EP0972110B1 - Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit - Google Patents

Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit Download PDF

Info

Publication number
EP0972110B1
EP0972110B1 EP98921399A EP98921399A EP0972110B1 EP 0972110 B1 EP0972110 B1 EP 0972110B1 EP 98921399 A EP98921399 A EP 98921399A EP 98921399 A EP98921399 A EP 98921399A EP 0972110 B1 EP0972110 B1 EP 0972110B1
Authority
EP
European Patent Office
Prior art keywords
starch
cationic
weight
units
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98921399A
Other languages
English (en)
French (fr)
Other versions
EP0972110B2 (de
EP0972110A1 (de
Inventor
Rainer Dyllick-Brenzinger
Primoz Lorencak
Hubert Meixner
Peter Baumann
Ellen KRÜGER
Andreas Stange
Martin Rübenacker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7825332&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0972110(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP0972110A1 publication Critical patent/EP0972110A1/de
Application granted granted Critical
Publication of EP0972110B1 publication Critical patent/EP0972110B1/de
Publication of EP0972110B2 publication Critical patent/EP0972110B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/76Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
    • D21H23/765Addition of all compounds to the pulp

Definitions

  • the invention relates to a method for producing paper, Cardboard and cardboard with high dry strength by adding cationic, anionic and / or amphoteric starch as a dry strength agent for paper stock and dewatering of the paper stock with leaf formation.
  • aqueous slurries of native starches by heating be converted into a water-soluble form as a mass additive use in the manufacture of paper.
  • the retention of in Starch is dissolved in water to the paper fibers in the paper stock however slight.
  • An improvement in the retention of natural products of cellulose fibers in the manufacture of paper for example known from US-A-3 734 820. It contains graft copolymers described by grafting dextran, one in the naturally occurring polymer with a molecular weight from 20,000 to 50 million, with cationic monomers, e.g.
  • Diallyldimethylammonium chloride, mixtures of diallyldimethylammonium chloride and acrylamide or mixtures of acrylamide and basic methacrylates, such as dimethylaminoethyl methacrylate become.
  • the graft polymerization is preferably carried out in In the presence of a redox catalyst.
  • From US-A-4 097 427 is a process for cationization of starch, where you can cook the starch in one alkaline medium in the presence of water-soluble quaternary Performs ammonium polymers and an oxidizing agent.
  • quaternary ammonium polymers include also quaternized Diallyldialkylaminopolymerisate or quaternized polyethyleneimines into consideration.
  • the oxidizing agent used is, for example Ammonium persulfate, hydrogen peroxide, sodium hypochlorite, Ozone or tert-butyl hydroperoxide.
  • modified cationic starches are used as dry strength agents in the manufacture of paper the paper stock added.
  • the wastewater is very high COD (chemical oxygen demand) burdened.
  • From US-A-3 467 608 is a method for producing a cationic starch known as a slurry of Starch in water together with a polyalkyleneimine or polyalkylene polyamine with a molecular weight of at least 50,000 to a temperature of about 70 to about 0.5 to 5 hours Heated to 110 ° C.
  • the mixture contains 0.5 to 40 wt .-% polyalkyleneimine or polyalkylene polyamine and 99.5 to 60% by weight starch.
  • the modified potato starch can be in one Mixture of methanol and diethyl ether can be precipitated.
  • Polyethyleneimine or polyalkylene polyamines are used as flocculants used.
  • a process is known from US-A-4 880 497 and US-A-4 978 427 for the production of paper with high dry and wet strength known, either on the surface of the paper or a hydrolyzed to the paper stock before sheet formation
  • copolymer as a solidifying agent by copolymerization of N-vinylformamide and ethylenically unsaturated Monomers such as vinyl acetate, vinyl propionate or Alkyl vinyl ether and hydrolyzing from 30 to 100 mol% of the Formyl groups of the copolymer with formation of amino groups is available.
  • the hydrolyzed copolymers are in quantities from 0.1 to 5% by weight, based on dry fibers.
  • DE-A-4 127 733 describes hydrolyzed graft polymers of Natural products containing N-vinylformamide and saccharide structures known to apply as a dry and wet strength agent Find. Hydrolysis of the graft polymers under acidic conditions However, the polysaccharides have a strong molecular weight reduction result.
  • WO-A-96/13525 describes a method for cationic modification of starch by reacting starch with polymers that Amino and / or ammonium groups contain in an aqueous medium Temperatures 115 to 180 ° C known under increased pressure, wherein a maximum of 10% by weight of the starch used can be broken down.
  • the invention is therefore based on the object of a method for Manufacture of paper, cardboard and cardboard with high dry strength to provide, with increased retention of starch in paper and therefore lower COD values in paper machine waste water reached and also compared to the stand the technology an acceleration of the drainage speed is achieved.
  • wood pulp includes thermomechanical substance (TMP), chemothermomechanical substance (CTMP), pressure cut, semi-pulp, high-yield pulp and Refiner Mechanical Pulp (RMP).
  • TMP thermomechanical substance
  • CMP chemothermomechanical substance
  • RMP Refiner Mechanical Pulp
  • pulp come for example Sulphate, sulphite and sodium pulp into consideration.
  • suitable Annual plants for the production of paper materials are, for example Rice, wheat, sugar cane and kenaf.
  • Waste paper also includes so-called deleted committee, due to the content of binder for coating and printing inks gives rise to the white pitch.
  • the so-called stickies give rise to stickies and envelopes derived from glue and adhesives from the back sizing of books and so-called hotmelts.
  • the fiber materials mentioned can be used alone or as a mixture with one another be used.
  • the pulps of the above Art contain varying amounts of water-soluble and water-insoluble Impurities.
  • the contaminants can, for example with the help of the COD value or also with the help of the so-called cationic needs are recorded quantitatively.
  • Under cationic The quantity of a cationic is required Polymers understood that is necessary to a defined amount to bring the white water to the isoelectric point.
  • Cationic, anionic and amphoteric starches are known and available in the stores.
  • cationic strengths by implementing native strengths with quaternizing agents such as 2,3- (epoxypropyl) trimethylammonium chloride.
  • Strength and starch derivatives are described in detail, for example in the book by Günther Tegge, starch and starch derivatives, Behr's Verlag, Hamburg 1984.
  • Starches are particularly preferred as dry strength agents used by the implementation of native, cationic, anionic and / or amphoteric starch with synthetic cationic Polymers are available.
  • Rye flour and others come as a starch Flour into consideration.
  • Proteins containing proteins are also suitable Starches from rye, wheat and legumes.
  • native Starches that have an amylopectin content of at least 95% by weight.
  • Amylopectin of at least 99% by weight.
  • Such strengths can for example by starch fractionation of common native starches or obtained from plants through breeding measures, which produce practically pure amylopectin starch.
  • Strengthen with an amylopectin content of at least 95, preferably at least 99% by weight is available on the market. you will be for example as waxy corn starch, wax potato starch or Waxy wheat starch offered.
  • the native strengths can either modified alone or in a mixture with cationic polymers become.
  • Modifying native strengths as well as cationic, anionic and / amphoteric starch with synthetic cationic Polymers are made according to known methods by heating Starches in an aqueous medium in the presence of cationic polymers to temperatures above the gelatinization temperature of the Strengthen. Methods of this type are, for example, from the References cited in the prior art EP-B-0 282 761 and WO-A-96/13525.
  • cationic modification of the Above mentioned strengths come in all synthetic polymers Consider that contain amino and / or ammonium groups. This Compounds are referred to below as cationic polymers designated.
  • Suitable cationic polymers are, for example, homo- and copolymers containing vinylamine units.
  • Polymers of this type are obtained by known processes by polymerizing N-vinylcarboxamides of the formula in which R and R 1 are the same or different and are H or C 1 - to C 6 -alkyl, alone or in the presence of other monomers copolymerizable therewith and hydrolysis of the resulting polymers with acids or bases with elimination of the grouping and to form units of the formula in which R has the meaning given in formula (I).
  • comonomers 2 are unsaturated amides such as for example acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms such as N-methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide, N-ethyl acrylamide, N-propylacrylamide and tert-butyl acrylamide as well basic (meth) acrylamides, e.g.
  • dimethylaminoethyl Dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, Diethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, Diethylaminopropylacrylamide, dimethylaminopropylmethacrylamide and Diethylaminopropylmethacrylamide.
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole as well as substituted N-vinylimidazoles such as e.g. N-vinyl-2-methylimidazole, N-vinyl-4-methylimidazole, N-vinyl-5-methylimidazole, N-vinyl-2-ethylimidazole, and N-vinylimidazolines such as e.g. vinylimidazoline, N-vinyl-2-methylimidazoline, and N-vinyl-2-ethylimidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are excluded in the form of the free bases also with mineral acids or organic Acids neutralized or used in quaternized form, the quaternization preferably using dimethyl sulfate, Diethyl sulfate, methyl chloride or benzyl chloride is made.
  • the comonomers 2) contain sulfo groups Monomers such as vinylsulfonic acid, allylsulfonic acid, Methallylsulfonic acid, styrene sulfonic acid or 3-sulfopropyl acrylate in question.
  • the copolymers include terpolymers and those polymers that additionally contain at least one further monomer in copolymerized form.
  • copolymers which contain vinyl esters in copolymerized form
  • Polymerized acrylonitrile is also used the hydrolysis is chemically altered, e.g. Amide, cyclic Amidine and / or carboxyl groups are formed.
  • the hydrolyzed Poly-N-vinylformamides can optionally contain up to 20 mol% Contain amidine structures by reaction of formic acid with two adjacent amino groups in polyvinylamine or through Reaction of a formamide group with an adjacent amino group arise.
  • Ethyleneimine units also come as cationic polymers polymerized-containing compounds into consideration.
  • these are polyethyleneimines, which by polymerize ethyleneimine in the presence of acidic catalysts such as ammonium bisulfate, hydrochloric acid or chlorinated Hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • acidic catalysts such as ammonium bisulfate, hydrochloric acid or chlorinated Hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • Such polyethyleneimines have, for example, in 50 wt .-% aqueous Solution a viscosity of 500 to 33,000, preferably 1,000 up to 31,000 mPa ⁇ s (measured according to Brookfield at 20 ° C and 20 RPM).
  • the polymers in this group also include those grafted with ethyleneimine Polyamidoamines, which may still be by reaction can be crosslinked with an at least bifunctional crosslinker.
  • Products of this type are, for example, condensed a dicarboxylic acid such as adipic acid with a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine, if appropriate Grafting with ethyleneimine and reacting with at least one bifunctional crosslinker, e.g. Bischlorohydrin ether of polyalkylene glycols manufactured, cf. US-A-4 144 123 and US-A-3 642 572.
  • bifunctional crosslinker e.g. Bischlorohydrin ether of polyalkylene glycols manufactured, cf. US-A-4 144 123 and US-A-3 642 572.
  • Starch modification also includes poly-diallyldimethylammonium chlorides into consideration.
  • Polymers of this type are known.
  • polymers of diallyldimethylammonium chloride should primarily homopolymers and copolymers with Acrylamide and / or methacrylamide can be understood.
  • the copolymerization can be made in any monomer ratio become.
  • the K value of the homo- and copolymers of Diallyldimethylammonium chloride is at least 30, preferably 95 to 180.
  • the substituent X- in the formulas (IV) and (V) can in principle be any acid residue of an inorganic and an organic acid.
  • the monomers of formula (IV) are obtained by neutralizing the free bases, ie 1-vinyl-2-imidazolines, with the equivalent amount of an acid.
  • the vinylimidazolines can also be neutralized, for example, with trichloroacetic acid, benzenesulfonic acid or toluenesulfonic acid.
  • quaternized 1-vinyl-2-imidazolines can also be used.
  • quaternizing agents are C 1 -C 18 -alkyl chlorides or bromides, benzyl chloride or bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate. Epichlorohydrin, benzyl chloride, dimethyl sulfate and methyl chloride are preferably used.
  • the Compounds of the formulas (IV) or (V) preferably in aqueous Medium polymerizes.
  • Copolymers also come as cationic polymers from 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylates and / or methacrylates in Question, e.g. Copolymers of acrylamide and N, N-dimethylaminoethyl acrylate or N, N-diethylaminoethyl acrylate.
  • Basic acrylates are preferably in neutralized with acids or in quaternized Form before. Quaternization can, for example with methyl chloride or with dimethyl sulfate.
  • the cationic Polymers have K values of 30 to 300, preferably 100 to 180 (determined according to H. Fikentscher in 5% aqueous Saline at 25 ° C and a polymer concentration of 0.5% by weight). At pH 4.5 they have a charge density of at least 4 meq / g polyelectrolyte.
  • Copolymers of 1 to 99 mol% are also suitable, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkylacrylamide and / or methacrylamide.
  • the basic acrylamides and methacrylamides are also preferably in neutralized with acids or in quaternized form.
  • N-trimethylammonium ethyl acrylamide chloride N-trimethylammonium ethyl methacrylamide chloride, Trimethylammoniumethylacrylamidmethosulfat, Trimethylammonium ethyl methacrylamide methosulfate, N-ethyldimethylammonium ethyl acrylamide ethosulfate, N-Ethyldimethylammoniumethylmethacrylamidethosulfat, Trimethylammoniumpropylacrylamidchlorid, Trimethylammonium propyl methacrylamide chloride, trimethylammonium propyl acrylamide methosulfate, Trimethylammoniumpropylmethacrylamidmethosulfat and N-ethyldimethylammonium propylacrylamide ethosulfate. Trimethylammonium propyl methacrylamide chloride is preferred.
  • Polyallylamines are also suitable as cationic polymers. Polymers of this type are obtained by homopolymerization of allylamine, preferably in acid neutralized or in quaternized form or by copolymerizing allylamine with other monoethylenically unsaturated monomers, accordingly of the copolymers described above with N-vinylcarboxamides.
  • aqueous starch slurries contain per 100 parts by weight of water 0.1 to 10, preferably 2 to 6 parts by weight of starch. For example, 100 parts by weight of starch is used.
  • cationic polymer 0.5 up to 10 parts by weight of at least one cationic polymer.
  • cationic polymers partially hydrolyzed homo- or copolymers of N-vinylformamide, Polyethyleneimines, grafted with ethyleneimine and crosslinked polyamidoamines and / or polydiallyldimethylammonium chlorides into consideration.
  • the starch When heating the aqueous starch suspensions in the presence of The starch is first digested by cationic polymers.
  • Starch is the transfer of the fixed Starch grains in a water-soluble form, with superstructures (Helix formation, intramolecular hydrogen bonds, etc.) canceled be without the degradation of those who build strength Amylose and / or amylopectin units to oligosaccharides or Glucose is coming.
  • the aqueous starch suspensions, which are cationic Contain polymer dissolved, are in the implementation Temperatures above the gelatinization temperature of the starches heated.
  • the one used At least 90, preferably> 95% by weight of starch digested and modified with the cationic polymer. The strength is clearly resolved.
  • the reaction is preferably carried out at elevated pressure. in this connection it is usually the pressure that the reaction medium in the temperature range above the boiling point of water, e.g. developed at 115 to 180 ° C. For example, it lies at 1 to 10, preferably 1.2 to 7.9 bar.
  • the reaction mixture is subjected to shear. If one If the reaction is carried out in a stirred autoclave, this is stirred Reaction mixture, for example with 100 to 2,000, preferably 200 to 1,000 revolutions / minute.
  • the reaction can be practical be carried out in all equipment in which starch in open to technology, e.g. in a jet cooker.
  • the Residence times of the reaction mixture at the above temperatures from 115 to 180 ° C, for example, 0.1 seconds to 1 hour and is preferably in the range of 0.5 seconds up to 30 minutes.
  • At least 90% of the used Strength open-minded and modified Preferably be less than 5% by weight of the starch is broken down.
  • the native starch types can also be pretreated e.g. degraded oxidatively, hydrolytically or enzymatically or be chemically modified.
  • Wax starches such as waxy potato starch and waxy corn starch from of special interest.
  • the reaction products obtainable in this way have, for example a viscosity at a solids concentration of 3.5% by weight from 50 to 10,000, preferably 80 to 4,000 mPa ⁇ s, measured in a Brookfield viscometer at 20 rpm and one Temperature of 20 ° C.
  • the pH of the reaction mixtures is for example in the range of 2.0 to 9.0, preferably 2.5 to 8.
  • the so available modified with cationic polymers Starches are used as dry strength agents in paper pulp Amounts of, for example, 0.5 to 10, preferably 0.5 to 3.5 and particularly preferably 1.2 to 2.5% by weight, based on dry Paper stock, added.
  • a cationic polymer as a retention agent for the strengths described above, such as cationic Starch, preferably those starches modified with a polymer were, anionic and / or amphoteric starches.
  • Dosage of dry strength agents and retention aids to the paper can be produced, for example, by this be that the retention agent of the digested starch after cooling to 50 ° C or below.
  • the retention aid can also before adding the modified starch Paper stock can be added. From this order of addition is done, for example, when processing paper stock Use that have a high content of contaminants.
  • Condensates of dimethylamine and epichlorohydrin are also suitable, Condensates of dimethylamine and dichloroalkanes such as Dichloroethane or dichloropropane and condensation products Dichloroethane and ammonia.
  • the process uses a cationic starch in combination with cationic polymers containing vinylamine units and the K values of at least 30 (determined according to H. Fikentscher in aqueous solution at a polymer concentration of 0.5% by weight, a temperature of 25 ° C and a pH of 7).
  • a cationic is preferably used as the dry strength agent Strength that is available through implementation of 100 parts by weight of a native, cationic, anionic and / or amphoteric starch with 0.5 to 10 parts by weight of a vinylamine unit containing polymers with a K value of 60 to 150 at temperatures above the gelatinization temperature of the Strength.
  • Polymers containing vinylamine units are e.g. hydrolyzed homo- and copolymers of N-vinylformamide with a degree of hydrolysis of at least 60% is preferably used. These homopolymers and copolymers are not only used for cationization of starch but also the paper stock as a retention agent added for the cationically modified starches.
  • Those considered as retention agents for starch hydrolyzed homo- and copolymers of N-vinylformamide can generally have a degree of hydrolysis of 1 to 100%.
  • Starches to be used in dry strength agents are given in Amounts of 0.5 to 10, preferably 1 to 5 wt .-%, based on dry paper stock used.
  • the drainage of the paper stock according to the invention always takes place at least in the presence a retention aid for starch, the retention aid in Quantities of 0.01 to 0.3 wt .-%, based on dry paper stock be used. This gives you compared to the known Process significantly improved retention of starch and an increase in the rate of drainage of the paper stock on the paper machine.
  • microparticle systems can also be used as retention agents for starch use, with the paper stock a high molecular weight cationic synthetic polymer adds to the formed Macro flakes cut up by shearing the paper stock and then adds bentonite.
  • This method is for example known from EP-A-0 335 575.
  • a microparticle system can be used, for example, as cationic polymers Mixture of a polymer containing vinylamine units, e.g. Polyvinylamine and a cationic polyacrylamide, e.g. a copolymer of acrylamide and dimethylaminoethyl acrylate methochloride insert and add bentonite after the shear step.
  • cationic polymers as Retention agents for starches are mixtures of vinylamine units containing polymers and grafted with ethyleneimine cross-linked polyamidoamines and mixtures of vinylamine units containing polymers with polydiallyldimethylammonium chlorides.
  • the percentages mean weight percent in the examples.
  • the K values were calculated according to H. Fikentscher, Cellulose-Chemie, Volume 13, 58 to 64 and 71 to 74 (1932) at a temperature of 25 ° C in aqueous solution at a Polymer concentration of 0.5 wt .-% determined.
  • a paper stock with a stock density of 7.6 g / l was prepared from an open, ready-made commercially available shaft raw material based on waste paper.
  • the pH of the paper stock was 8.0.
  • samples were taken of this Paper pulp each have the amounts of hardener given in Table 1 1 and the polymers 1-4 added in succession. After this Mixing the paper stock with the additives was suction filtered and the starch content from the extinction measurement of the starch-iodine complex certainly. The results obtained are in Table 1 given. Another part of the pulp was after dosing of solidifier 1 and those in Table 1 specified polymers using a Schopper-Riegler device dewatered. The drainage time was determined according to DIN ISO 5267 for 700 ml filtrate. The results are shown in Table 1.
  • Example 1 was repeated with the exception that only pulping agent 1 was added to the paper stock in an amount of 2%, based on dry paper stock.
  • the starch content of the filtrate and the drainage time are given in Table 1.
  • Addition to paper stock, based on dry paper stock Starch content in the filtrate [Mg / l] drainage time [sec / 700 ml] 1 2% hardener 1 + 0.08% polymer 1 38 92 2 2% hardener 1 + 0.08% polymer 2 34 49 3 2% hardener 1 + 0.08% polymer 3 30 55 4 2% hardener 1 + 0.08% polymer 4 30 67
  • Waste paper base with a consistency of 0.76% was initially with 2% hardener 1 and then with 0.08% polymer 3 as Retention agent for cationic starch added. After offer The pulp of the strengthener and polymer was mixed together. Part of this paper stock was sucked off. From the The COD value and the starch retention by enzymatic became filtrate Degradation to glucose determined by HPLC. From the other Part of the paper stock was determined using a Schopper-Riegler device the drainage time for 500 ml of filtrate. The Results are shown in Table 2.
  • Example 5 was repeated with the changes shown in Table 2. The results are shown in Table 2.
  • example Addition to paper stock, based on dry paper stock COD [mgO 2 / l] strength retention (enzymatic method) drainage time [sec / 500 ml] 5 2% hardener 2 + 0.08% polymer 3 134 93 20 Comparative example 2 2% hardener 1 313 43 72 3 2% commercial cationic starch DS 0.035 162 92 78 4 - 135 68
  • a whipped finished commercial wave raw material based on waste paper with a substance concentration of 0.76% was successively mixed with 2% hardener 2 and 0.08% polymer 3.
  • paper sheets with a basis weight of 120 g per m 2 are produced on a Rapid-Köthen sheet former.
  • the sheets were tested for their dry strength, namely the dry tear length according to DIN ISO 1924, dry burst pressure according to DIN ISO 2758 and flat crush resistance CMT according to DIN EN 23035 equal to ISO 3035. The results are shown in Table 3.
  • Example 6 was repeated with the changes shown in Table 3, working in the absence of Polymer 3 (Comparative Example 5).
  • commercially available cationic starch was used (comparative example 6) and the zero value was determined (comparative example 7).
  • the results are shown in Table 3.
  • modified PEI with a charge density of 14.7 at pH 4.5 and 10.8 at pH 7 and an average molecular weight of approximately 700,000 D.
  • a paper dye based on waste paper with a COD value of 8000 mg oxygen / l and a substance concentration of 1% was successively mixed with 2% hardener 1, with 0.245% polymer 6 and 0.02% polymer 7.
  • paper sheets with a basis weight of approx. 110 g / m 2 are produced on the Rapid-Köthen sheet former.
  • the leaves were tested for their dry strength, namely the strip crush resistance (SCT) value according to DIN 54518 (ISO 9895), dry burst pressure according to DIN ISO 2758 and flat crush resistance CMT according to DIN EN 23035 (ISO 3035). The results are shown in Table 4.
  • SCT strip crush resistance
  • a waste paper-based paper stock with a COD value of 8000 mg oxygen / l and a substance concentration of 1% was mixed in succession with 2% hardener 1, 0.12% polymer 2 and 0.02% polymer 7. After mixing, paper sheets with a basis weight of approx. 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for their dry strength using the methods given in Example 7. The results are shown in Table 4.
  • a paper material based on waste paper with a COD value of 8000 mg oxygen / l and a substance concentration of 1% was mixed with 2% hardener 1, 0.13% polymer 4 and 0.02% polymer 7 in succession. After mixing, paper sheets with a basis weight of approx. 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for their dry strength using the methods given in Example 7. The results are shown in Table 4.
  • a paper material based on waste paper with a COD value of 8000 mg oxygen / l and a substance concentration of 1% was successively mixed with 2% hardener 1 and 0.02% polymer 7. After mixing, paper sheets with a basis weight of approx. 110 g / m 2 are produced on the Rapid-Köthen sheet former. The leaves were tested for their dry strength using the methods given in Example 7. The results are shown in Table 4.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von kationischer, anionischer und/oder amphoterer Stärke als Trockenfestigkeitsmittel zum Papierstoff und Entwässern des Papierstoffs unter Blattbildung.
Zur Erhöhung der Trockenfestigkeit von Papier, ist z.B. aus Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Verlag Chemie, Weinheim - New York, 1979, Band 17, Seite 581, bekannt, wäßrige Anschlämmungen von nativen Stärken, die durch Erhitzen in eine wasserlösliche Form überführt werden, als Massezusatz bei der Herstellung von Papier zu verwenden. Die Retention der in Wasser gelösten Stärken an die Papierfasern im Papierstoff ist jedoch gering. Eine Verbesserung der Retention von Naturprodukten an Cellulosefasern bei der Herstellung von Papier ist beispielsweise aus der US-A-3 734 820 bekannt. Darin werden Pfropfcopolymerisate beschrieben, die durch Pfropfen von Dextran, einem in der Natur vorkommenden Polymerisat mit einem Molekulargewicht von 20.000 bis 50 Millionen, mit kationischen Monomeren, z.B. Diallyldimethylammoniumchlorid, Mischungen aus Diallyldimethylammoniumchlorid und Acrylamid oder Mischungen aus Acrylamid und basischen Methacrylaten, wie Dimethylaminoethylmethacrylat, hergestellt werden. Die Pfropfpolymerisation wird vorzugsweise in Gegenwart eines Redoxkatalysators durchgeführt.
Aus der US-A-4 097 427 ist ein Verfahren zur Kationisierung von Stärke bekannt, bei dem man die Stärkekochung in einem alkalischen Medium in Gegenwart von wasserlöslichen quaternären Ammoniumpolymerisaten und eines Oxidationsmittels durchführt. Als quaternäre Ammoniumpolymerisate kommen u.a. auch quaternisierte Diallyldialkylaminopolymerisate oder quaternisierte Polyethylenimine in Betracht. Als Oxidationsmittel verwendet man beispielsweise Ammoniumpersulfat, Wasserstoffperoxid, Natriumhypochlorit, Ozon oder tert.-Butylhydroperoxid. Die auf diese Weise herstellbaren modifizierten kationischen Stärken werden als Trockenverfestigungsmittel bei der Herstellung von Papier dem Papierstoff zugegeben. Jedoch wird das Abwasser durch einen sehr hohen CSB-Wert (chemischer Sauerstoff-Bedarf) belastet.
Aus der US-A-4 146 515 ist ein Verfahren zur Herstellung von kationischer Stärke bekannt, die für Oberflächenleimung und Beschichtung von Papier- und Papierprodukten verwendet wird. Gemäß diesem Verfahren wird eine wäßrige Anschlämmung von oxidierter Stärke zusammen mit einem kationischen Polymeren in einem kontinuierlichen Kocher aufgeschlossen. Als kationische Polymere kommen Kondensate aus Epichlorhydrin und Dimethylamin, Polymerisate von Diallyldimethylammoniumchlorid, quaternisierte Reaktionsprodukte von Ethylenchlorid und Ammoniak sowie quaternisiertes Polyethylenimin in Betracht.
Aus der US-A-3 467 608 ist ein Verfahren zur Herstellung einer kationischen Stärke bekannt, bei dem man eine Aufschlämmung von Stärke in Wasser zusammen mit einem Polyalkylenimin oder Polyalkylenpolyamin mit einem Molekulargewicht von mindestens 50.000 etwa 0,5 bis 5 Stunden lang auf eine Temperatur von etwa 70 bis 110°C erhitzt. Die Mischung enthält 0,5 bis 40 Gew.-% Polyalkylenimin oder Polyalkylenpolyamin und 99,5 bis 60 Gew.-% Stärke. Gemäß Beispiel 1 wird ein Polyethylenimin mit einem durchschnittlichen Molekulargewicht von etwa 200.000 in verdünnter wäßriger Lösung mit Kartoffelstärke 2 Stunden lang auf eine Temperatur von 90°C erhitzt. Die modifizierte Kartoffelstärke kann in einer Mischung aus Methanol und Diethylether ausgefällt werden. Die in der US-A-3 467 608 beschriebenen Reaktionsprodukte aus Stärke und Polyethylenimin bzw. Polyalkylenpolyaminen werden als Flockungsmittel verwendet.
Aus der EP-A-0 282 761 und der DE-A-3 719 480 sind Herstellungsverfahren für Papier, Pappe und Karton mit hoher Trockenfestigkeit bekannt. Bei diesem Verfahren werden als Trockenverfestiger Umsetzungsprodukte eingesetzt, die durch Erhitzen von nativer Kartoffelstärke mit kationischen Polymeren wie Vinylamin-, N-Vinylimidazolin- oder Diallyldimethylammonium-Einheiten enthaltenden Polymeren bzw. Polyethylenimine in wäßrigem Medium auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali erhältlich sind.
Aus der EP-B-0 301 372 ist ein ebensolcher Prozeß bekannt, bei dem entsprechend modifizierte, enzymatisch abgebaute Stärken zum Einsatz kommen. Unter den dort angegebenen Aufschlußbedingungen für native Stärke wird neben einem unvollständigen Aufschluß (spektroskopische Untersuchungen zeigen ungelöste, teilweise nur angequollene Stärkekörner) auch eine größere Menge an Abbauprodukten (Abbauraten > 10 %) gefunden.
Aus der US-A-4 880 497 und der US-A-4 978 427 ist ein Verfahren zur Herstellung von Papier mit hoher Trocken- und Naßfestigkeit bekannt, bei dem man entweder auf die Oberfläche des Papiers oder zum Papierstoff vor der Blattbildung ein hydrolysiertes Copolymerisat als Verfestigungsmittel zusetzt, das durch Copolymerisieren von N-Vinylformamid und ethylenisch ungesättigten Monomeren, wie beispielsweise Vinylacetat, Vinylpropionat oder Alkylvinylether und Hydrolysieren von 30 bis 100 mol-% der Formylgruppen des Copolymerisats unter Bildung von Aminogruppen erhältlich ist. Die hydrolysierten Copolymeren werden in Mengen von 0,1 bis 5 Gew.-%, bezogen auf trockene Fasern, eingesetzt.
Aus der DE-A-4 127 733 sind hydrolysierte Pfropfpolymerisate von N-Vinylformamid und Saccharidstrukturen enthaltenden Naturstoffen bekannt, die als Trocken- und Naßverfestigungsmittel Anwendung finden. Die Hydrolyse der Pfropfpolymeren unter sauren Bedingungen hat jedoch einen starken Molekulargewichtsabbau der Polysaccharide zur Folge.
Aus der WO-A-96/13525 ist ein Verfahren zur kationischen Modifizierung von Stärke durch Umsetzung von Stärke mit Polymeren, die Amino- und/oder Ammoniumgruppen enthalten in wäßrigem Medium bei Temperaturen 115 bis 180°C unter erhöhtem Druck bekannt, wobei höchstens 10 Gew.-% der eingesetzten Stärke abgebaut werden.
H.R. Hernandez beschreibt in EUCEPA 24th Cont.Proc.Pap.Technol., May 1990, Seiten 186 - 195 die Verwendung von kationischer oder amphoterer Stärke zusammen mit kationischen oder anionischen Retentionsmitteln bei der Herstellung von Papier. In einem Papiermaschinenversuch erfolgt die Papierherstellung im alkalischen pH-Bereich mit Alkenylbernsteinsäureanhydrid, Alaun, amphoterer Wachsmaisstärke und einem anionischen Retentionsmittel.
Wenn man zum Papierstoff eine kationisch modifizierte Stärke als Trockenverfestigungsmittel zusetzt, tritt eine unerwünschte Erniedrigung der Entwässerungsgeschwindigkeit des Papierstoffs ein. Gleichzeitig beobachtet man einen Anstieg des CSB-Werts im Abwasser der Papiermaschine. Dieser Anstieg des CSB-Werts tritt vor allem bei stark salzhaltigen Papiermaschinenabwässern ein.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit zur Verfügung zu stellen, wobei man eine erhöhte Retention von Stärke im Papier und somit geringere CSB-Werte im Papiermaschinenabwasser erreicht und wobei außerdem gegenüber dem Stand der Technik eine Beschleunigung der Entwässerungsgeschwindigkeit erzielt wird.
Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von kationischer, anionischer und/oder amphoterer Stärke als Trockenfestgkeitsmittel zum Papierstoff und Entwässern des Papierstoffs in Gegenwart von Retentionsmitteln unter Blattbildung, wenn man für Stärke mindestens ein kationisches Polymer aus der Gruppe der
  • Vinylamineinheiten enthaltende Polymere
  • Polyethylenimine
  • vernetzte Polyamidoamine
  • mit Ethylenimin gepfropfte und vernetzte Polyamidoamine
  • Polydiallyldimethylammoniumchloride
  • N-Vinylimidazolineinheiten enthaltende Polymere
  • Dialkylaminoalkylacrylat- oder Dialkylaminoalkylmethacrylat enthaltende Polymere
  • Dialkylaminoalkylacrylamid-Einheiten oder Dialkylaminoalkylmethacrylamid-Einheiten enthaltende Polymere und
  • Polyallylamine
einsetzt.
Gegenstand der Erfindung ist außerdem die Verwendung von kationischen polymeren Retentionsmitteln aus der Gruppe der
  • Vinylamineinheiten enthaltenden Polymere
  • Polyethylenimine
  • vernetzten Polyamidoamine
  • mit Ethylenimin gepfropften und vernetzten Polyamidoamine
  • Polydiallyldimethylammoniumchloride
  • N-Vinylimidazolineinheiten enthaltenden Polymere
  • Dialkylaminoalkylacrylat- oder Dialkylaminoalkylmethacrylat enthaltende Polymere
  • Dialkylaminoalkylacrylamid-Einheiten oder Dialkylaminoalkylmethacrylamid-Einheiten enthaltenden Polymere und
  • Polyallylamine
zur Erhöhung der Retention von Trockenfestigkeitsmitteln aus kationischer, anionischer und/oder amphoterer Stärke bei der Herstellung von Papier, Pappe und Karton. Besonders bevorzugt ist die Verwendung von hydrolysierten Homo- oder Copolymerisaten von N-Vinylformamid mit einem Hydrolysegrad von 1 bis 100 % und einem K-Wert von mindestens 30 (bestimmt nach H. Fikentscher in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7) in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockenen Papierstoff, als Retentionsmittel für kationische, anionische und/oder amphotere Stärke.
Als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemothermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP). Als Zellstoffe kommen beispielsweise Sulfat-, Sulfit und Natronzellstoffe in Betracht. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf. Zur Herstellung der Pulpen wird auch Altpapier allein oder in Mischung mit anderen Fasern verwendet. Zu Altpapier gehört auch sogenannter gestrichener Ausschuß, der aufgrund des Gehalts an Bindemittel für Streich- und Druckfarben Anlaß für den White Pitch gibt. Anlaß zur Bildung von sogenannten Stickies geben die aus Haftetiketten und Briefumschlägen stammenden Kleber sowie Klebstoffe aus der Rückenleimung von Büchern sowie sogenannte Hotmelts.
Die genannten Faserstoffe können allein oder in Mischung untereinander verwendet werden. Die Pulpen der obenbeschriebenen Art enthalten wechselnde Mengen an wasserlöslichen und wasserunlöslichen Störstoffen. Die Störstoffe können beispielsweise mit Hilfe des CSB-Wertes oder auch mit Hilfe des sogenannten kationischen Bedarfs quantitativ erfaßt werden. Unter kationischem Bedarf wird dabei diejenige Menge eines kationischen Polymeren verstanden, die notwendig ist, um eine definierte Menge des Siebwassers zum isoelektrischen Punkt zu bringen. Da der kationische Bedarf sehr stark von der Zusammensetzung des jeweils für die Bestimmung verwendeten kationischen Polymeren abhängt, verwendet man zur Standardisierung ein gemäß Beispiel 3 der DE-B-2 434 816 erhaltenes Kondensationsprodukt, das durch Pfropfen eines Polyamidoamins aus Adipinsäure und Diethylentriamin mit Ethylenimin und anschließender Vernetzung mit einem Polyethylenglykoldichlorhydrinether erhältlich ist. Die Störstoffe enthaltenden Pulpen haben beispielsweise CSB-Werte von 300 bis 40 000, vorzugsweise 1 000 bis 30 000 mg Sauerstoff pro kg der wässrigen Phase und einen kationischen Bedarf von mehr als 50 mg des genannten kationischen Polymeren pro Liter Siebwasser.
Kationische, anionische und amphotere Stärken sind bekannt und im Handel erhältlich. Kationische Stärken werden beispielsweise durch Umsetzung von nativen Stärken mit Quaternisierungsmitteln wie 2,3-(Epoxypropyl)trimethylammoniumchlorid hergestellt. Stärke und Stärkederivate werden beispielsweise ausführlich beschrieben in dem Buch von Günther Tegge, Stärke und Stärkederivate, Behr's-Verlag, Hamburg 1984.
Besonders bevorzugt werden als Trockenverfestigungsmittel Stärken eingesetzt, die durch Umsetzung von nativer, kationischer, anionischer und/oder amphoterer Stärke mit synthetischen kationischen Polymeren erhältlich sind. Als native Stärken kann man beispielsweise Maisstärke, Kartoffelstärke, Weizenstärke, Reisstärke, Tapiokastärke, Sagostärke, Sorghumstärke, Maniokstärke, Erbsenstärke, Roggenstärke oder Mischungen der genannten nativen Stärken einsetzen. Als Stärke kommt auch Roggenmehl sowie andere Mehle in Betracht. Außerdem eignen sich Proteine enthaltende Stärken aus Roggen, Weizen und Hülsenfrüchten. Für die kätionische Modifizierung mit Polymeren kommen auch solche nativen Stärken in Betracht, die einen Amylopektingehalt von mindestens 95 Gew.-% haben. Bevorzugt sind Stärken mit einem Gehalt an Amylopektin von mindestens 99 Gew.-%. Solche Stärken können beispielsweise durch Stärkefraktionierung üblicher nativer Stärken oder durch Züchtungsmaßnahmen aus Pflanzen gewonnen werden, die praktisch reine Amylopektinstärke produzieren. Stärken mit einem Amylopektingehalt von mindestens 95, vorzugsweise mindestens 99 Gew.-% sind auf dem Markt erhältlich. Sie werden beispielsweise als Wachsmaisstärke, Wachskartoffelstärke oder Wachsweizenstärke angeboten. Die nativen Stärken können entweder allein oder auch in Mischung mit kationischen Polymeren modifiziert werden.
Die Modifizierung der nativen Stärken sowie von kationischer, anionischer und/amphoterer Stärke mit synthetischen kationischen Polymeren erfolgt nach bekannten Verfahren durch Erhitzen von Stärken in wäßrigem Medium in Gegenwart von kationischen Polymeren auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärken. Verfahren dieser Art sind beispielsweise aus den zum Stand der Technik genannten Literaturstellen EP-B-0 282 761 und der WO-A-96/13525 bekannt. Zur kationischen Modifizierung der oben genannten Stärken kommen alle synthetischen Polymeren in Betracht, die Amino- und/oder Amomniumgruppen enthalten. Diese Verbindungen werden im folgenden als kationische Polymere bezeichnet.
Als kationische Polymerisate eignen sich beispielsweise Vinylamineinheiten enthaltende Homo- und Copolymerisate. Polymerisate dieser Art werden nach bekannten Verfahren durch Polymerisieren von N-Vinylcarbonsäureamiden der Formel
Figure 00090001
in der R und R1 gleich oder verschieden sind und H oder C1- bis C6-Alkyl bedeuten, allein oder in Gegenwart von anderen damit copolymerisierbaren Monomeren und Hydrolyse der entstehenden Polymerisate mit Säuren oder Basen unter Abspaltung der Gruppierung
Figure 00090002
und unter Bildung von Einheiten der Formel
Figure 00090003
in der R die in Formel (I) angegebene Bedeutung hat, hergestellt.
Geeignete Monomere der Formel (I) sind beispielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinyl-N-ethylformamid, N-Vinyl-N-propylformamid, N-Vinyl-N-isopropylformamid, N-Vinyl-N-butylformamid, N-Vinyl-N-sek.butylformamid, N-Vinyl-N-tert.butylformamid, N-Vinyl-N-pentylformamid, N-Vinylacetamid, N-Vinyl-N-ethylacetamid und N-Vinyl-N-methylpropionamid. Vorzugsweise setzt man bei der Herstellung von Polymeren, die Einheiten der Formel (III) einpolymerisiert enthalten, N-Vinylformamid ein. Die hydrolysierten Polymerisate, die Einheiten der Formel (III) enthalten, haben K-Werte von 15 bis 300, vorzugsweise 30 bis 200, bestimmt nach H. Fikentscher in wäßriger Lösung bei pH 7, einer Temperatur von 25°C und einer Polymerkonzentration von 0,5 Gew.-%. Copolymerisate der Monomeren (I) enthalten beispielsweise
  • 1) 99 bis 1 Mol-% N-Vinylcarbonsäureamide der Formel (I) und
  • 2) 1 bis 99 Mol-% andere, damit copolymerisierbare monoethylenisch ungesättigte Monomere,
  • wie beispielsweise Vinylester von gesättigten Carbonsäuren mit 1 bis 6 Kohlenstoffatomen, z.B. Vinylformiat, Vinylacetat, Vinylpropionat und Vinylbutyrat. Geeignet sind auch ungesättigte C3- bis C6-Carbonsäuren, wie z.B. Acrylsäure, Methacrylsäure, Maleinsäure, Crotonsäure, Itaconsäure und Vinylessigsäure sowie deren Alkalimetall- und Erdalkalimetallsalze, Ester, Amide und Nitrile, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat und Ethylmethacrylat oder mit Glykol- bzw. Polyglykolestern ethylenisch ungesättigter Carbonsäuren, wobei jeweils nur eine OH-Gruppe der Glykole und Polyglykole verestert ist, z.B. Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypropylmethacrylat, Hydroxybutylmethacrylat sowie die Acrylsäuremonoester von Polyalkylenglykolen eines Molgewichts von 1.500 bis 10.000. Weiterhin sind geeignet die Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen, wie z.B. Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Diethylaminopropylacrylat, Diethylaminopropylmethacrylat, Dimethylaminobutylacrylat und Diethylaminobutylacrylat. Die basischen Acrylate werden in Form der freien Basen, der Salze mit Mineralsäuren wie z.B. Salzsäure, Schwefelsäure und Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure oder Benzolsulfonsäure, oder in quaternisierter Form eingesetzt. Geeignete Quaternisierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.
    Außerdem eignen sich als Comonomere 2) ungesättigte Amide wie beispielsweise Acrylamid, Methacrylamid sowie N-Alkylmono- und - diamide mit Alkylresten von 1 bis 6 C-Atomen wie z.B. N-Methylacrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N-Propylacrylamid und tert.Butylacrylamid sowie basische (Meth)acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropylmethacrylamid.
    Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol sowie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2-ethylimidazol, und N-Vinylimidazoline wie z.B. Vinylimidazolin, N-Vinyl-2-methylimidazolin, und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternisierter Form eingesetzt, wobei die Quaternisierung vorzugsweise mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird.
    Außerdem kommen als Comonomere 2) Sulfogruppen enthaltende Monomere wie beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonsäure oder Acrylsäure-3-sulfopropylester in Frage.
    Bei der Verwendung von basischen Comonomeren 2) wie z.B. basischen Acrylestern und -amiden kann oftmals auf eine Hydrolyse der N-Vinylcarbonsäureamide verzichtet werden. Die Copolymerisate umfassen Terpolymerisate und solche Polymerisate, die zusätzlich mindestens ein weiteres Monomer einpolymerisiert enthalten.
    Bevorzugte kationische Polymere sind hydrolysierte Copolymerisate aus
  • 1) N-Vinylformamid und
  • 2) Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril und N-Vinylpyrrolidon sowie hydrolysierte Homopolymerisate von N-Vinylformamid mit einem Hydrolysegrad von 2 bis 100, vorzugsweise 30 bis 95 Mol-%.
  • Bei Copolymerisaten, die Vinylester einpolymerisiert enthalten, tritt neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten ein. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert, wobei z.B. Amid-, cyclische Amidin- und/oder Carboxylgruppen entstehen. Die hydrolysierten Poly-N-vinylformamide können gegebenenfalls bis zu 20 Mol-% an Amidinstrukturen enthalten, die durch Reaktion von Ameisensäure mit zwei benachbarten Aminogruppen im Polyvinylamin oder durch Reaktion einer Formamidgruppe mit einer benachbarten Aminogruppe entstehen.
    Als kationische Polymere kommen weiterhin Ethylenimin-Einheiten einpolymerisiert enthaltende Verbindungen in Betracht. Vorzugsweise handelt es sich hierbei um Polyethylenimine, die durch polymerisieren von Ethylenimin in Gegenwart von sauren Katalysatoren wie Ammoniumhydrogensulfat, Salzsäure oder chlorierten Kohlenwasserstoffen wie Methylchlorid, Ethylenchlorid, Tetrachlorkohlenstoff oder Chloroform, erhältlich sind. Solche Polyethylenimine haben beispielsweise in 50 gew.-%iger wäßriger Lösung eine Viskosität von 500 bis 33.000, vorzugsweise 1.000 bis 31.000 mPa·s (gemessen nach Brookfield bei 20°C und 20 UPM). Zu den Polymeren dieser Gruppe gehören auch mit Ethylenimin gepfropfte Polyamidoamine, die gegebenenfalls noch durch Umsetzung mit einem mindestens bifunktionellen Vernetzer vernetzt sein können. Produkte dieser Art werden beispielsweise durch Kondensieren einer Dicarbonsäure wie Adipinsäure mit einem Polyalkylenpolyamin wie Diethylentriamin oder Triethylentetramin, gegebenenfalls Pfropfen mit Ethylenimin und Reaktion mit einem mindestens bifunktionellen Vernetzer, z.B. Bischlorhydrinether von Polyalkylenglykolen hergestellt, vgl. US-A-4 144 123 und US-A-3 642 572.
    Weiterhin kommen zur Stärkemodifizierung Poly-Diallyldimethylammoniumchloride in Betracht. Polymerisate dieser Art sind bekannt. Unter Polymerisaten des Diallyldimethylammoniumchlorids sollen in erster Linie Homopolymerisate sowie Copolymerisate mit Acrylamid und/oder Methacrylamid verstanden werden. Die Copolymerisation kann dabei in jedem beliebigen Monomerverhältnis vorgenommen werden. Der K-Wert der Homo- und Copolymerisate des Diallyldimethylammoniumchlorids beträgt mindestens 30, vorzugsweise 95 bis 180.
    Als kationische Polymerisate eignen sich auch Homo- und Copolymerisate von gegebenenfalls substituierten N-Vinylimidazolinen. Es handelt sich hierbei ebenfalls um bekannte Stoffe. Sie können beispielsweise nach dem Verfahren der DE-B-1 182 826 dadurch hergestellt werden, daß man Verbindungen der Formel
    Figure 00120001
    in der R1, R2=H, C1- bis C18-Alkyl, Benzyl, Aryl, R3, R4=H, C1- bis C4-Alkyl und X- ein Säurerest bedeutet, gegebenenfalls zusammen mit Acrylamid und/oder Methacrylamid in wäßrigem Medium bei pH-werten von 0 bis 8, vorzugsweise von 1,0 bis 6, 8 in Gegenwart von Polymerisationsinitiatoren, die in Radikale zerfallen, polymerisiert.
    Vorzugsweise setzt man bei der Polymerisation 1-Vinyl-2-imidazolin-Salze der Formel (V) ein,
    Figure 00130001
    in der R1, R2=H, CH3, C2H5, n- und i-C3H7, C6H5 und X- ein Säurerest ist. X- steht vorzugsweise für Cl-, Br-, SO4 2-, CH3-O-SO3 -, R-COO- und R2=H, C1- bis C4-Alkyl und Aryl.
    Der Substituent X- in den Formeln (IV) und (V) kann prinzipiell jeder beliebige Säurerest einer anorganischen sowie einer organischen Säure sein. Die Monomeren der Formel (IV) werden erhalten, indem man die freien Basen, d.h. 1-vinyl-2-imidazoline, mit der äquivalenten Menge einer Säure neutralisiert. Die Vinylimidazoline können auch beispielsweise mit Trichloressigsäure, Benzolsulfonsäure oder Toluolsulfonsäure neutralisiert werden. Außer Salzen von 1-Vinyl-2-imidazolinen kommen auch quaternisierte 1-Vinyl-2-imidazoline in Betracht. Sie werden hergestellt, indem man 1-Vinyl-2-imidazoline, die gegebenenfalls in 2-, 4- und 5-Stellung substituiert sein können, mit bekannten Quaternisierungsmitteln umsetzt. Als Quaternisierungsmittel kommen beispielsweise C1- bis C18-Alkylchloride oder -bromide, Benzylchlorid oder -bromid, Epichlorhydrin, Dimethylsulfat und Diethylsulfat in Frage. Vorzugsweise verwendet man Epichlorhydrin, Benzylchlorid, Dimethylsulfat und Methylchlorid.
    Zur Herstellung der wasserlöslichen Homopolymerisate werden die Verbindungen der Formeln (IV) oder (V) vorzugsweise in wäßrigem Medium polymerisiert.
    Da die Verbindungen der Formel (IV) relativ teuer sind, verwendet man aus ökonomischen Gründen vorzugsweise als kationische Polymerisate Copolymerisate von Verbindungen der Formel (IV) mit Acrylamid und/oder Methacrylamid. Diese Copolymerisate enthalten die Verbindungen der Formel (IV) dann lediglich in wirksamen Mengen, d.h. in einer Menge von 1 bis 50 Gew.-%, vorzugsweise 10 bis 40 Gew.-%. Für die Modifizierung nativer Stärken besonders geeignet sind Copolymerisate aus 60 bis 85 Gew.-% Acrylamid und/oder Methacrylamid und 15 bis 40 Gew.-% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin. Die Copolymerisate können weiterhin durch Einpolymerisieren von anderen Monomeren wie Styrol, N-Vinylformamid, Vinylformiat, Vinylacetat, Vinylpropionat, C1- bis C4-Alkylvinylether, N-Vinylpyridin, N-Vinylpyrrolidon, N-Vinylimidazol, ethylenisch ungesättigten C3- bis C5-Carbonsäuren sowie deren Ester, Amide und Nitrile, Natriumvinylsulfonat, Vinylchlorid und Vinylidenchlorid in Mengen bis zu 25 Gew.-% modifiziert werden. Beispielsweise kann man für die Modifizierung nativer Stärken Copolymerisate einsetzen, die
  • 1) 70 bis 97 Gew.-% Acrylamid und/oder Methacrylamid,
  • 2) 2 bis 20 Gew.-% N-Vinylimidazolin oder N-Vinyl-2-methylimidazolin und
  • 3) 1 bis 10 Gew.-% N-Vinylimidazol
  • einpolymerisiert enthalten. Diese Copolymerisate werden durch radikalische Copolymerisation der Monomeren 1), 2) und 3) nach bekannten Polymerisationsverfahren hergestellt. Sie haben K-Werte im Bereich von 80 bis 150 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%).
    Als kationische Polymerisate kommen des weiteren Copolymerisate aus 1 bis 99 Mol-%, vorzugsweise 30 bis 70 Mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylaten und/oder -methacrylaten in Frage, z.B. Copolymerisate aus Acrylamid und N,N-Dimethylaminoethylacrylat oder N,N-Diethylaminoethylacrylat. Basische Acrylate liegen vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form vor. Die Quaternisierung kann beispielsweise mit Methylchlorid oder mit Dimethylsulfat erfolgen. Die kationischen Polymerisate haben K-Werte von 30 bis 300, vorzugsweise 100 bis 180 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%). Bei einem pH-Wert von 4,5 haben sie eine Ladungsdichte von mindestens 4 mVal/g Polyelektrolyt.
    Geeignet sind auch Copolymerisate aus 1 bis 99 Mol-%, vorzugsweise 30 bis 70 Mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylamid und/oder -methacrylamid. Die basischen Acrylamide und Methacrylamide liegen ebenfalls vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form vor. Als Beispiele seien genannt N-Trimethylammoniumethylacrylamidchlorid, N-Trimethylammoniumethylmethacrylamidchlorid, Trimethylammoniumethylacrylamidmethosulfat, Trimethylammoniumethylmethacrylamidmethosulfat, N-Ethyldimethylammoniumethylacrylamidethosulfat, N-Ethyldimethylammoniumethylmethacrylamidethosulfat, Trimethylammoniumpropylacrylamidchlorid, Trimethylammoniumpropylmethacrylamidchlorid, Trimethylammoniumpropylacrylamidmethosulfat, Trimethylammoniumpropylmethacrylamidmethosulfat und N-Ethyldimethylammoniumpropylacrylamidethosulfat. Bevorzugt ist Trimethylammoniumpropylmethacrylamidchlorid.
    Als kationische Polymere kommen auch Polyallylamine in Betracht. Polymerisate dieser Art werden erhalten durch Homopolymerisation von Allylamin, vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form oder durch Copolymerisieren von Allylamin mit anderen monoethylenisch ungesättigten Monomeren, entsprechend der zuvor beschriebenen Copolymeren mit N-Vinylcarbonsäureamiden.
    Zur erfindungsgemäßen kationischen Modifizierung von Stärke wird beispielsweise eine wäßrige Suspension mindestens einer Stärkesorte mit einem oder mit mehreren der kationischen Polymeren auf Temperaturen oberhalb der Verkleisterungstemperatur der nativen bzw. der modifizierten Stärken erhitzt, z.B. auf Temperaturen von 90 bis 180°C, vorzugsweise 115 bis 145°C. Bei Temperaturen oberhalb des Siedepunkts von Wasser wird die Umsetzung unter erhöhtem Druck durchgeführt, wobei die Reaktion in der Weise vorgenommen wird, daß bei höchstens 10 Gew.-% der Stärke ein Molgewichtsabbau eintritt. Wäßrige Aufschlämmungen von Stärke enthalten beispielsweise auf 100 Gew.-Teile Wasser 0,1 bis 10, vorzugsweise 2 bis 6 Gew.-Teile Stärke. Auf 100 Gew.-Teile Stärke setzt man z.B. 0,5 bis 10 Gew.-Teile mindestens eines kationischen Polymerisats ein. Als kationische Polymere kommen dabei vorzugsweise partiell oder vollständig hydrolysierte Homo- oder Copolymerisate von N-Vinylformamid, Polyethylenimine, mit Ethylenimin gepfropfte und vernetzte Polyamidoamine und/oder Polydiallyldimethylammoniumchloride in Betracht.
    Beim Erhitzen der wäßrigen Stärkesuspensionen in Gegenwart von kationischen Polymeren wird zunächst die Stärke aufgeschlossen. Unter Stärkeaufschluß versteht man die Überführung der festen Stärkekörner in eine wasserlösliche Form, wobei Überstrukturen (Helixbildung, intramolekulare Wasserstoffbrücken usw.) aufgehoben werden, ohne daß es zum Abbau von den, die Stärke aufbauenden Amylose- und/oder Amylopektineinheiten zu Oligosacchariden oder Glukose kommt. Die wäßrigen Stärkesuspensionen, die ein kationisches Polymer gelöst enthalten, werden bei der Umsetzung auf Temperaturen oberhalb der Verkleisterungstemperatur der Stärken erhitzt. Bei dem erfindungsgemäßen Verfahren wird die eingesetzte Stärke zu mindestens 90, vorzugsweise zu >95 Gew.-% aufgeschlossen und mit dem kationischen Polymerisat modifiziert. Die Stärke ist dabei klar gelöst. Vorzugsweise kann man nach der Umsetzung der Stärke aus der Reaktionslösung bei Verwendung einer Celluloseacetatmembran mit einem Porendurchmesser von 1,2 µm keine unumgesetzte Stärke mehr abfiltrieren.
    Die Umsetzung erfolgt vorzugsweise bei erhöhtem Druck. Hierbei handelt es sich üblicherweise um den Druck, den das Reaktionsmedium in dem Temperaturbereich oberhalb der Siedepunkte von Wasser, z.B. bei 115 bis 180°C entwickelt. Er liegt beispielsweise bei 1 bis 10, vorzugsweise 1,2 bis 7,9 bar. Während der Umsetzung wird das Reaktionsgemisch einer Scherung unterworfen. Falls man die Umsetzung in einem Rührautoklaven durchführt, rührt man das Reaktionsgemisch beispielsweise mit 100 bis 2.000, vorzugsweise 200 bis 1.000 Umdrehungen/Minute. Die Reaktion kann praktisch in allen Apparaturen durchgeführt werden, in denen Stärke in der Technik aufgeschlossen wird, z.B. in einem Jetkocher. Die Verweilzeiten des Reaktionsgemisches bei den obengenannten Temperaturen von 115 bis 180°C betragen beispielsweise 0,1 Sekunden bis 1 Stunde und liegen vorzugsweise in dem Bereich von 0,5 Sekunden bis 30 Minuten.
    Unter diesen Bedingungen werden mindestens 90 % der eingesetzten Stärke aufgeschlossen und modifiziert. Vorzugsweise werden dabei weniger als 5 Gew.-% der Stärke abgebaut.
    Die nativen Stärketypen können auch einer Vorbehandlung unterworfen werden, z.B. oxidativ, hydrolytisch oder enzymatisch abgebaut oder auch chemisch modifiziert werden. Auch hier sind die Wachsstärken, wie Wachskartoffelstärke und Wachsmaisstärke von besonderem Interesse.
    Die so erhältlichen Umsetzungsprodukte haben beispielsweise bei einer Feststoffkonzentration von 3,5 Gew.-% eine Viskosität von 50 bis 10.000, vorzugsweise 80 bis 4.000 mPa·s, gemessen in einem Brookfield-Viskosimeter bei 20 Umdrehungen/Minute und einer Temperatur von 20°C. Der pH-Wert der Reaktionsmischungen liegt beispielsweise in dem Bereich von 2,0 bis 9,0, vorzugsweise 2,5 bis 8.
    Die so erhältlichen mit kationischen Polymeren modifizierten Stärken werden als Trockenverfestigungsmittel dem Papierstoff in Mengen von beispielsweise 0,5 bis 10, vorzugsweise 0,5 bis 3,5 und besonders bevorzugt 1,2 bis 2,5 Gew.-%, bezogen auf trockenen Papierstoff, zugesetzt. Gemäß der Erfindung dosiert man zum Papierstoff zusätzlich ein kationisches Polymer als Retentionsmittel für die oben beschriebenen Stärken, wie kationische Stärke, vorzugsweise solche Stärken, die mit einem Polymer modifiziert wurden, anionische und/oder amphotere Stärken. Vorzugsweise dosiert man zunächst die Trockenverfestiger und danach die Retentionsmittel. Es ist jedoch auch möglich, Trockenverfestiger und Retentionsmittel gleichzeitig dem Papierstoff zuzusetzen, wobei Trockenverfestiger und Retentionsmittel voneinander getrennt dosiert werden. Ebenso ist es möglich, eine Mischung aus Trockenverfestiger und Retentionsmittel zum Papier zu dosieren. Solche Mischungen können beispielsweise dadurch hergestellt werden, daß man das Retentionsmittel der aufgeschlossenen Stärke nach Abkühlen auf 50°C oder darunter zusetzt. Das Retentionsmittel kann jedoch auch vor Zugabe der modifizierten Stärke zum Papierstoff zugesetzt werden. Von dieser Reihenfolge der Zugabe macht man beispielsweise bei der Verarbeitung von Papierstoffen Gebrauch, die einen hohen Störstoffgehalt aufweisen.
    Als kationische Polymere, die als Retentionsmittel für Stärke in Betracht kommen, können sämtliche kationischen Polymeren eingesetzt werden, die oben bereits zur kationischen Modifizierung von nativer Stärke beschrieben sind, und zwar
    • Vinylamineinheiten enthaltende Polymere
    • Polyethylenimine
    • vernetzte Polyamidoamine
    • mit Ethylenimin gepfropfte und vernetzte Polyamidoamine
    • Polydiallyldimethylammoniumchloride
    • N-Vinylimidazolineinheiten enthaltende Polymere
    • Dialkylaminoalkylacrylat- oder Dialkylaminoalkylmethacrylat enthaltende Polymere
    • Dialkylaminoalkylacrylamid-Einheiten oder Dialkylaminoalkylmethacrylamid-Einheiten enthaltende Polymere und
    • Polyallylamine.
    Außerdem eignen sich Kondensate aus Dimethylamin und Epichlorhydrin, Kondensate aus Dimethylamin und Dichloralkanen wie Dichlorethan oder Dichlorpropan sowie Kondensationsprodukte aus Dichlorethan und Ammoniak.
    Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens setzt man eine kationische Stärke in Kombination mit kationischen Polymeren ein, die Vinylamineinheiten enthalten und die K-Werte von mindestens 30 (bestimmt nach H. Fikentscher in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7) haben.
    Als Trockenverfestigungsmittel setzt man bevorzugt eine kationische Stärke ein, die erhältlich ist durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew.-Teilen eines Vinylamineinheiten enthaltenden Polymeren mit einem K-Wert von 60 bis 150 bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärke. Als Vinylamineinheiten enthaltende Polymere werden z.B. hydrolysierte Homo- und Copolymerisate von N-Vinylformamid mit einem Hydrolysegrad von mindestens 60 % bevorzugt eingesetzt. Diese Homo- und Copolymerisate werden nicht nur zur Kationisierung von Stärke sondern ebenso dem Papierstoff als Retentionsmittel für die kationisch modifizierten Stärken zugesetzt.
    Die als Retentionsmittel für Stärke in Betracht kommenden hydrolysierten Homo- und Copolymerisate von N-Vinylformamid können allgemein einen Hydrolysegrad von 1 bis 100 % aufweisen.
    Andere bevorzugt in Betracht kommende kationische Stärken sind beispielsweise erhältlich durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew.-Teilen
    • Polydiallyl-dimethylammoniumchlorid
    • wasserlöslichen, mit Epichlorhydrin vernetzten Polyamidoaminen
    • wasserlöslichen, mit Ethylenimin gepfropften und mit Bis-chlorhydrinethern von Polyalkylenglykolen vernetzten Polyamidoaminen
      und/oder
    • wasserlöslichen Polyethyleniminen und wasserlöslichen, vernetzten Polyethyleniminen
    bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärken bis 180°C.
    Bevorzugt eingesetzte handelsübliche kationische Stärken haben z.B. einen Substitutionsgrad D.S. von bis zu 0,15. Die als Trockenverfestigungsmittel einzusetzenden Stärken werden in Mengen von 0,5 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf trockenen Papierstoff eingesetzt. Die Entwässerung des Papierstoffs erfolgt erfindungsgemäß immer in Gegenwart mindestens eines Retentionsmittels für Stärke, wobei die Retentionsmittel in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockenen Papierstoff eingesetzt werden. Man erhält dadurch gegenüber den bekannten Verfahren eine beträchtlich verbesserte Retention der Stärke und eine Erhöhung der Entwässerungsgeschwindigkeit des Papierstoffs auf der Papiermaschine.
    Als Retentionsmittel für Stärke kann man auch sogenannte Mikropartikel-Systeme verwenden, wobei man zum Papierstoff ein hochmolekulares kationisches synthetisches Polymer zufügt, die gebildeten Makroflocken durch Scheren des Papierstoffs zerteilt und anschließend Bentonit zugibt. Dieses Verfahren ist beispielsweise aus der EP-A-0 335 575 bekannt. Für ein solches Mikropartikelsystem kann man beispielsweise als kationische Polymere eine Mischung aus einem Vinylamineinheiten enthaltendem Polymeren, z.B. Polyvinylamin und einem kationischen Polyacrylamid, z.B. einem Copolymerisat aus Acrylamid und Dimethylaminoethylacrylatmethochlorid einsetzen und nach der Scherstufe Bentonit zusetzen. Weitere bevorzugte Kombinationen von kationischen Polymeren als Retentionsmittel für Stärken sind Mischungen aus Vinylamineinheiten enthaltenden Polymeren und mit Ethylenimin gepfropften vernetzten Polyamidoaminen sowie Mischungen aus Vinylamineinheiten enthaltenden Polymeren mit Polydiallyldimethylammoniumchloriden.
    Falls nicht anders angegeben, bedeuten die Prozentangaben in den Beispielen Gewichtsprozent. Die K-Werte wurden nach H. Fikentscher, Cellulose-Chemie, Band 13, 58 bis 64 und 71 bis 74 (1932) bei einer Temperatur von 25°C in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-% bestimmt.
    Beispiele
    Folgende kationische Polymere wurden verwendet:
    Polymer 1:
    Polyamidoamin aus Adipinsäure und Diethylentriamin, das mit .. Ethylenimin gepfropft und anschließend mit Polyethylenglykoldichlorhydrinether gemäß den Angaben in Beispiel 3 der DE-B-2 434 816 vernetzt wurde.
    Polymer 2:
    Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 95 mol-%.
    Polymer 3:
    Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 75 mol-%.
    Polymer 4:
    Hydrolysiertes Polyvinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 50 mol-%.
    Verfestiger 1
    Eine wäßrige Suspension von nativer Kartoffelstärke wurde in einem Laborjetkocher der Fa. Werkstättenbau GmbH bei einer Temperatur von 130°C und einem Druck von 2,3 bar kontinuierlich in Gegenwart von 1,5 % Polymer 2 gekocht.
    Beispiele 1 bis 4
    Man stellte einen Papierstoff mit einer Stoffdichte von 7,6 g/l aus einem aufgeschlagenen fertigen handelsüblichen Wellenrohstoff auf Altpapierbasis her. Der pH-Wert des Papierstoffs betrug 8,0. Um die Stärkeretention zu ermitteln wurden zu Proben dieses Papierstoffs jeweils die in Tabelle 1 angegebenen Mengen an Verfestiger 1 und den Polymeren 1-4 nacheinander zugesetzt. Nach dem Durchmischen des Papierstoffs mit den Additiven wurde abgenutscht und der Stärkegehalt aus der Extinktionsmessung des Stärke-Jod-Komplexes bestimmt. Die dabei erhaltenen Ergebnisse sind in Tabelle 1 angegeben. Ein weiterer Teil des Papierstoffes wurde nach dem Dosieren von Verfestiger 1 und den jeweils in Tabelle 1 angegebenen Polymeren mit Hilfe eines Schopper-Riegler-Geräts entwässert. Man bestimmte die Entwässerungszeit nach DIN ISO 5267 für 700 ml Filtrat. Die Ergebnisse sind in Tabelle 1 angegeben.
    Vergleichsbeispiel 1
    Das Beispiel 1 wurde mit der Ausnahme wiederholt, daß man zum Papierstoff lediglich Verfestiger 1 in einer Menge von 2 %, bezogen auf trockenen Papierstoff, dosierte. Stärkegehalt des Filtrats und die Entwässerungszeit sind in Tabelle 1 angegeben.
    Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff Stärkegehalt im Filtrat
    [mg/l]
    Entwässerungszeit
    [sec/700 ml]
    1 2 % Verfestiger 1 + 0,08 % Polymer 1 38 92
    2 2 % Verfestiger 1 + 0,08 % Polymer 2 34 49
    3 2 % Verfestiger 1 + 0,08 % Polymer 3 30 55
    4 2 % Verfestiger 1 + 0,08 % Polymer 4 30 67
    Vergleichsbeispiel
    1 2 % Verfestiger 1 50 136
    Beispiel 5
    Ein aufgeschlagener fertiger handelsüblicher Wellenrohstoff auf Altpapierbasis mit einer Stoffdichte von 0,76 % wurde zunächst mit 2 % Verfestiger 1 und anschließend mit 0,08 % Polymer 3 als Retentionsmittel für kationische Stärke versetzt. Nach Zugabe von Verfestiger und Polymer wurde der Papierstoff jeweils durchmischt. Ein Teil dieses Papierstoffs wurde abgenutscht. Aus dem Filtrat wurde der CSB-Wert und die Stärkeretention durch enzymatischen Abbau zu Glucose mittels HPLC bestimmt. Aus dem anderen Teil des Papierstoffs ermittelte man mit Hilfe eines Schopper-Riegler-Geräts die Entwässerungszeit für 500 ml Filtrat. Die Ergebnisse sind in Tabelle 2 angegeben.
    Vergleichsbeispiele 2 bis 4
    Das Beispiel 5 wurde mit den aus Tabelle 2 ersichtlichen Änderungen wiederholt. Die Ergebnisse sind in Tabelle 2 angegeben.
    Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff CSB-Wert
    [mgO2/l]
    Stärkeretention
    (enzymatische Methode)
    Entwässerungszeit
    [sec/500 ml]
    5 2 % Verfestiger 2 + 0,08 % Polymer 3 134 93 20
    Vergleichsbeispiel
    2 2 % Verfestiger 1 313 43 72
    3 2 % handelsübliche kationische Stärke D.S. 0,035 162 92 78
    4    - 135 68
    Beispiel 6
    Ein aufgeschlagener fertiger handelsüblicher Wellenrohstoff auf Altpapierbasis mit einer Stoffkonzentration von 0,76 % wurde nacheinander mit 2 % Verfestiger 2 und 0,08 % Polymer 3 versetzt. Nach dem Durchmischen stellt man auf einem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von 120 g pro m2 her. Die Blätter wurden auf ihre Trockenfestigkeit geprüft, und zwar die Trockenreißlänge nach DIN ISO 1924, Trockenberstdruck nach DIN ISO 2758 und Flachstauchwiderstand CMT nach DIN EN 23035 gleich ISO 3035. Die Ergebnisse sind in Tabelle 3 angegeben.
    Vergleichsbeispiele 5 bis 7
    Zunächst wurde Beispiel 6 mit den aus Tabelle 3 ersichtlichen Änderungen wiederholt, wobei man in Abwesenheit von Polymer 3 arbeitete (Vergleichsbeispiel 5). In weiteren Tests verwendete man handelsübliche kationische Stärke (Vergleichsbeispiel 6) und ermittelte den Nullwert (Vergleichsbeispiel 7). Die Ergebnisse sind in Tabelle 3 angegeben.
    Beispiel Zusatz zum Papierstoff, bezogen auf trockenen Papierstoff Trockenreißlänge
    [m]
    Trockenberstdruck
    [kPa]
    CMT
    [N]
    6 2 % Verfestiger 1 + 0,08 % Polymer 3 4433 296 209
    Vergleichsbeispiel
    5 2 % Verfestiger 1 4353 278 190
    6 2 % handelsübliche kationische Stärke D.S. 0,035 4488 296 194
    7 - 3757 241 160
    Polymer 5:
    Hydrolysiertes Poly-N-Vinylformamid mit einem K-Wert von 90 und einem Hydrolysegrad von 30 %.
    Polymer 6:
    Handelsübliches modifiziertes PEI mit einer Ladungsdichte von 14,7 bei pH 4,5 bzw. 10,8 bei pH 7 und einem mittleren Molekulargewicht von ca. 700 000 D.
    Polymer 7:
    Hochmolekulares, kationisches Polyacrylamid mit einer Ladungsdichte von 1,7 bei pH 4,5 und einem mittleren Molekulargewicht von 8,5 Mio D.
    Beispiel 7
    Ein Papierfarbstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,245 % Polymer 6 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden auf ihre Trockenfestigkeit geprüft, und zwar der Streifenstauchwiderstand (SCT) Wert nach DIN 54518 (ISO 9895), Trockenberstdruck nach DIN ISO 2758 und Flachstauchwiderstand CMT nach DIN EN 23035 (ISO 3035). Die Ergebnisse sind in Tabelle 4 angegeben.
    Beispiel 8
    Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,12 % Polymer 2 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.
    Beispiel 9
    Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,12 % Polymer 3 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.
    Beispiel 10
    Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,13 % Polymer 4 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.
    Beispiel 11
    Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1, mit 0,13 % Polymer 5 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.
    Vergleichsbeispiel 8
    Ein Papierstoff auf Altpapierbasis mit einem CSB-Wert von 8000 mg Sauerstoff/l und einer Stoffkonzentration von 1 % wurde nacheinander mit 2 % Verfestiger 1 und 0,02 % Polymer 7 versetzt. Nach dem Durchmischen stellt man auf dem Rapid-Köthen-Blattbildner Papierblätter mit einem Flächengewicht von ca. 110 g/m2 her. Die Blätter wurden nach den in Beispiel 7 angegebenen Methoden auf ihre Trockenfestigkeit geprüft. Die Ergebnisse sind in Tabelle 4 angegeben.
    Figure 00260001

    Claims (12)

    1. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe von kationischer, anionischer und/oder amphoterer Stärke als Trockenfestigkeitsmittel zum Papierstoff und Entwässern des Papierstoffs in Gegenwart von Retentionsmitteln unter Blattbildung, dadurch gekennzeichnet, daß man als Retentionsmittel für Stärke mindestens ein kationisches Polymer aus der Gruppe der
      Vinylamineinheiten enthaltende Polymere
      Polyethylenimine
      vernetzte Polyamidoamine
      mit Ethylenimin gepfropfte und vernetzte Polyamidoamine
      Polydiallyldimethylammoniumchloride
      N-Vinylimidazolineinheiten enthaltende Polymere
      Dialkylaminoalkylacrylat- oder Dialkylaminoalkylmethacrylat enthaltende Polymere
      Dialkylaminoalkylacrylamid-Einheiten oder Dialkylaminoalkylmethacrylamid-Einheiten enthaltende Polymere und
      Polyallylamine
      einsetzt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man eine kationische Stärke in Kombination mit kationischen Polymeren einsetzt, die Vinylamineinheiten enthalten und die K-Werte von mindestens 30 (bestimmt nach H. Fikentscher in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7) haben.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine kationische Stärke einsetzt, die erhältlich ist durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew.-Teilen eines Vinylamineinheiten enthaltenden Polymeren mit einem K-Wert von 60 bis 150 bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärke.
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als Vinylamineinheiten enthaltende Polymere hydrolysierte Homo- oder Copolymerisate von N-Vinylformamid mit einem Hydrolysegrad von mindestens 60 % einsetzt.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man als Retentionsmittel für Stärke hydrolysierte Homo- oder Copolymerisate von N-Vinylformamid mit einem Hydrolysegrad von 1 bis 100 % einsetzt.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man eine kationische Stärke mit einem Substitutionsgrad D.S. von bis zu 0,15 einsetzt.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Trockenfestigkeitsmittel in Mengen von 0,5 bis 10 Gew.-%, bezogen auf trockenen Papierstoff, einsetzt.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Trockenfestigkeitsmittel in Mengen von 1 bis 5 Gew.-%, bezogen auf trockenen Papierstoff, einsetzt.
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man die Retentionsmittel für Stärke in Mengen von 0,01 bis 0,3 Gew.-%, bezogen auf trockenen Papierstoff, einsetzt.
    10. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine kationische Stärke einsetzt, die erhältlich ist durch Umsetzung von 100 Gew.-Teilen einer nativen, kationischen, anionischen und/oder amphoteren Stärke mit 0,5 bis 10 Gew.-Teilen
      Polydiallyl-dimethylammoniumchlorid,
      wasserlöslichen, mit Epichlorhydrin vernetzten Polyamidoaminen
      wasserlöslichen, mit Ethylenimin gepfropften und mit Bis-chlorhydrinethern von Polyalkylenglykolen vernetzten Polyamidoaminen
      und/oder
      wasserlöslichen Polyethyleniminen und wasserlöslichen vernetzten Polyethyleniminen
      bei Temperaturen oberhalb der Verkleisterungstemperatur der Stärke bis 180°C.
    11. Verwendung von kationischen polymeren Retentionsmitteln aus der Gruppe der
      Vinylamineinheiten enthaltenden Polymere
      Polyethylenimine
      vernetzten Polyamidoamine
      mit Ethylenimin gepfropften und vernetzten polyamidoamine
      Polydiallyldimethylammoniumchloride
      N-Vinylimidazolineinheiten enthaltenden Polymere
      Dialkylaminoalkylacrylat- oder Dialkylaminoalkylmethacrylat enthaltende Polymere
      Dialkylaminoalkylacrylamid-Einheiten oder Dialkylaminoalkylmethacrylamid-Einheiten enthaltenden Polymere und
      Polyallylamine
      zur Erhöhung der Retention von Trockenfestigkeitsmitteln aus kationischer, anionischer und/oder amphoterer Stärke bei der Herstellung von Papier, Pappe und Karton.
    12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, daß man als Retentionsmittel hydrolysierte Homo- oder Copolymerisate von N-Vinylformamid mit einem Hydrolysegrad von 1 bis 100 % und einem K-Wert von mindestens 30 (bestimmt nach H. Fikentscher in wäßriger Lösung bei einer Polymerkonzentration von 0,5 Gew.-%, einer Temperatur von 25°C und einem pH-Wert von 7) in Mengen von 0,01 bis 0,3 Gew.-% einsetzt.
    EP98921399A 1997-04-04 1998-03-26 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit Expired - Lifetime EP0972110B2 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19713755A DE19713755A1 (de) 1997-04-04 1997-04-04 Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
    DE19713755 1997-04-04
    PCT/EP1998/001786 WO1998045536A1 (de) 1997-04-04 1998-03-26 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

    Publications (3)

    Publication Number Publication Date
    EP0972110A1 EP0972110A1 (de) 2000-01-19
    EP0972110B1 true EP0972110B1 (de) 2004-06-02
    EP0972110B2 EP0972110B2 (de) 2009-03-11

    Family

    ID=7825332

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98921399A Expired - Lifetime EP0972110B2 (de) 1997-04-04 1998-03-26 Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit

    Country Status (13)

    Country Link
    US (1) US6616807B1 (de)
    EP (1) EP0972110B2 (de)
    JP (1) JP2001518988A (de)
    KR (1) KR20010006002A (de)
    AT (1) ATE268410T1 (de)
    AU (1) AU730063B2 (de)
    CA (1) CA2284931C (de)
    DE (2) DE19713755A1 (de)
    ES (1) ES2222591T3 (de)
    NZ (1) NZ338029A (de)
    PT (1) PT972110E (de)
    WO (1) WO1998045536A1 (de)
    ZA (1) ZA982842B (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2148003A1 (de) 2008-07-22 2010-01-27 Mühle Rüningen GmbH & Co. KG Verfahren zur Herstellung eines modifizierten stärkehaltigen Produkts, in diesem Verfahren erzeugbares modifiziertes stärkehaltiges Produkt und seine Verwendung bei der Papierherstellung

    Families Citing this family (46)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2002541346A (ja) * 1999-04-01 2002-12-03 ビーエーエスエフ アクチェンゲゼルシャフト カチオン性ポリマーによるデンプンの変性および乾燥強度向上剤としての変性デンプンの使用
    WO2001032987A1 (en) * 1999-11-01 2001-05-10 Leopack B.V. Moulded fibre products comprising modified starch and process for producing the same
    US6824650B2 (en) * 2001-12-18 2004-11-30 Kimberly-Clark Worldwide, Inc. Fibrous materials treated with a polyvinylamine polymer
    US6723204B2 (en) * 2002-04-08 2004-04-20 Hercules Incorporated Process for increasing the dry strength of paper
    DE10233524B4 (de) * 2002-07-23 2006-02-09 Mühle Rüningen GmbH & Co. KG Mittel zur Erhöhung der Aufnahmefähigkeit von Papiermasse für Stärke, Verfahren zur Herstellung, Verwendung sowie Verfahren zur Herstellung von Papier
    US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
    US7494566B2 (en) 2002-09-13 2009-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Composition for increasing cellulosic product strength and method of increasing cellulosic product strength
    US20050109476A1 (en) * 2003-07-21 2005-05-26 Muhle Runingen Gmbh & Co. Kg Medium for increasing the absorption capacity of paper pulp for starch
    WO2005085361A2 (en) * 2004-02-27 2005-09-15 University Of Pittsburgh Networked polymeric gels and use of such polymeric gels in hydrocarbon recovery
    RU2008130066A (ru) * 2005-12-22 2010-01-27 Клариант Файненс (Бви) Лимитед (Vg) Поперечно сшитые полиамиды для получения бумаги и картона
    WO2007136756A2 (en) * 2006-05-18 2007-11-29 Hercules Incorporated Michael addition adducts as additives for paper and papermaking
    EP1865105B1 (de) * 2006-06-09 2009-09-16 Coöperatie Avebe U.A. Verfahren zum Herstellen von Papier unter Verwendung von kationischer Amylopektinstärke
    EP1889972A1 (de) * 2006-06-26 2008-02-20 Biltube India Limited Kernkarton
    US7875676B2 (en) 2006-09-07 2011-01-25 Ciba Specialty Chemicals Corporation Glyoxalation of vinylamide polymer
    MX301592B (es) 2007-08-02 2012-07-24 Hercules Inc Polimeros que contienen vinilamina modificada con aditivos en la fabricacion de papel.
    US8088250B2 (en) 2008-11-26 2012-01-03 Nalco Company Method of increasing filler content in papermaking
    AR071441A1 (es) * 2007-11-05 2010-06-23 Ciba Holding Inc N- vinilamida glioxilada
    CN102124161B (zh) * 2008-08-18 2014-09-10 巴斯夫欧洲公司 增加纸,纸板和卡纸的干强度的方法
    US8518215B2 (en) * 2009-01-30 2013-08-27 Hercules Incorporated Quaternary vinylamine-containing polymers as additives in papermaking
    WO2010145956A1 (de) 2009-06-16 2010-12-23 Basf Se Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
    JP5773370B2 (ja) * 2009-11-06 2015-09-02 ソレニス・テクノロジーズ・ケイマン・エル・ピー 紙力を改善するためのポリマーおよびポリマー混合物の表面塗布
    MX2012011449A (es) * 2010-04-07 2012-11-23 Hercules Inc Composiciones estables y acuosas de polivinilaminas con almidon cationico y utilidad para fabricacion de papel.
    CA2807677C (en) * 2010-08-25 2017-09-26 Ashland Licensing And Intellectual Property Llc Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
    KR101836210B1 (ko) 2010-11-05 2018-03-09 솔레니스 테크놀러지스 케이맨, 엘.피. 종이 강도 개선을 위한 중합체의 표면 적용
    US8980056B2 (en) 2010-11-15 2015-03-17 Kemira Oyj Composition and process for increasing the dry strength of a paper product
    JP5714947B2 (ja) * 2011-03-16 2015-05-07 ニチハ株式会社 無機質板、及びその製造方法
    ES2534566T3 (es) 2011-04-14 2015-04-24 Solenis Technologies Cayman, L.P. Proceso para producir un polímero que contiene una vinilamina acilada, y su aplicación como un aditivo en la fabricación del papel
    FI20115690A0 (fi) * 2011-06-30 2011-06-30 Kemira Oyj Fiksatiivikoostumus, sakeamassakoostumus ja menetelmä hydrofobisten ja/tai anionisten aineiden kiinnittämiseksi kuituihin
    EP2748373B1 (de) 2011-08-25 2024-02-21 Solenis Technologies Cayman, L.P. Verfahren zum steigern der vorteile von verfestigungsmitteln bei der herstellung von papier und pappe
    RU2621064C2 (ru) 2011-11-10 2017-06-01 Соленис Текнолоджиз Кейман,Л.П. Микрочастицы содержащего виниламин сополимера в качестве добавок при изготовлении бумаги
    PL2788392T3 (pl) 2011-12-06 2018-08-31 Basf Se Wytwarzanie adduktów poliwinyloamidu reagujących z celulozą
    PL2809845T3 (pl) * 2012-02-01 2019-07-31 Basf Se Sposób wytwarzania papieru i tektury
    FI124202B (en) 2012-02-22 2014-04-30 Kemira Oyj A method for improving the process of making paper or paperboard using recycled fibrous material
    EP3044365B1 (de) 2013-09-09 2018-05-23 Basf Se Glyoxalatpolyacrylamidcopolymere mit hohem molekulargewicht und hoher kationenladung sowie deren verfahren zur herstellung und verwendung
    CN104452455B (zh) 2013-09-12 2019-04-05 艺康美国股份有限公司 造纸助剂组合物以及增加成纸灰分保留的方法
    CN104452463B (zh) 2013-09-12 2017-01-04 艺康美国股份有限公司 造纸方法以及组合物
    US9567708B2 (en) 2014-01-16 2017-02-14 Ecolab Usa Inc. Wet end chemicals for dry end strength in paper
    CN106459318B (zh) 2014-04-16 2019-11-08 索理思科技公司 改性的含乙烯胺的聚合物及其在造纸中的用途
    SE539914C2 (sv) 2014-04-29 2018-01-09 Stora Enso Oyj Process för framställning av åtminstone ett skikt hos ett papper eller en kartong samt ett papper eller en kartong som framställts enligt processen
    US9702086B2 (en) * 2014-10-06 2017-07-11 Ecolab Usa Inc. Method of increasing paper strength using an amine containing polymer composition
    US9920482B2 (en) 2014-10-06 2018-03-20 Ecolab Usa Inc. Method of increasing paper strength
    US9783933B2 (en) 2015-04-10 2017-10-10 Solenis Technologies, L.P. Modified vinylamine-containing polymers and their use in papermaking
    SE540115C2 (en) * 2016-09-21 2018-04-03 A paper or paperboard product comprising at least one ply containing high yield pulp and its production method
    FI20185272A1 (en) * 2018-03-22 2019-09-23 Kemira Oyj The dry strength composition, its use, and the method of making paper, board or the like
    JP6696532B2 (ja) * 2018-06-18 2020-05-20 栗田工業株式会社 紙の製造方法
    US11332889B2 (en) 2019-05-03 2022-05-17 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight

    Family Cites Families (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1110004A (en) 1964-07-28 1968-04-18 Basf Ag Improved papers having high mechanical strength and their production
    US3734820A (en) * 1971-09-22 1973-05-22 Calgon Corp Cationic dextran graft copolymers as dry strength additives for paper
    US3854970A (en) * 1973-08-13 1974-12-17 Nalco Chemical Co Cationic starch and condensates for making the same
    US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
    US4146515A (en) * 1977-09-12 1979-03-27 Nalco Chemical Company Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
    DE3128478A1 (de) * 1981-07-18 1983-02-03 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von linearen, basischen polymerisaten
    US5201998A (en) * 1982-05-28 1993-04-13 Ciba-Geigy Corporation Process for sizing paper with anionic hydrophobic sizing agents and cationic retention aids
    DE3534273A1 (de) * 1985-09-26 1987-04-02 Basf Ag Verfahren zur herstellung von vinylamin-einheiten enthaltenden wasserloeslichen copolymerisaten und deren verwendung als nass- und trockenverfestigungsmittel fuer papier
    DE3627594A1 (de) * 1986-08-14 1988-02-18 Basf Ag Leimungsmittel fuer papier auf basis feinteiliger waessriger dispersionen
    DE3702712A1 (de) * 1987-01-30 1988-08-11 Basf Ag Leimungsmittel fuer papier auf basis feinteiliger waessriger dispersionen
    DE3706525A1 (de) * 1987-02-28 1988-09-08 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
    DE3724646A1 (de) * 1987-07-25 1989-02-02 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
    US5338406A (en) * 1988-10-03 1994-08-16 Hercules Incorporated Dry strength additive for paper
    DE3909004A1 (de) * 1989-03-18 1990-09-27 Basf Ag Verwendung von nicht hydrolysierten n-vinylformamid-einheiten enthaltenden copolymerisaten bei der papierherstellung
    CA2108028C (en) * 1991-07-02 1997-05-27 Bruno Carre A process for the manufacture of paper
    US5382324A (en) * 1993-05-27 1995-01-17 Henkel Corporation Method for enhancing paper strength
    US5700893A (en) * 1993-11-12 1997-12-23 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants and drainage aids
    US5720888A (en) * 1993-11-12 1998-02-24 Betzdearborn Inc. Water-soluble cationic copolymers and their use as flocculants
    US5516852A (en) * 1993-11-12 1996-05-14 W. R. Grace & Co.-Conn. Method of producing water-soluble cationic copolymers
    DE4438708A1 (de) * 1994-10-29 1996-05-02 Basf Ag Verfahren zur kationischen Modifizierung von Stärke und Verwendung der kationisch modifizierten Stärke
    DE19537088A1 (de) * 1995-10-05 1997-04-10 Basf Ag Verfahren zur Herstellung von trockenfest und naßfest ausgerüstetem Papier
    DE19627553A1 (de) * 1996-07-09 1998-01-15 Basf Ag Verfahren zur Herstellung von Papier und Karton
    DE19716821A1 (de) * 1997-04-22 1998-10-29 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton
    US5942087A (en) * 1998-02-17 1999-08-24 Nalco Chemical Company Starch retention in paper and board production

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2148003A1 (de) 2008-07-22 2010-01-27 Mühle Rüningen GmbH & Co. KG Verfahren zur Herstellung eines modifizierten stärkehaltigen Produkts, in diesem Verfahren erzeugbares modifiziertes stärkehaltiges Produkt und seine Verwendung bei der Papierherstellung

    Also Published As

    Publication number Publication date
    EP0972110B2 (de) 2009-03-11
    AU730063B2 (en) 2001-02-22
    CA2284931C (en) 2010-02-16
    DE19713755A1 (de) 1998-10-08
    KR20010006002A (ko) 2001-01-15
    NZ338029A (en) 2000-04-28
    AU7427598A (en) 1998-10-30
    ATE268410T1 (de) 2004-06-15
    ZA982842B (en) 1999-01-20
    DE59811513D1 (de) 2004-07-08
    JP2001518988A (ja) 2001-10-16
    WO1998045536A1 (de) 1998-10-15
    US6616807B1 (en) 2003-09-09
    PT972110E (pt) 2004-10-29
    EP0972110A1 (de) 2000-01-19
    CA2284931A1 (en) 1998-10-15
    ES2222591T3 (es) 2005-02-01

    Similar Documents

    Publication Publication Date Title
    EP0972110B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
    EP0788516B1 (de) Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
    EP0301372B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
    EP0282761B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
    EP0952988B1 (de) Polymermodifizierte anionische stärke, verfahren zu ihrer herstellung und ihre verwendung
    EP1183422B1 (de) Modifizierung von stärke mit kationischen polymeren und verwendung der modifizierten stärken als trockenverfestigungsmittel für papier
    EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
    EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
    DE60016186T2 (de) Polymerdispersion und verfahren zu deren herstellung
    EP0980450B1 (de) Verfahren zur herstellung von papier, pappe und karton
    EP1399623B1 (de) Nassfestausrüstungsmittel für papier
    EP2443282A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
    EP0951505B1 (de) Polymermodifizierte stärke, verfahren zu ihrer herstellung und ihre verwendung
    EP1102894B1 (de) Verwendung von modifizierten stärkeprodukten als retentionsmittel bei der papierherstellung
    DE3024257A1 (de) Stabiles, waessriges polyvinylalkohol/ melamin-formaldehyd-harz-reaktionsprodukt, verfahren zu seiner herstellung und seine verwendung
    DE19719062A1 (de) Verfahren zur Herstellung von Aggregaten aus Stärke und kationischen Polymeren und ihre Verwendung
    CA2203931C (en) Cationic modification process for starch and use of cationically modified starch
    WO2006136556A2 (de) Verfahren zur herstellung von papier, pappe und karton

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990917

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20010806

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REF Corresponds to:

    Ref document number: 59811513

    Country of ref document: DE

    Date of ref document: 20040708

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040701

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040812

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2222591

    Country of ref document: ES

    Kind code of ref document: T3

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    ET Fr: translation filed
    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: EKA CHEMICALS ABPATENT DEPARTMENT

    Effective date: 20050302

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

    PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

    Free format text: ORIGINAL CODE: EPIDOSCOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20060425

    Year of fee payment: 9

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

    Effective date: 20050302

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: BASF SE

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: EKA CHEMICALS AB PATENT DEPARTMENT

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: BASF SE

    Effective date: 20080305

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20070327

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070327

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    27A Patent maintained in amended form

    Effective date: 20090311

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20070327

    NLR2 Nl: decision of opposition

    Effective date: 20090311

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: RPEO

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150327

    Year of fee payment: 18

    Ref country code: PT

    Payment date: 20150320

    Year of fee payment: 18

    Ref country code: CH

    Payment date: 20150325

    Year of fee payment: 18

    Ref country code: NL

    Payment date: 20150323

    Year of fee payment: 18

    Ref country code: FI

    Payment date: 20150326

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150331

    Year of fee payment: 18

    Ref country code: AT

    Payment date: 20150326

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20150330

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20150601

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150331

    Year of fee payment: 18

    Ref country code: BE

    Payment date: 20150330

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160331

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59811513

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160326

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 268410

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160326

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160401

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160327

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160926

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20161130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160331

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160326

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160331

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160401

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161001

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160326

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160326