EP1734331A1 - High-temperature infrared camouflage coating - Google Patents

High-temperature infrared camouflage coating Download PDF

Info

Publication number
EP1734331A1
EP1734331A1 EP06011036A EP06011036A EP1734331A1 EP 1734331 A1 EP1734331 A1 EP 1734331A1 EP 06011036 A EP06011036 A EP 06011036A EP 06011036 A EP06011036 A EP 06011036A EP 1734331 A1 EP1734331 A1 EP 1734331A1
Authority
EP
European Patent Office
Prior art keywords
temperature
camouflage coating
oxide
camouflage
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06011036A
Other languages
German (de)
French (fr)
Other versions
EP1734331B1 (en
Inventor
Bernt Dr. Obkircher
Jürgen Dr. Steinwandel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1734331A1 publication Critical patent/EP1734331A1/en
Application granted granted Critical
Publication of EP1734331B1 publication Critical patent/EP1734331B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise

Definitions

  • Aircraft are particularly at risk during the take-off / landing phase to long distances by weapons, which can turn on the aircraft in the IR. This is made possible by the high IR radiation of the aircraft.
  • the main sources of this radiation in addition to the hot exhaust gas, especially the hot, externally visible parts of the engines. These parts have temperatures of lukewarm up to 500 - 600 ° C and above. It is therefore desirable to reduce the IR radiation of these parts in order to reduce the firing range of the weapons and thus also the threat.
  • metals with a high electrical conductivity reflect IR radiation and therefore have a low IR emissivity.
  • the material of the hot parts of the aircraft is generally high temperature resistant metal, which has a high electrical conductivity as a metal, but over time forms a passivating, electrically insulating oxide skin on the surface and thus loses its low IR emissivity.
  • IR camouflage In IR camouflage it is known to provide the object to be camouflaged with low-emitting metallic reflector layers.
  • metallic reflector layers for example from the DE 199 55 608 A1 or DE 198 42 102 C1
  • the proposed materials are either already liquid at the hot temperatures contemplated in the present invention or they form oxide layers which increase the IR emissivity. The proposed camouflage coatings are thus ineffective at the said high temperatures.
  • the object of the invention is to improve the known IR Tarnbetikmaschine so that their camouflage even at higher temperatures (especially higher than 200 ° C) is maintained.
  • the inventive design of the coating ensures that the high electrical conductivity of the surface layer is maintained even at high temperatures and the surface layer remains permanently stable on the substrate. Even at high temperatures, it does not react chemically with air or exhaust gas constituents and, in particular, does not form any oxide layer that is detrimental to IR camouflage.
  • the surface layer a further layer of at most approximately 0.1 ⁇ m in thickness, which is visible in the visual wavelength range of 0.4 to 0.7 ⁇ m, in the IR range of 3 to 5 ⁇ m and from 8 to 12 microns ineffective, because it is too thin.
  • the metallic carrier structure to be camouflaged may in particular be the hot, externally visible components on the engines of an aircraft, in particular the thruster for the core air of the engine or the outflow body.
  • the coating process proceeds as follows: First, the carrier material is freed of any surface layers and cleaned. For heavy soiling (fat occupation), a fat-dissolving liquid (acetone, chloroalkane, etc.) is used first. Subsequently, a fine cleaning of the surfaces preferably takes place by means of, for example, atmospheric plasmas (corona, barrier discharge) or by laser-assisted methods (laser ablation). Then, the diffusion barrier layer is applied with either a PVD (Vapor Deposition or CVD) or, when the support metal is alloyed with Cr, Ti or Ni, the diffusion barrier layer is defined by simply treating the metal at a defined temperature , high temperature over a defined time independently formed. So z.
  • PVD Vapor Deposition or CVD
  • Inconel materials nickel base alloys
  • Incoloy cobalt base alloys
  • stainless steels iron base alloys
  • a chromium oxide layer which is suitable as a diffusion barrier.
  • TiO2 titanium dioxide
  • a Cr alloy is therefore not required in titanium-based alloys and otherwise not useful.
  • the surface layer is preferably applied by a PVD method. This layer can also be brought by electroplating to a desired layer thickness of 1-2 microns or more.

Abstract

The IR camouflage system for high temperature objects, e.g. parts of operational aircraft, comprises a metallic surface coating with low IR emission. An oxide-ceramic diffusion barrier is located below this.

Description

Die Erfindung betrifft eine Tarnbeschichtung zur IR-Tarnung, und zwar speziell zur Tarnung von Objekten mit heißen Oberflächen (IR = Infrarot).The invention relates to a camouflage coating for IR camouflage, specifically for camouflaging objects with hot surfaces (IR = infrared).

Luftfahrzeuge sind vor allem während der Start-/Landephase auf große Entfernungen durch Waffen bedroht, die die Luftfahrzeuge im IR aufschalten können. Dies wird durch die hohe IR-Abstrahlung der Luftfahrzeuge ermöglicht. Hauptquellen dieser Abstrahlung sind neben dem heißen Abgas vor allem die heißen, von außen einsehbaren Teile an den Triebwerken. Diese Teile weisen Temperaturen von handwarm bis zu 500 - 600 °C und darüber auf. Es ist daher erstrebenswert, die IR- Abstrahlung dieser Teile zu reduzieren, um die Aufschaltentfernung der Waffen und somit auch die Bedrohung zu verkleinern.Aircraft are particularly at risk during the take-off / landing phase to long distances by weapons, which can turn on the aircraft in the IR. This is made possible by the high IR radiation of the aircraft. The main sources of this radiation, in addition to the hot exhaust gas, especially the hot, externally visible parts of the engines. These parts have temperatures of lukewarm up to 500 - 600 ° C and above. It is therefore desirable to reduce the IR radiation of these parts in order to reduce the firing range of the weapons and thus also the threat.

Es ist bekannt, dass Metalle mit einer hohen elektrischen Leitfähigkeit IR-Strahlung reflektieren und daher ein geringes IR-Emissionsvermögen aufweisen. Das Material der heißen Teile der Luftfahrzeuge ist im allgemeinen hochtemperaturfestes Metall, das zwar als Metall eine hohe elektrische Leitfähigkeit aufweist, das aber im Lauf der Zeit eine passivierende, elektrisch isolierende Oxidhaut an der Oberfläche bildet und damit sein niedriges IR-Emissionsvermögen verliert.It is known that metals with a high electrical conductivity reflect IR radiation and therefore have a low IR emissivity. The material of the hot parts of the aircraft is generally high temperature resistant metal, which has a high electrical conductivity as a metal, but over time forms a passivating, electrically insulating oxide skin on the surface and thus loses its low IR emissivity.

In der IR-Tarnung ist es bekannt, das zu tarnende Objekt mit niedrig-emittierenden metallischen Reflektorschichten zu versehen. Bekannt sind metallische Reflektorschichten, z.B. aus der DE 199 55 608 A1 oder DE 198 42 102 C1 . Die vorgeschlagenen Materialien sind bei den in der vorliegenden Erfindung betrachteten heißen Temperaturen aber entweder bereits flüssig oder sie bilden Oxidschichten aus, die das IR-Emissionsvermögen erhöhen. Die vorgeschlagenen Tarnbeschichtungen sind somit bei den besagten hohen Temperaturen wirkungslos.In IR camouflage it is known to provide the object to be camouflaged with low-emitting metallic reflector layers. Are known metallic reflector layers, for example from the DE 199 55 608 A1 or DE 198 42 102 C1 , However, the proposed materials are either already liquid at the hot temperatures contemplated in the present invention or they form oxide layers which increase the IR emissivity. The proposed camouflage coatings are thus ineffective at the said high temperatures.

Aufgabe der Erfindung ist, die bekannten IR-Tarnbeschichtungen so zu verbessern, dass ihre Tarnwirkung auch unter höheren Temperaturen (insbesondere höher als 200°C) erhalten bleibt.The object of the invention is to improve the known IR Tarnbeschichtungen so that their camouflage even at higher temperatures (especially higher than 200 ° C) is maintained.

Diese Aufgabe wird mit dem Gegenstand des Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.This object is achieved with the subject of claim 1. Advantageous embodiments of the invention are the subject of dependent claims.

Erfindungsgemäß umfasst die IR-Tarnbeschichtung mindestens 2 Teilschichten auf dem zu tarnenden metallischen Trägermaterial:

  1. 1. Einer eigentlichen Oberflächenschicht aus einem hochleitfähigen Metall, das bei den vorherrschenden Betriebstemperaturen mit Luftsauerstoff oder anderen Bestandteilen des umgebenden Gases nicht reagiert, insbesondere kein Oxid oder Sulfid bildet. Dies kann bei hohen Temperaturen des Trägermaterials ein Edelmetall sein, wie z.B. Ru, Rh, Pd, Ag, Os, Ir, Pt, Au. Wenn die Einsatztemperatur des Trägermaterials weniger als etwa 300 °C beträgt, kann dies auch ein weniger edles Metall wie V, Ni oder Cr sein. Diese Metalle bilden zwar auch grundsätzlich oxidische Schichten aus, jedoch sind diese aufgrund reaktionskinetischer Randbedingungen hinsichtlich der IR-optischen Eigenschaften nicht relevant: Infolge langsamer Bildungsgeschwindigkeit kommt es zu einer Ausbildung dünner und kompakter Schichten. Dadurch wird die 02- Diffusion durch die Schicht behindert mit der Konsequenz, dass das Basismetall nicht weiter oxidiert wird und der Schichtaufbauprozess zum Stillstand kommt. Der IR-Emissionsgrad ε der Materialen der Oberflächenschicht sollte in bevorzugten Ausführungen kleiner als 0,5 sein. Die Schichtdicke ist bevorzugt größer oder gleich 1 µm, insbesondere im Bereich zwischen 1-2 µm.
  2. 2. Einer oxid-keramischen Schicht, insbesondere ein Cr-Oxid oder ein Ti-Oxid, als Diffusionsbarriere zwischen der Oberflächenschicht und dem Trägermaterial. Diese Diffusionssperrschicht ist notwendig, um die langfristige Stabilität der Oberflächenschicht zu erhalten. Andernfalls wandern bei den hohen Temperaturen die Trägermetallatome durch die Oberflächenschicht nach außen und bilden eine nichtleitende, hochemissive Oxidschicht und/oder die Atome der Oberflächenschicht diffundieren nach innen, so dass die Oberflächenschicht im Lauf der Zeit hinsichtlich der IR-Tarnung unwirksam wird. Die Schichtdicke ist bevorzugt größer oder gleich 1 µm, insbesondere im Bereich zwischen 1-2 µm.
According to the invention, the IR camouflage coating comprises at least 2 partial layers on the metallic carrier material to be camouflaged:
  1. 1. An actual surface layer of a highly conductive metal, which does not react at the prevailing operating temperatures with atmospheric oxygen or other constituents of the surrounding gas, in particular does not form an oxide or sulfide. This may be a noble metal at high temperatures of the support material, such as Ru, Rh, Pd, Ag, Os, Ir, Pt, Au. If the use temperature of the substrate is less than about 300 ° C, it may also be a less noble metal such as V, Ni or Cr. Although these metals also basically form oxidic layers, these are not relevant in terms of IR-optical properties due to reaction-kinetic boundary conditions. As a result of the slow formation speed, thinner and more compact layers are formed. This hinders O 2 diffusion through the layer with the consequence that the base metal is not further oxidized and the layer buildup process comes to a standstill. The IR emissivity ε of the surface layer materials should be less than 0.5 in preferred embodiments. The layer thickness is preferably greater than or equal to 1 μm, in particular in the range between 1-2 μm.
  2. 2. An oxide-ceramic layer, in particular a Cr oxide or a Ti oxide, as a diffusion barrier between the surface layer and the carrier material. This diffusion barrier layer is necessary to maintain the long-term stability of the surface layer. Otherwise, at the high temperatures, the carrier metal atoms migrate out through the surface layer and form a non-conductive, highly-reactive oxide layer and / or the atoms of the surface layer diffuse inwards, so that the surface layer over time with respect to the IR camouflage is ineffective. The layer thickness is preferably greater than or equal to 1 μm, in particular in the range between 1-2 μm.

Durch die erfindungsgemäße Ausbildung der Beschichtung ist sichergestellt, dass die hohe elektrische Leitfähigkeit der Oberflächenschicht auch bei hohen Temperaturen erhalten bleibt und die Oberflächenschicht dauerhaft auf dem Trägermaterial stabil bleibt. Sie reagiert auch bei hohen Temperaturen chemisch nicht mit Luft oder Abgasbestandteilen und bildet insbesondere keine für die IR-Tarnung schädliche Oxidschicht aus.The inventive design of the coating ensures that the high electrical conductivity of the surface layer is maintained even at high temperatures and the surface layer remains permanently stable on the substrate. Even at high temperatures, it does not react chemically with air or exhaust gas constituents and, in particular, does not form any oxide layer that is detrimental to IR camouflage.

Ebenso ist es möglich, dass aus optischen Gründen auf die Oberflächenschicht eine weitere Schicht von maximal etwa 0,1µm Dicke aufgebracht wird, die zwar im visuellen Wellenlängenbereich von 0,4 - 0,7µm sichtbar ist, im IR-Bereich von 3 - 5 µm und von 8 - 12 µm unwirksam, weil zu dünn, ist.It is likewise possible for optical reasons to apply to the surface layer a further layer of at most approximately 0.1 μm in thickness, which is visible in the visual wavelength range of 0.4 to 0.7 μm, in the IR range of 3 to 5 μm and from 8 to 12 microns ineffective, because it is too thin.

Bei der zu tarnenden metallischen Trägerstruktur kann es sich insbesondere um die heißen, von außen einsehbaren Bauteilen an den Triebwerken eine Flugzeugs handeln, insbesondere um die Schubdüse für die Kernluft des Triebwerks oder um den Abströmkörper.The metallic carrier structure to be camouflaged may in particular be the hot, externally visible components on the engines of an aircraft, in particular the thruster for the core air of the engine or the outflow body.

Der Beschichtungsprozess läuft folgendermaßen ab: Zunächst wird das Trägermaterial von eventuell vorhandenen Oberflächenschichten befreit und gereinigt. Dazu wird bei starker Verschmutzung (Fettbelegung) zunächst eine fettlösende Flüssigkeit (Aceton, Chloralkane, etc) eingesetzt. Anschließend erfolgt bevorzugt eine Feinreinigung der Oberflächen mittels z.B. atmosphärischer Plasmen (Corona, Barrierenentladung) oder durch lasergestützte Verfahren (Laser-Ablation). Dann wird die Diffusionssperrschicht entweder mit einem Gasphasenbeschichtungsverfahren (PVD Pysical Vapor Deposition, CVD Chemical Vapor Deposition oder Plasma-CVD) aufgebracht, oder - wenn das Trägermetall mit Cr, Ti oder Ni legiert ist - die Diffusionssperrschicht wird durch einfache Temperaturbehandlung des Metalls bei einer definierten, hohen Temperatur über eine definierte Zeit selbstständig gebildet. So bildet sich z. B. auf hochchromierten (bis 25% Cr) Inconel-Materialien (Nickel-Basislegierungen), Incoloy (Cobalt-Basislegierungen) oder Edelstählen (Eisen-Basislegierungen) bei Temperaturen über 500° C unter oxidierenden Bedingungen in einigen Tagen selbstständig eine Chromoxidschicht aus, die als Diffusionsbarriere geeignet ist. Bei Titan-Basisiegierungen erfolgt die Sperrschichtausbildung durch Bildung von Titandioxid (TiO2). Eine Cr-Zulegierung ist daher bei Titan-Basislegierungen nicht erforderlich und im übrigen auch nicht sinnvoll. Alternativ dazu ist es möglich und insbesondere hinsichtlich der Realisierung dickerer Schichten angezeigt, die Oxidschichtbildung mittels Salpetersäure (konzentriert, rauchend) vorzunehmen. Danach wird die Oberflächenschicht vorzugsweise mit einem PVD-Verfahren aufgebracht. Diese Schicht kann auch auf galvanischen Wege bis zu einer gewünschten Schichtdicke von 1-2 µm oder mehr gebracht werden.The coating process proceeds as follows: First, the carrier material is freed of any surface layers and cleaned. For heavy soiling (fat occupation), a fat-dissolving liquid (acetone, chloroalkane, etc.) is used first. Subsequently, a fine cleaning of the surfaces preferably takes place by means of, for example, atmospheric plasmas (corona, barrier discharge) or by laser-assisted methods (laser ablation). Then, the diffusion barrier layer is applied with either a PVD (Vapor Deposition or CVD) or, when the support metal is alloyed with Cr, Ti or Ni, the diffusion barrier layer is defined by simply treating the metal at a defined temperature , high temperature over a defined time independently formed. So z. On highly chromated (up to 25% Cr) Inconel materials (nickel base alloys), Incoloy (cobalt base alloys) or stainless steels (iron base alloys) at temperatures above 500 ° C under oxidizing conditions in a few days on its own a chromium oxide layer, which is suitable as a diffusion barrier. In titanium base alloys, the formation of the barrier layer takes place by formation of titanium dioxide (TiO2). A Cr alloy is therefore not required in titanium-based alloys and otherwise not useful. Alternatively, it is possible, and in particular with regard to the realization of thicker layers, to indicate the oxide layer formation by means of nitric acid (concentrated, fuming). Thereafter, the surface layer is preferably applied by a PVD method. This layer can also be brought by electroplating to a desired layer thickness of 1-2 microns or more.

Claims (6)

Hochtemperatur-IR-Tarnbeschichtung auf einer zu tarnenden metallischen Trägerstruktur, wobei die Tarnbeschichtung eine metallische Oberflächenschicht mit niedrigem IR-Emissionsvermögen umfasst, dadurch gekennzeichnet, dass zwischen Trägerstruktur und Oberflächenschicht eine oxid-keramische Diffusionssperrschicht vorhanden ist.High-temperature IR camouflage coating on a metallic carrier structure to be camouflaged, the camouflage coating comprising a metallic surface layer with low IR emissivity, characterized in that an oxide-ceramic diffusion barrier layer is present between the carrier structure and the surface layer. Hochtemperatur-IR-Tarnbeschichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Diffusionssperrschicht durch eine Temperaturbehandlung der zu tarnenden metallischen Struktur erzeugt wurde.High-temperature IR camouflage coating according to claim 1, characterized in that the diffusion barrier layer was produced by a temperature treatment of the metallic structure to be camouflaged. Hochtemperatur-IR-Tarnbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die metallische Oberflächenschicht aus einem Edelmetall, z.B. Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, oder aus V, Ni, Cr besteht.High-temperature IR camouflage coating according to one of the preceding claims, characterized in that the metallic surface layer consists of a noble metal, for example Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, or of V, Ni, Cr. Hochtemperatur-IR-Tarnbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die oxid-keramische Diffusionssperrschicht aus Cr-Oxid oder Ti-Oxid besteht.High-temperature IR camouflage coating according to one of the preceding claims, characterized in that the oxide-ceramic diffusion barrier layer consists of Cr oxide or Ti oxide. Hochtemperatur-IR-Tarnbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass auf die metallische Oberflächenschicht eine IR-durchlässige Schicht aufgebracht ist.High-temperature IR camouflage coating according to one of the preceding claims, characterized in that an IR-transparent layer is applied to the metallic surface layer. Verwendung einer Hochtemperatur-IR-Tarnbeschichtung nach einem der vorangehenden Ansprüche zur IR-Tarnung von heißen Oberflächenteilen an Flugzeugtriebwerken.Use of a high-temperature IR camouflage coating according to one of the preceding claims for IR camouflage of hot surface parts of aircraft engines.
EP20060011036 2005-06-18 2006-05-30 High-temperature infrared camouflage coating Expired - Fee Related EP1734331B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510028363 DE102005028363B3 (en) 2005-06-18 2005-06-18 High-temperature infrared camouflage coating

Publications (2)

Publication Number Publication Date
EP1734331A1 true EP1734331A1 (en) 2006-12-20
EP1734331B1 EP1734331B1 (en) 2007-11-21

Family

ID=36952561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060011036 Expired - Fee Related EP1734331B1 (en) 2005-06-18 2006-05-30 High-temperature infrared camouflage coating

Country Status (2)

Country Link
EP (1) EP1734331B1 (en)
DE (2) DE102005028363B3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694917A (en) * 2015-03-19 2015-06-10 西安交通大学 Preparation method of surface oxide diffusion barrier and anti-corrosion layer of Cr-contained stainless steel
CN104818482A (en) * 2015-04-21 2015-08-05 中国人民解放军国防科学技术大学 High-temperature-resistant high-bonding-strength low infrared emissivity composite coating, metal alloy material with coating and preparation method of metal alloy material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142015A (en) * 1977-05-04 1979-02-27 The United States Of America As Represented By The Secretary Of The Army Thermal camouflage
DE3043381A1 (en) * 1980-11-18 1982-06-03 Dornier System Gmbh, 7990 Friedrichshafen Coating of targets to prevent their detection by IR beams - esp. where target is coated with alumina contg. metal needles which disperse beams
DE19842102C1 (en) 1998-09-15 2000-02-24 Dornier Gmbh Element for controlling the temperature of a surface in satellites and spacecraft has a functional layer consisting of an IR-transparent matrix material with embedded microparticles
DE19955608A1 (en) 1999-11-19 2001-06-13 Dornier Gmbh Infrared camouflage device
EP1170208A2 (en) * 2000-07-07 2002-01-09 Nec Corporation Thermal control method and device
WO2004016562A1 (en) * 2002-08-15 2004-02-26 Totalförsvarets Forskningsinstitut Transparent pane with radar-reflecting properties

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB7910479D0 (en) * 1979-03-26 1999-12-01 Secr Defence Camouflage
ATE272583T1 (en) * 1997-12-11 2004-08-15 Saint Gobain TRANSPARENT SUBSTRATE HAVING A THIN FILM STRUCTURE WITH INFRARED REFLECTING PROPERTIES
DE19840183C1 (en) * 1998-09-03 2000-03-30 Dornier Gmbh Element with electrically adjustable surface emissivity for infrared radiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142015A (en) * 1977-05-04 1979-02-27 The United States Of America As Represented By The Secretary Of The Army Thermal camouflage
DE3043381A1 (en) * 1980-11-18 1982-06-03 Dornier System Gmbh, 7990 Friedrichshafen Coating of targets to prevent their detection by IR beams - esp. where target is coated with alumina contg. metal needles which disperse beams
DE19842102C1 (en) 1998-09-15 2000-02-24 Dornier Gmbh Element for controlling the temperature of a surface in satellites and spacecraft has a functional layer consisting of an IR-transparent matrix material with embedded microparticles
DE19955608A1 (en) 1999-11-19 2001-06-13 Dornier Gmbh Infrared camouflage device
EP1170208A2 (en) * 2000-07-07 2002-01-09 Nec Corporation Thermal control method and device
WO2004016562A1 (en) * 2002-08-15 2004-02-26 Totalförsvarets Forskningsinstitut Transparent pane with radar-reflecting properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694917A (en) * 2015-03-19 2015-06-10 西安交通大学 Preparation method of surface oxide diffusion barrier and anti-corrosion layer of Cr-contained stainless steel
CN104694917B (en) * 2015-03-19 2017-08-25 西安交通大学 A kind of preparation method of the oxide diffusion barrier of stainless steel surfaces containing Cr and anticorrosion layer
CN104818482A (en) * 2015-04-21 2015-08-05 中国人民解放军国防科学技术大学 High-temperature-resistant high-bonding-strength low infrared emissivity composite coating, metal alloy material with coating and preparation method of metal alloy material
CN104818482B (en) * 2015-04-21 2017-07-21 中国人民解放军国防科学技术大学 High temperature resistant, the low infrared emissivity composite coating of high bond strength, band coating metal alloy compositions and preparation method thereof

Also Published As

Publication number Publication date
DE102005028363B3 (en) 2007-01-11
EP1734331B1 (en) 2007-11-21
DE502006000191D1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
DE4303135C2 (en) Thermal insulation layer made of ceramic on metal components and process for their production
DE19918900B4 (en) High temperature component for a gas turbine and process for its production
EP1082216B1 (en) Product with an anticorrosion protective layer and a method for producing an anticorrosion protective layer
DE60305329T2 (en) HIGHLY OXIDATION-RESISTANT COMPONENT
DE2734529C2 (en) Item with improved resistance to oxidation and corrosion at high temperatures
DE3535548C2 (en) Coated article and method of making a coating of an article
DE60214911T2 (en) Thermally stabilized thermal barrier coating
EP1495151B1 (en) Plasma injection method
EP0075228A2 (en) Heat insulating ceramic coating having a resistance to high temperatures and to thermal shocks
EP2468925A2 (en) Method for producing a thermal insulation layer construction
DE2327250A1 (en) PROCESS FOR MANUFACTURING A METALLURGIC SEALED COVER
DE10056617C2 (en) Material for temperature-stressed substrates
DE1961047B2 (en) PROCESS FOR THE PRODUCTION OF DIFFUSION PROTECTIVE COATINGS ON OBJECTS FROM COBALT-BASED ALLOYS
EP3320127B1 (en) Contour-following protective coating for compressor components of gas turbines
EP3333281B1 (en) High-temperature protective layer for titanium aluminide alloys
DE2713932C3 (en) Process for the production of a corrosion-resistant top layer on stainless steel
WO2008110607A1 (en) Turbine component with thermal insulation layer
DE1288174B (en) Metallic coating on an insulating base
EP2796588A1 (en) Method for producing a high temperature protective coating and correspondingly manufactured component
EP1734331B1 (en) High-temperature infrared camouflage coating
DE102013213742A1 (en) CMAS-INERTE HEAT INSULATION LAYER AND METHOD FOR THE PRODUCTION THEREOF
EP1706518B1 (en) Protective layer for an aluminium-containing alloy for using at high temperatures, and method for producing one such protective layer
DE4229600C1 (en) Protective layer for titanium components and process for their manufacture
EP2537959B1 (en) Multiple wear-resistant coating and method for its production
DE3039658C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006000191

Country of ref document: DE

Date of ref document: 20080103

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006000191

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180605

Ref country code: FR

Ref legal event code: CD

Owner name: EADS DEUTSCHLAND GMBH, DE

Effective date: 20180605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190521

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006000191

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200530

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201