EP1394137A2 - Composition for cementing a pipe in a well bore - Google Patents

Composition for cementing a pipe in a well bore Download PDF

Info

Publication number
EP1394137A2
EP1394137A2 EP03254276A EP03254276A EP1394137A2 EP 1394137 A2 EP1394137 A2 EP 1394137A2 EP 03254276 A EP03254276 A EP 03254276A EP 03254276 A EP03254276 A EP 03254276A EP 1394137 A2 EP1394137 A2 EP 1394137A2
Authority
EP
European Patent Office
Prior art keywords
mixture
cement
composition
cement composition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03254276A
Other languages
German (de)
French (fr)
Inventor
Jiten Chatterji
Darrel C. Brenneis
Roger S. Cromwell
Bobby J. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP1394137A2 publication Critical patent/EP1394137A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1051Organo-metallic compounds; Organo-silicon compounds, e.g. bentone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/473Density reducing additives, e.g. for obtaining foamed cement compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Definitions

  • the present invention relates to cementing pipe in well bores and, more particularly, to such methods and compositions for cementing pipe in well bores penetrating subterranean zones or formations which readily fracture at low hydrostatic pressures.
  • Hydraulic cement compositions are commonly utilized in oil, gas and water well completion and remedial operations.
  • hydraulic cement compositions are used in primary cementing operations whereby strings of pipe such as casing are cemented in well bores.
  • a hydraulic cement composition is pumped into the annular space between the walls of a well bore and the exterior of pipe disposed therein.
  • the cement composition is permitted to set in the annular space thereby forming an annular sheath of hardened substantially impermeable cement therein.
  • the cement sheath physically supports and positions the pipe in the well bore and bonds the pipe to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
  • the subterranean zones or formations into or through which wells are drilled have high permeabilities and low compressive and tensile strengths.
  • the resistances of the zones or formations to shear are low and they have very low fracture gradients.
  • lightweight cement compositions have been developed and used heretofore, i.e. cement compositions having densities as low as about 12 pounds per gallon, subterranean zones or formations are still encountered which have fracture gradients too low for even the lightweight cement compositions to be utilized without fracturing the formation and the occurrence of lost circulation problems. Also, the lightweight cement compositions utilized heretofore have often not had sufficient compressive, tensile and bond strengths upon setting.
  • the present invention provides a cement composition having enhanced compressive, tensile and bond strengths upon setting, which composition comprises a hydraulic cement; sufficient water to form a slurry; and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of from 6 to 12 pounds per gallon.
  • the invention provides a method of cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures, which method comprises placing a cement composition of the invention into the annulus between said pipe and the walls of said well bore; and allowing said cement composition to set therein.
  • a low density cement composition having enhanced compressive, tensile and bond strengths upon setting is provided.
  • the low density cement composition is comprised of a hydraulic cement, sufficient water to form a slurry, hollow glass microspheres which have been surface treated with a mixture of organosilane coupling agents and optionally, a gas and a mixture of foaming and foam stabilizing surfactants for foaming the cement composition.
  • the microspheres are present in the low density cement composition in an amount sufficient to produce a density in the range of from about 6 to about 12 pounds per gallon and when the composition is foamed, it can have a density of about 5 or below.
  • the cement composition is placed into the annulus between the pipe and the walls of the well bore and the cement composition is allowed to set therein.
  • the cement composition has a low density, i.e. a density such that the hydrostatic pressure of the cement composition exerted in the subterranean zone or formation being cemented is less than the fracture gradient of the subterranean zone or formation, fracturing of the zone or formation does not take place. Also, because the cement composition of this invention has enhanced compressive, tensile and bond strengths upon setting, a strong bond exists between the pipe and the walls of the well bore penetrating the subterranean zone or formation which prevents formation fluids from entering the annulus between the pipe and the well bore. The high overall strength of the cement composition also prevents it from being shattered by contact with the drill bit and drill string when the well is drilled to greater depths.
  • the Portland cement can be of ultra fine particle size or standard particle size with the ultra fine particle size being preferred for use in subterranean zones or formations having high permeabilities and which fracture at very low cement hydrostatic pressures.
  • the water utilized in the cement composition can be fresh water or salt water.
  • salt water is used herein to mean unsaturated salt solutions or saturated salt solutions including brine and seawater.
  • the water used is generally present in the low density cement composition in an amount in the range of from about 58% to about 160% by weight of the hydraulic cement in the composition.
  • the hollow glass microspheres utilized in the low density cement compositions are preferably synthetic hollow glass microspheres which are commercially available from the Minnesota, Mining and Manufacturing Co. ("3MTM") under the trade name "SCOTCHLITETM ". These very low density microspheres are formed of a chemically stable soda-lime borosilicate glass composition which is non-porous.
  • the hollow glass microspheres are included in the cement composition of this invention in an amount sufficient to produce a cement composition density in the range of from about 5 to about 12 pounds per gallon. Generally, the hollow glass microspheres are included in the cement composition in an amount of from about 10% to about 21% by weight of hydraulic cement in the composition.
  • the surfaces of the hollow glass microspheres utilized in the cement compositions of this invention are pretreated with a mixture of epoxy and amine organosilane coupling agents.
  • the organosilane coupling agents greatly improve the wetability of the hollow glass microspheres whereby they can readily be mixed with the aqueous cement composition.
  • the organosilane coupling agents attach to the surfaces of the hollow glass microspheres and form silanol thereon.
  • the silanol undergoes immediate dehydration resulting in-silicon-oxygen-silicon-bonds (-Si-O-Si-) between the cement utilized and the hollow glass microspheres thereby enhancing the compressive, tensile and bond strengths of the cement composition upon setting.
  • the coupling agents are preferably selected from a mixture of epoxy and amine organosilane coupling agents.
  • examples of such mixtures include 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane or 3-glycidoxypropyltrimethoxy silane and N-2-(aminoethyl)-3-aminopropyltrimethoxy silane.
  • the organosilane coupling agent mixture used to surface treat the hollow glass microspheres is a 1:1 by weight mixture of 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane.
  • the surface treatment of the hollow glass microspheres is carried out by combining the mixture of organosilanes utilized with ethyl acetate while stirring the ethyl acetate. Thereafter, the hollow glass microspheres are added to the ethyl acetate and organosilane mixture therein. The resulting mixture is heated at 170°F for about 1 hour with continuous stirring, followed by filtration and drying. Thereafter, the surface treated hollow glass microspheres are heated to 150°F in a vacuum oven for 24 hours. Under these conditions, the amino group of the amino organosilane reacts with the epoxy group of the epoxy organosilane on the surfaces of the hollow glass microspheres.
  • the surface treated hollow glass microspheres are included in the low density cement compositions in an amount in the range of from about 10% to about 21% by weight of the hydraulic cement therein to thereby produce cement composition densities in the range of from about 6 to about 12.
  • the cement composition is foamed. That is, a gas is added to the cement composition along with a mixture of foaming and foam stabilizing surfactants which facilitate the formation of the foam and stabilize the foamed composition.
  • the gas utilized for foaming the cement composition can be air or nitrogen, with nitrogen being preferred.
  • a cement composition having surface treated hollow glass microspheres therein and having a density of about 6 pounds per gallon is foamed with the gas to produce a density of about 5 pounds per gallon or below.
  • the gas is generally present in the cement composition in an amount in the range of from about 20% to about 80% by volume of the cement composition, preferably from about 20% to about 50%.
  • the mixture of foaming and foam stabilizing surfactants is combined with the cement composition in an amount sufficient to facilitate the formation of the foam and stabilize the resulting foamed composition.
  • foaming and foam stabilizing surfactants can be utilized in accordance with the present invention.
  • a preferred mixture of such surfactants is described in U.S. Patent No. 5,897,699 issued to Chatterji et al. on April 27, 1999 which is incorporated herein by reference thereto.
  • the surfactant mixture is basically comprised of an aqueous solution of an alpha-olefinic sulfonate and a cocoylamidopropyl betaine.
  • the surfactant mixture is comprised of an ethoxylated alcohol ether sulfate of the formula H(CH 2 ) a (OC 2 H 4 ) b OSO 3 NH 4 + wherein a is an integer in the range of from about 6 to about 10 and b is an integer in the range of from about 3 to about 10; an alkyl or alkene amidopropyl betaine having the formula R ⁇ CONHCH 2 CH 2 CH 2 N + (CH 3 ) 2 CH 2 CO 2 - wherein R is a radical selected from the group of decyl, cocoyl, lauryl, cetyl and oleyl; and an alkyl or alkene amidopropyl dimethyl amine oxide having the formula R ⁇ CONHCH 2 CH 2 CH
  • the ethoxylated alcohol ether sulfate is generally present in the above described mixture in an amount in the range of from about 60 to 64 parts by weight.
  • the alkyl or alkene amidopropyl betaine is generally present in the mixture in an amount in the range of from about 30 to about 33 parts by weight and the alkyl or alkene amidopropyl dimethyl amine oxide is generally present in the mixture in an amount in the range of from about 3 to about 10 parts by weight.
  • water is preferably combined with the surfactant mixture in an amount sufficient to dissolve the surfactants.
  • a particularly preferred mixture of foaming and foam stabilizing surfactants as described above for use in accordance with the present invention is comprised of ethoxylated alcohol ether sulfate wherein a in the formula thereof set forth above is an integer in the range of from 6 to 10 and the ethoxylated alkyl ether sulfate is present in the mixture in an amount of about 63.3 parts by weight; the alkyl or alkene amidopropyl betaine is cocoylamidopropyl betaine and is present in the mixture in an amount of about 31.7 parts by weight; and the alkyl or alkene amidopropyl dimethylamine oxide is cocoylamidopropyl dimethylamine oxide and is present in the mixture in an amount of about 5 parts by weight.
  • the mixture of foaming and foam stabilizing surfactants utilized is generally included in the cement composition to be foamed in an amount in the range of from about 0.8% to about 5% by volume of water in the cement composition, preferably in an amount of from about 1% to about 2%.
  • the low density cement compositions of this invention having enhanced compressive, tensile and bond strengths upon setting include a hydraulic cement, sufficient water to form a slurry and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon and optionally, a gas and a mixture of foaming and foam stabilizing surfactants for foaming the cement composition whereby it has a density of about 5 pounds per gallon or below.
  • the hydraulic cement, water and surface treated hollow glass microspheres as well as the optional gas and surfactants utilized in the cement composition are as described above and are present in the cement composition in the amounts set forth above.
  • a preferred method of this invention for cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures is comprised of the steps of: (a) providing a low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprised of a hydraulic cement, sufficient water to form a slurry and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon; (b) placing the cement composition into the annulus between the pipe and the walls of the well bore; and (c) allowing the cement composition to set therein.
  • Another preferred method of this invention for cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures is comprised of the steps of: (a) providing a low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprised of a hydraulic cement, sufficient water to form a slurry, hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of about 6 pounds per gallon, a gas present in an amount sufficient to foam the cement composition whereby the cement composition has a density of about 5 pounds per gallon or below and a mixture of foaming and foam stabilizing surfactants; (b) placing the cement composition into the annulus between the pipe and the walls of the well bore; and (c) allowing the cement composition to set therein.
  • a preferred low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprises: a hydraulic cement; sufficient water to form a slurry; and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon.
  • Yet another low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprises: a hydraulic cement; sufficient water to form a slurry; hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of about 6 pounds per gallon; a gas present in an amount sufficient to foam the cement composition whereby the cement composition has a density of about 5 pounds per gallon or below; and a mixture of foaming and foam stabilizing surfactants.
  • Two quantities of hollow glass microspheres were obtained from the Minnesota, Mining and Manufacturing Co. having specific gravities of 0.15 and 0.38, respectively.
  • 2,500 milliliters of ethyl acetate were added to each of two 5 liter flasks equipped with stirrers and a mixture comprised of 1.25 grams of 3-glycidoxypropyltrimethoxy silane and 1.25 grams of 3-aminopropyltriethoxy silane were added to the ethyl acetate in each flask.
  • the flasks were continuously stirred while 250 grams of hollow glass microspheres having a specific gravity of 0.15 was added to the ethyl acetate in one flask and 250 grams of hollow glass microspheres having a specific gravity of 0.38 were added to the ethyl acetate in the other flask.
  • the mixtures of ethyl acetate organosilane coupling agent and hollow glass microspheres were heated to 170°F and held at that temperature for 1 hour while continuously being stirred, followed by filtration and drying.
  • the hollow glass microspheres from each flask were then heated to 150°F in a vacuum oven for 24 hours.
  • organosilane coupling agents While being heated in the ovens, the organosilane coupling agents reacted with each other on the surface of the hollow glass microspheres. Infrared spectroscopy of the treated hollow glass microspheres showed the appearance of 3 new bands at 1118.89 cm -1 , 1113.77 cm -1 and 1105 cm -1 indicating a reaction of the organosilanes with the hollow glass microspheres.
  • Two cement slurries were next prepared by mixing ultrafine Portland cement with fresh water and standard Class G Portland cement with fresh water. To test portions of the ultra fine Portland cement slurry, organosilane surface treated hollow glass microspheres having specific gravities of 0.15 were combined in amounts whereby test cement compositions having densities of 6 pounds per gallon and 7 pounds per gallon were formed.
  • test cement compositions containing the surface treated hollow glass microspheres and having densities of 6 pounds per gallon were tested as were a number of such cement compositions having densities of 7 pounds per gallon. Also, test compositions having densities of 6 pounds per gallon were foamed with air in the presence of a mixture of foaming and foam stabilizing surfactants. The foamed test cement compositions had densities of 5 pounds per gallon.
  • test cement compositions containing standard Class G Portland cement were combined with surface treated and non-surface treated hollow glass microspheres. Some of the cement compositions had densities of 10.5 pounds per gallon and others had densities of 12 pounds per gallon.
  • a cement dispersing agent comprised of the condensation product of formaldehyde, acetone and bisulfite was added to some of the test cement compositions in amounts of 1% by weight of cement therein and Class F fly ash was added to other of the test cement compositions in amounts of 50% by weight of cement in the compositions.
  • the test cement compositions and their components and physical properties are shown in Table I below.
  • Cement Composition Physical Properties 3M Microspheres Cement Composition Sample Number Density, lb/gal Cement Type Specific Gravity % By Weight Of Cement Dispersant, % by wt. of cement Class F Fly Ash, % by wt. of cement 1 6 Ultra Fine 0.15 21 repeat 1 6 Ultra Fine 0.15 21 2 7 Ultra Fine 0.15 20 1.0 repeat 2 7 Ultra Fine 0.15 20 1.0 3 7 Ultra Fine 0.15 20 50 repeat 3 7 Ultra Fine 0.15 20 50 3 foamed 5 Ultra Fine 0.15 20 50 repeat 3 foamed 5 Ultra Fine 0.15 20 50 5 10.5 Class G 0.38 20 repeat 5 10.5 Class G 0.38 20 6 12 Class G 0.38 10 repeat 6 12 Class G 0.38 10 repeat 6 12 Class G 0.38 10
  • test cement composition samples containing organosilane coupling agent surface treated hollow glass microspheres and other test cement composition samples containing untreated hollow glass microspheres were tested for compressive, tensile and bond strengths upon setting.
  • the compressive strengths and tensile strengths of the samples were determined in accordance with the procedures set forth in API Specification For Materials And Testing For Well Cements, API Specification 10, 5 th Edition, dated July 1, 1990 of the American Petroleum Institute.
  • the samples tested for shear bond strength were placed in the annuluses of pipe assemblies, i.e., small pipes centered inside larger pipes. After setting, the shear bond strength was determined by supporting the larger pipe and applying force to the smaller inner pipe. The shear bond strength was calculated by dividing the total force applied by the broken bonded surface area.
  • test cement compositions of this invention containing organosilane coupling agent surface treated hollow glass microspheres had significantly better tensile strengths, compressive strengths and shear bond strengths than did the same cement compositions containing untreated hollow glass microspheres.

Abstract

Pipe is cemented in a well bore using a low density cement composition comprised of a hydraulic cement, sufficient water to form a slurry and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of from 6 to 12 pounds per gallon.

Description

  • The present invention relates to cementing pipe in well bores and, more particularly, to such methods and compositions for cementing pipe in well bores penetrating subterranean zones or formations which readily fracture at low hydrostatic pressures.
  • Hydraulic cement compositions are commonly utilized in oil, gas and water well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby strings of pipe such as casing are cemented in well bores. In performing primary cementing, a hydraulic cement composition is pumped into the annular space between the walls of a well bore and the exterior of pipe disposed therein. The cement composition is permitted to set in the annular space thereby forming an annular sheath of hardened substantially impermeable cement therein. The cement sheath physically supports and positions the pipe in the well bore and bonds the pipe to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
  • In some locations, the subterranean zones or formations into or through which wells are drilled have high permeabilities and low compressive and tensile strengths. As a result, the resistances of the zones or formations to shear are low and they have very low fracture gradients. When a well fluid such as a hydraulic cement composition is introduced into a well bore penetrating such a subterranean zone or formation, the hydrostatic pressure exerted on the walls of the well bore can exceed the fracture gradient of the zone or formation and cause fractures to be formed in the zone or formation into which the cement composition is lost.
  • While lightweight cement compositions have been developed and used heretofore, i.e. cement compositions having densities as low as about 12 pounds per gallon, subterranean zones or formations are still encountered which have fracture gradients too low for even the lightweight cement compositions to be utilized without fracturing the formation and the occurrence of lost circulation problems. Also, the lightweight cement compositions utilized heretofore have often not had sufficient compressive, tensile and bond strengths upon setting.
  • Thus, there are continuing needs for improved methods of cementing pipe in well bores and low density cement compositions which have enhanced compressive, tensile and bond strengths upon setting.
  • In one aspect, the present invention provides a cement composition having enhanced compressive, tensile and bond strengths upon setting, which composition comprises a hydraulic cement; sufficient water to form a slurry; and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of from 6 to 12 pounds per gallon.
  • In another aspect, the invention provides a method of cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures, which method comprises placing a cement composition of the invention into the annulus between said pipe and the walls of said well bore; and allowing said cement composition to set therein.
  • Improved methods of cementing pipe in well bores penetrating subterranean zones or formations which readily fracture at low hydrostatic pressures are provided by the present invention. The methods are basically comprised of the following steps. A low density cement composition having enhanced compressive, tensile and bond strengths upon setting is provided. The low density cement composition is comprised of a hydraulic cement, sufficient water to form a slurry, hollow glass microspheres which have been surface treated with a mixture of organosilane coupling agents and optionally, a gas and a mixture of foaming and foam stabilizing surfactants for foaming the cement composition. The microspheres are present in the low density cement composition in an amount sufficient to produce a density in the range of from about 6 to about 12 pounds per gallon and when the composition is foamed, it can have a density of about 5 or below. The cement composition is placed into the annulus between the pipe and the walls of the well bore and the cement composition is allowed to set therein.
  • Because the cement composition has a low density, i.e. a density such that the hydrostatic pressure of the cement composition exerted in the subterranean zone or formation being cemented is less than the fracture gradient of the subterranean zone or formation, fracturing of the zone or formation does not take place. Also, because the cement composition of this invention has enhanced compressive, tensile and bond strengths upon setting, a strong bond exists between the pipe and the walls of the well bore penetrating the subterranean zone or formation which prevents formation fluids from entering the annulus between the pipe and the well bore. The high overall strength of the cement composition also prevents it from being shattered by contact with the drill bit and drill string when the well is drilled to greater depths.
  • Examples of hydraulic cements which can be utilized in accordance with the present invention include, but are not limited to, Portland cements, slag cements, pozzolana cements, gypsum cements, aluminous cements, silica cements and alkaline cements. Of these, Portland cement is preferred. The Portland cement can be of ultra fine particle size or standard particle size with the ultra fine particle size being preferred for use in subterranean zones or formations having high permeabilities and which fracture at very low cement hydrostatic pressures.
  • The water utilized in the cement composition can be fresh water or salt water. The term "salt water" is used herein to mean unsaturated salt solutions or saturated salt solutions including brine and seawater. The water used is generally present in the low density cement composition in an amount in the range of from about 58% to about 160% by weight of the hydraulic cement in the composition.
  • The hollow glass microspheres utilized in the low density cement compositions are preferably synthetic hollow glass microspheres which are commercially available from the Minnesota, Mining and Manufacturing Co. ("3M™") under the trade name "SCOTCHLITE™ ". These very low density microspheres are formed of a chemically stable soda-lime borosilicate glass composition which is non-porous. The hollow glass microspheres are included in the cement composition of this invention in an amount sufficient to produce a cement composition density in the range of from about 5 to about 12 pounds per gallon. Generally, the hollow glass microspheres are included in the cement composition in an amount of from about 10% to about 21% by weight of hydraulic cement in the composition.
  • The surfaces of the hollow glass microspheres utilized in the cement compositions of this invention are pretreated with a mixture of epoxy and amine organosilane coupling agents. The organosilane coupling agents greatly improve the wetability of the hollow glass microspheres whereby they can readily be mixed with the aqueous cement composition. In addition, the organosilane coupling agents attach to the surfaces of the hollow glass microspheres and form silanol thereon. The silanol undergoes immediate dehydration resulting in-silicon-oxygen-silicon-bonds (-Si-O-Si-) between the cement utilized and the hollow glass microspheres thereby enhancing the compressive, tensile and bond strengths of the cement composition upon setting.
  • While various organosilane coupling agents can be utilized, the coupling agents are preferably selected from a mixture of epoxy and amine organosilane coupling agents. Examples of such mixtures include 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane or 3-glycidoxypropyltrimethoxy silane and N-2-(aminoethyl)-3-aminopropyltrimethoxy silane. Most preferably, the organosilane coupling agent mixture used to surface treat the hollow glass microspheres is a 1:1 by weight mixture of 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane.
  • The surface treatment of the hollow glass microspheres is carried out by combining the mixture of organosilanes utilized with ethyl acetate while stirring the ethyl acetate. Thereafter, the hollow glass microspheres are added to the ethyl acetate and organosilane mixture therein. The resulting mixture is heated at 170°F for about 1 hour with continuous stirring, followed by filtration and drying. Thereafter, the surface treated hollow glass microspheres are heated to 150°F in a vacuum oven for 24 hours. Under these conditions, the amino group of the amino organosilane reacts with the epoxy group of the epoxy organosilane on the surfaces of the hollow glass microspheres.
  • The surface treated hollow glass microspheres are included in the low density cement compositions in an amount in the range of from about 10% to about 21% by weight of the hydraulic cement therein to thereby produce cement composition densities in the range of from about 6 to about 12.
  • In order to produce a cement composition of this invention having a density below about 6 pounds per gallon, i.e., a density of about 5 pounds per gallon or below, the cement composition is foamed. That is, a gas is added to the cement composition along with a mixture of foaming and foam stabilizing surfactants which facilitate the formation of the foam and stabilize the foamed composition.
  • The gas utilized for foaming the cement composition can be air or nitrogen, with nitrogen being preferred. A cement composition having surface treated hollow glass microspheres therein and having a density of about 6 pounds per gallon is foamed with the gas to produce a density of about 5 pounds per gallon or below. The gas is generally present in the cement composition in an amount in the range of from about 20% to about 80% by volume of the cement composition, preferably from about 20% to about 50%. Prior to foaming the cement composition with the gas as described above, the mixture of foaming and foam stabilizing surfactants is combined with the cement composition in an amount sufficient to facilitate the formation of the foam and stabilize the resulting foamed composition.
  • A variety of foaming and foam stabilizing surfactants can be utilized in accordance with the present invention. A preferred mixture of such surfactants is described in U.S. Patent No. 5,897,699 issued to Chatterji et al. on April 27, 1999 which is incorporated herein by reference thereto. The surfactant mixture is basically comprised of an aqueous solution of an alpha-olefinic sulfonate and a cocoylamidopropyl betaine.
  • A more preferred mixture of foaming and foam stabilizing surfactants for use in accordance with this invention is described in U.S. Patent No. 6,063,738 issued to Chatterji et al. on May 16, 2000 which is incorporated herein by reference thereto. The surfactant mixture is comprised of an ethoxylated alcohol ether sulfate of the formula H(CH2)a(OC2H4)bOSO3NH4 + wherein a is an integer in the range of from about 6 to about 10 and b is an integer in the range of from about 3 to about 10; an alkyl or alkene amidopropyl betaine having the formula R―CONHCH2CH2CH2N+(CH3)2CH2CO2 - wherein R is a radical selected from the group of decyl, cocoyl, lauryl, cetyl and oleyl; and an alkyl or alkene amidopropyl dimethyl amine oxide having the formula R―CONHCH2CH2CH2N+CH3)2O- wherein R is a radical selected from the group of decyl, cocoyl, lauryl, cetyl and oleyl.
  • The ethoxylated alcohol ether sulfate is generally present in the above described mixture in an amount in the range of from about 60 to 64 parts by weight. The alkyl or alkene amidopropyl betaine is generally present in the mixture in an amount in the range of from about 30 to about 33 parts by weight and the alkyl or alkene amidopropyl dimethyl amine oxide is generally present in the mixture in an amount in the range of from about 3 to about 10 parts by weight.
  • In order to make the surfactant mixture more easily combinable with the cement composition including the surface treated hollow glass microspheres, water is preferably combined with the surfactant mixture in an amount sufficient to dissolve the surfactants.
  • A particularly preferred mixture of foaming and foam stabilizing surfactants as described above for use in accordance with the present invention is comprised of ethoxylated alcohol ether sulfate wherein a in the formula thereof set forth above is an integer in the range of from 6 to 10 and the ethoxylated alkyl ether sulfate is present in the mixture in an amount of about 63.3 parts by weight; the alkyl or alkene amidopropyl betaine is cocoylamidopropyl betaine and is present in the mixture in an amount of about 31.7 parts by weight; and the alkyl or alkene amidopropyl dimethylamine oxide is cocoylamidopropyl dimethylamine oxide and is present in the mixture in an amount of about 5 parts by weight.
  • The mixture of foaming and foam stabilizing surfactants utilized is generally included in the cement composition to be foamed in an amount in the range of from about 0.8% to about 5% by volume of water in the cement composition, preferably in an amount of from about 1% to about 2%.
  • The low density cement compositions of this invention having enhanced compressive, tensile and bond strengths upon setting include a hydraulic cement, sufficient water to form a slurry and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon and optionally, a gas and a mixture of foaming and foam stabilizing surfactants for foaming the cement composition whereby it has a density of about 5 pounds per gallon or below.
  • The hydraulic cement, water and surface treated hollow glass microspheres as well as the optional gas and surfactants utilized in the cement composition are as described above and are present in the cement composition in the amounts set forth above.
  • A preferred method of this invention for cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures is comprised of the steps of: (a) providing a low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprised of a hydraulic cement, sufficient water to form a slurry and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon; (b) placing the cement composition into the annulus between the pipe and the walls of the well bore; and (c) allowing the cement composition to set therein.
  • Another preferred method of this invention for cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures is comprised of the steps of: (a) providing a low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprised of a hydraulic cement, sufficient water to form a slurry, hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of about 6 pounds per gallon, a gas present in an amount sufficient to foam the cement composition whereby the cement composition has a density of about 5 pounds per gallon or below and a mixture of foaming and foam stabilizing surfactants; (b) placing the cement composition into the annulus between the pipe and the walls of the well bore; and (c) allowing the cement composition to set therein.
  • A preferred low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprises: a hydraulic cement; sufficient water to form a slurry; and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density in the range of from about 6 to about 12 pounds per gallon.
  • Yet another low density cement composition having enhanced compressive, tensile and bond strengths upon setting comprises: a hydraulic cement; sufficient water to form a slurry; hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of about 6 pounds per gallon; a gas present in an amount sufficient to foam the cement composition whereby the cement composition has a density of about 5 pounds per gallon or below; and a mixture of foaming and foam stabilizing surfactants.
  • In order to further illustrate the methods and compositions of this invention, the following example is given.
  • EXAMPLE
  • Two quantities of hollow glass microspheres were obtained from the Minnesota, Mining and Manufacturing Co. having specific gravities of 0.15 and 0.38, respectively. 2,500 milliliters of ethyl acetate were added to each of two 5 liter flasks equipped with stirrers and a mixture comprised of 1.25 grams of 3-glycidoxypropyltrimethoxy silane and 1.25 grams of 3-aminopropyltriethoxy silane were added to the ethyl acetate in each flask. The flasks were continuously stirred while 250 grams of hollow glass microspheres having a specific gravity of 0.15 was added to the ethyl acetate in one flask and 250 grams of hollow glass microspheres having a specific gravity of 0.38 were added to the ethyl acetate in the other flask. The mixtures of ethyl acetate organosilane coupling agent and hollow glass microspheres were heated to 170°F and held at that temperature for 1 hour while continuously being stirred, followed by filtration and drying. The hollow glass microspheres from each flask were then heated to 150°F in a vacuum oven for 24 hours. While being heated in the ovens, the organosilane coupling agents reacted with each other on the surface of the hollow glass microspheres. Infrared spectroscopy of the treated hollow glass microspheres showed the appearance of 3 new bands at 1118.89 cm-1, 1113.77 cm-1 and 1105 cm-1 indicating a reaction of the organosilanes with the hollow glass microspheres. Two cement slurries were next prepared by mixing ultrafine Portland cement with fresh water and standard Class G Portland cement with fresh water. To test portions of the ultra fine Portland cement slurry, organosilane surface treated hollow glass microspheres having specific gravities of 0.15 were combined in amounts whereby test cement compositions having densities of 6 pounds per gallon and 7 pounds per gallon were formed. A number of the test cement compositions containing the surface treated hollow glass microspheres and having densities of 6 pounds per gallon were tested as were a number of such cement compositions having densities of 7 pounds per gallon. Also, test compositions having densities of 6 pounds per gallon were foamed with air in the presence of a mixture of foaming and foam stabilizing surfactants. The foamed test cement compositions had densities of 5 pounds per gallon.
  • In a like manner, a number of test cement compositions containing standard Class G Portland cement were combined with surface treated and non-surface treated hollow glass microspheres. Some of the cement compositions had densities of 10.5 pounds per gallon and others had densities of 12 pounds per gallon. A cement dispersing agent comprised of the condensation product of formaldehyde, acetone and bisulfite was added to some of the test cement compositions in amounts of 1% by weight of cement therein and Class F fly ash was added to other of the test cement compositions in amounts of 50% by weight of cement in the compositions. The test cement compositions and their components and physical properties are shown in Table I below.
    Cement Composition Physical Properties
    3M Microspheres
    Cement
    Composition
    Sample
    Number
    Density,
    lb/gal
    Cement
    Type
    Specific
    Gravity
    % By
    Weight
    Of
    Cement
    Dispersant,
    % by
    wt.
    of
    cement
    Class F
    Fly Ash,
    % by
    wt.
    of
    cement
    1 6 Ultra Fine 0.15 21
    repeat 1 6 Ultra
    Fine
    0.15 21
    2 7 Ultra
    Fine
    0.15 20 1.0
    repeat 2 7 Ultra
    Fine
    0.15 20 1.0
    3 7 Ultra
    Fine
    0.15 20 50
    repeat 3 7 Ultra
    Fine
    0.15 20 50
    3 foamed 5 Ultra
    Fine
    0.15 20 50
    repeat 3
    foamed
    5 Ultra
    Fine
    0.15 20 50
    5 10.5 Class G 0.38 20
    repeat 5 10.5 Class G 0.38 20
    6 12 Class G 0.38 10
    repeat 6 12 Class G 0.38 10
  • The test cement composition samples containing organosilane coupling agent surface treated hollow glass microspheres and other test cement composition samples containing untreated hollow glass microspheres were tested for compressive, tensile and bond strengths upon setting. The compressive strengths and tensile strengths of the samples were determined in accordance with the procedures set forth in API Specification For Materials And Testing For Well Cements, API Specification 10, 5th Edition, dated July 1, 1990 of the American Petroleum Institute. The samples tested for shear bond strength were placed in the annuluses of pipe assemblies, i.e., small pipes centered inside larger pipes. After setting, the shear bond strength was determined by supporting the larger pipe and applying force to the smaller inner pipe. The shear bond strength was calculated by dividing the total force applied by the broken bonded surface area. The results of these tests are shown in Table II below.
    Compressive, Tensile And Bond Strength Test Results
    Treated Microspheres Untreated Microspheres
    Cement
    Composition
    Sample
    Number
    Tensile
    Strength,
    psi
    Compressive
    Strength,
    psi
    Shear
    Bond,
    psi
    Tensile
    Strength,
    psi
    Compressive
    Strength,
    psi
    Shear
    Bond,
    psi
    1 26.6 186 28.4 23.7 115.5 21.8
    repeat 1 32 160 30
    2 114.3 861 96.8 80.9 849 58.8
    repeat 2 116 868 104
    3 86 459 500 92 466 122.5
    repeat 3 94 467 526
    3 foamed 91 207 47.5 77.1 149.1 42.6
    repeat 3
    foamed
    102 211 51
    5 361 3980 296 315 2920 158
    repeat 5 352 4020 306
    6 208 2540 361 191 2280 296
    repeat 6 226 2890 373
  • From Tables I and II, it can be seen that the test cement compositions of this invention containing organosilane coupling agent surface treated hollow glass microspheres had significantly better tensile strengths, compressive strengths and shear bond strengths than did the same cement compositions containing untreated hollow glass microspheres.

Claims (12)

  1. A low density cement composition having enhanced compressive, tensile and bond strengths upon setting, which composition comprises a hydraulic cement; sufficient water to form a slurry; and hollow glass microspheres surface treated with a mixture of organosilane coupling agents present in an amount sufficient to produce a cement composition density of from 6 to 12 pounds per gallon.
  2. A composition according to claim 1, wherein said hydraulic cement is selected from Portland cements, slag cements, pozzolana cements, gypsum cements, aluminous cements, silica cements and alkaline cements.
  3. A composition according to claim 1 or 2, wherein said water is fresh water or salt water.
  4. A composition according to claim 1, 2 or 3, wherein said water is present in said composition in an amount of from 58% to 160% by weight of said hydraulic cement therein.
  5. A composition according to claim 1, 2, 3 or 4, wherein said surface treated hollow glass microspheres are present in said composition in an amount of from 10% to 21% by weight of said hydraulic cement therein.
  6. The composition according to any of claims 1 to 5, wherein said mixture of organosilane coupling agents used to surface treat said hollow glass microspheres is a mixture of 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane, or a mixture of 3-glycidoxypropyltrimethoxy silane and N-2-(aminoethyl)-3-aminopropyltrimethoxy silane, preferably a 1:1 by weight mixture of 3-glycidoxypropyltrimethoxy silane and 3-aminopropyltriethoxy silane.
  7. A composition according to any of claims 1 to 6, wherein said surface treated hollow glass microspheres are present in an amount sufficient to produce a cement composition density of 6 pounds per gallon; and wherein the composition further comprises a gas in an amount sufficient to foam said cement composition to a density of 5 pounds per gallon or below; and a mixture of foaming and foam stabilizing surfactants.
  8. A composition according to claim 7, wherein said gas is air or nitrogen.
  9. A composition according to claim 7 or 8, wherein said gas is present in said cement composition in an amount of from 20% to 80% by volume of said cement composition.
  10. A composition according to claim 7, 8 or 9, wherein said mixture of foaming and foam stabilizing surfactants in said cement composition is comprised of an ethoxylated alcohol ether sulfate present in said mixture in an amount of 63.3 parts by weight of said mixture, cocoylamidopropyl betaine present in an amount of 31.7 parts by weight of said mixture and cocoylamidopropyl dimethylamine oxide present in an amount of 5 parts by weight of said mixture.
  11. A composition according to claim 7, 8, 9 or 10, wherein said mixture of foaming and foam stabilizing surfactants is present in said cement composition in an amount of from 0.8% to 5% by volume of said water therein.
  12. A method of cementing pipe in a well bore penetrating a subterranean zone or formation which readily fractures at low hydrostatic pressures, which method comprises placing a cement composition as claimed in any of claims 1 to 11 into the annulus between said pipe and the walls of said well bore; and allowing said cement composition to set therein.
EP03254276A 2002-07-25 2003-07-04 Composition for cementing a pipe in a well bore Withdrawn EP1394137A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/205,085 US6516883B1 (en) 2002-07-25 2002-07-25 Methods of cementing pipe in well bores and low density cement compositions therefor
US205085 2002-07-25

Publications (1)

Publication Number Publication Date
EP1394137A2 true EP1394137A2 (en) 2004-03-03

Family

ID=22760733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03254276A Withdrawn EP1394137A2 (en) 2002-07-25 2003-07-04 Composition for cementing a pipe in a well bore

Country Status (4)

Country Link
US (2) US6516883B1 (en)
EP (1) EP1394137A2 (en)
CA (1) CA2432979A1 (en)
NO (1) NO20033091D0 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047212A1 (en) * 2003-11-12 2005-05-26 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
WO2006085057A1 (en) * 2005-02-14 2006-08-17 Halliburton Energy Services, Inc. Methods of cementing with lightweight cement compositions
WO2006095123A2 (en) * 2005-03-11 2006-09-14 Halliburton Energy Services, Inc. Methods for high temperature lightweight cementing
WO2006095124A1 (en) * 2005-03-11 2006-09-14 Halliburton, Energy Services, Inc. Compositions for high temperature lightweight cementing
US7674332B2 (en) 2005-09-09 2010-03-09 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US7927419B2 (en) 2005-09-09 2011-04-19 Halliburton Energy Services Inc. Settable compositions comprising cement kiln dust and swellable particles
US8030253B2 (en) 2005-09-09 2011-10-04 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles
US8261827B2 (en) 2005-09-09 2012-09-11 Halliburton Energy Services Inc. Methods and compositions comprising kiln dust and metakaolin
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US11466202B2 (en) 2016-11-10 2022-10-11 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135005B2 (en) * 2001-02-20 2006-11-14 Fountainhead, Llc Shoulder brace
US6644405B2 (en) * 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US6516883B1 (en) * 2002-07-25 2003-02-11 Halliburton Energy Services, Inc. Methods of cementing pipe in well bores and low density cement compositions therefor
US6702021B1 (en) * 2002-11-15 2004-03-09 Halliburton Energy Services, Inc. Methods and drilling fluids for drilling well bores and sealing pipe strings therein
US20040171499A1 (en) * 2003-01-24 2004-09-02 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US7482309B2 (en) * 2003-11-24 2009-01-27 Halliburton Energy Services, Inc. Methods of drilling wellbores using variable density fluids comprising coated elastic particles
US7543642B2 (en) * 2003-01-24 2009-06-09 Halliburton Energy Services, Inc. Cement compositions containing flexible, compressible beads and methods of cementing in subterranean formations
US7273100B2 (en) * 2003-04-15 2007-09-25 Halliburton Energy Services, Inc. Biodegradable dispersants for cement compositions and methods of cementing in subterranean formations
US7147055B2 (en) * 2003-04-24 2006-12-12 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6957702B2 (en) * 2003-04-16 2005-10-25 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
US6904971B2 (en) * 2003-04-24 2005-06-14 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6951250B2 (en) * 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
US6908508B2 (en) 2003-06-04 2005-06-21 Halliburton Energy Services, Inc. Settable fluids and methods for use in subterranean formations
US6689208B1 (en) 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US6739806B1 (en) 2003-06-13 2004-05-25 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in subterranean formations
US6832652B1 (en) * 2003-08-22 2004-12-21 Bj Services Company Ultra low density cementitious slurries for use in cementing of oil and gas wells
US7055603B2 (en) * 2003-09-24 2006-06-06 Halliburton Energy Services, Inc. Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US20050109507A1 (en) * 2003-11-21 2005-05-26 Halliburton Energy Services, Inc. Methods of using cement compositions having long-term slurry-state stability
US20050241538A1 (en) * 2004-04-28 2005-11-03 Vargo Richard F Jr Methods of making cement compositions using liquid additives containing lightweight beads
US20050241545A1 (en) * 2004-04-28 2005-11-03 Vargo Richard F Jr Methods of extending the shelf life of and revitalizing lightweight beads for use in cement compositions
US6978834B1 (en) * 2004-05-26 2005-12-27 Halliburton Energy Services, Inc. Foamed and non-foamed cement compositions including silane treated amorphous silica and methods
WO2007145734A2 (en) * 2006-06-07 2007-12-21 Exxonmobil Upstream Research Company Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US8088716B2 (en) * 2004-06-17 2012-01-03 Exxonmobil Upstream Research Company Compressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud
WO2007145731A2 (en) * 2006-06-07 2007-12-21 Exxonmobil Upstream Research Company Compressible objects combined with a drilling fluid to form a variable density drilling mud
US7013975B2 (en) * 2004-07-26 2006-03-21 Halliburton Energy Services, Inc. Foamed cement slurries, additives and methods
US6951249B1 (en) 2004-07-26 2005-10-04 Halliburton Energy Services, Inc. Foamed cement slurries, additives and methods
US6953505B1 (en) 2004-08-19 2005-10-11 Halliburton Energy Services, Inc. Stable and biodegradable foamed cement slurries, additives and methods
US7191834B2 (en) 2004-09-22 2007-03-20 Halliburton Energy Services, Inc. Foamed cement compositions and associated methods of use
US20060167133A1 (en) * 2005-01-24 2006-07-27 Jan Gromsveld Sealant composition comprising a crosslinkable material and a reduced amount of cement for a permeable zone downhole
US8703659B2 (en) * 2005-01-24 2014-04-22 Halliburton Energy Services, Inc. Sealant composition comprising a gel system and a reduced amount of cement for a permeable zone downhole
US7524369B2 (en) * 2005-02-08 2009-04-28 Halliburton Energy Services, Inc. Low-density cement compositions, density-reducing additives, and methods of use
US7510609B2 (en) * 2005-02-08 2009-03-31 Halliburton Energy Services Inc. Low-density cement compositions, density-reducing additives, and methods of use
US7077219B1 (en) 2005-02-18 2006-07-18 Halliburton Energy Services, Inc. Foamed treatment fluids and associated methods
US20070105995A1 (en) * 2005-11-04 2007-05-10 Halliburton Energy Services, Inc. Fluid loss control additives for foamed cement compositions and associated methods
WO2007106978A1 (en) * 2006-03-17 2007-09-27 Clausi Robert N Gypsum-based composition
EP2035651A4 (en) * 2006-06-07 2009-08-05 Exxonmobil Upstream Res Co Method for fabricating compressible objects for a variable density drilling mud
KR100944207B1 (en) 2008-07-29 2010-02-24 박홍욱 Rust-resistant and earthquake-resistant mortar composition for repair of concrete structure
US7861782B2 (en) * 2008-07-31 2011-01-04 Halliburton Energy Services Inc. Foamed cement compositions, additives, and associated methods
CA2703604C (en) * 2009-05-22 2017-06-20 Lafarge Low density cementitious compositions
CA2746034C (en) 2010-07-15 2018-09-04 Lafarge Low density cementitious compositions using limestone
US8435930B2 (en) 2010-07-15 2013-05-07 Lafarge Low density cementitious compositions using lime kiln dust
CA2872878C (en) * 2012-05-09 2015-12-22 Shawcor Ltd. Thermal insulating concrete composition
US9796622B2 (en) 2013-09-09 2017-10-24 Saudi Arabian Oil Company Development of high temperature low density cement
US9120962B1 (en) 2014-06-25 2015-09-01 Halliburton Energy Services, Inc. Plugging composition using swellable glass additives
CN107418173A (en) 2014-06-27 2017-12-01 赛史品威奥(唐山)结构复合材料有限公司 The low-density moulded material for the microsphere being modified including surface
CA2954265C (en) 2014-08-15 2019-08-13 Halliburton Energy Services, Inc. Naphthol-based epoxy resin additives for use in well cementing
US10202733B2 (en) 2016-08-05 2019-02-12 Csi Technologies Llc Method of using low-density, freezable fluid to create a flow barrier in a well
US10336572B2 (en) * 2017-02-07 2019-07-02 Hall Labs Llc Compact inflator
US10428261B2 (en) 2017-06-08 2019-10-01 Csi Technologies Llc Resin composite with overloaded solids for well sealing applications
US10378299B2 (en) 2017-06-08 2019-08-13 Csi Technologies Llc Method of producing resin composite with required thermal and mechanical properties to form a durable well seal in applications
US10450494B2 (en) 2018-01-17 2019-10-22 Bj Services, Llc Cement slurries for well bores

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897699A (en) 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
US6063738A (en) 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042535A (en) * 1959-07-22 1962-07-03 Iowa State College Res Found Aggregate treatment
US3804058A (en) * 1972-05-01 1974-04-16 Mobil Oil Corp Process of treating a well using a lightweight cement
DE2710548C2 (en) * 1977-03-10 1982-02-11 Rudolf 8019 Moosach Hinterwaldner Storage-stable hardenable composition and method for hardening it
US4252193A (en) * 1979-06-11 1981-02-24 Standard Oil Company (Indiana) Low density cement slurry and its use
US4340427A (en) 1979-05-10 1982-07-20 Halliburton Company Well cementing process and gasified cements useful therein
US4304298A (en) 1979-05-10 1981-12-08 Halliburton Company Well cementing process and gasified cements useful therein
US4370166A (en) * 1980-09-04 1983-01-25 Standard Oil Company (Indiana) Low density cement slurry and its use
US4391646A (en) * 1982-02-25 1983-07-05 Minnesota Mining And Manufacturing Company Glass bubbles of increased collapse strength
US4530402A (en) * 1983-08-30 1985-07-23 Standard Oil Company Low density spacer fluid
SU1650625A1 (en) * 1988-02-01 1991-05-23 Предприятие П/Я Г-4126 Binder
WO1996000754A1 (en) 1994-06-30 1996-01-11 Minnesota Mining And Manufacturing Company Polyurethane/urea elastomeric sealants
US6152227A (en) * 1997-10-24 2000-11-28 Baroid Technology, Inc. Drilling and cementing through shallow waterflows
GC0000046A (en) * 1998-02-26 2004-06-30 Shell Int Research Compositions for use in well construction, repair and/or abandonment.
US6279652B1 (en) 1998-09-23 2001-08-28 Halliburton Energy Services, Inc. Heat insulation compositions and methods
US6210476B1 (en) 1999-09-07 2001-04-03 Halliburton Energy Services, Inc. Foamed cement compositions and methods
WO2001090022A1 (en) * 2000-05-24 2001-11-29 Martin Baeuml Cement-bound active substance
US6367549B1 (en) 2001-09-21 2002-04-09 Halliburton Energy Services, Inc. Methods and ultra-low density sealing compositions for sealing pipe in well bores
US6516883B1 (en) * 2002-07-25 2003-02-11 Halliburton Energy Services, Inc. Methods of cementing pipe in well bores and low density cement compositions therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897699A (en) 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
US6063738A (en) 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMERICAN PETROLEUM INSTITUTE: "API Specification For Materials And Testing For Well Cements", API SPECIFICATION, vol. 10, no. 5, 1 July 1990 (1990-07-01)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047212A1 (en) * 2003-11-12 2005-05-26 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
US7073584B2 (en) 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
US10005949B2 (en) 2004-02-10 2018-06-26 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
WO2006085057A1 (en) * 2005-02-14 2006-08-17 Halliburton Energy Services, Inc. Methods of cementing with lightweight cement compositions
GB2440845A (en) * 2005-02-14 2008-02-13 Halliburton Energy Serv Inc Methods of cementing with lightweight cement compositions
GB2440845B (en) * 2005-02-14 2011-03-09 Halliburton Energy Serv Inc Methods of cementing with lightweight cement compositions
NO341134B1 (en) * 2005-02-14 2017-08-28 Halliburton Energy Services Inc Method of cementing an underground formation
WO2006095123A2 (en) * 2005-03-11 2006-09-14 Halliburton Energy Services, Inc. Methods for high temperature lightweight cementing
WO2006095124A1 (en) * 2005-03-11 2006-09-14 Halliburton, Energy Services, Inc. Compositions for high temperature lightweight cementing
WO2006095123A3 (en) * 2005-03-11 2007-07-12 Halliburton Energy Serv Inc Methods for high temperature lightweight cementing
US7398827B2 (en) * 2005-03-11 2008-07-15 Halliburton Energy Services, Inc. Methods for high temperature lightweight cementing
US8551923B1 (en) 2005-09-09 2013-10-08 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8261827B2 (en) 2005-09-09 2012-09-11 Halliburton Energy Services Inc. Methods and compositions comprising kiln dust and metakaolin
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8318642B2 (en) 2005-09-09 2012-11-27 Halliburton Energy Services, Inc. Methods and compositions comprising kiln dust and metakaolin
US8324137B2 (en) 2005-09-09 2012-12-04 Roddy Craig W Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8399387B2 (en) 2005-09-09 2013-03-19 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8434553B2 (en) 2005-09-09 2013-05-07 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8440596B2 (en) 2005-09-09 2013-05-14 Halliburton, Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8486868B2 (en) 2005-09-09 2013-07-16 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8486869B2 (en) 2005-09-09 2013-07-16 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8544543B2 (en) 2005-09-09 2013-10-01 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US7927419B2 (en) 2005-09-09 2011-04-19 Halliburton Energy Services Inc. Settable compositions comprising cement kiln dust and swellable particles
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US7674332B2 (en) 2005-09-09 2010-03-09 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US9903184B2 (en) 2005-09-09 2018-02-27 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US8030253B2 (en) 2005-09-09 2011-10-04 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles
US8691737B2 (en) 2005-09-09 2014-04-08 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US8895485B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8921284B2 (en) 2005-09-09 2014-12-30 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9006154B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9157020B2 (en) 2005-09-09 2015-10-13 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9644132B2 (en) 2005-09-09 2017-05-09 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions and methods of use
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US8940670B2 (en) 2007-05-10 2015-01-27 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9512352B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8741818B2 (en) 2007-05-10 2014-06-03 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US8603952B2 (en) 2007-05-10 2013-12-10 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US9376609B2 (en) 2010-12-21 2016-06-28 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US11466202B2 (en) 2016-11-10 2022-10-11 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles
US11795383B2 (en) 2016-11-10 2023-10-24 Halliburton Energy Services, Inc. Storable liquid suspension of hollow particles

Also Published As

Publication number Publication date
US6979366B2 (en) 2005-12-27
US20040016371A1 (en) 2004-01-29
CA2432979A1 (en) 2004-01-25
NO20033091D0 (en) 2003-07-07
US6516883B1 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
US6516883B1 (en) Methods of cementing pipe in well bores and low density cement compositions therefor
US6210476B1 (en) Foamed cement compositions and methods
EP1341734B1 (en) Foamed well cement slurries
US7413014B2 (en) Foamed fly ash cement compositions and methods of cementing
JP2993942B2 (en) Light-weight cement composition for high-temperature well and cementing method
US6660078B2 (en) Methods, well cement compositions and lightweight additives therefor
US7297208B2 (en) Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US6478868B1 (en) Early-enhanced strength cement compositions and methods
US6811603B2 (en) Methods, well cement compositions and lightweight additives therefor
US6457524B1 (en) Well cementing compositions and methods
US5897699A (en) Foamed well cement compositions, additives and methods
US6689208B1 (en) Lightweight cement compositions and methods of cementing in subterranean formations
US6776237B2 (en) Lightweight well cement compositions and methods
US6899177B2 (en) Methods of cementing subterranean zones with cement compositions having enhanced compressive strengths
US20040206501A1 (en) Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
CA2337372A1 (en) High strength foamed well cement compositions and methods
CA2407365A1 (en) Storable water-microsphere suspensions for use in well cements and methods
WO2006100506A2 (en) Methods of cementing using cement compositions comprising basalt fibers
EP1483220B1 (en) Lightweight well cement compositions and methods
US7861782B2 (en) Foamed cement compositions, additives, and associated methods
AU2002345750B2 (en) Well cementing compositions and methods

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070201