EP0910927B1 - Process for coding and decoding stereophonic spectral values - Google Patents

Process for coding and decoding stereophonic spectral values Download PDF

Info

Publication number
EP0910927B1
EP0910927B1 EP97925036A EP97925036A EP0910927B1 EP 0910927 B1 EP0910927 B1 EP 0910927B1 EP 97925036 A EP97925036 A EP 97925036A EP 97925036 A EP97925036 A EP 97925036A EP 0910927 B1 EP0910927 B1 EP 0910927B1
Authority
EP
European Patent Office
Prior art keywords
code book
spectral values
stereo
stereo audio
audio spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97925036A
Other languages
German (de)
French (fr)
Other versions
EP0910927A1 (en
Inventor
Uwe Gbur
Martin Dietz
Bodo Teichmann
Karlheinz Brandenburg
Heinz GERHÄUSER
Jürgen HERRE
James Johnston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
AT&T Labs Inc
Nokia of America Corp
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Lucent Technologies Inc
AT&T Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7799742&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0910927(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Lucent Technologies Inc, AT&T Labs Inc filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0910927A1 publication Critical patent/EP0910927A1/en
Application granted granted Critical
Publication of EP0910927B1 publication Critical patent/EP0910927B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form

Definitions

  • the present invention relates to coding and Decoding stereo audio spectral values and in particular on indicating the fact that stereo intensity coding is active.
  • Modern audio coding processes or decoding processes that work according to the MPEG Layer 3 standard, for example able to control the data rate of digital audio signals for example to compress by a factor of twelve without the Deteriorate noticeably.
  • MS stereo method Middle-side
  • IS method intensity stereo method
  • the MS stereo method known to those skilled in the art essentially uses the redundancy of the two channels with each other , with a sum of the two channels and a difference of the two channels, which is then calculated as modified channel data for the left or right channel be transmitted.
  • the redundancy removed in the encoder between the two channels is again in the decoder added. This means that the MS stereo procedure is exactly reconstructive is.
  • the intensity stereo method mainly uses the stereo irrelevance.
  • stereo irrelevance is to be said that the spatial perception of the human hearing system from the frequency of the perceived Audio signals depends. At lower frequencies amount and phase information of both stereo signals assessed by the human auditory system, whereby the perception of high frequency components mainly on the analysis of the energy-time envelopes of both channels is justified. So that's the exact phase information of signals in both channels for spatial perception Not relevant. This property of human hearing is used to further reduce the stereo irrelevance of audio signals using the intensity stereo method to use.
  • FIG. 1 shows a basic illustration of the known IS method.
  • L i and R i here represent the stereo audio spectral values of channel L and channel R in any scale factor band.
  • the use of the IS method is only permitted above a certain IS cutoff frequency in order not to encode interference in the coded Introduce stereo audio spectral values. Therefore, the left and right channels must be coded separately in a range from 0 Hz to the IS cutoff frequency.
  • the determination of the IS cutoff frequency as such is carried out in a separate algorithm which does not form part of this invention. From this limit frequency, the encoder encodes the sum signal of the left channel 10 and the right channel 12, which is formed at the summation point 14.
  • the energy envelope i.e. the sum signal from left and right channel
  • Scaling information 16 for channel L and scaling information 18 for channel R for decoding necessary.
  • intensity stereo method as it is for example implemented in MPEG Layer 2 Transfer scale factors for the left and right channels.
  • the IS method in MPEG Layer 3 for IS-coded stereo audio spectral values Intensity direction information only in right channel are transmitted, with which then like it is set out later, the stereo audio spectral values be decoded again.
  • the scaling information 16 and 18 is called side information each in addition to the coded spectral values of channel L and channel R transmitted.
  • a decoder delivers on a decoded channel L '20 or on one decoded channel R '22 decoded audio signal values, where the scaling information 16 for the channel R and the Scaling information 18 for channel L with the decoded Stereo audio spectral values of the respective channels an L multiplier 24 or an R multiplier 26 multiplied by the originally encoded stereo audio spectral values to decode again.
  • Figure 2a shows a format of the encoded right channel R which for example with an audio coding method MPEG layer 3 is used. All other statements regarding the intensity stereo coding refer to the method according to the standard MPEG Layer 3.
  • the third line of FIG. 2a contains part of the page information 34 for the right channel.
  • This part of the side information 34 shown consists, on the one hand, of the scale factors skf for the area below the IS cut-off frequency and of direction information rinfo 36 for the area above the IS cut-off frequency 32.
  • This directional information is also used in the intensity stereo method to ensure a rough spatial resolution of the IS-coded frequency range.
  • This direction information rinfo 36 which is also called intensity positions (is_pos), is therefore transmitted in the right channel instead of the scale factors. It should be noted once again that below the IS cutoff frequency, the scale factors 34 corresponding to the scale factor bands 28 are still present in the right channel.
  • the intensity positions 36 indicate the perceived stereo imaging position (the ratio from left to right) of the signal source within the respective scale factor bands 28.
  • the format of the left channel is analog to the format of the right channel shown in FIG.
  • the combined spectrum I L i + R i can be found, and furthermore there is no direction information is_pos for the left channel, but normal scale factors.
  • the transition from the quantized sum spectral values not equal to zero to the zero values in the right channel can implicitly indicate the IS cut-off frequency to the decoder in the MPEG Layer 3 standard.
  • nint [x] represents the function "next integer", where E L and E R are the energies in the respective scale factor bands of the left and right channels.
  • the non-backward compatible NBC encoding method which is currently in the standardization process different from the standard audio coding process MPEG Layer 3 among other things, that in the bitstream syntax for this Do not just process exactly three regions from scale factor bands are allowed, but that so-called sections or "Sections" can be present in any number and have any number of scale factor bands can.
  • a section is now analogous to the previous one described method in MPEG Layer 3 to achieve a maximum redundancy reduction a corresponding Huffman table assigned from a plurality of such tables, which should then be used for decoding. In extreme cases for example, a section consists of only one single scale factor band. In practice, however, this will be tend not to occur because the necessary page information would be way too big.
  • the NBC process exist a total of 16 Huffman coding table numbers as 4-bit values be transmitted. This means that one of the twelve existing ones Coding table numbers can be selected.
  • the object of the present invention is methods for encoding or decoding stereo audio spectral values to create those for coding or decoding relevant information with minimal effort be signaled by side information.
  • This task is accomplished by a method of encoding stereo audio spectral values according to claim 1 and by a method for decoding partially using the intensity stereo method encoded stereo audio spectral values according to claim 2 solved.
  • the present invention is based on the finding that that additional coding table numbers that are not for reference used on coding tables, others for one Section can display relevant information.
  • the additional" Coding table numbers are the coding table numbers, that do not refer to coding tables.
  • By a 4-bit coding of twelve different coding table numbers are the numbers 13, 14 and 15 for an assignment with other information freely available to a certain extent.
  • two (No. 14 and No. 15) of the three (No. 13, No. 14 and No. 15) used additional coding table numbers, on the one hand to an intensity coding present in a section and on the other hand to the mutual phase position of IS-coded stereo audio spectral values in two stereo channels point out.
  • the unused additional coding table number 13 can be used to adapt to Huffman coding point out.
  • a method of encoding stereo audio spectral values and the method for decoding partially in the intensity stereo method encoded stereo audio spectral values according to a first embodiment of the present Invention use a novel presence signaling the intensity stereo coding within one Section.
  • the present invention are also 16 coding table numbers available. In contrast to the stand however, only the first 12 coding table numbers correspond to the technology (No. 1 to No. 12) real coding tables. With the help of the last and the penultimate coding table number it is now signaled that within the section, to which this coding table number is assigned, the Stereo intensity method is used.
  • FIG. 2b shows a format of the data for the right channel R in the presence of stereo intensity coding
  • the MPEG2-NBC method is used.
  • the difference to Fig. 2a, or to the MPEG Layer 3 method consists in that a user now has the flexibility, even above the IS cutoff frequency 32 is an intensity stereo coding of the Selective stereo audio spectral values for each section on or off.
  • the stereo audio spectral values above the IS cutoff frequency had IS coding for a section in any case, right up to the upper end of the spectral range IS encoded.
  • the new NBC process must now not for the entire spectral range above the IS limit activate the IS coding, but allows the same also switching off the IS coding, so this signals is. Since according to the bitstream syntax for a section anyway a coding table number must be transmitted, multiply themselves in the described signaling according to the invention not even the page information ("overhead").
  • the direction information 36 wherein these values themselves also a difference and Huffman coding be subjected.
  • the right channel contains encoded in IS Sections the sum signal of the left and the right channel. However, the sum signal is standardized in such a way that its energy within the respective scale factor bands after the IS decoding the energy of the left Channel corresponds. Therefore, the left channel in the case of a also used IS coding in the decoding device unchanged and does not have to be scaled back can be determined separately.
  • the stereo audio spectral values the right channel can now from the stereo audio spectral values using the left channel of the direction information is_pos 36 that in the page information of the right channel are calculated become.
  • the stereo intensity method results according to the prior art, two coherent signals for the left or right channel, which are only in its amplitude, i.e. Intensity, depending on the Distinguish directional information is_pos 36 (equations (4) and (5)).
  • R i denotes the back-calculated, ie decoded, stereo audio spectral values of the right channel.
  • sfb denotes the scale factor band 28 to which the direction information is_pos 36 is assigned.
  • L i denotes the stereo audio spectral values of the left channel, which are adopted unchanged in the decoder.
  • the coding table number 15 now indicates whether the first retroactive accounting rule to be used while the coding table number 14 indicates that the second retroactive accounting rule to be used, i.e. that the two channels are in phase opposition. It is obvious to experts that the expressions in-phase and in-phase in the sense this application are widely used. For example a phase discriminator can be provided, from one determined phase discriminator output value, for example Can be 90 °, determines that the signals are out of phase are the same with a phase difference of less 90 ° are considered to be in phase.
  • a section that consists of at least one scale factor band consists of the coding table numbers 14 or 15 the Phase relationship of the two channels to each other can be determined.
  • the Side information through IS and phase signaling are 8 bits for a section that consist of four bits for the section length and four bits for compile the coding table number 14 or 15. Should now encode an audio signal that is in scale factor bands its stereo audio spectral values make frequent changes in phase has, so according to the first embodiment with each reversal of the phase position of the scale factor band a new section ("section") for scale factor band be started.
  • a signal with a frequently changing So phasing creates a lot of sections since everyone Section by the coding table number assigned to it only either in-phase or out-of-phase of its stereo audio spectral values can display in the two channels.
  • An unfavorable signal therefore becomes a large number of sections and thus a large amount of page information to lead.
  • a second embodiment of the present invention allows a phase factor coding in scale factor band a section in which the intensity coding is active.
  • the present invention thus succeeds using an MS mask, which is described below, a scale factor band Phase position coding without an enlargement the number of sections and without an additional one Extra effort.
  • the MS scale factor information is not necessary because the MS coding must not be activated here.
  • the MS bit mask can be in this area can be used for other signaling. It is therefore possible to use the MS bit mask to detail the Display IS coding.
  • the information is exemplary embodiment in IS coding regarding the phase relationship of the channels in a section by means of the code table numbers 14 and 15.
  • the coding table numbers also indicate that in a Section the IS coding is active at all.
  • the second embodiment of the present invention MS bitmask used to scale scale bands in a section with different phases.
  • the MS bit mask now serves, in relation to the coding table number, which signals that an IS coding in one phase is active, the phase position of the individual scale factor bands in this section. Is a bit not set for a scale factor band in the MS bit mask (i.e. zero), they are identified by the coding table number for the section in which the scale factor band is located, Keep phase information displayed while with a set (i.e. one) bit in the MS bit mask for the scale factor band is given by the coding table number for the section where the scale factor band is located displayed phase position of the two channels is inverted. in the The principle is therefore an EXCLUSIVE-OR operation between the one indicated by the code table number Phase position and the MS bit mask.
  • phase relationships of the two stereo channels L and R calculated from the coding table number and MS bit mask in a scale factor band located in a section in which the IS coding is used are as follows: Coding table number (for a section) 15 15 14 14 MS - bit mask (for a scale scale band) 0 1 0 1 Phase position of L and R 0 180 ° 180 ° 0 ° Retroactive accounting regulation Eq. 7 Eq. 8th Eq. 8th Eq. 7
  • the described second exemplary embodiment of the present invention thus allows scale factor bands with stereo audio spectral values with different phase positions to occur in one section, as a result of which fewer sections than in the first exemplary embodiment have to be formed for coding. This means that less page information also has to be transmitted.
  • an adapted Huffman table can be generated.
  • the coding table number 13 has the coding device not to use any of the twelve fixed Huffman tables, but to use an adapted Huffman table that is not known a priori to the decoder. Then this is from Advantage if the signal statistics are not in a section ideally with one of the twelve predefined coding tables encoded, i.e. can be compressed. The coding is no longer restricted to the twelve fixed Huffman tables, but can optimally match the signal statistics Create and use the adapted table. The information via the adaptive coding table are used as additional page information transfer.
  • a decoding device needs this additional page information, to get out of the same ones when coding used Huffman adapted table to calculate the Huffman-encoded stereo audio spectral values are correct again to be able to decode.
  • FIG. 3 shows a simplified block diagram of a decoder, which is the method for decoding according to the present Can carry out invention.
  • a decoder Partly in the intensity stereo process encoded audio spectral values are inverse Quantizers 38 and 40 fed, the inverse Quantizer the quantization introduced during coding undo. Then the dequantized Stereo audio spectral values in an MS decoder 42.
  • This MS decoder 42 does the one introduced in the encoder Undo mid-side encoding.
  • An IS decoder 44 now uses the retroactive accounting rules described above (7) and (8) to restore the original stereo audio spectral values also for the IS-coded scale factor bands to obtain.
  • Respective reverse transformation devices for the left or right channel now lead one Conversion of the stereo audio spectral values into stereo audio time values L (t), R (t) through. It’s obvious to professionals that the reverse transformation devices 46 and 48 for example can be performed by an inverse MDCT.

Abstract

A method of coding stereo audio spectral values first carries out grouping of those values in scale factor bands, with which scale factors are associated. Sections are formed next, each comprising at least one scale factor band. The spectral values are coded within at least one section with a code book assigned to the section, out of a plurality of code books each with a code book number assigned to it, the number of the code book used being transmitted as side information to the coded stereo audio spectral values. At least one additional code book number is provided, which does not refer to a code book but shows information relevant to the section to which it is assigned. A method of decoding stereo audio spectral values which are partly coded by the intensity stereo process and which have side information uses the relevant information, showing the additional code book numbers, to cancel the existing coding of the stereo audio spectral values.

Description

Die vorliegende Erfindung bezieht sich auf das Codieren und Decodieren von Stereoaudiospektralwerten und insbesondere auf das Anzeigen der Tatsache, daß eine Stereo-Intensity-Codierung aktiv ist.The present invention relates to coding and Decoding stereo audio spectral values and in particular on indicating the fact that stereo intensity coding is active.

Moderne Audiocodierverfahren bzw. -Decodierverfahren, die beispielsweise nach dem Standard MPEG-Layer 3 arbeiten, sind in der Lage, die Datenrate von digitalen Audiosignalen beispielsweise um einen Faktor zwölf zu komprimieren, ohne die Qualität derselben merkbar zu verschlechtern.Modern audio coding processes or decoding processes that work according to the MPEG Layer 3 standard, for example able to control the data rate of digital audio signals for example to compress by a factor of twelve without the Deteriorate noticeably.

Neben einem hohen Codierungsgewinn in den einzelnen Kanälen, wie z.B. dem linken Kanal L und dem rechten Kanal R, wird im Stereofall auch die Redundanz und Irrelevanz der beiden Kanäle untereinander ausgenutzt. Bekannte und bereits verwendete Verfahren sind das sogenannte MS-Stereo-Verfahren (MS = Mitte-Seite) und das Intensity-Stereo-Verfahren (IS-Verfahren).In addition to a high coding gain in the individual channels, such as. the left channel L and the right channel R, is in Stereo case also the redundancy and irrelevance of the two channels exploited among each other. Known and already used Methods are the so-called MS stereo method (MS = Middle-side) and the intensity stereo method (IS method).

Das für Fachleute bekannte MS-Stereo-Verfahren nutzt im wesentlichen die Redundanz der beiden Kanäle untereinander aus, wobei dabei eine Summe der beiden Kanäle und eine Differenz der beiden Kanäle berechnet wird, welche dann jeweils als modifizierte Kanaldaten für den linken bzw. rechten Kanal übertragen werden. Die in dem Codierer entfernte Redundanz zwischen den beiden Kanälen wird im Decodierer wieder hinzugefügt. Das heißt, daß das MS-Stereoverfahren exakt rekonstruierend ist.The MS stereo method known to those skilled in the art essentially uses the redundancy of the two channels with each other , with a sum of the two channels and a difference of the two channels, which is then calculated as modified channel data for the left or right channel be transmitted. The redundancy removed in the encoder between the two channels is again in the decoder added. This means that the MS stereo procedure is exactly reconstructive is.

Im Gegensatz dazu nutzt das Intensity-Stereo-Verfahren vornehmlich die Stereoirrelevanz aus. Bezüglich der Stereoirrelevanz ist zu sagen, daß die räumliche Wahrnehmung des menschlichen Gehörsystems von der Frequenz der wahrgenommenen Audiosignale abhängt. Bei niedrigeren Frequenzen werden sowohl Betrags- als auch Phaseninformationen beider Stereosignale durch das menschliche Gehörsystem bewertet, wobei die Wahrnehmung von Hochfrequenzkomponenten hauptsächlich auf der Analyse der Energie-Zeit-Hüllkurven beider Kanäle begründet ist. Somit sind die exakten Phaseninformationen der Signale in beiden Kanälen für die räumliche Wahrnehmung nicht relevant. Diese Eigenschaft des menschlichen Gehörs wird verwendet, um die Stereoirrelevanz zur weiteren Datenreduktion von Audiosignalen durch das Intensity-Stereo-Verfahren zu verwenden.In contrast, the intensity stereo method mainly uses the stereo irrelevance. Regarding stereo irrelevance is to be said that the spatial perception of the human hearing system from the frequency of the perceived Audio signals depends. At lower frequencies amount and phase information of both stereo signals assessed by the human auditory system, whereby the perception of high frequency components mainly on the analysis of the energy-time envelopes of both channels is justified. So that's the exact phase information of signals in both channels for spatial perception Not relevant. This property of human hearing is used to further reduce the stereo irrelevance of audio signals using the intensity stereo method to use.

Da das Stereo-Intensity-Verfahren bei hohen Frequenzen keine genaue Ortsinformation aufzulösen vermag, ist es daher möglich, ab einer im Codierer bestimmten Intensity-Grenzfrequenz statt zweier Stereokanäle L, R eine gemeinsame Energieeinhüllende für beide Kanäle zu übertragen. Zusätzlich zu dieser gemeinsamen Energieeinhüllenden werden grob quantisierte Richtungsinformationen zusätzlich als Seiteninformationen übertragen.Since the stereo intensity method at high frequencies none is able to resolve exact location information, it is therefore possible from an intensity limit frequency determined in the encoder instead of two stereo channels L, R a common energy envelope to transmit for both channels. In addition to of these common energy envelopes are roughly quantized Direction information additionally as side information transfer.

Da also bei der Verwendung der Intensity-Stereo-Codierung ein Kanal nur teilweise übertragen wird, kann die Biteinsparung bis zu 50% betragen. Es ist jedoch zu beachten, daß das IS-Verfahren im Decodierer nicht exakt rekonstruierend ist.So because when using the intensity stereo coding a channel is only partially transmitted, the bit saving up to 50%. However, it should be noted that the IS method in the decoder is not exactly reconstructive.

Bei dem IS-Verfahren, das bisher in dem Standard MPEG-Layer 3 verwendet wird, wird über ein sogenanntes Modus_Erweiterungs_Bit (mode_extension_bit) angezeigt, daß das IS-Verfahren in einem Block von Stereoaudiospektralwerten überhaupt aktiv ist, wobei jeder Block ein ihm zugeordnetes Modus_Erweiterungs_Bit aufweist.In the IS process, which was previously in the standard MPEG layer 3 is used, is a so-called Modus_Erweiterungs_Bit (mode_extension_bit) indicated that the IS method in a block of stereo audio spectral values at all is active, with each block assigned to it Mode_extension_bit.

In Fig. 1 befindet sich eine Prinzipdarstellung des bekannten IS-Verfahrens. Stereoaudiospektralwerte für einen Kanal L 10 und für einen Kanal R 12 werden an einem Summationspunkt 14 summiert, um eine Energieeinhüllende I = Li + Ri der beiden Kanäle zu erhalten. Li und Ri stellen hier die Stereoaudiospektralwerte des Kanals L bzw. der Kanals R in einem beliebigen Skalenfaktorband dar. Wie bereits erwähnt wurde, ist die Verwendung des IS-Verfahrens nur oberhalb einer bestimmten IS-Grenzfrequenz erlaubt, um keine Codierstörungen in die codierten Stereoaudiospektralwerte einzuführen. Deshalb müssen in einem Bereich von 0 Hz bis zu der IS-Grenzfrequenz der linke und der rechte Kanal separat codiert werden. Die Bestimmung der IS-Grenzfrequenz als solche wird in einem separaten Algorithmus durchgeführt, der keinen Teil dieser Erfindung darstellt. Ab dieser Grenzfrequenz codiert der Codierer das Summensignal des linken Kanals 10 und des rechten Kanals 12, das an dem Summationspunkt 14 gebildet wird.1 shows a basic illustration of the known IS method. Stereo audio spectral values for a channel L 10 and for a channel R 12 are summed at a summation point 14 in order to obtain an energy envelope I = L i + R i of the two channels. L i and R i here represent the stereo audio spectral values of channel L and channel R in any scale factor band. As already mentioned, the use of the IS method is only permitted above a certain IS cutoff frequency in order not to encode interference in the coded Introduce stereo audio spectral values. Therefore, the left and right channels must be coded separately in a range from 0 Hz to the IS cutoff frequency. The determination of the IS cutoff frequency as such is carried out in a separate algorithm which does not form part of this invention. From this limit frequency, the encoder encodes the sum signal of the left channel 10 and the right channel 12, which is formed at the summation point 14.

Zusätzlich zu der Energieeinhüllenden, d.h. dem Summensignal aus linkem und rechtem Kanal, die beispielsweise in dem codierten linken Kanal übertragen werden kann, sind ferner Skalierungsinformationen 16 für den Kanal L sowie Skalierungsinformationen 18 für den Kanal R für eine Decodierung notwendig. Bei dem Intensity-Stereo-Verfahren, wie es beispielsweise im MPEG Layer 2 implementiert ist, werden Skalenfaktoren für den linken und den rechten Kanal übertragen. An dieser Stelle sei jedoch angemerkt, daß bei dem IS-Verfahren im MPEG Layer 3 für IS-codierte Stereoaudiospektralwerte Intensity-Richtungsinformationen lediglich im rechten Kanal übertragen werden, mit denen dann, wie es weiter hinten dargelegt ist, die Stereoaudiospektralwerte wieder decodiert werden.In addition to the energy envelope, i.e. the sum signal from left and right channel, for example in the coded left channel can be transmitted are also Scaling information 16 for channel L and scaling information 18 for channel R for decoding necessary. With the intensity stereo method as it is for example implemented in MPEG Layer 2 Transfer scale factors for the left and right channels. At this point, however, it should be noted that the IS method in MPEG Layer 3 for IS-coded stereo audio spectral values Intensity direction information only in right channel are transmitted, with which then like it is set out later, the stereo audio spectral values be decoded again.

Die Skalierungsinformationen 16 und 18 werden als Seiteninformationen jeweils zusätzlich zu den codierten Spektralwerten des Kanals L sowie des Kanals R übertragen. Ein Decodierer liefert an einem decodierten Kanal L' 20 bzw. an einem decodierten Kanal R' 22 decodierte Audiosignalwerte, wobei die Skalierungsinformationen 16 für den Kanal R sowie die Skalierungsinformationen 18 für den Kanal L mit den decodierten Stereoaudiospektralwerten der jeweiligen Kanäle an einem L-Multiplizierer 24 bzw. an einem R-Multiplizierer 26 multipliziert werden, um die ursprünglich codierten Stereoaudiospektralwerte wieder zu decodieren.The scaling information 16 and 18 is called side information each in addition to the coded spectral values of channel L and channel R transmitted. A decoder delivers on a decoded channel L '20 or on one decoded channel R '22 decoded audio signal values, where the scaling information 16 for the channel R and the Scaling information 18 for channel L with the decoded Stereo audio spectral values of the respective channels an L multiplier 24 or an R multiplier 26 multiplied by the originally encoded stereo audio spectral values to decode again.

Vor dem Anwenden einer IS-Codierung oberhalb einer bestimmten IS-Grenzfrequenz oder einer MS-Codierung unterhalb dieser Grenzfrequenz werden die Stereoaudiospektralwerte für jeden Kanal zu sogenannten Skalenfaktorbändern gruppiert. Diese Bänder sind an die Wahrnehmungseigenschaften des Gehörs angepaßt. Jedes dieser Bänder kann mit einem zusätzlichen Faktor, dem sogenannten Skalenfaktor, verstärkt werden, der als Seiteninformationen für den jeweiligen Kanal übertragen wird und der einen Teil der Skalierungsinformationen 16 sowie der Skalierungsinformationen 18 aus Fig. 1 darstellt. Diese Faktoren bewirken eine Formung eines durch eine Quantisierung eingeführten Störgeräusches, derart, daß dasselbe unter Berücksichtigung psychoakustischer Gesichtspunkte "maskiert" und damit unhörbar wird.Before applying IS coding above a certain one IS cutoff frequency or MS coding below this Cutoff frequency will be the stereo audio spectral values for each channel grouped into so-called scale factor bands. These bands are related to the perceptual properties of the hearing customized. Each of these bands can be equipped with an additional one Factor, the so-called scale factor, which is transmitted as page information for the respective channel and part of the scaling information 16 and the scaling information 18 from FIG. 1. These factors shape one a quantization of noise introduced in such a way that the same considering psychoacoustic considerations "masked" and thus becomes inaudible.

Fig. 2a zeigt ein Format des codierten rechten Kanals R, der beispielsweise bei einem Audiocodierverfahren MPEG-Layer 3 verwendet wird. Auch alle weiteren Ausführungen bezüglich der Intensity-Stereo-Codierung beziehen sich auf das Verfahren nach dem Standard MPEG Layer 3. In der ersten Zeile in Fig. 2a sind die einzelnen Skalenfaktorbänder 28, in die die Stereoaudiospektralwerte gruppiert sind, schematisch gezeigt. Die in Fig. 2a gezeichnete gleiche Bandbreite der Skalenfaktorbänder dient lediglich der Übersichtlichkeit der Darstellung und wird in der Praxis aufgrund der psychoakustischen Eigenschaften des Gehörsystems nicht auftreten.Figure 2a shows a format of the encoded right channel R which for example with an audio coding method MPEG layer 3 is used. All other statements regarding the intensity stereo coding refer to the method according to the standard MPEG Layer 3. In the first line in FIG. 2a are the individual scale factor bands 28 into which the stereo audio spectral values are grouped, schematically shown. The same bandwidth shown in Fig. 2a Scale factor bands only serve the clarity of the Representation and is in practice due to the psychoacoustic Features of the auditory system do not occur.

In der zweiten Zeile von Fig. 2a befinden sich codierte Stereoaudiospektralwerte sp, die unterhalb einer IS-Grenzfrequenz 32 ungleich Null sind, wobei die Stereoaudiospektralwerte in dem rechten Kanal über der IS-Grenzfrequenz, wie bereits erwähnt, zu Null (Zero_Part) gesetzt werden nsp (nsp = Nullspektrum). Coded stereo audio spectral values are in the second line of FIG. 2a sp, which is below an IS cutoff frequency 32 are non-zero, with the stereo audio spectral values in the right channel above the IS cutoff frequency, like already mentioned, set to zero (Zero_Part) nsp (nsp = Zero spectrum).

In der dritten Zeile von Fig. 2a befinden sich ein Teil der Seiteninformationen 34 für den rechten Kanal. Dieser gezeigte Teil der Seiteninformationen 34 besteht zum einen aus den Skalenfaktoren skf für den Bereich unterhalb der IS-Grenzfrequenz sowie aus Richtungsinformationen rinfo 36 für den Bereich über der IS-Grenzfrequenz 32. Diese Richtungsinformationen werden verwendet, um bei dem Intensity-Stereo-Verfahren noch eine grobe Ortsauflösung des IS-codierten Frequenzbereichs zu gewährleisten. Diese Richtungsinformationen rinfo 36, die auch Intensity-Positionen (is_pos) genannt werden, werden also anstelle der Skalenfaktoren im rechten Kanal übertragen. Es sei noch einmal angemerkt, daß unterhalb der IS-Grenzfrequenz im rechten Kanal nach wie vor die den Skalenfaktorbändern 28 entsprechenden Skalenfaktoren 34 vorhanden sind. Die Intensity-Positionen 36 zeigen die wahrgenommene Stereoabbildungsposition (das Verhältnis von links zu rechts) der Signalquelle innerhalb der jeweiligen Skalenfaktorbänder 28 an. In jedem Skalenfaktorband 28 über der IS-Grenzfrequenz werden die decodierten Werte der übertragenen Stereoaudiospektralwerte nach dem Verfahren MPEG Layer 3 durch die folgenden Skalierungsfaktoren kL für den linken Kanal und kR für den rechten Kanal skaliert: kL = is_ratio / (1+is_ratio) und kR = 1 / (1+is_ratio) Die Gleichung für is_ratio lautet folgendermaßen: is_ratio = tan(is_pos·π/12) The third line of FIG. 2a contains part of the page information 34 for the right channel. This part of the side information 34 shown consists, on the one hand, of the scale factors skf for the area below the IS cut-off frequency and of direction information rinfo 36 for the area above the IS cut-off frequency 32. This directional information is also used in the intensity stereo method to ensure a rough spatial resolution of the IS-coded frequency range. This direction information rinfo 36, which is also called intensity positions (is_pos), is therefore transmitted in the right channel instead of the scale factors. It should be noted once again that below the IS cutoff frequency, the scale factors 34 corresponding to the scale factor bands 28 are still present in the right channel. The intensity positions 36 indicate the perceived stereo imaging position (the ratio from left to right) of the signal source within the respective scale factor bands 28. In each scale factor band 28 above the IS cutoff frequency, the decoded values of the transmitted stereo audio spectral values are scaled according to the MPEG Layer 3 method by the following scaling factors k L for the left channel and k R for the right channel: k L = is_ratio / (1 + is_ratio) and k R = 1 / (1 + is_ratio) The equation for is_ratio is as follows: is_ratio = tan (is_pos · π / 12)

Der Wert is_pos ist ein mit 3 Bit quantisierter Wert, wobei nur die Werte von 0 bis 6 gültige Positionswerte darstellen. Aus den folgenden beiden Gleichungen können aus dem I-Signal (I = Li + Ri) der linke und der rechte Kanal wieder zurückgerechnet werden: Ri = I · is_ratio/(1+is_ratio) = I · kL Li = I · 1/(1+is_ratio) = I · kR Ri und Li stellen die Intensity-Stereo-decodierten Stereoaudiospektralwerte dar. An dieser Stelle sei angemerkt, daß das Format des linken Kanals zu dem in Fig. 2a gezeigten Format des rechten Kanals analog ist, wobei jedoch im linken Kanal oberhalb der IS-Grenzfrequenz 32 statt dem Nullspektrum das kombinierte Spektrum I = Li + Ri zu finden ist, und wobei ferner keine Richtungsinformationen is_pos für den linken Kanal sondern gewöhnliche Skalenfaktoren vorhanden sind. Der Übergang von den quantisierten Summenspektralwerten ungleich Null zu den Nullwerten im rechten Kanal kann dem Decodierer beim Standard MPEG Layer 3 implizit die IS-Grenzfrequenz anzeigen.The value is_pos is a value quantized with 3 bits, whereby only the values from 0 to 6 represent valid position values. From the following two equations, the left and right channels can be calculated back from the I signal (I = L i + R i ): R i = I · is_ratio / (1 + is_ratio) = I · k L L i = I · 1 / (1 + is_ratio) = I · k R R i and L i represent the intensity stereo decoded stereo audio spectral values. At this point it should be noted that the format of the left channel is analog to the format of the right channel shown in FIG. 2a, but in the left channel above the IS- Cutoff frequency 32, instead of the zero spectrum, the combined spectrum I = L i + R i can be found, and furthermore there is no direction information is_pos for the left channel, but normal scale factors. The transition from the quantized sum spectral values not equal to zero to the zero values in the right channel can implicitly indicate the IS cut-off frequency to the decoder in the MPEG Layer 3 standard.

Im Codierer wird der übertragene Kanal L also als die Summe des linken und des rechten Kanals berechnet, wobei die übertragenen Richtungsinformationen durch folgende Gleichung bestimmt werden können: is_pos = nint[arctan(√EL/√ER)·12/π] In the encoder, the transmitted channel L is thus calculated as the sum of the left and right channels, and the transmitted direction information can be determined using the following equation: is_pos = nint [arctan (√E L / √E R ) · 12 / π]

Dabei stellt die Funktion nint[x] die Funktion "nächste Ganzzahl" dar, wobei EL und ER die Energien in den jeweiligen Skalenfaktorbändern des linken bzw. rechten Kanals sind. Diese Formulierung des Codierers/Decodierers führt zu einer annähernden Rekonstruktion von Signalen in dem linken und in dem rechten Kanal.The function nint [x] represents the function "next integer", where E L and E R are the energies in the respective scale factor bands of the left and right channels. This formulation of the encoder / decoder leads to an approximate reconstruction of signals in the left and in the right channel.

Wie bereits erwähnt wurde, werden bei bekannten Audiocodierverfahren die Stereoaudiospektralwerte in die Skalenfaktorbänder gruppiert, wobei diese Bänder an die Wahrnehmungseigenschaften des Gehörs angepaßt sind. Bei dem Audiocodierverfahren nach dem Standard MPEG-Layer 3 werden diese Skalenfaktorbänder nun in genau drei Regionen unterteilt. Damit sollen nun Bereiche mit gleicher Signalstatistik gruppiert werden. Dies ist zu der nun stattfindenden Redundanzreduktion mittels der bekannten Huffman-Codierung vorteilhaft. Für jede dieser Regionen aus Skalenfaktorbändern 28 wird nun eine einer Mehrzahl von Huffman-Tabellen ausgewählt, bei der der Gewinn durch die Redundanzreduktion mittels der Huffman-Codierung mittels der ausgewählten Huffman-Tabelle am größten ist. Diese Tabelle wird in dem Bitstrom der codierten Daten mittels eines 5-Bit-Wertes für jede Region angezeigt. Es existieren 30 verschiedene Tabellen, wobei die Tabellen 4 und 14 nicht belegt sind.As already mentioned, known audio coding methods the stereo audio spectral values into the scale factor bands grouped, these tapes attached to the perceptual properties the hearing are adjusted. With the audio coding method according to the standard MPEG layer 3, these are scale factor bands now divided into exactly three regions. In order to Areas with the same signal statistics should now be grouped become. This is due to the redundancy reduction now taking place using the known Huffman coding advantageous. For each of these regions from scale factor bands 28 is now selected one of a plurality of Huffman tables in which the gain through redundancy reduction using Huffman coding using the selected Huffman table on greatest is. This table is encoded in the bit stream Data is displayed using a 5-bit value for each region. There are 30 different tables, the Tables 4 and 14 are not used.

Das nicht-rückwärts-kompatible NBC-Codierverfahren, welches sich gerade in der Standardisierung befindet, unterscheidet sich von dem Standardaudiocodierverfahren MPEG Layer 3 nun unter anderem darin, daß in der Bitstromsyntax für dieses Verfahren nicht nur genau drei Regionen aus Skalenfaktorbändern erlaubt sind, sondern daß sogenannte Abschnitte oder "sections" in beliebiger Anzahl vorhanden sein können und eine beliebige Anzahl von Skalenfaktorbändern aufweisen können. Einem Abschnitt wird nun in Analogie zum vorher beschriebenen Verfahren im MPEG Layer 3 zum Erreichen einer maximalen Redundanzreduktion eine dementsprechende Huffman-Tabelle aus einer Mehrzahl derartiger Tabellen zugeordnet, welche dann zur Decodierung verwendet werden soll. Im Extremfall besteht ein Abschnitt beispielsweise nur aus einem einzigen Skalenfaktorband. In der Praxis wird dies jedoch eher nicht auftreten, da die dann notwendigen Seiteninformationen viel zu groß sein würden. Beim NBC-Verfahren existieren insgesamt 16 Huffman-Codiertabellennummern, die als 4-Bit-Werte übertragen werden. Damit kann eine der zwölf existierenden Codiertabellennummern ausgewählt werden.The non-backward compatible NBC encoding method, which is currently in the standardization process different from the standard audio coding process MPEG Layer 3 among other things, that in the bitstream syntax for this Do not just process exactly three regions from scale factor bands are allowed, but that so-called sections or "Sections" can be present in any number and have any number of scale factor bands can. A section is now analogous to the previous one described method in MPEG Layer 3 to achieve a maximum redundancy reduction a corresponding Huffman table assigned from a plurality of such tables, which should then be used for decoding. In extreme cases for example, a section consists of only one single scale factor band. In practice, however, this will be tend not to occur because the necessary page information would be way too big. In the NBC process exist a total of 16 Huffman coding table numbers as 4-bit values be transmitted. This means that one of the twelve existing ones Coding table numbers can be selected.

Die Aufgabe der vorliegenden Erfindung besteht darin, Verfahren zum Codieren bzw. Decodieren von Stereoaudiospektralwerten zu schaffen, bei denen für die Codierung bzw. Decodierung relevante Informationen mit einem minimalen Aufwand an Seiteninformationen signalisiert werden. The object of the present invention is methods for encoding or decoding stereo audio spectral values to create those for coding or decoding relevant information with minimal effort be signaled by side information.

Diese Aufgabe wird durch ein Verfahren zum Codieren von Stereoaudiospektralwerten gemäß Anspruch 1 sowie durch ein Verfahren zum Decodieren von teilweise im Intensity-Stereo-Verfahren codierten Stereoaudiospektralwerten gemäß Anspruch 2 gelöst.This task is accomplished by a method of encoding stereo audio spectral values according to claim 1 and by a method for decoding partially using the intensity stereo method encoded stereo audio spectral values according to claim 2 solved.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß zusätzliche Codiertabellennummern, die nicht zum Verweisen auf Codiertabellen verwendet werden, andere für einen Abschnitt relevante Informationen anzeigen können. Die "zusätzlichen" Codiertabellennummern sind die Codiertabellennummern, die nicht auf Codiertabellen verweisen. Durch eine 4-Bit-Codierung von zwölf verschiedenen Codiertabellennummern sind die Nummern 13, 14 und 15 für eine Belegung mit anderen Informationen gewissermaßen frei verfügbar. Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung werden zwei (Nr. 14 und Nr. 15) der drei (Nr. 13, Nr. 14 und Nr. 15) zusätzlichen Codiertabellennummern verwendet, um zum einen auf eine in einem Abschnitt vorhandene Intensity-Codierung und zum anderen auf die gegenseitige Phasenlage von IS-codierten Stereoaudiospektralwerten in zwei Stereokanälen hinzuweisen.The present invention is based on the finding that that additional coding table numbers that are not for reference used on coding tables, others for one Section can display relevant information. The additional" Coding table numbers are the coding table numbers, that do not refer to coding tables. By a 4-bit coding of twelve different coding table numbers are the numbers 13, 14 and 15 for an assignment with other information freely available to a certain extent. At a preferred embodiment of the present invention two (No. 14 and No. 15) of the three (No. 13, No. 14 and No. 15) used additional coding table numbers, on the one hand to an intensity coding present in a section and on the other hand to the mutual phase position of IS-coded stereo audio spectral values in two stereo channels point out.

Die noch nicht verwendete zusätzliche Codiertabellennummer 13 kann verwendet werden, um auf eine adaptive Huffman-Codierung hinzuweisen.The unused additional coding table number 13 can be used to adapt to Huffman coding point out.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen erläutert. Es zeigen:

Fig. 1
den Signalfluß bei einem Codierungs/Decodierungs-Schema nach dem Intensity-Stereo-Verfahren;
Fig. 2a
ein Format der Daten bei Vorliegen einer Stereo-Intensity-Codierung für den rechten Kanal für den Standard MPEG Layer 3;
Fig. 2b
ein Format der Daten bei Vorliegen einer Stereo-Intensity-Codierung für den rechten Kanal für das MPEG-NBC-Verfahren; und
Fig. 3
ein schematisches Blockschaltbild eines Decodierers, der die vorliegende Erfindung ausführt.
Preferred embodiments of the present invention are explained below with reference to the accompanying drawings. Show it:
Fig. 1
the signal flow in a coding / decoding scheme according to the intensity stereo method;
Fig. 2a
a format of the data in the presence of stereo intensity coding for the right channel for the standard MPEG Layer 3;
Fig. 2b
a format of the data in the presence of stereo intensity coding for the right channel for the MPEG-NBC method; and
Fig. 3
is a schematic block diagram of a decoder which carries out the present invention.

Ein Verfahren zum Codieren von Stereoaudiospektralwerten sowie das Verfahren zum Decodieren von teilweise im Intensity-Stereo-Verfahren codierten Stereoaudiospektralwerten gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung verwenden eine neuartige Signalisierung des Vorhandenseins der Intensity-Stereo-Codierung innerhalb eines Abschnitts. Gemäß der vorliegenden Erfindung sind ebenfalls 16 Codiertabellennummern vorhanden. Im Gegensatz zum Stand der Technik entsprechen jedoch lediglich die ersten 12 Codiertabellennummern (Nr. 1 bis Nr. 12) wirklichen Codiertabellen. Mit Hilfe der letzten und der vorletzten Codiertabellennummer wird nun signalisiert, daß innerhalb des Abschnitts, dem diese Codiertabellennummer zugeordnet ist, das Stereo-Intensity-Verfahren eingesetzt wird.A method of encoding stereo audio spectral values and the method for decoding partially in the intensity stereo method encoded stereo audio spectral values according to a first embodiment of the present Invention use a novel presence signaling the intensity stereo coding within one Section. According to the present invention are also 16 coding table numbers available. In contrast to the stand however, only the first 12 coding table numbers correspond to the technology (No. 1 to No. 12) real coding tables. With the help of the last and the penultimate coding table number it is now signaled that within the section, to which this coding table number is assigned, the Stereo intensity method is used.

Fig. 2b zeigt ein Format der Daten für den rechten Kanal R bei Vorliegen einer Stereo-Intensity-Codierung, wobei das MPEG2-NBC-Verfahren verwendet wird. Der Unterschied zu Fig. 2a, bzw. zu dem Verfahren MPEG Layer 3, besteht darin, daß ein Anwender jetzt die Flexibilität besitzt, auch oberhalb der IS-Grenzfrequenz 32 eine Intensity-Stereo-Codierung der Stereoaudiospektralwerte für jeweils einen Abschnitt selektiv ein- bzw. auszuschalten. Damit ist die IS-Grenzfrequenz im Vergleich zum MPEG Layer 3 eigentlich keine richtige Grenzfrequenz mehr, da beim NBC-Verfahren auch oberhalb der IS-Grenzfrequenz die IS-Codierung wieder aus- bzw. angeschaltet werden kann. Dies war beim Layer 3 nicht möglich, d.h. die Stereoaudiospektralwerte über der IS-Grenzfrequenz mußten bei Vorliegen einer IS-Codierung für einen Abschnitt auf jeden Fall auch ganz bis zum oberen Ende des Spektralbereichs IS-codiert werden. Das neue NBC-Verfahren muß nun nicht für den gesamten Spektralbereich oberhalb der IS-Grenze die IS-Codierung aktivieren, sondern dasselbe erlaubt auch das Ausschalten der IS-Codierung, so dies signalisiert ist. Da nach der Bitstromsyntax für einen Abschnitt ohnehin eine Codiertabellennummer übertragen werden muß, vermehren sich bei der beschriebenen erfindungsgemäßen Signalisierung auch nicht die Seiteninformationen ("overhead").2b shows a format of the data for the right channel R in the presence of stereo intensity coding, the MPEG2-NBC method is used. The difference to Fig. 2a, or to the MPEG Layer 3 method, consists in that a user now has the flexibility, even above the IS cutoff frequency 32 is an intensity stereo coding of the Selective stereo audio spectral values for each section on or off. This is the IS cutoff frequency compared to MPEG Layer 3 actually not a real one Cutoff frequency more, because with the NBC method also above IS cutoff frequency, the IS coding is switched on or off again can be. This was not possible with Layer 3, i.e. the stereo audio spectral values above the IS cutoff frequency had IS coding for a section in any case, right up to the upper end of the spectral range IS encoded. The new NBC process must now not for the entire spectral range above the IS limit activate the IS coding, but allows the same also switching off the IS coding, so this signals is. Since according to the bitstream syntax for a section anyway a coding table number must be transmitted, multiply themselves in the described signaling according to the invention not even the page information ("overhead").

Die in einem Abschnitt mit IS-Codierung für den rechten Kanal übertragenen Skalenfaktoren stellen nun ebenfalls analog zum Stand der Technik die Richtungsinformationen 36 dar, wobei diese Werte selbst ebenfalls einer Differenz- und Huffman-Codierung unterzogen werden. Im rechten Kanal stehen, wie es bereits erwähnt wurde, in den Skalenfaktorbändern die nicht IS-codiert sind, keine Stereoaudiospektralwerte, sondern ein Nullspektrum. Der linke Kanal enthält in IS-codierten Abschnitten das Summensignal des linken und des rechten Kanals. Das Summensignal wird jedoch derart normiert, daß seine Energie innerhalb der jeweiligen Skalenfaktorbänder nach der IS-Decodierung der Energie des linken Kanals entspricht. Daher kann der linke Kanal im Falle einer verwendeten IS-Codierung in der Decodiervorrichtung auch unverändert übernommen werden und muß nicht durch eine Rückskalierungsvorschrift extra ermittelt werden. Die Stereoaudiospektralwerte des rechten Kanals können nun aus den Stereoaudiospektralwerten des linken Kanals unter Verwendung der Richtungsinformationen is_pos 36, die in den Seiteninformationen des rechten Kanals vorhanden sind, zurückgerechnet werden.That in a section with IS coding for the right channel transferred scale factors are now also analog the state of the art the direction information 36, wherein these values themselves also a difference and Huffman coding be subjected. Standing in the right channel as already mentioned, in the scale factor bands the are not IS coded, no stereo audio spectral values, but a zero spectrum. The left channel contains encoded in IS Sections the sum signal of the left and the right channel. However, the sum signal is standardized in such a way that its energy within the respective scale factor bands after the IS decoding the energy of the left Channel corresponds. Therefore, the left channel in the case of a also used IS coding in the decoding device unchanged and does not have to be scaled back can be determined separately. The stereo audio spectral values the right channel can now from the stereo audio spectral values using the left channel of the direction information is_pos 36 that in the page information of the right channel are calculated become.

Wie eingangs beschrieben wurde, ergibt das Stereo-Intensity-Verfahren gemäß dem Stand der Technik zwei kohärente Signale für den linken bzw. rechten Kanal, die sich lediglich in ihrer Amplitude, d.h. Intensität, in Abhängigkeit von den Richtungsinformationen is_pos 36 unterscheiden (Gleichungen (4) und (5)). As described at the beginning, the stereo intensity method results according to the prior art, two coherent signals for the left or right channel, which are only in its amplitude, i.e. Intensity, depending on the Distinguish directional information is_pos 36 (equations (4) and (5)).

Bei der vorliegenden Erfindung kann nun, da das Vorhandensein der Stereo-Intensitäts-Codierung mittels zwei "unwirklichen" Codiertabellennummern signalisiert wird, eine Phasenbeziehung der beiden Kanäle zueinander einbezogen werden. Weisen die Kanäle die gleiche Phasenlage auf, so lautet die in dem Decodierer auszuführende erfindungsgemäße Rückrechnungsvorschrift folgendermaßen: Ri = 0,5 ^ (0,25 · is_pos(sfb)) · Li, während im Falle einer Gegenphasigkeit das Spektrum mit -1 multipliziert wird, wodurch sich für die Berechnung des rechten Kanals folgende Gleichung ergibt: Ri = (-1) · 0,5 ^ (0,25 · is_pos(sfb)) · Li. Ri bezeichnet in den beiden vorherigen Gleichungen die rückgerechneten, d.h. decodierten, Stereoaudiospektralwerte des rechten Kanals. sfb bezeichnet das Skalenfaktorband 28, dem die Richtungsinformationen is_pos 36 zugeordnet sind. Li bezeichnet die Stereoaudiospektralwerte des linken Kanals, die im Decoder unverändert übernommen werden.In the present invention, since the presence of the stereo intensity coding is signaled by means of two "unreal" coding table numbers, a phase relationship of the two channels to one another can be included. If the channels have the same phase position, the recalculation rule according to the invention to be carried out in the decoder is as follows: R i = 0.5 ^ (0.25is_pos (sfb)) L i , while in the case of an opposite phase, the spectrum is multiplied by -1, which results in the following equation for the calculation of the right channel: R i = (-1) * 0.5 ^ (0.25 * is_pos (sfb)) * Li. In the two previous equations, R i denotes the back-calculated, ie decoded, stereo audio spectral values of the right channel. sfb denotes the scale factor band 28 to which the direction information is_pos 36 is assigned. L i denotes the stereo audio spectral values of the left channel, which are adopted unchanged in the decoder.

Die Codiertabellennummer 15 zeigt nun an, ob die erste Rückrechnungsvorschrift verwendet werden soll, während die Codiertabellennummer 14 anzeigt, daß die zweite Rückrechnungsvorschrift verwendet werden soll, d.h. daß die beiden Kanäle gegenphasig sind. Für Fachleute ist es offensichtlich, daß die Ausdrücke Gleichphasigkeit und Gegenphasigkeit im Sinne dieser Anmeldung breit verwendet werden. So kann beispielsweise ein Phasendiskriminator vorgesehen sein, der ab einem bestimmten Phasendiskriminatorausgangswert, der beispielsweise 90° sein kann, bestimmt, daß die Signale gegenphasig sind, wobei dieselben bei einem Phasenunterschied von kleiner 90° als gleichphasig angesehen werden.The coding table number 15 now indicates whether the first retroactive accounting rule to be used while the coding table number 14 indicates that the second retroactive accounting rule to be used, i.e. that the two channels are in phase opposition. It is obvious to experts that the expressions in-phase and in-phase in the sense this application are widely used. For example a phase discriminator can be provided, from one determined phase discriminator output value, for example Can be 90 °, determines that the signals are out of phase are the same with a phase difference of less 90 ° are considered to be in phase.

Bei dem beschriebenen ersten Ausführungsbeispiel kann also für einen Abschnitt, der aus mindestens einem Skalenfaktorband besteht, durch die Codiertabellennummern 14 oder 15 die Phasenlage der beiden Kanäle zueinander bestimmt werden. Die Seiteninformationen, die durch IS- und Phasensignalisierung verursacht werden, betragen für einen Abschnitt 8 Bit, die sich aus vier Bit für die Abschnitts länge und vier Bit für die Codiertabellennummer 14 oder 15 zusammensetzen. Soll nun ein Audiosignal codiert werden, das in Skalenfaktorbändern seiner Stereoaudiospektralwerte häufige Änderungen der Phasenlage aufweist, so muß gemäß dem ersten Ausführungsbeispiel bei jeder Umkehrung der Phasenlage von Skalenfaktorband zu Skalenfaktorband ein neuer Abschnitt ("section") begonnen werden. Ein Signal mit einer häufig wechselnden Phasenlage erzeugt also sehr viele Abschnitte, da jeder Abschnitt durch die ihm zugeordnete Codiertabellennummer nur entweder Gleichphasigkeit oder Gegenphasigkeit seiner Stereoaudiospektralwerte in den beiden Kanälen anzeigen kann. Ein ungünstiges Signal wird demnach zu einer großen Anzahl von Abschnitten und damit zu einer großen Menge an Seiteninformationen führen.In the described first exemplary embodiment, therefore for a section that consists of at least one scale factor band consists of the coding table numbers 14 or 15 the Phase relationship of the two channels to each other can be determined. The Side information through IS and phase signaling are 8 bits for a section that consist of four bits for the section length and four bits for compile the coding table number 14 or 15. Should now encode an audio signal that is in scale factor bands its stereo audio spectral values make frequent changes in phase has, so according to the first embodiment with each reversal of the phase position of the scale factor band a new section ("section") for scale factor band be started. A signal with a frequently changing So phasing creates a lot of sections since everyone Section by the coding table number assigned to it only either in-phase or out-of-phase of its stereo audio spectral values can display in the two channels. An unfavorable signal therefore becomes a large number of sections and thus a large amount of page information to lead.

Ein zweites Ausführungsbeispiel der vorliegenden Erfindung erlaubt eine skalenfaktorbandweise Phasenlagencodierung in einem Abschnitt, in dem die Intensity-Codierung aktiv ist. Durch dieses Verfahren gemäß dem zweiten Ausführungsbeispiel der vorliegenden Erfindung gelingt damit unter Verwendung einer MS-Maske, die nachfolgend beschrieben wird, eine skalenfaktorbandweise Phasenlagencodierung ohne eine Vergrößerung der Anzahl von Abschnitten sowie ohne einen zusätzlichen Mehraufwand.A second embodiment of the present invention allows a phase factor coding in scale factor band a section in which the intensity coding is active. By this method according to the second embodiment the present invention thus succeeds using an MS mask, which is described below, a scale factor band Phase position coding without an enlargement the number of sections and without an additional one Extra effort.

Für Fachleute ist es offensichtlich, daß sich das Mitte-Seite-Verfahren und das Intensity-Stereo-Verfahren in einem Skalenfaktorband gegenseitig ausschließen. Diese beiden Verfahren sind also orthogonal.It is obvious to those skilled in the art that the middle-side procedure and the intensity stereo method in one Exclude the scale factor band from each other. These two procedures are therefore orthogonal.

Wird eine MS-Codierung von Stereoaudiospektralwerten in einem Bitstrom verwendet, so wird ein Signalisierungsbit in den Seiteninformationen entsprechend eingestellt sein, das die MS-Codierung global anschaltet. Ein Setzten dieses Bits besagt, daß eine MS-Bitmaske übertragen wird, mit der es möglich ist, eine MS-Codierung selektiv für jedes Skalenfaktorband (scfbd) an- oder auszuschalten. Für jedes Skalenfaktorband ist in der MS-Bitmaske ein Bit reserviert, weshalb die Länge der Bitmaske der Skalenfaktorbandanzahl entspricht.Is an MS coding of stereo audio spectral values in one Bit stream is used, so a signaling bit in according to the page information, the globally turn on the MS coding. Setting this bit states that an MS bit mask is transmitted with which it MS coding is possible selectively for each scale factor band (scfbd) on or off. For each scale factor band is a bit reserved in the MS bit mask, which is why the length of the bit mask corresponds to the number of scale factor bands.

In den Skalenfaktorbändern, in denen IS aktiv ist, ist die MS-Skalenfaktorinformation nicht nötig, da die MS-Codierung hier nicht aktiviert sein darf. Die MS-Bitmaske kann in diesem Bereich für andere Signalisierungen verwendet werden. Es ist also möglich, mittels der MS-Bitmaske Details der IS-Codierung anzuzeigen. In Übereinstimmung mit dem ersten Ausführungsbeispiel werden bei der IS-Codierung die Informationen bezüglich der Phasenlage der Kanäle in einem Abschnitt mittels der Codiertabellennummern 14 und 15 angegeben. Die Codiertabellennummern zeigen ferner an, daß in einem Abschnitt die IS-Codierung überhaupt aktiv ist.In the scale factor bands in which IS is active, the MS scale factor information is not necessary because the MS coding must not be activated here. The MS bit mask can be in this area can be used for other signaling. It is therefore possible to use the MS bit mask to detail the Display IS coding. In accordance with the first The information is exemplary embodiment in IS coding regarding the phase relationship of the channels in a section by means of the code table numbers 14 and 15. The coding table numbers also indicate that in a Section the IS coding is active at all.

In Abweichung vom ersten Ausführungsbeispiel wird bei dem zweiten Ausführungsbeispiel der vorliegenden Erfindung die MS-Bitmaske dafür verwendet, um in einem Abschnitt Skalenfaktorbänder mit unterschiedlichen Phasenlagen zuzulassen. Die MS-Bitmaske dient nun dazu, in Relation zu der Codiertabellennummer, die signalisiert, daß eine IS-Codierung in einem Abschnitt aktiv ist, die Phasenlage der einzelnen Skalenfaktorbänder in diesem Abschnitt anzuzeigen. Ist ein Bit in der MS-Bitmaske für ein Skalenfaktorband nicht gesetzt (d.h. Null), so werden die durch die Codiertabellennummer für den Abschnitt, in dem sich das Skalenfaktorband befindet, angezeigten Phaseninformationen beibehalten, während bei einem gesetzten (d.h. Eins-) Bit in der MS-Bitmaske für das Skalenfaktorband die durch die Codiertabellennummer für den Abschnitt, in dem sich das Skalenfaktorband befindet, angezeigte Phasenlage der beiden Kanäle invertiert wird. Im Prinzip handelt es sich also um eine EXKLUSIV-ODER-Verknüpfung zwischen der durch die Codiertabellennummer angezeigten Phasenlage und der MS-Bitmaske.In deviation from the first embodiment, the second embodiment of the present invention MS bitmask used to scale scale bands in a section with different phases. The MS bit mask now serves, in relation to the coding table number, which signals that an IS coding in one phase is active, the phase position of the individual scale factor bands in this section. Is a bit not set for a scale factor band in the MS bit mask (i.e. zero), they are identified by the coding table number for the section in which the scale factor band is located, Keep phase information displayed while with a set (i.e. one) bit in the MS bit mask for the scale factor band is given by the coding table number for the section where the scale factor band is located displayed phase position of the two channels is inverted. in the The principle is therefore an EXCLUSIVE-OR operation between the one indicated by the code table number Phase position and the MS bit mask.

Im einzelnen lauten die aus Codiertabellennummer und MS-Bitmaske berechneten Phasenbeziehungen der beiden Stereokanäle L und R in einem Skalenfaktorband, das sich in einem Abschnitt befindet, in dem die IS-Codierung verwendet wird, folgendermaßen: Codiertabellennummer (für einen Abschnitt) 15 15 14 14 MS - Bitmaske (für ein Skalenf.-band) 0 1 0 1 Phasenlage von L und R 0 180° 180° Rückrechnungsvorschrift Gl. 7 Gl. 8 Gl. 8 Gl. 7 Specifically, the phase relationships of the two stereo channels L and R calculated from the coding table number and MS bit mask in a scale factor band located in a section in which the IS coding is used are as follows: Coding table number (for a section) 15 15 14 14 MS - bit mask (for a scale scale band) 0 1 0 1 Phase position of L and R 0 180 ° 180 ° 0 ° Retroactive accounting regulation Eq. 7 Eq. 8th Eq. 8th Eq. 7

Das beschriebene zweite Ausführungsbeispiel der vorliegenden Erfindung erlaubt also das Auftreten von Skalenfaktorbändern mit Stereoaudiospektralwerten mit unterschiedlichen Phasenlagen in einem Abschnitt, wodurch weniger Abschnitte als beim ersten Ausführungsbeispiel zum Codieren gebildet werden müssen. Damit müssen auch weniger Seiteninformationen übertragen werden.The described second exemplary embodiment of the present invention thus allows scale factor bands with stereo audio spectral values with different phase positions to occur in one section, as a result of which fewer sections than in the first exemplary embodiment have to be formed for coding. This means that less page information also has to be transmitted.

In Abweichung von dem oben beschriebenen Ausführungsbeispiel können mit den zusätzlichen Codiertabellennummern auch andere für einen Abschnitt relevante Informationen angezeigt werden.In deviation from the embodiment described above can also use the additional coding table numbers information relevant to a section is displayed become.

Weitere für einen Abschnitt relevante Informationen können beispielsweise ein Hinweis auf die Verwendung einer adaptiven Huffman-Codierung in einem Abschnitt sein. Bei einer adaptiven Huffman-Codierung kann in Abhängigkeit von der Signalstatistik eine adaptierte Huffman-Tabelle erzeugt werden. Die Codiertabellennummer 13 weist die Codiervorrichtung an, keine der zwölf festen Huffman-Tabellen zu verwenden, sondern eine adaptierte Huffman-Tabelle zu verwenden, die dem Decoder a priori nicht bekannt ist. Dies ist dann von Vorteil, wenn die Signalstatistik in einem Abschnitt nicht optimal mit einer der zwölf fest vorgegebenen Codiertabellen codiert, d.h. komprimiert, werden kann. Die Codierung ist also nicht mehr auf die zwölf festen Huffman-Tabellen festgelegt, sondern kann eine optimal an die Signalstatistik adaptierte Tabelle erzeugen und verwenden. Die Informationen über die adaptive Codiertabelle werden als zusätzliche Seiteninformationen übertragen.Further information relevant to a section can be found for example an indication of the use of an adaptive Be Huffman coding in one section. At a adaptive Huffman coding can depend on the signal statistics an adapted Huffman table can be generated. The coding table number 13 has the coding device not to use any of the twelve fixed Huffman tables, but to use an adapted Huffman table that is not known a priori to the decoder. Then this is from Advantage if the signal statistics are not in a section ideally with one of the twelve predefined coding tables encoded, i.e. can be compressed. The coding is no longer restricted to the twelve fixed Huffman tables, but can optimally match the signal statistics Create and use the adapted table. The information via the adaptive coding table are used as additional page information transfer.

Eine Decodiervorrichtung benötigt diese zusätzlichen Seiteninformationen, um sich aus denselben die bei der Codierung verwendete adaptierte Huffman-Tabelle zurückzurechnen, um die Huffman-codierten Stereoaudiospektralwerte wieder korrekt decodieren zu können.A decoding device needs this additional page information, to get out of the same ones when coding used Huffman adapted table to calculate the Huffman-encoded stereo audio spectral values are correct again to be able to decode.

Fig. 3 zeigt ein vereinfachtes Blockschaltbild eines Decodierers, der das Verfahren zum Decodieren gemäß der vorliegenden Erfindung ausführen kann. Teilweise im Intensity-Stereo-Verfahren codierte Audiospektralwerte werden jeweils inversen Quantisierern 38 und 40 zugeführt, wobei die inversen Quantisierer die bei der Codierung eingeführte Quantisierung wieder rückgängig machen. Anschließend gelangen die dequantisierten Stereoaudiospektralwerte in einen MS-Decodierer 42. Dieser MS-Decodierer 42 macht die im Codierer eingeführte Mitte-Seite-Codierung rückgängig. Ein IS-Decodierer 44 verwendet nun die vorher beschriebenen Rückrechnungsvorschriften (7) und (8), um wieder die ursprünglichen Stereoaudiospektralwerte auch für die IS-codierten Skalenfaktorbänder zu erhalten. Jeweilige Rücktransformationseinrichtungen für den linken bzw. rechten Kanal führen nun eine Umsetzung der Stereoaudiospektralwerte in Stereoaudiozeitwerte L(t), R(t) durch. Für Fachleute ist es offensichtlich, daß die Rücktransformationseinrichtungen 46 und 48 beispielsweise durch eine inverse MDCT ausgeführt werden können.3 shows a simplified block diagram of a decoder, which is the method for decoding according to the present Can carry out invention. Partly in the intensity stereo process encoded audio spectral values are inverse Quantizers 38 and 40 fed, the inverse Quantizer the quantization introduced during coding undo. Then the dequantized Stereo audio spectral values in an MS decoder 42. This MS decoder 42 does the one introduced in the encoder Undo mid-side encoding. An IS decoder 44 now uses the retroactive accounting rules described above (7) and (8) to restore the original stereo audio spectral values also for the IS-coded scale factor bands to obtain. Respective reverse transformation devices for the left or right channel now lead one Conversion of the stereo audio spectral values into stereo audio time values L (t), R (t) through. It’s obvious to professionals that the reverse transformation devices 46 and 48 for example can be performed by an inverse MDCT.

Claims (10)

  1. A method of coding stereo audio spectral values, comprising the following steps:
    grouping the stereo audio spectral values in scale factor bands (28) with which scale factors are associated;
    forming sections, each comprising at least one scale factor band (28);
    coding the stereo audio spectral values within at least one section with a code book, allocated to the at least one section, out of a plurality of code books to each of which a number is assigned, the number of the code book used being transmitted as side information to the coded stereo audio spectral values,
    characterised in that at least one additional code book number is provided, which does not refer to a code book but shows information relevant to the section to which it is assigned, and one section has either a code book number or the at least one additional code book number assigned to it, without affecting the amount of side information.
  2. A method of decoding coded stereo audio spectral values which have side information, comprising the following steps:
    detecting a code book number on the basis of the side information for each section of the coded stereo audio spectral values; and
    decoding the stereo audio spectral values of a section, the code book number of which refers to a corresponding code book, using that code book;
    characterised by the following step:
    decoding the stereo audio spectral values of another section with a code book number which does not refer to a code book but shows information relevant to the section to which it is assigned, in accordance with the information shown.
  3. A method according to claim I or 2,
    wherein at least one additional code book number refers to coding of the stereo audio spectral values of the associated section by the intensity stereo process.
  4. A method according to any of the preceding claims,
    wherein at least one additional code book number refers to adaptive Huffman coding of the stereo audio spectral values of the associated section.
  5. A method according to any of the preceding claims,
    wherein the at least one additional code book number, for a section coded by the intensity stereo process, also indicates a phase relationship between two stereo channels.
  6. A method according to claim 5,
    wherein one of two additional code book numbers indicates an identical phase position of the two stereo channels, in which case the following calculating-back formula applies for intensity decoding: Ri = 0.5 ^ (0.25 · is_pos(sfb)) · Li, where Ri are the stereo audio spectral values of a right (R) channel, is _pos represents intensity direction information for the scale factor band sfb present, and Li are the stereo audio spectral values of a left (L) channel.
  7. A method according to claim 5 or 6,
    wherein one of two additional code book numbers indicates an opposing phase position of the two stereo channels, in which case the following calculating-back formula applies for intensity decoding: Ri = (-1) · 0.5 ^ (0.25 · is_pos(sfb)) · Li. where Ri are the stereo audio spectral values of a right (R) channel, is _pos represents intensity direction information for the scale factor band sfb present, and Li are the stereo audio spectral values of a left (L) channel.
  8. A method according to any of the preceding claims,
    wherein the intensity stereo process forms a standardised sum signal of the stereo audio spectral values of the left and right channel, in a left channel, while in the right channel the spectrum is zero and intensity direction information is coded as side information.
  9. A method according to any of the preceding claims,
    wherein a bit mask which has a bit for each scale factor is used, and a bit on the mask for a scale factor band is gated with the additional code book number in a section to which one of the additional code book numbers is assigned, to determine a phase relationship for two stereo channels.
  10. A method according to claim 9,
    wherein the bit mask is an MS bit mask, and the additional code book numbers are linked with the MS bit mask scale factor bandwise by means of an EXCLUSIVE-OR gate.
EP97925036A 1996-07-12 1997-06-03 Process for coding and decoding stereophonic spectral values Expired - Lifetime EP0910927B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19628292 1996-07-12
DE19628292A DE19628292B4 (en) 1996-07-12 1996-07-12 Method for coding and decoding stereo audio spectral values
PCT/EP1997/002874 WO1998003036A1 (en) 1996-07-12 1997-06-03 Process for coding and decoding stereophonic spectral values

Publications (2)

Publication Number Publication Date
EP0910927A1 EP0910927A1 (en) 1999-04-28
EP0910927B1 true EP0910927B1 (en) 2000-01-12

Family

ID=7799742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97925036A Expired - Lifetime EP0910927B1 (en) 1996-07-12 1997-06-03 Process for coding and decoding stereophonic spectral values

Country Status (14)

Country Link
US (1) US6771777B1 (en)
EP (1) EP0910927B1 (en)
JP (1) JP3622982B2 (en)
KR (1) KR100316582B1 (en)
AT (1) ATE188832T1 (en)
AU (1) AU712196B2 (en)
CA (1) CA2260090C (en)
DE (2) DE19628292B4 (en)
DK (1) DK0910927T3 (en)
ES (1) ES2143868T3 (en)
GR (1) GR3032444T3 (en)
NO (1) NO317570B1 (en)
PT (1) PT910927E (en)
WO (1) WO1998003036A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684981B2 (en) 2005-07-15 2010-03-23 Microsoft Corporation Prediction of spectral coefficients in waveform coding and decoding
US7693709B2 (en) 2005-07-15 2010-04-06 Microsoft Corporation Reordering coefficients for waveform coding or decoding
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US7761290B2 (en) 2007-06-15 2010-07-20 Microsoft Corporation Flexible frequency and time partitioning in perceptual transform coding of audio
US7774205B2 (en) 2007-06-15 2010-08-10 Microsoft Corporation Coding of sparse digital media spectral data
US7822601B2 (en) 2002-09-04 2010-10-26 Microsoft Corporation Adaptive vector Huffman coding and decoding based on a sum of values of audio data symbols
US7860720B2 (en) 2002-09-04 2010-12-28 Microsoft Corporation Multi-channel audio encoding and decoding with different window configurations
US7917369B2 (en) 2001-12-14 2011-03-29 Microsoft Corporation Quality improvement techniques in an audio encoder
US7933337B2 (en) 2005-08-12 2011-04-26 Microsoft Corporation Prediction of transform coefficients for image compression
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US8179974B2 (en) 2008-05-02 2012-05-15 Microsoft Corporation Multi-level representation of reordered transform coefficients
US8184710B2 (en) 2007-02-21 2012-05-22 Microsoft Corporation Adaptive truncation of transform coefficient data in a transform-based digital media codec
US8190425B2 (en) 2006-01-20 2012-05-29 Microsoft Corporation Complex cross-correlation parameters for multi-channel audio
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
US8255234B2 (en) 2002-09-04 2012-08-28 Microsoft Corporation Quantization and inverse quantization for audio
US8255229B2 (en) 2007-06-29 2012-08-28 Microsoft Corporation Bitstream syntax for multi-process audio decoding
US8406307B2 (en) 2008-08-22 2013-03-26 Microsoft Corporation Entropy coding/decoding of hierarchically organized data
US8428943B2 (en) 2001-12-14 2013-04-23 Microsoft Corporation Quantization matrices for digital audio
US8599925B2 (en) 2005-08-12 2013-12-03 Microsoft Corporation Efficient coding and decoding of transform blocks
US8645127B2 (en) 2004-01-23 2014-02-04 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
US9105271B2 (en) 2006-01-20 2015-08-11 Microsoft Technology Licensing, Llc Complex-transform channel coding with extended-band frequency coding

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539357B1 (en) * 1999-04-29 2003-03-25 Agere Systems Inc. Technique for parametric coding of a signal containing information
US6735561B1 (en) * 2000-03-29 2004-05-11 At&T Corp. Effective deployment of temporal noise shaping (TNS) filters
US7099830B1 (en) 2000-03-29 2006-08-29 At&T Corp. Effective deployment of temporal noise shaping (TNS) filters
ATE387044T1 (en) * 2000-07-07 2008-03-15 Nokia Siemens Networks Oy METHOD AND APPARATUS FOR PERCEPTUAL TONE CODING OF A MULTI-CHANNEL TONE SIGNAL USING CASCADED DISCRETE COSINE TRANSFORMATION OR MODIFIED DISCRETE COSINE TRANSFORMATION
SE0202159D0 (en) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
US8605911B2 (en) 2001-07-10 2013-12-10 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
US7469206B2 (en) 2001-11-29 2008-12-23 Coding Technologies Ab Methods for improving high frequency reconstruction
US7016547B1 (en) 2002-06-28 2006-03-21 Microsoft Corporation Adaptive entropy encoding/decoding for screen capture content
US7433824B2 (en) * 2002-09-04 2008-10-07 Microsoft Corporation Entropy coding by adapting coding between level and run-length/level modes
US7299190B2 (en) 2002-09-04 2007-11-20 Microsoft Corporation Quantization and inverse quantization for audio
SE0202770D0 (en) 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method of reduction of aliasing is introduced by spectral envelope adjustment in real-valued filterbanks
US7782954B2 (en) * 2003-09-07 2010-08-24 Microsoft Corporation Scan patterns for progressive video content
US7688894B2 (en) 2003-09-07 2010-03-30 Microsoft Corporation Scan patterns for interlaced video content
KR20050027179A (en) * 2003-09-13 2005-03-18 삼성전자주식회사 Method and apparatus for decoding audio data
CN1922655A (en) * 2004-07-06 2007-02-28 松下电器产业株式会社 Audio signal encoding device, audio signal decoding device, method thereof and program
JP4943418B2 (en) * 2005-03-30 2012-05-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Scalable multi-channel speech coding method
US7599840B2 (en) * 2005-07-15 2009-10-06 Microsoft Corporation Selectively using multiple entropy models in adaptive coding and decoding
US7562021B2 (en) * 2005-07-15 2009-07-14 Microsoft Corporation Modification of codewords in dictionary used for efficient coding of digital media spectral data
KR100851970B1 (en) * 2005-07-15 2008-08-12 삼성전자주식회사 Method and apparatus for extracting ISCImportant Spectral Component of audio signal, and method and appartus for encoding/decoding audio signal with low bitrate using it
US7539612B2 (en) * 2005-07-15 2009-05-26 Microsoft Corporation Coding and decoding scale factor information
US7630882B2 (en) * 2005-07-15 2009-12-08 Microsoft Corporation Frequency segmentation to obtain bands for efficient coding of digital media
US7565018B2 (en) * 2005-08-12 2009-07-21 Microsoft Corporation Adaptive coding and decoding of wide-range coefficients
US7953604B2 (en) 2006-01-20 2011-05-31 Microsoft Corporation Shape and scale parameters for extended-band frequency coding
KR101444102B1 (en) * 2008-02-20 2014-09-26 삼성전자주식회사 Method and apparatus for encoding/decoding stereo audio
JP6061121B2 (en) * 2011-07-01 2017-01-18 ソニー株式会社 Audio encoding apparatus, audio encoding method, and program

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310480C2 (en) * 1983-03-23 1986-02-13 Seitzer, Dieter, Prof. Dr.-Ing., 8520 Erlangen Digital coding process for audio signals
JPS59188764A (en) 1983-04-11 1984-10-26 Hitachi Ltd Memory device
DE3912605B4 (en) 1989-04-17 2008-09-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Digital coding method
JP3131249B2 (en) 1991-08-23 2001-01-31 日本放送協会 Mixed audio signal receiver
EP0559348A3 (en) * 1992-03-02 1993-11-03 AT&T Corp. Rate control loop processor for perceptual encoder/decoder
CA2090052C (en) 1992-03-02 1998-11-24 Anibal Joao De Sousa Ferreira Method and apparatus for the perceptual coding of audio signals
DE4236989C2 (en) * 1992-11-02 1994-11-17 Fraunhofer Ges Forschung Method for transmitting and / or storing digital signals of multiple channels
JP3292522B2 (en) 1992-11-25 2002-06-17 京セラ株式会社 Mobile phone
JP3150475B2 (en) 1993-02-19 2001-03-26 松下電器産業株式会社 Quantization method
US5581653A (en) 1993-08-31 1996-12-03 Dolby Laboratories Licensing Corporation Low bit-rate high-resolution spectral envelope coding for audio encoder and decoder
DE4331376C1 (en) 1993-09-15 1994-11-10 Fraunhofer Ges Forschung Method for determining the type of encoding to selected for the encoding of at least two signals
DE4331367C2 (en) * 1993-09-15 1996-04-18 Lewin Martin Inner sleeve for sealing pipe joints in pipes
US5488665A (en) 1993-11-23 1996-01-30 At&T Corp. Multi-channel perceptual audio compression system with encoding mode switching among matrixed channels
JP3435674B2 (en) 1994-05-06 2003-08-11 日本電信電話株式会社 Signal encoding and decoding methods, and encoder and decoder using the same
US5864802A (en) 1995-09-22 1999-01-26 Samsung Electronics Co., Ltd. Digital audio encoding method utilizing look-up table and device thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917369B2 (en) 2001-12-14 2011-03-29 Microsoft Corporation Quality improvement techniques in an audio encoder
US8554569B2 (en) 2001-12-14 2013-10-08 Microsoft Corporation Quality improvement techniques in an audio encoder
US8805696B2 (en) 2001-12-14 2014-08-12 Microsoft Corporation Quality improvement techniques in an audio encoder
US9443525B2 (en) 2001-12-14 2016-09-13 Microsoft Technology Licensing, Llc Quality improvement techniques in an audio encoder
US9305558B2 (en) 2001-12-14 2016-04-05 Microsoft Technology Licensing, Llc Multi-channel audio encoding/decoding with parametric compression/decompression and weight factors
US8428943B2 (en) 2001-12-14 2013-04-23 Microsoft Corporation Quantization matrices for digital audio
US7822601B2 (en) 2002-09-04 2010-10-26 Microsoft Corporation Adaptive vector Huffman coding and decoding based on a sum of values of audio data symbols
US8099292B2 (en) 2002-09-04 2012-01-17 Microsoft Corporation Multi-channel audio encoding and decoding
US7840403B2 (en) 2002-09-04 2010-11-23 Microsoft Corporation Entropy coding using escape codes to switch between plural code tables
US8386269B2 (en) 2002-09-04 2013-02-26 Microsoft Corporation Multi-channel audio encoding and decoding
US9390720B2 (en) 2002-09-04 2016-07-12 Microsoft Technology Licensing, Llc Entropy encoding and decoding using direct level and run-length/level context-adaptive arithmetic coding/decoding modes
US8069050B2 (en) 2002-09-04 2011-11-29 Microsoft Corporation Multi-channel audio encoding and decoding
US8090574B2 (en) 2002-09-04 2012-01-03 Microsoft Corporation Entropy encoding and decoding using direct level and run-length/level context-adaptive arithmetic coding/decoding modes
US7860720B2 (en) 2002-09-04 2010-12-28 Microsoft Corporation Multi-channel audio encoding and decoding with different window configurations
US8255234B2 (en) 2002-09-04 2012-08-28 Microsoft Corporation Quantization and inverse quantization for audio
US8712783B2 (en) 2002-09-04 2014-04-29 Microsoft Corporation Entropy encoding and decoding using direct level and run-length/level context-adaptive arithmetic coding/decoding modes
US8255230B2 (en) 2002-09-04 2012-08-28 Microsoft Corporation Multi-channel audio encoding and decoding
US8620674B2 (en) 2002-09-04 2013-12-31 Microsoft Corporation Multi-channel audio encoding and decoding
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US8645127B2 (en) 2004-01-23 2014-02-04 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
US7693709B2 (en) 2005-07-15 2010-04-06 Microsoft Corporation Reordering coefficients for waveform coding or decoding
US7684981B2 (en) 2005-07-15 2010-03-23 Microsoft Corporation Prediction of spectral coefficients in waveform coding and decoding
US7933337B2 (en) 2005-08-12 2011-04-26 Microsoft Corporation Prediction of transform coefficients for image compression
US8599925B2 (en) 2005-08-12 2013-12-03 Microsoft Corporation Efficient coding and decoding of transform blocks
US8190425B2 (en) 2006-01-20 2012-05-29 Microsoft Corporation Complex cross-correlation parameters for multi-channel audio
US9105271B2 (en) 2006-01-20 2015-08-11 Microsoft Technology Licensing, Llc Complex-transform channel coding with extended-band frequency coding
US8184710B2 (en) 2007-02-21 2012-05-22 Microsoft Corporation Adaptive truncation of transform coefficient data in a transform-based digital media codec
US7774205B2 (en) 2007-06-15 2010-08-10 Microsoft Corporation Coding of sparse digital media spectral data
US7761290B2 (en) 2007-06-15 2010-07-20 Microsoft Corporation Flexible frequency and time partitioning in perceptual transform coding of audio
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US8645146B2 (en) 2007-06-29 2014-02-04 Microsoft Corporation Bitstream syntax for multi-process audio decoding
US9026452B2 (en) 2007-06-29 2015-05-05 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US8255229B2 (en) 2007-06-29 2012-08-28 Microsoft Corporation Bitstream syntax for multi-process audio decoding
US9349376B2 (en) 2007-06-29 2016-05-24 Microsoft Technology Licensing, Llc Bitstream syntax for multi-process audio decoding
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
US8179974B2 (en) 2008-05-02 2012-05-15 Microsoft Corporation Multi-level representation of reordered transform coefficients
US9172965B2 (en) 2008-05-02 2015-10-27 Microsoft Technology Licensing, Llc Multi-level representation of reordered transform coefficients
US8406307B2 (en) 2008-08-22 2013-03-26 Microsoft Corporation Entropy coding/decoding of hierarchically organized data

Also Published As

Publication number Publication date
NO317570B1 (en) 2004-11-15
WO1998003036A1 (en) 1998-01-22
DK0910927T3 (en) 2000-05-08
NO990106D0 (en) 1999-01-11
AU712196B2 (en) 1999-10-28
EP0910927A1 (en) 1999-04-28
DE59701014D1 (en) 2000-02-17
AU3031897A (en) 1998-02-09
KR100316582B1 (en) 2002-02-28
ES2143868T3 (en) 2000-05-16
JP2000505266A (en) 2000-04-25
NO990106L (en) 1999-03-10
GR3032444T3 (en) 2000-05-31
US6771777B1 (en) 2004-08-03
ATE188832T1 (en) 2000-01-15
DE19628292B4 (en) 2007-08-02
DE19628292A1 (en) 1998-01-15
JP3622982B2 (en) 2005-02-23
PT910927E (en) 2000-04-28
KR20000022435A (en) 2000-04-25
CA2260090C (en) 2000-10-17
CA2260090A1 (en) 1998-01-22

Similar Documents

Publication Publication Date Title
EP0910927B1 (en) Process for coding and decoding stereophonic spectral values
EP0910928B1 (en) Coding and decoding of audio signals by using intensity stereo and prediction processes
DE69927505T2 (en) METHOD FOR INSERTING ADDITIONAL DATA INTO AN AUDIO DATA STREAM
DE69333394T2 (en) Highly effective coding method and device
EP0954909B1 (en) Method for coding an audio signal
EP0931386B1 (en) Method for signalling a noise substitution during audio signal coding
EP0193143B1 (en) Audio signal transmission method
DE19747132C2 (en) Methods and devices for encoding audio signals and methods and devices for decoding a bit stream
DE69432538T2 (en) Digital signal coding device, associated decoding device and recording medium
DE4135070C1 (en)
DE19742655C2 (en) Method and device for coding a discrete-time stereo signal
DE69826529T2 (en) FAST DATA FRAME OPTIMIZATION IN AN AUDIO ENCODER
DE4222623C2 (en) Process for the transmission or storage of digitized sound signals
EP0414838B2 (en) Process for transmitting a signal
EP0611516B1 (en) Process for reducing data in the transmission and/or storage of digital signals from several dependent channels
EP1953739A2 (en) Method and device for reducing noise
DE4430864C2 (en) Method for unnoticed transmission and / or storage of additional information within a source-coded, data-reduced audio signal
EP1155498B1 (en) Device and method for generating a data flow and device and method for reading a data flow
EP1277346B1 (en) Device and method for analysing a spectral representation of a decoded time-variable signal
EP0610282B1 (en) Process for simultaneously transmitting audio signals from n-signal sources
DE19742201C1 (en) Method of encoding time discrete audio signals, esp. for studio use
DE19747119C2 (en) Methods and devices for coding or decoding an audio signal or a bit stream
DE19840853B4 (en) Methods and devices for encoding an audio signal
DE19617654C1 (en) Stereo or multi=channel sound signal coding method
DE3733786A1 (en) Digital adaptive transformation coding methods

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOHNSTON, JAMES

Inventor name: HERRE, JUERGEN

Inventor name: GERHAEUSER, HEINZ

Inventor name: BRANDENBURG, KARLHEINZ

Inventor name: TEICHMANN, BODO

Inventor name: DIETZ, MARTIN

Inventor name: GBUR, UWE

17Q First examination report despatched

Effective date: 19990601

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 188832

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59701014

Country of ref document: DE

Date of ref document: 20000217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000313

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000131

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143868

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AT & T LABORATORIES/RESEARCH

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) $ AT & T LABORATORIES/RESEARCH#180 PARK AVENUE#FLORHAM PARK, NJ 07932 (US) $ LUCENT TECHNOLOGIES#BELL LABORATORIES, 600 MOUNTAIN AVENUE#MURRAY HILL, NJ 07974-0636 (US) -TRANSFER TO- AT & T LABORATORIES/RESEARCH#180 PARK AVENUE#FLORHAM PARK, NJ 07932 (US) $ LUCENT TECHNOLOGIES#BELL LABORATORIES, 600 MOUNTAIN AVENUE#MURRAY HILL, NJ 07974-0636 (US) $ FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 59701014

Country of ref document: DE

Ref country code: DE

Ref legal event code: R008

Ref document number: 59701014

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59701014

Country of ref document: DE

Ref country code: DE

Ref legal event code: R040

Ref document number: 59701014

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160622

Year of fee payment: 20

Ref country code: CH

Payment date: 20160621

Year of fee payment: 20

Ref country code: ES

Payment date: 20160622

Year of fee payment: 20

Ref country code: GR

Payment date: 20160621

Year of fee payment: 20

Ref country code: GB

Payment date: 20160628

Year of fee payment: 20

Ref country code: IE

Payment date: 20160621

Year of fee payment: 20

Ref country code: MC

Payment date: 20160621

Year of fee payment: 20

Ref country code: LU

Payment date: 20160622

Year of fee payment: 20

Ref country code: FI

Payment date: 20160620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160620

Year of fee payment: 20

Ref country code: BE

Payment date: 20160621

Year of fee payment: 20

Ref country code: PT

Payment date: 20160525

Year of fee payment: 20

Ref country code: FR

Payment date: 20160621

Year of fee payment: 20

Ref country code: SE

Payment date: 20160621

Year of fee payment: 20

Ref country code: DK

Payment date: 20160622

Year of fee payment: 20

Ref country code: NL

Payment date: 20160621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59701014

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20170603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 188832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170603

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170602

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170604