EP1098393A2 - Reflector antenna and method of fabricating a subreflector - Google Patents

Reflector antenna and method of fabricating a subreflector Download PDF

Info

Publication number
EP1098393A2
EP1098393A2 EP00250367A EP00250367A EP1098393A2 EP 1098393 A2 EP1098393 A2 EP 1098393A2 EP 00250367 A EP00250367 A EP 00250367A EP 00250367 A EP00250367 A EP 00250367A EP 1098393 A2 EP1098393 A2 EP 1098393A2
Authority
EP
European Patent Office
Prior art keywords
reflector
reflective
reflector antenna
antenna according
subreflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00250367A
Other languages
German (de)
French (fr)
Other versions
EP1098393A3 (en
Inventor
Bernd Rümmeli
Brian Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rr Elektronische Gerate & Co KG GmbH
RR Elektronische Geraete GmbH and Co KG
Original Assignee
Rr Elektronische Gerate & Co KG GmbH
RR Elektronische Geraete GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rr Elektronische Gerate & Co KG GmbH, RR Elektronische Geraete GmbH and Co KG filed Critical Rr Elektronische Gerate & Co KG GmbH
Publication of EP1098393A2 publication Critical patent/EP1098393A2/en
Publication of EP1098393A3 publication Critical patent/EP1098393A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the invention relates to a reflector antenna with a main reflector, in front of the incident rays a reflecting surface provided subreflector rotatable is arranged.
  • the invention relates to a method for manufacturing of a sub-reflector for a reflector antenna.
  • a reflector antenna from a radiation source originating rays for example rays from a satellite, received and forwarded for reinforcement.
  • a main reflector is provided for this purpose, on which the rays hit and are reflected.
  • the reflected rays then hit a subreflector, about the focus of the main antenna designed as a bowl is trained.
  • the subreflector in turn has a reflective layer facing the main reflector, the the rays reflected by the main reflector in turn Direction towards one located in the center of the main reflector Deflects transducer.
  • the subreflector is rotatable in the focal point of the main reflector.
  • speeds come in the range between 200 and 400 rpm.
  • the subreflector is eccentric to one through a center point of the main reflector extending axis mounted on an axis of rotation. On this way he scans the main reflector in an area which is conical from the subreflector towards the main reflector opens.
  • This eccentrically mounted subreflector produces unwanted ones Vibrations that are in the mount of the subreflector Make vibrations noticeable. Because of these vibrations the received signals falsified. From the state of the Technology is known to be a solution that focuses on its focus rotating sub-reflector arranged on an axis of rotation is, which is essentially in the direction of the axis of the Main reflector extends. However, the axis of the sub-reflector runs not in the direction of the axis of the main reflector, so that also by the deviation a vibration effect in the bracket of the sub-reflector is generated. This vibration effect however, it should be within the speed range maintained by the subreflector affect the strength of the received signals little.
  • the object of the present invention is therefore the reflector antenna of the type mentioned so that the improvement A vibration effect is prevented.
  • This object is achieved in that the Subreflector one in the direction of a main axis of the main reflector extending axis on which the subreflector rotatable at a high speed of around 1500 to 3500 rpm is stored.
  • This measure makes the main reflector from the subreflector scanned in quick succession, so that in this way a Variety of beams received by the sub-reflector and towards be reflected on the transducer. This will make a strong signal in a following the main reflector Circuit generated. Although the axis of rotation in the direction of Axis of the main reflector is aligned, becomes a large one Number of rays on the hyperbolic reflector surface of the Reflected in the direction of the transducer.
  • the sub-reflector is free of vibrations on its axis. To do this, the subreflector must be mounted very precisely be taken care of on the axis and on the other hand the subreflector be given training that is even at high No vibrations are generated in the bearings.
  • the subreflector is designed as a rotating body that is free of unbalance.
  • Such training requires a lot careful constructive solution since the reflective surfaces the rays that occur must meet the requirement to reflect as completely as possible towards the transducer. Because this requirement primarily the design of the reflector influenced, to fulfill the further requirement, the sub-reflector vibration-free even at high speeds storage, made considerable constructive efforts become.
  • the rotating body consists of a non-reflecting rays Mass in which a reflective surface is embedded.
  • the rotating body is given the non-reflecting mass a compact design that even at high speeds enables vibration-free rotation.
  • the mass is shaped in the form of a cylinder made up of two interconnected There are parts, one of them to the other facing end has the reflective surface, in which fits the end of the other part in a form. On this ensures that the reflective surface even at high speeds, no own movements, for example generated by flutter. On the one hand, it is firm with the non-reflective mass, and on the other hand it also from the other part in terms of training one fixed rotating body.
  • a reflective to form the reflective surface Layer applied to the non-reflective mass is a reflective to form the reflective surface Layer applied to the non-reflective mass.
  • This layer adheres firmly to the non-reflective mass, so that even at high speeds they have no mass independent movements, such as fluttering movements can perform.
  • the reflective layer consists of an aluminum layer, which is firmly connected to the mass. This connection can achieved according to a further preferred embodiment be that the aluminum layer on the non-reflective Mass is evaporated.
  • a reflector antenna consists essentially of one Main reflector (1), a subreflector (2), the subreflector (2) driving motor (3), a transducer (4) and a recorded signal (5, 6) converting detector 5. Off These can be converted via a Derivation (6) can be derived for further processing.
  • the main reflector (1) is essentially one with one parabolic inner surface (7) provided non-rotating Bowl formed, possibly on a not shown Frame is mounted on which it is a radiation transmitter, for example a satellite (8) with regard to it respective position relative to the main reflector (1) is arranged.
  • Rays (10, 11) is a reflective surface (13) of the sub-reflector (2) arranged.
  • This reflective Surface (13) is with a first part (12) of the subreflector firmly connected.
  • This first part (12) is part of a cylinder (14) formed on its reflective Surface (13) facing away from a circular surface (15) is limited.
  • This first part (12) of the cylinder (14) corresponds to a second part (16) of the sub-reflector (2), which is also in shape of a cylinder with one facing away from the first part (12) circular surface (17) is formed.
  • this second Part (16) is a recess shown with dashed lines (18), which is suitable for the reflective Fit surface (13) of the first part (12) appropriately.
  • the merged Parts 12, 16 result in a circular shape on both sides Areas (15, 17) limited cylinder (14).
  • the material the two parts (12, 16) do not reflect short waves. Only the reflecting surface (13) reflects that of the Main reflector (1) reflected rays (11) in the direction of the receiver (4).
  • This can, for example, from a Paint or consist of a film, each arranged on one of the circular surface (15) opposite Carrier surface (20) is applied.
  • This support surface (20) has an education that a reflection of the rays (10, 11) favored towards the receiver (4).
  • the support surface (20) can be a hyperbolic Training.
  • This support surface (20) fits the coating (19) applied to them, through whose Application of the support surface (20) to the reflective surface (13) will.
  • the recess corresponds to the reflecting surface (13) (18) formed as a paraboloid. This is so careful made that the reflective surface (13) positively is received in the recess (18) so that the two parts (12, 16) by inserting the reflective surface (13) in the recess (18) so firmly connected can be, for example by gluing that the a part (12) even when subjected to considerable forces does not make movements relative to the other part (16). So the entire cylinder (14) can rotate at high speeds can be moved without the two parts (12, 16) would make independent movements.
  • the cylinder (14) including the engine (3) is with the help a construction, not shown, towards the Radiation source (8) stored in front of the main reflector (1) so that the motor (3) via a drive shaft () 21) the cylinder (14) can turn in revolutions.
  • the arrangement of the Cylinder (14) hit so that its center axis to the the cylinder (14) rotates in the direction of one through the Main reflector (1) extending main axis (22) extends.
  • a cylinder axis also extends in the direction of this main axis (22) (23) of the cylinder (14), so that in the direction the main axis (22) both the drive shaft (21) and the Cylinder axis (23) extends. This ensures that no deviations of the cylinder axis (23) from the Main axis (22) are present, so that with a very calm Running of the driven cylinder (14) is to be expected.
  • the cylinder (14) does not cause any imbalances generates, which leads to a troubled barrel of the cylinder (14) could lead.
  • the cylinder (14) consists of a evenly distributed material with one over the entire area of the cylinder (14) constant specific weight. This the coating (19) also has a specific weight, which is arranged on the support surface (20). In this way care is taken to ensure that none of the cylinders (14) Imbalances carried into the entire rotating structure become. That consisting of the motor (3) and the subreflector (2) rotating structures therefore run even at high numbers of turns vibration free. That of the subreflector (2) towards the sensor (4) reflected rays (10, 11) therefore provide in the detector (5) for signals of optimal strength.
  • the subreflector (2) is produced in such a way that that first the two parts (12, 16) are molded, for example by machining or by a corresponding Casting process. This ensures that the support surface (20) well and positively into the recess (18) is fitted.
  • the carrier surface (20) with the coating (19) Mistake.
  • the coating can for example applied as a colorant i.e. either sprayed onto the support surface (20) or can be applied with a brush.
  • the reflective surface (13) which is then in the recess (18) of the second part (16) fitted and with this is connected.
  • This connection can be made using a very thin adhesive layer can be made. Furthermore, made sure that the adhesive has the specific weight the non-reflective material on the one hand and the coating (19) on the other hand.
  • Axis (23) is provided on the first part (12), with which the drive shaft (21) of the motor (3) is connected.
  • Corresponding coupling pieces can be used with the second Part (12) of the cylinder (14) are connected.

Abstract

The antenna includes a main reflector, in front of which, in the direction of incident radiation, a sub-reflector with a reflecting surface is rotatably arranged. The sub-reflector (2) comprises a cylindrical axis (23) that lies in the direction of a main axis (22) of the main reflector (1), the sub-reflector being rotatably mounted on the cylindrical axis so that it can rotate at high speeds of 1500 to 3500 rpm. The sub-reflector may be mounted in an vibration-free manner, and free from unbalance. An Independent claim is included for a method of manufacturing a reflector for a reflecting antenna.

Description

Die Erfindung betrifft eine Reflektorantenne mit einem Hauptreflektor, vor dem in Richtung einfallender Strahlen ein mit einer reflektierenden Fläche versehener Subreflektor drehbar angeordnet ist.The invention relates to a reflector antenna with a main reflector, in front of the incident rays a reflecting surface provided subreflector rotatable is arranged.

Darüberhinaus betrifft die Erfindung ein Verfahren zum Herstellen eines Subreflektors für eine Reflektorantenne.Furthermore, the invention relates to a method for manufacturing of a sub-reflector for a reflector antenna.

Mit Hilfe einer Reflektorantenne werden von einer Strahlenquelle stammende Strahlen, beispielsweise Strahlen eines Satelliten, empfangen und zum Zwecke der Verstärkung weitergeleitet. Zu diesem Zwecke ist ein Hauptreflektor vorgesehen, auf den die Straheln auftreffen und reflektiert werden. Die reflektierten Strahlen treffen sodann auf einen Subreflektor, der etwa im Brennpunkt der als Schüssel ausgebildeten Hauptantenne ausgebildet ist. Der Subreflektor besitzt seinerseits eine dem Hauptreflektor zugewandte reflektierende Schicht, die die vom Hauptreflektor reflektierten Strahlen ihrerseits in Richtung auf einen im Zentrum des Hauptreflektors angeordneten Aufnehmer umlenkt. Um dem Subreflektor einen möglichst großen Querschnitt zu verschaffen, ist dieser drehbar im Brennpunkt des Hauptreflektors angeordnet. Dabei kommen Drehzahlen im Bereich zwischen 200 und 400 U/min in Betracht. Der Subreflektor ist exzentrisch zu einer durch einen Mittelpunkt des Hauptreflektors verlaufenden Achse auf einer Drehachse gelagert. Auf diese Weise tastet er den Hauptreflektor in einem Bereich ab, der sich konisch vom Subreflektor in Richtung auf den Hauptreflektor öffnet.With the help of a reflector antenna from a radiation source originating rays, for example rays from a satellite, received and forwarded for reinforcement. A main reflector is provided for this purpose, on which the rays hit and are reflected. The reflected rays then hit a subreflector, about the focus of the main antenna designed as a bowl is trained. The subreflector in turn has a reflective layer facing the main reflector, the the rays reflected by the main reflector in turn Direction towards one located in the center of the main reflector Deflects transducer. To make the subreflector as large as possible To create a cross-section, it is rotatable in the focal point of the main reflector. Here, speeds come in the range between 200 and 400 rpm. The subreflector is eccentric to one through a center point of the main reflector extending axis mounted on an axis of rotation. On this way he scans the main reflector in an area which is conical from the subreflector towards the main reflector opens.

Dieser exzentrisch gelagerte Subreflektor erzeugt unerwünschte Schwingungen, die sich in der Halterung des Subreflektors als Vibrationen bemerkbar machen. Aufgrund dieser Vibrationen werden die empfangenen Signale verfälscht. Aus dem Stand der Technik ist eine Lösung bekannt, bei der ein um seinen Schwerpunkt rotierender Subreflektor auf einer Drehachse angeordnet ist, die sich im wesentlichen in Richtung der Achse des Hauptreflektors erstreckt. Jedoch verläuft die Achse des Subreflektors nicht in Richtung der Achse des Hauptreflektors, so daß auch durch die Abweichung ein Vibrationseffekt in der Halterung des Subreflektors erzeugt wird. Dieser Vibrationseffekt soll jedoch im Rahmen der vom Subreflektor eingehaltenen Drehzahlen die Stärke der empfangenen Signale nur wenig beeinträchtigen.This eccentrically mounted subreflector produces unwanted ones Vibrations that are in the mount of the subreflector Make vibrations noticeable. Because of these vibrations the received signals falsified. From the state of the Technology is known to be a solution that focuses on its focus rotating sub-reflector arranged on an axis of rotation is, which is essentially in the direction of the axis of the Main reflector extends. However, the axis of the sub-reflector runs not in the direction of the axis of the main reflector, so that also by the deviation a vibration effect in the bracket of the sub-reflector is generated. This vibration effect however, it should be within the speed range maintained by the subreflector affect the strength of the received signals little.

Aufgabe der vorliegenden Erfindung ist es daher, die Reflektorantenne der eingangs genannten Art so zu verbessern, daß das Entstehen eines Vibrationseffektes verhindert wird.The object of the present invention is therefore the reflector antenna of the type mentioned so that the improvement A vibration effect is prevented.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Subreflektor eine in Richtung einer Hauptachse des Hauptreflektors verlaufende Achse aufweist, auf der der Subreflektor mit einer hohen Drehzahl von etwa 1500 bis 3500 U/min drehbar gelagert ist.This object is achieved in that the Subreflector one in the direction of a main axis of the main reflector extending axis on which the subreflector rotatable at a high speed of around 1500 to 3500 rpm is stored.

Durch diese Maßnahme wird der Hauptreflektor vom Subreflektor in schneller Folge abgetastet, so daß auf diese Weise eine Vielzahl von Strahlen vom Subreflektor empfangen und in Richtung auf den Aufnehmer reflektiert werden. Dadurch wird ein starkes Signal in einer dem Hauptreflektor nachfolgenden Schaltung erzeugt. Obgleich die Drehachse in Richtung der Achse des Hauptreflektors ausgerichtet ist, wird eine große Anzahl von Strahlen auf der hyperbolischen Reflektorfläche des Reflektors in Richtung auf den Aufnehmer reflektiert.This measure makes the main reflector from the subreflector scanned in quick succession, so that in this way a Variety of beams received by the sub-reflector and towards be reflected on the transducer. This will make a strong signal in a following the main reflector Circuit generated. Although the axis of rotation in the direction of Axis of the main reflector is aligned, becomes a large one Number of rays on the hyperbolic reflector surface of the Reflected in the direction of the transducer.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist der Subreflektor auf seiner Achse frei von Vibrationen gelagert. Dazu muß für eine sehr exakte Lagerung des Subreflektors auf der Achse gesorgt werden und andererseits dem Subreflektor eine Ausbildung gegeben werden, die auch bei hohen Drehzahlen keine Schwingungen in der Lagerung erzeugt.According to a further preferred embodiment of the invention the sub-reflector is free of vibrations on its axis. To do this, the subreflector must be mounted very precisely be taken care of on the axis and on the other hand the subreflector be given training that is even at high No vibrations are generated in the bearings.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist der Subreflektor als ein Drehkörper ausgebildet, der frei von Unwuchten ist. Eine derartige Ausbildung bedarf einer sehr sorgfältigen konstruktiven Lösung, da die reflektierenden Flächen der Forderung genügen müssen, die auftretenden Strahlen möglichst vollständig in Richtung auf den Aufnehmer zu reflektieren. Da diese Forderung primär die Gestaltung des Reflektors beeinflußt, müssen zur Erfüllung der weitergehenden Forderung, den Subreflektor auch bei hohen Drehzahlen vibrationsfrei zu lagern, erhebliche konstruktive Anstrengungen unternommen werden.According to a further preferred embodiment of the invention the subreflector is designed as a rotating body that is free of unbalance. Such training requires a lot careful constructive solution since the reflective surfaces the rays that occur must meet the requirement to reflect as completely as possible towards the transducer. Because this requirement primarily the design of the reflector influenced, to fulfill the further requirement, the sub-reflector vibration-free even at high speeds storage, made considerable constructive efforts become.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung besteht der Drehkörper aus einer Strahlen nicht reflektierenden Masse, in die eine reflektierende Fläche eingebettet ist. Durch die nicht reflektierende Masse erhält der Drehkörper eine kompakte Ausbildung, die auch bei hohen Drehzahlen eine vibrationsfreie Drehung ermöglicht.According to a further preferred embodiment of the invention the rotating body consists of a non-reflecting rays Mass in which a reflective surface is embedded. The rotating body is given the non-reflecting mass a compact design that even at high speeds enables vibration-free rotation.

Gemäß einer weiteren bevorzugten Ausführungsform ist die Masse in Form eines Zylinders geformt, der aus zwei miteinander verbundenen Teilen besteht, von denen das eine an seinem dem anderen zugewandten Ende die reflektierende Fläche aufweist, in die das Ende des anderen Teils formflüssig hineinpaßt. Auf diese Weise wird gewährleistet, daß die reflektierende Fläche auch bei hohen Drehzahlen keine Eigenbewegungen, beispielsweise durch Flattern erzeugt. Sie ist einerseits fest mit der nichtreflektierenden Masse verbunden, und andererseits wird sie auch von dem anderen Teil im Sinne der Ausbildung eines festen Drehkörpers beaufschlagt.According to a further preferred embodiment, the mass is shaped in the form of a cylinder made up of two interconnected There are parts, one of them to the other facing end has the reflective surface, in which fits the end of the other part in a form. On this ensures that the reflective surface even at high speeds, no own movements, for example generated by flutter. On the one hand, it is firm with the non-reflective mass, and on the other hand it also from the other part in terms of training one fixed rotating body.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist zur Ausbildung der reflektierenden Fläche eine reflektierende Schicht auf die nichtreflektierende Masse aufgebracht. Diese Schicht haftet fest auf der nichtreflektierenden Masse, so daß sie auch bei hohen Drehzahlen keine gegenüber der Masse eigenständigen Bewegungen, beispielsweise Flatterbewegungen durchführen kann.According to a further preferred embodiment of the invention is a reflective to form the reflective surface Layer applied to the non-reflective mass. This layer adheres firmly to the non-reflective mass, so that even at high speeds they have no mass independent movements, such as fluttering movements can perform.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung besteht die reflektierende Schicht aus einer Aluminiumschicht, die fest mit der Masse verbunden ist. Diese Verbindung kann gemäß einer weiteren bevorzugten Ausführungsform dadurch erreicht werden, daß die Aluminiumschicht auf die nicht reflektierende Masse aufgedampft ist.According to a further preferred embodiment of the invention the reflective layer consists of an aluminum layer, which is firmly connected to the mass. This connection can achieved according to a further preferred embodiment be that the aluminum layer on the non-reflective Mass is evaporated.

Weitere Einzelheiten der Erfindung ergeben sich der nachfolgenden ausführlichen Beschreibung und den beigefügten Zeichnungen, in denen eine bevorzugte Ausführungsform der Erfindung beispielsweise veranschaulicht ist.Further details of the invention follow from the following detailed description and the accompanying drawings, in which a preferred embodiment of the invention for example.

In den Zeichnungen zeigen:

Figur 1:
eine räumliche Darstellung der wesentlichen Teile einer Reflektorantenne,
Figur 2:
eine Seitenansicht eines eine reflektierende Schicht tragenden Teils einer Reflektorantenne,
Figur 3:
eine Seitenansicht eines die reflektierende Schicht aufnehmenden zweiten Teils einer Reflektorantenne,
Figur 4:
eine Grundfläche des in Figur 3 dargestellten Teils,
Figur 5:
eine Grundfläche des in Figur 2 dargestellten Teils und
Figur 6:
eine Seitenansicht eines aus den beiden Teilen der Figuren 2 und 3 zusammengesetzten Subreflektors mit einem ihn antreibenden Motor.
The drawings show:
Figure 1:
a spatial representation of the essential parts of a reflector antenna,
Figure 2:
2 shows a side view of a part of a reflector antenna which carries a reflective layer,
Figure 3:
2 shows a side view of a second part of a reflector antenna that receives the reflective layer,
Figure 4:
a base of the part shown in Figure 3,
Figure 5:
a base of the part shown in Figure 2 and
Figure 6:
a side view of a sub-reflector composed of the two parts of Figures 2 and 3 with a motor driving it.

Eine Reflektorantenne besteht im wesentlichen aus einem Hauptreflektor (1), einem Subreflektor (2), einem den Subreflektor (2) antreibenden Motor (3), einem Aufnehmer (4) sowie einem aufgenommene Signale (5, 6) umwandelnden Detektor 5. Aus diesen können die im Detektor umgewandelten Signale über eine Ableitung (6) zur weiteren Bearbeitung abgeleitet werden.A reflector antenna consists essentially of one Main reflector (1), a subreflector (2), the subreflector (2) driving motor (3), a transducer (4) and a recorded signal (5, 6) converting detector 5. Off These can be converted via a Derivation (6) can be derived for further processing.

Der Hauptreflektor (1) ist als eine im Wesentlichen mit einer parabolischen Innenfläche (7) versehene nicht rotierende Schüssel ausgebildet, die gegebenenfalls auf einem nicht dargestellten Gestell montiert ist, auf dem sie einem Strahlensender, beispielsweise einem Satelliten (8) hinsichtlich dessen jeweiliger Position gegenüber dem Hauptreflektor (1) nachführbar angeordnet ist.The main reflector (1) is essentially one with one parabolic inner surface (7) provided non-rotating Bowl formed, possibly on a not shown Frame is mounted on which it is a radiation transmitter, for example a satellite (8) with regard to it respective position relative to the main reflector (1) is arranged.

In einem Brennpunkt (9) aller von dem Hauptreflektor (1) reflektierten Strahlen (10, 11) ist eine reflektierende Fläche (13) des Subreflektors (2) angeordnet. Diese reflektierende Fläche (13) ist mit einem ersten Teil (12) des Subreflektors fest verbunden. Dieser erste Teil (12) ist als Teil eines Zylinders (14) ausgebildet, der auf seiner der reflektierenden Fläche (13) abgewandten Begrenzung von einer kreisrunden Fläche (15) begrenzt ist.In a focal point (9) of all reflected by the main reflector (1) Rays (10, 11) is a reflective surface (13) of the sub-reflector (2) arranged. This reflective Surface (13) is with a first part (12) of the subreflector firmly connected. This first part (12) is part of a cylinder (14) formed on its reflective Surface (13) facing away from a circular surface (15) is limited.

Diesem ersten Teil (12) des Zylinders (14) entspricht ein zweiter Teil (16) des Subreflektors (2), der ebenfalls in Form eines Zylinders mit einer dem ersten Teil (12) abgewandten kreisrunden Fläche (17) ausgebildet ist. In diesem zweiten Teil (16) ist eine mit gestrichelten Linien dargestellte Ausnehmung (18) ausgebildet, die geeignet ist, die reflektierende Fläche (13) des ersten Teils (12) passend aufzunehmen. Die zusammengefügten Teile 12, 16 ergeben einen beidseits von kreisrunden Flächen (15, 17) begrenzten Zylinder (14). Das Material der beiden Teile (12, 16) reflektiert keine Kurzwellen. Lediglich die reflektierende Fläche (13) reflektiert die von dem Hauptreflektor (1) relfektierten Strahlen (11) in Richtung auf den Aufnahmer (4).This first part (12) of the cylinder (14) corresponds to a second part (16) of the sub-reflector (2), which is also in shape of a cylinder with one facing away from the first part (12) circular surface (17) is formed. In this second Part (16) is a recess shown with dashed lines (18), which is suitable for the reflective Fit surface (13) of the first part (12) appropriately. The merged Parts 12, 16 result in a circular shape on both sides Areas (15, 17) limited cylinder (14). The material the two parts (12, 16) do not reflect short waves. Only the reflecting surface (13) reflects that of the Main reflector (1) reflected rays (11) in the direction of the receiver (4).

Zu diesem Zwecke ist die reflektierende Fläche (13) mit einer Beschichtung (19) versehen. Diese kann beispielsweise aus einem Farbanstrich oder aus einer Folie bestehen, die jeweils auf einer der kreisrunde Fläche (15) gegenüber angeordneten Trägerfläche (20) aufgetragen ist. Diese Trägerfläche (20) besitzt eine Ausbildung, die eine Reflektion der Strahlen (10, 11) in Richtung auf den Aufnahmer (4) begünstigt. Zu diesem Zwecke kann die Trägerfläche (20) beispielsweise eine hyperbolische Ausbildung besitzten. Dieser Trägerfläche (20) paßt sich die auf sie aufgebrachte Beschichtung (19) an, durch deren Aufbringung die Trägerfläche (20) zur reflektierenden Fläche (13) wird.For this purpose, the reflecting surface (13) with a Provide coating (19). This can, for example, from a Paint or consist of a film, each arranged on one of the circular surface (15) opposite Carrier surface (20) is applied. This support surface (20) has an education that a reflection of the rays (10, 11) favored towards the receiver (4). To this For example, the support surface (20) can be a hyperbolic Training. This support surface (20) fits the coating (19) applied to them, through whose Application of the support surface (20) to the reflective surface (13) will.

Entsprechend der reflektierenden Fläche (13) ist die Ausnehmung (18) als ein Paraboloid ausgebildet. Dieser ist so sorgfältigt gefertigt, daß die reflektierende Fläche (13) formschlüssig in die Ausnehmung (18) aufgenommen wird, so daß die beiden Teile (12, 16) durch Einfügen der reflektierenden Fläche (13) in die Ausnehmung (18) so fest miteinander verbunden werden können, beispielsweise durch eine Verklebung, daß das eine Teil (12) auch bei Einwirkung von erheblichen Kräften nicht gegenüber dem anderen Teil (16) Bewegungen ausführt. So kann der gesamte Zylinder (14) mit großen Drehzahlen in Umdrehungen versetzt werden, ohne daß die beiden Teile (12, 16) voneinander unabhängige Bewegungen durchführen würden.The recess corresponds to the reflecting surface (13) (18) formed as a paraboloid. This is so careful made that the reflective surface (13) positively is received in the recess (18) so that the two parts (12, 16) by inserting the reflective surface (13) in the recess (18) so firmly connected can be, for example by gluing that the a part (12) even when subjected to considerable forces does not make movements relative to the other part (16). So the entire cylinder (14) can rotate at high speeds can be moved without the two parts (12, 16) would make independent movements.

Der Zylinder (14) einschließlich des Motors (3) wird mit Hilfe einer nicht dargestellten Konstruktion in Richtung auf die Strahlenquelle (8) vor dem Hauptreflektor (1) gelagert, so daß der Motor (3) über eine Antriebswelle ()21) den Zylinder (14) in Umdrehungen versetzen kann. Dabei wird die Anordnung des Zylinders (14) so getroffen, daß seine MIttelachse, um die sich der Zylinder (14) dreht, in Richtung einer sich durch den Hauptreflektor (1) erstreckenden Hauptachse (22) verläuft. In Richtung dieser Hauptachse (22) erstreckt sich auch eine Zylinderachse (23) des Zylinders (14), so daß sich in Richtung der Hauptachse (22) sowohl die Antriebswelle (21) als auch die Zylinderachse (23) erstreckt. Auf diese Weise ist gewährleistet, daß keine Abweichungen der Zylinderachse (23) von der Hauptachse (22) vorhanden sind, so daß mit einem sehr ruhigen Lauf des angetriebenen Zylinders (14) zu rechnen ist.The cylinder (14) including the engine (3) is with the help a construction, not shown, towards the Radiation source (8) stored in front of the main reflector (1) so that the motor (3) via a drive shaft () 21) the cylinder (14) can turn in revolutions. The arrangement of the Cylinder (14) hit so that its center axis to the the cylinder (14) rotates in the direction of one through the Main reflector (1) extending main axis (22) extends. In A cylinder axis also extends in the direction of this main axis (22) (23) of the cylinder (14), so that in the direction the main axis (22) both the drive shaft (21) and the Cylinder axis (23) extends. This ensures that no deviations of the cylinder axis (23) from the Main axis (22) are present, so that with a very calm Running of the driven cylinder (14) is to be expected.

Darüberhinaus werden jedoch auch vom Zylinder (14) keine Unwuchten erzeugt, die zu einem unruhigen Lauf des Zylinders (14) führen könnten. Der Zylinder (14) besteht aus einem gleichmäßig verteilten Material mit einem im gesamten Bereich des Zylinders (14) gleichbleibenden spezifischen Gewicht. Dieses spezifische Gewicht besitzt auch die Beschichtung (19), die auf der Trägerfläche (20) angeordnet ist. Auf diese Weise ist dafür Sorge getragen, daß durch den Zylinder (14) keine Unwuchten in das gesamte rotierende Gebilde hineingetragen werden. Das aus dem Motor (3) und dem Subreflektor (2) bestehende rotierende Gebilde läuft daher auch bei hohen Drhezahlen vibrationsfrei. Die von dem Subreflektor (2) in Richtung auf den Aufnehmer (4) reflektierten Strahlen (10, 11) sorgen daher im Detektor (5) für Signale optimaler Stärke.In addition, however, the cylinder (14) does not cause any imbalances generates, which leads to a troubled barrel of the cylinder (14) could lead. The cylinder (14) consists of a evenly distributed material with one over the entire area of the cylinder (14) constant specific weight. This the coating (19) also has a specific weight, which is arranged on the support surface (20). In this way care is taken to ensure that none of the cylinders (14) Imbalances carried into the entire rotating structure become. That consisting of the motor (3) and the subreflector (2) rotating structures therefore run even at high numbers of turns vibration free. That of the subreflector (2) towards the sensor (4) reflected rays (10, 11) therefore provide in the detector (5) for signals of optimal strength.

Die Herstellung des Subreflektors (2) geschieht in der Weise, daß zunächst die beiden Teile (12, 16) geformt werden, beispielsweise durch spanende Bearbeitung oder durch ein entsprechendes Gießverfahren. Dadurch ist gewährleistet, daß die Trägerfläche (20) gut und formschlüssig in die Ausnehmung (18) eingepaßt wird.The subreflector (2) is produced in such a way that that first the two parts (12, 16) are molded, for example by machining or by a corresponding Casting process. This ensures that the support surface (20) well and positively into the recess (18) is fitted.

Sodann wird die Trägerfläche (20) mit der Beschichtung (19) versehen. Dabei kann je nach dem verwendeten Material die Beschichtung beispielsweise als ein Farbmittel aufgetragen werden, d.h. entweder auf die Trägerfläche (20) gespritzt oder mit einem Pinsel aufgetragen werden. Auf diese Weise entsteht die reflektierende Fläche (13), die anschließend in die Ausnehmung (18) des zweiten Teils (16) eingepaßt und mit dieser verbunden wird. Diese Verbindung kann mit Hilfe einer sehr dünnen Kleberschicht vorgenommen werden. Darüberhinaus wird darauf geachtet, daß auch der Kleber das spezifische Gewicht des nicht reflektierenden Materials einerseits und der Beschichtung (19) andererseits besitzt.Then the carrier surface (20) with the coating (19) Mistake. Depending on the material used, the coating can for example applied as a colorant i.e. either sprayed onto the support surface (20) or can be applied with a brush. In this way it is created the reflective surface (13), which is then in the recess (18) of the second part (16) fitted and with this is connected. This connection can be made using a very thin adhesive layer can be made. Furthermore, made sure that the adhesive has the specific weight the non-reflective material on the one hand and the coating (19) on the other hand.

Sodann wird in der sich durch den Zylinder (14) erstreckenden Achse (23) eine Befestigung am ersten Teil (12) vorgesehen, mit der die Antriebswelle (21) des Motors (3) verbunden wird. Dabei können entsprechende Kupplungsstücke mit dem zweiten Teil (12) des Zylinders (14) verbunden werden.Then in the extending through the cylinder (14) Axis (23) is provided on the first part (12), with which the drive shaft (21) of the motor (3) is connected. Corresponding coupling pieces can be used with the second Part (12) of the cylinder (14) are connected.

Claims (12)

Reflektorantenne mit einem Hauptreflektor, vor dem in Richtung einfallender Strahlen ein mit einer reflektierenden Fläche versehener Subreflektor drehbar angeordnet ist, dadurch gekennzeichnet, daß der Subreflektor (2) eine in Richtung einer Hauptachse (22) des Hauptreflektors (1) verlaufende Zylinderachse (23) aufweist, auf der der Subreflektor (2) mit einer hohen Drehzahl von etwa 1500 bis etwa 3500 U/min drehbar gelagert ist.Reflector antenna with a main reflector, in front of the Direction of incident rays with a reflecting one Surface provided subreflector is rotatably arranged, thereby characterized in that the sub-reflector (2) in the direction of a Main axis (22) of the main reflector (1) extending cylinder axis (23) on which the subreflector (2) with a high speed of about 1500 to about 3500 rpm rotatably mounted is. Reflektorantenne nach Anspruch 1, dadurch gekennzeichnet, daß der Subreflektor (2) auf der Zylinderachse (23) frei von Vibrationen gelagert ist.Reflector antenna according to claim 1, characterized in that the sub-reflector (2) on the cylinder axis (23) free of Vibrations is stored. Reflektorantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Subreflektor (2) als ein Drehkörper frei von Unwuchten ist.Reflector antenna according to claim 1 or 2, characterized in that the sub-reflector (2) as a rotating body free of Is unbalance. Reflektorantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Drehkörper aus einer Strahlen nicht reflektierenden Masse besteht, in die eine reflektierende Fläche (13) eingebettet ist.Reflector antenna according to one of claims 1 to 3, characterized characterized in that the rotating body does not blast reflective mass, in which a reflective surface (13) is embedded. Reflektorantenne nach Anspruch 4, dadurch gekennzeichnet, daß die Masse in Form eines Zylinders (14) geformt ist, der aus zwei miteinander verbundenen Teilen besteht, von denen das eine an seinem dem anderen zugewandten Ende die reflektierende Fläche (13) aufweist, in die das Ende des anderen Teils (16) formschlüssig hineinpaßt.Reflector antenna according to claim 4, characterized in that the mass is shaped in the form of a cylinder (14), the consists of two interconnected parts, of which the one at its other end, the reflective one Surface (13) into which the end of the other part (16) fits positively. Reflektorantenne nach Anspruch 5, dadurch gekennzeichnet, daß die reflektierende Fläche (13) einen hyperbolischen Querschnitt aufweist, die in eine parabolische Ausnehmung (18) des anderen Teils (16) hineinragt. Reflector antenna according to claim 5, characterized in that the reflective surface (13) has a hyperbolic cross section has in a parabolic recess (18) of the other part (16) protrudes. Reflektorantenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zur Ausbildung der reflektierenden Fläche (13) eine reflektierende Beschichtung (19) auf die nicht reflektierte Masse aufgebracht ist.Reflector antenna according to one of claims 1 to 6, characterized characterized in that to form the reflective surface (13) a reflective coating (19) on the non-reflective Mass is applied. Reflektorantenne nach Anspruch 7, dadurch gekennzeichnet, daß die reflektierende Schicht (13) aus einer Farbschicht besteht.Reflector antenna according to claim 7, characterized in that the reflective layer (13) consists of a color layer. Reflektorantenne nach Anspruch 7, dadurch gekennzeichnet, daß die reflektierende Schicht (13) aus einer Aluminiumschicht besteht.Reflector antenna according to claim 7, characterized in that the reflective layer (13) from an aluminum layer consists. Reflektorantenne nach Anspruch 9, dadurch gekennzeichnet, daß die Aluminiumschicht auf die nicht reflektierende Masse aufgedampft ist.Reflector antenna according to claim 9, characterized in that the aluminum layer on the non-reflective mass has evaporated. Reflektorantenne nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die reflektierende Schicht (13) dasselbe spezifische Gewicht wie die nicht reflektierende Schicht besitzt.Reflector antenna according to one of claims 7 to 10, characterized characterized in that the reflective layer (13) is the same specific gravity like the non-reflective layer owns. Verfahren zum Herstellen eines Reflektors für eine Reflektorantenne, dadurch gekennzeichnet, daß zwei im wesentlichen zylindrische Teilstücke (12, 16) aus einer nichtreflektierenden Masse hergestellt werden, von denen das eine einerseits von einer Kreisfläche (15) und andererseits von einer hyperbolischen Fläche begrenzt ist, die mit einer reflektierenden Beschichtung (19) beschichtet wird, und das andere einerseits von einer Kreisfläche (17) und andererseits von einer parabolischen Fläche begrenzt ist, in die die hyperbolische Fläche eingepaßt und mit der die hyperbolische Fläche fest verbunden wird.Method of manufacturing a reflector for a reflector antenna, characterized in that two essentially cylindrical sections (12, 16) made of a non-reflective Mass produced, one of which is one hand of a circular area (15) and on the other hand of a hyperbolic Area is limited with a reflective coating (19) is coated, and the other one hand of a circular area (17) and on the other hand of a parabolic Area is limited in which the hyperbolic area fitted and with which the hyperbolic surface is firmly connected becomes.
EP00250367A 1999-11-02 2000-11-02 Reflector antenna and method of fabricating a subreflector Withdrawn EP1098393A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19952819 1999-11-02
DE19952819A DE19952819A1 (en) 1999-11-02 1999-11-02 Reflector antenna and method of manufacturing a sub-reflector

Publications (2)

Publication Number Publication Date
EP1098393A2 true EP1098393A2 (en) 2001-05-09
EP1098393A3 EP1098393A3 (en) 2002-06-05

Family

ID=7927728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00250367A Withdrawn EP1098393A3 (en) 1999-11-02 2000-11-02 Reflector antenna and method of fabricating a subreflector

Country Status (4)

Country Link
US (1) US6456253B1 (en)
EP (1) EP1098393A3 (en)
CA (1) CA2325284A1 (en)
DE (1) DE19952819A1 (en)

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488290B2 (en) * 2002-01-24 2010-06-23 ザ・スクリップス・リサーチ・インスティテュート Fiber shaft mutation for efficient targeting
US6917347B2 (en) * 2003-03-14 2005-07-12 The Boeing Company Painted broadcast-frequency reflective component
US6919855B2 (en) * 2003-09-18 2005-07-19 Andrew Corporation Tuned perturbation cone feed for reflector antenna
US20130057444A1 (en) * 2011-09-01 2013-03-07 Andrew Llc Controlled illumination dielectric cone radiator for reflector antenna
US8581795B2 (en) 2011-09-01 2013-11-12 Andrew Llc Low sidelobe reflector antenna
US9948010B2 (en) 2011-09-01 2018-04-17 Commscope Technologies Llc Method for dish reflector illumination via sub-reflector assembly with dielectric radiator portion
US9019164B2 (en) 2011-09-12 2015-04-28 Andrew Llc Low sidelobe reflector antenna with shield
US9105981B2 (en) 2012-04-17 2015-08-11 Commscope Technologies Llc Dielectric lens cone radiator sub-reflector assembly
US9698490B2 (en) 2012-04-17 2017-07-04 Commscope Technologies Llc Injection moldable cone radiator sub-reflector assembly
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211674B1 (en) * 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
CN110235337A (en) 2016-12-12 2019-09-13 艾诺格思公司 Selectively activate method of the antenna area of near field charging pad to maximize transmitted wireless power
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11075466B2 (en) 2017-08-22 2021-07-27 Commscope Technologies Llc Parabolic reflector antennas that support low side lobe radiation patterns
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
KR20210117283A (en) 2019-01-28 2021-09-28 에너저스 코포레이션 Systems and methods for a small antenna for wireless power transmission
CN113661660B (en) 2019-02-06 2023-01-24 艾诺格思公司 Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
WO2021055900A1 (en) 2019-09-20 2021-03-25 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corp Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11594822B2 (en) 2020-02-19 2023-02-28 Commscope Technologies Llc Parabolic reflector antennas with improved cylindrically-shaped shields
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230534A (en) * 1959-07-31 1966-01-18 Jr George W Luke Parabolic antenna with high speed spinner near focus for scanning
JPS5875904A (en) * 1981-10-30 1983-05-07 Nec Corp Conical beam scanning antenna
US4786912A (en) * 1986-07-07 1988-11-22 Unisys Corporation Antenna stabilization and enhancement by rotation of antenna feed
US4897151A (en) * 1988-07-27 1990-01-30 General Dynamics Corp., Pomona Division Method for fabricating a dichroic parabolic lens reflector
EP0507440A1 (en) * 1991-02-25 1992-10-07 Gerald Alexander Bayne Antenna
EP0918367A2 (en) * 1997-11-19 1999-05-26 RR ELEKTRONISCHE GERÄTE GmbH & Co. KG Tracking control system and method for alignment of a pivoting reflector antenna with a radiating source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028148B1 (en) * 1969-11-28 1975-09-12
FR2412961A1 (en) * 1977-12-22 1979-07-20 Thomson Csf CONICAL SCAN ANTENNA SYSTEM FOR TRACKING RADAR
US5327149A (en) * 1992-05-18 1994-07-05 Hughes Missile Systems Company R.F. transparent RF/UV-IR detector apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230534A (en) * 1959-07-31 1966-01-18 Jr George W Luke Parabolic antenna with high speed spinner near focus for scanning
JPS5875904A (en) * 1981-10-30 1983-05-07 Nec Corp Conical beam scanning antenna
US4786912A (en) * 1986-07-07 1988-11-22 Unisys Corporation Antenna stabilization and enhancement by rotation of antenna feed
US4897151A (en) * 1988-07-27 1990-01-30 General Dynamics Corp., Pomona Division Method for fabricating a dichroic parabolic lens reflector
EP0507440A1 (en) * 1991-02-25 1992-10-07 Gerald Alexander Bayne Antenna
EP0918367A2 (en) * 1997-11-19 1999-05-26 RR ELEKTRONISCHE GERÄTE GmbH & Co. KG Tracking control system and method for alignment of a pivoting reflector antenna with a radiating source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 170 (E-189), 27. Juli 1983 (1983-07-27) & JP 58 075904 A (NIPPON DENKI KK), 7. Mai 1983 (1983-05-07) *

Also Published As

Publication number Publication date
CA2325284A1 (en) 2001-05-02
DE19952819A1 (en) 2001-07-12
EP1098393A3 (en) 2002-06-05
US6456253B1 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
EP1098393A2 (en) Reflector antenna and method of fabricating a subreflector
DE2911167A1 (en) COMPOSITE TUBULAR DRIVE SHAFT REINFORCED WITH CARBON FIBERS AND METHOD FOR MANUFACTURING IT
EP1089059A2 (en) Angular encoder for a rotor, in particular a carwheel to be balanced
DE3922111A1 (en) COMPACT BLOWER FOR MOTOR VEHICLES
DE2610574C2 (en) Speed sensor
DE2312729A1 (en) ENCODER FOR THE ROTATION OF A SHAFT
DE102006024534A1 (en) Laser scanner has rotary head in which mirror is mounted, in section of housing which has triangular cross-section at right angles to its axis
DE1466912B2 (en) ULTRASONIC EXAMINATION DEVICE FOR MEDICAL DIAGNOSTICS
DE3035984A1 (en) OPTICAL TRANSDUCER FOR DETECTING THE ANGLE POSITION OF A TURNING ELEMENT WITH REGARD TO A FIXED CONSTRUCTION
DE2710755C2 (en) Signal reproducing device
DE102009038544A1 (en) Three-dimensional laser rangefinder sensor
DE3139328A1 (en) "DEVICE FOR HOLDING A PHOTOGRAPHIC TRANSPARENT IMAGE"
DE3900470A1 (en) DEVICE AND METHOD FOR AXIALING THE ROTOR OF AN ELECTRICAL MACHINE, AND IN PARTICULAR AN ELECTRIC MOTOR, AND AN ELECTRICAL MACHINE WED IN THIS WAY
EP1158175B1 (en) Canned motor with foil can
DE3133906A1 (en) Radiation reflector support structure and method of producing it
DE3332754C2 (en)
DE3438544A1 (en) Optical viewfinder
EP1750141B1 (en) Device for simulating a movable radar target
EP0179297A2 (en) Optical scanning system, especially for tracking heads in target-tracking flying objects
DE4116841A1 (en) Homo-kinetic linkage for vehicle rear axle - which has flange assembly incorporating rubber elements in annular gap
DE102017127387A1 (en) spindle motor
WO1993006510A1 (en) Light-beam deflecting device
DE2624115A1 (en) ROTATING MAGNETIC HEAD ASSEMBLY
DE2030215A1 (en) Device for tracking a moving target through a beam of light
DE3726148C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01Q 19/19 A, 7H 01Q 3/20 B, 7H 01Q 1/00 B, 7H 01Q 15/14 B

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17P Request for examination filed

Effective date: 20030219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030601