EP1393602A1 - Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules. - Google Patents

Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.

Info

Publication number
EP1393602A1
EP1393602A1 EP02737673A EP02737673A EP1393602A1 EP 1393602 A1 EP1393602 A1 EP 1393602A1 EP 02737673 A EP02737673 A EP 02737673A EP 02737673 A EP02737673 A EP 02737673A EP 1393602 A1 EP1393602 A1 EP 1393602A1
Authority
EP
European Patent Office
Prior art keywords
intensity
value
accelerator
ion source
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02737673A
Other languages
German (de)
English (en)
Inventor
Bruno Marchand
Bertrand Bauvir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP02737673A priority Critical patent/EP1393602A1/fr
Publication of EP1393602A1 publication Critical patent/EP1393602A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the present invention is in the technical field of regulating the intensity of a beam extracted from a particle accelerator.
  • the present "• invention relates to a device for the rapid and precise regulation of the intensity of a beam extracted from a particle accelerator, and more specifically from a cyclotron.
  • the present invention also relates to a method for regulating the intensity of the beam extracted from a particle accelerator.
  • the present invention finally relates to the use of this device or this method in proton therapy and in particular in the technique of "Pencil Beam Scanning".
  • Cyclotrons are circular particle accelerators which are used to accelerate positive or negative ions to energies of a few MeV or more. This type of device finds applications in different fields such as industry or medicine, more specifically in radiotherapy for the production of radioisotopes or in proton therapy, in order to treat cancerous tumors. Cyclotrons generally include five major components: the ion source which generates the ionized particles, the vacuum confinement device for the ionized particles, the electromagnet which produces the magnetic field guiding the ionized particles, the accelerator system.
  • the extraction device making it possible to divert the ionized particles from their acceleration trajectory then to evacuate them out of the cyclotron in the form of a beam with high kinetic energy. This beam is then directed to the target volume.
  • the ions are obtained by ionization, in a closed chamber, of a gaseous medium consisting of one or more gases, by means of electrons strongly accelerated by cyclotron electronic resonance under the action of a high frequency magnetic field injected into the enclosure.
  • Such cyclotrons can be used in proton therapy.
  • Proton therapy aims to deliver a high dose in a well defined target volume to be treated while sparing the healthy tissue surrounding the volume in question.
  • protons Compared to conventional radiotherapy (X-rays), protons have the advantage of depositing their dose at a precise depth depending on energy (Bragg peak).
  • X-rays X-rays
  • Bragg peak Several techniques for distributing the dose in the target volume are known.
  • Applicant describes an improved technique, called “pencil beam scanning", in which the beam must not be interrupted between the irradiation of each individual voxel.
  • the process described in this document consists in moving the beam continuously so as to "paint" the target volume layer by layer.
  • the intensity of the proton beam is regulated indirectly by an action on the supply current of the ion source.
  • a regulator is used which regulates the intensity of the proton beam.
  • this regulation is not optimal.
  • Double Diffusion Another technique used in proton therapy is the so-called "Double Diffusion" technique.
  • the modulation of the irradiation depth (that is to say of the energy) is carried out using a wheel known as a modulation wheel rotating at a speed of the order of 600 rev / min.
  • the absorbent parts of this modulator consist of a absorbent material, such as graphite or lexan.
  • the depth modulation obtained is fairly close to the predictions. Uniformity remains outside of the desired specifications. To achieve the uniformity specifications, rather than re-machining the modulation wheels, it is less expensive to use beam intensity regulation which is synchronized with the speed of rotation of the energy modulator.
  • the modulation function is therefore established for each energy modulator and is used as the path supplied as a setpoint to the beam intensity regulator.
  • a rapid and precise regulation of the intensity of the beam extracted from a particle accelerator is therefore also necessary in the double diffusion techniques using such a modulation wheel.
  • the present invention aims to provide a device and a method for regulating the intensity of a beam extracted from a particle accelerator, which does not have the drawbacks of the methods and devices of the state of the technical.
  • the present invention relates to a device for regulating the intensity of the beam extracted from a particle accelerator, such as a cyclotron, used for example for proton therapy, said particles being generated from a source. ion, characterized in that it comprises at least:
  • a comparator determining a difference between a digital signal representative of the intensity of the beam measured at the output of the accelerator and a setpoint value of the beam intensity
  • the device according to the invention may comprise an analog-digital converter converting the analog signal directly - representative of the intensity of the beam measured at the output of the accelerator, and providing a digital signal.
  • the device according to the invention will further comprise:
  • a low-pass filter filtering the analog signal directly representative of the intensity of the beam measured at the output of the accelerator, and providing a filtered analog signal; - a phase advance regulator sampling said filtered analog signal, compensating for the phase delay introduced by the low-pass filter, and supplying a digital signal to the comparator.
  • the device of the invention comprises means for updating the content of the reverse correspondence table.
  • the sampling frequency is preferably between 100 kHz and 200 kHz, and the cut-off frequency of the low-pass filter is preferably between 2 and 6 kHz.
  • the present invention also relates to a method of regulation, by means of a digital regulation device operating at a given sampling frequency, of the beam intensity extract of a particle accelerator, such as a cyclotron, used for example in proton therapy, said particles being generated from an ion source, characterized in that it comprises at least the following steps:
  • a corrected beam intensity value is determined, using a Smith predictor
  • a set value is determined for the supply of the arc current from the ion source.
  • the analog signal directly representative of the intensity of the beam measured by means of d is converted.
  • a digital analog converter to obtain a digital signal.
  • the analog signal is filtered directly representative of the intensity of the beam measured by means of a low-pass filter, giving a filtered analog signal;
  • the correspondence between a value for supplying the arc current of the ion source and a value of the intensity of the beam measured at the accelerator output is determined prior to regulation.
  • the values of the supply of the arc current corresponding to the beam intensity values above a limit are replaced by the supply value of the arc current corresponding to this limit.
  • the present invention also relates to the use of the device and the method of the invention in proton therapy and in particular in the techniques of "Pencil Beam Scanning" and “double diffusion".
  • Figure 1 shows a device for regulating the intensity of a beam extracted from a particle accelerator according to the prior art.
  • FIG. 3 shows an embodiment of a device for regulating the intensity of a beam extracted from a particle accelerator according to the invention.
  • FIG. 4 shows a second embodiment of a device for regulating the intensity of a beam extracted from a particle accelerator according to the invention.
  • a set value I c of the beam intensity is supplied to a conventional PID regulator 10, which determines a value I j ⁇ of the arc current of the ion source 20.
  • the intensity of the beam is measured by means of an ionization chamber 30, and the corresponding signal I is compared with the aid of a comparator "90 to the reference value le to provide an error signal.
  • a comparator "90 to the reference value le it is essential that the intensity of the beam varies simultaneously with the displacement, so as to obtain the conformity of the delivered dose.
  • a large pure dead time is due to the long travel time of a particle between its emission by the ion source 20 and its exit from the machine;
  • this characteristic can vary over time, as shown by the broken lines in Figure 2. This variation can occur quickly due to heating or cooling of the filament of the ion source during its setting service. It can also come from the aging of the filament. These two phenomena lead to variations in the characteristic with very different time constants; - the system is very noisy. The intensity of the beam generated by the ion source presents significant noise, in particular at the sampling frequency used for the measurement.
  • the evolution of the characteristic depends on two well-decoupled phenomena: the first, of short time constant, corresponds to the conditioning of the ion source, that is to say its temperature. Normal, continuous or intermittent high duty cycle operation heats the ion source quickly. This rapid establishment time in temperature could make it possible to work in an open loop, that is to say without taking account of the real characteristic of the system, using the conventional methods, during the conditioning time. However, this compromise greatly limits the use of a conventional method in intermittent operation with an average duty cycle, which often corresponds to the operating mode used.
  • the second phenomenon, of a longer time constant is due to the aging of the filament and of the ion source itself. This slower evolution of the characteristic could therefore give rise to the use of an average characteristic of the system. The use of an average characteristic however leads to a regulation which is either too slow or unstable.
  • the present invention therefore proposes to more specifically resolve this problem by using, according to a preferred embodiment, a regulating device 10 shown in FIG. 3 with the supply of the arc current from the ion source 20.
  • the ion source produces an ion beam, which is accelerated during its journey in the accelerator, is extracted therefrom, and passes through a measuring device 30 of the beam intensity at the exit of the accelerator.
  • This measuring device 30 can for example be an ionization chamber.
  • the regulator according to the invention has been applied for a cyclotron having the following exemplary and non-limiting characteristics:
  • This pure dead time corresponds to the travel time of the ions in the accelerator. It therefore corresponds directly to the time necessary to measure the influence of a modification of the setpoint of the arc of the ion source on the intensity of the beam of ions extracted from the machine.
  • the noise / signal ratio observed is around 150%.
  • the selected sampling frequencies generate a very low signal / noise ratio.
  • the following steps are carried out: - the set value of the intensity of the beam I c is supplied in the form of an analog signal 0- 10 V (10 V corresponding to a beam intensity of 300 nA); the beam intensity is measured by means of an ionization chamber 30 and the measurement I UberM is supplied to the regulating device 10 by means of an analog signal 0-15 ⁇ A (15 ⁇ A corresponding to an intensity of the 300 nA beam);
  • the correspondence table 40 numerically provides the non-linear relationship between the arc current of the source d IA ions, and the intensity of the IM beam, of ions extracted from the accelerator. It therefore makes it possible to identify the nonlinear characteristic of the system.
  • the output of the inverted correspondence table is converted into an analog signal of the 4-20 mA I type which is supplied by the regulating device 10 as a set value for supplying the arc current of the ion source. Simulations show that such a device allows good regulation. It is however sensitive to low frequency disturbances. To solve this problem, a preferred variant of the device according to the invention, shown in FIG. 4, has been developed.
  • a low-pass filter 60 and a phase advance regulator 70 are introduced into the feedback.
  • the filter 60 is for example a first order low pass filter.
  • the cutoff frequency is 4.5 kHz.
  • a phase advance regulator 70 filtered differentiator
  • Both the device of FIG. 3 and that of FIG. 4 include an inverted correspondence table 40.
  • the content of this table 40 is determined prior to each use of the device in the following manner:
  • the setpoint of the arc current of the ion source 20 is gradually increased from 0 to 20 mA in the form of a ramp of 100 ms;
  • the intensity of the beam is measured for each of the 4000 points sampled; - The table obtained is inverted, so as to provide a corresponding value of the arc current of the ion source I A, as a function of the intensity of the beam IM wait.
  • This inverted table is loaded into the regulating device 10. In practice, this operation is carried out a dozen times successively. This ensures that the parameters reach a plateau, corresponding to the filament operating temperature. In order to eliminate the noise, an average of the last 4 tables is calculated. These operations, performed automatically, last a maximum of 1.5 s. In a variant of the invention, the values of I corresponding to the values of I greater than a given limit are replaced by the value of I corresponding to this limit. The curves in Figure 2 are therefore clipped. This is a safety feature to guarantee that the intensity of the beam produced by the accelerator will never exceed this limit.
  • the device according to the invention is produced by means of an electronic card which uses digital technologies of the DSP (Digital Signal Processing) type.
  • the method of regulation according to the present invention has several advantages. First of all, it allows a controlled adaptation, that is to say it requires a very small computation time in comparison with modern methods of adaptive control and allows a very easy change of structure since the identification is made by construction of a correspondence table which it then suffices to invert numerically to linearize the characteristic of the system seen by the main regulator.

Abstract

La présente invention se rapporte ô un dispositif (10) de régulation de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple pour la protonthérapie, lesdites particules étant générées à partir d' une source d'ions, caractérisé en ce qu'il comporte au moins :- un comparateur (90) déterminant un écart e entre un signal digital IR représentatif de l'intensité du faisceau mesurée à las ortie de l'accélérateur et une valeur de consigne IC de l'intensité du faisceau;- un prédicteur de Smith (80), qui détermine partir de l'écart e, une valeur corrigée de l'intensité de faisceau IP;- une table de correspondance inversée (40), fournissant, ô partir de la valeur corrigée de l'intensité de faisceau IP, une valeur de consigne IA pour l'alimentation du courant d'arc de la source d'ions (20).

Description

DISPOSITIF ET METHODE DE REGULATION DE L ' INTENSITE D'UN FAISCEAU EXTRAIT D'UN ACCELERATEUR DE PARTICULES
Objet de l'invention
[0001] La présente invention se situe dans le domaine technique de la régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules. [0002] La présente "• invention se rapporte à un dispositif destiné à la régulation rapide et précise de l'intensité d'un faisceau extrait d'un accélérateur de particules, et plus spécifiquement d'un cyclotron.
[0003] La présente invention se rapporte également à une méthode pour la régulation de l'intensité du faisceau extrait d'un accélérateur de particules.
[0004] La présente invention se rapporte enfin à l'utilisation de ce dispositif ou de cette méthode en protonthérapie et en particulier dans la technique de "Pencil Beam Scanning" .
Arrière-plan technologique et état de la technique [0005] Les cyclotrons sont des accélérateurs circulaires de particules qui sont utilisés pour accélérer des ions positifs ou négatifs jusqu'à des énergies de quelques MeV voire plus. Ce type d'appareils trouve des applications dans des domaines différents tels que l'industrie ou la médecine, plus précisément en radiothérapie pour la production de radio-isotopes ou en protonthérapie, en vue de traiter des tumeurs cancéreuses. [0006] Les cyclotrons comprennent généralement cinq composants majeurs : la source d'ions qui génère les particules ionisées, le dispositif de confinement sous vide des particules ionisées, l' électroaimant qui produit le champ magnétique assurant le guidage des particules ionisées, le système accélérateur haute fréquence destiné à accélérer les particules ionisées, et le dispositif d'extraction permettant de dévier les particules ionisées de leur trajectoire d'accélération puis de les évacuer hors du cyclotron sous forme d'un faisceau à haute énergie cinétique. Ce faisceau est ensuite dirigé vers le volume cible.
[0007] Dans la source d'ions d'un cyclotron, les ions sont obtenus par ionisation, dans une enceinte fermée, d'un milieu gazeux constitué d'un ou plusieurs gaz, au moyen d'électrons fortement accélérés par résonance électronique cyclotronique sous l'action d'un champ magnétique haute fréquence injecté dans l'enceinte.
[0008] De tels cyclotrons peuvent être utilisés en protonthérapie. La protonthérapie vise à délivrer une dose élevée dans un volume cible à traiter bien défini tout en épargnant les tissus sains entourant le volume considéré. En comparaison à la radiothérapie conventionnelle (rayons X), les protons présentent l'avantage de déposer leur dose à une profondeur précise dépendant de l'énergie (pic de Bragg) . Plusieurs techniques pour distribuer la dose dans le volume cible sont connues .
[0009] La technique mise au point par Pedroni et décrite dans « The 200-Mev proton therapy project at the Paul Scherrer Insti tute : conceptual design and practical realization » MEDICAL PHYSICS, JAN. 1995, USA, vol .22, no . l , pages 37-53 , XP000505145 ISSN : 0094 -2405, consiste à découper le volume cible en volumes élémentaires appelés « voxels ». On dirige le faisceau vers un premier voxel, et lorsque la dose prescrite est atteinte, on interrompt l'irradiation en déviant brusquement le faisceau au moyen d'un aimant rapide (fast kicking magnet) . On règle alors un aimant de balayage de manière à diriger le faisceau vers un voxel suivant, et on réintroduit le faisceau de manière . à irradier ce voxel suivant. Ce processus est répété jusqu'à irradiation du volume cible en entier. Un des inconvénients de ce procédé est que, en raison des interruptions et rétablissements successifs du faisceau entre deux voxels, le temps de traitement est important, et peut atteindre plusieurs minutes dans des conditions typiques.
[0010] La demande de brevet O00/40064 de la
Demanderesse décrit une technique améliorée, dite « pencil beam scanning », dans laquelle le faisceau ne doit pas être interrompu entre l'irradiation de chaque voxel individuel.
Le procédé décrit dans ce document consiste à déplacer le faisceau de manière continue de manière à "peindre" le volume cible couche après couche.
[0011] En opérant simultanément un déplacement du faisceau et une variation de l'intensité de ce faisceau, on parvient à conformer exactement la dose à délivrer au volume cible. La régulation de l'intensité du faisceau de protons est réalisée indirectement par une action sur le courant d'alimentation de la source d'ions. On utilise dans ce but un régulateur qui permet de réguler l'intensité du faisceau de protons. Toutefois, cette régulation n'est pas optimale.
[0012] Une autre technique utilisée en protonthérapie est la technique dite de « Double Diffusion ». Dans cette technique, la modulation de la profondeur d'irradiation (c'est-à-dire de l'énergie), est réalisée à l'aide d'une roue dite roue de modulation tournant à une vitesse de l'ordre de 600 tr/min. Les parties absorbantes de ce modulateur sont constituées d'un matériau absorbant, tel que le graphite ou de lexan. Lors de la fabrication de ces roues de modulation, la modulation en profondeur obtenue est assez proche des prédictions . L'uniformité reste malgré tout en dehors des spécifications désirées. Pour atteindre les spécifications sur l'uniformité, plutôt que de ré-usiner les roues de modulation, il est moins onéreux d'utiliser une régulation de l'intensité du faisceau qui soit synchronisée sur la vitesse de rotation du modulateur d'énergie. La fonction de modulation est donc établie pour chaque modulateur d'énergie et est utilisée comme trajectoire fournie comme consigne au régulateur de l'intensité du faisceau. Une régulation rapide et précise de l'intensité du faisceau extrait d'un accélérateur de particules est donc nécessaire également dans les techniques de double diffusion utilisant une telle roue de modulation.
Buts de ' invention
[0013] La présente invention vise à fournir un dispositif et une méthode destinés à la régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules, qui ne présente pas les inconvénients des procédés et dispositifs de l'état de la technique.
Résumé de 1 ' invention
[0014] La présente invention se rapporte à un dispositif de régulation de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple pour la protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisé en ce qu' il comporte au moins :
- un comparateur déterminant un écart entre un signal digital représentatif de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur de consigne de l'intensité du faisceau;
- un prédicteur de Smith, qui détermine, à partir de cet écart, une valeur corrigée de l'intensité de faisceau; - une table de correspondance inversée, fournissant, .à partir de la valeur corrigée de l'intensité de faisceau, une valeur de consigne pour l'alimentation du courant d'arc de la source d'ions. [0015] En outre, le dispositif selon l'invention peut comprendre un convertisseur analogique-digital convertissant le signal analogique directement - représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal digital. [0016] De préférence, le dispositif selon l'invention comprendra en outre :
- un filtre passe-bas filtrant le signal analogique directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal analogique filtré; - un régulateur à avance de phase échantillonnant ledit signal analogique filtré, compensant le retard de phase introduit par le filtre passe-bas, et fournissant un signal digital au comparateur.
[0017] Avantageusement, le dispositif de l'invention comporte des moyens de mise à jour du contenu de la table de correspondance inversée .
[0018] La fréquence d'échantillonnage est de préférence comprise entre 100 kHz et 200- kHz, et la fréquence de coupure du filtre passe-bas est de préférence comprise entre 2 et 6 kHz.
[0019] La présente invention concerne également une méthode de régulation, au moyen d'un dispositif de régulation digital fonctionnant à une fréquence d'échantillonnage donnée, de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple en protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisée en ce qu'elle comprend au moins les étapes suivantes :
- on mesure l'intensité du faisceau à la sortie de l'accélérateur de particules;
- on compare un signal digital représentatif de la mesure de l'intensité du faisceau avec la valeur de consigne de l'intensité du faisceau;
- on détermine, au moyen d'un prédicteur de Smith, une valeur corrigée de l'intensité de faisceau;
- on détermine, à partir de cette valeur corrigée de l'intensité de faisceau, au moyen d'une table de correspondance inversée, une valeur de consigne pour l'alimentation du courant d'arc de la source d'ions.
[0020] De préférence, dans la méthode selon l'invention, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules, on convertit le signal analogique directement représentatif de l'intensité du faisceau mesurée au moyen d'un convertisseur analogique digital pour obtenir un signal digital .
[0021] Selon une forme d'exécution de la méthode selon l'invention, - on filtre le signal analogique directement représentatif de l'intensité du faisceau mesurée au moyen d'un filtre passe-bas, donnant un signal analogique filtré;
- on échantillonne ledit signal filtré, et on compense le retard de phase introduit par le filtrage pour obtenir un signal digital.
[0022] Avantageusement, la correspondance entre une valeur pour l'alimentation du courant d'arc de la source d'ions et une valeur de l'intensité du faisceau mesurée à la sortie de l'accélérateur est déterminée préalablement à la régulation.
[0023] Avantageusement, dans la correspondance entre une valeur de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur pour l'alimentation du courant d'arc de la source d'ions, les valeurs de l'alimentation du courant d'arc correspondant aux valeurs d'intensité de faisceau supérieures à une limite sont remplacées par la valeur d'alimentation du courant d'arc correspondant cette limite.
[0024] Enfin, la présente invention se rapporte également à l'utilisation du dispositif et de la méthode de l'invention en protonthérapie et en particulier dans les technique de "Pencil Beam Scanning" et de « double diffusion ».
Brève description des figures
[0025] La figure 1 représente un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules suivant l'art antérieur.
[0026] La figure 2 représente la caractéristique du système, c'est-à-dire la correspondance entre une valeur 1^ pour l'alimentation du courant d'arc de la source d'ions et une valeur I„ de l'intensité du faisceau mesurée à la sortie de l'accélérateur.
[0027] La figure 3 représente un mode de réalisation d'un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules selon l'invention. [0028] La figure 4 représente un second mode de réalisation d'un dispositif de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules suivant 1 ' invention. Problèmes à la base de la présente invention [0029] En utilisant une régulation classique, par exemple PID, pour la mise en œuvre de la technique dite
"pencil beam scanning" telle que décrite dans la publication O00/40064 de la Demanderesse, on est confronté aux problèmes décrits ci-après.
[0030] Ainsi que le montre la figure 1, une valeur de consigne Ic de l'intensité du faisceau est fournie à un régulateur PID classique 10, qui détermine une valeur Ij^ du courant d'arc de la source d'ions 20. L'intensité du faisceau est mesurée au moyen d'une chambre d'ionisation 30, et le signal correspondant I est comparé à l'aide d'un comparateur "90 à la valeur de consigne le pour fournir un signal d'erreur ε. Selon la technique de balayage continu du faisceau, il est indispensable que l'intensité du faisceau varie de manière simultanée avec le déplacement, de manière à obtenir la conformité de la dose délivrée .
[0031] Un tel système présente les difficultés suivantes :
- un temps mort pur important est dû au temps de parcours important d'une particule entre son émission par la source d'ions 20 et sa sortie de la machine;
- la caractéristique du système, liant l'intensité du faisceau extrait de l'accélérateur de particules I à l'intensité du courant d'arc de la source d'ions I est fortement non linéaire, ainsi que le montre la figure 2;
- de plus, cette caractéristique peut varier au cours du temps, ainsi que le montrent les courbes en trait interrompu de la figure 2. Cette variation peut survenir rapidement en raison du chauffage ou du refroidissement du filament de la source d'ions lors de sa mise en service. Elle peut également provenir du vieillissement du filament. Ces deux phénomènes conduisent à des variations de la caractéristique avec des constantes de temps très différentes; - le système est fortement bruité. L'intensité du faisceau généré par la source d'ions présente un bruit important, en particulier à la fréquence d'échantillonnage utilisée pour la mesure.
[0032] La régulation d'un tel système en utilisant les méthodes classiques de régulation telles que les techniques de feedforward, de feedback par action proportionnelle, intégrale et dérivée (PID) et de boucles en cascade a été évaluée. En raison du temps mort pur important, toutes ces méthodes donnent des réponses soit trop lentes, soit instables. Les méthodes classiques ne permettent pas non plus d'adresser le problème d'une caractéristique du système fluctuant en fonction du temps en utilisant une valeur moyenne des caractéristiques sur une période donnée, car les variations de gain d'une réponse à l'autre sont dans un rapport très important.
[0033] L'évolution de la caractéristique dépend de deux phénomènes bien découplés : le premier, de constante de temps brève, correspond au conditionnement de la source d'ions, c'est-à-dire à sa température. Le fonctionnement normal, continu ou intermittent à rapport cyclique élevé, chauffe la source d'ions rapidement. Ce temps d'établissement rapide en température pourrait permettre de travailler en boucle ouverte, c'est-à-dire sans tenir compte de la caractéristique réelle du système, en utilisant les méthodes classiques, pendant le temps de conditionnement. Cependant, ce compromis limite fortement l'utilisation d'une méthode classique en fonctionnement intermittent à rapport cyclique moyen, qui correspond souvent au mode de fonctionnement utilisé. [0034] Le second phénomène, de constante de temps plus longue, est dû au vieillissement du filament et de la source d'ions elle-même. Cette évolution plus lente de la caractéristique pourrait donc donner lieu à l'utilisation d'une caractéristique moyenne du système. L'utilisation d'une caractéristique moyenne conduit cependant à une régulation soit trop lente, soit instable.
[0035] Il apparaît donc comme évident que les méthodes classiques de régulation ne peuvent pas résoudre de manière satisfaisante les problèmes du contrôle d'un tel système, c'est-à-dire un temps mort pur largement supérieur à la constante de temps principale du système (environ 4 fois) et une caractéristique non-linéaire évolutive et nécessitant une méthode de régulation adaptative. [0036] La régulation rapide et précise de l'intensité du faisceau extrait d'un accélérateur de particules se heurte donc à de nombreuses difficultés . Une telle régulation rapide et précise est cependant importante pour l'application de la technique du « pencil beam scanning ».
Description d'une forme d'exécution préférée de l'invention [0037] La présente invention se propose par conséquent de résoudre plus spécifiquement ce problême en utilisant selon une forme d'exécution préférée un dispositif de régulation 10 représenté à la figure 3 avec l'alimentation du courant d'arc de la source d'ions 20. La source d'ions produit un faisceau d'ions, qui est accéléré au cours de son parcours dans l'accélérateur, en est extrait, et traverse un dispositif de mesure 30 de l'intensité du faisceau à la sortie de l'accélérateur. Ce dispositif de mesure 30 peut être par exemple une chambre d' ionisation. [0038] Le régulateur suivant l'invention à été appliqué pour un cyclotron présentant les caractéristiques exemplatives et non limitatives suivantes :
- énergie fixe: 235 MeV - temps mort pur : 60 μsec. Ce temps mort pur correspond au temps de parcours des ions dans l'accélérateur. Il correspond donc directement au temps nécessaire pour mesurer l'influence d'une modification de la consigne du courant d'arc de la source d'ions sur l'intensité du faisceau d'ions extraits de la machine
- constante de temps principale : 15 μs . Elle donne une indication sur le temps nécessaire à l'établissement, en boucle ouverte, de la réponse du système à une modification de consigne. - caractéristique du système fortement non-linéaire, ce qui conduit à une caractéristique en boucle ouverte correspondant quasiment à celle d'un système à dynamique hybride (tout ou rien) .
- évolution de la caractéristique au cours du temps. - signal mesuré très bruité. En effet, la source d'ions est instable, ce qui conduit un niveau de bruit très important pour l'intensité du faisceau après extraction.
Le rapport bruit/signal observé est de l'ordre de 150%.
En conséquence, lors d'une mise en œuvre digitale du régulateur, les fréquences d'échantillonnages retenues engendrent un rapport signal / bruit très faible.
[0039] Dans le dispositif de régulation de l'invention, représenté à la figure 3, les étapes suivantes sont réalisées : — la valeur de consigne de l'intensité du faisceau Ic est fournie sous la forme d'un signal analogique 0-10 V (10 V correspondant à une intensité du faisceau de 300 nA) ; - l'intensité de faisceau est mesurée au moyen d'une chambre d'ionisation 30 et la mesure I„ M est fournie au dispositif de régulation 10 au moyen d'un signal analogique 0-15 μA (15 μA correspondant à une intensité du faisceau de 300 nA) ;
- ce signal analogique I est converti par un convertisseur
50 en un signal digital I ;
- ce signal I est comparé par le comparateur à la consigne
Ic pour fournir un signal d'erreur ε; - ce signal d'erreur ε est fourni au régulateur de type « Prédicteur de Smith » 80;
- la sortie IP du prédicteur de Smith 80 est alors fournie à l'entrée d'une table de correspondance inversée 40. La table de correspondance 40 fournit de manière numérique la relation non-linéaire entre le courant d'arc de la source d'ions I A, et l'intensité du faisceau I.M, d'ions extrait de l'accélérateur. Elle permet donc d'identifier la caractéristique non linéaire du système. La sortie de la table de correspondance inversée est convertie en un signal analogique de type 4-20 mA I qui est fourni par le dispositif de régulation 10 comme valeur de consigne pour l'alimentation du courant d'arc de la source d'ions. [0040] Des simulations montrent qu'un tel dispositif permet une bonne .régulation. Il est cependant sensible aux perturbations basse fréquence. Pour résoudre ce problème, on a développé une variante préférée du dispositif suivant l'invention, représenté à la figure 4. Dans ce dispositif 10, on introduit dans la contre-réaction un filtre passe-bas 60 et un régulateur à avance de phase 70. Le filtre 60 est par exemple un filtre passe-bas du premier ordre . La fréquence de coupure est de 4,5 kHz . Afin de compenser le retard de phase introduit par le filtre, on utilise un régulateur à avance de phase 70 (dérivateur filtré), qui compense ce déphasage.
[0041] Tant le dispositif de la figure 3 que celui de la figure 4 comportent une table de correspondance inversée 40. Le contenu de cette table 40 est déterminé préalablement à chaque utilisation du dispositif de la manière suivante :
- le régulateur étant en boucle ouverte, la consigne du courant d'arc de la source d'ions 20 est portée progressivement de 0 à 20 mA sous la forme d'une rampe de 100 ms;
- l'intensité du faisceau est mesurée pour chacun des 4000 points échantillonnés; - la table obtenue est inversée, de manière à fournir une valeur correspondante du courant d'arc de la source d'ions I A, en fonction de l'intensité du faisceau IM„.
- Cette table inversée est chargée dans le dispositif de régulation 10. [0042] En pratique, cette opération est réalisée une douzaine de fois successivement. Ceci permet de s'assurer que les paramètres atteignent un palier, correspondant à la température de régime du filament. Afin d'éliminer le bruit, une moyenne des 4 dernières tables est calculée. Ces opérations, réalisées automatiquement, durent au maximum 1,5 s. Dans une variante de l'invention, les valeurs de I correspondant aux valeurs de I supérieures à une limite donnée sont remplacées par la valeur de I correspondant à cette limite. Les courbes de la figure 2 sont donc écrêtëes. Ceci est un élément de sécurité permettant de garantir que l'intensité du faisceau produit par l'accélérateur ne sera jamais supérieur à cette limite. [0043] Le dispositif suivant l'invention est réalisé au moyen d'une carte électronique qui fait appel aux technologies digitales de type DSP (Digital Signal Processing) . [0044] La synthèse du prédicteur de Smith à été réalisée dans le domaine de Laplace et la discrétisation est fournie par la transformée en Z par la méthode de correspondance pôles-zéros. Un sur-échantillonnage aurait été adéquat pour éviter tout problème lié à la discrétisation mais les technologies DSP du moment ne nous ont pas permis de monter au-delà de 100 kHz.
[0045] La méthode de régulation selon la présente invention présente plusieurs avantages. Tout d'abord, elle permet une adaptation commandée, c'est-à-dire qu'elle demande un temps de calcul très petit en comparaison des méthodes modernes du contrôle adaptatif et permet un changement de structure très facile puisque l'identification est faite par construction d'une table de correspondance qu'il suffit alors d'inverser numériquement pour linéariser la caractéristique du système vu par le régulateur principal .
[0046] En outre, elle offre une flexibilité importante puisqu'elle pourrait trouver sa place dans la régulation précise, reproductible, robuste et performante de toute source d'ions équipant un cyclotron et ce de par l'avantage d'une régulation de type adaptatif permettant la ré-identification de la caractéristique du système lorsque celle-ci évolue dans le temps. Elle permet donc l'identification et la régulation d'un autre accélérateur que le cyclotron C235 pour laquelle cette régulation à été développée à la base.

Claims

REVENDICATIONS
1. Dispositif (10) de régulation de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple pour la protonthérapie, lesdites particules étant générées à partir d'une source d'ions, caractérisé en ce qu'il comporte au moins :
- un comparateur (90) déterminant un écart ε entre un signal digital I représentatif de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur de consigne Ic de l'intensité du faisceau;
- un prédicteur de Smith (80) , qui détermine, à partir de l'écart ε, une valeur corrigée de l'intensité de faisceau IP;
- une table de correspondance inversée (40) , fournissant, à partir de la valeur corrigée de l'intensité de faisceau IP, une valeur de consigne I pour l'alimentation du courant d'arc de la source d'ions (20) .
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre un convertisseur analogique-digital (50) convertissant le signal analogique I directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal digital I .
3. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre :
- un filtre passe-bas (60) filtrant le signal analogique I directement représentatif de l'intensité du faisceau mesuré à la sortie de l'accélérateur, et fournissant un signal analogique filtré IF; - un régulateur à avance de phase (70) échantillonnant le signal analogique filtré IF, compensant le retard de phase introduit par le filtre passe-bas (60) , et fournissant un signal digital I„ au comparateur (90) .
4. Dispositif suivant l'une quelconque dès revendications précédentes, caractérisé en ce qu'il comporte des moyens de mise à jour du contenu de la table de correspondance inversée (40) .
5. Dispositif suivant l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence d'échantillonnage est comprise entre 100 kHz et 200 kHz.
6. Dispositif suivant l'une quelconque des revendications 3 à 5, caractérisé en ce que la fréquence de coupure du filtre passe-bas (60) est comprise entre 2 et 6 kHz.
7. Méthode de régulation, au moyen d'un dispositif de régulation digital (10) fonctionnant à une fréquence d'échantillonnage donnée, de l'intensité du faisceau extrait d'un accélérateur de particules, tel qu'un cyclotron, utilisé par exemple en protonthérapie, lesdites particules étant générées à partir d'une source d'ions
(20), caractérisée en ce qu'elle comprend au moins les étapes suivantes : - on mesure l'intensité du faisceau (IM) à la sortie de l'accélérateur de particules;
- on compare au moyen d'un comparateur (90) un signal digital IR représentatif de la mesure de l'intensité du faisceau (IM) avec la valeur de consigne Ic de l'intensité du faisceau;
- on détermine, au moyen d'un prédicteur de Smith (80) , une valeur corrigée Ip de l'intensité de faisceau; - on détermine, à partir de la valeur corrigée IP de l'intensité de faisceau, au moyen d'une table de correspondance inversée (40) , une valeur de consigne I pour l'alimentation du courant d'arc de la source d'ions (20) .
8. Méthode de régulation selon la revendication 7, caractérisée en ce que, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules, on convertit le signal analogique I directement représentatif de l'intensité du faisceau mesurée au moyen d'un convertisseur analogique digital (50) pour obtenir un signal digital I R..
9. Méthode selon la revendication 7, caractérisée en ce que, après la mesure de l'intensité du faisceau à la sortie de l'accélérateur de particules :
- on filtre le signal analogique I directement représentatif de l'intensité du faisceau mesurée au moyen d'un filtre passe-bas (60) , donnant un signal analogique filtré IF; - on échantillonne le signal filtré IF, et on compense le retard de phase à l'aide d'un régulateur à avance de phase (70) introduit par le filtrage pour obtenir un signal digital I R..
10. Méthode selon l'une quelconque des revendications 7 à 9, caractérisée en ce que la correspondance entre une valeur I pour 1 ' alimentation du courant d'arc de la source d'ions (20) et une valeur I de l'intensité du faisceau mesurée à la sortie de l'accélérateur est déterminée préalablement à la régulation.
11. Méthode selon l'une quelconque des revendications 7 à 9, caractérisée en ce que, dans la correspondance entre une valeur I de l'intensité du faisceau mesurée à la sortie de l'accélérateur et une valeur I pour l'alimentation du courant d'arc de la source d'ions, les valeurs de I correspondant aux valeurs de I supérieures à une limite sont remplacées par la valeur de I correspondant cette limite.
12. Utilisation du dispositif selon l'une quelconque des revendications 1 à 6 en protonthérapie et en particulier dans les technique de "Pencil Beam Scanning" et de « double diffusion ».
13. Utilisation de la méthode de selon l'une quelconque des revendications 7 à 11 en protonthérapie et en particulier dans les techniques de "Pencil Beam Scanning" et de « double diffusion ».
EP02737673A 2001-06-08 2002-06-03 Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules. Withdrawn EP1393602A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02737673A EP1393602A1 (fr) 2001-06-08 2002-06-03 Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01870122A EP1265462A1 (fr) 2001-06-08 2001-06-08 Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules
EP01870122 2001-06-08
EP02737673A EP1393602A1 (fr) 2001-06-08 2002-06-03 Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.
PCT/BE2002/000089 WO2002102123A1 (fr) 2001-06-08 2002-06-03 Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.

Publications (1)

Publication Number Publication Date
EP1393602A1 true EP1393602A1 (fr) 2004-03-03

Family

ID=8184983

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01870122A Withdrawn EP1265462A1 (fr) 2001-06-08 2001-06-08 Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules
EP02737673A Withdrawn EP1393602A1 (fr) 2001-06-08 2002-06-03 Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01870122A Withdrawn EP1265462A1 (fr) 2001-06-08 2001-06-08 Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules

Country Status (6)

Country Link
US (1) US6873123B2 (fr)
EP (2) EP1265462A1 (fr)
JP (1) JP2004529483A (fr)
CN (1) CN1247052C (fr)
CA (1) CA2449307A1 (fr)
WO (1) WO2002102123A1 (fr)

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039212A1 (fr) 2001-10-30 2003-05-08 Loma Linda University Medical Center Procede et dispositif de radiotherapie
EP1531902A1 (fr) * 2002-05-31 2005-05-25 Ion Beam Applications S.A. Appareil destine a l'irradiation d'un volume cible
EP1629508A2 (fr) * 2003-06-02 2006-03-01 Fox Chase Cancer Center Systemes de selection d'ions polyenergetiques haute energie, systemes de traitement par faisceau d'ions et centres de traitement par faisceau d'ions
US7199382B2 (en) * 2003-08-12 2007-04-03 Loma Linda University Medical Center Patient alignment system with external measurement and object coordination for radiation therapy system
WO2005018735A2 (fr) * 2003-08-12 2005-03-03 Loma Linda University Medical Center Systeme modulaire de support de patient
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
ES2558978T3 (es) * 2004-07-21 2016-02-09 Mevion Medical Systems, Inc. Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón
US7279882B1 (en) * 2004-10-04 2007-10-09 Jefferson Science Associates, Llc Method and apparatus for measuring properties of particle beams using thermo-resistive material properties
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
EP1907984A4 (fr) * 2005-07-22 2009-10-21 Tomotherapy Inc Procede et systeme de traitement de donnees relatives a un plan de traitement par radiotherapie
WO2007014108A2 (fr) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Methode et systeme pour evaluer des criteres d'assurance qualite concernant un programme d'administration de traitement
WO2007014104A2 (fr) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Systeme et methode pour evaluer une dose administree par un systeme de radiotherapie
WO2007014105A2 (fr) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Methode et systeme pour adapter un programme de traitement de radiotherapie en fonction d'un modele biologique
CA2616301A1 (fr) * 2005-07-22 2007-02-01 Tomotherapy Incorporated Procede et systeme pour l'evaluation de dose administree
JP2009507524A (ja) * 2005-07-22 2009-02-26 トモセラピー・インコーポレーテッド 変形マップに制約を課す方法およびそれを実装するためのシステム
CA2616304A1 (fr) 2005-07-22 2007-02-01 Tomotherapy Incorporated Systeme et methode pour administrer un traitement de radiotherapie a une zone mobile cible
KR20080039916A (ko) * 2005-07-22 2008-05-07 토모테라피 인코포레이티드 움직이는 관심 영역에 방사선 치료를 시행하는 시스템 및방법
EP1907056A2 (fr) * 2005-07-22 2008-04-09 Tomotherapy, Inc. Systeme et procede d'analyse a distance de fonctionnement d'un systeme de radiotherapie
US8442287B2 (en) 2005-07-22 2013-05-14 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
EP1907059A4 (fr) * 2005-07-22 2009-10-21 Tomotherapy Inc Procede et systeme permettant de prevoir l'administration de doses
JP5390855B2 (ja) * 2005-07-23 2014-01-15 トモセラピー・インコーポレーテッド ガントリおよび治療台の協調した動きを利用した放射線療法の撮像およびデリバリー
JP5245193B2 (ja) 2005-09-07 2013-07-24 株式会社日立製作所 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
CN101361156B (zh) * 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 用于实施放射治疗的设备
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US20080043910A1 (en) * 2006-08-15 2008-02-21 Tomotherapy Incorporated Method and apparatus for stabilizing an energy source in a radiation delivery device
EP2095374A4 (fr) 2006-11-21 2012-05-30 Univ Loma Linda Med Dispositif et procédé d'immobilisation des patientes pour radiothérapie mammaire
US8410730B2 (en) 2007-10-29 2013-04-02 Ion Beam Applications S.A. Device and method for fast beam current modulation in a particle accelerator
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
WO2009142545A2 (fr) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Procédé et appareil de positionnement d'un patient en vue du traitement d'un cancer par particules chargées
CA2725493C (fr) 2008-05-22 2015-08-18 Vladimir Yegorovich Balakin Procede et appareil de reglage du trajet d'un faisceau de traitement du cancer par particules chargees
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
EP2283710B1 (fr) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Dispositif de traitement anticancéreux par particules chargées à champs multiples
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
MX2010012716A (es) 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas.
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
EP2283713B1 (fr) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Appareil de traitement du cancer par particules chargees a axes multiples
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
WO2010101489A1 (fr) 2009-03-04 2010-09-10 Zakrytoe Aktsionernoe Obshchestvo Protom Procédé et appareil de thérapie contre le cancer par particules chargées à champs multiples
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
JP2011523169A (ja) 2008-05-22 2011-08-04 エゴロヴィチ バラキン、ウラジミール 荷電粒子癌治療システムと併用する荷電粒子ビーム抽出方法及び装置
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
JP5450602B2 (ja) * 2008-05-22 2014-03-26 エゴロヴィチ バラキン、ウラジミール シンクロトロンによって加速された荷電粒子を用いて腫瘍を治療する腫瘍治療装置
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
JP4691583B2 (ja) 2008-07-02 2011-06-01 株式会社日立製作所 荷電粒子ビーム照射システムおよび荷電粒子ビーム出射方法
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
JP2012501230A (ja) 2008-08-28 2012-01-19 トモセラピー・インコーポレーテッド 線量不確定度を計算するシステム及び方法
JP5031796B2 (ja) * 2009-06-11 2012-09-26 住友重機械工業株式会社 粒子加速システム
EP2446718B1 (fr) * 2009-06-24 2018-03-28 Ion Beam Applications S.A. Dispositif pour la production d'un faisceau de particules
DE102010014002A1 (de) * 2010-04-07 2011-10-13 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Partikeltherapieanlage
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
AU2012259403B2 (en) 2011-03-07 2016-08-04 Loma Linda University Medical Center Systems, devices and methods related to calibration of a proton computed tomography scanner
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
US9764160B2 (en) 2011-12-27 2017-09-19 HJ Laboratories, LLC Reducing absorption of radiation by healthy cells from an external radiation source
EP3581242B1 (fr) 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Réglage de l'énergie d'un faisceau de particules
WO2014052734A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Commande de thérapie par particules
CN104813747B (zh) 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 使用磁场颤振聚焦粒子束
CN108770178B (zh) 2012-09-28 2021-04-16 迈胜医疗设备有限公司 磁场再生器
JP6121546B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器用の制御システム
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
JP6367201B2 (ja) 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの強度の制御
EP2901824B1 (fr) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Éléments d'homogénéisation de champ magnétique permettant d'ajuster la position de la bobine principale et procédé correspondant
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
JP6412020B2 (ja) 2013-02-26 2018-10-24 アキュレイ インコーポレイテッド 電磁作動式のマルチリーフコリメーター
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (zh) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 粒子治疗系统
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN105282956B (zh) * 2015-10-09 2018-08-07 中国原子能科学研究院 一种强流回旋加速器高频系统智能自启动方法
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
JP7059245B2 (ja) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド 治療計画の決定
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
CN111954558A (zh) * 2018-04-12 2020-11-17 住友重机械工业株式会社 带电粒子线治疗装置
EP3934752A1 (fr) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Administration de radiothérapie par colonne et génération d'un plan de traitement associé

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2539867A1 (fr) * 1983-01-25 1984-07-27 Thomson Csf Appareil indicateur de donnees topographiques enregistrees sur film et son utilisation pour la navigation aerienne
FR2749613B1 (fr) * 1996-06-11 1998-07-31 Renault Systeme de regulation de la richesse dans un moteur a combustion interne
BE1012371A5 (fr) * 1998-12-24 2000-10-03 Ion Beam Applic Sa Procede de traitement d'un faisceau de protons et dispositif appliquant ce procede.
DE19907097A1 (de) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Bestrahlungsdosisverteilung
DE19907138A1 (de) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zur Überprüfung der Strahlerzeugungsmittel und der Strahlbeschleunigungsmittel eines Ionenstrahl-Therapiesystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02102123A1 *

Also Published As

Publication number Publication date
US6873123B2 (en) 2005-03-29
CA2449307A1 (fr) 2002-12-19
WO2002102123A1 (fr) 2002-12-19
US20040155206A1 (en) 2004-08-12
EP1265462A1 (fr) 2002-12-11
CN1515133A (zh) 2004-07-21
CN1247052C (zh) 2006-03-22
JP2004529483A (ja) 2004-09-24

Similar Documents

Publication Publication Date Title
EP1393602A1 (fr) Dispositif et methode de regulation de l'intensite d'un faisceau extrait d'un accelerateur de particules.
CN103313502B (zh) 离子源、重粒子线照射装置及方法、离子源的驱动方法
WO2004049770A1 (fr) Cyclotron ameliore
JP2011501391A (ja) 粒子加速器におけるビーム電流の高速変調のための装置及び方法
CA2819374A1 (fr) Dispositif de sterilisation par plasma froid d'un objet, tel qu'un dispositif medical, notamment un implant, et procede mettant en oeuvre ce dispositif
FR2756098A1 (fr) Excitation d'onde helicoidale pour produire des electrons a haute energie pour fabriquer des semi-conducteurs
EP0165118A1 (fr) Procédé et dispositif de polymérisation et/ou de réticulation d'une résine entrant dans la composition d'une pièce en matériau composite au moyen de rayonnements ionisants
CA2495460A1 (fr) Accelerateur de particules
EP0142414B1 (fr) Source d'ions, notamment métalliques fortement chargés dont le courant d'ions est régulé
Velardi et al. Proton extraction from transition metals using PLATONE
Hergelová et al. Plasma surface modification of biocompatible polymers using atmospheric pressure dielectric barrier discharge
JPH11233300A (ja) 粒子加速器
JP3405321B2 (ja) イオン源の運転方法およびイオンビーム照射装置
EP1517727B1 (fr) Dispositif d'irradiation d'une cible par un faisceau de hadrons charges, application a la hadrontherapie
Gambino et al. Impact of ion source stability for a medical accelerator
JP3422724B2 (ja) 圧電素子の周波数調整装置
JP2002150959A (ja) インジウムイオンビームの発生方法および関連装置
RU2135633C1 (ru) Способ вакуумного нанесения тонких пленок
WO2021002354A1 (fr) Dispositif, procédé et programme de commande d'émission de particules chargées
KR102243549B1 (ko) 중이온 빔 발생 장치 및 방법
KR20210121166A (ko) 이온 생성 방법 및 장치
RU2192689C1 (ru) Способ получения кремниевых наноструктур
CN116259518A (zh) 一种线下分析粉末电离条件的方法
Rinaldi et al. Isotopic enrichment of Zn particles by laser ablation.
JPH08311639A (ja) レーザアブレーション成膜装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUVIR, BERTRAND

Inventor name: MARCHAND, BRUNO

17Q First examination report despatched

Effective date: 20080404

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081015