EP1176227A1 - Process for forming a superficial layer - Google Patents

Process for forming a superficial layer Download PDF

Info

Publication number
EP1176227A1
EP1176227A1 EP01117327A EP01117327A EP1176227A1 EP 1176227 A1 EP1176227 A1 EP 1176227A1 EP 01117327 A EP01117327 A EP 01117327A EP 01117327 A EP01117327 A EP 01117327A EP 1176227 A1 EP1176227 A1 EP 1176227A1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
metal
aluminum
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01117327A
Other languages
German (de)
French (fr)
Inventor
Tilman Dr. Haug
Patrick Dr. Izquierdo
Michael Scheydecker
Oliver Storz
Tanja Tschirge
Karl-Ludwig Dr. Weisskopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1176227A1 publication Critical patent/EP1176227A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a method for producing a Surface layer according to claim 1.
  • a construction element is known from DE 197 50 599 A1, which comprises an Al2O3-containing surface layer, which by high-temperature-resistant aluminides.
  • a construction element is a sintered, porous ceramic body in a die casting mold inserted and infiltrated with aluminum under pressure. While when infiltrating, the ceramic body reacts with the aluminum, wherein said aluminides are formed.
  • the construction element usually only fills parts of the component which is why the component is partly made of aluminum and partly, especially in the tribologically stressed component areas consists of the above-mentioned construction element.
  • a ceramic body has to be formed in a complex manner, be sintered and processed before being die cast is infiltrated with aluminum. There is also a discrete one Transition between the construction element and the rest Component that acts as a carrier element, which increases liability between the elements mentioned negatively affected.
  • the invention is therefore based on the object, one against the state of the art less expensive surface layer to provide, which has a high wear resistance.
  • the task is accomplished through a method of manufacturing a Surface layer solved according to claim 1.
  • a powdery mixture of a metal and a ceramic chemically reducible by this metal is applied to the surface of a carrier element.
  • a chemical redox reaction is stimulated by an energy input and proceeds according to the following reaction scheme: Me K X + Me S ⁇ Me K Me S + Me S X
  • Me K is a metal chemically bonded in the ceramic
  • X stands for a non-metal from the group oxygen (O), carbon (C), boron (B) and / or nitrogen (N).
  • Me S stands for the metal that is contained in the applied layer in elementary form (or as an alloy). According to equation 1, the metal Me S reacts with the ceramic in such a way that it both enters into an intermetallic connection with the metal Me K and at the same time takes up its place in the ceramic, thus replacing it and thus creating a new ceramic connection.
  • the surface layer produced in this way has a particularly high wear resistance.
  • Aluminum is particularly useful as Me S metal. Aluminum reduces most ceramic compounds in the form given in Equation 1. In addition, it forms high-temperature-resistant intermetallic compounds that are particularly wear-resistant (claim 2).
  • the ceramic of the layer preferably consists of an oxide ceramic. Oxidic ceramics are particularly easy to reduce from aluminum (Al), and many oxide-ceramic raw materials are also particularly inexpensive.
  • the metal Me K which is chemically bonded in the ceramic, is preferably a transition metal or the semimetal silicon (Si), titanium (Ti) or silicon are particularly preferably used. It is possible that the ceramic contains several metals. Accordingly, preferred ceramics include titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ) or mixed oxides such as spinels, silicates or ilmenite (claim 3).
  • the surface of the carrier element can be coated by most common coating processes take place. For this include physical and chemical deposition processes, such as Sputtering, sol-gel processes, electroplating or a CVD coating. Slurry techniques such as they are common in ceramic manufacturing or painting techniques (e.g. dip painting or spraying), which is a special inexpensive layer can be generated. Furthermore are Thermal spraying methods such as flame spraying High speed flame spraying, plasma spraying, the Arc wire spraying or kinetic cold gas compacting appropriate coating processes. The process of thermal Spraying ensures a particularly dense layer and are also inexpensive to manufacture (claim 4).
  • An energy input which stimulates the reaction between the carrier element and the ceramic layer can take place in situ, in particular in the thermal spraying processes mentioned. This happens when the powdery mixture of the metal Me S and the ceramic has a temperature sufficient to start the reaction when it hits the support material.
  • additional temperature treatment is introduced.
  • the temperature treatment can be carried out selectively, ie only the areas of the carrier element provided with the layer are heated. This is particularly expedient, since the carrier element has no additional load, for. B. is exposed to corrosion or structural change.
  • particularly concentrated heat radiation e.g. from high-energy infrared lamps
  • laser radiation or induction heating are suitable (claim 5).
  • the method according to the invention can also be used on inorganic, non-metallic carrier elements Use ceramic or glass. Particularly suitable as carrier elements are components that are in the drive train and Chassis of a motor vehicle are used and high tribological Are exposed to loads. These include a. Cylinder crankcases, cylinder heads, pistons, gearboxes and synchronizer rings.
  • Cylinder liners of a cylinder crankcase made of the alloy AlSi9Cu3 are plasma sprayed with a mixture made of aluminum and titanium oxide powder coated.
  • the Powder particles have diameters between 10 ⁇ m and 50 ⁇ m.
  • the particles are in the plasma gas (argon / hydrogen) to approx. Heated at 1800 ° C, at least partially melt and hit the surface of the cylinder race in the softened state.
  • the resulting layer thickness is approx. 200 ⁇ m.
  • the powder mixture heated by the plasma basically reacts according to the reaction given in equation 2: Al + TiO 2 ⁇ Al x Ti y + Al 2 O 3
  • the reaction given in equation 1 takes place during the heating of the powder in the plasma gas. This is an in situ reaction during the application of the layer.
  • the intermetallic compounds Al x Ti y formed during this reaction can have different stoichiometric compositions x and y depending on the composition of the powder mixture and depending on the spray parameters.
  • the functional properties of the layer can be influenced by the stoichiometric composition of the intermetallic compounds. A high proportion of aluminum leads to better oxidation resistance, while a high proportion of titanium leads to better ductility and a higher melting point of the layer.
  • a suspension of a powdery mixture of aluminum (alloy AlSi12) and titanium oxide is sprayed with a spray gun, how it is used for painting, on the Cylinder liner of a cylinder crankcase (alloy Al-Si9Cu3) applied. Evaporates during a drying process the solvent, the resulting layer thickness is approximately 250 ⁇ m.
  • an infrared heater is used an energy input that is set so that a temperature of approx. 560 ° C is generated in the layer. This temperature leads to a reaction analogous to the equation 2. Also takes place at the interface between the layer and the carrier element also has a reaction according to equation 2 instead, resulting in good adhesion between the surface layer and the support element results.
  • the temperature in the layer be regulated by the amount of energy introduced.
  • the reaction temperature and the heating time can affect the course of the reaction to be controlled. It is so. B. possible the reaction before stop complete implementation.

Abstract

Production of a surface layer comprises: (a) applying a layer of metal and ceramic to a support element; (B) carrying out a reaction between the metal and the ceramic of the layer during application or by introducing heat; and (C) producing the surface layer with the formation of intermetallic phases. Preferably the ceramic of the layer is an oxide ceramic. The metal of the layer is aluminum or aluminum alloy. The alloy is applied by thermally spraying, using slip technology or by lacquering. Energy is introduced using an IR source, a laser and/or an induction heat source.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Oberflächenschicht nach Patentanspruch 1.The invention relates to a method for producing a Surface layer according to claim 1.

Aus der DE 197 50 599 A1 ist ein Konstruktionselement bekannt, das eine Al2O3-haltige Oberflächenschicht umfasst, die von hochtemperaturbeständigen Aluminiden durchzogen ist. Zur Herstellung eines derartigen Konstruktionselementes wird ein gesinterter, poröser keramischer Körper in eine Druckgußform eingelegt und unter Druck mit Aluminium infiltriert. Während des Infiltrieren reagiert der keramische Körper mit dem Aluminium, wobei die genannten Aluminide gebildet werden. Das Konstruktionselement füllt in der Regel nur Teile des Bauteils aus, weshalb das Bauteil teilweise aus Aluminium und teilweise, insbesondere an den tribologisch belasteten Bauteilbereichen aus dem genannten Konstruktionselement besteht.A construction element is known from DE 197 50 599 A1, which comprises an Al2O3-containing surface layer, which by high-temperature-resistant aluminides. For the production of such a construction element is a sintered, porous ceramic body in a die casting mold inserted and infiltrated with aluminum under pressure. While when infiltrating, the ceramic body reacts with the aluminum, wherein said aluminides are formed. The construction element usually only fills parts of the component which is why the component is partly made of aluminum and partly, especially in the tribologically stressed component areas consists of the above-mentioned construction element.

Zur Herstellung des Konstruktionselementes nach der DE 197 50 599 A1 muss in aufwendiger Weise ein keramischer Körper geformt, gesintert und bearbeitet werden, bevor er im Druckguß mit Aluminium infiltriert wird. Des Weiteren besteht ein diskreter Übergang zwischen dem Konstruktionselement und dem restlichen Bauteil, das als Trägerelement fungiert, was die Haftung zwischen den genannten Elementen negativ beeinflusst.For the production of the construction element according to DE 197 50 599 A1, a ceramic body has to be formed in a complex manner, be sintered and processed before being die cast is infiltrated with aluminum. There is also a discrete one Transition between the construction element and the rest Component that acts as a carrier element, which increases liability between the elements mentioned negatively affected.

Der Erfindung liegt demnach die Aufgabe zu Grunde, eine gegenüber dem Stand der Technik kostengünstigere Oberflächenschicht bereitzustellen, die eine hohe Verschleißbeständigkeit aufweist. The invention is therefore based on the object, one against the state of the art less expensive surface layer to provide, which has a high wear resistance.

Die Aufgabe wird durch eine Verfahren zur Herstellung einer Oberflächenschicht nach Patentanspruch 1 gelöst.The task is accomplished through a method of manufacturing a Surface layer solved according to claim 1.

Bei dem erfindungsgemäßen Verfahren nach Patentanspruch 1 wird eine pulverförmige Mischung aus einem Metall und einer durch dieses Metall chemisch reduzierbaren Keramik auf die Oberfläche eines Trägerelementes aufgebracht. Durch einen Energieeintrag wird eine chemische Redox-Reaktion angeregt, die nach folgendem Reaktionsschema abläuft: MeKX + MeS → MeKMeS + MeSX In the inventive method according to claim 1, a powdery mixture of a metal and a ceramic chemically reducible by this metal is applied to the surface of a carrier element. A chemical redox reaction is stimulated by an energy input and proceeds according to the following reaction scheme: Me K X + Me S → Me K Me S + Me S X

(Ohne Berücksichtigung von Stöchiometriekoeffizienten.) Hierbei ist MeK ein in der Keramik chemisch gebundenes Metall, X steht für ein Nichtmetall aus der Gruppe Sauerstoff (O), Kohlenstoff (C), Bor (B) und/oder Stickstoff (N). Die Bezeichnung MeS steht für das Metall, das in der aufgebrachten Schicht in elementarer Form (oder als Legierung) enthalten ist. Nach Gleichung 1 reagiert das Metall MeS mit der Keramik auf der Art, dass es sowohl eine intermetallische Verbindung mit dem Metall MeK eingeht und gleichzeitig dessen Platz in der Keramik einnimmt, dieses demnach ersetzt und somit eine neue keramische Verbindung erzeugt wird. Die so hergestellte Oberflächenschicht weist eine besonders hohe Verschleißfestigkeit auf.(Without taking stoichiometric coefficients into account.) Here Me K is a metal chemically bonded in the ceramic, X stands for a non-metal from the group oxygen (O), carbon (C), boron (B) and / or nitrogen (N). The designation Me S stands for the metal that is contained in the applied layer in elementary form (or as an alloy). According to equation 1, the metal Me S reacts with the ceramic in such a way that it both enters into an intermetallic connection with the metal Me K and at the same time takes up its place in the ceramic, thus replacing it and thus creating a new ceramic connection. The surface layer produced in this way has a particularly high wear resistance.

Als Metall MeS ist Aluminium besonders zweckmäßig. Aluminium reduziert die meisten keramischen Verbindungen in der in Gleichung 1 angegebenen Form. Zudem bildet es hochtemperaturbeständige intermetallischen Verbindungen, die besonders verschleißfest sind (Anspruch 2).Aluminum is particularly useful as Me S metal. Aluminum reduces most ceramic compounds in the form given in Equation 1. In addition, it forms high-temperature-resistant intermetallic compounds that are particularly wear-resistant (claim 2).

Die Keramik der Schicht besteht bevorzugt aus einer oxidischen Keramik. Oxidische Keramiken lassen sich insbesondere von Aluminium (Al) gut reduzieren, zudem sind viele oxidkeramische Rohstoffe besonders kostengünstig. Das Metall MeK, das in der Keramik chemisch gebunden ist, ist bevorzugt ein Übergangsmetall oder das Halbmetall Silizium (Si), besonders bevorzugt finden Titan (Ti) oder Silizium Verwendung. Hierbei ist es möglich, dass die Keramik mehrere Metalle enthält. Demnach sind bevorzugte Keramiken u. a. das Titandioxid (TiO2), das Siliziudimoxid (SiO2) oder Mischoxide wie Spinelle, Silikate oder Ilmenit (Anspruch 3).The ceramic of the layer preferably consists of an oxide ceramic. Oxidic ceramics are particularly easy to reduce from aluminum (Al), and many oxide-ceramic raw materials are also particularly inexpensive. The metal Me K , which is chemically bonded in the ceramic, is preferably a transition metal or the semimetal silicon (Si), titanium (Ti) or silicon are particularly preferably used. It is possible that the ceramic contains several metals. Accordingly, preferred ceramics include titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ) or mixed oxides such as spinels, silicates or ilmenite (claim 3).

Die Beschichtung der Oberfläche des Trägerelementes kann durch die meisten gängigen Beschichtungsverfahren erfolgen. Hierzu gehören physikalische und chemische Abscheideverfahren, wie Sputtern, Sol-Gel-Prozesse, Galvanisieren oder eine CVD-Beschichtung. Besonders geeignet sind Schlickertechniken wie sie bei der Keramikherstellung üblich sind oder Lackiertechniken (z. B. Tauchlackieren oder Spritzen), womit eine besonders kostengünstige Schicht erzeugt werden kann. Des Weiteren sind Verfahren des thermischen Spritzens wie das Flammspritzen, das Hochgeschwindigkeits-Flammspritzen, das Plasmaspritzen, das Lichtbogen-Drahtspritzen oder das kinetische Kaltgaskompaktieren zweckmäßige Beschichtungsverfahren. Die Verfahren des thermischen Spritzens gewährleisten eine besonders dichte Schicht und sind ebenfalls kostengünstig herstellbar (Anspruch 4).The surface of the carrier element can be coated by most common coating processes take place. For this include physical and chemical deposition processes, such as Sputtering, sol-gel processes, electroplating or a CVD coating. Slurry techniques such as they are common in ceramic manufacturing or painting techniques (e.g. dip painting or spraying), which is a special inexpensive layer can be generated. Furthermore are Thermal spraying methods such as flame spraying High speed flame spraying, plasma spraying, the Arc wire spraying or kinetic cold gas compacting appropriate coating processes. The process of thermal Spraying ensures a particularly dense layer and are also inexpensive to manufacture (claim 4).

Ein Energieeintrag, der die Reaktion zwischen dem Trägerelement und der keramischen Schicht anregt, kann insbesondere bei den genannten thermischen Spritzverfahren in situ erfolgen. Dies geschieht, wenn die pulverförmige Mischung aus dem Metall MeS und der Keramik beim Auftreffen auf das Trägermaterial eine, für einen Reaktionsstart ausreichende Temperatur aufweist. Bei anderen Beschichtungsverfahren wird eine zusätzliche Temperaturbehandlung eingeführt. Die Termperaturbehandlung kann selektiv erfolgen, das heißt, nur die mit der Schicht versehenen Bereiche des Trägerelements werden erwärmt. Dies ist besonders zweckmäßig, da so das Trägerelement keiner zusätzlichen Belastung z. B. durch Korrosion oder Gefügeumwandlung ausgesetzt wird. Für die selektive Beheizung eignen sich besonders kozentrierte Wärmestrahlung (z. B. durch hochenergetische Infrarotlampen), Laserbestrahlung oder Induktionsbeheizung (Anspruch 5). An energy input which stimulates the reaction between the carrier element and the ceramic layer can take place in situ, in particular in the thermal spraying processes mentioned. This happens when the powdery mixture of the metal Me S and the ceramic has a temperature sufficient to start the reaction when it hits the support material. In other coating processes, additional temperature treatment is introduced. The temperature treatment can be carried out selectively, ie only the areas of the carrier element provided with the layer are heated. This is particularly expedient, since the carrier element has no additional load, for. B. is exposed to corrosion or structural change. For selective heating, particularly concentrated heat radiation (e.g. from high-energy infrared lamps), laser radiation or induction heating are suitable (claim 5).

Es ist darauf zu achten, dass die Erweichungstemperatur oder die Zersetzungstemperatur des Trägerelementes über der Reaktionstemperatur liegt. Als Trägerelemente kommen daher insbesondere Metalle auf Eisen-Basis, aber auch Metall auf Aluminium-Basis und Nickel-Basis in Anwendung. Das erfindungsgemäße Verfahren läßt sich zudem auf anorganische, nichtmetallische Trägerelemente aus Keramik oder Glas anwenden. Besonders geeignet als Trägerelemente sind Bauteile, die im Antriebsstrang und Fahrwerk eines Kraftfahrzeuges eingesetzt werden und hohen tribologischen Belastungen ausgesetzt sind. Hierzu zählen u. a. Zylinderkurbelgehäuse, Zylinderköpfe, Kolben, Getriebegehäuse und Synchronringe.Care should be taken that the softening temperature or the decomposition temperature of the carrier element above the reaction temperature lies. Therefore come in particular as carrier elements Iron-based metals, but also aluminum-based metals and nickel base in use. The method according to the invention can also be used on inorganic, non-metallic carrier elements Use ceramic or glass. Particularly suitable as carrier elements are components that are in the drive train and Chassis of a motor vehicle are used and high tribological Are exposed to loads. These include a. Cylinder crankcases, cylinder heads, pistons, gearboxes and synchronizer rings.

Das erfindungsgemäße Verfahren wird in den folgenden Beispielen näher erläutert.The process according to the invention is described in the following examples explained in more detail.

Beispiel 1example 1

Zylinderlaufbahnen eines Zylinderkurbelgehäuses aus der Legierung AlSi9Cu3 werden im Plasmaspritzverfahren mit einer Mischung aus Aluminium- und Titanoxid-Pulver beschichtet. Die Pulverpartikel weisen Durchmesser zwischen 10 µm und 50 µm auf. Die Partikel werden im Plasmagas (Argon/Wasserstoff) auf ca. 1800° C erhitzt, schmelzen dabei zumindest partiell auf und treffen im erweichten Zustand auf die Oberfläche der Zylinderlaufbahn. Die hieraus resultierende Schichtdicke beträgt ca. 200 µm.Cylinder liners of a cylinder crankcase made of the alloy AlSi9Cu3 are plasma sprayed with a mixture made of aluminum and titanium oxide powder coated. The Powder particles have diameters between 10 µm and 50 µm. The particles are in the plasma gas (argon / hydrogen) to approx. Heated at 1800 ° C, at least partially melt and hit the surface of the cylinder race in the softened state. The resulting layer thickness is approx. 200 µm.

Die durch das Plasma erhitzte Pulvermischung reagiert prinzipiell nach der in Gleichung 2 angegebenen Reaktion: Al + TiO2 → AlxTiy + Al2O3 The powder mixture heated by the plasma basically reacts according to the reaction given in equation 2: Al + TiO 2 → Al x Ti y + Al 2 O 3

Die Gleichung ist ohne Stöchiometriekoeffizienten angegeben. The equation is given without stoichiometric coefficients.

Die in Gleichung 1 angegebene Reaktion findet währen des Aufheizen des Pulvers im Plasmagas statt. Es handelt sich hier um eine in situ Reaktion während des Aufbringen der Schicht.
Die während dieser Reaktion entstehenden intermetallischen Verbindungen AlxTiy können je nach Zusammensetzung der Pulvermischung und in Abhängigkeit der Spritzparameter unterschiedliche stöchiometrische Zusammensetzungen x und y haben. Durch die stöchiometrische Zusammensetzung der intermetallischen Verbindungen können die funktionellen Eigenschaften der Schicht beeinflußt werden. Ein hoher Anteil an Aluminium führt zu einer besseren Oxidationsbeständigkeit, ein hoher Anteil an Titan führt hingegen zu einer besseren Duktilität und zu einem höheren Schmelzpunkt der Schicht.
The reaction given in equation 1 takes place during the heating of the powder in the plasma gas. This is an in situ reaction during the application of the layer.
The intermetallic compounds Al x Ti y formed during this reaction can have different stoichiometric compositions x and y depending on the composition of the powder mixture and depending on the spray parameters. The functional properties of the layer can be influenced by the stoichiometric composition of the intermetallic compounds. A high proportion of aluminum leads to better oxidation resistance, while a high proportion of titanium leads to better ductility and a higher melting point of the layer.

Beispiel 2Example 2

Eine Suspension aus einer pulvrige Mischung aus Aluminium (Legierung AlSi12) und Titanoxid wird mit Hilfe einer Spritzpistole, wie sie beim Lackieren eingesetzt wird, auf die Zylinderlaufbahn eines Zylinderkurbelgehäuses (Legierung Al-Si9Cu3) aufgebracht. Während eines Trocknungsprozesses verdampft das Lösungsmittel, die resultierende Schichtdicke beträgt ca. 250 µm.A suspension of a powdery mixture of aluminum (alloy AlSi12) and titanium oxide is sprayed with a spray gun, how it is used for painting, on the Cylinder liner of a cylinder crankcase (alloy Al-Si9Cu3) applied. Evaporates during a drying process the solvent, the resulting layer thickness is approximately 250 µm.

In einem weiteren Verfahrensschritt erfolgt durch einen Infrarotheizstrahler ein Energieeintrag, der so eingestellt wird, dass in der Schicht eine Temperatur von ca. 560°C erzeugt wird. Diese Temperatur führt zu einer Reaktion analog der Gleichung 2. Ferner findet an der Grenzfläche zwischen der Schicht und dem Trägerlement ebenfalls eine Reaktion nach Gleichung 2 statt, woraus eine gute Haftung zwischen der Oberflächenschicht und dem Trägerelement resultiert.In a further process step, an infrared heater is used an energy input that is set so that a temperature of approx. 560 ° C is generated in the layer. This temperature leads to a reaction analogous to the equation 2. Also takes place at the interface between the layer and the carrier element also has a reaction according to equation 2 instead, resulting in good adhesion between the surface layer and the support element results.

Während des Energieeintrages kann die Temperatur in der Schicht durch die eingebrachte Energiemenge geregelt werden. Durch die Reaktionstemperatur und die Heizdauer kann der Reaktionsablauf gesteuert werden. Es ist so z. B. möglich, die Reaktion vor der vollständigen Umsetzung zu stoppen. Es bleibt hierbei eine Restmenge an Aluminium in der Schicht, was sich positiv auf die Duktilität der Schicht auswirkt. Durch die Heizparameter kann somit gezielt auf die funktionellen Eigenschaften der Oberflächenschicht Einfluß genommen werden.During the energy input, the temperature in the layer be regulated by the amount of energy introduced. Through the The reaction temperature and the heating time can affect the course of the reaction to be controlled. It is so. B. possible the reaction before stop complete implementation. There remains one Remaining amount of aluminum in the layer, which has a positive effect on the Ductility of the layer affects. Due to the heating parameters thus targeted at the functional properties of the surface layer Be influenced.

Claims (5)

Verfahren zur Herstellung einer Oberflächenschicht, die mit intermetallischen Phasen durchzogen ist,
dadurch gekennzeichnet, dass auf einem Trägerelement eine Schicht aus einem Metall und einer Keramik aufgebracht wird, durch einen Energieeintrag während des Aufbringens der Schicht oder durch einen nachträglichen Energieeintrag eine Reaktion zwischen dem Metall und der Keramik der Schicht erfolgt und hierdurch unter Bildung von intermetallischen Phasen die Oberflächenschicht hergestellt wird.
Process for the production of a surface layer which is interspersed with intermetallic phases,
characterized in that a layer of a metal and a ceramic is applied to a carrier element, a reaction between the metal and the ceramic of the layer takes place through an energy input during the application of the layer or through a subsequent energy input and this produces the surface layer with the formation of intermetallic phases.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Metall der Schicht Aluminium oder eine Aluminiumlegierung ist.
Method according to claim 1,
characterized in that
the metal of the layer is aluminum or an aluminum alloy.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Keramik der Schicht eine oxidische Keramik ist.
The method of claim 1 or 2,
characterized in that
the ceramic of the layer is an oxide ceramic.
Verfahren nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
die Schicht durch ein thermisches Spritzverfahren oder durch eine Schlickertechnik oder durch eine Lackiertechnik aufgebracht wird.
Method according to one of the preceding claims,
characterized in that
the layer is applied by a thermal spraying process or by a slip technique or by a painting technique.
Verfahren nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
der Energieeintrag über eine Infrarotheizquelle und/oder einen Laser und/oder eine Induktionswärmequelle erfolgt.
Method according to one of the preceding claims,
characterized in that
the energy input takes place via an infrared heating source and / or a laser and / or an induction heat source.
EP01117327A 2000-07-26 2001-07-18 Process for forming a superficial layer Withdrawn EP1176227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10036264A DE10036264B4 (en) 2000-07-26 2000-07-26 Process for producing a surface layer
DE10036264 2000-07-26

Publications (1)

Publication Number Publication Date
EP1176227A1 true EP1176227A1 (en) 2002-01-30

Family

ID=7650183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117327A Withdrawn EP1176227A1 (en) 2000-07-26 2001-07-18 Process for forming a superficial layer

Country Status (3)

Country Link
US (1) US6803078B2 (en)
EP (1) EP1176227A1 (en)
DE (1) DE10036264B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785508A2 (en) * 2005-11-08 2007-05-16 Linde Aktiengesellschaft Method of manufacturing a photocatalyst active layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306919B4 (en) * 2003-02-19 2006-08-17 Daimlerchrysler Ag Composite of intermetallic phases and ceramics, manufacturing process and use
DE10324576A1 (en) * 2003-05-30 2004-12-23 Daimlerchrysler Ag Internal combustion engine
DE10345827A1 (en) * 2003-10-02 2005-05-04 Daimler Chrysler Ag Process for coating metallic substrates with oxidizing materials by means of arc wire spraying
DE102005005359B4 (en) 2005-02-02 2009-05-07 Siemens Ag Method for cold gas spraying
GB0515276D0 (en) * 2005-07-26 2005-08-31 Accentus Plc Catalyst
KR20170127903A (en) * 2016-05-13 2017-11-22 현대자동차주식회사 Cylinder Liner for Insert Casting and Method for Manufacturing thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496971A (en) * 1943-04-24 1950-02-07 Sol B Wiczer Thermite coating process
JPS5036302A (en) * 1973-08-02 1975-04-05
GB2001947A (en) * 1977-07-13 1979-02-14 Castolin Sa Pulverulent coating material
JPS61270376A (en) * 1985-01-22 1986-11-29 Toyota Motor Corp Wear resistant al alloy member
US4732778A (en) * 1985-08-30 1988-03-22 Toyota Jidosha Kabushiki Kaisha Method for forming composite layer by laser irradiation upon aluminum alloy substrate surface of powder mixture containing metal carbide ceramic particles, silicon, and metal element forming inter metallic compound with silicon
US4933241A (en) * 1987-05-29 1990-06-12 United States Department Of Energy Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
EP0451093A1 (en) * 1990-04-04 1991-10-09 Alusuisse-Lonza Services Ag High melting point metal composite
EP0497119A1 (en) * 1991-01-29 1992-08-05 Thyssen Edelstahlwerke AG Process for coating substrates
GB2264719A (en) * 1992-01-31 1993-09-08 Welding Inst Spraying onto rotating substrates; coating internal tubular surfaces using exothermic mixture; centrifugal force
WO1994016859A1 (en) * 1993-01-25 1994-08-04 University Of Cincinnati Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
JPH101767A (en) * 1996-06-12 1998-01-06 Takao Araki Formation of titanium-aluminum intermetallic compound powder and formation of titanium-aluminum sprayed coating film
JP2000119835A (en) * 1998-10-13 2000-04-25 Agency Of Ind Science & Technol Formation of film excellent in erosion resistance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2015213C (en) * 1990-04-23 1998-04-14 Gilles Cliche Tic based materials and process for producing same
US5137422A (en) 1990-10-18 1992-08-11 Union Carbide Coatings Service Technology Corporation Process for producing chromium carbide-nickel base age hardenable alloy coatings and coated articles so produced
DE69109077T2 (en) * 1991-01-31 1995-12-14 Gen Electric Aluminumization of objects, protected by a thermally blocked coating system.
DK0522583T3 (en) 1991-07-12 1995-09-25 Praxair Technology Inc Rotary contact gasket element coated with a chromium carbide-age-curable nickel-based alloy
DE4447130A1 (en) * 1994-12-29 1996-07-04 Nils Claussen Production of an aluminum-containing ceramic molded body
TW374825B (en) * 1996-01-22 1999-11-21 Klinair Environmental Technologies Ireland Ltd A pre-combustion catalytic converter and a process for producing same
DE19605858A1 (en) * 1996-02-16 1997-08-21 Claussen Nils Process for the production of Al¶2¶O¶3¶ aluminide composites, their execution and use
DE19750599A1 (en) 1997-01-10 1998-07-30 Claussen Nils Metal-ceramic construction element - its structure and its manufacture
US6319617B1 (en) * 1999-12-17 2001-11-20 Agere Systems Gaurdian Corp. Oxide-bondable solder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496971A (en) * 1943-04-24 1950-02-07 Sol B Wiczer Thermite coating process
JPS5036302A (en) * 1973-08-02 1975-04-05
GB2001947A (en) * 1977-07-13 1979-02-14 Castolin Sa Pulverulent coating material
JPS61270376A (en) * 1985-01-22 1986-11-29 Toyota Motor Corp Wear resistant al alloy member
US4732778A (en) * 1985-08-30 1988-03-22 Toyota Jidosha Kabushiki Kaisha Method for forming composite layer by laser irradiation upon aluminum alloy substrate surface of powder mixture containing metal carbide ceramic particles, silicon, and metal element forming inter metallic compound with silicon
US4933241A (en) * 1987-05-29 1990-06-12 United States Department Of Energy Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
EP0451093A1 (en) * 1990-04-04 1991-10-09 Alusuisse-Lonza Services Ag High melting point metal composite
EP0497119A1 (en) * 1991-01-29 1992-08-05 Thyssen Edelstahlwerke AG Process for coating substrates
GB2264719A (en) * 1992-01-31 1993-09-08 Welding Inst Spraying onto rotating substrates; coating internal tubular surfaces using exothermic mixture; centrifugal force
WO1994016859A1 (en) * 1993-01-25 1994-08-04 University Of Cincinnati Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
JPH101767A (en) * 1996-06-12 1998-01-06 Takao Araki Formation of titanium-aluminum intermetallic compound powder and formation of titanium-aluminum sprayed coating film
JP2000119835A (en) * 1998-10-13 2000-04-25 Agency Of Ind Science & Technol Formation of film excellent in erosion resistance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197632, Derwent World Patents Index; Class M26, AN 1976-60353X, XP002183333 *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 133 (C - 418) 25 April 1987 (1987-04-25) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05 30 April 1998 (1998-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 07 29 September 2000 (2000-09-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785508A2 (en) * 2005-11-08 2007-05-16 Linde Aktiengesellschaft Method of manufacturing a photocatalyst active layer
EP1785508A3 (en) * 2005-11-08 2007-08-22 Linde Aktiengesellschaft Method of manufacturing a photocatalyst active layer

Also Published As

Publication number Publication date
US6803078B2 (en) 2004-10-12
US20020034593A1 (en) 2002-03-21
DE10036264A1 (en) 2002-02-21
DE10036264B4 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
EP2746613B1 (en) Brake disc for a vehicle
DE2632739C3 (en) Process for the thermal spraying of a self-adhesive nickel-aluminum or nickel-titanium coating on a metal substrate
EP1176228A2 (en) Surface coating and process for forming it
DE3914010C2 (en) Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
DE19733205B4 (en) Coating for a cylinder surface of a reciprocating engine of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use
DE102007020891A1 (en) Lined brake disc for rail- or commercial road vehicles, is formed as spray-compacted metal coating containing embedded ceramic particles
DE102010062357B4 (en) Apparatus and method for producing a magnesium-containing substrate coated with at least one anticorrosion layer
DE2927057A1 (en) SPRAYED ALLOY LAYER AND METHOD FOR PRODUCING THE SAME
EP0438971A1 (en) Coated metallic substrate
EP1176227A1 (en) Process for forming a superficial layer
WO2019219551A1 (en) Brake body and method for producing same
DE19640789A1 (en) Wear-resistant coated components for internal combustion engines, in particular piston rings and processes for their production
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
EP0742187B1 (en) Ceramic element
DE102007016411A1 (en) Semi-finished refractory metal product for producing ingot has protective layer giving protection against oxidation during hot deformation of semi-finished product
DE4419838C2 (en) Function-coated component, method of manufacture and use
WO2012175668A2 (en) Casting component, and method for the application of an anticorrosive layer
DE102004029070B4 (en) Method of pouring an iron alloy blank into an aluminum casting
DE2715914C2 (en)
DE19651851C1 (en) Platinum-coated oxide ceramic object production
DE102004002304A1 (en) Carbon-carbon compound material is given an oxygen barrier cladding, with a coating of silicon to be heated for impregnation, as a protection against oxidizing when used in an oxygen atmosphere
EP1832670A2 (en) Method for decorative anodic oxidation
DE10110803A1 (en) Production of metallic layer on upper part of internal combustion engine piston comprises directly applying the layer as single corrosion protection layer on surface of piston using high velocity oxy-fuel thermal spraying process
DE102004052135A1 (en) Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production
DD296110A5 (en) METHOD FOR PRODUCING HARD MATERIAL LAYERS BY VACUUM BOW EVAPORATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020112

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070202