EP1280598B1 - Kavitationsmischer - Google Patents

Kavitationsmischer Download PDF

Info

Publication number
EP1280598B1
EP1280598B1 EP01929373A EP01929373A EP1280598B1 EP 1280598 B1 EP1280598 B1 EP 1280598B1 EP 01929373 A EP01929373 A EP 01929373A EP 01929373 A EP01929373 A EP 01929373A EP 1280598 B1 EP1280598 B1 EP 1280598B1
Authority
EP
European Patent Office
Prior art keywords
flow
difficult
medium
flow around
flow chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01929373A
Other languages
English (en)
French (fr)
Other versions
EP1280598A2 (de
Inventor
Rolf Schüler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schueler & Locher Oeg
Original Assignee
Schueler & Locher Oeg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schueler & Locher Oeg filed Critical Schueler & Locher Oeg
Publication of EP1280598A2 publication Critical patent/EP1280598A2/de
Application granted granted Critical
Publication of EP1280598B1 publication Critical patent/EP1280598B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions

Definitions

  • the invention relates to a device for Mixing the components of a flowing through Mass flows, the components being particularly solid, can be liquid or gaseous, by means of a hydrodynamic super cavitation field to a mixture in particular to produce an emulsion or suspension.
  • hydrodynamic cavitation consists in the formation of a vapor gas mixture filled cavities, the so-called cavitation bubbles, inside a rapidly flowing Liquid flow or at edge areas one in the flowing liquid flow arranged poorly flowable body, each as a result of the Liquid movement (flow) conditional local Pressure reduction.
  • Hydrodynamic cavitation occurs so in all hydraulic systems where large Differences in pressure occur, such as turbines, pumps and High-pressure nozzles.
  • cavitation and the associated ones Effects for mixing the components of a use flowing mass flows. So you can for example two different liquids or one Liquid and a solid (particle) or a Mix liquid and gas together.
  • the mixing, emulsifying and dispersing action cavitation is based on a large number of Force applied by collapsing Cavitation bubbles originate on the one to be treated Mixture of components.
  • the imploding of Cavitation bubbles near the interface of two Phase areas become liquid-solid from the dispersion the solid phase (particles) in the liquid phase (Liquid) and from the formation of a suspension accompanied.
  • US-A-3834982 is an apparatus for generating described a suspension of fiber materials.
  • the Device consists of a housing with a Entry opening for the supply of components of a Fiber material suspension and an exit opening for the Removal of the cavitated fiber material suspension and a flow chamber with one placed in it one piece existing, difficult to flow around cylindrical body (which because of its function in general is also called cavitator).
  • the component stream flows through the flow chamber and the one placed therein cylindrical body which is difficult to flow around and which is transverse to Flow direction is arranged so that this one local rejuvenation of the fiber material suspension generated.
  • This creates a hydrodynamic one behind the cylinder Forms cavitation field, i.e. the cylinder creates a spatial area in the flowing Mass flow in which in a dynamic process Cavitation bubbles arise, exist and collapse (implode).
  • the cavitation mixer described in SU-A-1088782 also has a facility with which the Cavitation field with another by means of a Air pressure source generated pressure vibrations superimposed can be.
  • the cavitation mixer disclosed in SU-A-1678426 has an axially elastically mounted, difficult to flow around Body, its own resonance vibrations in the liquid medium should cause.
  • DE-A-3610744 describes a device for direct Ventilation and circulation, especially of waste water, called a cavitation field by means of a wing screw generated and air mixed in the water.
  • US-A-4127332 discloses another mixing device, who uses cavitation for this purpose.
  • each with only one Cavitation field is generated by two different ones
  • Mixing components of a system is that Cavitation effect and thus mixing effect in cavitation mixers, that create a so-called super cavitation field, that is, a superposition of several cavitation fields, significantly improved.
  • DE-A-4433744 discloses a cavitation mixer the body that is difficult to flow around (cavitator) has a truncated cone made up of several heavy ones flow around sub-bodies is formed, between which there is a flow-through cavity in each case.
  • This hard to flow body is in a solid Position arranged in a passage chamber, which - in Flow direction seen - in the entire area of the difficult to flow around a constant body has circular cross section.
  • a first cavitation field is based on conventional ones Generated by flowing around the entire body.
  • the cavities through which flow is possible are one Another source of cavitation fields caused by the Flow in these cavities arise, in particular also outwards into those flowing around the entire body Currents are directed so that the cavitation bubbles in the flowable cavities also outwards to go beyond the conventional cavitation field.
  • the spatial Superposition of the individual cavitation fields creates a so-called super cavitation field and causes one Multiplication of the cavitation effect of each one Cavitation.
  • Hydrodynamic super cavitation generators as in DE-A-4433744 represent effective mixing devices, that can be used, one out of several Components existing fluid flowing through processing, for example mixing, emulsifying, homogenize, disperse or dissolve, or Saturate liquids with gases.
  • Super cavitation generators are universal Devices for processing a wide range of Products in chemical, petrochemical, cosmetic and pharmaceutical industries, as well as in the Ceramics and food industries and other industries.
  • Typical basic technical data of a hydrodynamic super cavitation generator and parameters of the medium to be processed are: productivity 0.1 to 500 m 3 / h inlet pressure 0.3 to 1.2 MPa medium viscosity 0.001 to 30 Pa s medium temperature 5 to 250 ° C Total length 50 to 800 mm Working chamber diameter 15 to 300 mm Dimensions 0.4 to 40 kg minimal useful life 30,000 h
  • the mixing and homogenization processes in the mixer are based on the use of hydrodynamic cavitation and are bound to such physical effects as pressure waves, accumulation, self-excited vibrations, vibration turbulization and rectified diffusion, for example, which arise when cavitation bubbles collapse.
  • the volumetric concentration of the cavitation bubbles in the apparatus reaches orders of magnitude of 1 to 10 10 l / m 3 .
  • pressure pulses are initiated which reach 10 3 MPa and more, just as temperatures of around 5000 K occur in the bubble when a cavitation bubble imploses (see, for example, VDI-Nachzin, April 1, 1999, No. 13 , "Pollutants in ultrasound").
  • Such high pressure pulses contribute to the large volumetric concentration of the bubbles in the working area of the mixer so that the pulse power supplied to a unit volume of the medium to be processed is 10 4 to 10 5 kW / m 3 . It should also be mentioned that a vacuum zone with a pressure of 4 to 10 kPa is created in the working chamber of the mixer, which makes it possible to inject various liquid and gaseous components directly into the mixer.
  • a converging or diverging pipe section is disclosed a long way before or after the body, which is difficult to flow around.
  • EP-A-0644271 is also a hydrodynamic one Supercavitation mixer reveals a difficult to flow around Contains body made up of at least two Consists of elements that form their own Ensure cavitation fields.
  • These poles are like that designed that nested and each with individual devices can be connected, so that they are axially displaced relative to each other can. This way the individual can be difficult flowable body forming elements, in Flow direction axially shifted against each other and so arranged at different distances relative to each other become.
  • EP-A-644271 also teaches that it is used to optimize the Processes of dispersion and emulsification expedient is in the hydrodynamic flow of components at least in a section of its local Constriction - or immediately after - a gaseous component introduce.
  • the elements of the bad flow Body can also be made from an elastic non-metallic material.
  • the cavitation mixer can also add another difficult to flow around Body included, which is behind the first difficult-to-flow body, which it resembles, in the direction of flow is arranged and with it by an elastic Element slidable along the axis of the flow channel connected is.
  • a device for mixing the components or Components of a mass flow flowing through at least one hydrodynamic super cavitation field to provide without additives (such as additives or Emulsifiers) are used to improve the mixing effect or to improve the mixing result or one at all To get mixture.
  • a device for mixing the components of a provide mass flows flowing through, wherein the mixing effect or the mixing result regulated to the Type and concentrations of the components to be mixed in other words, can be adapted to the Properties of the special to be homogenized in each case Systems and corresponding process and Result parameters.
  • a device for mixing the components or Components of a mass flow flowing through according to of the present invention - hereinafter Called super cavitation mixer - includes a housing with at least one entrance opening and at least one Output port. In the at least one entrance opening will mix all or part of the Mass flows initiated, and after exposure to a hydrodynamic super cavitation field Mass flow through the at least one outlet opening discharged.
  • the essential components include Super cavitation mixer a flow chamber, the part of the housing, and a body that is difficult to flow around, by means of a holder in the flow chamber is arranged.
  • the body is difficult to flow around at least two sub-areas that are difficult to flow around, the each for a local flow restriction in the Flow chamber flowing through mass flow in the area of the body, which is difficult to flow around.
  • the cross section the flow chamber, which is perpendicular to its central axis is taken at least in part of the area the flow chamber, the body which is difficult to flow around surrounds in the direction of flow of the Flow chamber mass flow flowing through larger. This widening part of the flow chamber is essential for the production of the invention highly effective super cavitation field.
  • the difficult to flow around and the difficult flowable bodies as a whole are the sources for several cavitation fields that overlap and thus form a super cavitation field. That from that Super cavitation mixer according to the present invention provided super cavitation field is suitable for various components particularly effectively mix or homogenize. With the Super cavitation mixers can usually do this themselves components that are extremely difficult to mix - without more Additives such as emulsifiers - especially homogeneous and extremely long-term stable mixtures be transferred. If the components are liquid, so if emulsions are obtained, one of the components is liquid and the other firm, that is, exists, for example from particles with a certain size distribution, so you get suspensions in which the particle size is significantly reduced. The invention Super cavitation mixer can also be used for this to gaseous and liquid components mix or a gaseous component especially effectively in one or more liquid components dissolve.
  • Some examples of possible mixtures are water-diesel suspensions, the homogenization of Food or colors, or the interference or Dissolution of chlorine gas in water.
  • each of different atomic or molecular Composition must be.
  • two Components to be mixed each have the same chemical Have composition, only that one Component in the liquid phase and the other Component is in the solid phase.
  • Two or more Components to be mixed can also be the same in each case contain chemical components, only in others Concentrations.
  • a Repatriation or multiple treatment of one already with the super cavitation mixer according to the invention treated multi-component mass flow possible if this is advantageous for process engineering or other reasons is.
  • Another advantageous embodiment of the invention consists of several super cavitation mixers according to the invention to couple, such that their respective Super cavitation fields in a common area of one common flow chamber are superimposed on each other, whereby the mixing effect of each In turn, supercavitation fields are potentiated.
  • Another advantage of such a design is that one same total flow - compared to one appropriately sized individual super cavitation mixers with a big, powerful pump - then only several small pumps are needed, which is process engineering is much more effective.
  • the body around which the body is difficult to flow Super cavitation mixer axially along the direction of the Central axis of the flow chamber are shifted.
  • Another advantageous embodiment of the invention according to claim 3 or 4 is accordingly that the hard to knock over part of a multitude individual partial body that is difficult to flow around ( flowable areas correspond) that exists connected and arranged so that they all - or only a few or only one - independently of each other along the direction of the central axis of the flow chamber can be moved.
  • This allows the super cavitation field and thus the mixing effect of the Super cavitation mixer can also be adjusted that depending on the process parameters and the type desired properties of the components to be mixed of the multicomponent mass flow such as homogeneity and Stability can be adjusted optimally.
  • the advantageous embodiment of the invention according to claim 5 is at least one of the difficult to flow Partial areas or partial body of the difficult flowable body so designed to be Cross section perpendicular to the central axis of the Flow chamber is taken at the end of the section or partial body that the input opening of the Housing facing is smaller than at the end that the Output opening of the housing is turned.
  • the flow chamber of Super cavitation mixer a bulge of their walls on, for example, in a bulge-like protuberance is formed all around along its circumference.
  • This Bulge can relate to an appropriate location be placed on the body that is difficult to flow around, such that the super cavitation field is influenced in a targeted manner and its mixing effect is optimized. It is obvious, that when the body is difficult to flow around along the direction of the central axis of the flow chamber can be moved, even if this is only possible for a partial body of him, the mixing effect of Super cavitation field in connection with this bulge particularly well on the type of to be mixed Components and other process parameters set and can be optimized.
  • the flow is difficult Body at least partially from an elastic non-metallic material or has one corresponding coating on. This will make one destructive repercussions of the cavitation fields on the Equipment itself avoided.
  • part of the to be mixed Mass flows or a certain component thereof an appropriately designed bracket and one appropriately designed bodies that are difficult to flow around, the respective corresponding through cavities have, introduced directly into the flow chamber become.
  • This allows the super cavitation field or its
  • the mixing effect can be influenced in a targeted manner, especially depending on the type of mixing components, such that an optimal Mixing effect is achieved.
  • reference numeral 100 denotes one device each for mixing the components of a mass flow flowing through by means of a hydrodynamic supercavitation field, i.e. one Superposition of several cavitation fields. This The device according to the invention is described below Called super cavitation mixer 100.
  • FIGS 1a and 1b only serve the essential properties of an inventive Super cavitation mixer 100 are illustrated but not otherwise to be understood as restrictive.
  • FIG 1a is a schematic cross-sectional view in FIG Longitudinal direction of a super cavitation mixer 100 according to an exemplary first embodiment of the Invention.
  • the invention comprises Super cavitation mixer 100 a housing 1, the one Has inlet opening 2 and an outlet opening 3.
  • the entrance opening 2 part or all of the multicomponent mass flow to be mixed fed, typically by means of a pump device (Not shown).
  • the ones to be mixed Components of the mass flow can be solid, liquid or be gaseous, that is, after treatment
  • the mixed mass flow withdrawn is, for example, one Emulsion, a suspension, one with dissolved gas saturated liquid or other, essentially fluid mixtures or batches.
  • the housing 1 further includes one Flow chamber 4 and one therein by means of a holder 6 arranged difficult to flow around body 8.
  • Die Bracket 6 is so in the case of the first embodiment designed and arranged by another Opening 5 in the housing 1 projects into the housing, such that the body 8 is difficult to flow around in the Flow chamber 4 is positioned.
  • FIG. 1a there is the flow chamber 4, which is difficult to flow around Body 8 and the bracket 6 each from one rotationally symmetrical bodies that are arranged that their axes of symmetry coincide, that is, are equal to the central axis of the flow chamber 4.
  • the holder 6 in FIG essentially from a hollow rod, i.e. assigns one cavity 63 passing therethrough with an inlet opening 61 and an outlet opening 62.
  • the difficult to flow around body 8 a central, through bore 83 along its central axis the associated inlet opening 81 and outlet opening 82.
  • the outlet opening 62 of the rod or bracket 6 is with the inlet opening 81 of the body which is difficult to flow around connected, and the bracket 6 and the difficult to flow around Body 8 are so in the housing 1 or Flow chamber 4 arranged that their middle or Axes of symmetry coincide and the outlet end opening 82 of the body 8 of the exit opening which is difficult to flow around 3 of the housing 1 faces.
  • the difficult to flow around body 8 at least two difficult partial areas 80 around which there are flows a flow-through space 87 is located.
  • the difficult Sub-areas 80 around which flow around each have a local effect Flow restriction in the flow chamber 4.
  • FIG. 2a is an enlarged schematic cross-sectional view in the longitudinal direction of the exemplary difficult to flow around body 8 of the exemplary first Embodiment of Fig. 1a shown.
  • the outer perimeter (the Circumferential line) of the end of the body 8 which is difficult to flow around according to the first embodiment has two local ones Minima and two local maxima.
  • the last one Partial area 80 which is difficult to flow around here is a hollow one End region 84, in which also the above end outlet opening 82nd opens.
  • the cross section of the hollow end region 84 or the cavity 84, which is perpendicular to the central axis of the Flow chamber is taken, is in the direction of flow of the flowing through the flow chamber 4 Mass flows are steadily increasing.
  • the truncated cones 80 are each one behind the other are arranged so that the area of their cross section, the perpendicular to the central axis of the flow chamber 4 is taken, becomes larger seen in the direction of flow.
  • the (blunted) tip of everyone The truncated cone is the through the flow chamber 4th mass flow flowing through, while the Base of each truncated cone of the outlet opening 3 of the Housing is closest. This also applies to the last two sub-areas 80 in which it is difficult to flow around the first embodiment.
  • the truncated cones are designed and arranged that - seen in the direction of flow - everyone subsequent truncated cone a little further - in the vertical direction to the central axis of the flow chamber 4 - in the Current protrudes than the previous truncated cones. This applies analogously to the last two partial areas 80 which are difficult to flow around.
  • the flow chamber 4 in the first embodiment rotationally symmetrical, moving in the direction of flow gradually widening flow chamber section 41, whose cross-sectional area perpendicular to the central axis of the Flow chamber 4 is circular and in Flow direction increases steadily, and in which the difficult flowable body 8 is arranged such that it is a creates a highly effective super cavitation field.
  • the Flow chamber 4 further at its beginning, that is at the end that the input opening 2 of the housing 1 at the next one is in the direction of flow narrowing flow chamber portion 42 to which the widening flow chamber section 41 adjoined.
  • the cross-sectional area perpendicular to Central axis of the flow chamber 4 of the narrowing Flow chamber section 42 is circular and takes in Flow direction steadily, so that a flow restriction is provided and the formation of the Cavitation fields in the downstream area of the flow chamber 4 by means of the heavy arranged therein flowable body 8 is further optimized.
  • FIG. 1b is a schematic cross-sectional view in FIG Longitudinal direction of a super cavitation mixer 100 according to an exemplary second embodiment of the Invention, which is a modification of the exemplary first embodiment of Fig. 1a.
  • the second differs Embodiment of the invention from the first only by two modifications.
  • the first modification affects the hard flowable body 8, which in the second embodiment is designed so that each of its difficult to flow around Subareas 80, the shape of a truncated cone has, is formed as a partial body 10.
  • Subareas 80 the shape of a truncated cone has, is formed as a partial body 10.
  • the clearances 87 between the partial areas 80 which are difficult to flow around or Partial bodies 10 are by means of spacers 9th realized.
  • Fig. 2b which is an enlarged schematic cross-sectional view in the longitudinal direction of the exemplary body 8 which is difficult to flow around exemplary second embodiment of FIG. 1b represents, with the analog Fig. 2a.
  • the second modification concerns the flow chamber 4, which in the second embodiment additionally one Bulge 20 has.
  • Fig. 1b joins the expanding Flow chamber section 41 of the flow chamber 4 Area of the flow chamber, the one rotationally symmetrical bulge 20 in the wall of the Flow chamber 4 has along its circumference, wherein this bulge 20 partially in the end region of the body 8 is difficult to flow around.
  • the through the Bulge 20 conditional enlargement of the cross section of the Flow chamber 4 in the direction of flow can have the cavitation effect and mixing effect of the super cavitation mixer 100 according to the second embodiment and optimize.
  • the bulge 20 are also elsewhere, i.e. she can in Direction of flow also seen directly behind - or a little bit behind - the body, which is difficult to flow around 8, or it can also be completely in the range of body 8 which is difficult to flow around - for example, its Middle or its end around - be arranged.
  • the bulge 20 in a corresponding embodiment is not necessarily must be rotationally symmetrical, even if the Flow chamber 4 is rotationally symmetrical, as well the bulge 20 is not continuous or complete formed along the circumference of the flow chamber 4 have to be.
  • Form and arrangement of a - or also several - bulges 20 results solely from the fact that the Cavitation effect and mixing effect of the invention Super cavitation mixer 100 reinforced and optimized becomes.
  • This expanding part of the Flow chamber 4 is essential for the generation of highly effective supercavitation field according to the invention, because the then difficult to flow around Body 8 caused cavitation fields one particularly get high cavitation or mixing effect, that means their superposition - the super cavitation field - is able to be a particularly homogeneous and special long-term stable mixing of the components by one Flow chamber 4 to flowing mass flows generate, compared to the previous state of the art Technology known mixtures, even for according to the prior art components that are difficult to mix in technology, and also without Additives that have a mixing effect (additives), as has been shown experimentally.
  • this expanding part of the flow chamber 4 can generally be implemented so that the Flow chamber 4 according to the present invention as whole or only in a partial area or in several, not necessarily related sub-areas, the or the at least part of the difficult surrounded around body 8, is designed such that the cross section of the flow chamber 4 in this itself expanding part of the flow chamber 4 in Flow direction of the through the flow chamber 4th mass flow flowing through it becomes larger.
  • This widening part of the flow chamber 4 can, in particular, through a constantly expanding, rotationally symmetrical flow chamber section 41 as in Fig. 1a shown can be realized, or alone by a front portion of a bulge 20, or by a combination of two such areas 41 and 20 as shown in Fig. 1b.
  • Others not necessarily rotationally symmetrical or completely around the Flow chamber 4 around corresponding corresponding individual or distributed sub-areas of a Flow chamber 4, if all of them at least partly in the area of the body 8 which is difficult to flow around lie and their cross-section in the flow direction of the mass flow flowing through the flow chamber 4 is also suitable.
  • the body that is difficult to flow around produces when it is the mass flow to be mixed in the flow chamber 4 flows around, several cavitation fields, which are superimpose each other, and thus particularly in Flow direction behind the body 8, which is difficult to flow around form a super cavitation field. It should be noted that this super cavitation field - depending on the specific one Design of the body 8, which is difficult to flow around Flow chamber 4 and their relative arrangement to each other - also partially or completely around the heavy flows around body 8 extends.
  • the holder 6 for the body 8 which is difficult to flow around is so in the first and second embodiments designed (as a rod) and arranged so that it can an opening 5 in the housing 1 in the housing and the Flow chamber 4 protrudes.
  • the bracket 6 can be configured in principle as desired, for example as Toroidal device that spokes a wheel resembles, such that they are completely in the Flow chamber 4 of the housing 1 can be arranged for example on a portion of the inner wall of the Flow chamber 4, similar to that in DE-A-4433744.
  • the holder 6 can comprise a device or be connected to a device that is suitable for the body 8 which is difficult to flow around. alone or in connection with the bracket 6 - in Area of the flow chamber 4 along the direction of To move the central axis of the flow chamber.
  • the body 8, which is difficult to flow around can be relative as a whole in relation to the expanding part of the Flow chamber 4 (realized for example by a widening flow chamber section 41 and / or a bulge 20 of the flow chamber 4) shifted and be positioned such that the mixing effect of the body 8 difficult to flow around Super cavitation field can be optimally adjusted, both in terms of the type of components to be mixed as well as in relation to other process parameters and / or target parameters of the desired mixed mass flow.
  • a particularly simple setting or adjustment of the super cavitation field in this way can be achieved if part or all of the flow chamber 4 transparent, for example from the corresponding Plastic, is designed so that you can directly visual can check or make this setting.
  • the individual Partial body 10 in each case by means of spacers 9 predetermined distance from each other along the central axis of the body 8 which is difficult to flow around.
  • the flowable spaces 87 between the difficult to flow Subareas 80 or difficult to flow around Partial bodies 10 of a body 8 which is difficult to flow around can be set so individually that the Mixing effect of the generated super cavitation field can be strengthened or optimized.
  • the spacers 9 can be made of an elastic Material, such as plastic, exist, so that medium flowing through the flow chamber 4, the generated cavitation fields and the partial body 10 in have a feedback relationship such that the Partial body 10 are vibrated so that again the cavitation or mixing effect of the Cavitation fields is strengthened or optimized.
  • each with a partial body 10 at its end can then be used independently are shifted along the direction of their central axis.
  • each of the sub-bodies 10 one of such configured body 8 can flow around regardless of everyone else along the direction of Central axis of the flow chamber 4 are shifted.
  • the The entirety of the hollow rods represents the bracket 6
  • other configurations are also readily available to a person skilled in the art the difficult to flow around body 8 and Bracket 6, such that one of several partial bodies 10 existing body that is difficult to flow around 8 so is designed that at least one of its partial bodies 10 regardless of everyone else along the direction of Central axis of the flow chamber 4 can be moved.
  • Partial body 10 which is difficult to flow around Body 8 typically has the shape of a truncated cone. But also related forms like the shape of a Truncated cone with wavy surface or shape a hemisphere are also suitable to To generate cavitation fields.
  • each partial area that is difficult to flow around is 80 or difficult to flow around partial body 10 of a difficult flowable body 8 so designed that Cross section perpendicular to the central axis of the flow chamber is taken, at the end of the partial body 8, that of the inlet opening 2 of the flow chamber 4 on next is smaller than at the end of the Partial body, the exit opening 3 of the Flow chamber 4 is closest.
  • truncated cones or hemispheres means this is that these are arranged one behind the other are that the surface or the outer circumference of their Cross section that is perpendicular to the central axis of the Flow chamber 4 is taken in the direction of flow seen larger, as seen in Figures 1 and 2 is.
  • the "top" of everyone The truncated cone or each hemisphere is through the mass flow flowing through the flow chamber 4 facing while the base of each truncated cone or each hemisphere of the exit opening 3 of the Housing is closest.
  • the truncated cones or hemispheres can also - in Direction seen against the flow direction (from base) - be hollowed out, i.e. the shape of have hollow truncated cones or hollow hemispheres.
  • the partial area 80 or partial body 10 has the shape a hollow or full truncated cone, as in Fig. 3a shown schematically in cross section, and have the Elevations 88 in turn in the form of small cone tips, so it is advantageous if these cone tips are like this be oriented that their axes of symmetry are all parallel to each other and to the direction of flow through the Flow chamber 4 mass flows flowing through are oriented and that each cone tip that by the Flow chamber 4 facing mass flow flowing through is, as shown in Fig. 3a (in Fig. 3a corresponds to Flow direction from left to right).
  • the small elevations 88 of course also oriented and / or designed differently be, also depending on the design of the Sub-areas 80 and sub-bodies 10 are advantageous for example, concentrically arranged, ring-like extending surveys 88 with a sharp upper Edge that through the flow chamber 4th mass flow flowing through it in whole or in part is facing.
  • the end of the body 8 is the name of the two areas 80 (plus the associated intermediate flowable Intermediate space 87) or the partial body 10, the or of all partial areas or partial bodies of the exit opening 3 of the housing 1 is closest, so to design that its cross section is perpendicular to the central axis the flow chamber 4 is taken in the direction of flow of the flowing through the flow chamber 4 Mass streams first seen larger and then smaller and then gets bigger again.
  • FIGS. 3b to 3f show the schematic cross-sectional views along the longitudinal direction or axis of symmetry of a rotationally symmetrical end portion or End part body of a body 8 which is difficult to flow around represent.
  • FIGS. 3b to 3f takes with this configuration of the difficult to flow Body 8, the surface or the outer circumference of the associated cross section in the figures from left to right right - which is the flow direction in FIGS.
  • Mass flow is - from an initial value (local minimum value) starting steadily - not necessarily linear - up to a first local maximum value to, and then steadily down to a local minimum Cross-sectional value and from then on steadily up to a global maximum at the very end of the last one Partial area or partial body. It is understood that this cross-sectional behavior is independent of whether the body that is difficult to flow around is solid or one through hole 82 has, as in Figures 3c, 3e and 3f and shown in Figures 3b and 3d.
  • the end of the difficult flow Body 8 be massive or flat - such as in 3e - or may generally have a hollow end portion 84 having the output opening 3 of the housing 1st facing, the cross section of this cavity, the perpendicular to the central axis of the flow chamber is taken in the direction of flow of the Flow chamber 4 flowing mass flow steadily becomes larger, for example in FIGS. 3b, 3c, 3d and 3f.
  • FIGS. 3b, 3c, 3d and 3f In the case of FIGS.
  • the hollow End region 84 can be designed so that each of its cross-sectional areas, which is taken lengthways and completely contains its axis of symmetry, a border line has in the direction of flow of the Flow chamber 4 seen mass flows flowing through is convex in the mathematical sense. Analog, and how shown in Fig. 3d and 3f, this border line in mathematically concave.
  • Elevations 88 are arranged, either in the form of small cone tips or in the form of concentric arranged, ring-like elevations with a sharp top edge.
  • a difficult to flow around section 80 or difficult partial body 10 which can flow around is neither rotationally symmetrical, still symmetrical in another sense, still continuous have to be. Similar to EP-A-644271, this can be difficult partial area 80 or partial body 10 in Recesses seen through the direction of flow exhibit.
  • Figures 4a and 4b show examples of Subareas 80 or partial body 10 which are difficult to flow around, in Direction of flow seen, its cross section, perpendicular taken to the central axis of the flow chamber 4, the Area of a circle, minus several segments or circular sections 11 and / or minus several sectors or circular sections, more precisely circular rings, 12.
  • the body around 8 difficult to flow through The action of the cavitation fields is not itself damaged it is advantageous if it is at least partially consists of an elastic non-metallic material or at least partially an elastic one has non-metallic coating, for example a suitable plastic.
  • the body 8, which is difficult to flow around, and the holder 6 can generally be solid. But you can also generally with one passing through Cavity 83 and 63 designed and corresponding Openings 82 and 81 can be connected to each other so that part of the mass flow to be mixed does not have the Input opening 2 of the housing 1, but via a corresponding inlet opening 61 of the bracket 6 and a corresponding outlet end opening 82 of the difficult to flow Body 8 are inserted directly into the flow chamber can. This is particularly advantageous if it's so direct part of the to be introduced into the flow chamber mixing mass flow is gaseous and the other Part that via the input opening 2 of the housing 1st is introduced, is liquid.
  • the body 8 which is difficult to flow around naturally have more than one outlet opening 82 which depending on the desired mixing effect and Cavitation effect of the corresponding invention Super cavitation mixer 100 in a corresponding manner the entire body 8 is difficult to flow around to be ordered.
  • Fig. 2c is a difficult flow Body 8 shown, although from the outer Overall shape from that of the first or second Embodiment is the same, but also one through-going cavity 83 with a plurality of outlet openings has.
  • One of these outlet openings is already in the Figures 1a and 1b shown central outlet end opening 82nd
  • the one shown in FIG. 2c has a difficult flow Body 8, which in principle is a further development of the 2b body 8 which is difficult to flow around, a cavity 83 therethrough with intermediate outlet openings 85, each in a partial surface area the body 8 is difficult to flow around, the the inner wall of the flow chamber 4 at least partially is facing and that between two neighboring partial areas 80 or difficult to flow around partial bodies 10 around which flow is difficult Body 8 is located.
  • the one shown in Fig. 2c is heavy body 8 around which a hollow space 83 passes with outlet side openings 86, each in a Partial surface area of the body 8 which is difficult to flow around located the inner wall of the flow chamber 4th is at least partially facing and which is in the Area of a sub-area 80 that is difficult to flow around or difficult to flow around body 10 of the difficult flowable body 8 is located.
  • Outlet intermediate openings 85 still the outlet side openings 86 arranged symmetrically as shown in Fig. 2c Need to become.
  • the one going through Cavity 83 has only one or more intermediate outlet openings 85 or just one or more Outlet side openings 86 on.
  • this also through correspondingly arranged several outlet end openings 82, which are at the end of the body 8 are located and the outlet opening 3 of the housing 1st are facing to be replaced.
  • Embodiments and modifications thereof can be the supercavitation mixer according to the invention further an ultrasound device and / or laser device include the mixing action and / or cavitation optimize the entire device.
  • the body 8 which is difficult to flow around whole or in part directly exposed to ultrasound become. This displaces the difficult to flow around Body 8 as a whole and / or in corresponding Partial areas in vibrations. Regardless, you can also the mass flow flowing through at one suitable place in the flow chamber 4 - or at several positions or even in the whole Flow chamber 4 - apply ultrasound to for example turbulence, pressure waves, ultrasonic cavitation or to produce related effects that the support hydrodynamic cavitation or supplement and / or further positive influence on the Have mixing effect of the entire device. Of Furthermore, an ultrasonic device can flow around the difficult Bodies or parts of them also directly in ultrasonic vibrations move, as well as a suitable one Part of the flow chamber 4 or the entire Flow chamber 4 to the effects just described and to achieve positive effects or the like.
  • a laser device can measure the mass flow or part of it in the flow chamber 4 with laser light act, for example, also cavitation to generate or support, for example also through local warming, which also affects the Flow direction and vortex formation can have an influence.
  • a spiral device 90 consists essentially of a plurality of elements 92 in the form of helices and from an outer wall 94 which is designed that the coil device 90 at the corresponding end of the Passage chamber 4 can be arranged and fixed, for example by means of a rubber seal 96
  • Outer wall 94 encloses one that passes through Cavity in which the variety of helical elements 92 are arranged.
  • the helical elements 92 have an elongated, essentially flat or two-dimensional shape and run essentially in Direction of the flow direction through the Flow chamber 4 flowing mass flows are but so helical along this direction or helically twisted or twisted or bent, with, for example, part of its longitudinal edge are attached to the inner wall of the outer wall 94 that the mass flow flowing through into several partial flows is divided, which is also by the spiral Formation of the elements 92 each set in rotation become.
  • This principle of mixing flows using helical devices is in the art well known.
  • such a device 200 has the advantage that a total mass flow is not through a single Device through a corresponding dimensioned pump must be pressed, but that this total current to be mixed towards the individual the super cavitation mixer belonging to the device 200 100 can be divided, so that each per Super cavitation mixer 100 just a much smaller one dimensioned pump is required. This increases the Effectiveness or energy use of the facility.
  • the individual super cavitation mixer 100 connected to one another in this way and coupled that their individual flow chambers 4 seamlessly into a subsequent common flow chamber 40 pass over.
  • the exit openings 3 the housing 1 of the super cavitation mixer 100 is closed connected to a single common opening 30 or superimposed on the entrance opening of the common subsequent flow chamber 40 represents.
  • the entrance opening 30, that is, in the entrance area of the common flow chamber 40, then overlap the produced by each super cavitation mixer 100 Supercavitation. After exposure to the superimposed supercavitation fields becomes the entire mass flow flowing through the device 200 through the outlet opening 50 of the flow chamber 40 taken.
  • each other equivalent spatial areas of each Super cavitation fields are superimposed on one another. These are the areas of the strongest or optimal Cavitation effect of every super cavitation field, see above the effect of the overlay increases optimal.
  • this symmetrical type of Overlay can also be abandoned if this causes a better mixing effect or other desired effects can or should be achieved.
  • a device analogous to device 200 above, in which several super cavitation fields are superimposed, is also with those disclosed in DE-A-4433744 Super cavitation mixers possible.
  • an invention Device 100 for mixing the components of a mass flows flowing through a particularly homogeneous and extremely stable mixture of any length, even if not or only according to the state of the art difficult to mix components, and also without the use of additives (additives, Emulsifiers, etc.) to support the mixing effect.
  • the Device 100 has one in a flow chamber 4 arranged difficult to flow around body 8, the at least partially in one direction of flow widening part of the flow chamber 4 is arranged, so that the cavitation and mixing action of the of the supercavitation field which is difficult to flow around is significantly strengthened and optimized.

Description

Die Erfindung betrifft eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einem hydrodynamischen Superkavitationsfeld, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen.
Sinkt in einer dahinströmenden Flüssigkeit aufgrund von einer Stromeinengung lokal der sogenannte statische Druck unter den Dampfdruck, so tritt Kavitation auf, das heißt, es bilden sich in der Flüssigkeit dampfgefüllte Gasblasen, die auch Kavitationsblasen genannt werden. Nimmt danach der statische Druck wieder zu und übersteigt den Dampfdruck, so brechen diese Gasblasen implosionsartig (praktisch mit Schallgeschwindigkeit) zusammen.
Dieser Mechanismus der hydrodynamisch erzeugten Kavitation fällt unter den Gültigkeitsbereich der Bernoulli-Gleichung. Gemäß dieser gilt allgemein (vgl. "Gerthsen Physik", Helmut Vogel, ISBN 3-540-59278-4, 18. Auflage, Springer-Verlag Berlin Heidelberg New York, 1995, Kapitel 3.3.6, Strömung idealer Flüssigkeiten, Seite 118 bis 121) auf jeder Potentialfläche der äußeren Volumenkräfte in einem dahinströmenden Stromfaden, im Falle der Schwerkraft also überall auf gleicher Höhe, p + 1/2ρv2 = p0 = const, wobei p0 der Druck ist, der in der ruhenden Flüssigkeit herrschen würde, zum Beispiel der Luftdruck plus dem hydrostatischen Druck pgh. Die Summe aus dem statischen Druck p und dem Staudruck 1/2ρv2 hat in gegebener Tiefe überall den gleichen Wert.
Wenn die Strömungsgeschwindigkeit den Wert vk = √2p0/ρ erreicht oder überschreitet, so wird der statische Druck null oder negativ. Solche Geschwindigkeiten (im Wasser ist vk = 14 m/s) werden an allen schnellen Wasserfahrzeugen, bei langsamen zumindest an den Schrauben, ferner an Turbinenschaufeln und in Flüssigkeitspumpen leicht erreicht. Schon etwas vorher sinkt der statische Druck unter den Dampfdruck der Flüssigkeit, der einige 102 Pa beträgt, und Kavitation tritt auf, insbesondere wenn mikroskopische Luftbläschen als Keime bereits vorhanden sind, was schwer vermeidbar ist.
Die Erscheinung der hydrodynamischen Kavitation besteht also in der Bildung von mit einem Dampfgasgemisch gefüllten Hohlräumen, den sogenannten Kavitationsblasen, im Inneren eines schnell dahinströmenden Flüssigkeitsstromes oder an Randbereichen eines in dem dahinströmenden Flüssigkeitsstrom angeordneten schlecht umströmbaren Körpers, jeweils infolge einer durch die Flüssigkeitsbewegung (Strömung) bedingten lokalen Druckabsenkung. Zur hydrodynamischen Kavitation kommt es so in allen hydraulischen Systemen, in denen große Druckunterschiede auftreten, wie Turbinen, Pumpen und Hochdruckdüsen.
Bei der Ultraschallkavitation werden in der Unterdruckphase eines Schallfeldes die Zerreißspannungen des Materials überschritten, so daß wieder die mit Dampf bzw. Gas gefüllten Kavitationsblasen entstehen. In der Sonochemie macht man sich die extremen Bedingungen beim Kollaps (Druck, Temperatur) der im Ultraschallfeld erzeugten Kavitationsblasen zunutze. Auch der physikalische Effekt der Sonoluminiszenz ist mit der Dynamik von Kavitationsblasen und deren Erzeugung mittels einem Ultraschallfeld verbunden.
Bei den vorerwähnten Beispielen handelt es sich um Kavitation, die durch eine im Wasser bzw. einer Flüssigkeit anliegende Zugspannung im Strömungs- oder im akustischen Feld entsteht. Eine weitere Art Kavitation zu erzeugen besteht darin, lokal Energie in der Flüssigkeit zu deponieren, zum Beispiel durch einen Funken oder einen Laserpuls. Einzelheiten zu letzterem findet man beispielsweise in der Diplomarbeit von Olgert Lindau, "Dynamik und Lumineszenz lasererzeugter Kavitationsblasen", 1998, angefertigt im Dritten Physikalischen Institut der Georg-August-Universität zu Göttingen.
Bekanntermaßen kann man Kavitation und die damit einhergehenden Effekte zum Vermischen der Komponenten eines dahinströmenden Massestromes verwenden. Somit kann man beispielsweise zwei verschiedene Flüssigkeiten oder eine Flüssigkeit und einen Feststoff (Teilchen) oder eine Flüssigkeit und ein Gas miteinander vermischen. Die vermischende, emulgierende und dispergierende Einwirkung der Kavitation beruht auf einer großen Anzahl von Krafteinwirkungen, die von zusammenstürzenden Kavitationsblasen herrühren, auf das zu behandelnde Gemisch von Komponenten. Das Implodieren von Kavitationsblasen in der Nähe der Grenzfläche zweier Phasenbereiche flüssig-fest wird von der Dispergierung der festen Phase (Teilchen) in der flüssigen Phase (Flüssigkeit) und von der Bildung einer Suspension begleitet. Analog wird das Implodieren von Kavitationsblasen in der Nähe der Grenzfläche zweier verschiedener flüssiger Phasen von der Zerkleinerung der einen Flüssigkeit in der anderen und der Bildung einer Emulsion begleitet. In beiden Fällen geschieht die Zerstörung der Grenzfläche der durchgehenden Phasen, das heißt, deren Erosion, und die Bildung eines Dispersionsmediums und einer dispersen Phase.
In US-A-3834982 ist eine Vorrichtung zur Erzeugung einer Suspension von Fasermaterialien beschrieben. Die Vorrichtung besteht aus einem Gehäuse mit einer Eingangsöffnung für die Zufuhr von Komponenten einer Fasermaterialsuspension und einer Ausgangsöffnung für die Entnahme der kavitierten Fasermaterialsuspension sowie einer Durchflußkammer mit einem in ihr platzierten, aus einem Stück bestehenden, schwer umströmbaren zylindrischen Körper (der wegen seiner Funktion allgemein auch Kavitator genannt wird). Der Komponentenstrom durchströmt die Durchflußkammer und den darin plazierten schwer umströmbaren zylindrischen Körper, der quer zur Strömungsrichtung angeordnet ist, so daß dieser eine lokale Verjüngung der Fasermaterialsuspension erzeugt. Somit wird hinter dem Zylinder ein hydrodynamisches Kavitationsfeld ausbildet, d.h. der Zylinder erzeugt einen räumlichen Bereich in dem dahinströmenden Massestrom, in dem in einem dynamischen Prozeß Kavitationsblasen entstehen, vorhanden sind und zusammenstürzen (implodieren).
Infolge der Form des einen schwer umströmbaren, zylinderförmigen Körpers in US-A-3834982 entsteht hinter diesem aufgrund der durch ihn bedingten Querschnittsverjüngung des Strömungsquerschnitts nur ein einziges Kavitationsfeld. Somit bewirkt diese Vorrichtung nur eine relativ schlechte Vermischung der Komponenten der Fasermaterialsuspension in Bezug auf die Homogenität (Teilchengröße) und Langzeitstabilität der erzeugten Dispersion. Die Intensität des mit der Vorrichtung nach US-A-3834982 erzeugten Kavitationsfeldes ist zum Mischen bzw. Dispergieren von schwer vermischbaren bzw. dispergierbaren Phasen zu gering.
Der in SU-A-1088782 beschriebene Kavitationsmischer hat zusätzlich eine Einrichtung, mit der das Kavitationsfeld mit weiteren mittels einer Luftdruckquelle erzeugten Druckschwingungen überlagert werden kann.
Der in SU-A-1678426 offenbarte Kavitationsmischer hat einen axial elastisch gelagerten schwer umströmbaren Körper, der eigene Resonanzschwingungen im Flüssigkeitsmedium hervorrufen soll.
In SU-A-1720695 ist ein weiterer Kavitationsmischer beschrieben, der als schwer umströmbaren Körper zwei Halbkugeln hat, die zwischen sich eine rechteckige Nut begrenzen. Die Pulsation des Stromes in der Nut soll auf den Kavitationsbereich einwirken und dadurch die Häufigkeit von Kavitationsblasen und deren Intensität erhöhen.
Die vorgenannten drei Druckschriften offenbaren somit Kavitationsmischer, bei denen die Mischwirkung dadurch verbessert werden soll, daß versucht wird, die Kavitationswirkung durch weitere Abrißkanten oder Überlagerung mit Druckwellen, die weiteren Abrißkanten entsprechen, zu verbessern.
In der DE-A-3610744 ist eine Vorrichtung zur direkten Belüftung und Umwälzung, insbesondere von Abwässern, genannt, die mittels einer Flügelschraube ein Kavitationsfeld erzeugt und Luft im Wasser untermischt.
US-A-4127332 offenbart eine weitere Mischvorrichtung, die zu diesem Zweck Kavitation verwendet.
Im Vergleich zu den oben genannten Kavitationsmischern, bei denen jeweils nur ein Kavitationsfeld erzeugt wird, um zwei verschiedene Komponenten eines Systems zu mischen, ist die Kavitationswirkung und somit Mischwirkung in Kavitationsmischern, die ein sogenanntes Superkavitationsfeld erzeugen, das heißt, eine Überlagerung von mehreren Kavitationsfeldern, wesentlich verbessert.
So ist in DE-A-4433744 ein Kavitationsmischer offenbart, der als schwer umströmbaren Körper (Kavitator) einen Kegelstumpf besitzt, der aus mehreren schwer umströmbaren Teilkörpern gebildet ist, zwischen denen sich jeweils ein durchströmbarer Hohlraum befindet. Dieser schwer umströmbare Körper ist in einer festen Position in einer Durchlaßkammer angeordnet, die - in Strömungsrichtung gesehen - im gesamten Bereich des schwer umströmbaren Körpers einen konstanten kreisförmigen Querschnitt besitzt.
Ein erstes Kavitationsfeld wird auf herkömmliche Weise durch Umströmen des Gesamtkörpers erzeugt. Darüberhinaus sind die durchströmbaren Hohlräume eine weitere Quelle für Kavitationsfelder, die durch die Strömung in diesen Hohlräumen entstehen, die insbesondere auch nach außen in die um den Gesamtkörper fließenden Strömungen gerichtet sind, so daß die Kavitationsblasen in den durchströmbaren Hohlräumen auch nach außen hin in das herkömmliche Kavitationsfeld übergehen. Die räumliche Überlagerung der einzelnen Kavitationsfelder erzeugt ein sogenanntes Superkavitationsfeld und bewirkt eine Vervielfachung der Kavitationswirkung jedes einzelnen Kavitationsfeldes.
Hydrodynamische Superkavitationsgeneratoren wie in DE-A-4433744 stellen effektive Mischvorrichtungen dar, die dazu verwendet werden können, ein aus mehreren Komponenten bestehendes hindurchströmendes Fluid zu bearbeiten, beispielsweise zu vermischen, zu emulgieren, zu homogenisieren, zu dispergieren oder aufzulösen, oder Flüssigkeiten mit Gasen zu sättigen. Superkavitationsgeneratoren sind universelle Vorrichtungen zur Bearbeitung eines breiten Spektrums von Produkten in der chemischen, petrochemischen, kosmetischen und pharmazeutischen Industrie, sowie in der Keramik- und Nahrungsmittelindustrie und in anderen Wirtschaftszweigen.
Typische technische Grunddaten eines hydrodynamischen Superkavitationsgenerators und Parameter des zu bearbeitenden Mediums sind:
Produktivität 0,1 bis 500 m3/h
Eingangsdruck 0,3 bis 1,2 MPa
Milieuviskosität 0,001 bis 30 Pa s
Milieutemperatur 5 bis 250°C
Länge insgesamt 50 bis 800 mm
Durchmesser der Arbeitskammer 15 bis 300 mm
Masse 0,4 bis 40 kg
minimale Nutzungsdauer 30 000 h
Die Misch- und Homogenisierungsprozesse im Mischer basieren auf der Nutzung der hydrodynamischen Kavitation und sind an solche physikalischen Effekte wie Druckwellen, Kumulation, selbsterregte Schwingungen, Vibrationsturbulisation und gleichgerichtete Diffusion, beispielsweise, gebunden, die beim Kollaps von Kavitationsblasen entstehen. Die volumetrische Konzentration der Kavitationsblasen in den Apparaturen erreicht Größenordnungen von 1 bis 1010 l/m3. Beim Kollaps einer jeden Kavitationsblase werden Druckimpulse initiiert, die 103 MPa und mehr erreichen, ebenso wie bei der Implosion einer Kavitationsblase in der Blase Temperaturen von rund 5000 K auftreten (vgl. zum Beispiel VDI-Nachrichten, 1. April 1999, Nr. 13, "Schadstoffe im Ultraschall"). Derartig hohe Druckimpulse tragen bei der großen volumetrischen Konzentration der Bläschen im Arbeitsbereich des Mischers dazu bei, daß die einer Volumeneinheit des zu bearbeitenden Mediums zugeführte Impulsleistung 104 bis 105 kW/m3 beträgt. Zu erwähnen ist auch, daß in der Arbeitskammer des Mischers eine Vakuumzone mit einem Druck von 4 bis 10 kPa erzeugt wird, was es möglich macht, verschiedene flüssige und gasförmige Komponenten direkt in den Mischer zu injizieren. In weitem Abstand vor bzw. nach dem schwer umströmbaren körpen wird ein konverpierender bzw. divergierender Rohrabschnitt offenbart.
In EP-A-0644271 ist ebenfalls ein hydrodynamischer Superkavitationsmischer offenbart, der einen schwer umströmbaren Körper enthält, der aus mindestens zwei Elementen besteht, welche die Formierung eigener Kavitationsfelder sicherstellen. Die Elemente bzw. Teilkörper, aus denen der schwer umströmbare Körper besteht, können die Form von hohlen abgestumpften Kegeln oder Halbkugeln besitzen, und können zudem jeweils an einer hohlen Stange befestigt sein. Diese Stangen sind so ausgestaltet, daß ineinandergesteckt und jeweils mit individuellen Vorrichtungen verbunden werden können, so daß sie axial relativ zueinander verschoben werden können. Auf diese Weise können die einzelnen, den schwer umströmbaren Körper bildenden Elemente, in Strömungsrichtung axial gegeneinander verschoben und so in verschiedenen Abständen relativ zueinander angeordnet werden. Auf diese Weise kann nicht nur durch die Form der Elemente sondern auch durch ihren relativen Abstand zueinander das von jedem Element hervorgerufene hydrodynamische Kavitationsfeld in seinen Eigenschaften variiert und eingestellt werden, was sich wiederum auf die Überlagerung der einzelnen Kavitationsfelder, das heißt, das Superkavitationsfeld des Kavitationsmischers entsprechend auswirkt.
EP-A-644271 lehrt auch, daß es zur Optimierung der Prozesse der Dispergierung und Emulgierung zweckmäßig ist, in den hydrodynamischen Strom von Komponenten zumindest in einem Abschnitt seiner lokalen Einengung - oder unmittelbar dahinter - eine gasförmige Komponente einzuführen. Die Elemente des schlecht umströmbaren Körpers können auch aus einem elastischen nichtmetallischen Material bestehen. Der Kavitationsmischer kann zudem einen weiteren zusätzlichen schwer umströmbaren Körper enthalten, welcher hinter dem ersten schwer umströmbaren Körper, dem er ähnelt, in Strömungsrichtung angeordnet ist und mit ihm durch ein elastisches Element verschiebbar längs der Achse des Durchflußkanals verbunden ist.
Über die verstellbaren Elemente des schwer umströmbaren Körpers bietet das Verfahren bzw. die Vorrichtung nach EP-A-0644271 die Möglichkeit, die Intensität des entstehenden hydrodynamischen Superkavitationsfeldes in Anpassung an die konkreten technologischen Prozeßabläufe zu regeln. Allerdings ist der schwer umströmbare Körper als ganzes an einem festen Ort in einem Durchflußkanal angeordnet, der in dem Bereich des schwer umströmbaren Körpers und in Strömungsrichtung gesehen zudem einen konstanten kreisförmigen Querschnitt aufweist. Im Abstand vor und nach dem schwer umströmbaren Körper wird ein koverpierenden bzw. divergierenden Rohrabschnitt offenbart.
Obwohl die hydrodynamischen Superkavitationsgeneratoren nach dem Stand der Technik im allgemeinen gute Ergebnisse liefern, besteht doch ein Bedarf an Verbesserungen in vielerlei Hinsicht.
Somit ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes mittels mindestens einem hydrodynamischen Superkavitationsfeld bereitzustellen, derart, daß der behandelte Massestrom extrem homogen ist und dies auch über einen beliebig langen Zeitraum hinweg bleibt, auch wenn die Vorrichtung zum Vermischen von üblicherweise schwerst mischbaren Komponenten verwendet wird, die mit Vorrichtungen nach dem Stand der Technik nicht oder nur schlecht und/oder nur für relativ kurze Zeit gemischt werden können.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes mittels mindestens einem hydrodynamischen Superkavitationsfeld bereitzustellen, ohne daß Zusatzstoffe (wie Additive oder Emulgatoren) verwendet werden, um die Mischwirkung bzw. das Mischergebnis zu verbessern bzw. überhaupt eine Mischung zu erhalten.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes bereitzustellen, wobei die Mischwirkung bzw. das Mischergebnis geregelt an die Art und Konzentrationen der zu vermischenden Komponenten angepaßt werden kann, mit anderen Worten, an die Eigenschaften des speziellen jeweils zu homogenisierenden Systems und an entsprechende Prozeß- und Ergebnisparameter.
Es ist eine weitere Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes bereitzustellen, bei dem die kinetische Energie der Strömung auf optimale Weise zur Durchmischung bzw. Homogenisierung ausgenutzt wird.
Die Lösung dieser Aufgaben erfolgt durch die Merkmale des Anspruchs 1 bzw. 29.
Eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes gemäß der vorliegenden Erfindung - im folgenden Superkavitationsmischer genannt - umfaßt ein Gehäuse mit mindestens einer Eingangsöffnung und mindestens einer Ausgangsöffnung. In die mindestens eine Eingangsöffnung wird der gesamte oder ein Teil des zu vermischenden Massestromes eingeleitet, und nach der Beaufschlagung mit einem hydrodynamischen Superkavitationsfeld wird der Massestrom durch die mindestens eine Ausgangsöffnung ausgeleitet. Als wesentliche Bestandteile umfaßt der Superkavitationsmischer eine Durchflußkammer, die Teil des Gehäuses ist, und einen schwer umströmbaren Körper, der mittels einer Halterung in der Durchflußkammer angeordnet ist. Der schwer umströmbare Körper besitzt mindestens zwei schwer umströmbare Teilbereiche, die jeweils für eine lokale Strömungseinengung im durch die Durchflußkammer hindurchströmenden Massestrom im Bereich des schwer umströmbaren Körpers sorgen. Der Querschnitt der Durchflußkammer, der senkrecht zu ihrer Mittelachse genommen wird, wird wenigstens in einem Teil des Bereichs der Durchflußkammer, der den schwer umströmbaren Körper umgibt, in Strömungsrichtung des durch die Durchflußkammer hindurchströmenden Massestromes größer. Dieser sich aufweitende Teil der Durchflußkammer ist wesentlich für die Erzeugung des erfindungsgemäßen höchsteffektiven Superkavitationsfeldes.
Die schwer umströmbaren Teilbereiche und der schwer umströmbare Körper als ganzes sind die Quellen für mehrere Kavitationsfelder, die sich überlagern und somit ein Superkavitationsfeld bilden. Das von dem Superkavitationsmischer gemäß der vorliegenden Erfindung bereitgestellte Superkavitationsfeld ist dazu geeignet, verschiedenste Komponenten besonders effektiv zu vermischen bzw. zu homogenisieren. Mit dem Superkavitationsmischer können somit selbst normalerweise schwerst mischbare Komponenten - ohne weitere Zusatzstoffe wie zum Beispiel Emulgatoren - in besonders homogene und extrem langzeitstabile Mischungen übergeführt werden. Sind die Komponenten flüssig, so erhält man Emulsionen, ist eine der Komponenten flüssig und die andere fest, das heißt, besteht beispielsweise aus Teilchen mit einer bestimmten Größenverteilung, so erhält man Suspensionen, in denen die Teilchengröße beträchtlich verringert ist. Der erfindungsgemäße Superkavitationsmischer kann des weiteren dazu verwendet werden, um gasförmige und flüssige Komponenten zu vermischen bzw. eine gasförmige Komponente besonders effektiv in einer oder mehreren flüssigen Komponenten aufzulösen.
Einige Beispiele für mögliche Mischungen sind Wasser-Diesel-Suspensionen, die Homogenisierung von Lebensmitteln oder Farben, oder die Einmischung bzw. Auflösung von Chlorgas in Wasser.
Es versteht sich, daß die zu vermischenden Bestandteile bzw. Komponenten nicht notwendigerweise jeweils von verschiedener atomarer bzw. molekularer Zusammensetzung sein müssen. Beispielsweise können zwei zu vermischende Komponenten jeweils dieselbe chemische Zusammensetzung aufweisen, nur daß sich die eine Komponente in der flüssigen Phase und die andere Komponente in der festen Phase befindet. Zwei oder mehr zu vermischende Komponenten können auch jeweils dieselben chemischen Bestandteile enthalten, nur jeweils in anderen Konzentrationen. Insbesondere ist ebenfalls eine Rückführung bzw. Mehrfachbehandlung eines bereits einmal mit dem erfindungsgemäßen Superkavitationsmischer behandelten mehrkomponentigen Massestroms möglich, falls dies aus prozeßtechnischen oder anderen Gründen vorteilhaft ist.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, mehrere erfindungsgemäße Superkavitationsmischer zu koppeln, derart, daß ihre jeweiligen Superkavitationsfelder in einem gemeinsamen Bereich einer gemeinsamen Durchflußkammer einander überlagert werden, wodurch die Mischwirkung der einzelnen Superkavitationsfelder wiederum potenziert wird. Ein weiterer Vorteil so einer Ausgestaltung ist, daß man bei gleicher Gesamtdurchflußmenge - im Vergleich zu einem entsprechend dimensionierten einzelnen Superkavitationsmischer mit einer großen, leistungsstarken Pumpe - dann nur mehrere kleine Pumpen benötigt, was prozeßtechnisch viel effektiver ist.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 2 kann der schwer umströmbare Körper des Superkavitationsmischers axial entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden. Dadurch ist es möglich, den schwer umströmbaren Körper in dem mindestens einen sich aufweitenden Bereich der Durchflußkammer gezielt so zu positionieren, daß in Abhängigkeit von der Art der zu vermischenden Komponenten eine optimale Kavitationswirkung bzw. ein optimales Superkavitationsfeld bereitgestellt wird, so daß eine optimal homogene und langzeitstabile Mischung erreicht werden kann. Es versteht sich, daß auf diese Weise auch weitere Prozeßparameter oder Ergebnisparameter eingestellt bzw. eingeregelt werden können.
Eine weitere vorteilhafte Ausgestaltung der Erfindung nach Anspruch 3 oder 4 besteht entsprechend darin, daß der schwer umstömbare Teilkörper aus einer Vielzahl einzelner schwer umströmbarer Teilkörper (die den schwer umströmbaren Teilbereichen entsprechen) besteht, die so miteinander verbunden und angeordnet sind, daß sie alle - oder nur einige oder nur einer - unabhängig voneinander entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden können. Dadurch kann das Superkavitationsfeld und somit die Mischwirkung des Superkavitationsmischers ebenfalls so eingeregelt werden, daß in Abhängigkeit von den Prozeßparametern und der Art der zu vermischenden Komponenten gewünschte Eigenschaften des mehrkomponentigen Massestromes wie Homogenität und Stabilität optimal eingeregelt werden können.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 5 ist mindestens einer der schwer umströmbaren Teilbereiche bzw. Teilkörper des schwer umströmbaren Körpers so ausgebildet, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, an dem Ende des Teilbereiches bzw. Teilkörpers, das der Eingangsöffnung des Gehäuses zugewendet ist, kleiner als an dem Ende, das der Ausgangsöffnung des Gehäuses zugewendet ist.
Gemäß der vorteilhaften Ausgestaltungen der Erfindung nach Anspruch 16 bis 18 weist die Durchflußkammer des Superkavitationsmischers eine Ausbuchtung ihrer Wandung auf, die beispielsweise in einer wulstartigen Ausstülpung rundherum entlang ihres Umfanges ausgebildet ist. Diese Ausbuchtung kann an einer entsprechenden Stelle in Bezug auf den schwer umströmbaren Körper angeordnet werden, derart, daß das Superkavitationfeld gezielt beeinflußt und seine Mischwirkung optimiert wird. Es ist offensichtlich, daß, wenn der schwer umströmbare Körper entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden kann, auch wenn dies gegebenenfalls.nur für einen Teilkörper von ihm gilt, die Mischwirkung des Superkavitationsfeldes in Verbindung mit dieser Ausbuchtung besonders gut auf die Art der zu vermischenden Komponenten und weiteren Prozeßparameter eingestellt und optimiert werden kann.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach den Ansprüchen 19 und 20 besteht der schwer umströmbare Körper mindestens teilweise aus einem elastischen nichtmetallischen Material bzw. weist einen entsprechenden Überzug auf. Dadurch wird eine zerstörerische Rückwirkung der Kavitationsfelder auf die Apparatur an sich vermieden.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 21 kann ein Teil des zu vermischenden Massestromes oder eine bestimmte Komponente davon über eine entsprechend ausgestaltete Halterung und einen entsprechend ausgestalteten schwer umströmbaren Körper, die jeweils entsprechende hindurchgehende Hohlräume aufweisen, direkt in die Durchflußkammer eingeleitet werden. Dadurch kann das Superkavitationsfeld bzw. seine Mischwirkung wiederum gezielt beeinflußt werden, insbesondere in Abhängigkeit von der Art der zu vermischenden Komponenten, derart, daß eine optimale Mischwirkung erreicht wird.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 26 kann man sowohl den schwer umströmbaren Körper als auch den Massestrom in der Durchflußkammer jeweils mit Ultraschall beaufschlagen. Dadurch kann der schwer umströmbare Körper beispielsweise in Schwingungen versetzt werden, was die Ausbildung der Kavitationsfelder bzw. deren Mischwirkung verstärken kann. Entsprechend kann die Beaufschlagung des Massestromes mit Ultraschall zusätzliche Ultraschallkavitation bewirken und die vom schwer umströmbaren Körper schon selbst erzeugten Kavitationsfelder bzw. deren Mischwirkung verstärken.
Entsprechende Effekte kann man auch erhalten, wenn man gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 27 den schwer umströmbaren Körper direkt und/oder einen Teil der Durchflußkammer oder die ganze Durchflußkammer in Ultraschallschwingungen versetzt.
Unter dem Begriff der Verstärkung der Mischwirkung oder der Kavitationsfelder wird hier auch jegliche Modifikation der Eigenschaften der Kavitationsfelder (beispielsweise die Größenverteilung der Kavitationsblasen, ihre räumliche Verteilung oder ihre potentielle Energie vor ihrer Implosion) verstanden, die dazu beiträgt, daß der zu vermischende Massestrom nach der Behandlung bessere oder speziell erwünschte Eigenschaften aufweist.
In diesem Sinne kann gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 28 der durch die Durchflußkammer hindurchströmende Massestrom auch entsprechend mit Laserlicht entsprechender Intensität und/oder Wellenlänge in einem entsprechenden oder mehreren entsprechenden räumlichen Bereichen beaufschlagt werden.
Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen des Superkavitationsmischers.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsformen der Erfindung anhand der Zeichnung.
Es zeigen:
  • Fig. 1a eine schematische Querschnittsansicht einer ersten beispielhaften Ausführungsform der Erfindung;
  • Fig. 1b eine schematische Querschnittsansicht einer zweiten beispielhaften Ausführungsform der Erfindung, die eine Modifikation der ersten Ausführungsform von Fig. 1a darstellt;
  • Fig. 2a eine Querschnittsansicht eines beispielhaften schwer umströmbaren Körpers für den erfindungsgemäßen Superkavitationsmischer;
  • Fig. 2b eine Querschnittsansicht einer Modifikation des beispielhaften schwer umströmbaren Körpers von Fig. 2a;
  • Fig. 2c eine Querschnittsansicht einer weiteren Modifikation des beispielhaften schwer umströmbaren Körpers von Fig. 2a bzw. Fig. 2b;
       die Figuren 3a bis 3f Querschnittsansichten für beispielhafte schwer umströmbare Teilbereiche des schwer umströmbaren Körpers, insbesondere seines der Ausgangsöffnung des Gehäuses zugewandten Endteilbereichs;
       die Figuren 4a und 4b schematische Draufsichten in Strömungsrichtung auf beispielhafte schwer umströmbare Körper;
  • Fig. 5 eine perspektivische Ansicht einer beispielhaften Wendelvorrichtung mit wendelartig ausgebildeten Elementen, die am Anfang und/oder am Ende der Durchflußkammer angeordnet werden kann, um den hindurchströmenden Massestrom zusätzlich zu vermischen; und
  • Fig. 6 eine schematische Querschnittsansicht einer beispielhaften Kopplung von zwei erfindungsgemäßen Superkavitationsmischern, derart, daß sich ihre jeweiligen Superkavitationsfelder räumlich überlagern.
  • In den Figuren bezeichnet das Bezugszeichen 100 jeweils eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes mittels einem hydrodynamischen Superkavitationsfeld, d.h. einer Überlagerung von mehreren Kavitationsfeldern. Diese erfindungsgemäße Vorrichtung wird im folgenden Superkavitationsmischer 100 genannt.
    Die Figuren 1a und 1b dienen nur dazu, die wesentlichen Eigenschaften eines erfindungsgemäßen Superkavitationsmischers 100 zu veranschaulichen, sind aber ansonsten nicht einschränkend zu verstehen.
    Fig. 1a ist eine schematische Querschnittsansicht in Längsrichtung eines Superkavitationsmischers 100 gemäß einer beispielhaften ersten Ausführungsform der Erfindung.
    Wie in Fig. 1a zu sehen ist, umfaßt der erfindungsgemäße Superkavitationsmischer 100 ein Gehäuse 1, das eine Eingangsöffnung 2 und eine Ausgangsöffnung 3 aufweist. Durch die Eingangsöffnung 2 wird ein Teil oder der gesamte zu vermischende, mehrkomponentige Massenstrom zugeführt, typischerweise mittels einer Pumpvorrichtung (nicht gezeigt). Durch die Ausgangsöffnung 3 wird der gemischte Massestrom dann entnommen. Die zu vermischenden Komponenten des Massestroms können fest, flüssig oder gasförmig sein, das heißt, der nach der Behandlung entnommene gemischte Massestrom ist beispielsweise eine Emulsion, eine Suspension, eine mit gelöstem Gas gesättigte Flüssigkeit oder andere, im wesentlichen fluide Mischungen bzw. Gemenge.
    Das Gehäuse 1 umfaßt des weiteren eine Durchflußkammer 4 und einen darin mittels einer Halterung 6 angeordneten schwer umströmbaren Körper 8. Die Halterung 6 ist im Fall der ersten Ausführungsform so ausgestaltet und angeordnet, daß sie durch eine weitere Öffnung 5 in dem Gehäuse 1 in das Gehäuse hineinragt, derart, daß der schwer umströmbare Körper 8 in der Durchflußkammer 4 positioniert ist.
    In der in Fig. 1a schematisch gezeigten Ausführungsform besteht die Durchflußkammer 4, der schwer umströmbare Körper 8 und die Halterung 6 jeweils aus einem rotationssymmetrischen Körper, die so angeordnet sind, daß ihre Symmetrieachsen zusammenfallen, das heißt, gleich der Mittelachse der Durchflußkammer 4 sind.
    Insbesondere besteht in Fig. 1a die Halterung 6 im wesentlichen aus einer hohlen Stange, d.h. weist einen hindurchgehenden Hohlraum 63 mit einer Einlaßöffnung 61 und einer Auslaßöffnung 62 auf. Desgleichen besitzt der schwer umströmbare Körper 8 eine zentrale, hindurchgehende Bohrung 83 entlang seiner Mittelachse mit der zugehörigen Einlaßöffnung 81 und Auslaßöffnung 82. Die Auslaßöffnung 62 der Stange bzw. Halterung 6 ist mit der Einlaßöffnung 81 des schwer umströmbaren Körpers verbunden, und die Halterung 6 und der schwer umströmbare Körper 8 sind so in dem Gehäuse 1 bzw. der Durchflußkammer 4 angeordnet, daß ihre Mittel- bzw. Symmetrieachsen zusammenfallen und die Auslaßendöffnung 82 des schwer umströmbaren Körpers 8 der Ausgangsöffnung 3 des Gehäuses 1 zugewandt ist.
    Unter der Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes sei hier und im folgenden immer die mittlere oder effektive Richtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes verstanden. Das heißt, über Verwirbelungen und ähnliches sei hinweggemittelt. Ist die Durchflußkammer 4 - wie in Fig. 1a und 1b gezeigt - rotationssymmetrisch oder im wesentlichen rotationssymmetrisch, so ist die Strömungsrichtung gleich der Richtung der Symmetrieachse bzw. Mittelachse der Durchflußkammer 4.
    Wie in Fig. 1a gezeigt bzw. angedeutet, besitzt der schwer umströmbare Körper 8 mindestens zwei schwer umströmbare Teilbereiche 80, zwischen denen sich jeweils ein durchströmbarer Zwischenraum 87 befindet. Die schwer umströmbaren Teilbereiche 80 bewirken jeweils eine lokale Strömungseinengung in der Durchflußkammer 4. Somit erzeugt der schwer umströmbare Körper, wenn er von dem zu vermischenden Massestrom in der Durchflußkammer 4 umströmt wird, mehrerer Kavitationsfelder, die sich einander überlagern, und somit insbesondere in Strömungsrichtung hinter dem schwer umströmbaren Körper 8 ein Superkavitationsfeld bilden.
    In Fig. 2a ist eine vergrößerte schematische Querschnittsansicht in Längsrichtung des beispielhaften schwer umströmbaren Körpers 8 der beispielhaften ersten Ausführungsform von Fig. 1a gezeigt.
    Mit Ausnahme der letzten zwei - in Strömungsrichtung gesehen - schwer umströmbaren Teilbereiche 80 besitzten die schwer umströmbaren Teilbereiche 80 in Fig. 1a bzw. 2a die Form eines Kegelstumpfes, um Kavitationsfelder zu erzeugen. Wie insbesondere in Fig. 2a zu sehen ist, sind die letzten zwei schwer umströmbaren Teilbereiche 80 des schwer umströmbaren Körpers 8 (d.h. die zwei schwer umströmbaren Teilbereiche, die von allen schwer umströmbaren Teilbereichen der Ausgangsöffnung 3 des Gehäuses 1 am nächsten liegen) zu diesem Zweck zusammen mit ihrem zugehörigen dazwischenliegenden Zwischenraum 87 als Gesamtheit so ausgestaltet, daß diese Gesamtheit einen Querschnitt besitzt (der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird), der bzw. dessen Fläche in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen stetig erst größer, dann kleiner und dann wieder größer wird. Mit anderen Worten, der äußere Umfang (die Umfangslinie) des Endes des schwer umströmbaren Körpers 8 gemäß der ersten Ausführungsform besitzt zwei lokale Minima und zwei lokale Maxima. Zudem besitzt der letze schwer umströmbare Teilbereich 80 hier einen hohlen Endbereich 84, in den auch die obige Endauslaßöffnung 82 einmündet. Der Querschnitt des hohlen Endbereich 84 bzw. der Aushöhlung 84, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, wird in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes stetig größer.
    Die Kegelstümpfe 80 sind jeweils so hintereinander angeordnet sind, daß die Fläche ihres Querschnitts, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung gesehen größer wird. Mit anderen Worten, die (abgestumpfte) Spitze eines jeden Kegelstumpfes ist dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt, während die Basis eines jeden Kegelstumpfes der Ausgangsöffnung 3 des Gehäuses am nächsten liegt. Dies gilt sinngemäß auch für die zwei letzten schwer umströmbaren Teilbereiche 80 in der ersten Ausführungsform.
    Weiterhin sind die Kegelstümpfe so ausgestaltet und angeordnet, daß - in Strömungsrichtung gesehen - jeder nachfolgende Kegelstumpf etwas weiter - in Richtung senkrecht zu der Mittelachse der Durchflußkammer 4 - in die Strömung hineinragt als die vorhergehenden Kegelstümpfe. Dies trifft analog auch wieder auf die zwei letzten schwer umströmbaren Teilbereiche 80 zu.
    Wie in Fig. 1a gezeigt ist, weist die Durchflußkammer 4 in der ersten Ausführungsform einen rotationssymmetrischen, sich in Strömungsrichtung allmählich erweiternden Durchflußkammerabschnitt 41 auf, dessen Querschnittsfläche senkrecht zur Mittelachse der Durchflußkammer 4 kreisförmig ist und in Strömungsrichtung stetig zunimmt, und in dem der schwer umströmbare Körper 8 angeordnet ist, derart, daß er ein hocheffektives Superkavitationsfeld erzeugt.
    Wie in Figur 1a gezeigt ist, weist die Durchflußkammer 4 des weiteren an ihrem Anfang, das heißt an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, einen sich in Strömungsrichtung verengenden Durchflußkammerabschnitt 42 auf, an den sich der sich erweiternde Durchflußkammerabschnitt 41 anschliesst. Die Querschnittsfläche senkrecht zur Mittelachse der Durchflußkammer 4 des sich verengenden Durchflußkammerabschnitts 42 ist kreisförmig und nimmt in Strömungsrichtung stetig zu, so daß eine Strömungseinengung bereitgestellt ist und die Bildung der Kavitationsfelder im nachfolgenden Bereich der Durchflußkammer 4 mittels des darin angeordneten schwer umströmbaren Körpers 8 weiter optimiert wird.
    Fig. 1b ist eine schematische Querschnittsansicht in Längsrichtung eines Superkavitationsmischers 100 gemäß einer beispielhaften zweiten Ausführungsform der Erfindung, die eine Modifikation der beispielhaften ersten Ausführungsform von Fig. 1a darstellt. Insbesondere unterscheidet sich die zweite Ausführungsform der Erfindung von der ersten nur durch zwei Modifikationen.
    Die erste Modifikation betrifft den schwer umströmbaren Körper 8, der in der zweiten Ausführungsform so ausgestaltet ist, daß jeder seiner schwer umströmbaren Teilbereiche 80, der die Form eines Kegelstumpfes besitzt, als Teilkörper 10 ausgebildet ist. Entsprechend sind die - in Strömungsrichtung gesehen - zwei letzten schwer umströmbaren Teilbereiche 80 der ersten Ausführungsform nun als ein einziger Teilkörper 10 ausgebildet. Die durchströmbaren Zwischenräume 87 zwischen den schwer umströmbaren Teilbereichen 80 bzw. Teilkörpern 10 werden mittels Abstandshaltern 9 realisiert. Als Gesamtheit besitzt der schwer umströmbäre Körper 8 der zweiten Ausführungsform insbesondere dieselbe Form wie der der ersten Ausführungsform. Man vergleiche hierzu auch Fig. 2b, die eine vergrößerte schematische Querschnittsansicht in Längsrichtung des beispielhaften schwer umströmbaren Körpers 8 der beispielhaften zweiten Ausführungsform von Fig. 1b darstellt, mit der analogen Fig. 2a.
    Die zweite Modifikation betrifft die Durchflußkammer 4, die in der zweiten Ausführungsform zusätzlich eine Ausbuchtung 20 aufweist. Wie in Fig. 1b gezeigt, schliesst sich an den sich erweiternden Durchflußkammerabschnitt 41 der Durchflußkammer 4 ein Bereich der Durchflußkammer an, der eine rotationssymmetrische Ausbuchtung 20 in der Wandung der Durchflußkammer 4 entlang ihres Umfanges aufweist, wobei sich diese Ausbuchtung 20 teilweise im Endbereich des schwer umströmbaren Körpers 8 befindet. Die durch die Ausbuchtung 20 bedingte Vergrößerung des Querschnitts der Durchflußkammer 4 in Strömungsrichtung kann die Kavitationswirkung und Mischwirkung des Superkavitationsmischers 100 gemäß der zweiten Ausführungsform weiter verstärken und optimieren.
    Als Modifikation der zweiten Ausführungsform - und auch entsprechender anderer Ausführungsformen, wie sie im folgenden diskutiert werden - kann sich die Ausbuchtung 20 auch an anderer Stelle befinden, d.h. sie kann in Strömungsrichtung gesehen auch erst direkt hinter - oder ein kleines Stück hinter - dem schwer umströmbaren Körper 8 beginnen, oder sie kann auch vollständig im Bereich des schwer umströmbaren Körpers 8 - beispielsweise um seine Mitte oder sein Ende herum - angeordnet sein.
    Es versteht sich weiter, daß die Ausbuchtung 20 in einer entsprechenden Ausführungsform nicht notwendigerweise rotationssymmetrisch sein muß, selbst wenn die Durchflußkammer 4 rotationssymmetrisch ist, ebenso wie die Ausbuchtung 20 nicht ununterbrochen bzw. vollständig entlang des Umfangs der Durchflußkammer 4 ausgebildet sein muß. Form und Anordnung einer - oder auch mehrerer - Ausbuchtungen 20 ergibt sich allein daraus, daß die Kavitationswirkung und Mischwirkung des erfindungsgemäßen Superkavitationsmischers 100 verstärkt und optimiert wird.
    An dieser Stelle sei betont, daß jede mögliche Ausführungsform des erfindungsgemäßen Superkavitationsmischers 100 sich insbesondere dadurch auszeichnet, daß der Querschnitt der Durchflußkammer 4, der senkrecht zu ihrer Mittelachse genommen wird, wenigstens in einem Teil des Bereichs, der den schwer umströmbaren Körper 8 umgibt, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird. Dieser sich aufweitende Teil der Durchflußkammer 4 ist wesentlich für die Erzeugung des erfindungsgemäßen höchsteffektiven Superkavitationsfeldes, da die dann von dem schwer umströmbaren Körper 8 hervorgerufenen Kavitationsfelder eine besonders hohe Kavitationswirkung bzw. Mischwirkung bekommen, das heißt, ihre Überlagerung - das Superkavitationsfeld - ist dazu in der Lage, eine besonders homogene und besonders langzeitstabile Mischung der Komponenten eines durch die Durchflußkammer 4 hindurchströmenden Massestromes zu erzeugen, verglichen mit den bisher nach dem Stand der Technik bekannten Mischungen, selbst für nach dem Stand der Technik schwerst mischbare Komponenten, und auch ohne Zusatzstoffe, die eine Mischwirkung besitzen (Additive), wie sich experimentell gezeigt hat.
    Und dieser sich aufweitende Teil der Durchflußkammer 4 kann allgemein so realisiert werden, daß die Durchflußkammer 4 gemäß der vorliegenden Erfindung als ganzes oder nur in einem Teilbereich oder in mehreren, nicht notwendigerweise zusammenhändenden Teilbereichen, der bzw. die jeweils wenigstens einen Teil des schwer umströmbaren Körpers 8 umgeben, so ausgestaltet ist, daß der Querschnitt der Durchflußkammer 4 in diesem sich aufweitenden Teil der Durchflußkammer 4 in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird.
    Dieser sich aufweitende Teil der Durchflußkammer 4 kann insbesondere durch einen sich stetig erweiternden, rotationssymmetrischen Durchflußkammerabschnitt 41 wie in Fig. 1a gezeigt realisiert werden, oder allein durch einen vorderen Teilbereich einer Ausbuchtung 20, oder durch eine Kombination zweier solcher Bereiche 41 und 20 wie in Fig. 1b gezeigt. Andere, nicht notwendigerweise rotationssymmetrische oder sich ganz um die Durchflußkammer 4 herum erstreckende entsprechende einzelne oder verteilte Teilbereiche einer Durchflußkammer 4, sofern diese alle nur wenigstens teilweise im Bereich des schwer umströmbaren Körpers 8 liegen und ihr Querschnitt in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird, sind ebenfalls geeignet.
    Im folgenden werden nun weitere Modifikationen der vorstehend beschriebenen ersten und zweiten Ausführungsformen und deren Modifikationen beschrieben werden, die alle unabhängig voneinander realisiert und kombiniert werden können und dann jeweils wieder eine weitere mögliche Ausführungsform des erfindungsgemäßen Superkavitationsmischers 100 darstellen.
    Im Gegensatz zu den beispielsweise in Fig. 1a und 1b schematisch gezeigten ersten und zweiten Ausführungsformen muß weder die Rotationssymmetrie der Durchflußkammer 4 noch die des schwer umströmbaren Körpers 8 noch die der Halterung 6 ebenso wie deren gemeinsame rotationssymmetrische Anordnung für alle Ausführungsformen der Erfindung gegeben sein, sondern nur insoweit, als dies für die Erzeugung der entsprechenden Kavitationsfelder erforderlich ist.
    Der schwer umströmbare Körper erzeugt, wenn er von dem zu vermischenden Massestrom in der Durchflußkammer 4 umströmt wird, mehrerer Kavitationsfelder, die sich einander überlagern, und somit insbesondere in Strömungsrichtung hinter dem schwer umströmbaren Körper 8 ein Superkavitationsfeld bilden. Es sei angemerkt, daß sich dieses Superkavitationsfeld - je nach spezieller Ausgestaltung des schwer umströmbaren Körpers 8, der Durchflußkammer 4 und ihrer relativen Anordnung zueinander - auch teilweise oder vollständig um den schwer umströmbaren Körper 8 herum erstreckt.
    Die Halterung 6 für den schwer umströmbaren Körper 8 ist in der ersten und zweiten Ausführungsform so ausgestaltet (als Stange) und angeordnet, daß sie durch eine Öffnung 5 in dem Gehäuse 1 in das Gehäuse und die Durchflußkammer 4 hineinragt. Die Halterung 6 kann aber im Prinzip beliebig ausgestaltet sein, beispielsweise als torusartige Vorrichtung, die einem Rad mit Speichen ähnelt, derartig, daß sie vollständig in der Durchflußkammer 4 des Gehäuses 1 angeordnet werden kann, beispielsweise an einem Teilbereich der Innenwand der Durchflußkammer 4, so ähnlich wie in DE-A-4433744.
    Ferner, obwohl in Fig. 1a und 1b nicht gezeigt bzw. nicht zu sehen, kann die Halterung 6 eine Vorrichtung umfassen bzw. mit einer Vorrichtung verbunden sein, die dazu geeignet ist, den schwer umströmbaren Körper 8. alleine oder in Verbindung mit der Halterung 6 - im Bereich der Durchflußkammer 4 entlang der Richtung der Mittelachse der Durchflußkammer zu verschieben. Somit kann der schwer umströmbare Körper 8 als ganzes relativ in Bezug auf den sich aufweitenden Teil der Durchflußkammer 4 (beispielsweise realisiert durch einen sich erweiternden Durchflußkammerabschnitt 41 und/oder eine Ausbuchtung 20 der Durchflußkammer 4) verschoben und positioniert werden, derart, daß die Mischwirkung des vom schwer umströmbaren Körper 8 hervorgerufenen Superkavitationsfeldes optimal eingestellt werden kann, sowohl in Bezug auf die Art der zu vermischenden Komponenten als auch in Bezug auf weitere Prozeßparameter und/oder Zielparameter des gewünschten gemischten Massestromes.
    Eine besonders einfache Einstellung bzw. Einregelung des Superkavitationsfeldes auf diese Weise kann erreicht werden, wenn ein Teil oder die ganze Durchflußkammer 4 durchsichtig, beispielsweise aus entsprechendem Kunststoff, ausgestaltet ist, so daß man direkt visuell diese Einstellung überprüfen bzw. vornehmen kann.
    Wie schon in Verbindung mit der ersten und zweiten Ausführungsform diskutiert, kann der schwer umströmbare Körper 8 aus einem einzigen Stück oder aus einer Vielzahl von schwer umströmbaren Teilkörpern 10 bestehen, die entsprechend angeordnet sind. Es sei betont, daß diese 'Zerlegung' des schwer umströmbaren Körpers 8 beliebig vorgenommen werden kann, sofern nur seine Gesamtform dazu geeignet ist - in Verbindung mit der entsprechend gestalteten Durchflußkammer 4 - das erfindungsgemäße Superkavitationsfeld zu erzeugen. Insbesondere kann jeder schwer umströmbare Teilkörper 10 einen oder mehrere der schwer umströmbaren Teilbereiche 80 des schwer umströmbaren Körpers 8 umfassen.
    Wie in Fig. 2b gezeigt, können dabei die einzelnen Teilkörper 10 mittels Abstandshalter 9 in einem jeweils vorbestimmten Abstand voneinander entlang der Mittelachse des schwer umströmbaren Körpers 8 angeordnet werden. Die durchströmbaren Zwischenräume 87 zwischen den schwer umströmbaren Teilbereichen 80 bzw. schwer umströmbaren Teilkörpern 10 eines schwer umströmbaren Körpers 8 können so individuell eingestellt werden, so daß die Mischwirkung des erzeugten Superkavitationsfeldes verstärkt bzw. optimiert werden kann.
    Die Abstandshalter 9 können aus einem elastischen Material, beispielsweise Kunststoff, bestehen, so daß das durch die Durchflußkammer 4 hindurchströmende Medium, die erzeugten Kavitationsfelder und die Teilkörper 10 in einer rückgekoppelten Beziehung stehen, derart, daß die Teilkörper 10 in Schwingungen versetzt werden, so daß wiederum die Kavitationswirkung bzw. Mischwirkung der Kavitationsfelder verstärkt bzw. optimiert wird.
    Eine weitere Möglichkeit in diesem Zusammenhang ist beispielsweise die Teilkörper 10 eines schwer umströmbaren Körpers 8 jeweils an dem Ende einer hohlen Stange zu befestigen bzw. anzuordnen, so daß der schwer umströmbare Körper durch entsprechendes Ineinanderstecken der einzelnen Stangen, deren Querschnitt jeweils entsprechend zunimmt, realisiert werden kann, ähnlich wie in EP-A-0644271. Solche wie gerade beschrieben ineinandergesteckten Stangen mit jeweils einem Teilkörper 10 an ihrem Ende können dann unabhängig voneinander entlang der Richtung ihrer Mittelachse verschoben werden. Mit anderen Worten, jeder der Teilkörper 10 eines so ausgestalteten schwer umströmbaren Körpers 8 kann unabhängig von allen anderen entlang der Richtung der Mittelachse der Durchflußkammer 4 verschoben werden.
    In dem zuletzt beschriebenen Beispiel stellt die Gesamtheit der hohlen Stangen die Halterung 6 dar. Dem Fachmann fallen aber ohne weiteres auch andere Ausgestaltungen des schwer umströmbaren Körpers 8 und der Halterung 6 ein, derart, daß ein aus mehreren Teilkörpern 10 bestehender schwer umströmbare Körper 8 so ausgestaltet ist, daß mindestens einer seiner Teilkörper 10 unabhängig von allen anderen entlang der Richtung der Mittelachse der Durchflußkammer 4 verschoben werden kann.
    Wie in den Figuren 1a, 1b, 2a und 2b zu sehen, besitzen die schwer umströmbaren Teilbereiche 80 bzw. schwer umströmbaren Teilkörper 10 eines schwer umströmbaren Körpers 8 typischerweise die Form eines Kegelstumpfes. Aber auch verwandte Formen wie die Form eines Kegelstumpfes mit gewellter Oberfläche oder die Form einer Halbkugel sind ebenfalls geeignet, um Kavitationsfelder zu erzeugen.
    Allgemein ist jeder schwer umströmbare Teilbereich 80 bzw. schwer umströmbare Teilkörper 10 eines schwer umströmbaren Körpers 8 so ausgebildet, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, an dem Ende des Teilkörpers 8, das der Eingangsöffnung 2 der Durchflußkammer 4 am nächsten liegt, kleiner ist als an dem Ende des Teilkörpers, das der Ausgangsöffnung 3 der Durchflußkammer 4 am nächsten liegt.
    Im Fall von Kegelstümpfen oder Halbkugeln bedeutet dies, daß diese jeweils so hintereinander angeordnet sind, daß die Fläche bzw. die äußere Umfangslinie ihres Querschnitts, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung gesehen größer wird, wie in den Figuren 1 und 2 zu sehen ist. Mit anderen Worten, die "Spitze" eines jeden Kegelstumpfes bzw. einer jeden Halbkugel ist dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt, während die Basis eines jeden Kegelstumpfes bzw. einer jeden Halbkugel der Ausgangsöffnung 3 des Gehäuses am nächsten liegt.
    Im vorhergehenden Absatz beschriebenen Beispiel können die Kegelstümpfe oder Halbkugeln auch - in Richtung entgegen der Strömungsrichtung gesehen (von ihrer Basis her) - ausgehöhlt sein, also die Form von hohlen Kegelstümpfen oder hohlen Halbkugeln besitzen. Dies gilt auch allgemein, d.h. die Teilbereiche 80 oder Teilkörper 10 können ebenfalls alle oder teilweise in Richtung entgegen der Strömungsrichtung gesehen ausgehöhlt sein.
    Es hat sich als vorteilhaft für die Erzeugung der Kavitationsfelder erwiesen, wenn der äußerste Rand eines Teilbereichs 80 bzw. eines Teilkörpers 10, d.h. der Randbereich, der von der Mittelachse der Durchflußkammer 4 den größten Abstand besitzt und so das Ausmaß der Strömungseinengung bestimmt, jeweils in Richtung senkrecht zu der Mittelachse der Durchflußkammer 4 etwas weiter in den hindurchströmenden Massestrom hineinreicht als der äußerste Rand eines in Strömungsrichtung gesehen davor befindlichen Teilbereiches 80 bzw. Teilkörpers 10. Die Figuren 1 bis 2 zeigen entsprechende Teilbereiche 80 bzw. Teilkörper 10, auf die dies zutrifft. Es versteht sich jedoch, daß dies nicht allgemein auf jeden oder alle Teilbereiche 80 bzw. Teilkörper 10 eines schwer umströmbaren Körpers 8 zutreffen muß, sofern der schwer umströmbare Körper 8 in seiner Gesamtform immer noch - in Verbindung mit der entsprechend gestalteten Durchflußkammer 4 - das erfindungsgemäße Superkavitationsfeld erzeugen kann.
    Um die Bildung der Kavitationsfelder und deren Mischwirkung zu optimieren, kann ein schwer umströmbarer Teilbereich 80 oder Teilkörper 10 auch so ausgestaltet sein, daß er auf einem Teil seiner Oberfläche eine Vielzahl von Erhebungen 88 aufweist. Diese Erhebungen 88 können beispielsweise die Form von kleinen Kegelspitzen oder eine damit verwandte Form besitzen.
    Hat der Teilbereich 80 bzw. Teilkörper 10 die Form eines hohlen oder vollen Kegelstumpfes, wie in Fig. 3a schematisch im Querschnitt gezeigt, und besitzen die Erhebungen 88 wiederum die Form von kleinen Kegelspitzen, so ist es vorteilhaft, wenn diese Kegelspitzen so orientiert werden, daß ihre Symmetrieachsen alle parallel zueinander und zu der Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes orientiert sind und daß jede Kegelspitze dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt ist, wie in Fig. 3a gezeigt (in Fig. 3a entspricht die Strömungsrichtung der Richtung von links nach rechts).
    Abweichend von Fig. 3a können die kleinen Erhebungen 88 natürlich auch anders orientiert und/oder ausgestaltet sein, auch in Abhängigkeit von der Ausgestaltung der Teilbereiche 80 bzw. Teilkörper 10. Vorteilhaft sind beispielsweise auch konzentrisch angeordnete, ringartig verlaufende Erhebungen 88 mit einer scharfen oberen Kante, die dem durch die Durchflußkammer 4 hindurchströmenden Massestrom jeweils ganz oder teilweise zugewandt ist.
    Obwohl in den Ausführungsformen nach den Figuren 1a und 1b die Durchflußkammer 4 an ihrem Anfang, das heißt an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, einen sich in Strömungsrichtung verengenden Durchflußkammerabschnitt 42 aufweist, um die Bildung der Kavitationsfelder im nachfolgenden Bereich der Durchflußkammer 4 mittels des darin angeordneten schwer umströmbaren Körpers 8 zu unterstützen, ist es klar, daß dies nicht unbedingt der Fall sein muß. So kann dieser Abschnitt der Durchflußkammer 4 auch zylindrisch sein oder eine andere Form, beispielsweise mit konstantem Querschnitt, besitzen.
    Wie schon in Verbindung mit der ersten und zweiten Ausführungsform beschrieben, hat es sich als vorteilhaft erwiesen, das Ende des schwer umströmbaren Körpers 8, das heißt die zwei schwer umströmbaren Teilbereiche 80 (plus dem zugehörigen dazwischenliegenden durchströmbaren Zwischenraum 87) bzw. den Teilkörper 10, die bzw. der von allen Teilbereichen bzw. Teilkörpern der Ausgangsöffnung 3 des Gehäuses 1 am nächsten liegt, so auszugestalten, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen erst größer und dann kleiner und dann wieder größer wird.
    Beispiele für diese Ausgestaltung sind in den Figuren 3b bis 3f gezeigt, die schematische Querschnittsansichten entlang der Längsrichtung bzw. Symmetrieachse eines rotationssymmetrischen Endteilbereiches bzw. Endteilkörpers eines schwer umströmbaren Körpers 8 darstellen. Wie in den Figuren 3b bis 3f zu sehen ist, nimmt bei dieser Ausgestaltung des schwer umströmbaren Körpers 8 die Fläche bzw. die äußere Umfangslinie des zugehörigen Querschnitts in den Figuren von links nach rechts - was in den Figuren 1 bis 3 gleich der Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Masseströmes ist - von einem Anfangswert (lokalen Minimalwert) startend erst stetig - nicht unbedingt linear - bis zu einem ersten lokalen Maximalwert zu, und dann stetig ab bis zu einem lokalen minimalen Querschnittswert und von da an wiederum stetig zu bis einem globalen Maximalwert ganz am Ende des letzten Teilbereiches bzw. Teilkörpers. Es versteht sich, daß dieses Querschnittsverhalten unabhängig davon ist, ob der schwer umströmbare Körper voll massiv ist oder eine hindurchgehende Bohrung 82 besitzt, wie in Figuren 3c, 3e und 3f bzw. in den Figuren 3b und 3d gezeigt.
    Allgemein kann das Ende des schwer umströmbaren Körpers 8 massiv bzw. eben sein - wie beispielsweise in Fig. 3e - oder kann allgemein einen hohlen Endbereich 84 aufweisen, der der Ausgangsöffnung 3 des Gehäuses 1 zugewandt ist, wobei der Querschnitt dieses Hohlraumes, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes stetig größer wird, wie beispielsweise in den Figuren 3b, 3c, 3d und 3f gezeigt. Bei dem in den Figuren 3b, 3c, 3d und 3f jeweils gezeigten rotationssymmetrischen Ende des schwer umströmbaren Körpers 8 bedeutet dies, daß der Querschnitt des Hohlraumes 84, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, die Form eines Kreises besitzt, und daß die Fläche dieser Querschnittskreise in Strömungsrichtung stetig größer wird.
    Wie in Fig. 3b und 3c gezeigt kann dabei der hohle Endbereich 84 so ausgestaltet sein, daß jede seiner Querschnittsflächen, die in Längsrichtung genommen wird und seine Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen im mathematischen Sinne konvex verläuft. Analog, und wie in Fig. 3d und 3f gezeigt, kann diese Randlinie im mathematischen Sinne konkav verlaufen.
    Bei der Ausgestaltung des Endes des schwer umströmbaren Körpers nach Fig. 3f beachte man auch, daß hier auf einem Teil seiner Oberfläche eine Vielzahl der Erhebungen 88 angeordnet sind, entweder in der Form von kleinen Kegelspitzen oder in der Form von konzentrisch angeordneten, ringartig verlaufende Erhebungen mit einer scharfen oberen Kante.
    Unabhängig von allen bisher diskutierten Ausgestaltungen und Modifikationen in Bezug auf den schwer umströmbaren Körper 8 sollte beachtet werden, daß ein schwer umströmbarer Teilbereich 80 bzw. schwer umströmbarer Teilkörper 10 weder rotationssymmetrisch, noch symmetrisch in einem anderen Sinne, noch durchgehend sein muß. Ähnlich wie in EP-A-644271 kann so ein schwer umströmbarer Teilbereich 80 bzw. Teilkörper 10 in Strömungsrichtung gesehen hindurchgehende Aussparungen aufweisen. So zeigen die Figuren 4a und 4b Beispiele für schwer umströmbare Teilbereiche 80 bzw. Teilkörper 10, in Strömungsrichtung gesehen, deren Querschnitt, senkrecht zu der Mittelachse der Durchflußkammer 4 genommen, die Fläche eines Kreises besitzt, minus mehrerer Segmente bzw. Kreisabschnitte 11 und/oder minus mehrerer Sektoren bzw. Kreisausschnitte, genauer gesagt Kreisringe, 12.
    Damit der schwer umströmbare Körper 8 durch die Einwirkung der Kavitationsfelder nicht selbst beschädigt wird, ist es vorteilhaft, wenn er mindestens teilweise aus einem elastischen nichtmetallischen Material besteht oder mindestens teilweise einen elastischen nichtmetallischen Überzug aufweist, beispielsweise aus einem geeigneten Kunststoff.
    Der schwer umströmbare Körper 8 und die Halterung 6 können allgemein massiv ausgebildet sein. Sie können aber auch allgemein jeweils mit einem hindurchgehenden Hohlraum 83 bzw. 63 ausgestaltet und über entsprechende Öffnungen 82 bzw. 81 miteinander verbunden sein, so daß ein Teil des zu vermischenden Massestromes nicht über die Eingangsöffnung 2 des Gehäuses 1, sondern über eine entsprechende Einlaßöffnung 61 der Halterung 6 und eine entsprechende Auslaßendöffnung 82 des schwer umströmbaren Körpers 8 direkt in die Durchflußkammer eingeführt werden kann. Dies ist besonders vorteilhaft, wenn der so direkt in die Durchflußkammer einzuführende Teil des zu vermischenden Massestromes gasförmig ist und der andere Teil, der über die Eingangsöffnung 2 des Gehäuses 1 eingeführt wird, flüssig ist.
    Zu diesem Zweck kann der schwer umströmbare Körper 8 natürlich mehr als eine Auslaßöffnung 82 aufweisen, die in Abhängigkeit von der erwünschten Mischwirkung und Kavitationswirkung des entsprechenden erfindungsgemäßen Superkavitationsmischers 100 auf entsprechende Weise über den gesamten schwer umströmbaren Körper 8 verteilt angeordnet werden.
    So ist beispielsweise in Fig. 2c ein schwer umströmbarer Körper 8 gezeigt, der zwar von der äußeren Gesamtform her dem der ersten bzw. zweiten Ausführungsform gleicht, der aber zudem einen hindurchgehenden Hohlraum 83 mit mehreren Auslaßöffnungen besitzt. Eine dieser Auslaßöffnungen ist die schon in den Figuren 1a und 1b gezeigte zentrale Auslaßendöffnung 82.
    Weiterhin besitzt der in Fig. 2c gezeigte schwer umströmbare Körper 8, der im Prinzip eine Weiterbildung des in Fig. 2b gezeigten schwer umströmbaren Körpers 8 ist, einen hindurchgehenden Hohlraum 83 mit Auslaßzwischen-Öffnungen 85, die sich jeweils in einem Oberflächenteilbereich des schwer umströmbaren Körpers 8 befinden, der der Innenwand der Durchflußkammer 4 mindestens teilweise zugewandt ist und der sich zwischen zwei benachbarten schwer umströmbaren Teilbereichen 80 bzw. schwer umströmbaren Teilkörpern 10 des schwer umströmbaren Körpers 8 befindet.
    Weiter besitzt der in Fig. 2c gezeigte schwer umströmbare Körper 8 einen hindurchgehenden Hohlraum 83 mit Auslaßseitenöffnungen 86, die sich jeweils in einem Oberflächenteilbereich des schwer umströmbaren Körpers 8 befinden, der der Innenwand der Durchflußkammer 4 mindestens teilweise zugewandt ist und der sich im Bereich eines schwer umströmbaren Teilbereiches 80 bzw. schwer umströmbaren Teilkörpers 10 des schwer umströmbaren Körpers 8 befindet.
    Es versteht sich, daß weder die Auslaßzwischenöffnungen 85 noch die Auslaßseitenöffnungen 86 so symmetrisch, wie in Fig. 2c gezeigt, angeordnet werden müssen. Ebenso kann der durch den schwer umströmbaren Körper 8 hindurchgehende Hohlraum 83 nur eine Auslaßendöffnung 82 oder nur eine oder mehrerer Auslaßzwischenöffnungen 85 oder nur eine oder mehrerer Auslaßseitenöffnungen 86 aufweisen. Oder der hindurchgehende Hohlraum 83 weist nur eine oder mehrere Auslaßzwischenöffnungen 85 oder nur eine oder mehrere Auslaßseitenöffnungen 86 auf. Auch kann in jedem Fall, wo eine Auslaßendöffnung 82 vorhanden ist, diese auch durch entsprechend angeordnete mehrere Auslaßendöffnungen 82, die sich am Ende des schwer umströmbaren Körpers 8 befinden und der Ausgangsöffnung 3 des Gehäuses 1 zugewandt sind, ersetzt werden.
    Unabhängig von allen bisher beschriebenen Ausführungsformen und Modifikationen davon kann der erfindungsgemäße Superkavitationsmischer des weiteren eine Ultraschallvorrichtung und/oder Laservorrichtung umfassen, um die Mischwirkung und/oder Kavitationsbildung der gesamten Vorrichtung zu optimieren.
    Zu diesem Zweck kann der schwer umströmbare Körper 8 als ganzes oder teilweise direkt mit Ultraschall beaufschlagt werden. Dies versetzt den schwer umströmbaren Körper 8 als ganzes und/oder in entsprechenden Teilbereichen in Schwingungen. Unabhängig davon kann man auch den hindurchströmenden Massestrom an einer geeigneten Stelle in der Durchflußkammer 4 - oder auch an mehreren Stellen oder auch in der gesamten Durchflußkammer 4 - mit Ultraschall beaufschlagen, um beispielsweise Verwirbelungen, Druckwellen, Ultraschallkavitation oder verwandte Effekte zu erzeugen, die die hydrodynamische Kavitationsbildung unterstützen oder ergänzen und/oder weitere positive Einwirkung auf die Mischwirkung der gesamten Vorrichtung besitzen. Des weiteren kann eine Ultraschallvorrichtung den schwer umströmbaren Körper oder Teile davon auch direkt in Ultraschallschwingungen versetzen, ebenso wie einen geeigneten Teil der Durchflußkammer 4 bzw. die gesamte Durchflußkammer 4, um die gerade beschriebenen Effekte und positive Einwirkungen oder ähnliche zu erzielen.
    Analog kann eine Laservorrichtung den Massestrom bzw. einen Teil davon in der Durchflußkammer 4 mit Laserlicht beaufschlagen, um so beispielsweise ebenfalls Kavitation zu erzeugen oder zu unterstützen, beispielsweise auch durch lokale Erwärmung, die unter anderem auch auf die Strömungsrichtung und Wirbelbildung Einfluß haben kann.
    Bei allen bisher diskutierten Ausführungsformen und Modifikationen davon kann des weiteren, um die Mischwirkung der gesamten Vorrichtung zu unterstützen, am Anfang und/oder Ende der Durchflußkammer 4, das heißt, an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, und/oder an dem Ende, das der Ausgangsöffnung 3 des Gehäuses 1 am nächsten liegt, jeweils eine Wendelvorrichtung 90 bereitgestellt sein, wie sie in Fig. 5 schematisch in einer perspektivischen Ansicht skizziert ist.
    Eine Wendelvorrichtung 90 besteht im wesentlichen aus einer Vielzahl von wendelartig ausgebildeten Elementen 92 und aus einer Außenwandung 94, die so ausgebildet ist, daß die Wendelvorrichtung 90 am entsprechenden Ende der Durchlaßkammer 4 angeordnet und befestigt werden kann, beispielsweise mittels eines Dichtungsgummis 96. Die Außenwandung 94 umschließt einen hindurchgehenden Hohlraum, in dem die Vielzahl von wendelartigen Elementen 92 angeordnet sind. Die wendelartigen Elemente 92 haben dabei eine längliche, im wesentlichen flache bzw. zweidimensionale Form und verlaufen im wesentlichen in Richtung der Strömungsrichtung des durch die Durchflußkammer 4 hindurchstömenden Massestromes, sind dabei aber entlang dieser Richtung so schraubenförmig bzw. wendelartig oder spiralig verdrillt oder verbogen, wobei sie beispielsweise mit einem Teil ihrer Längskante an der Innenwand der Außenwandung 94 befestigt sind, daß der hindurchströmende Massestrom in mehrere Teilströme aufgeteilt wird, die zudem durch die wendelartige Ausbildung der Elemente 92 jeweils in Rotation versetzt werden. Dieses Prinzip der Vermischung von Strömen mittels wendelartiger Vorrichtungen ist im Fachgebiet allgemein bekannt.
    Mehrere erfindungsgemäße Superkavitationsmischer 100, jeweils gemäß einer der bisher beschriebenen Ausführungsformen und Modifikationen davon, können miteinander kombiniert bzw. gekoppelt werden, derart, daß das von jedem einzelnen erfindungsgemäßen Superkavitationsmischer 100 erzeugte Superkavitationsfeld mit dem von allen anderen Superkavitationsmischern 100 erzeugten Superkavitationsfeldern überlagert wird. In solch einer Einrichtung 200, wie sie schematisch in Fig. 6 in einer Querschnittsansicht anhand von zwei gekoppelten Superkavitationsmischern 100 veranschaulicht wird, kann durch die Überlagerung der mehreren Superkavitationsfelder deren Kavitationswirkung und Mischwirkung insgesamt nochmals potenziert werden.
    Außerdem hat solch eine Einrichtung 200 den Vorteil, daß ein Gesamtmassestrom nicht durch eine einzelne Vorrichtung hindurch mittels einer entsprechend dimensionierten Pumpe gepreßt werden muß, sondern daß dieser zu vermischende Gesamtstrom auf die einzelnen, zu der Einrichtung 200 gehörenden Superkavitationsmischer 100 aufgeteilt werden kann, so daß jeweils pro Superkavitationsmischer 100 nur eine wesentlich kleiner dimensionierte Pumpe erforderlich ist. Dies erhöht die Effektivität bzw. Energieausnutzung der Einrichtung.
    In der in Fig. 6 gezeigten Einrichtung 200 sind die einzelnen Superkavitationsmischer 100 so miteinander verbunden und gekoppelt, daß ihre einzelnen Durchflußkammern 4 nahtlos in eine nachfolgende gemeinsame Durchflußkammer 40 übergehen. Mit anderen Worten, die Ausgangsöffnungen 3 der Gehäuse 1 der Superkavitationsmischer 100 sind zu einer einzigen gemeinsamen Öffnung 30 verbunden bzw. überlagert, die die Eingangsöffnung der gemeinsamen nachfolgenden Durchflußkammer 40 darstellt. Im Bereich der Eingangsöffnung 30, das heißt, im Eingangsbereich der gemeinsamen Durchflußkammer 40, überlagern sich dann die von jedem Superkavitationsmischer 100 erzeugten Superkavitationsfelder. Nach der Beaufschlagung mit den überlagerten Superkavitationsfeldern wird der gesamte durch die Einrichtung 200 hindurchströmende Massestrom durch die Ausgangsöffnung 50 der Durchflußkammer 40 entnommen.
    Man beachte auch, daß in der Einrichtung 200 die einzelnen Superkavitationsfelder vorteilhafterweise symmetrisch einander überlagert werden, das heißt, einander äquivalente räumliche Bereiche der jeweiligen Superkavitationsfelder werden miteinander überlagert. Sind dies die Bereiche der stärksten bzw. optimalen Kavitationswirkung eines jeden Superkavitationsfeldes, so potenziert sich in der Überlagerung deren Wirkung optimal. Allerdings kann diese symmetrische Art der Überlagerung auch aufgegeben werden, wenn dadurch eine bessere Mischwirkung oder andere erwünschte Effekte erreicht werden können bzw. sollen.
    Eine zur obigen Einrichtung 200 analoge Einrichtung, in der mehrere Superkavitationsfelder überlagert werden, ist auch mit den in DE-A-4433744 offenbarten Superkavitationsmischern möglich.
    Bei allen bisher beschriebenen Ausführungsformen und Modifikationen davon sollte beachtet werden, daß der durch einen erfindungsgemäßen Superkavitationsmischer 100 hindurchgeleitete Massestrom nach seiner Entnahme aus der Ausgangsöffnung 3 des Gehäuses 1 (bzw. der Ausgangsöffnung 50 der Durchflußkammer 40) teilweise oder ganz rückgeführt werden kann - über die Eingangsöffnung 2 des Gehäuses 1 und/oder die entsprechende Einlaßöffnung 61 der Halterung 6 -, um so nochmals teilweise oder als ganzes behandelt zu werden. Dies gilt selbstverständlich analog auch für die Einrichtung 200, in der mehrere Superkavitationsmischer gekoppelt sind.
    Abschließend sei nochmals betont, daß alle Ausgestaltungen des schwer umströmbaren Körpers 8, in denen dieser aus mehreren Einzelteilen besteht, auch auf entsprechende Weise so realisiert werden können, daß der schwer umströmbare Körper aus einem Stück besteht. Dabei geht nur eine gegebenenfalls vorhandene unabhängige relative Beweglichkeit entsprechender Einzelteile verloren.
    Zusammengefaßt stellt eine erfindungsgemäße Vorrichtung 100 zum Vermischen der Komponenten eines hindurchströmenden Massestromes eine besonders homogene und extrem bzw. beliebig lange stabile Mischung bereit, auch wenn nach dem Stand der Technik nicht oder nur schwerst mischbare Komponenten gemischt werden, und auch ohne die Verwendung von Zusatzstoffen (Additiven, Emulgatoren u.ä) zur Unterstützung der Mischwirkung. Die Vorrichtung 100 weist einen in einer Durchflußkammer 4 angeordneten schwer umströmbaren Körper 8 auf, der mindestens teilweise in einem sich in Strömungsrichtung aufweitenden Teil der Durchflußkammer 4 angeordnet ist, so daß die Kavitationswirkung und Mischwirkung des von dem schwer umströmbaren Körper 8 erzeugten Superkavitationsfeldes wesentlich verstärkt und optimiert wird.

    Claims (29)

    1. Vorrichtung (100) zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einem hydrodynamischen Superkavitationsfeld, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen, mit
      einem Gehäuse (1), das eine Eingangsöffnung (2) für die Zufuhr mindestens eines Teils des zu vermischenden Massestromes und eine Ausgangsöffnung (3) für die Entnahme des Massestromes aufweist;
      wobei das Gehäuse (1) eine Durchflußkammer (4) mit einem darin mittels einer Halterung (6) angeordneten schwer umströmbaren Körper (8) aufweist, und
      der schwer umströmbare Körper (8) mindestens zwei schwer umströmbare Teilbereiche (80; 10) besitzt, die für jeweils eine lokale Strömungseinengung sorgen, dadurch gekennzeichnet, dass die Durchflußkammer (4) an ihrem Anfang einen sich in Strömungsrichtung verengenden Durchflußkammerabschnitt (42) aufweist, und
      dass der Innendurchmesser der Durchflußkammer (4) im Anschluß an den sich verengenden Durchflußkammerabschnitt (42) in zumindest dem Bereich, der den schwer umströmbaren Körper (8) umgibt, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes größer wird.
    2. Vorrichtung (100) nach Anspruch 1, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) entlang der Richtung der Mittelachse der Durchflußkammer (4) verschoben werden kann.
    3. Vorrichtung (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die schwer umströmbaren Teilbereiche (80; 10) des schwer umströmbaren Körpers (8) mittels mehrerer schwer umströmbarer Teilkörper (10) realisiert werden.
    4. Vorrichtung (100) nach Anspruch 3, dadurch gekennzeichnet, daß mindestens einer der Teilkörper (10) unabhängig von allen anderen (10) entlang der Richtung der Mittelachse der Durchflußkammer (4) verschoben werden kann.
    5. vorrichtung (100) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) so ausgebildet ist, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, an dem Ende des Teilkörpers, das der Eingangsöffnung (2) am nächsten liegt, kleiner ist als an dem Ende, das der Ausgangsöffnung (3) am nächsten liegt.
    6. Vorrichtung (100) nach Anspruch 5, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als Kegelstumpf oder als Halbkugel ausgebildet ist.
    7. Vorrichtung (100) nach Anspruch 5, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als hohler Kegelstumpf oder als hohle Halbkugel ausgebildet ist.
    8. Vorrichtung (100) nach Anspruch 5, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) so ausgestaltet ist, daß er mindestens in einem Oberflächenteilbereich eine Vielzahl von kleinen Erhebungen (88) aufweist.
    9. Vorrichtung (100) nach Anspruch 8, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als Kegelstumpf mit einer Vielzahl von kleinen Erhebungen (88) ausgebildet ist, wobei die kleinen Erhebungen jeweils die Form einer Kegelspitze besitzen und wobei der Oberflächenteilbereich und die Anordnung der kleinen Kegelspitzen dadurch gekennzeichnet ist, daß die Symmetrieachsen der Kegelspitzen alle parallel zueinander und zu der Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes sind und daß jede Kegelspitze dem durch die Durchflußkammer (4) hindurchströmenden Massestrom zugewandt ist.
    10. Vorrichtung (100) nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß der schwer umströmbare Teilbereich (80; 10), der von allen Teilbereichen (80; 10) der Ausgangsöffnung (3) am nächsten liegt, so ausgestaltet ist, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen erst größer und dann kleiner und dann wieder größer wird.
    11. Vorrichtung (100) nach Anspruch 10, dadurch gekennzeichnet, daß der schwer umströmbare Teilbereich (80; 10), der von allen Teilbereichen (80; 10) der Ausgangsöffnung (3) am nächsten liegt, einen hohlen Endbereich (84) aufweist, der der Ausgangsöffnung (3) zugewandt ist, wobei der Querschnitt dieses Hohlraums (84), der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes größer wird.
    12. Vorrichtung (100) nach Anspruch 11, dadurch gekennzeichnet, daß der hohle Endbereich (84) rotationssymmetrisch ist und seine Symmetrieachse parallel zur Mittelachse der Durchflußkammer (4) liegt.
    13. Vorrichtung (100) nach Anspruch 12, dadurch gekennzeichnet, daß jede Querschnittsfläche des hohlen Endbereichs (84), die dessen Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen konvex verläuft.
    14. Vorrichtung (100) nach Anspruch 12, dadurch gekennzeichnet, daß jede Querschnittsfläche des hohlen Endbereichs (84), die dessen Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen konkav verläuft.
    15. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
      die Durchflußkammer (4) wenigstens teilweise rotationssymmetrisch ist, wobei ihre Mittelachse die Symmetrieachse ist, und
      der schwer umströmbare Körper (8) so angeordnet ist, daß seine Mittelachse mit der Mittelachse der Durchflußkammer (4) zusammenfällt.
    16. Vorrichtung (100) nach Anspruch 15, dadurch gekennzeichnet, daß die Durchflußkammer (4) in ihrem rotationssymmetrischen Teil mindestens eine Ausbuchtung (20) in ihrer Wandung entlang ihre Umfanges aufweist.
    17. Vorrichtung (100) nach Anspruch 16, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) so angeordnet ist, daß mindestens eine Ausbuchtung (20) mindestens teilweise im Bereich des schwer umströmbaren Körper (8) liegt.
    18. Vorrichtung (100) nach Anspruch 16, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) so angeordnet ist, daß mindestens eine Ausbuchtung (20) in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes direkt hinter dem schwer umströmbaren Körper (8) liegt.
    19. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) mindestens teilweise aus einem elastischen, nichtmetallischen Material besteht.
    20. Vorrichtung (100) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) mindestens teilweise einen elastischen, nichtmetallischen Überzug aufweist.
    21. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
      der schwer umströmbare Körper (8) einen hindurchgehenden Hohlraum (83) mit einer Einlaßöffnung (81) aufweist, die sich an dem Ende des schwer umströmbaren Körpers (8) befindet, das der Eingangsöffnung (2) des Gehäuses (1) am nächsten liegt, wobei der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum (83) mindestens eine Auslaßöffnung (82, 85, 86) aufweist,
      die Halterung (6) einen hindurchgehenden Hohlraum (63) mit einer Einlaßöffnung (61) und einer Auslaßöffnung (62) aufweist, wobei letztere mit der Einlaßöffnung (81) des schwer umströmbaren Körpers (8) verbunden ist; und
      die Halterung (6) und der schwer umströmbare Körper (8) so miteinander verbunden und in dem Gehäuse (1) angeordnet sind, daß mittels einer Öffnung (5) in dem Gehäuse (1) und über die Einlaßöffnung (61) der Halterung (6) ein Teil des zu vermischenden Massestromes über die mindestens eine Auslaßöffnung (82, 85, 86) des schwer umströmbaren Körpers (8) in die Durchflußkammer (4) eingeführt werden kann.
    22. Vorrichtung (100) nach Anspruch 21, dadurch gekennzeichnet, daß die Halterung (6) eine hohle Stange umfaßt, die durch die Öffnung (5) in dem Gehäuse (1) hindurch entlang der Mittelachse der Durchflußkammer (4) in diese hineinragt.
    23. Vorrichtung (100) nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er eine Auslaßöffnung (82) aufweist, die sich an dem Ende des schwer umströmbaren Körpers (8) befindet, das der Ausgangsöffnung (3) des Gehäuses (1) am nächsten liegt.
    24. Vorrichtung (100) nach einem der Ansprüche 21, 22 oder 23, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er mindestens eine Auslaßöffnung (85) aufweist,
      die sich in einem Oberflächenteilbereich des schwer umströmbaren Körpers (8) befindet, der der Innenwand der Durchflußkammer (4) mindestens teilweise zugewandt ist, und
      die sich zwischen zwei benachbarten schwer umströmbaren Teilbereichen (80; 10) befindet.
    25. Vorrichtung (100) nach einem der Ansprüche 21, 22, 23 oder 24, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er mindestens eine Auslaßöffnung (86) aufweist,
      die sich in einem Oberflächenteilbereich des schwer umströmbaren Körpers (8) befindet, der der Innenwand der Durchflußkammer (4) mindestens teilweise zugewandt ist, und
      die sich im Bereich eines schwer umströmbaren Teilbereiches (80; 10) befindet.
    26. vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den schwer umströmbaren Körper (8) und/oder den Massestrom an mindestes einem Ort in der Durchflußkammer (4) mit Ultraschall zu beaufschlagen.
    27. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den schwer umströmbaren Körper (8) und/oder einen Teil der Durchflußkammer (4) in Ultraschallschwingungen zu versetzen.
    28. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den Massestrom in der Durchflußkammer (4) mit Laserlicht zu beaufschlagen.
    29. Einrichtung (200) zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einer Überlagerung von mindestens zwei hydrodynamischen Superkavitationsfeldern, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen,
      dadurch gekennzeichnet, daß
      die Einrichtung (200) mindestens zwei Vorrichtungen (100) nach jeweils einem der Ansprüche 1 bis 28 und eine nachfolgende gemeinsame Durchflußkammer (40) aufweist, wobei
      die Vorrichtungen (100) so angeordnet und ausgestaltet sind, daß ihre Ausgangsöffnungen (3) als Gesamtheit an die Eingangsöffnung (30) der nachfolgenden gemeinsamen Durchflußkammer (40) anschließen, derart, daß die von den schwer umströmbaren Körpern (8) erzeugten Superkavitationsfelder im Eingangsbereich der gemeinsamen Durchflußkammer (40) räumlich überlappen.
    EP01929373A 2000-02-28 2001-02-28 Kavitationsmischer Expired - Lifetime EP1280598B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10009326A DE10009326A1 (de) 2000-02-28 2000-02-28 Kavitationsmischer
    DE10009326 2000-02-28
    PCT/EP2001/002253 WO2001062373A1 (de) 2000-02-28 2001-02-28 Kavitationsmischer

    Publications (2)

    Publication Number Publication Date
    EP1280598A2 EP1280598A2 (de) 2003-02-05
    EP1280598B1 true EP1280598B1 (de) 2004-01-21

    Family

    ID=7632688

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01929373A Expired - Lifetime EP1280598B1 (de) 2000-02-28 2001-02-28 Kavitationsmischer

    Country Status (6)

    Country Link
    US (1) US6935770B2 (de)
    EP (1) EP1280598B1 (de)
    AT (1) ATE258080T1 (de)
    AU (1) AU2001256171A1 (de)
    DE (2) DE10009326A1 (de)
    WO (1) WO2001062373A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1749564A3 (de) * 2005-08-05 2007-09-12 Elmar Huymann Kavitationsmischer

    Families Citing this family (90)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6702949B2 (en) 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
    US20110075507A1 (en) * 1997-10-24 2011-03-31 Revalesio Corporation Diffuser/emulsifier
    US7654728B2 (en) 1997-10-24 2010-02-02 Revalesio Corporation System and method for therapeutic application of dissolved oxygen
    US7128278B2 (en) 1997-10-24 2006-10-31 Microdiffusion, Inc. System and method for irritating with aerated water
    US6386751B1 (en) 1997-10-24 2002-05-14 Diffusion Dynamics, Inc. Diffuser/emulsifier
    US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
    FR2832400B1 (fr) * 2001-11-22 2004-02-13 Herve Maurice Marcel G Brisset Procede et dispositif de traitement des boues hydrophiles par effet de turbulence hydraulique associee a une oxydation et des reactions chimiques par apport d'additifs
    EP2165745A1 (de) 2003-03-04 2010-03-24 Five Star Technologies, Inc. Hydrodynamische Kavitationskristallisierungsvorrichtung
    US20040251566A1 (en) * 2003-06-13 2004-12-16 Kozyuk Oleg V. Device and method for generating microbubbles in a liquid using hydrodynamic cavitation
    DE102004019241A1 (de) * 2004-04-16 2005-11-03 Cellmed Ag Injizierbare vernetzte und unvernetzte Alginate und ihre Verwendung in der Medizin und in der ästhetischen Chirurgie
    EP1784251B1 (de) * 2004-09-03 2009-11-18 Crenano Gmbh Mehrkammersuperkavitationsreaktor
    US7207712B2 (en) * 2004-09-07 2007-04-24 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
    US7380976B2 (en) * 2005-07-18 2008-06-03 Xerox Corporation Device and method with cooling jackets
    DE102005049591B3 (de) * 2005-08-19 2007-03-29 Wagner, Manfred Kavitations-Entgaser
    DE102005051072A1 (de) 2005-10-25 2007-04-26 Wagner, Manfred Entkeimung durch Kavitation
    US7833421B2 (en) 2005-10-25 2010-11-16 Elmar Huymann Degermination through cavitation
    DE102006011881A1 (de) * 2006-03-09 2007-09-13 Vortex-Nanofluid Gmbh Langzeitstabile Dispersion und Verfahren zur Herstellung der Dispersion
    US7819335B2 (en) * 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
    US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US7744015B2 (en) 2006-01-23 2010-06-29 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    US7735751B2 (en) * 2006-01-23 2010-06-15 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US7424883B2 (en) * 2006-01-23 2008-09-16 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    US8028930B2 (en) * 2006-01-23 2011-10-04 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    US7963458B2 (en) 2006-01-23 2011-06-21 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US8191732B2 (en) 2006-01-23 2012-06-05 Kimberly-Clark Worldwide, Inc. Ultrasonic waveguide pump and method of pumping liquid
    US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
    DE102006007634A1 (de) * 2006-02-18 2007-08-30 Erhard Schindler Zyklonaler Kavitationsgenerator
    DE102006024788A1 (de) * 2006-05-27 2007-11-29 Man Roland Druckmaschinen Ag Druckmaschine
    DE102006024789A1 (de) * 2006-05-27 2007-11-29 Man Roland Druckmaschinen Ag Druckmaschine
    US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
    US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
    US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
    US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
    US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
    CA2667614A1 (en) 2006-10-25 2008-09-25 Revalesio Corporation Method of wound care and treatment
    US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
    WO2008052143A2 (en) 2006-10-25 2008-05-02 Revalesio Corporation Mixing device and output fluids of same
    US8597689B2 (en) 2006-10-25 2013-12-03 Revalesio Corporation Methods of wound care and treatment
    US8884182B2 (en) * 2006-12-11 2014-11-11 General Electric Company Method of modifying the end wall contour in a turbine using laser consolidation and the turbines derived therefrom
    US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
    US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
    US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
    US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
    US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
    EP2025392B1 (de) * 2007-07-30 2012-05-23 Cavitator Systems GmbH Steuerung einer Cavitator-Anlage
    AU2008306712A1 (en) * 2007-10-03 2009-04-09 Neorad As Monitoring the injection of fluid
    US20100303871A1 (en) * 2007-10-25 2010-12-02 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
    US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
    US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
    US20090263495A1 (en) * 2007-10-25 2009-10-22 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
    US20100310665A1 (en) * 2007-10-25 2010-12-09 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
    US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
    US20090147905A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
    US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
    US8858892B2 (en) * 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
    US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
    US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
    US20090166177A1 (en) * 2007-12-28 2009-07-02 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
    US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
    US8206024B2 (en) * 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
    US7533830B1 (en) 2007-12-28 2009-05-19 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
    US8215822B2 (en) * 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
    US7950594B2 (en) * 2008-02-11 2011-05-31 Bacoustics, Llc Mechanical and ultrasound atomization and mixing system
    DE102008012725A1 (de) * 2008-03-05 2009-09-24 United Waters International Ag Vorrichtung zur Begasung von Flüssigkeiten
    CN103919804A (zh) 2008-05-01 2014-07-16 利发利希奥公司 治疗消化功能紊乱的组合物和方法
    US8603198B2 (en) 2008-06-23 2013-12-10 Cavitation Technologies, Inc. Process for producing biodiesel through lower molecular weight alcohol-targeted cavitation
    US8042989B2 (en) * 2009-05-12 2011-10-25 Cavitation Technologies, Inc. Multi-stage cavitation device
    US7762715B2 (en) * 2008-10-27 2010-07-27 Cavitation Technologies, Inc. Cavitation generator
    US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
    US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
    US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
    DE102009024707A1 (de) * 2009-06-12 2010-12-16 Kaviwo Gmbh Verfahren und Vorrichtung zur Stoffumwandlung in schwebstoffhaltigen Flüssigkeiten
    US9611496B2 (en) 2009-06-15 2017-04-04 Cavitation Technologies, Inc. Processes for extracting carbohydrates from biomass and converting the carbohydrates into biofuels
    US9988651B2 (en) 2009-06-15 2018-06-05 Cavitation Technologies, Inc. Processes for increasing bioalcohol yield from biomass
    DE102009051501A1 (de) 2009-10-30 2011-05-05 Cavitator Systems Gmbh Kavitator mit geraden Seitenwänden
    EP2566460A4 (de) 2010-05-07 2015-12-23 Revalesio Corp Zusammensetzungen und verfahren für verbesserte sportliche leistungen und verkürzte erholungszeiten
    MX2013001636A (es) 2010-08-12 2013-05-01 Revalesio Corp Composiciones y metodos para el tratamiento de taupatias
    US20130258801A1 (en) 2010-11-15 2013-10-03 Hindustan Unilever Limited Mixing apparatus and method for mixing fluids
    KR101100801B1 (ko) * 2011-06-15 2012-01-02 (주)한국캐비테이션 수리동력학적 캐비테이션장치
    US20130068700A1 (en) * 2011-09-16 2013-03-21 Impulse Devices Inc. System and Method for Treatment of Liquids by Cavitation with Pressure Recovery Capability
    US9126176B2 (en) 2012-05-11 2015-09-08 Caisson Technology Group LLC Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
    US9222403B2 (en) * 2013-02-07 2015-12-29 Thrival Tech, LLC Fuel treatment system and method
    JP6076130B2 (ja) * 2013-02-25 2017-02-08 旭有機材株式会社 流体混合器および流体混合器を用いた装置
    US9732068B1 (en) 2013-03-15 2017-08-15 GenSyn Technologies, Inc. System for crystalizing chemical compounds and methodologies for utilizing the same
    WO2015088983A1 (en) 2013-12-09 2015-06-18 Cavitation Technologies, Inc. Processes for extracting carbohydrates from biomass and converting the carbohydrates into biofuels
    EP3189887A1 (de) 2015-12-29 2017-07-12 AVARUS Suisse Holding AG Kavitationsreaktor zum behandeln von fliessfähigen substanzen
    EP3187253A1 (de) 2015-12-30 2017-07-05 AVARUS Suisse Holding AG Kavitationsreaktor zum behandeln einer fliessfähigen substanz
    US10065158B2 (en) * 2016-08-19 2018-09-04 Arisdyne Systems, Inc. Device with an inlet suction valve and discharge suction valve for homogenizaing a liquid and method of using the same
    RU2685629C2 (ru) * 2017-05-24 2019-04-22 Шор Борис Иосифович Активатор жидкости
    WO2021113424A1 (en) * 2019-12-05 2021-06-10 Hydrocav, Llc Fluid filtration device

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2669750A (en) * 1950-11-21 1954-02-23 Monsanto Chemicals Injection molding device
    CH366518A (de) * 1959-01-15 1963-01-15 Lendi Wilhelm Homogenisiervorrichtung
    FR1381821A (fr) * 1964-02-04 1964-12-14 Ultrasonics Ltd Procédé et dispositif atomiseur pour la production d'aérosols ou autres mélangesintimes de liquides et de gaz
    US3473787A (en) * 1967-12-18 1969-10-21 Floyd M Bartlett Method and apparatus for mixing drilling fluid
    DE2241673C2 (de) * 1972-09-01 1982-03-04 Vsesojuznyj naučno-issledovatel'skij institut celljulozno-bumažnoj promyšlennosti, Leningrad Anlage zur Bearbeitung von Suspensionenvon Faserstoffen
    US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
    US4299655A (en) * 1978-03-13 1981-11-10 Beloit Corporation Foam generator for papermaking machine
    WO1994013392A1 (en) * 1991-11-29 1994-06-23 Ki N Proizv Ob Method and device for producing a free dispersion system
    CH687068A5 (de) * 1993-07-27 1996-09-13 Schoeller Plast Ag Einsatzkoerper fuer eine Einspritzduese einer Kunststoff-Spritzgussmaschine sowie Einspritzduese.
    US5969207A (en) * 1994-02-02 1999-10-19 Kozyuk; Oleg V. Method for changing the qualitative and quantitative composition of a mixture of liquid hydrocarbons based on the effects of cavitation
    JPH0857279A (ja) * 1994-08-24 1996-03-05 Kankyo Kagaku Kogyo Kk 静止型混合装置
    DE4433744C2 (de) * 1994-09-21 2001-02-22 Schueler Rolf Vorrichtung zum Vermischen von Medien zur Erzeugung flüssiger Systeme
    EP0879363B1 (de) * 1996-02-15 2002-09-11 Oleg Vyacheslavovich Kozyuk Verfahren und vorrichtung zur herstellung eines frei dispersen systems in einer flüssigkeit
    DE29608289U1 (de) * 1996-05-08 1996-08-01 Jordanow Iwan Vorrichtung zum Mischen von Strömungsmedien
    US5937906A (en) * 1997-05-06 1999-08-17 Kozyuk; Oleg V. Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation
    US5971601A (en) * 1998-02-06 1999-10-26 Kozyuk; Oleg Vyacheslavovich Method and apparatus of producing liquid disperse systems
    US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
    US6802639B2 (en) * 2002-10-15 2004-10-12 Five Star Technologies, Inc. Homogenization device and method of using same

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1749564A3 (de) * 2005-08-05 2007-09-12 Elmar Huymann Kavitationsmischer
    DE102005037026B4 (de) * 2005-08-05 2010-12-16 Cavitator Systems Gmbh Kavitationsmischer

    Also Published As

    Publication number Publication date
    AU2001256171A1 (en) 2001-09-03
    WO2001062373B1 (de) 2001-12-20
    EP1280598A2 (de) 2003-02-05
    DE10009326A1 (de) 2001-08-30
    ATE258080T1 (de) 2004-02-15
    WO2001062373A1 (de) 2001-08-30
    DE50101363D1 (de) 2004-02-26
    US20030147303A1 (en) 2003-08-07
    US6935770B2 (en) 2005-08-30

    Similar Documents

    Publication Publication Date Title
    EP1280598B1 (de) Kavitationsmischer
    DE4433744C2 (de) Vorrichtung zum Vermischen von Medien zur Erzeugung flüssiger Systeme
    DE102009034977B4 (de) Kavitationsreaktor sowie ein Verfahren zur hydrodynamischen Erzeugung homogener, oszillierender Kavitationsblasen in einem Fluid, ein Verfahren zur Desinfektion eines Fluids und ein Verfahren zum Emulgieren oder zum Suspendieren oder zur Reaktionsbegünstigung zumindest zweier Stoffe
    DE60117165T2 (de) Vorrichtung und verfahren zur erzeugung hydrodynamischer kavitationen in fluiden
    EP0475284B1 (de) Verfahren und Vorrichtung zur Einwirkung eines Verdichtungsstosses auf Fluide
    US6802639B2 (en) Homogenization device and method of using same
    DE69825475T2 (de) Injektionsmischer
    EP1945337B1 (de) Wirbelkammer
    EP1749564A2 (de) Kavitationsmischer
    DE102010047782B3 (de) Strömungsgleichrichter für geschlossene Rohrleitungen
    EP0300964B1 (de) Vorrichtung zum Mischen fliessfähiger Medien
    DE2839387C2 (de) Verfahren zur Erzeugung hydrodynamischer Schwingungen in einer Flüssigkeit und Einrichtung zur Ausführung des Verfahrens
    DE10019759C2 (de) Statisches Mischsystem
    EP2608875B1 (de) Vorrichtung und verfahren zur gasdispergierung
    WO2018197231A1 (de) Fluidische baugruppe
    EP2135667B1 (de) Kavitator
    EP1638675A1 (de) Dispergiervorrichtung
    DE4208442A1 (de) Saug/mischvorrichtung
    DE202010000075U1 (de) Vorrichtung zur Behandlung von Strömungskomponenten mittels turbulenter Strömungen
    DE102007011205A1 (de) Hochdruckhomogenisator
    DE2909989A1 (de) Emulsionserzeuger
    DE10204923C1 (de) Sonotroden-Dispergier-Vorrichtung
    DE2658619A1 (de) Verfahren zur minderung von geraeuschen bei der durchflussregelung eines stroemungsmediums sowie durchfluss-regelventil
    DE102014013019B3 (de) Vorrichtung zur pulsations- und oszillationsfreien Totalverdampfung von Medien; Handgerät zum Bedampfen von Oberflächen
    DE19945508A1 (de) Verfahren und Vorrichtung zur Herstellung von Emulsionen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020927

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: SCHUELER, ROLF

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040121

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040121

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50101363

    Country of ref document: DE

    Date of ref document: 20040226

    Kind code of ref document: P

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040227

    Year of fee payment: 4

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040228

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040228

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040228

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040421

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040421

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040421

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040502

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040121

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040121

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: SCHULER & LOCHER OEG

    Effective date: 20040228

    Owner name: LOCHER, MANFRED LORENZ

    Effective date: 20040228

    Owner name: SCHULER, ROLF

    Effective date: 20040228

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041022

    EN Fr: translation not filed
    EN Fr: translation not filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050228

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050228

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ERR

    Free format text: BOPI DE PUBLICATION N: 05/03 PAGES: 237 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040621

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100210

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50101363

    Country of ref document: DE

    Effective date: 20110901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110901