EP1244954A1 - Written command - Google Patents

Written command

Info

Publication number
EP1244954A1
EP1244954A1 EP00989133A EP00989133A EP1244954A1 EP 1244954 A1 EP1244954 A1 EP 1244954A1 EP 00989133 A EP00989133 A EP 00989133A EP 00989133 A EP00989133 A EP 00989133A EP 1244954 A1 EP1244954 A1 EP 1244954A1
Authority
EP
European Patent Office
Prior art keywords
command
code
pen
writing
written
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00989133A
Other languages
German (de)
French (fr)
Inventor
Christer Fahraeus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anoto AB
Original Assignee
Anoto AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anoto AB filed Critical Anoto AB
Publication of EP1244954A1 publication Critical patent/EP1244954A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones

Definitions

  • the present invention relates to a handheld electronic device which is adapted to carry out at least one operation.
  • the invention also relates to a method for initiating an operation in a handheld electronic device, as well as a computer program.
  • Handheld computers and other handheld electronic devices are usually controlled by means of one or several buttons or keys, with the aid of which a user issues various commands to the device or inputs information which the device is to use. If there are only a few buttons, controlling the device is usually complicated and time-consuming. On the other hand, if there are many buttons/keys they are usually small in order to only require a small amount of space on the handheld device, which makes them inconvenient to use and increases the risk of pressing the wrong button/key.
  • US 5,852,434 discloses a device which enables a user to input hand-written and hand-drawn information to a computer while the information is being written/drawn on the writing surface.
  • the device comprises a writing surface, on which a position code is arranged for coding X/Y coordinates of positions on the surface, and a special pen with a writing tip by means of which the user can write or draw on the writing surface. Furthermore, the pen has a light source for illuminating the position code and a CCD sensor for forming an image of the position code. The positional information received by the CCD sensor is transferred to a computer for processing.
  • WO 99/48268 discloses a handheld device for writing a telephone number and sending the number to a mobile telephone for automatic dialing.
  • An object of the present invention is to simplify the control and operation of a handheld device.
  • the invention relates to a handheld electronic device adapted to carry out at least one operation, the device being controllable by a user using the device as a pen and writing a command for initiating said operation.
  • An advantage of the invention is thus that the user is not required to press any keys or buttons on the device. Instead, he controls the device by writing a command for the operation he wishes to carry out. This makes the device more convenient to use for the user.
  • the command written by the user can, for example, be a word indicating the operation which is to be carried out, for example "Dial” if the user wants the device to dial a certain number. It can also be a symbol, a character, a number, or a figure indicating the operation which is to be carried out .
  • the device can record the command written by means of the device in different ways, for example by using one or more sensors which detect the movement of the device.
  • the device is adapted to record the command by detecting a position code located on a writing surface upon which the command is written.
  • a position code located on a writing surface upon which the command is written.
  • the position code can be detected continuously while the command is being written, a sequence of position indications being obtained which define how the device has been moved and thus which command has been written.
  • the device can use different types of sensors depending on the technology used to implement the posi- tion code.
  • the position code is designed in such a way that it can be detected by an optical sensor.
  • the device advantageously comprises an optical sensor which is adapted to record images of the writing surface, and a signal processor which is adapted to use the position code in the images for providing a digital representation of the command.
  • the signal processor may comprise an interpretation function for recognizing a command symbol.
  • the user may define an arbitrary symbol as a command symbol and when writing this symbol, the device interprets the symbol as a command.
  • One example would be the character @, which may be interpreted as a command that the following characters are to be interpreted as an e-mail address.
  • the signal processor may comprise a character interpretation function which is adapted to translate the digital representation of the command into character-coded format.
  • This embodiment is advantageous because it makes it easier co determine which command the user has written and available software for character recognition may be used for interpretation of the command.
  • the character interpretation operation can, for example, be carried out by ICR software.
  • the device can be adapted to record a message information quantity which is used in the operation and recorded in essentially the same way as the command. In this way, the user will have the same interface for controlling the device and for inputting message information. The device will be less expensive to produce if the same means are used for inputting message information.
  • the message information quantity can, for example, be a text which is to be transmitted in an e-mail message, a telephone number which is to be dialed, an entry which is to be made in a calendar program or some other similar information quantity. It can comprise text, numbers, various types of characters, symbols, figures, drawings, and other information which can be generated by means of "hand-writing", which is defined as any manual movement of the device on a surface . In a preferred embodiment, the message information quantity is also recorded by detecting the position code on the writing surface.
  • the device can have at least two modes, one being a command mode for recording the command and the other being an information mode for recording the information quantity. By virtue of the fact that it has different modes the device knows how the data that is written by means of the device should be processed and there is no doubt about whether the data is a command or a message information quantity.
  • the device assumes the command mode when a predetermined command symbol is written with the aid of the device.
  • This command symbol can be a figure, one or several characters, a picture or the like.
  • the device assumes the command mode when it detects that the writing surface has a special design.
  • the writing surface can, for example, have a special area for writing commands and another area for writing the information quantity, the device detecting on which area it is located with the aid of the position code.
  • the principle according to the invention can be used for causing a handheld electronic device to carry out any operation which can be initiated by means of a command. Examples of operations that are carried out in handheld electronic devices include dialing, faxing, sending an electronic message, saving information, managing documents and files, and starting, controlling and closing programs. An operation may or may not be an operation which utilizes a message information quantity.
  • the device is a mobile telephone, which can thus be controlled by a user using the telephone as a pen, for example writing "dial 1234567", whereupon the telephone automatically dials that number.
  • the device comprises an accelerometer for recording the command. The accelero- meter records the movement of the device when the command is being written. This embodiment has the advantage that the command can be written on any surface or even in the air, without contact with a surface. Accordingly, there is no need for a writing surface with a position code and, in fact, there is no need for a writing surface at all; rather, the command can be "written" on any arbitrary surface.
  • the device comprises an optical sensor for recording images with partially overlapping content and a signal processor which is adapted to determine how the device has been moved in connection with the writing of the command by determining the relative position of the images.
  • This embodiment also has the advantage that no position code is required; rather, the user can "write” the command with the aid of the device on any surface which is sufficiently patterned to enable the determi- nation of the relative position of the images.
  • the technology for determining what has been written is described in more detail in publication WO 99/60467, the contents of which is incorporated in the present specification by reference.
  • This method for recording a command can advantageously be used for controlling a reading pen or a handheld scanner of the type described in the publication WO 98/20446, the contents of which is incorporated in the present specification by reference, and sold under the
  • the device need not be one integrated unit.
  • the device can have a first and a second part which are separable and which have transceivers for mutual wireless or wirebound communication, the device being controllable by the user using the first part as said pen, by means of which said command for initiating the operation is written.
  • a computer program which is stored on a memory medium, which can be read by a computer, and which comprises instructions for causing the computer to detect a command written by means of a handheld electro- nic device which is being used as a pen and initiate a predetermined operation in response to the command.
  • a third aspect of the present invention relates to a method for initiating an operation in a handheld electronic device comprising the steps of using the device itself as a pen and writing a command for carrying out said operation.
  • Fig. 1 is a partial, schematic cross-sectional view of an embodiment of a handheld device according to the invention
  • Fig. 2 is a plan view of a writing surface provided with a position code and which can be used for recording written commands;
  • Fig. 3 is an isometric view of a second embodiment of a handheld device according to the invention.
  • Fig. 4 is a schematic diagram of a product provided with an alternative position coding pattern.
  • Fig. 5 is a schematic diagram disclosing how the markings may be designed and positioned in the position code pattern of Fig. 4.
  • Fig. 6 is a schematic diagram of a code pattern in which 4*4 symbols are used for coding a position.
  • Fig. 1 discloses a handheld device in the form of a digital pen, which can be used for writing text and drawing lines and pattern or symbols which are to be recorded in digital format.
  • the device is controlled by the user by writing commands with the pen for the operations which are to be carried out .
  • the device comprises a casing 11 having approximate- ly the same shape as a pen. At one short side of the casing there is an opening 12 or a window which is transparent for IR light. The short side is intended to abut against or be placed a short distance from a writing surface 3 during operation of the device, see Fig. 2.
  • the casing 11 essentially comprises an optics part, an electronic circuitry part, and a power supply.
  • the optics part comprises at least one light-emitting diode 13 for illuminating the surface which is to be imaged and a light-sensitive area sensor 14, such as a CCD or CMOS sensor, for recording a two-dimensional image.
  • the user unit may also comprise a lens system (not shown) .
  • the power supply to the device is obtained from a battery 15, which is mounted in a separate compartment in the casing 11.
  • the battery may be a chargable battery.
  • the power supply is obtained via a cable connection with a separate device, comprising a power source .
  • the electronic circuitry part comprises a signal processor 16.
  • the signal processor 16 is implemented with the aid of a microprocessor and a memory and contains software for analyzing images from the sensor for providing a digital representation of what is being written on the writing surface 3. Furthermore, it contains operation software for initiating and/or carrying out various operations in response to commands, as well as user software. Moreover, the signal processor 16 advantageously contains ICR software which can be used for interpreting the recorded characters so that they can be stored, manipulated, and/or forwarded in character- coded format .
  • the casing 11 of the device also comprises a pen point 18, with the aid of which the user can write ordinary pigment-based writing on the writing surface 3.
  • the pen point 18 is extendable and retractable so that the user can control whether or not it is to be used.
  • the pigment is preferably non-absorbing for IR light.
  • the device comprises buttons 19 by means of which the device can be activated and controlled for operations which are not initiated by commands written by means of the device.
  • the buttons 19 can also be used for causing the device to assume different modes, as well as an on/off switch.
  • the device may also comprises a transceiver 20 for wireless transfer, for example by means of IR light, ultrasound or radio waves, of information over short distances. This wireless transfer can be utilized when the device cannot itself carry out the whole initiated operation and needs to forward the recorded information quantity and informa- tion about the operation to be carried out to an external unit .
  • the device may comprise a display 21 for showing information.
  • WO 98/20446 discloses a device for scanning and recording text. If programmed in a suitable way, this device can be utilized for recording text and commands which are being written on a writing surface provided with a position code, and for initiating/carrying out operations in response to the written commands.
  • Fig. 2 shows a sheet of paper 1 defining a writing surface 3.
  • a position code 4 which is composed of symbols 5 of a first and a second type 5a, 5b and more specifically a dot having a larger radius and a dot having a smaller radius, corresponding to a "one" and a "zero" respectively.
  • the symbols 5 have been enlarged and the position code 4 is only shown on a small part of the writing surface 3.
  • the position code extends across the entire writing surface 3 and the symbols 5 are smaller to ensure better position resolution.
  • the position code 4 can be created in a number of different ways.
  • One way of creating a position code 4 in which each position is coded with one symbol 5 is described in US 5,852,434.
  • each position is advantageously coded with the aid of a plurality of symbols 5 and the coding is such that each symbol 5 in the position code 4 contributes to the coding of more than one position, so called floating coding.
  • This type of overlapping or floating position code 4 can be created with the aid of a computer.
  • the operation of the device in Fig. 1 will now be described.
  • a user wishes to make an entry in a calendar program in the device.
  • he must first open the calendar program.
  • the user In order to cause the device to carry out this task, the user first writes a special command symbol and subsequently the command letters "calendar" on the sheet of paper 3 using the pen point 17.
  • the command symbol may be any symbol that the user has defined to be a command symbol, for example a large circle like "0" inside which is written a small circle like "o", more or less in one pen stroke, like the following:
  • the optical sensor 14 continuously captures images of the writing surface 3 in the current position of the device. Each image contains a part of the position code 4.
  • the signal proces- sor 16 localizes the position code 4 in each image and, on the basis of this code, determines the coordinates of the absolute position on the writing surface 3 in which each image was captured. In this way, a description, in the form of a large number of position indications, is obtained of how the pen has been moved across the sheet. This description constitutes a digital representation of the command symbol and the command.
  • the position indications are fed as an input signal to the ICR software, which determines the characters to which the positions correspond, so that the command symbol and the command can be translated into character-coded format.
  • the command may be ended by once again entering the command symbol .
  • the processor When the processor detects the command symbol it knows that the characters that follow should be inter- preted as a written command. The processor then compares the characters representing the recorded command with a number of predetermined commands to determine which command the user has written. When it has determined that the command is a command for opening the calendar pro- gram, it carries out the operation of opening the calendar program.
  • the program can, for example, show a day in the calendar on the display 21 in the usual way.
  • the user moves a cursor to the time where the entry should be made. Subsequently, the user writes the entry he wishes to make on the sheet of paper 3 using the pen point 17.
  • the device records the entry in the same way as the command. Since the processor does not detect the command symbol it knows that the written characters represent an information quantity. The characters are trans- lated into character-coded format with the aid of the ICR software and are stored in the calendar program.
  • the user wishes to save and close the program.
  • she writes the command symbol followed by the command "save”.
  • the written command is processed in the same way as the command "open” and results in the execution of the operation of saving the written entry.
  • the device After the execution of a command, the device reverts to its normal input mode, until the next command symbol is entered. It should be noted that the pen point 17 is only used in order to make it easier for the user to see what he is writing. It has no other function.
  • Fig. 3 schematically shows another embodiment of a device according to the invention.
  • the device is an ordinary mobile telephone 30 supplemented with new software, a transceiver 31 for wireless communication over short distances, and a pen 32 for control- ling the telephone.
  • the pen When the pen is not in use it is placed in a holder 33 on the side of the telephone.
  • the holder may comprise a contact for connecting the pen to the battery of the mobile telephone for charging the pen battery.
  • the pen battery may be charged at the same time as the telephone battery is charged by a battery charger.
  • the charging circuitry of the telephone may be used for controlling the battery charge of the pen as well .
  • the holder may further comprise connectors for connecting the pen to the electronic circuitry of the telephone, so that the pen may download its memory contents to the telephone, or transmit its memory contents to a network using the telephone as a modem.
  • the structure of the pen 32 is essentially the same as that of the device in Fig. 1. However, it has no display, no mobile telephone transceiver, and only part of the software in the device in Fig. 1.
  • the optical sensor in the pen 32 can be integrated with the mobile telephone and the whole mobile telephone can be used as a pen for writing com- mands .
  • the pen performs all actions and operations, and when the telephone number is recognised and decoded to ASCII, the pen sends the telephone number to the telephone for initiating the call, or transmits the telephone number to the telephone via the above-mentioned connectors.
  • the devices can be switched between a command mode and an information mode with the aid of the buttons 19. In cases where the number of possible commands is small, there is no need to specially indicate the commands .
  • the detection of the written command can be based on other techniques than the detec- tion of a position code, such as an accelerometer or the recording of images with partially overlapping content for determining the movement of the device.
  • a position code such as an accelerometer or the recording of images with partially overlapping content for determining the movement of the device.
  • the preferred embodiment of the absolute position-coding pattern will now be described. For the sake of simplicity it is described in connection with a sheet of paper. It corresponds to the absolute position- coding pattern described in PCT/SE00/01895. It is referred to as a position-coding pattern since a surface to which the position code is applied gives a slightly patterned impression.
  • Fig. 4 shows an enlarged part of a sheet which on its surface 102 is provided with the position-coding pattern 105.
  • the sheet has an x coordinate axis and a y coordinate axis.
  • the position-coding pattern comprises a virtual raster which neither is visible to the human eye nor can be detected directly by a device which is to determine positions on the surface, and a plurality of symbols which each can assume one of four values "1" - "4" as will be described below.
  • the position-coding pattern is arranged in such a manner that the symbols on a partial surface of the sheet of paper code absolute coordinates of a point on an imaginary surface, which will be described below.
  • a first and a second partial surface 125a, 125b are indicated by dashed lines in Fig. 4. That part of the position-coding pattern (in this case 4 x 4 symbols) which is to be found on the first partial surface 125a codes the coordinates of a first point, and that part of the position-coding pattern which is to be found on the second partial surface 125b codes the coordinates of a second point on the imaginary surface.
  • the position-coding pattern is partially shared by the adjoining first and second points.
  • Such a position-coding pattern is in this application referred to as "floating".
  • Figs 5a-5d show an embodiment of a symbol which can be used in the position-coding pattern.
  • the symbol com- prises a virtual raster point 130 which is represented by the intersection between the raster lines, and a marking 106 which has the form of a dot.
  • the value of the symbol depends on where the marking is located. In the Example in Fig. 5, there are four possible locations, one on each of the raster lines extending from the raster points. The displacement from the raster point is equal to all values.
  • the symbol in Fig. 5a has the value 1, in Fig. 5b the value 2, in Fig. 5c the value 3 and in Fig. 5d the value 4. Expressed in other words, there are four different types of symbols.
  • Each symbol can thus represent four values "1-4".
  • This means that the position-coding pattern can be divid- ed into a first position code for the x coordinate, and a second position code for the y coordinate.
  • the division is effected as follows:
  • each symbol is translated into a first digit, in this case bit, for the x-code and a second digit, in this case bit, for the y-code.
  • the patterns can be combined to a joint pattern, which is coded graphically by means of a plurality of symbols according to Fig. 5.
  • the coordinates for each point is coded by means of a plurality of symbols. In this example, use is made of 4x4 symbols to code a position in two dimensions, i.e. an x-coordinate and a y-coordinate .
  • the position code is made up by means of a number series of ones and zeros which have the characteristic that no sequence of four bits appears more than once in the series.
  • the number series is cyclic, which means that the characteristic also applies when one connects the end of the series to the beginning of the series. Thus a four-bit sequence always has an unambiguously determined position in the number series.
  • the series can maximally be 16 bits long if it is to have the above-described characteristic for sequences of four bits.
  • This series contains seven unique sequences of four bits which code a position in the series as follows:
  • the number series is written sequentially in columns across the entire surface that is to be coded.
  • the coding is based on the difference or position displacement between numbers in adjoining columns.
  • the size of the difference is determined by the position (i.e. with which sequence) in the number series, in which one lets the column begin. More specifically, if one takes the difference modulo seven between on the one hand a number which is coded by a four-bit sequence in a first column and which thus can have the value (position) 0-6, and, on the other hand, the corresponding number (i.e. the sequence on the same "level") in an adjoining column, the result will be the same independently of where along the two columns one makes the comparison. By means of the difference between two columns, it is thus possible to code an x-coordinate which is constant for all y-coordinates .
  • each position on the surface is coded with 4x4 symbols in this example, three differences (having the value 0-6) as stated above are available to code the x-coordinate. Then the coding is carried out in such manner that of the three differences, one will always have the value 1 or 2 and the other two will have values in the range 3-6. Consequently no differences are allowed to be zero in the x-code.
  • the x-code is structured so that the differences will be as follows: (3-6) (3-6) (1-2) (3-6) (3-6) (1-2) (3-6) (3-6) (1-2)...
  • Each x-coordinate thus is coded with two numbers between 3 and 6 and a subsequent number which is 1 or 2. If three is subtracted from the high numbers and one from the low, a number in mixed base will be obtained, which directly yields a position in the x-direction, from which the x-coordinate can then be determined directly, as shown in the example below.
  • the y-coordinates are coded according to the same principle as used for the x-coordinates.
  • the cyclic number series is repeatedly written in horizontal rows across the surface which is to be position-coded. Just like in the case of the x-coordinates, the rows are allowed to begin in different positions, i.e. with different sequences, in the number series.
  • y-coordinates one does not use differences but codes the coordinates with numbers that are based on the starting position of the number series on each row.
  • Each y-coordinate thus is coded with three numbers between 2 and 6 and a subsequent number between 0 and 1. If 0 is subtracted from the low number and 2 from the high, one obtains in the same manner as for the x-direction a position in the y-direction in mixed base from which it is possible to directly determine the y-coordinate.
  • the starting position of the first number series in the first column can be calculated when the x-coordinate has been determined.
  • the above-mentioned seven different starting positions for the first series may code different sheets of paper or writing surfaces on a product.
  • Fig. 6 shows an example of an image with 4x4 symbols which are read by a device for position determination. These 4x4 symbols have the following values: 4 4 4 2
  • the vertical x-sequences code the following positions in the number series: 2 0 4 6.
  • the horizontal y-sequences code the positions 0 4 1 3 in the number series. Since these series begin in the 58th column, the starting position of the rows are these numbers minus 57 modulo7, which yields the starting positions 6 3 0 2.
  • the position of the uppermost left corner for the 4x4 symbol group is (58,170) .
  • the numbers 0-19 are coded in the mixed base, and by adding up the representations of the numbers 0-19 in the mixed base, one obtains the total difference between these columns.
  • a naive algorithm to do so is to generate these twenty numbers and directly add up their digits. The resulting sum is called s.
  • the sheet of paper or writing surface will then be given by (5-s) modulo7.
  • each position is coded with 4 x 4 symbols and a number series with 7 bits is used.
  • Positions can be coded with a larger or smaller number of symbols.
  • the number of symbols need not be the same in both directions.
  • the number series can be of different length and need not be binary, but may be based on another base. Different number series can be used for coding in x-direction and coding in y-direction.
  • the symbols can have different numbers of values. As is evident from the above, a coding with 6 x 6 symbols is presently preferred, each symbol being capable of assuming four values. A person skilled in the art can readily generalise the above examples to concern such coding.
  • the marking is a dot but may, of course, have a different appearance.
  • it may consist of a dash or some other indication which begins in the virtual raster point and extends therefrom to a predetermined position.
  • the marking may consist of a rectangle, a square, a triangle or some other convenient, easily detected figure.
  • the marking can be filled or open.
  • the symbols within a square partial surface are used for coding a position.
  • the partial surface may have a different form, such as hexagonal.
  • the symbols need not be arranged in rows and columns at an angle of 90° to each other but can also be arranged at other angles, e.g. 60°, and/or in other arrangements. They could also code positions in polar coordinates or coordinates in other coordinate systems.
  • the virtual raster For the position code to be detected, the virtual raster must be determined. This can be carried out by studying the distance between different markings. The shortest distance between two markings must derive from two neighbouring symbols having the value 1 and 3 (horizontally) or 2 and 4 (vertically) so that the markings are located on the same raster line between two raster points. When such a pair of markings has been detected, the associated raster points can be determined with knowledge of the distance between the raster points and the displacement of the markings from the raster points. When two raster points have once been located, additional raster points can be determined by means of measured dis- tances to other markings and with knowledge of the relative distance of the raster points.
  • the position-coding pattern described above can code a large number of unique positions and more specifically the absolute coordinates of these positions. All the positions or points that can be coded by means of the position-coding pattern can be said to jointly make up an imaginary surface. Different parts of the imaginary surface can be dedicated to different specific purposes. One area of the imaginary surface can, for instance, be dedicated to be used as a writing surface, another as a character recognition area and yet other areas as various activation icons. Other areas of the imaginary surface can be used in other applications. A corresponding subset of the position-coding pattern can then be used to create, for example, a certain activation icon which can be arranged in an optional location on a pro- duct.
  • the coordinates coded by this subset of the position-coding pattern thus do not relate to a position on the product but to a position on the imaginary surface, which position is dedicated always to correspond to this activation icon.
  • the nominal interspace between the dots is 0.3 mm. Any part whatever of the position-coding pattern which contains 6 x 6 dots defines the absolute coordinates of a point on the imaginary surface. Each point on the imaginary surface is thus defined by a 1.8 mm x 1.8 mm subset of the position- coding pattern.
  • the absolute position-coding pattern can be printed on any paper whatever or other material which enables a resolution of about 600 dpi.
  • the paper can have any size and shape whatever depending on the intended application.
  • the pattern can be printed by standard offset printing. Ordinary black carbon-based ink or some other ink which absorbs IR light can advantageously be used. This means in fact that other inks, including black ink which is not carbon-based, can be used to superimpose other printed text on the absolute position-coding pattern, without interfering with the reading thereof .
  • a surface which is provided with the above-mentioned pattern printed with carbon-based black ink will be experienced by the human eye as only a slight grey shading of the surface (1-3% density) , which is user-friendly and aesthetically pleasing.

Abstract

A handheld electronic device which is adapted to carry out at least one operation. The device is controllable by a user using the device as a pen and writing a command for initiating said operation, such as 'dial the following telephone number'. A method for initiating the operation in an electronic device and software used for implementing the method.

Description

WRITTEN COMMAND
FIELD OF THE INVENTION
The present invention relates to a handheld electronic device which is adapted to carry out at least one operation. The invention also relates to a method for initiating an operation in a handheld electronic device, as well as a computer program. BACKGROUND ART
Handheld computers and other handheld electronic devices, such as mobile telephones, PDAs, reading pens, and scanners, are usually controlled by means of one or several buttons or keys, with the aid of which a user issues various commands to the device or inputs information which the device is to use. If there are only a few buttons, controlling the device is usually complicated and time-consuming. On the other hand, if there are many buttons/keys they are usually small in order to only require a small amount of space on the handheld device, which makes them inconvenient to use and increases the risk of pressing the wrong button/key. US 5,852,434 discloses a device which enables a user to input hand-written and hand-drawn information to a computer while the information is being written/drawn on the writing surface. The device comprises a writing surface, on which a position code is arranged for coding X/Y coordinates of positions on the surface, and a special pen with a writing tip by means of which the user can write or draw on the writing surface. Furthermore, the pen has a light source for illuminating the position code and a CCD sensor for forming an image of the position code. The positional information received by the CCD sensor is transferred to a computer for processing.
WO 99/48268 discloses a handheld device for writing a telephone number and sending the number to a mobile telephone for automatic dialing. SUMMARY OF THE INVENTION
An object of the present invention is to simplify the control and operation of a handheld device.
This object is completely or partly achieved by a device according to claim 1, a computer program according to claim 16, and a method according to claim 17 or 18. Preferred embodiments are defined in the subclaims .
According to a first aspect, the invention relates to a handheld electronic device adapted to carry out at least one operation, the device being controllable by a user using the device as a pen and writing a command for initiating said operation.
An advantage of the invention is thus that the user is not required to press any keys or buttons on the device. Instead, he controls the device by writing a command for the operation he wishes to carry out. This makes the device more convenient to use for the user.
The command written by the user can, for example, be a word indicating the operation which is to be carried out, for example "Dial" if the user wants the device to dial a certain number. It can also be a symbol, a character, a number, or a figure indicating the operation which is to be carried out .
The device can record the command written by means of the device in different ways, for example by using one or more sensors which detect the movement of the device.
However, in a preferred embodiment, the device is adapted to record the command by detecting a position code located on a writing surface upon which the command is written. This embodiment is advantageous since it makes it possible to determine the absolute position of the device on the writing surface, which enables an exact recording of the written command. More specifically, the position code can be detected continuously while the command is being written, a sequence of position indications being obtained which define how the device has been moved and thus which command has been written.
The device can use different types of sensors depending on the technology used to implement the posi- tion code. In a preferred embodiment, the position code is designed in such a way that it can be detected by an optical sensor. In this case, the device advantageously comprises an optical sensor which is adapted to record images of the writing surface, and a signal processor which is adapted to use the position code in the images for providing a digital representation of the command.
This embodiment is advantageous because it is based on image processing, which is a well-known and well- developed technology. The signal processor may comprise an interpretation function for recognizing a command symbol. Thus, the user may define an arbitrary symbol as a command symbol and when writing this symbol, the device interprets the symbol as a command. One example would be the character @, which may be interpreted as a command that the following characters are to be interpreted as an e-mail address. By writing the command symbol @ once again, after the e-mail address (thus for the third time) , it is interpreted as the end of the input of the e-mail address.
Moreover, the signal processor may comprise a character interpretation function which is adapted to translate the digital representation of the command into character-coded format. This embodiment is advantageous because it makes it easier co determine which command the user has written and available software for character recognition may be used for interpretation of the command. The character interpretation operation can, for example, be carried out by ICR software. Furthermore, the device can be adapted to record a message information quantity which is used in the operation and recorded in essentially the same way as the command. In this way, the user will have the same interface for controlling the device and for inputting message information. The device will be less expensive to produce if the same means are used for inputting message information.
The message information quantity can, for example, be a text which is to be transmitted in an e-mail message, a telephone number which is to be dialed, an entry which is to be made in a calendar program or some other similar information quantity. It can comprise text, numbers, various types of characters, symbols, figures, drawings, and other information which can be generated by means of "hand-writing", which is defined as any manual movement of the device on a surface . In a preferred embodiment, the message information quantity is also recorded by detecting the position code on the writing surface.
The device can have at least two modes, one being a command mode for recording the command and the other being an information mode for recording the information quantity. By virtue of the fact that it has different modes the device knows how the data that is written by means of the device should be processed and there is no doubt about whether the data is a command or a message information quantity.
In one embodiment, the device assumes the command mode when a predetermined command symbol is written with the aid of the device. This command symbol can be a figure, one or several characters, a picture or the like.
In another embodiment, the device assumes the command mode when it detects that the writing surface has a special design. The writing surface can, for example, have a special area for writing commands and another area for writing the information quantity, the device detecting on which area it is located with the aid of the position code. The principle according to the invention can be used for causing a handheld electronic device to carry out any operation which can be initiated by means of a command. Examples of operations that are carried out in handheld electronic devices include dialing, faxing, sending an electronic message, saving information, managing documents and files, and starting, controlling and closing programs. An operation may or may not be an operation which utilizes a message information quantity. In an advantageous embodiment the device is a mobile telephone, which can thus be controlled by a user using the telephone as a pen, for example writing "dial 1234567", whereupon the telephone automatically dials that number. In an alternative embodiment the device comprises an accelerometer for recording the command. The accelero- meter records the movement of the device when the command is being written. This embodiment has the advantage that the command can be written on any surface or even in the air, without contact with a surface. Accordingly, there is no need for a writing surface with a position code and, in fact, there is no need for a writing surface at all; rather, the command can be "written" on any arbitrary surface. In yet another alternative embodiment, the device comprises an optical sensor for recording images with partially overlapping content and a signal processor which is adapted to determine how the device has been moved in connection with the writing of the command by determining the relative position of the images.
This embodiment also has the advantage that no position code is required; rather, the user can "write" the command with the aid of the device on any surface which is sufficiently patterned to enable the determi- nation of the relative position of the images. The technology for determining what has been written is described in more detail in publication WO 99/60467, the contents of which is incorporated in the present specification by reference. This method for recording a command can advantageously be used for controlling a reading pen or a handheld scanner of the type described in the publication WO 98/20446, the contents of which is incorporated in the present specification by reference, and sold under the
® trademark C-Pen .
The device need not be one integrated unit. In one embodiment, the device can have a first and a second part which are separable and which have transceivers for mutual wireless or wirebound communication, the device being controllable by the user using the first part as said pen, by means of which said command for initiating the operation is written. According to a second aspect of the present invention, it relates to a computer program, which is stored on a memory medium, which can be read by a computer, and which comprises instructions for causing the computer to detect a command written by means of a handheld electro- nic device which is being used as a pen and initiate a predetermined operation in response to the command. The advantages of this software are evident from the above discussion. The software is designed to be installed in the device by means of which the command is written. According to a third aspect of the present invention, it relates to a method for initiating an operation in a handheld electronic device comprising the steps of using the device itself as a pen and writing a command for carrying out said operation. The advantages of the method are evident from the above discussion.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described in more detail below with reference to the accompanying drawings, in which Fig. 1 is a partial, schematic cross-sectional view of an embodiment of a handheld device according to the invention; Fig. 2 is a plan view of a writing surface provided with a position code and which can be used for recording written commands; and
Fig. 3 is an isometric view of a second embodiment of a handheld device according to the invention.
Fig. 4 is a schematic diagram of a product provided with an alternative position coding pattern.
Fig. 5 is a schematic diagram disclosing how the markings may be designed and positioned in the position code pattern of Fig. 4.
Fig. 6 is a schematic diagram of a code pattern in which 4*4 symbols are used for coding a position. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Fig. 1 discloses a handheld device in the form of a digital pen, which can be used for writing text and drawing lines and pattern or symbols which are to be recorded in digital format. The device is controlled by the user by writing commands with the pen for the operations which are to be carried out .
The device comprises a casing 11 having approximate- ly the same shape as a pen. At one short side of the casing there is an opening 12 or a window which is transparent for IR light. The short side is intended to abut against or be placed a short distance from a writing surface 3 during operation of the device, see Fig. 2. The casing 11 essentially comprises an optics part, an electronic circuitry part, and a power supply. The optics part comprises at least one light-emitting diode 13 for illuminating the surface which is to be imaged and a light-sensitive area sensor 14, such as a CCD or CMOS sensor, for recording a two-dimensional image. The user unit may also comprise a lens system (not shown) .
The power supply to the device is obtained from a battery 15, which is mounted in a separate compartment in the casing 11. The battery may be a chargable battery. Alternatively, the power supply is obtained via a cable connection with a separate device, comprising a power source .
The electronic circuitry part comprises a signal processor 16. The signal processor 16 is implemented with the aid of a microprocessor and a memory and contains software for analyzing images from the sensor for providing a digital representation of what is being written on the writing surface 3. Furthermore, it contains operation software for initiating and/or carrying out various operations in response to commands, as well as user software. Moreover, the signal processor 16 advantageously contains ICR software which can be used for interpreting the recorded characters so that they can be stored, manipulated, and/or forwarded in character- coded format .
The casing 11 of the device also comprises a pen point 18, with the aid of which the user can write ordinary pigment-based writing on the writing surface 3. The pen point 18 is extendable and retractable so that the user can control whether or not it is to be used. The pigment is preferably non-absorbing for IR light.
Moreover, the device comprises buttons 19 by means of which the device can be activated and controlled for operations which are not initiated by commands written by means of the device. The buttons 19 can also be used for causing the device to assume different modes, as well as an on/off switch.
It may also comprises a transceiver 20 for wireless transfer, for example by means of IR light, ultrasound or radio waves, of information over short distances. This wireless transfer can be utilized when the device cannot itself carry out the whole initiated operation and needs to forward the recorded information quantity and informa- tion about the operation to be carried out to an external unit . Finally, the device may comprise a display 21 for showing information.
The above-mentioned publication WO 98/20446 discloses a device for scanning and recording text. If programmed in a suitable way, this device can be utilized for recording text and commands which are being written on a writing surface provided with a position code, and for initiating/carrying out operations in response to the written commands. Fig. 2 shows a sheet of paper 1 defining a writing surface 3. On the writing surface 3 there is printed a position code 4, which is composed of symbols 5 of a first and a second type 5a, 5b and more specifically a dot having a larger radius and a dot having a smaller radius, corresponding to a "one" and a "zero" respectively. For the sake of clarity, the symbols 5 have been enlarged and the position code 4 is only shown on a small part of the writing surface 3. In a real embodiment the position code extends across the entire writing surface 3 and the symbols 5 are smaller to ensure better position resolution.
The position code 4 can be created in a number of different ways. One way of creating a position code 4 in which each position is coded with one symbol 5 is described in US 5,852,434. However, in the present invention, each position is advantageously coded with the aid of a plurality of symbols 5 and the coding is such that each symbol 5 in the position code 4 contributes to the coding of more than one position, so called floating coding. This means that two adjoining positions share some symbols 5, as indicated in Fig. 1 by the dashed areas 6a, 6b. In this way, a higher resolution is achieved and the detection becomes easier since the individual symbols 5 can be less complex. This type of overlapping or floating position code 4 can be created with the aid of a computer. A special way of generating such a floating position code is described in the publication WO 00/73983, the contents of which is incorporated in the present specification by reference, and patent applications Nos. PCT/SEOO/001895, PCT/SE00/001897 and PCT/SE00/001898 all filed October 2, 2000, the contents of which are incorporated in the present specification by reference.
The operation of the device in Fig. 1 will now be described. Suppose that a user wishes to make an entry in a calendar program in the device. In this case, he must first open the calendar program. In order to cause the device to carry out this task, the user first writes a special command symbol and subsequently the command letters "calendar" on the sheet of paper 3 using the pen point 17. The command symbol may be any symbol that the user has defined to be a command symbol, for example a large circle like "0" inside which is written a small circle like "o", more or less in one pen stroke, like the following:
While the user is writing, the optical sensor 14 continuously captures images of the writing surface 3 in the current position of the device. Each image contains a part of the position code 4. The signal proces- sor 16 localizes the position code 4 in each image and, on the basis of this code, determines the coordinates of the absolute position on the writing surface 3 in which each image was captured. In this way, a description, in the form of a large number of position indications, is obtained of how the pen has been moved across the sheet. This description constitutes a digital representation of the command symbol and the command. The position indications are fed as an input signal to the ICR software, which determines the characters to which the positions correspond, so that the command symbol and the command can be translated into character-coded format. The command may be ended by once again entering the command symbol .
When the processor detects the command symbol it knows that the characters that follow should be inter- preted as a written command. The processor then compares the characters representing the recorded command with a number of predetermined commands to determine which command the user has written. When it has determined that the command is a command for opening the calendar pro- gram, it carries out the operation of opening the calendar program. The program can, for example, show a day in the calendar on the display 21 in the usual way.
The user moves a cursor to the time where the entry should be made. Subsequently, the user writes the entry he wishes to make on the sheet of paper 3 using the pen point 17. The device records the entry in the same way as the command. Since the processor does not detect the command symbol it knows that the written characters represent an information quantity. The characters are trans- lated into character-coded format with the aid of the ICR software and are stored in the calendar program.
Next, the user wishes to save and close the program. To this end, she writes the command symbol followed by the command "save". The written command is processed in the same way as the command "open" and results in the execution of the operation of saving the written entry.
After the execution of a command, the device reverts to its normal input mode, until the next command symbol is entered. It should be noted that the pen point 17 is only used in order to make it easier for the user to see what he is writing. It has no other function.
Fig. 3 schematically shows another embodiment of a device according to the invention. In this example, the device is an ordinary mobile telephone 30 supplemented with new software, a transceiver 31 for wireless communication over short distances, and a pen 32 for control- ling the telephone. When the pen is not in use it is placed in a holder 33 on the side of the telephone. The holder may comprise a contact for connecting the pen to the battery of the mobile telephone for charging the pen battery. Alternatively, the pen battery may be charged at the same time as the telephone battery is charged by a battery charger. The charging circuitry of the telephone may be used for controlling the battery charge of the pen as well . The holder may further comprise connectors for connecting the pen to the electronic circuitry of the telephone, so that the pen may download its memory contents to the telephone, or transmit its memory contents to a network using the telephone as a modem. The structure of the pen 32 is essentially the same as that of the device in Fig. 1. However, it has no display, no mobile telephone transceiver, and only part of the software in the device in Fig. 1.
When the user wishes to telephone, for example, she detaches the pen and writes "dial" using the pen on a sheet of paper with a position code. She circles the word "dial" to indicate that it is a command. Subsequently, she writes the telephone number that is to be dialed. The pen records images of the position code on the sheet and transfers these images by the intermediary of a transmitter 34 for wireless communication over short distances to the transceiver 31 in the mobile telephone. The images received are processed in the mobile telephone in the same way as described above with reference to Fig. 1, the result being that the mobile telephone carries out the operation of dialing the number indicated.
Alternatively, the optical sensor in the pen 32 can be integrated with the mobile telephone and the whole mobile telephone can be used as a pen for writing com- mands .
Another alternative is that the pen performs all actions and operations, and when the telephone number is recognised and decoded to ASCII, the pen sends the telephone number to the telephone for initiating the call, or transmits the telephone number to the telephone via the above-mentioned connectors. As an alternative to the above embodiment in which the command is indicated by means of a special character or figure, the devices can be switched between a command mode and an information mode with the aid of the buttons 19. In cases where the number of possible commands is small, there is no need to specially indicate the commands .
As mentioned above, the detection of the written command can be based on other techniques than the detec- tion of a position code, such as an accelerometer or the recording of images with partially overlapping content for determining the movement of the device. These embodiments are not described in detail since the person skilled in the art will have no difficulty modifying the above device for the use of alternative techniques.
Finally, the preferred embodiment of the absolute position-coding pattern will now be described. For the sake of simplicity it is described in connection with a sheet of paper. It corresponds to the absolute position- coding pattern described in PCT/SE00/01895. It is referred to as a position-coding pattern since a surface to which the position code is applied gives a slightly patterned impression.
Fig. 4 shows an enlarged part of a sheet which on its surface 102 is provided with the position-coding pattern 105. The sheet has an x coordinate axis and a y coordinate axis.
The position-coding pattern comprises a virtual raster which neither is visible to the human eye nor can be detected directly by a device which is to determine positions on the surface, and a plurality of symbols which each can assume one of four values "1" - "4" as will be described below.
The position-coding pattern is arranged in such a manner that the symbols on a partial surface of the sheet of paper code absolute coordinates of a point on an imaginary surface, which will be described below. A first and a second partial surface 125a, 125b are indicated by dashed lines in Fig. 4. That part of the position-coding pattern (in this case 4 x 4 symbols) which is to be found on the first partial surface 125a codes the coordinates of a first point, and that part of the position-coding pattern which is to be found on the second partial surface 125b codes the coordinates of a second point on the imaginary surface. Thus the position-coding pattern is partially shared by the adjoining first and second points. Such a position-coding pattern is in this application referred to as "floating".
Figs 5a-5d show an embodiment of a symbol which can be used in the position-coding pattern. The symbol com- prises a virtual raster point 130 which is represented by the intersection between the raster lines, and a marking 106 which has the form of a dot. The value of the symbol depends on where the marking is located. In the Example in Fig. 5, there are four possible locations, one on each of the raster lines extending from the raster points. The displacement from the raster point is equal to all values. In the following, the symbol in Fig. 5a has the value 1, in Fig. 5b the value 2, in Fig. 5c the value 3 and in Fig. 5d the value 4. Expressed in other words, there are four different types of symbols.
It should be pointed out that the dots can, of course, have a different shape.
Each symbol can thus represent four values "1-4". This means that the position-coding pattern can be divid- ed into a first position code for the x coordinate, and a second position code for the y coordinate. The division is effected as follows:
Thus, the value of each symbol is translated into a first digit, in this case bit, for the x-code and a second digit, in this case bit, for the y-code. In this manner, two completely independent bit patterns are obtained. The patterns can be combined to a joint pattern, which is coded graphically by means of a plurality of symbols according to Fig. 5. The coordinates for each point is coded by means of a plurality of symbols. In this example, use is made of 4x4 symbols to code a position in two dimensions, i.e. an x-coordinate and a y-coordinate .
The position code is made up by means of a number series of ones and zeros which have the characteristic that no sequence of four bits appears more than once in the series. The number series is cyclic, which means that the characteristic also applies when one connects the end of the series to the beginning of the series. Thus a four-bit sequence always has an unambiguously determined position in the number series.
The series can maximally be 16 bits long if it is to have the above-described characteristic for sequences of four bits. In this example, use is, however, made of a series having a length of seven bits only as follows:
"0 0 0 1 0 1 0". This series contains seven unique sequences of four bits which code a position in the series as follows:
For coding the x-coordinate, the number series is written sequentially in columns across the entire surface that is to be coded. The coding is based on the difference or position displacement between numbers in adjoining columns. The size of the difference is determined by the position (i.e. with which sequence) in the number series, in which one lets the column begin. More specifically, if one takes the difference modulo seven between on the one hand a number which is coded by a four-bit sequence in a first column and which thus can have the value (position) 0-6, and, on the other hand, the corresponding number (i.e. the sequence on the same "level") in an adjoining column, the result will be the same independently of where along the two columns one makes the comparison. By means of the difference between two columns, it is thus possible to code an x-coordinate which is constant for all y-coordinates .
Since each position on the surface is coded with 4x4 symbols in this example, three differences (having the value 0-6) as stated above are available to code the x-coordinate. Then the coding is carried out in such manner that of the three differences, one will always have the value 1 or 2 and the other two will have values in the range 3-6. Consequently no differences are allowed to be zero in the x-code. In other words, the x-code is structured so that the differences will be as follows: (3-6) (3-6) (1-2) (3-6) (3-6) (1-2) (3-6) (3-6) (1-2)... Each x-coordinate thus is coded with two numbers between 3 and 6 and a subsequent number which is 1 or 2. If three is subtracted from the high numbers and one from the low, a number in mixed base will be obtained, which directly yields a position in the x-direction, from which the x-coordinate can then be determined directly, as shown in the example below.
By means of the above described principle, it is thus possible to code x-coordinates 0,1,2..., with the aid of numbers representing three differences. These differences are coded with a bit pattern which is based on the number series above. The bit pattern can finally be coded graphically by means of the symbols in Fig. 5.
In many cases, when reading 4x4 symbols, it will not be possible to produce a complete number which codes the x-coordinate, but parts of two numbers. Since the least significant part of the numbers is always 1 or 2 , a complete number, however, can easily be reconstructed.
The y-coordinates are coded according to the same principle as used for the x-coordinates. The cyclic number series is repeatedly written in horizontal rows across the surface which is to be position-coded. Just like in the case of the x-coordinates, the rows are allowed to begin in different positions, i.e. with different sequences, in the number series. However, for y-coordinates one does not use differences but codes the coordinates with numbers that are based on the starting position of the number series on each row. When the x-coordinate for 4x4 symbols has been determined, it is in fact possible to determine the starting positions in the number series for the rows that are included in the y-code in the 4x4 symbols. In the y-code the most significant digit is determined by letting this be the only one that has a value in a specific range. In this exam- pie, one lets one row of four begin in the position 0-1 in the number series to indicate that this row relates to the least significant digit in a y-coordinate, and the other three begin in the position 2-6. In y-direction, there is thus a series of numbers as follows:
(2-6) (2-6) (2-6) (0-1) (2-6) (2-6) (2-6) (0-1) (2-6)... Each y-coordinate thus is coded with three numbers between 2 and 6 and a subsequent number between 0 and 1. If 0 is subtracted from the low number and 2 from the high, one obtains in the same manner as for the x-direction a position in the y-direction in mixed base from which it is possible to directly determine the y-coordinate.
With the above method it is possible to code 4 x 4 x 2 = 32 positions in x-direction. Each such position corresponds to three differences, which gives 3 x 32 = 96 positions. Moreover, it is possible to code 5 x 5 x 5 x 2 = 250 positions in y-direction. Each such position corresponds to 4 rows, which gives 4 x 250 = 1000 positions. Altogether it is thus possible to code 96000 positions. Since the x-coding is based on differences, it is, however, possible to select in which position the first number series begins. If one takes into consideration that this first number series can begin in seven different positions, it is possible to code
7 x 96000 = 672000 positions. The starting position of the first number series in the first column can be calculated when the x-coordinate has been determined. The above-mentioned seven different starting positions for the first series may code different sheets of paper or writing surfaces on a product.
With a view to further illustrating the function of the position-coding pattern, here follows a specific example which is based on the described embodiment of the position code.
Fig. 6 shows an example of an image with 4x4 symbols which are read by a device for position determination. These 4x4 symbols have the following values: 4 4 4 2
3 2 3 4
4 4 2 4 1 3 2 4
These values represent the following binary x- and y-code : x-code : y-code :
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
1 1 0 0 1 0 1 0
The vertical x-sequences code the following positions in the number series: 2 0 4 6. The diffe- rences between the columns will be -2 4 2 , which modulo 7 gives: 5 4 2, which in mixed base codes position (5-3) x 8 + (4-3) x 2 + (2-1) = 16 + 2 + 1 = 19. Since the first coded x-position is position 0, the difference which is in the range 1-2 and which is to be seen in the 4x4 symbols is the twentieth such difference. Since furthermore there are a total of three columns for each such difference and there is a starting column, the vertical sequence furthest to the right in the 4x4 x-code belongs to the 61st column in the x-code (3 x 20 + 1 = 61) and the one furthest to the left belongs to the 58th. The horizontal y-sequences code the positions 0 4 1 3 in the number series. Since these series begin in the 58th column, the starting position of the rows are these numbers minus 57 modulo7, which yields the starting positions 6 3 0 2. Translated into digits in the mixed base, this will be 6-2, 3-2, 0-0, 2-2 = 4 1 0 0 where the third digit is the least significant digit in the number at issue. The fourth digit is then the most significant digit in the next number. In this case, it must be the same as in the number at issue. (An exceptional case is when the number at issue consists of the highest possible digits in all positions. Then one knows that the begin- ning of the next number is one greater than the beginning of the number at issue.)
The position of the four-digit number will then in the mixed base be 0x50 + 4x10 + 1x2 + 0x1 = 42. The third row in the y-code thus is the 43rd which has the starting position 0 or 1 , and since there are four rows in all on each such row, the third row is number 43x4=172.
Thus, in this example, the position of the uppermost left corner for the 4x4 symbol group is (58,170) .
Since the x-sequences in the 4x4 group begin on row 170, the x-columns of the entire pattern begin in the positions of the number series ((2 0 4 6) - 169) modulo 7 = 1 6 3 5. Between the last starting position (5) and the first starting position, the numbers 0-19 are coded in the mixed base, and by adding up the representations of the numbers 0-19 in the mixed base, one obtains the total difference between these columns. A naive algorithm to do so is to generate these twenty numbers and directly add up their digits. The resulting sum is called s. The sheet of paper or writing surface will then be given by (5-s) modulo7.
In the example above, an embodiment has been described, in which each position is coded with 4 x 4 symbols and a number series with 7 bits is used. Of course, this is but an example. Positions can be coded with a larger or smaller number of symbols. The number of symbols need not be the same in both directions. The number series can be of different length and need not be binary, but may be based on another base. Different number series can be used for coding in x-direction and coding in y-direction. The symbols can have different numbers of values. As is evident from the above, a coding with 6 x 6 symbols is presently preferred, each symbol being capable of assuming four values. A person skilled in the art can readily generalise the above examples to concern such coding. In the example above, the marking is a dot but may, of course, have a different appearance. For example, it may consist of a dash or some other indication which begins in the virtual raster point and extends therefrom to a predetermined position. As one more alternative, the marking may consist of a rectangle, a square, a triangle or some other convenient, easily detected figure. The marking can be filled or open.
In the example above, the symbols within a square partial surface are used for coding a position. The partial surface may have a different form, such as hexagonal. The symbols need not be arranged in rows and columns at an angle of 90° to each other but can also be arranged at other angles, e.g. 60°, and/or in other arrangements. They could also code positions in polar coordinates or coordinates in other coordinate systems.
For the position code to be detected, the virtual raster must be determined. This can be carried out by studying the distance between different markings. The shortest distance between two markings must derive from two neighbouring symbols having the value 1 and 3 (horizontally) or 2 and 4 (vertically) so that the markings are located on the same raster line between two raster points. When such a pair of markings has been detected, the associated raster points can be determined with knowledge of the distance between the raster points and the displacement of the markings from the raster points. When two raster points have once been located, additional raster points can be determined by means of measured dis- tances to other markings and with knowledge of the relative distance of the raster points.
The position-coding pattern described above can code a large number of unique positions and more specifically the absolute coordinates of these positions. All the positions or points that can be coded by means of the position-coding pattern can be said to jointly make up an imaginary surface. Different parts of the imaginary surface can be dedicated to different specific purposes. One area of the imaginary surface can, for instance, be dedicated to be used as a writing surface, another as a character recognition area and yet other areas as various activation icons. Other areas of the imaginary surface can be used in other applications. A corresponding subset of the position-coding pattern can then be used to create, for example, a certain activation icon which can be arranged in an optional location on a pro- duct. The coordinates coded by this subset of the position-coding pattern thus do not relate to a position on the product but to a position on the imaginary surface, which position is dedicated always to correspond to this activation icon. In the presently preferred embodiment, the nominal interspace between the dots is 0.3 mm. Any part whatever of the position-coding pattern which contains 6 x 6 dots defines the absolute coordinates of a point on the imaginary surface. Each point on the imaginary surface is thus defined by a 1.8 mm x 1.8 mm subset of the position- coding pattern. By determining the position of the 6 x 6 dots on a sensor in a device which is used to read the pattern, a position can be calculated by interpolation on the imaginary surface with a resolution of 0.03 mm. Since each point is coded with 6 x 6 dots which can each assume one of four values, 272 points can be coded, which with the above-mentioned nominal interspace between the dots corresponds to a surface of 4.6 million km2.
The absolute position-coding pattern can be printed on any paper whatever or other material which enables a resolution of about 600 dpi. The paper can have any size and shape whatever depending on the intended application. The pattern can be printed by standard offset printing. Ordinary black carbon-based ink or some other ink which absorbs IR light can advantageously be used. This means in fact that other inks, including black ink which is not carbon-based, can be used to superimpose other printed text on the absolute position-coding pattern, without interfering with the reading thereof .
A surface which is provided with the above-mentioned pattern printed with carbon-based black ink will be experienced by the human eye as only a slight grey shading of the surface (1-3% density) , which is user-friendly and aesthetically pleasing.
Of course, a smaller or large number of dots than described above can be used to define a point on the ima- ginary surface and a larger or smaller distance between the dots can be used in the pattern. The examples above are only given to demonstrate a presently preferred implementation of the pattern.

Claims

1. A handheld electronic device which is adapted to carry out at least one operation, c h a r a c t e r i z - e d by a registration device (14) for registering strokes when the device is moved; interpretation means (16) for determining if the strokes comprises a command; processor means (16) for carrying out an operation upon determination of said command.
2. A device according to claim 1, wherein said registration device is adapted to record the command electronically by detecting a position code (4) arranged on a writing surface (3), upon which the command is written.
3. A device according to claim 2, wherein said registration device comprises an optical sensor (14) , which is adapted to record images of the writing surface
(3), and a signal processor (16), which is adapted to use the position code (4) in the images for providing a digital representation of the command.
4. A device according to claim 3, wherein the signal processor (16) comprises a character interpretation function which is adapted to translate the digital representation of the command into character-coded format, such as ASCI I -code.
5. A device according to claim 1, wherein, further- more, the registration device is adapted to record a message information quantity, which is used in the operation, in essentially the same way as the command is recorded.
6. A device according to claim 5, wherein the registration device is adapted to record the information quantity by detecting a position code on a writing surface .
7. A device according to claim 5 or 6 , wherein the device has at least two modes, one being a command mode for recording the command and the other being an information mode for recording the message information quantity.
8. A device according to claim 7, wherein the device is adapted to assume the command mode when the user writes said predetermined command using the device.
9. A device according to claim 7, wherein the device is adapted to assume the command mode when the device detects that the writing surface (3) has a predetermined design.
10. A device according to claim 1, wherein the device comprises an accelerometer for electronic recording of the command.
11. A device according to claim 1, wherein the recording device comprises an optical sensor for recording images with partially overlapping content and a signal processor which is adapted to determine how the device has been moved in connection with the writing of the command by determining the relative position of the images .
12. A device according to any one of the preceding claims, which device is a mobile telephone.
13. A device according to any one of claims 1-11, which device is a digital pen for electronic recording of information.
14. A device according to any one of the preceding claims, wherein only a detachable part of the device is used as a pen for writing the command for carrying out the operation, the detachable part being adapted for communication with the rest of the device.
15. A device according to any one of the preceding claims, wherein the device has a first and a second part which are separable and which have transceivers for mutual wireless communication, and wherein the device is controllable by the user using the first part as said pen, by means of which the command for initiating the operation is written.
16. A software program, which is stored on a memory medium, which can be read by a computer and which com- prises instructions for causing the computer to detect a command written by means of a handheld electronic device, which is used as a pen, and to initiate a predetermined operation in response to the command.
17. A method for initiating an operation in a hand- held electronic device, c h a r a c t e r i z e d by the steps of using the device itself as a pen and writing a command symbol for carrying out said operation.
18. A method for controlling a handheld electronic device, according to any one of claims 1 - 15, the device being adapted to carry out at least one operation, c h a r a c t e r i z e d by registering strokes when the device is moved; determining if the strokes comprises a command; carrying out an operation upon determination of said command.
19. A method according to claim 18, characterized by recording the command electronically by detecting a position code (4) arranged on a writing surface (3), upon which the command is written.
20. A method according to claim 19, characterized by registration by means of an optical sensor (14), which records images of the writing surface (3) , and a signal processor (16), which uses the position code (4) in the images for providing a digital representation of the command.
21. A method according to claim 20, characterized by character interpretation for translating the digital representation of the command into character-coded format, such as ASCII-code.
22. A method according to claim 18, charcterized by registrating a message information quantity in essentially the same way as the command is recorded.
23. A method according to claim 22, characterized by registrating the message information quantity by detecting a position code on a writing surface.
24. A method according to claim 23, wherein the device is adapted to assume the command mode when the user writes said predetermined command using the device.
EP00989133A 1999-12-23 2000-12-22 Written command Withdrawn EP1244954A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9904744A SE9904744L (en) 1999-12-23 1999-12-23 Device control
SE9904744 1999-12-23
PCT/SE2000/002639 WO2001048590A1 (en) 1999-12-23 2000-12-22 Written command

Publications (1)

Publication Number Publication Date
EP1244954A1 true EP1244954A1 (en) 2002-10-02

Family

ID=20418271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00989133A Withdrawn EP1244954A1 (en) 1999-12-23 2000-12-22 Written command

Country Status (5)

Country Link
EP (1) EP1244954A1 (en)
JP (1) JP5084087B2 (en)
AU (1) AU2567701A (en)
SE (1) SE9904744L (en)
WO (1) WO2001048590A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519820C2 (en) * 2000-09-07 2003-04-15 Anoto Ab Systems including business cards with position coding pattern
US6698660B2 (en) 2000-09-07 2004-03-02 Anoto Ab Electronic recording and communication of information
JP4102105B2 (en) 2002-05-24 2008-06-18 株式会社日立製作所 Document entry system using electronic pen
JP4385744B2 (en) * 2003-11-28 2009-12-16 株式会社日立製作所 Electronic pen usage document entry system with falsification prevention function
WO2005076115A2 (en) * 2004-01-30 2005-08-18 Hewlett-Packard Development Company, L.P. A digital pen
US7853193B2 (en) * 2004-03-17 2010-12-14 Leapfrog Enterprises, Inc. Method and device for audibly instructing a user to interact with a function
FI20055111A0 (en) 2005-03-11 2005-03-11 Nokia Corp Creating information for a calendar application in an electronic device
JP4752456B2 (en) * 2005-11-09 2011-08-17 株式会社日立製作所 Electronic information access right management program and electronic information management system
KR20100029219A (en) * 2007-05-29 2010-03-16 라이브스크라이브, 인크. Multi-modal smartpen computing system
JP5589466B2 (en) 2010-03-17 2014-09-17 ソニー株式会社 Information processing apparatus, program, recording medium, and information processing system
US10620754B2 (en) 2010-11-22 2020-04-14 3M Innovative Properties Company Touch-sensitive device with electrodes having location pattern included therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661506A (en) 1994-11-10 1997-08-26 Sia Technology Corporation Pen and paper information recording system using an imaging pen
US5852434A (en) 1992-04-03 1998-12-22 Sekendur; Oral F. Absolute optical position determination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218149A (en) * 1990-01-24 1991-09-25 Nec Corp Portable radio telephone set
JPH06266490A (en) * 1993-03-12 1994-09-22 Toshiba Corp Information input device and position recognition system for information input
JP3277052B2 (en) * 1993-11-19 2002-04-22 シャープ株式会社 Coordinate input device and coordinate input method
SE9800851D0 (en) * 1998-03-16 1998-03-16 Johan Ullman Character input device
CN1312930A (en) * 1998-06-26 2001-09-12 Lci慧笔公司 Apparatus and methods for imaging written information with a mobile telephone set

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852434A (en) 1992-04-03 1998-12-22 Sekendur; Oral F. Absolute optical position determination
US5661506A (en) 1994-11-10 1997-08-26 Sia Technology Corporation Pen and paper information recording system using an imaging pen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DYMETMAN M; COPPERMAN M: "Intelligent paper", LECTURE NOTES IN COMPUTER SCIENCE, vol. 1375, March 1998 (1998-03-01), pages 392 - 406, XP002328425
See also references of WO0148590A1

Also Published As

Publication number Publication date
JP5084087B2 (en) 2012-11-28
SE9904744L (en) 2001-06-24
WO2001048590A1 (en) 2001-07-05
SE9904744D0 (en) 1999-12-23
AU2567701A (en) 2001-07-09
JP2003518687A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
US7295193B2 (en) Written command
US7176896B1 (en) Position code bearing notepad employing activation icons
EP1275081B1 (en) Method and system for information association
EP1214641B1 (en) Electronic notepad
US7094977B2 (en) Method and system for information association
US6992655B2 (en) Input unit arrangement
US7385595B2 (en) Electronic pen and method for recording of handwritten information
RU2536667C2 (en) Handwritten input/output system, handwritten input sheet, information input system and sheet facilitating information input
EP1684160A1 (en) System and method for identifying termination of data entry
JP5353219B2 (en) Board writing system, computer apparatus and program
EP1244954A1 (en) Written command
JP4816808B1 (en) Computer apparatus, input system, and program
JP5664303B2 (en) Computer apparatus, input system, and program
JP5257486B2 (en) Computer apparatus, input system, and program
EP1382006B1 (en) Business card with a position-coding pattern
JP6048165B2 (en) Computer apparatus, electronic pen system, and program
JP5664300B2 (en) Computer apparatus, input system, and program
JP3169427U (en) Computer equipment
JP4816809B1 (en) Computer apparatus, input system, and program
JP5041340B2 (en) Terminal device and program thereof
JP2012238344A (en) Board writing system, computer device and program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL PAYMENT 20020723;LT PAYMENT 20020723;LV PAYMENT 20020723;MK PAYMENT 20020723;RO PAYMENT 20020723;SI PAYMENT 20020723

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANOTO IP LIC HB

111L Licence recorded

Free format text: 0100 LEAPFROG ENTERPRISES INC.

Effective date: 20050530

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANOTO AB

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20071106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080517