EP1672052B1 - Method for monitoring degradation of lubricating oils - Google Patents

Method for monitoring degradation of lubricating oils Download PDF

Info

Publication number
EP1672052B1
EP1672052B1 EP05257455A EP05257455A EP1672052B1 EP 1672052 B1 EP1672052 B1 EP 1672052B1 EP 05257455 A EP05257455 A EP 05257455A EP 05257455 A EP05257455 A EP 05257455A EP 1672052 B1 EP1672052 B1 EP 1672052B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
compound
ppm
formula
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05257455A
Other languages
German (de)
French (fr)
Other versions
EP1672052A1 (en
Inventor
Rajiv Manohar Banavali
Kim Sang Ho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Publication of EP1672052A1 publication Critical patent/EP1672052A1/en
Application granted granted Critical
Publication of EP1672052B1 publication Critical patent/EP1672052B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/007Coloured or dyes-containing lubricant compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/16Nitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/20Containing nitrogen-to-oxygen bonds
    • C10M2215/202Containing nitrogen-to-oxygen bonds containing nitro groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • G01N33/2882Markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/907Indicating means, e.g. dye, fluorescing agent

Definitions

  • This invention relates generally to a method for monitoring the degradation of lubricating oils.
  • Lubricating oils degrade at the high temperatures at which they often are used. A method for measuring the extent of degradation of a lubricating oil would allow timely replacement of degraded lubricants, resulting in cost savings.
  • JP-A-11-281 640 discloses a method for detecting degradation of lubricating oil by using a system combining a high-speed liquid chromatograph and a spectrometer for ultraviolet and visible regions.
  • the present invention relates to a method for monitoring degradation of lubricating oils.
  • the method comprises steps of: (a) adding to a lubricating oil at least one compound having formula (I) wherein R 1 and R 2 independently are hydrogen, hydroxy, OR 11 , amino or NR 11 R 12 ; R 3 and R 5 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic; R 4 and R 6 independently are hydrogen or alkyl; R 7 , R 8 , R 9 and R 10 independently are cyano, nitro, amide, carboxyl, ester, alkyl or hydrogen; R 11 is alkyl, aryl, aralkyl, heteroalkyl, heterocyclic or alkanoyl; R 12 is hydrogen or alkyl; provided that said at least one compound of formula (I) has at least one substituent selected from among cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl; and (b
  • lubricating oil is a natural or synthetic oil, or a mixture thereof, having suitable viscosity for use as a lubricant, e.g., as crankcase oil in an internal combustion engine, automatic transmission fluid, turbine lubricant, gear lubricant, compressor lubricant, metal-working lubricant, hydraulic fluid, etc.
  • alkyl is a hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. Alkyl groups optionally have one or more double or triple bonds. Substitution on alkyl groups of one or more halo, hydroxy, alkoxy, cyano, nitro, ester, amide or carboxyl groups is permitted; these substituents may in turn be substituted by one or more halo or hydroxy substituents where possible.
  • alkyl groups have no halo substituents, and in one preferred embodiment, alkyl groups are saturated, and most preferably, unsubstituted.
  • a “heteroalkyl” group is an alkyl group in which at least one carbon has been replaced by O, NR, or S, wherein R is hydrogen, alkyl, aryl or aralkyl.
  • An "aryl” group is a substituent derived from an aromatic hydrocarbon compound.
  • An aryl group has a total of from six to twenty ring atoms, and has one or more rings which are separate or fused.
  • An “aralkyl” group is an "alkyl” group substituted by an "aryl” group.
  • a “heterocyclic” group is a substituent derived from a heterocyclic compound having from five to twenty ring atoms, at least one of which is nitrogen, oxygen or sulfur. Preferably, heterocyclic groups do not contain sulfur.
  • aryl or heterocyclic groups of one or more of the following groups: halo, cyano, nitro, hydroxy, ester, amide, carboxyl, alkoxy, alkyl, heteroalkyl, alkanoyl, amino, or amino substituted by one or more of alkyl, aryl, aralkyl, heterocyclic, heteroalkyl or alkanoyl is permitted, with substitution by one or more halo groups permitted on substituents where possible.
  • aryl and heterocyclic groups do not contain halogen atoms.
  • aryl and heterocyclic groups are unsubstituted or substituted only by alkyl groups.
  • An "aromatic heterocyclic" group is a heterocyclic group derived from an aromatic heterocyclic compound.
  • R 4 and R 6 are hydrogen; in another embodiment, R 4 and R 6 are alkyl, preferably C 1 -C 4 saturated unsubstituted acyclic alkyl.
  • R 3 , R 5 and R 11 in formula (I) are alkyl, aryl or aromatic heterocyclic. Preferably, R 3 and R 5 represent the same substituent.
  • R 3 and R 5 are aryl substituted by at least one C 2 -C 20 alkyl group or aromatic heterocyclic substituted by at least one C 2 -C 20 alkyl group; alternatively, R 3 and R 5 are aryl substituted by at least one C 4 -C 20 alkyl group or aromatic heterocyclic substituted by at least one C 4 -C 20 alkyl group; preferably R 3 and R 5 are phenyl substituted by at least one C 2 -C 20 alkyl group, more preferably by at least one C 4 -C 20 alkyl group.
  • R 3 and R 5 are aryl or aromatic heterocyclic groups, preferably R 4 and R 6 are hydrogen.
  • R 3 and R 5 are alkyl, preferably C 2 -C 20 alkyl, more preferably C 4 -C 20 alkyl; preferably R 3 and R 5 are saturated unsubstituted alkyl.
  • R 3 and R 5 are C 5 -C 8 cyclic alkyl groups; preferably R 3 and R 5 are saturated unsubstituted C 5 -C 8 cyclic alkyl groups and R 4 and R 6 are hydrogen.
  • R 3 and R 5 are cyclohexyl.
  • R 3 and R 5 are C 5 -C 8 cyclic alkyl groups
  • R 4 and R 6 are hydrogen
  • R 1 and R 2 are NR 11 R 12 , where R 12 is hydrogen and R 11 is C 5 -C 8 cyclic alkyl, preferably saturated unsubstituted alkyl; preferably R 3 and R 5 are cyclohexyl and R 1 and R 2 are cyclohexylamino.
  • R 3 and R 5 are aryl substituted by at least one C 2 -C 20 alkyl group or aromatic heterocyclic substituted by at least one C 2 -C 20 alkyl group
  • R 4 and R 6 are hydrogen
  • R 1 and R 2 are NHR 11 , where R 11 is aryl substituted by at least one C 2 -C 20 alkyl group or aromatic heterocyclic substituted by at least one C 2 -C 20 alkyl group.
  • R 7 , R 8 , R 9 and R 10 are cyano or hydrogen. In one embodiment, R 7 , R 8 , R 9 and R 10 all represent cyano. In one embodiment, R 7 and R 8 represent cyano, and R 9 and R 10 are hydrogen.
  • R 1 and R 2 independently are hydrogen, hydroxy or NR 11 R 12 .
  • R 11 is alkyl or aryl. In one preferred embodiment of the invention, R 11 is C 2 -C 20 alkyl.
  • R 1 and R 2 represent the same substituent. Most preferably, R 1 and R 2 represent hydrogen or NR 11 R 12 .
  • R 1 and R 2 are NR 11 R 12
  • R 3 , R 4 , R 5 , R 6 , R 11 and R 12 are alkyl, preferably the same alkyl group; in one preferred embodiment, R 3 , R 4 , R 5 , R 6 , R 11 and R 12 are C 1 -C 4 saturated unsubstituted acyclic alkyl groups, and most preferably, methyl groups.
  • a compound of formula (I) is substituted by at least one group selected from among C 2 -C 20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C 2 -C 20 alkyl group, aromatic heterocyclic groups substituted by at least one C 2 -C 20 alkyl group and C 5 -C 8 cyclic alkyl groups.
  • a compound of formula (I) is substituted by at least two groups selected from among C 2 -C 20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C 2 -C 20 alkyl group, aromatic heterocyclic groups substituted by at least one C 2 -C 20 alkyl group and C 5 -C 8 cyclic alkyl groups.
  • a compound of formula (I) has at least one substituent selected from among cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl.
  • a substituent is present which is selected from among cyano, nitro, carboxyl and hydroxyalkyl, and which is present either on the anthraquinone ring, as at least one of R 7 , R 8 , R 9 and R 10 ; or it is present as a substituent on one or more of the R 3 , R 4 , R 5 , R 6 , R 11 and R 12 groups in the compound.
  • Hydroxyalkyl groups are alkyl groups substituted by at least one hydroxy group, and optionally with other groups as well.
  • hydroxyalkyl groups have no non-hydroxy substituents.
  • Amide and ester substituents are attached at either end, e.g., both -C(O)NR 2 and -NRC(O)R are amide substituents, and both -C(O)OR and -OC(O)R are ester substituents; where "R" groups are the same or different, and represent any organic substituent groups.
  • "R" groups in amide substituents are alkyl or hydrogen, and those in ester groups are alkyl.
  • R 7 and R 8 are cyano
  • R 4 and R 6 are hydrogen
  • R 9 and R 10 are hydrogen
  • a compound of formula (I) has formula (II)
  • R 7 and R 8 are cyano
  • R 4 and R 6 are hydrogen
  • R 9 and R 10 are hydrogen
  • R 1 and R 2 are hydrogen
  • a compound of formula (I) has formula (III)
  • R 7 and R 8 are cyano
  • R 4 and R 6 are hydrogen
  • R 9 and R 10 are hydrogen
  • R 1 and R 2 are NHR 11
  • a compound of formula (I) has formula (IV)
  • R 7 , R 8 , R 9 and R 10 are cyano, R 1 and R 2 are NHR 11 , R 4 and R 6 are hydrogen, and a compound of formula (I) has formula (V).
  • the amount of each compound of formula (I) added to the lubricating oil is at least 0.5 ppm, more preferably at least 1 ppm, more preferably at least 5 ppm, more preferably at least 10 ppm, and most preferably at least 100 ppm.
  • the amount of each compound is less than 10,000 ppm, more preferably less than 5,000 ppm, more preferably less than 2,000 ppm and most preferably less than 1,000 ppm.
  • a spectroscopic property of the lubricating oil is absorption of electromagnetic radiation in a particular frequency range, or fluorescent emission.
  • amounts of compounds of formula (I) are measured by determining a spectroscopic property of the oil by exposing it to electromagnetic radiation having wavelengths in the portion of the spectrum containing the absorption maxima of the compound of formula (I), and detecting the absorption of light or fluorescent emissions. It is preferred that the detection equipment is capable of calculating concentrations and concentration ratios in a lubricating oil.
  • Typical spectrophotometers known in the art are capable of detecting the compounds used in the method of this invention when they are present at a level of at least 0.5 ppm.
  • the preferred cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl substituents degrade to other substituents having different spectroscopic characteristics, e.g., infrared (IR) and near-infrared (NIR) absorption frequencies.
  • IR infrared
  • NIR near-infrared
  • absorption is measured in the mid-IR range, i.e., from 1500 to 2250 cm -1 , or in the NIR range from 700 to 1000 nm.
  • comparison of the IR absorption intensity displayed by one of these substituents at one of its characteristic absorption frequencies with the intensity of that substituent when the compound was first introduced into the lubricating oil allows a determination of the fraction of molecules containing the substituent that have been degraded, and this in turn is correlated with the degradation of the oil.
  • a cyano substituent could by hydrolyzed under operating conditions, first to an amide, and then to a carboxyl group. As the hydrolysis progresses, the characteristic IR absorption of the cyano substituent in the area of 2200 to 2250 cm -1 would gradually decrease in intensity, allowing the hydrolysis of the cyano group to be monitored.
  • At least one compound of formula (I) is formulated in a solvent to facilitate its addition to the lubricating oil.
  • the preferred solvents for substituted anthraquinone dyes are N-methylpyrrolidinone, N,N-dimethyl propylene urea, nitrobenzene, toluene, N,N-dimethylformamide and 2-sec-butylphenol.
  • the dye is present in the solvent at a concentration of from 0.1% to 10%.
  • Compounds of formula (I) also can act as markers for the lubricating oil to provide information about the oil, for example, the identity of its manufacturer. Detection of the compounds advantageously could be done by near-IR spectral analysis to take advantage of this relatively clear region in the absorption spectrum of a lubricating oil. For example, measurement of near-IR absorption in the 650 nm to 950 nm range could be used to detect the compounds.
  • Example 1 Synthesis of 1,4-di-(n-butylamino)-2,3-dicyanoanthraquinone.
  • Example 2 Synthesis of 1,4,5,8-tetra-(4'-n-butylphenylamino)-2,3-dicyanoanthraquinone and 1,4,5,8 -tetra(4'-n-butylphenylamino)-2,3,6,7-tetracyanoanthraquinone.
  • a mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone, 50 g of aniline, 13.4 g of potassium acetate, 1.24 g of copper sulfate, and 3.41 g of benzyl alcohol was heated to 130 °C under nitrogen and maintained at this temperature for 6.5 hours, followed by another holding period at 170 °C for 6 hours.
  • the reaction mixture was cooled to ambient temperature and the precipitate was filtered to give black solids.
  • Example 5 Degradation of lubricant oil and marker under high heat and oxidative conditions.
  • a commercial motor oil (5W-30) containing 100 ppm of 1,4-di(2-ethylhexylamino)- 2,3 -dicyano- 5,8 -dihydroxyanthraquinone , 25 ppm Cu ++ , 10 ppm organic peroxide, 10 ppm toluenesulfonic acid, was heated to 165-170°C with air bubbling for 48 hours. Spectroscopic determination of the marker after heat aging was done in the NIR at 800 nm.
  • This material has a maximum absorption band ( ⁇ max ) at a wavelength of 692 nm in xylene, or 688 nm in cyclohexane, with an extinction value of 0.640 AU in xylene and 0.660 AU in cyclohexane for a 10 mg/L solution.

Description

    Background
  • This invention relates generally to a method for monitoring the degradation of lubricating oils.
  • Lubricating oils degrade at the high temperatures at which they often are used. A method for measuring the extent of degradation of a lubricating oil would allow timely replacement of degraded lubricants, resulting in cost savings.
  • Substituted dicyanoanthraquinones, including the following structure,
    Figure imgb0001
    were disclosed in Japanese Patent Application JP61-246258 as colorants for an optical filter. This reference, however, does not suggest a method for monitoring degradation of lubricating oils. The problem addressed by this invention is to find a method for monitoring the degradation of lubricating oils.
  • JP-A-11-281 640 discloses a method for detecting degradation of lubricating oil by using a system combining a high-speed liquid chromatograph and a spectrometer for ultraviolet and visible regions.
  • Statement of Invention
  • The present invention in its various aspects is as set out in the accompanying claims.
  • The present invention relates to a method for monitoring degradation of lubricating oils. The method comprises steps of: (a) adding to a lubricating oil at least one compound having formula (I)
    Figure imgb0002
    wherein R1 and R2 independently are hydrogen, hydroxy, OR11, amino or NR11R12; R3 and R5 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic; R4 and R6 independently are hydrogen or alkyl; R7, R8, R9 and R10 independently are cyano, nitro, amide, carboxyl, ester, alkyl or hydrogen; R11 is alkyl, aryl, aralkyl, heteroalkyl, heterocyclic or alkanoyl; R12 is hydrogen or alkyl; provided that said at least one compound of formula (I) has at least one substituent selected from among cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl; and (b) measuring a spectroscopic property of the oil to determine degradation of said at least one compound.
  • Detailed Description
  • All percentages are weight percentages, unless otherwise indicated. Concentrations in parts per million ("ppm") are calculated on a weight/volume basis. When a solvent is not specified for measurement of an absorption maximum, a hydrocarbon solvent is preferred. Extinction values are determined by measuring absorption in absorbance units ("AU") with a 1 cm path length on 10 mg/L solutions. A "lubricating oil" is a natural or synthetic oil, or a mixture thereof, having suitable viscosity for use as a lubricant, e.g., as crankcase oil in an internal combustion engine, automatic transmission fluid, turbine lubricant, gear lubricant, compressor lubricant, metal-working lubricant, hydraulic fluid, etc. An "alkyl" group is a hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. Alkyl groups optionally have one or more double or triple bonds. Substitution on alkyl groups of one or more halo, hydroxy, alkoxy, cyano, nitro, ester, amide or carboxyl groups is permitted; these substituents may in turn be substituted by one or more halo or hydroxy substituents where possible. Preferably, alkyl groups have no halo substituents, and in one preferred embodiment, alkyl groups are saturated, and most preferably, unsubstituted. A "heteroalkyl" group is an alkyl group in which at least one carbon has been replaced by O, NR, or S, wherein R is hydrogen, alkyl, aryl or aralkyl. An "aryl" group is a substituent derived from an aromatic hydrocarbon compound. An aryl group has a total of from six to twenty ring atoms, and has one or more rings which are separate or fused. An "aralkyl" group is an "alkyl" group substituted by an "aryl" group. A "heterocyclic" group is a substituent derived from a heterocyclic compound having from five to twenty ring atoms, at least one of which is nitrogen, oxygen or sulfur. Preferably, heterocyclic groups do not contain sulfur. Substitution on aryl or heterocyclic groups of one or more of the following groups: halo, cyano, nitro, hydroxy, ester, amide, carboxyl, alkoxy, alkyl, heteroalkyl, alkanoyl, amino, or amino substituted by one or more of alkyl, aryl, aralkyl, heterocyclic, heteroalkyl or alkanoyl is permitted, with substitution by one or more halo groups permitted on substituents where possible. Preferably, aryl and heterocyclic groups do not contain halogen atoms. In one preferred embodiment of the invention, aryl and heterocyclic groups are unsubstituted or substituted only by alkyl groups. An "aromatic heterocyclic" group is a heterocyclic group derived from an aromatic heterocyclic compound.
  • In one embodiment of the invention, R4 and R6 are hydrogen; in another embodiment, R4 and R6 are alkyl, preferably C1-C4 saturated unsubstituted acyclic alkyl. In one embodiment of the invention, R3, R5 and R11 in formula (I) are alkyl, aryl or aromatic heterocyclic. Preferably, R3 and R5 represent the same substituent. In one embodiment of the invention, R3 and R5 are aryl substituted by at least one C2-C20 alkyl group or aromatic heterocyclic substituted by at least one C2-C20 alkyl group; alternatively, R3 and R5 are aryl substituted by at least one C4-C20 alkyl group or aromatic heterocyclic substituted by at least one C4-C20 alkyl group; preferably R3 and R5 are phenyl substituted by at least one C2-C20 alkyl group, more preferably by at least one C4-C20 alkyl group. When R3 and R5 are aryl or aromatic heterocyclic groups, preferably R4 and R6 are hydrogen.
  • In one embodiment of the invention, R3 and R5 are alkyl, preferably C2-C20 alkyl, more preferably C4-C20 alkyl; preferably R3 and R5 are saturated unsubstituted alkyl. In one embodiment of the invention, R3 and R5 are C5-C8 cyclic alkyl groups; preferably R3 and R5 are saturated unsubstituted C5-C8 cyclic alkyl groups and R4 and R6 are hydrogen. In one preferred embodiment, R3 and R5 are cyclohexyl. In another preferred embodiment, R3 and R5 are C5-C8 cyclic alkyl groups, R4 and R6 are hydrogen, and R1 and R2 are NR11R12, where R12 is hydrogen and R11 is C5-C8 cyclic alkyl, preferably saturated unsubstituted alkyl; preferably R3 and R5 are cyclohexyl and R1 and R2 are cyclohexylamino.
  • In another preferred embodiment, R3 and R5 are aryl substituted by at least one C2-C20 alkyl group or aromatic heterocyclic substituted by at least one C2-C20 alkyl group, R4 and R6 are hydrogen, and R1 and R2 are NHR11, where R11 is aryl substituted by at least one C2-C20 alkyl group or aromatic heterocyclic substituted by at least one C2-C20 alkyl group. In one embodiment, R7, R8, R9 and R10 are cyano or hydrogen. In one embodiment, R7, R8, R9 and R10 all represent cyano. In one embodiment, R7 and R8 represent cyano, and R9 and R10 are hydrogen. Preferably, R1 and R2 independently are hydrogen, hydroxy or NR11R12. Preferably, R11 is alkyl or aryl. In one preferred embodiment of the invention, R11 is C2-C20 alkyl. Preferably, R1 and R2 represent the same substituent. Most preferably, R1 and R2 represent hydrogen or NR11R12. In one embodiment, R1 and R2 are NR11R12, and R3, R4, R5, R6, R11 and R12 are alkyl, preferably the same alkyl group; in one preferred embodiment, R3, R4, R5, R6, R11 and R12 are C1-C4 saturated unsubstituted acyclic alkyl groups, and most preferably, methyl groups.
  • In one embodiment, a compound of formula (I) is substituted by at least one group selected from among C2-C20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C2-C20 alkyl group, aromatic heterocyclic groups substituted by at least one C2-C20 alkyl group and C5-C8 cyclic alkyl groups. Alternatively, a compound of formula (I) is substituted by at least two groups selected from among C2-C20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C2-C20 alkyl group, aromatic heterocyclic groups substituted by at least one C2-C20 alkyl group and C5-C8 cyclic alkyl groups.
  • A compound of formula (I) has at least one substituent selected from among cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl. Preferably, a substituent is present which is selected from among cyano, nitro, carboxyl and hydroxyalkyl, and which is present either on the anthraquinone ring, as at least one of R7, R8, R9 and R10; or it is present as a substituent on one or more of the R3, R4, R5, R6, R11 and R12 groups in the compound. Hydroxyalkyl groups are alkyl groups substituted by at least one hydroxy group, and optionally with other groups as well. In one embodiment, hydroxyalkyl groups have no non-hydroxy substituents. Amide and ester substituents are attached at either end, e.g., both -C(O)NR2 and -NRC(O)R are amide substituents, and both -C(O)OR and -OC(O)R are ester substituents; where "R" groups are the same or different, and represent any organic substituent groups. In one embodiment, "R" groups in amide substituents are alkyl or hydrogen, and those in ester groups are alkyl.
  • In one preferred embodiment of the invention, R7 and R8 are cyano, R4 and R6 are hydrogen, R9 and R10 are hydrogen, and a compound of formula (I) has formula (II)
    Figure imgb0003
  • In another preferred embodiment of the invention, R7 and R8 are cyano, R4 and R6 are hydrogen, R9 and R10 are hydrogen, R1 and R2 are hydrogen, and a compound of formula (I) has formula (III)
    Figure imgb0004
  • In another preferred embodiment of the invention, R7 and R8 are cyano, R4 and R6 are hydrogen, R9 and R10 are hydrogen, R1 and R2 are NHR11, and a compound of formula (I) has formula (IV)
    Figure imgb0005
  • In another preferred embodiment of the invention, R7, R8, R9 and R10 are cyano, R1 and R2 are NHR11, R4 and R6 are hydrogen, and a compound of formula (I) has formula (V).
    Figure imgb0006
  • Preferably the amount of each compound of formula (I) added to the lubricating oil is at least 0.5 ppm, more preferably at least 1 ppm, more preferably at least 5 ppm, more preferably at least 10 ppm, and most preferably at least 100 ppm. Preferably the amount of each compound is less than 10,000 ppm, more preferably less than 5,000 ppm, more preferably less than 2,000 ppm and most preferably less than 1,000 ppm.
  • A spectroscopic property of the lubricating oil is absorption of electromagnetic radiation in a particular frequency range, or fluorescent emission. Preferably, amounts of compounds of formula (I) are measured by determining a spectroscopic property of the oil by exposing it to electromagnetic radiation having wavelengths in the portion of the spectrum containing the absorption maxima of the compound of formula (I), and detecting the absorption of light or fluorescent emissions. It is preferred that the detection equipment is capable of calculating concentrations and concentration ratios in a lubricating oil. Typical spectrophotometers known in the art are capable of detecting the compounds used in the method of this invention when they are present at a level of at least 0.5 ppm. It is believed that compounds of formula (I) degrade under conditions encountered in use of lubricating oils, and that measurement of the extent of that degradation by spectroscopic analysis provides useful information about the extent of degradation of the lubricating oil itself. In one embodiment, the preferred cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated alkyl substituents degrade to other substituents having different spectroscopic characteristics, e.g., infrared (IR) and near-infrared (NIR) absorption frequencies. Preferably, absorption is measured in the mid-IR range, i.e., from 1500 to 2250 cm-1, or in the NIR range from 700 to 1000 nm. In the present invention comparison of the IR absorption intensity displayed by one of these substituents at one of its characteristic absorption frequencies with the intensity of that substituent when the compound was first introduced into the lubricating oil allows a determination of the fraction of molecules containing the substituent that have been degraded, and this in turn is correlated with the degradation of the oil. For example, a cyano substituent could by hydrolyzed under operating conditions, first to an amide, and then to a carboxyl group. As the hydrolysis progresses, the characteristic IR absorption of the cyano substituent in the area of 2200 to 2250 cm-1 would gradually decrease in intensity, allowing the hydrolysis of the cyano group to be monitored.
  • In one embodiment of the invention, at least one compound of formula (I) is formulated in a solvent to facilitate its addition to the lubricating oil. The preferred solvents for substituted anthraquinone dyes are N-methylpyrrolidinone, N,N-dimethyl propylene urea, nitrobenzene, toluene, N,N-dimethylformamide and 2-sec-butylphenol. Preferably, the dye is present in the solvent at a concentration of from 0.1% to 10%.
  • Compounds of formula (I) also can act as markers for the lubricating oil to provide information about the oil, for example, the identity of its manufacturer. Detection of the compounds advantageously could be done by near-IR spectral analysis to take advantage of this relatively clear region in the absorption spectrum of a lubricating oil. For example, measurement of near-IR absorption in the 650 nm to 950 nm range could be used to detect the compounds.
  • Examples Example 1: Synthesis of 1,4-di-(n-butylamino)-2,3-dicyanoanthraquinone.
  • A mixture of 25.7 parts of Solvent Blue 35 {1,4- di-(n-butylamino)-anthraquinone}, 14.8 parts of NaCN, 10 parts of NH4HCO3, and 100 parts of dimethyl sulfoxide (DMSO) was allowed to react at 90-95°C for 6 hours to give 1,4-di-(n-butylamino)-2,3-dicyanoanthraquinone. This material has a maximum absorption band (λmax) at a wavelength of 700 nm in xylene with an extinction value of 0.23 AU for 10 mg/L.
  • Example 2 : Synthesis of 1,4,5,8-tetra-(4'-n-butylphenylamino)-2,3-dicyanoanthraquinone and 1,4,5,8 -tetra(4'-n-butylphenylamino)-2,3,6,7-tetracyanoanthraquinone.
  • A mixture of 8.0 parts of 1,4,5,8 -tetra(4'-n-butylphenylamino)-anthraquinone, 2.53 parts of NaCN, 1.65 parts of NH4HCO3, and 39 parts of DMSO was allowed to react at 90-95°C for 6 hours to give 1,4,5,8-tetra-(4'-n-butylphenylamino)-2,3-dicyanoanthraquinone. The structure of the di-cyano product was confirmed by proton and carbon-13 NMR. This material has a maximum absorption band (λmax) at a wavelength of 835 nm in xylene with an extinction value of 0.342 AU for 10 mg/L. Longer reaction time also gave rise to the 1,4,5,8 -tetra(4'-n-butylphenylamino)-2,3,6,7-tetracyanoanthraquinone. The structure of the tetra-cyano product also was confirmed by proton and carbon-13 NMR. This material has a maximum absorption band (λmax) at a wavelength of 900 nm in xylene with an extinction value of 0.19 AU for 10 mg/L.
  • Example 3: Synthesis of 1,4,5,8-tetra(phenylamino)anthraquinone
  • A mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone, 50 g of aniline, 13.4 g of potassium acetate, 1.24 g of copper sulfate, and 3.41 g of benzyl alcohol was heated to 130 °C under nitrogen and maintained at this temperature for 6.5 hours, followed by another holding period at 170 °C for 6 hours. The reaction mixture was cooled to ambient temperature and the precipitate was filtered to give black solids. Recrystallization of the crude product from toluene afforded 6.0 g of a dark green crystalline material (> 95% purity with the structure confirmed by proton NMR as the desired product: 1,4,5,8-tetra(phenylamino)anthraquinone. This material had a maximum absorption band (λmax) at a wavelength of 750 nm in toluene. The molar extinction coefficient (ε) was determined to be ~30,500.
  • Example 4: Synthesis of 1,4,5,8-tetra(4-n-butylphenylamino)anthraquinone
  • A mixture of 10.87 g of 1,4,5,8-tetrachloroanthraquinone and 95 g of 4-n-butylaniline was allowed to react at 190 °C for 12 hours. The reaction mixture was then cooled to 70 °C and diluted with an equal amount of ethanol. On standing and further cooling to ambient temperature, some precipitate was formed. The mixture was filtered, washed and recrystallized from xylenes/isopropanol to give 6.6 g of a dark green crystalline material (>95% purity) with the structure confirmed by proton NMR as the desired product of 1,4,5,8-tetra(4-n-butylphenylamino)anthraquinone. This material had a maximum absorption band (λmax) at a wavelength of 762 nm in toluene. The molar extinction coefficient (e) was determined to be ~36,900.
  • Example 5: Degradation of lubricant oil and marker under high heat and oxidative conditions.
  • A commercial motor oil (5W-30) containing 100 ppm of 1,4-di(2-ethylhexylamino)- 2,3 -dicyano- 5,8 -dihydroxyanthraquinone , 25 ppm Cu++, 10 ppm organic peroxide, 10 ppm toluenesulfonic acid, was heated to 165-170°C with air bubbling for 48 hours. Spectroscopic determination of the marker after heat aging was done in the NIR at 800 nm. The results before and after the above heat and oxidation testing are summarized as follows:
    Before Heat-Aging After Heat-Aging
    Viscosity 12.8 cp 16.1 cp
    (Brookfield #2/30rpm, 20°C)
    TAN 0 4.9
    (Total Acid #, mg KOH/g substrate)
    Marker Conc. 100 ppm ~ 0 ppm
  • These results demonstrate that the marker degrades along with the oil during heat aging, so that the marker concentration can be correlated with oil degradation.
  • Example 6: Synthesis of 1,4-di(2-ethylhexylamino)- 2,3-dicyano-5,8-dihydroxyanthraquinone
  • A mixture of 36.3 parts of 1,4-di(2-ethylhexylamino)-5,8-dihydroxyanthraquinone (derived from Example 7), 14.8 parts of NaCN, 10 parts of NH4HCO3, and 140 parts of dimethyl sulfoxide (DMSO) was allowed to react at 90-95°C for 6 hours to give 1,4-di(2-ethylhexylamino)-2,3-dicyano-5,8-dihydroxyanthraquinone. This material has a maximum absorption band (λmax) at a wavelength of 809 nm in xylene. (Ref: JP62015260 , JP61291652 )
  • Example 7: Synthesis of 1,4-di-(2-ethylhexylamino)-5,8-dihydroxyanthraquinone.
  • A mixture of leuco-1,4,5,8-tetrahydroxyanthraquinone (5.91 g), sodium dithionite (1.09 g) and 1-hexanol (175.2 g) was stirred while adding 2-ethylhexylamine (24.08 g). The mixture was heated to reflux (148-152°C), maintained at reflux for 6-6.5 hours, and then cooled to ambient temperature. The precipitate was collected and washed thoroughly with methanol and water, and dried. The yield of dried isolated product was 7.0 g. Approximately another 1.9 g was present in the mother liquor, for a total yield of 8.9 g (90%). The structure of the molecule was confirmed with proton NMR. This material has a maximum absorption band (λmax) at a wavelength of 692 nm in xylene, or 688 nm in cyclohexane, with an extinction value of 0.640 AU in xylene and 0.660 AU in cyclohexane for a 10 mg/L solution.

Claims (10)

  1. A method for monitoring degradation of lubricating oils; said method comprising steps of
    (a) adding to a lubricating oil at least one compound having formula (I)
    Figure imgb0007
    wherein R1 and R2 independently are hydrogen, hydroxy, OR11, amino or NR11R12; R3 and R5 independently are alkyl, aryl, aralkyl, heteroalkyl or heterocyclic; R4 and R6 independently are hydrogen or alkyl; R7, R8, R9 and R10 independently are cyano, nitro, amide, carboxyl, ester, alkyl or hydrogen; R11 is alkyl, aryl, aralkyl, heteroalkyl, heterocyclic or alkanoyl; R12 is hydrogen or alkyl; provided that said at least one compound of formula (I) has at least one substituent selected from among cyano, nitro, hydroxy, hydroxyalkyl, amide, carboxyl, ester and unsaturated hydrocarbyl group having from 1 to 20 carbon atoms; and
    (b) measuring a spectroscopic property of the oil to determine degradation of said at least one compound so as to provide a comparison of the infrared absorption intensity displayed by one of the substituents at one of the substituents characteristic absorption frequencies with the infrared absorption intensity of that substituent when the compound was first introduced into the lubricating oil so as to allow a determination of the fraction of molecules containing the substituent that have been degraded, and
    (c) correlating the fraction of molecules containing the substituent that have been degraded with the degradation of the oil.
  2. The method of claim 1 in which said at least one compound of formula (I) has at least one substituent selected from among cyano, nitro, carboxyl and hydroxyalkyl.
  3. The method of claim 1 in which said at least one compound is present in an amount from 0.5 ppm to 5,000 ppm.
  4. The method of claim 3 in which the spectroscopic property is absorption of electromagnetic radiation in a 1500 to 2250 cm-1 or 700 to 1000 nm range.
  5. The method of claim 4 in which said at least one compound is present in an amount from 5 ppm to 2,000 ppm.
  6. The method of claim 1 in which said at least one compound is substituted by at least one group selected from among C2-C20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C2-C20 alkyl group, aromatic heterocyclic groups substituted by at least one C2-C20 alkyl group and C5-C8 cyclic alkyl groups.
  7. The method of claim 6 in which said at least one compound is present in an amount from 5 ppm to 2,000 ppm.
  8. The method of claim 7 in which the spectroscopic property is absorption of electromagnetic radiation in a 1500 to 2250 cm-1 or 700 to 1000 nm range.
  9. A method of claim 1 wherein the component of formula (I) is added to the lubricating oil in an amount of from 5 ppm to 5,000 ppm and wherein said at least one compound of formula (I) has at least one substituents selected from among cyano, nitro, carboxyl and hydroxyalkyl.
  10. The method of claim 9 in which said at least one compound is substituted by at least one group selected from among C2-C20 unsubstituted saturated acyclic alkyl groups, aryl groups substituted by at least one C2-C20 alkyl group, aromatic heterocyclic groups substituted by at least one C2-C20 alkyl group and C5-C8 cyclic alkyl groups.
EP05257455A 2004-12-15 2005-12-03 Method for monitoring degradation of lubricating oils Expired - Fee Related EP1672052B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63615304P 2004-12-15 2004-12-15

Publications (2)

Publication Number Publication Date
EP1672052A1 EP1672052A1 (en) 2006-06-21
EP1672052B1 true EP1672052B1 (en) 2009-02-18

Family

ID=36130148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05257455A Expired - Fee Related EP1672052B1 (en) 2004-12-15 2005-12-03 Method for monitoring degradation of lubricating oils

Country Status (3)

Country Link
US (1) US7635596B2 (en)
EP (1) EP1672052B1 (en)
DE (1) DE602005012782D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042254A1 (en) * 2007-09-06 2009-04-02 Carl Freudenberg Kg Measuring device and method for analyzing the lubricant of a bearing
RU2461812C1 (en) * 2011-04-26 2012-09-20 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) Control method of technical state of high-voltage oil-filled electric power equipment
CN102243191B (en) * 2011-04-27 2013-04-17 洛阳轴研科技股份有限公司 Test method for thermal ageing stability of high-temperature lubricant oil
CN103091476B (en) * 2011-11-04 2015-08-26 中国石油化工股份有限公司 A kind of quick, comprehensive oil ageing Reliable Evaluating Methods of Their Performance
EP3237904A1 (en) * 2014-12-24 2017-11-01 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
DE102017219613A1 (en) * 2017-11-06 2019-05-09 Zf Friedrichshafen Ag Control of a mixture by means of a reference spectrum
CN110397842A (en) * 2019-08-08 2019-11-01 广州广日电梯工业有限公司 A kind of driving chain selfoiling system and its driving chain lubricity detection device
CN111704557B (en) * 2019-12-20 2021-02-02 南京晓庄学院 Derivative
JP2021130793A (en) * 2020-02-21 2021-09-09 出光興産株式会社 Deterioration measurement device, system and method, and lubricant composition
CN111302961B (en) * 2020-04-01 2022-06-14 中国科学院兰州化学物理研究所 Method for synthesizing N-aryl/alkyl anthraquinone and derivatives thereof under catalysis of carbene metal ligand
US11539317B2 (en) 2021-04-05 2022-12-27 General Electric Renovables Espana, S.L. System and method for detecting degradation in wind turbine generator bearings
WO2024041944A1 (en) 2022-08-22 2024-02-29 Basf Se Novel anthraquinone-based nir absorbers

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818176A1 (en) * 1998-04-23 1999-10-28 Basf Ag Process for marking liquids, e.g. fuels
US2611772A (en) * 1950-12-30 1952-09-23 Eastman Kodak Co Preparation of 1, 4, 5, 8-tetraamino-anthraquinone compounds
US2727045A (en) * 1952-12-13 1955-12-13 American Cyanamid Co Preparation of alkylaminoanthraquinones
US3164449A (en) * 1961-03-01 1965-01-05 Du Pont Anthraquinone dyes for gasoline
JPS54114550A (en) 1978-02-28 1979-09-06 Onoda Cement Co Ltd Coating of inner surface of cylindrical good and its device
IT1200452B (en) 1985-04-12 1989-01-18 Pigmenti Italia Spa DENATURING AND MARKING COMPOSITION, PARTICULARLY SUITABLE FOR DIESEL
JPS61246258A (en) 1985-04-24 1986-11-01 Mitsui Toatsu Chem Inc Green dye
JPS62903A (en) * 1985-06-05 1987-01-06 Sumitomo Chem Co Ltd Near infrared ray absorbing filter
JPH0662861B2 (en) 1985-06-19 1994-08-17 三井東圧化学株式会社 Anthraquinone-based long wavelength absorbing dye and method for producing the same
JPS6215260A (en) 1985-07-15 1987-01-23 Mitsui Toatsu Chem Inc Anthraquinone-type pigment absorbing long-wavelength light and production thereof
JPH0813930B2 (en) * 1987-12-28 1996-02-14 三井東圧化学株式会社 High-purity anthraquinone dye for near infrared absorption filters
US5804447A (en) * 1992-07-23 1998-09-08 Basf Aktiengesellschaft Use of compounds which absorb and/or fluoresce in the IR region as markers for liquids
DE4308634A1 (en) * 1993-03-18 1994-09-22 Basf Ag Anthraquinone as a marker for mineral oils
US5525516B1 (en) * 1994-09-30 1999-11-09 Eastman Chem Co Method for tagging petroleum products
JPH11281640A (en) 1998-03-31 1999-10-15 Osaka Gas Co Ltd Method for detecting degradation of lubricating oil and controlling method
US6274381B1 (en) * 1998-11-09 2001-08-14 Rohm And Haas Company Method for invisibly tagging petroleum products using visible dyes
US6811575B2 (en) * 2001-12-20 2004-11-02 Rohm And Haas Company Method for marking hydrocarbons with anthraquinones
US20040106526A1 (en) * 2002-12-03 2004-06-03 Baxter David Roderick Method for marking liquid hydrocarbons
JP3806119B2 (en) 2003-05-23 2006-08-09 ローム アンド ハース カンパニー Method for marking hydrocarbons using substituted anthraquinones
JP3806118B2 (en) 2003-06-13 2006-08-09 ローム アンド ハース カンパニー Method for marking hydrocarbons with substituted anthraquinones.

Also Published As

Publication number Publication date
DE602005012782D1 (en) 2009-04-02
US7635596B2 (en) 2009-12-22
US20060128025A1 (en) 2006-06-15
EP1672052A1 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
EP1672052B1 (en) Method for monitoring degradation of lubricating oils
JP3806118B2 (en) Method for marking hydrocarbons with substituted anthraquinones.
KR100952633B1 (en) Method For Marking Hydrocarbons With Anthraquinones
EP1479749B1 (en) Method for marking hydrocarbons with substituted anthraquinones
Arden-Jacob et al. New fluorescent markers for the red region
KR20040007273A (en) Pyrazinoporphyrazines As Markers For Liquid Hydrocarbons
JP3806114B2 (en) Method for marking liquid hydrocarbons
Kanitz et al. Preparation and characterization of bridged naphthoxazinium salts
US6977177B1 (en) Method for marking hydrocarbons with substituted anthraquinones
Gigante et al. Synthesis, spectroscopy, photophysics and thermal behaviour of stilbene-based triarylamines with dehydroabietic acid methyl ester moieties
Shao et al. A new fluorescent triphenodioxazine dye derived from 4-aminodiphenylamine
CN114195797A (en) Near-infrared fluorescent probe for mitochondrial marking
Jagtap SYNTHESIS AND CHARACTERIZATION OF HIGHLY FLUORESCENT NOVEL COUMARIN CHROMOPHORES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20060912

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005012782

Country of ref document: DE

Date of ref document: 20090402

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181128

Year of fee payment: 14

Ref country code: FR

Payment date: 20181011

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181220

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005012782

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701