un mode préféré de mise en œuvre de l'invention, avant de préparer une poignée, les puces réalisées à la surface d'un substrat sont pré-découpées mécaniquement ou par gravure chimique et/ou plasma. La profondeur de la gravure ou du trait de la lame de scie détermine grossièrement l'épaisseur finale de vignettes transférées, ces vignettes pouvant être par la suite amincies . Sur les vignettes ou puces pré-découpées, on dépose un polymère à l'état liquide. Ce polymère est avantageusement du polydiméthylsiloxane (PMDS) ou tout autre polymère possédant des propriétés similaires ou proches. Le polymère étant un matériau visqueux, l'étalement se fait spontanément ou à l'aide d'une tournette. Dans les deux cas, le polymère pénètre les espacements entre les vignettes. L'utilisation d'une tournette conduit à une homogénéité de dépôt plus importante, mais ne permet pas d'obtenir des épaisseurs supérieures à environ 30 μm. Afin d'obtenir un dépôt homogène et épais en même temps, une solution consiste à faire le dépôt en plusieurs fois.
La société Dow Corning, qui fournit du PDMS, donne les propriétés suivantes pour son produit SYLGARD ®184 : • A la livraison :
- viscosité à 230C : 5500 mPa.s
- rapport de mélange en poids (base/argent de polymérisation) : 10/1
- viscosité à 230C immédiatement après mélange avec l'argent de polymérisation : 4000 mPa.s
- durée de vie en pot à 230C : 2 heures .
• Propriétés physiques après polymérisation pendant 4 heures à 650C : - couleur : transparent
- dureté (duromètre) Shore A : 50
- résistance à la traction : 7,1 MPa
- allongement à la rupture : 140% -résistance au déchirement - poinçon B : 2, 6 kN/m
- densité à 230C : 1, 05 - coefficient volumique de dilatation thermique : 9.6 .1CT4/K
- coefficient de conductivité thermique : 0,17 W/m.K. Afin d' obtenir une bonne homogénéité après l'étalement du polymère, une plaque (par exemple en silicium) peut être posée sur la couche de polymère versée sur les puces. L'homogénéité de la distance entre la plaque et le substrat fournisseur des vignettes peut être assurée par appui par l'intermédiaire de cales dont l'épaisseur est choisie en fonction des besoins.
Les figures IA à ID illustrent des étapes d'un procédé de transfert de puces selon la présente invention.
La figure IA montre, en vue de côté et en coupe, un substrat 1 (par exemple en silicium ou en InP) sur une face duquel des puces 2 ont été fabriquées et prédécoupées, par exemple à la scie mécanique. Les puces ont par exemple une section de 2 mm x 2 mm et une épaisseur de 100 μm. L'épaisseur de la pré-découpe peut varier de l'épaisseur initiale du substrat jusqu'à une dizaine de micromètres.
La figure IB montre la structure obtenue après le dépôt, à la tournette ou par versement direct, du polymère PDMS. L'épaisseur du polymère est choisie égale à 520 μm. Cette épaisseur permet d'obtenir une bonne tenue mécanique des vignettes et une élasticité du polymère suffisante pour la suite du procédé. Le dépôt du polymère peut se faire directement sur la plaque assurant l'homogénéité de l'épaisseur afin que son enlèvement se fasse directement.
On procède ensuite à un dégazage et à un recuit de polymérisation. Le fournisseur de PDMS annonce que la polymérisation d'un précurseur et d'un pré-polymère se fait à la température ambiante ou à la température de recuit. Après polymérisation, le substrat fournisseur de puces est enlevé mécaniquement
(par exemple par rectification) jusqu'à l'épaisseur correspondant à la séparation des vignettes ou bien légèrement inférieure à cette valeur. Dans ce dernier cas, la séparation des vignettes aura lieu pendant la suite de la préparation.
La figure IC montre la structure ainsi obtenue. La face arrière des puces (celle opposée au polymère) a été polie afin d'obtenir des puces bien séparées. On obtient alors un substrat auto-portant en polymère ou poignée, lisse d'un côté et avec des vignettes en pavage de l'autre côté. La surface du polymère étant lisse, cette poignée peut être maintenue comme un substrat en silicium. Le polymère protège bien une face des vignettes ou des puces et permet en même temps une préparation de l'autre face des vignettes d'une manière collective. Cette préparation peut consister :
- à appliquer une préparation chimique (chimie des acides, des bases, des solvants) , le polymère PDMS résistant bien aux traitements chimiques (comme H2SO4 : H2O2, l'ammoniaque, le TMAH) ; - à traiter la surface avec un plasma ou un rayonnement UV ; - à réaliser des dépôts de couches d' oxyde ;
- à réaliser toute autre préparation permettant d'effectuer un collage moléculaire ou autre. Cette préparation doit bien sûr être compatible avec la tenue en température du polymère (typiquement intérieure à 2000C) .
Dans certains cas, un polissage permettant d'obtenir une rugosité convenable est nécessaire. La poignée en polymère étant élastique, elle peut être montée sur une bague adaptée et peut être légèrement tendue afin d' augmenter la distance de séparation entre les vignettes et de permettre de les décoller d'une manière encore plus facile. La poignée 3 est ensuite placée au-dessus du substrat de réception 4 (voir la figure ID) sur lequel une ou plusieurs vignettes doivent être collées. Le substrat de réception est avantageusement posé sur une table micrométrique. Le positionnement des vignettes peut être réalisé avec la précision souhaitée et peut être suivi par une caméra infrarouge. Un stylet 5 vient appuyer et déformer la poignée 3 à l'endroit correspondant au centre de la vignette à transférer. Le polymère se déforme tandis que la vignette, qui est rigide, ne suit pas cette déformation élastique. Le décollement de la puce a alors lieu. Dès que la vignette entre en contact avec un substrat, le phénomène de collage moléculaire a lieu. La puce se décolle entièrement de la poignée en polymère. Le stylet remonte, le polymère étant élastique revient à sa forme initiale et le substrat se déplace. L'action (cycle) de décollement de la puce peut être recommencée. Il est important à souligner que ce stylet peut avoir une forme géométrique différente et peut se composer d'une ou plusieurs pointes. En cas de besoin il peut être remplacé par un jet d'eau, un jet d'air. Il peut comporter un système chauffant ou refroidissant, un système de déplacement et de rotation.
Une fois tous les collages moléculaires réalisés, l'affinement du positionnement peut se faire par la gravure chimique des vignettes. Les vignettes transférées étant plus grandes que la surface nécessaire afin que le composant puisse être fabriqué, on peut alors éliminer le matériau s'il y a besoin. L'avantage majeur de la poignée en polymère par rapport à un ruban adhésif est que les rubans sont dédiés à une utilisation unique et bien définie comme le sciage, le report, la rectification. Il n'est pas possible de trouver un ruban qui peut à la fois résister à l'amincissement, au traitement chimique, au traitement UV et/ou thermique pour la préparation collective des puces, et être ensuite utilisé comme poignée permettant le report des puces.
La poignée en polymère peut être utilisée dans le cas où les vignettes présentent des reliefs ou dans le cas où la morphologie de la surface ou la topologie ne permettent pas d'utiliser un ruban adhésif. Etant donné que le polymère est liquide au moment du dépôt, il s'adapte facilement à la topologie des objets à transférer. On peut donc utiliser cette technique pour un transfert et/ou un traitement de surface de toute sorte d'objets de taille micrométrique dont la topologie de la face arrière est compliquée. En fonction de l'application, la poignée peut être utilisée avec ou sans support raidisseur. Un support raidisseur peut être utile pour une opération de meulage ou de polissage et inutile pour un traitement chimique ou une insolation.
La poignée selon l'invention peut également être utilisée pour effectuer un transfert de plaque ou de couches ayant des dimensions (dans le sens longitudinal) plus importantes que des vignettes ou des puces, en particulier pour le transfert de couches minces déformées et ayant une morphologie particulièrement compliquée. Il a été démontré que les couches minces contraintes en compression, déposés sur un matériau visqueux, se relaxent par ondulation. L'utilisation d'un polymère comme le PDMS peut être mise en œuvre afin de planariser et transférer une telle couche mince sur un substrat de réception. Les figures 2A à 2F illustrent des étapes d'un procédé de transfert d'une couche mince ayant une morphologie compliquée, selon la présente invention.
La figure 2A montre, en vue de côté et en coupe, un substrat 11 (par exemple en silicium) supportant successivement une couche visqueuse 12 (par exemple en verre, en cire, en résine ou en un autre polymère) et une couche mince 13 de 30 nm d'épaisseur par exemple (par exemple en SiGe ou en matériau III-V) . La couche mince 13 présente une morphologie compliquée due au fait que cette couche mince était une couche initialement contrainte en compression et qui s'est relaxée par ondulation en présence de la couche visqueuse 12 sous-jacente.
La figure 2B montre la structure de la figure 2A sur laquelle une couche de PDMS 14 formant poignée a été déposée sur la couche mince 13.
Le substrat 11 et la couche visqueuse 12 sont ensuite enlevés pour ne laisser subsister que la couche mince 13 adhérent à la poignée 14 (voir la figure 2C) . Le substrat peut par exemple être enlevé par élimination de la couche visqueuse, cette élimination se faisant par exemple dans un solvant adapté ou par chauffage ou encore par attaques chimiques selon le matériau de la couche visqueuse.
A ce stade, la couche mince 13, qui s'était relaxée par ondulation, peut se détendre puisque la poignée en polymère 14 peut se déformer, sa faible épaisseur et la faible épaisseur de la couche mince le permettant (voir la figure 2D) . Il est possible également, en variante, de détendre la couche mince 13 par une action mécanique extérieure par exemple au moyen d'une bague adaptée, comme décrit plus haut.
La couche mince 13 détendue est ensuite collée sur un substrat de réception 15 (voir la figure 2E) et la poignée en polymère est ensuite enlevée (voir la figure 2F) , par exemple par décollement mécanique à partir d'un bord ou encore par gravure plasma.
La poignée en polymère selon l'invention peut également être utilisée pour préparer et coller des vignettes déjà découpées. C'est ce qu'illustrent les figures 3A à 3C. La figure 3A montre, en vue de côté, des vignettes 21 (par exemple des puces en InP) déjà découpées et séparées.
La figure 3B montre les vignettes 21 collées sur une couche 22 de PDMS par leur face arrière. Pour cela, on peut prévoir un support en PDMS solide (déjà polymérisé) de typiquement un à quelques centaines de micromètres et déposer sur ce support une couche plus fine (typiquement de quelques micromètres) de PDMS visqueux. Les vignettes sont ensuite disposées sur cette couche où elles s'enfoncent légèrement. On procède ensuite à la polymérisation de la couche visqueuse de PDMS, assurant ainsi la cohésion de l'ensemble. Les vignettes subissent alors une préparation par exemple chimique pour les rendre compatibles avec le collage ultérieur. La structure superposée obtenue est une structure déformable dans la direction de la superposition.
La figure 3C montre le dépôt d'une vignette 21 sur un substrat de réception 23 par exemple un substrat de silicium recouvert d'une couche d'oxyde de silicium. Le dépôt peut se faire en utilisant des guides verticaux 24 jouant le même rôle que la bague mentionnée plus haut et un stylet ou pointeur 25. La poignée en polymère 22 est déformée au-dessus de l'emplacement choisi pour la vignette à déposer. La mise en contact de la vignette avec le substrat de réception a lieu. Le collage moléculaire est réalisé et la vignette se décolle de la poignée lors du retrait de celle-ci, le collage moléculaire ayant une force d' adhésion plus importante que le collage avec la poignée.

Claims

REVENDICATIONS
1. Procédé de transfert d'au moins un objet (2, 13, 21) de taille micrométrique ou millimétrique vers un substrat de réception (4, 15, 23) au moyen d'une poignée, caractérisé en ce qu'il comprend les étapes suivantes :
- fixation d'une poignée en polymère (3, 14, 22) sur ledit objet (2, 13, 21) afin de pouvoir obtenir une structure, constituée de la poignée et de l'objet superposés, déformable, comprenant le dépôt du polymère à l'état liquide sur ledit objet (2, 13) et la polymérisation du polymère,
- préparation de surface de la face de l'objet (2, 13, 21) opposée à la poignée (3, 14, 22) en vue de son adhésion sur une face du substrat de réception (4, 15, 23),
- mise en contact et adhésion de ladite face de l'objet sur ladite face du substrat de réception après déformation d'au moins la poignée,
- retrait de la poignée en polymère.
2. Procédé de transfert selon la revendication 1, caractérisé en ce que, le transfert concernant une pluralité de vignettes (2) réalisés dans une couche mince solidaire d'un substrat initial (1) , il est prévu une étape de prédécoupe des vignettes avant la fixation de la poignée en polymère (3) et une étape d'élimination du substrat initial (1) jusqu'à obtenir des vignettes (2) séparées les unes des autres, l'étape de mise en contact et d'adhésion d'une vignette étant obtenue après déformation de la poignée dans la direction de la superposition.
3. Procédé de transfert selon la revendication 2, caractérisé en ce que l'étape de mise en contact et d'adhésion d'une vignette comprend l'utilisation d'un stylet (5) pour plaquer ladite vignette sur la face du substrat de réception (4) .
4. Procédé de transfert selon la revendication 1, caractérisé en ce que, ledit objet étant une couche mince (13) relaxée par ondulation sur un substrat initial, il est prévu une étape d'élimination du substrat initial après l'étape de fixation de la poignée (14) sur la couche mince (13), l'étape de mise en contact et d'adhésion de la couche mince étant obtenue après déformation de la structure dans le plan de la superposition.
5. Procédé de transfert selon la revendication 1, caractérisé en ce que, le transfert concernant une pluralité de vignettes (21) découpées et déjà séparées d'un substrat initial de fabrication, la fixation de la poignée en polymère (22) se fait par collage d'une première face des vignettes (21) sur la poignée, l'étape de mise en contact et d'adhésion d'une vignette étant obtenue après déformation de la poignée dans la direction de la superposition.
6. Procédé de transfert selon la revendication 5, caractérisé en ce que l'étape de mise en contact et d'adhésion d'une vignette comprend l'utilisation d'un stylet (25) pour plaquer ladite vignette sur la face du substrat de réception (23) .
7. Procédé de transfert selon lune quelconque des revendications 1 à 6, caractérisé en ce que le polymère de la poignée est du PDMS.
8. Procédé de transfert selon la revendication 1, caractérisé en ce que l'adhésion de ladite face de l'objet sur ladite face du substrat de réception est une adhésion par collage moléculaire.
9. Procédé de transfert selon la revendication 1, caractérisé en ce que le retrait de la poignée en polymère comprend la déformation de la poignée.
EP05815527A 2004-10-21 2005-10-18 Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere Ceased EP1803152A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452393A FR2877142B1 (fr) 2004-10-21 2004-10-21 Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere.
PCT/FR2005/050863 WO2006043000A2 (fr) 2004-10-21 2005-10-18 Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere

Publications (1)

Publication Number Publication Date
EP1803152A2 true EP1803152A2 (fr) 2007-07-04

Family

ID=34949788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815527A Ceased EP1803152A2 (fr) 2004-10-21 2005-10-18 Procede de transfert d'au moins un objet de taille micrometrique ou millimetrique au moyen d'une poignee en polymere

Country Status (5)

Country Link
US (1) US20080020547A1 (fr)
EP (1) EP1803152A2 (fr)
JP (1) JP2008517474A (fr)
FR (1) FR2877142B1 (fr)
WO (1) WO2006043000A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
EP1891479B1 (fr) * 2005-05-10 2014-04-09 Dow Corning Corporation Lithographie par transfert de décalcomanies submicroniques
US8030132B2 (en) * 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
FR2925221B1 (fr) * 2007-12-17 2010-02-19 Commissariat Energie Atomique Procede de transfert d'une couche mince
FR2947098A1 (fr) * 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
FR2975985B1 (fr) * 2011-05-30 2016-02-12 Univ Paris Sud 11 Procede pour la realisation de supports fonctionnels souples.
FR2993096B1 (fr) 2012-07-03 2015-03-27 Commissariat Energie Atomique Dispositif et procede de support individuel de composants
DE102014014422A1 (de) 2014-09-29 2016-03-31 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit einer Löcher aufweisenden Aufnahmeschicht
KR101723436B1 (ko) * 2015-01-13 2017-04-05 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
WO2018128471A1 (fr) * 2017-01-05 2018-07-12 엘지이노텍 주식회사 Procédé de fabrication de dispositif d'affichage
US20190186041A1 (en) 2017-12-20 2019-06-20 International Business Machines Corporation Three-dimensionally stretchable single crystalline semiconductor membrane
KR102113200B1 (ko) * 2017-12-22 2020-06-03 엘씨스퀘어(주) 변형필름을 이용한 전사방법
CN108376838A (zh) * 2018-04-11 2018-08-07 中北大学 基于pdms封装技术的微流体超材料结构

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335201A (en) * 1970-05-21 1973-10-24 Lucas Industries Ltd Method of manufacturing semi-conductor devices
JPS5617029A (en) * 1979-07-20 1981-02-18 Toshiba Corp Installation of semiconductor pellet
JPS5752143A (en) * 1980-09-16 1982-03-27 Toshiba Corp Mounting method and device for semiconductor pellet
JPS6063940A (ja) * 1984-07-26 1985-04-12 Sanken Electric Co Ltd 半導体ペレツトのダイボンデイング方法
EP0344702B1 (fr) * 1988-05-30 1996-03-13 Canon Kabushiki Kaisha Appareil à circuit électronique
JPH0346242A (ja) * 1989-07-13 1991-02-27 Fujitsu Ltd 半導体装置の製造方法
US6500694B1 (en) * 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6214733B1 (en) * 1999-11-17 2001-04-10 Elo Technologies, Inc. Process for lift off and handling of thin film materials
JP4675451B2 (ja) * 2000-04-14 2011-04-20 株式会社ディスコ 切削装置
FR2823012B1 (fr) * 2001-04-03 2004-05-21 Commissariat Energie Atomique Procede de transfert selectif d'au moins un element d'un support initial sur un support final
JP4669162B2 (ja) * 2001-06-28 2011-04-13 株式会社ディスコ 半導体ウェーハの分割システム及び分割方法
DE10158563C1 (de) * 2001-11-29 2003-07-17 Infineon Technologies Ag Verfahren zur Herstellung eines Bauelementmoduls
JP4211256B2 (ja) * 2001-12-28 2009-01-21 セイコーエプソン株式会社 半導体集積回路、半導体集積回路の製造方法、電気光学装置、電子機器
US6709953B2 (en) * 2002-01-31 2004-03-23 Infineon Technologies Ag Method of applying a bottom surface protective coating to a wafer, and wafer dicing method
FR2837620B1 (fr) * 2002-03-25 2005-04-29 Commissariat Energie Atomique Procede de transfert d'elements de substrat a substrat
US6805809B2 (en) * 2002-08-28 2004-10-19 Board Of Trustees Of University Of Illinois Decal transfer microfabrication
JP2004126153A (ja) * 2002-10-01 2004-04-22 Seiko Epson Corp フラットパネルディスプレイおよび電子機器
WO2004077551A1 (fr) * 2003-02-24 2004-09-10 Infineon Technologies Ag Procede ameliore et appareil de positionnement de circuits integres sur des languettes de connexion
JP4794810B2 (ja) * 2003-03-20 2011-10-19 シャープ株式会社 半導体装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERNET CITATION: "Rubber Selection- a Guide to Outline Properties", 2 September 2003 (2003-09-02), Retrieved from the Internet <URL:http://web.archive.org/web/20030902074453/http://www.merl-ltd.co.uk/2003_materials/rubber12.shtml> [retrieved on 20091120] *
JIANG H. ET AL: "Finite deformation mechanics in buckled thin films on compliant support", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE OF THE UNITED STATES OF AMERICA, vol. 104, no. 40, 2 October 2007 (2007-10-02), pages 15607 - 15612 *

Also Published As

Publication number Publication date
JP2008517474A (ja) 2008-05-22
WO2006043000A3 (fr) 2006-12-21
US20080020547A1 (en) 2008-01-24
WO2006043000A2 (fr) 2006-04-27
FR2877142B1 (fr) 2007-05-11
FR2877142A1 (fr) 2006-04-28

Similar Documents

Publication Publication Date Title
EP1803152A2 (fr) Procede de transfert d&#39;au moins un objet de taille micrometrique ou millimetrique au moyen d&#39;une poignee en polymere
EP1497857B1 (fr) Procede de manipulation de couches semiconductrices pour leur amincissement
EP1386346B1 (fr) Procede de transfert selectif de puces semiconductrices d&#39;un support initial sur un support final
WO2006054024A2 (fr) Amincissement d&#39;une plaquette semiconductrice
EP1986239B1 (fr) Procédé pour la réalisation d&#39;une matrice de détection de rayonnements électromagnétiques et notamment de rayonnements infrarouges.
WO2021099713A1 (fr) Procede de fabrication d&#39;une puce fonctionnelle adaptee pour etre assemblee a des elements filaires
EP3593376B1 (fr) Procédé d&#39;auto-assemblage de composants microélectroniques
EP1402585A2 (fr) Procede de fabrication en grand nombre d&#39;une multiplicite de capteurs magnetiques
EP2798672B1 (fr) Procede de fabrication d&#39;une structure multicouche sur un support
EP3035378B1 (fr) Procédé de transformation d&#39;un dispositif électronique utilisable dans un procédé de collage temporaire d&#39;une plaque sur une poignée et dispositif électronique fabriqué par le procédé
EP3770968B1 (fr) Procede de mise en courbure collective d&#39;un ensemble de puces electroniques
EP2798667A1 (fr) Procede de fabrication d&#39;une structure multicouche sur un support
CA3161399A1 (fr) Procede de collage de puces a un substrat par collage direct
WO2020043981A1 (fr) Procédé de séparation d&#39;une plaque en composants individuels
FR3102888A1 (fr) Procédé de fabrication d&#39;un dispositif photonique intégré
EP2798668A1 (fr) Procede de fabrication d&#39;une structure multicouche sur un support
FR3135728A1 (fr) Procede de collage temporaire
EP1359617A1 (fr) Procédé de fabrication de modules électroniques
FR2848023A1 (fr) Isolation de puce par depot isolant dans des chemins d&#39;individualisation partielle avant amincissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZUSSY, MARC

Inventor name: DI CIOCCIO, LEA

Inventor name: KOSTRZEWA, MAREK

17Q First examination report despatched

Effective date: 20081230

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100715