EP0903625A1 - Novel reducing agents for use in thermographic recording materials - Google Patents

Novel reducing agents for use in thermographic recording materials Download PDF

Info

Publication number
EP0903625A1
EP0903625A1 EP98202551A EP98202551A EP0903625A1 EP 0903625 A1 EP0903625 A1 EP 0903625A1 EP 98202551 A EP98202551 A EP 98202551A EP 98202551 A EP98202551 A EP 98202551A EP 0903625 A1 EP0903625 A1 EP 0903625A1
Authority
EP
European Patent Office
Prior art keywords
substituted
alkyl
aryl
dihydroxyphenyl
substantially light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98202551A
Other languages
German (de)
French (fr)
Other versions
EP0903625B1 (en
Inventor
David Terrell
Johan Loccufier
Geert Defieuw
Ivan Hoogmartens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to EP19980202551 priority Critical patent/EP0903625B1/en
Publication of EP0903625A1 publication Critical patent/EP0903625A1/en
Application granted granted Critical
Publication of EP0903625B1 publication Critical patent/EP0903625B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/4989Photothermographic systems, e.g. dry silver characterised by a thermal imaging step, with or without exposure to light, e.g. with a thermal head, using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/49827Reducing agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/45Polyhydroxybenzene

Definitions

  • the present invention relates to black and white substantially light-insensitive thermographic recording materials comprising a thermosensitive element containing a substantially light-insensitive organic silver salt and a novel reducing agent.
  • thermography is a recording process wherein images are generated by the use of thermal energy.
  • thermography three approaches are known:
  • thermoplastic binder e.g ethyl cellulose
  • water-insoluble silver salt e.g. silver stearate
  • organic reducing agent of which 4-methoxy-1-hydroxy-dihydronaphthalene is a representative.
  • EP-A 248 405 discloses a thermal recording material with a colour-developing layer, which contains an electron acceptor and an electron donor in addition to the usual additives, characterized in that the electron acceptor is a metallic double salt of a long-chain fatty acid with 16 to 35 carbon atoms.
  • EP-A 599 580 discloses a thermal recording sheet comprising , in order: (a) a substrate; (b) an intermediate layer which comprises a pigment having an oil absorption according to Japanese Industrial Standard (JIS) K501 of 100mL/100g or less; and (c) a thermal color developing layer which comprises a leuco dye type chromogenic component consisting of a leuco dye and an organic color developer and a metal chelate type chromogenic component consisting of an electron acceptor and an electron donor, wherein: the organic color developer is at least one of compounds of formula (I) and formula (II): wherein R is propyl, isopropyl, or butyl; the electron acceptor is a metal double salt of a fatty acid having 16 to 35 carbon atoms; and the electron donor is a polyhydric aromatic compound of formula (III): wherein R is a C 18 - to C 35 -alkyl group, wherein R 1 is a C 18 - to C 35 -alkyl
  • US-P 5,582,953 discloses a direct recording process wherein a direct thermal recording material is heated dot-wise and the direct thermal recording material comprises on a substrate an imaging layer, the imaging layer containing uniformly distributed in a film-forming polymeric binder (i) one or more substantially light-insensitive organic silver salts being no double salts, the silver salt(s) being in thermal working relationship with (ii) an organic reducing agent therefor, wherein the reducing agent is a benzene compound the benzene nucleus of which is substituted with a substituent linked to the benzene nucleus by means of a carbonyl group, wherein the carbonyl group is linked to the benzene nucleus at a position which is designated the 1-position of the benzene nucleus, wherein the benzene nucleus is further substituted in a 3-position relative to the 1-position with a single hydroxy group and in a 4-position relative to the 1-position with a single hydroxy group, wherein the reducing agent is
  • thermographic recording materials whose prints have high D max and low D min levels and exhibit improved archivability and/or improved light stability and/or improved colour neutrality over the whole range of print densities.
  • thermographic recording materials coated from both aqueous and solvent media containing novel 3,4-dihydroxyphenyl compounds exhibit substantially improved archivability over the whole density range, substantially improved light stability and improved colour neutrality over prints made with thermographic recording materials containing a reducing agent according to the teaching of US-P 5,582,953
  • a process for producing a substantially light-insensitive black and white monosheet thermographic recording material is also provided by the present invention comprising the steps of: producing one or more aqueous coating compositions containing together the substantially light-insensitive organic silver salt, the reducing agent and the binder; and applying the one or more aqueous coating compositions to the same side of the support as the subbing layer thereby forming after drying the thermosensitive element.
  • aqueous for the purposes of the present invention includes mixtures of water with water-miscible organic solvents such as alcohols e.g. methanol, ethanol, 2-propanol, butanol, iso-amyl alcohol etc; glycols e.g. ethylene glycol; glycerine; N-methyl pyrrolidone; methoxypropanol; and ketones e.g. 2-propanone and 2-butanone etc.
  • alcohols e.g. methanol, ethanol, 2-propanol, butanol, iso-amyl alcohol etc
  • glycols e.g. ethylene glycol
  • glycerine glycerine
  • N-methyl pyrrolidone methoxypropanol
  • ketones e.g. 2-propanone and 2-butanone etc.
  • substantially light-insensitive is meant not intentionally light sensitive.
  • substantially solvent-free aqueous medium is meant that solvent, if present, is present in amounts below 10% by volume of the aqueous medium.
  • the organic reducing agent used in the present invention is a 1,2-dihydroxyphenyl-compound represented by formula (I).
  • formula (I) represents an acid
  • salts of the acid are also included under formula (I).
  • Preferred reducing agents for use in the present invention are selected from the group consisting of: consisting of: aryl(3,4-dihydroxyphenyl)sulfinates, alkyl(3,4-dihydroxyphenyl)sulfinates, 3,4-dihydroxyphenyl-alkylsulfones, 3,4-dihydroxyphenyl-arylsulfones, aryl(3,4-dihydroxyphenyl)sulfonates, alkyl(3,4-dihydroxyphenyl)sulfonates and 3,4-dihydroxybenzonitrile compounds.
  • Suitable 1,2-dihydroxyphenyl-compounds for use according to the present invention are:
  • thermographic recording material comprising a thermosensitive element including a substantially light-insensitive organic silver salt, an organic reducing agent therefor in thermal working relationship therewith and a binder.
  • the thermosensitive element may comprise a layer system in which the ingredients may be dispersed in different layers, with the proviso that the substantially light-insensitive organic silver salt and the 1,2-dihydroxyphenyl-compound are in thermal working relationship with one another i.e. during the thermal development process the 1,2-dihydroxyphenyl-compound must be present in such a way that it is able to diffuse to the substantially light-insensitive organic silver salt particles so that reduction of the substantially light-insensitive organic silver salt can take place.
  • Preferred substantially light-insensitive organic silver salts for use in the thermographic recording materials are silver salts of aliphatic carboxylic acids known as fatty acids, wherein the aliphatic carbon chain has preferably at least 12 C-atoms, e.g. silver laurate, silver palmitate, silver stearate, silver hydroxystearate, silver oleate and silver behenate, which silver salts are also called "silver soaps".
  • thermographic recording materials of the present invention A preferred process for producing a suspension of particles containing a substantially light-insensitive organic silver salt is disclosed in EP-A 754 969.
  • auxiliary reducing agents are e.g. hydroquinone or catechol substituted with strongly electron-withdrawing groups such as sulfonic acid groups; sterically hindered phenols, such as described in US-P 4,001,026; bisphenols, e.g.
  • thermographic recording material comprises a support and a thermosensitive element which further contains a catechol compound substituted with a strongly electron-withdrawing group.
  • thermosensitive element of the thermographic recording materials of the present invention may be coated onto a support in sheet- or web-form from an organic solvent containing the binder dissolved therein or may be applied from an aqueous medium using water-soluble or water-dispersible binders.
  • Suitable binders for coating from an organic solvent are all kinds of natural, modified natural or synthetic resins or mixtures of such resins, wherein the organic heavy metal salt can be dispersed homogeneously: e.g. cellulose derivatives, cellulose esters, carboxymethylcellulose, starch ethers, galactomannan, polyurethanes, polycarbonates, polyesters, polymers derived from ⁇ , ⁇ -ethylenically unsaturated compounds such as after-chlorinated polyvinyl chloride, partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl acetals, preferably polyvinyl butyral, and homopolymers and copolymers produced using monomers selected from the group consisting of: vinyl chloride, vinylidene chloride, vinyl esters, acrylonitrile, acrylamides, methacrylamides. methacrylates, acrylates, methacrylic acid, acrylic acid, vinyl esters, styrenes, dienes and alken
  • Suitable water-soluble film-forming binders are: polyvinyl alcohol, polyacrylamide, polymethacrylamide, polyacrylic acid, polymethacrylic acid, polyethyleneglycol, polyvinylpyrrolidone, proteinaceous binders such as gelatine modified gelatines such as phthaloyl gelatine, polysaccharides, such as starch, gum arabic and dextran and water-soluble cellulose derivatives.
  • Suitable water-dispersible binders are any water-insoluble polymer. It should be noted that there is no clear cut transition between a polymer dispersion and a polymer solution in the case of very small polymer particles resulting in the smallest particles of the polymer being dissolved and those slightly larger being in dispersion.
  • Preferred water-dispersible binders for use according to the present invention are water-dispersible film-forming polymers with covalently bonded ionic groups selected from the group consisting of sulfonate, sulfinate, carboxylate, phosphate, quaternary ammonium, tertiary sulfonium and quaternary phosphonium groups.
  • Further preferred water-dispersible binders for use according the the present invention are water-dispersible film-forming polymers with covalently bonded moieties with one or more acid groups.
  • Water-dispersible binders with crosslinkable groups, e.g. epoxy groups, aceto-acetoxy groups and crosslinkable double bonds are also preferred.
  • polymer latexes suitable for use in the present invention are polymer latexes.
  • Compositions of polymer latexes suitable for use in the present invention are given in the table below: polymer latex nr.
  • the binder to organic silver salt weight ratio is preferably in the range of 0.2 to 6, and the thickness of the recording layer is preferably in the range of 1 to 50 ⁇ m.
  • binders or mixtures thereof may be used in conjunction with waxes or "heat solvents” also called “thermal solvents” or “thermosolvents” improving the reaction speed of the redox-reaction at elevated temperature.
  • heat solvent in this invention is meant a non-hydrolyzable organic material which is in a solid state in the recording layer at temperatures below 50°C, but becomes a plasticizer for the recording layer where thermally heated and/or a liquid solvent for at least one of the redox-reactants.
  • thermographic recording materials may contain one or more toning agents.
  • the toning agents should be in thermal working relationship with the substantially light-insensitive organic silver salt and reducing agents during thermal processing. Any known toning agent from thermography or photothermography may be used. Suitable toning agents are the phthalimides and phthalazinones within the scope of the general formulae described in US-P 4,082,901 and the toning agents described in US-P 3,074,809, US-P 3,446,648 and US-P 3,844,797.
  • Particularly useful toning agents are heterocyclic compounds of the benzoxazine dione or naphthoxazine dione type disclosed in GB-P 1,439,478, US-P 3,951,660 and US-P 5,599,647.
  • the thermosensitive element further contains at least one polycarboxylic acid and/or anhydride thereof in a molar percentage of at least 15 with respect to the, substantially light-insensitive organic silver salt and in thermal working relationship therewith.
  • the polycarboxylic acid may be aliphatic (saturated as well as unsaturated aliphatic and also cycloaliphatic) as disclosed in US-P 5,527,758 or an aromatic polycarboxylic acid, may be substituted and may be used in anhydride form or partially esterified on the condition that at least two free carboxylic acids remain or are available in the heat recording step.
  • thermographic recording materials of the present invention In order to obtain improved shelf-life and reduced fogging, stabilizers and antifoggants may be incorporated into the thermographic recording materials of the present invention.
  • thermographic recording materials of the present invention may contain one or more surfactants, which may be anionic, non-ionic or cationic surfactants and/or one or more dispersants.
  • surfactants are:
  • Suitable dispersants are natural polymeric substances, synthetic polymeric substances and finely divided powders, for example finely divided non-metallic inorganic powders such as silica.
  • thermographic recording material may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group e.g. F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H, silicone oil, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, silica, and/or optical brightening agents.
  • antistatic agents e.g. non-ionic antistatic agents including a fluorocarbon group e.g. F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H
  • silicone oil e.g. F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H
  • ultraviolet light absorbing compounds e.g. F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H
  • silicone oil e.g. silicone oil
  • ultraviolet light absorbing compounds e.g. F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H
  • the support for the thermographic recording material according to the present invention may be transparent, translucent or opaque and is preferably a thin flexible carrier made e.g. from paper, polyethylene coated paper or transparent resin film, e.g made of a cellulose ester, e.g. cellulose triacetate, polypropylene, polycarbonate or polyester, e.g. polyethylene terephthalate.
  • the support may be in sheet, ribbon or web form and subbed if needs be to improve the adherence to the thereon coated heat-sensitive recording layer.
  • the support may be made of an opacified resin composition.
  • thermosensitive element In a preferred embodiment of the present invention a protective layer is provided for the thermosensitive element. In general this protects the thermosensitive element from atmospheric humidity and from surface damage by scratching etc. and prevents direct contact of printheads or heat sources with the recording layers. Protective layers for thermosensitive elements which come into contact with and have to be transported past a heat source under pressure, have to exhibit resistance to local deformation and good slipping characteristics during transport past the heat source during heating.
  • a slipping layer being the outermost layer, may comprise a dissolved lubricating material and/or particulate material, e.g. talc particles, optionally protruding from the outermost layer.
  • suitable lubricating materials are a surface active agent, a liquid lubricant, a solid lubricant or mixtures thereof, with or without a polymeric binder.
  • liquid lubricants include silicone oils, synthetic oils, saturated hydrocarbons and glycols.
  • solid lubricants include various higher alcohols such as stearyl alcohol, fatty acids and fatty acid esters.
  • Suitable slipping layer compositions are described, for example, in EP-A 138 483, EP-A 227 090, US-P 4,567,113, US-P 4,572,860, US-P 4,717,711, EP-A 311 841, US 5,587,350, US 5,536,696, US 5,547,914, WO 95/12495, EP-A 775 592 and EP-A 775 595.
  • thermographic recording materials of the present invention may proceed by any coating technique e.g. such as described in Modern Coating and Drying Technology, edited by Edward D. Cohen and Edgar B. Gutoff, (1992) VCH Publishers Inc. 220 East 23rd Street, Suite 909 New York, NY 10010, U.S.A. Coating may proceed from aqueous or solvent media with overcoating of dried, partially dried or undried layers.
  • Thermographic imaging is carried out by the image-wise application of heat either in analogue fashion by direct exposure through an image of by reflection from an image, or in digital fashion pixel by pixel either by using an infra-red heat source, for example with a Nd-YAG laser or other infra-red laser, or by direct thermal imaging with a thermal head.
  • thermal printing image signals are converted into electric pulses and then through a driver circuit selectively transferred to a thermal printhead.
  • the thermal printhead consists of microscopic heat resistor elements, which convert the electrical energy into heat via Joule effect.
  • the electric pulses thus converted into thermal signals manifest themselves as heat transferred to the surface of the thermal paper wherein the chemical reaction resulting in colour development takes place.
  • Such thermal printing heads may be used in contact or close proximity with the recording layer.
  • the operating temperature of common thermal printheads is in the range of 300 to 400°C and the heating time per picture element (pixel) may be less than 1.0ms, the pressure contact of the thermal printhead with the recording material being e.g. 200-500g/cm 2 to ensure a good transfer of heat.
  • the image-wise heating of the recording layer with the thermal printing heads may proceed through a contacting but removable resin sheet or web wherefrom during the heating no transfer of recording material can take place.
  • the image signals for modulating the laser beam or current in the micro-resistors of a thermal printhead are obtained directly or from an intermediary storage means, optionally linked to a digital image work station wherein the image information can be processed to satisfy particular needs.
  • Activation of the heating elements can be power-modulated or pulse-length modulated at constant power.
  • EP-A 654 355 describes a method for making an image by image-wise heating by means of a thermal head having energizable heating elements, wherein the activation of the heating elements is executed duty cycled pulsewise. When used in thermographic recording operating with thermal printheads the thermographic recording materials are not suitable for reproducing images with fairly large number of grey levels as is required for continuous tone reproduction.
  • EP-A 622 217 discloses a method for making an image using a direct thermal imaging element producing improvements in continuous tone reproduction.
  • Image-wise heating of the thermographic recording material can also be carried out using an electrically resistive ribbon incorporated into the material.
  • Image- or pattern-wise heating of the thermographic recording material may also proceed by means of pixel-wise modulated ultra-sound, using e.g. an ultrasonic pixel printer as described e.g. in US-P 4,908,631.
  • Thermographic recording materials according to the present invention may be used for both the production of transparencies, for example in the medical diagnostic field in which black-imaged transparencies are widely used in inspection techniques operating with a light box, and reflection type prints, for example in the hard copy field.
  • the support will be transparent or opaque, i.e. having a white light reflecting aspect.
  • the base may be colourless or coloured, e.g. with a blue colour for medical diagnostic applications.
  • thermosensitive element The following examples and comparative examples illustrate the present invention.
  • the percentages and ratios used in the examples are by weight unless otherwise indicated.
  • the following ingredients were used in the thermosensitive element in addition to those mentioned above:
  • the tone modifier dispersion was prepared by first dissolving 8.8g of K7598 in 71.4g of deionized water by first adding the gelatin, then allowing the gelatin to swell for 30 minutes and finally heating to 50°C. 20 g of T01 was added with ULTRA-TURRAXTM stirring to this gelatin solution at 50°C, and the stirring continued for a further 5 minutes. Finally the resulting dispersion was pumped through a DYNOMILLTM (a horizontal bead mill from BACKOFEN) for 2 hours to produce the final tone modifier dispersion containing: 20% of T01 and 8.8% of gelatin.
  • DYNOMILLTM a horizontal bead mill from BACKOFEN
  • the coating dispersions for the thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 were prepared by first dissolving 1.927g of K7598 in deionized water at 38°C (for the quantity of water see table 1), then adding with stirring to the warm K7598 solution: first 19.0g of the silver behenate dispersion, then 5.9g of a 30% dispersion of polymer latex nr. 1 and 5.68g of the tone modifier dispersion as flakes followed by 5 minutes stirring, then the reducing agent (s) (for quantities and types see table 1) dissolved in 1.71g of ethanol and finally 1.310g of a 3.7% by weight solution of formaldehyde to produce the corresponding coating dispersions.
  • thermosensitive elements of the thermographic recording materials of COMPARATIVE EXAMPLES 1 and INVENTION EXAMPLES 1 & 2 with the compositions given in table 2.
  • Nr 1 4.68 0.47 R02 1.15 2.55 1.85 0.05 1.18 2 4.65 0.47 R03 0.70 2.53 1.84 0.05 1.17
  • the print head was separated from the imaging layer by a thin intermediate material contacted with a slipping layer of a separable 5 ⁇ m thick polyethylene terephthalate ribbon coated successively with a subbing layer, heat-resistant layer and the slipping layer (anti-friction layer) giving a ribbon with a total thickness of 6 ⁇ m.
  • the printer was equipped with a thin film thermal head with a resolution of 300 dpi and was operated with a line time of 19ms (the line time being the time needed for printing one line). During this line time the print head received constant power.
  • the average printing power being the total amount of electrical input energy during one line time divided by the line time and by the surface area of the heat-generating resistors was 1.6 mJ/dot being sufficient to obtain maximum optical density in each of the thermographic recording materials of COMPARATIVE EXAMPLES 1 and INVENTION EXAMPLES 1 & 2.
  • NCV values were determined at optical densities (D) with a visual filter of 1, 2 and 3 for the fresh materials, the same materials after being heated at 35°C in a relative humidity of 80% for 3 days and the same materials after being exposed in the light box described below at 30°C in a relative humidity of 85% for 3 days for the materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2.
  • the NCV-values obtained are summarized in table 3 below. Comparative Example Nr.
  • thermographic recording materials of INVENTION EXAMPLES 1 & 2 exposed in the light box for 3 days at 30°C in 85% relative humidity are clearly superior to those of the thermographic recording material of COMPARATIVE EXAMPLE 1 with a reducing agent according to the teaching of US-P 5, 582, 953 and those for prints stored in the dark for 3 days at 35°C in 80% relative humidity are comparable therewith. It is therefore evident that prints made with the thermographic recording materials using the novel reducing agents of the present invention exhibit superior colour neutrality to prior art materials.
  • thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 were evaluated on the basis of the observed changes in NCV-values and minimum density, ⁇ D min , upon heating the prints at 35°C in a relative humidity of 80% for 3 days in the dark. The results of these tests are als given in table 4.
  • the stability of the image background of the prints made with the thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 was evaluated on the basis of the change in NCV-values and minimum (background) density and maximum density measured through a blue filter using a MacBethTM TR924 densitometer upon exposure on top of the white PVC window of a specially constructed light-box placed for 3 days in a VOTSCH conditioning cupboard set at 30°C and a relative humidity of 85%. Only a central area of the window 550mm long by 500mm wide was used for mounting the test materials to ensure uniform exposure.
  • the stainless steel light-box used was 650mm long, 600mm wide and 120mm high with an opening 610mm long and 560mm wide with a rim 10mm wide and 5mm deep round the opening, thereby forming a platform for a 5mm thick plate of white PVC 630mm long and 580mm wide, making the white PVC-plate flush with the top of the light-box and preventing light loss from the light-box other than through the white PVC-plate.
  • This light-box was fitted with 9 PLANILUXTM TLD 36W/54 fluorescent lamps 27mm in diameter mounted length-wise equidistantly from the two sides, with the lamps positioned equidistantly to one another and the sides over the whole width of the light-box and with the tops of the fluorescent tubes 30mm below the bottom of the white PVC plate and 35mm below the materials being tested.
  • Table 4 The results are summarized in table 4.
  • thermosensitive element Preparation of the thermosensitive element
  • thermosensitive element with the compositions summarized in tables 5 and 6 below for COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 respectively: Comparative example number AgB [g/m 2 ] B79 [g/m 2 ] Oil [g/m 2 ] T01 [g/m 2 ] T02 [g/m 2 ] CR01 [g/m 2 ] S01 [g/m 2 ] S02 [g/m 2 ] S03 [g/m 2 ] 2 4.91 19.62 0.045 0.27 0.14 0.989 0.35 0.16 0.13 Invention Example nr AgB [g/m 2 ] B79 [g/m 2 ] Oil [g/m 2 ] T01 [g/m 2 ] T02 [g/m 2 ] reducing
  • thermographic recording materials of COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 were evaluated as described above for COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 except that the archivability tests were carried out for 3 days at 57°C in a relative humidity of 34% instead of 3 days at 35°C in a relative humidity of 80%.
  • the NCV-values for the thermographic recording materials of COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 for fresh prints and prints exposed in the light box for 3 days at 30°C in a relative humidity of 85% are given in table 7 below. Comparative Example Nr.
  • thermographic recording material of COMPARATIVE EXAMPLE 2 with a reducing agent according to the teaching of US-P 5,582,953 is greater than that observed for the thermographic recording material of INVENTION EXAMPLE 4 and substantially greater than that observed for the thermographic recording materials of INVENTION EXAMPLES 3, 5 and 6 for which there is little discernible change in colour neutrality.
  • NCV-value in terms of the visual perception of a viewer is that at a density of 1.0.

Abstract

A substantially light-insensitive black and white monosheet thermographic recording material is provided comprising a support and a thermosensitive element containing a substantially light-insensitive organic silver salt, a 1,2-dihydroxyphenyl-compound in thermal working relationship therewith and a binder, characterized in that the 1,2-dihydroxyphenyl-compound is represented by formula (I):
Figure 80000001
where R is -P(=O)R1R2, -SOxR3, -CN , -NO2 or -CR4=NR5 when n is 0; R is -P(=O)R1R2, -SOxR3, -CN, -NO2, -CR4=NR5 or -COR6 when n is an integer; R1 and R2 are independently an alkyl, a substituted alkyl, an aryl, a substituted aryl group, an alkoxy, a substituted alkoxy, an aryloxy, a substituted aryloxy, a hydroxy group, an amino group or a substituted amino group; R3 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an amino or a substituted amino group; R4 is an alkyl, a substituted alkyl, an aryl or a substituted aryl group or hydrogen; R5 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, a hydroxy, an alkoxy, an aryloxy, an acyl, an amino or a substituted amino group; R6 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an alkoxy, a substituted alkoxy, an aryloxy, a substituted aryloxy, a hydroxy, an amino or a substituted amino group or hydrogen; x is 1, 2 or 3; and the benzene ring of the 1,2-dihydroxyphenyl-compound represented by the formula (I) may be further substituted.

Description

Field of the invention
The present invention relates to black and white substantially light-insensitive thermographic recording materials comprising a thermosensitive element containing a substantially light-insensitive organic silver salt and a novel reducing agent.
Background of the invention
Thermal imaging or thermography is a recording process wherein images are generated by the use of thermal energy. In thermography three approaches are known:
  • 1. Direct thermal formation of a visible image pattern by image-wise heating of a recording material containing matter that by chemical or physical process changes colour or optical density.
  • 2. Image-wise transfer of an ingredient necessary for the chemical or physical process bringing about changes in colour or optical density to a receptor element.
  • 3. Thermal dye transfer printing wherein a visible image pattern is formed by transfer of a coloured species from an image-wise heated donor element onto a receptor element.
  • Most of the "direct "thermofgraphic recording materials are of the chemical type. On heating to a certain conversion temperature, an irreversible chemical reaction takes place and a coloured image is produced. According to US-P 3,080,254 a typical heat-sensitive copy paper includes in the heat-sensitive layer a thermoplastic binder, e.g ethyl cellulose, a water-insoluble silver salt, e.g. silver stearate and an appropriate organic reducing agent, of which 4-methoxy-1-hydroxy-dihydronaphthalene is a representative.
    EP-A 248 405 discloses a thermal recording material with a colour-developing layer, which contains an electron acceptor and an electron donor in addition to the usual additives, characterized in that the electron acceptor is a metallic double salt of a long-chain fatty acid with 16 to 35 carbon atoms.
    EP-A 599 580 discloses a thermal recording sheet comprising , in order: (a) a substrate; (b) an intermediate layer which comprises a pigment having an oil absorption according to Japanese Industrial Standard (JIS) K501 of 100mL/100g or less; and (c) a thermal color developing layer which comprises a leuco dye type chromogenic component consisting of a leuco dye and an organic color developer and a metal chelate type chromogenic component consisting of an electron acceptor and an electron donor, wherein: the organic color developer is at least one of compounds of formula (I) and formula (II):
    Figure 00020001
    wherein R is propyl, isopropyl, or butyl;
    Figure 00020002
    the electron acceptor is a metal double salt of a fatty acid having 16 to 35 carbon atoms; and the electron donor is a polyhydric aromatic compound of formula (III):
    Figure 00020003
    wherein R is a C18- to C35-alkyl group,
    Figure 00020004
    wherein R1 is a C18- to C35-alkyl group, n is an integer of 2 or 3, -X- is -CH2-, -CO2-, -CO-, -O-, -CONH-, -CO(R')N- (wherein R' is a C18- to C35-group), -SO2-, -SO3- or -SO2NH-.
    US-P 5,582,953 discloses a direct recording process wherein a direct thermal recording material is heated dot-wise and the direct thermal recording material comprises on a substrate an imaging layer, the imaging layer containing uniformly distributed in a film-forming polymeric binder (i) one or more substantially light-insensitive organic silver salts being no double salts, the silver salt(s) being in thermal working relationship with (ii) an organic reducing agent therefor, wherein the reducing agent is a benzene compound the benzene nucleus of which is substituted with a substituent linked to the benzene nucleus by means of a carbonyl group, wherein the carbonyl group is linked to the benzene nucleus at a position which is designated the 1-position of the benzene nucleus, wherein the benzene nucleus is further substituted in a 3-position relative to the 1-position with a single hydroxy group and in a 4-position relative to the 1-position with a single hydroxy group, wherein the reducing agent is selected from the group consisting of an alkyl or aryl ester of 3,4-dihydroxybenzoic acid, 3,4-dihydroxy-benzaldehyde, 3,4-dihydroxy-benzamide and an alkyl or aryl (3,4-dihydroxyphenyl)ketone.
    However, prints produced with direct thermal recording materials using reducing agents according to the teaching of US-P 5,582,953 exhibit unsatisfactory archivability, insufficient light stability over the whole sensitometric range and unsatisfactory colour neutrality. There is therefore a need for direct thermal recording materials produced by coating from solvent or aqueous media, whose prints exhibit improved archivability, improved light stability over the whole sensitometric range and improved colour neutrality.
    Objects of the invention.
    It is therefore an object of the present invention to provide thermographic recording materials whose prints have high Dmax and low Dmin levels and exhibit improved archivability and/or improved light stability and/or improved colour neutrality over the whole range of print densities.
    Further objects and advantages of the invention will become apparent from the description hereinafter.
    Summary of the invention
    Surprisingly it has been found that prints of thermographic recording materials coated from both aqueous and solvent media containing novel 3,4-dihydroxyphenyl compounds exhibit substantially improved archivability over the whole density range, substantially improved light stability and improved colour neutrality over prints made with thermographic recording materials containing a reducing agent according to the teaching of US-P 5,582,953
    A substantially light-insensitive black and white monosheet thermographic recording material is provided according to the present invention comprising a support and a thermosensitive element containing a substantially light-insensitive organic silver salt, a 1,2-dihydroxyphenyl-compound in thermal working relationship therewith and a binder, characterized in that the 1,2-dihydroxyphenyl-compound is represented by formula (I):
    Figure 00040001
    where R is -P(=O)R1R2, -SOxR3, -CN , -NO2 or -CR4=NR5 when n is 0; R is -P (=O) R1R2, -SOxR3, -CN, -NO2, -CR4=NR5 or -COR6 when n is an integer; R1 and R2 are independently an alkyl, a substituted alkyl, an aryl, a substituted aryl group, an alkoxy, a substituted alkoxy, an aryloxy, a substituted aryloxy, a hydroxy group, an amino group or a substituted amino group; R3 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an amino or a substituted amino group; R4 is an alkyl, a substituted alkyl, an aryl or a substituted aryl group or hydrogen; R5 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, a hydroxy, an alkoxy, an aryloxy, an acyl, an amino or a substituted amino group; R6 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an alkoxy, a substituted alkoxy, an aryloxy, a substituted aryloxy, a hydroxy, an amino or a substituted amino group or hydrogen; x is 1, 2 or 3; and the benzene ring of the 1,2-dihydroxyphenyl-compound represented by the formula (I) may be further substituted. Substituted amino groups can also constitute a heterocyclic ring system, which itself may be substituted.
    A process for producing a substantially light-insensitive black and white monosheet thermographic recording material, as described above, is also provided by the present invention comprising the steps of: producing one or more aqueous coating compositions containing together the substantially light-insensitive organic silver salt, the reducing agent and the binder; and applying the one or more aqueous coating compositions to the same side of the support as the subbing layer thereby forming after drying the thermosensitive element.
    Preferred embodiments of the present invention are disclosed in the detailed description of the invention.
    Detailed description of the invention. Aqueous
    The term aqueous for the purposes of the present invention includes mixtures of water with water-miscible organic solvents such as alcohols e.g. methanol, ethanol, 2-propanol, butanol, iso-amyl alcohol etc; glycols e.g. ethylene glycol; glycerine; N-methyl pyrrolidone; methoxypropanol; and ketones e.g. 2-propanone and 2-butanone etc.
    Substantially
    By substantially light-insensitive is meant not intentionally light sensitive. By substantially solvent-free aqueous medium is meant that solvent, if present, is present in amounts below 10% by volume of the aqueous medium.
    1,2 -dihydroxyphenyl -compounds
    The organic reducing agent used in the present invention is a 1,2-dihydroxyphenyl-compound represented by formula (I). When formula (I) represents an acid, salts of the acid are also included under formula (I). Preferred substituents of the benzene ring of the 1,2-dihydroxyphenyl-compound represented by formula (I) are halogen atoms, aryl groups, alkyl groups, the atoms necessary to form an annulated carbocyclic or heterocyclic ring, which may itself be substituted, and the atoms necessary to form an annulated ring system together with the R-(CH=CH)x- substituent, which itself may be substituted.
    Preferred R-(CH=CH)x- substituents for the 1,2-dihydroxyphenyl-compounds according to formula (I) are: tetra-alkyl phosphonium, arylalkylphosphonium, tetraaryl phosphonium, dialkyl phosphonato-, arylalkylphosphonato-, alkyl sulfinate, aralkyl sulfinate, aryl sulfinate, alkaryl sulfinate, alkyl-sulfonamido, aralkylsulfonamido, arylsulonamido, alkarylsulfon-amido, alkyl sulfonate, aralkyl sulfonate, aryl sulfonate, alkaryl sulfonate, alkyl sulfinatovinyl, aralkyl sulfinatovinyl, aryl sulfinatovinyl, alkaryl sulfinatovinyl, alkyl-sulfonamidovinyl, aralkylsulfonamidovinyl, arylsulonamidovinyl, alkarylsulfonamido-vinyl, alkyl sulfonatovinyl, aralkyl sulfonatovinyl, aryl sulfonatovinyl, alkaryl sulfonatovinyl, cyano, cyanovinyl, nitro, and nitrovinyl groups, which may also be substituted.
    Preferred reducing agents for use in the present invention are selected from the group consisting of: consisting of: aryl(3,4-dihydroxyphenyl)sulfinates, alkyl(3,4-dihydroxyphenyl)sulfinates, 3,4-dihydroxyphenyl-alkylsulfones, 3,4-dihydroxyphenyl-arylsulfones, aryl(3,4-dihydroxyphenyl)sulfonates, alkyl(3,4-dihydroxyphenyl)sulfonates and 3,4-dihydroxybenzonitrile compounds.
    Particularly preferred reducing agents for use in the present invention are represented by the formulae:
    Figure 00060001
    Suitable 1,2-dihydroxyphenyl-compounds for use according to the present invention are:
    Figure 00060002
    Figure 00070001
    Figure 00080001
    Figure 00090001
    Thermosensitive element
    According to the present invention, a thermographic recording material is provided comprising a thermosensitive element including a substantially light-insensitive organic silver salt, an organic reducing agent therefor in thermal working relationship therewith and a binder. The thermosensitive element may comprise a layer system in which the ingredients may be dispersed in different layers, with the proviso that the substantially light-insensitive organic silver salt and the 1,2-dihydroxyphenyl-compound are in thermal working relationship with one another i.e. during the thermal development process the 1,2-dihydroxyphenyl-compound must be present in such a way that it is able to diffuse to the substantially light-insensitive organic silver salt particles so that reduction of the substantially light-insensitive organic silver salt can take place.
    Organic silver salts
    Preferred substantially light-insensitive organic silver salts for use in the thermographic recording materials, according to the present invention, are silver salts of aliphatic carboxylic acids known as fatty acids, wherein the aliphatic carbon chain has preferably at least 12 C-atoms, e.g. silver laurate, silver palmitate, silver stearate, silver hydroxystearate, silver oleate and silver behenate, which silver salts are also called "silver soaps". Silver salts of modified aliphatic carboxylic acids with thioether group as described e.g. in GB-P 1,111,492 and other organic silver salts as described in GB-P 1,439,478, e.g. silver benzoate, may likewise be used to produce a thermally developable silver image. Combinations of different organic silver salts may also be used in the thermographic recording materials of the present invention. A preferred process for producing a suspension of particles containing a substantially light-insensitive organic silver salt is disclosed in EP-A 754 969.
    Auxiliary reducing agents
    The reducing agents used in accordance with the present invention being considered as primary or main reducing agents may be used in conjunction with so-called auxiliary reducing agents. Such auxiliary reducing agents are e.g. hydroquinone or catechol substituted with strongly electron-withdrawing groups such as sulfonic acid groups; sterically hindered phenols, such as described in US-P 4,001,026; bisphenols, e.g. of the type described in US-P 3,547,648; sulfonamidophenols, such as described in Research Disclosure, February 1979, item 17842, in US-P 4,360,581 and 4,782,004, and in EP-A 423 891; hydrazides such as disclosed in EP-A 762 196, sulfonyl hydrazide reducing agents such as disclosed in US-P 5,464,738; trityl hydrazides and formyl-phenyl-hydrazides such as disclosed in US-P 5,496,695; trityl hydrazides and formyl-phenyl-hydrazides with diverse auxiliary reducing agents such as disclosed in US-P 5,545,505, US-P 5.545.507 and US-P 5,558,983; acrylonitrile compounds as disclosed in US-P 5,545,515 and US-P 5,635,339; 2-substituted malondialdehyde compounds such as disclosed in US-P 5,654,130; and organic reducing metal salts, e.g. stannous stearate described in US-P 3,460,946 and 3,547,648. The auxiliary reducing agents may be present in the imaging layer or in a polymeric binder layer in thermal working relationship thereto.
    In a preferred embodiment of the present invention the thermographic recording material comprises a support and a thermosensitive element which further contains a catechol compound substituted with a strongly electron-withdrawing group.
    Binder
    The thermosensitive element of the thermographic recording materials of the present invention may be coated onto a support in sheet- or web-form from an organic solvent containing the binder dissolved therein or may be applied from an aqueous medium using water-soluble or water-dispersible binders.
    Suitable binders for coating from an organic solvent are all kinds of natural, modified natural or synthetic resins or mixtures of such resins, wherein the organic heavy metal salt can be dispersed homogeneously: e.g. cellulose derivatives, cellulose esters, carboxymethylcellulose, starch ethers, galactomannan, polyurethanes, polycarbonates, polyesters, polymers derived from α,β-ethylenically unsaturated compounds such as after-chlorinated polyvinyl chloride, partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl acetals, preferably polyvinyl butyral, and homopolymers and copolymers produced using monomers selected from the group consisting of: vinyl chloride, vinylidene chloride, vinyl esters, acrylonitrile, acrylamides, methacrylamides. methacrylates, acrylates, methacrylic acid, acrylic acid, vinyl esters, styrenes, dienes and alkenes; or mixtures thereof.
    Suitable water-soluble film-forming binders are: polyvinyl alcohol, polyacrylamide, polymethacrylamide, polyacrylic acid, polymethacrylic acid, polyethyleneglycol, polyvinylpyrrolidone, proteinaceous binders such as gelatine modified gelatines such as phthaloyl gelatine, polysaccharides, such as starch, gum arabic and dextran and water-soluble cellulose derivatives.
    Suitable water-dispersible binders are any water-insoluble polymer. It should be noted that there is no clear cut transition between a polymer dispersion and a polymer solution in the case of very small polymer particles resulting in the smallest particles of the polymer being dissolved and those slightly larger being in dispersion.
    Preferred water-dispersible binders for use according to the present invention are water-dispersible film-forming polymers with covalently bonded ionic groups selected from the group consisting of sulfonate, sulfinate, carboxylate, phosphate, quaternary ammonium, tertiary sulfonium and quaternary phosphonium groups. Further preferred water-dispersible binders for use according the the present invention are water-dispersible film-forming polymers with covalently bonded moieties with one or more acid groups. Water-dispersible binders with crosslinkable groups, e.g. epoxy groups, aceto-acetoxy groups and crosslinkable double bonds are also preferred. Further preferred water-dispersible binders for use in the present invention are polymer latexes. Compositions of polymer latexes suitable for use in the present invention are given in the table below:
    polymer latex nr. B [% by wt.] IP [% by wt.] BA [% by wt.] S [% by wt.] MMA [% by wt.] IA [% by wt.] MAA [% by wt.] AA [% by wt.]
    1 47.5 - - - 47.5 5 - -
    2 45 - - - 45 10 - -
    3 49 - - - 49 2 - -
    4 - 47.5 - - 47.5 5 - -
    5 - - 43 55 - 2 - -
    6 - - 43 55 - - 2 -
    7 - 55 44 - - - - 1
    where: B = butadiene; IP = isoprene; BA = butyl acrylate; S = styrene; MMA = methyl methacylate; IA = itaconic acid; methacrylic acid; and AA = acrylic acid.
    The binder to organic silver salt weight ratio is preferably in the range of 0.2 to 6, and the thickness of the recording layer is preferably in the range of 1 to 50 µm.
    Thermal solvents
    The above mentioned binders or mixtures thereof may be used in conjunction with waxes or "heat solvents" also called "thermal solvents" or "thermosolvents" improving the reaction speed of the redox-reaction at elevated temperature. By the term "heat solvent" in this invention is meant a non-hydrolyzable organic material which is in a solid state in the recording layer at temperatures below 50°C, but becomes a plasticizer for the recording layer where thermally heated and/or a liquid solvent for at least one of the redox-reactants.
    Toning agents
    In order to obtain a neutral black image tone in the higher densities and neutral grey in the lower densities, thermographic recording materials according to the present invention may contain one or more toning agents. The toning agents should be in thermal working relationship with the substantially light-insensitive organic silver salt and reducing agents during thermal processing. Any known toning agent from thermography or photothermography may be used. Suitable toning agents are the phthalimides and phthalazinones within the scope of the general formulae described in US-P 4,082,901 and the toning agents described in US-P 3,074,809, US-P 3,446,648 and US-P 3,844,797. Particularly useful toning agents are heterocyclic compounds of the benzoxazine dione or naphthoxazine dione type disclosed in GB-P 1,439,478, US-P 3,951,660 and US-P 5,599,647.
    Polycarboxylic acids and anhydrides thereof
    According to a preferred embodiment of the present invention the substantially light-insensitive black and white monosheet thermographic recording material, the thermosensitive element further contains at least one polycarboxylic acid and/or anhydride thereof in a molar percentage of at least 15 with respect to the, substantially light-insensitive organic silver salt and in thermal working relationship therewith. The polycarboxylic acid may be aliphatic (saturated as well as unsaturated aliphatic and also cycloaliphatic) as disclosed in US-P 5,527,758 or an aromatic polycarboxylic acid, may be substituted and may be used in anhydride form or partially esterified on the condition that at least two free carboxylic acids remain or are available in the heat recording step.
    Stabilizers and antifoggants
    In order to obtain improved shelf-life and reduced fogging, stabilizers and antifoggants may be incorporated into the thermographic recording materials of the present invention.
    Surfactants and dispersants
    Surfactants and dispersants aid the dispersion of ingredients which are insoluble in the particular dispersion medium. The thermographic recording materials of the present invention may contain one or more surfactants, which may be anionic, non-ionic or cationic surfactants and/or one or more dispersants. Examples of suitable surfactants are:
    Surfactant Nr. 1 =
    HOSTAPAL™ B, a sodium trisalkylphenylpolyethyleneglycol(EO 7-8) sulphate from Hoechst;
    Surfactant Nr. 2 =
    MERSOLAT™ H80, a sodium hexadecylsulfonate from Bayer;
    Surfactant Nr. 3 =
    ULTRAVON™ W, a sodium arylsulfonate from Ciba-Geigy;
    Surfactant Nr. 4 =
    TERGITOL™ 4, a sodium 1-(2'-ethylbutyl)-4-ethylhexylsulphate;
    Surfactant Nr. 5 =
    MARLON™ A-396, a sodium dodecylphenylsulfonate from Hüls;
    Surfactant Nr. 6 =
    HOSTAPAL™ W, a nonylphenylpolyethylene-glycol from Hoechst.
    Suitable dispersants are natural polymeric substances, synthetic polymeric substances and finely divided powders, for example finely divided non-metallic inorganic powders such as silica.
    Other ingredients
    In addition to the ingredients the thermographic recording material may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group e.g. F3C(CF2)6CONH(CH2CH2O)-H, silicone oil, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, silica, and/or optical brightening agents.
    Support
    The support for the thermographic recording material according to the present invention may be transparent, translucent or opaque and is preferably a thin flexible carrier made e.g. from paper, polyethylene coated paper or transparent resin film, e.g made of a cellulose ester, e.g. cellulose triacetate, polypropylene, polycarbonate or polyester, e.g. polyethylene terephthalate. The support may be in sheet, ribbon or web form and subbed if needs be to improve the adherence to the thereon coated heat-sensitive recording layer. The support may be made of an opacified resin composition.
    Protective layer
    In a preferred embodiment of the present invention a protective layer is provided for the thermosensitive element. In general this protects the thermosensitive element from atmospheric humidity and from surface damage by scratching etc. and prevents direct contact of printheads or heat sources with the recording layers. Protective layers for thermosensitive elements which come into contact with and have to be transported past a heat source under pressure, have to exhibit resistance to local deformation and good slipping characteristics during transport past the heat source during heating.
    A slipping layer, being the outermost layer, may comprise a dissolved lubricating material and/or particulate material, e.g. talc particles, optionally protruding from the outermost layer. Examples of suitable lubricating materials are a surface active agent, a liquid lubricant, a solid lubricant or mixtures thereof, with or without a polymeric binder. Examples of liquid lubricants include silicone oils, synthetic oils, saturated hydrocarbons and glycols. Examples of solid lubricants include various higher alcohols such as stearyl alcohol, fatty acids and fatty acid esters. Suitable slipping layer compositions are described, for example, in EP-A 138 483, EP-A 227 090, US-P 4,567,113, US-P 4,572,860, US-P 4,717,711, EP-A 311 841, US 5,587,350, US 5,536,696, US 5,547,914, WO 95/12495, EP-A 775 592 and EP-A 775 595.
    Coating techniques
    The coating of any layer of the thermographic recording materials of the present invention may proceed by any coating technique e.g. such as described in Modern Coating and Drying Technology, edited by Edward D. Cohen and Edgar B. Gutoff, (1992) VCH Publishers Inc. 220 East 23rd Street, Suite 909 New York, NY 10010, U.S.A. Coating may proceed from aqueous or solvent media with overcoating of dried, partially dried or undried layers.
    Thermographic printing
    Thermographic imaging is carried out by the image-wise application of heat either in analogue fashion by direct exposure through an image of by reflection from an image, or in digital fashion pixel by pixel either by using an infra-red heat source, for example with a Nd-YAG laser or other infra-red laser, or by direct thermal imaging with a thermal head.
    In thermal printing image signals are converted into electric pulses and then through a driver circuit selectively transferred to a thermal printhead. The thermal printhead consists of microscopic heat resistor elements, which convert the electrical energy into heat via Joule effect. The electric pulses thus converted into thermal signals manifest themselves as heat transferred to the surface of the thermal paper wherein the chemical reaction resulting in colour development takes place. Such thermal printing heads may be used in contact or close proximity with the recording layer. The operating temperature of common thermal printheads is in the range of 300 to 400°C and the heating time per picture element (pixel) may be less than 1.0ms, the pressure contact of the thermal printhead with the recording material being e.g. 200-500g/cm2 to ensure a good transfer of heat. To avoid direct contact of the thermal printing heads with a recording layer not provided with an outermost protective layer, the image-wise heating of the recording layer with the thermal printing heads may proceed through a contacting but removable resin sheet or web wherefrom during the heating no transfer of recording material can take place.
    The image signals for modulating the laser beam or current in the micro-resistors of a thermal printhead are obtained directly or from an intermediary storage means, optionally linked to a digital image work station wherein the image information can be processed to satisfy particular needs. Activation of the heating elements can be power-modulated or pulse-length modulated at constant power. EP-A 654 355 describes a method for making an image by image-wise heating by means of a thermal head having energizable heating elements, wherein the activation of the heating elements is executed duty cycled pulsewise. When used in thermographic recording operating with thermal printheads the thermographic recording materials are not suitable for reproducing images with fairly large number of grey levels as is required for continuous tone reproduction. EP-A 622 217 discloses a method for making an image using a direct thermal imaging element producing improvements in continuous tone reproduction. Image-wise heating of the thermographic recording material can also be carried out using an electrically resistive ribbon incorporated into the material. Image- or pattern-wise heating of the thermographic recording material may also proceed by means of pixel-wise modulated ultra-sound, using e.g. an ultrasonic pixel printer as described e.g. in US-P 4,908,631.
    Industrial application
    Thermographic recording materials according to the present invention may be used for both the production of transparencies, for example in the medical diagnostic field in which black-imaged transparencies are widely used in inspection techniques operating with a light box, and reflection type prints, for example in the hard copy field. For such applications the support will be transparent or opaque, i.e. having a white light reflecting aspect. Should a transparent base be used, the base may be colourless or coloured, e.g. with a blue colour for medical diagnostic applications.
    The following examples and comparative examples illustrate the present invention. The percentages and ratios used in the examples are by weight unless otherwise indicated. The following ingredients were used in the thermosensitive element in addition to those mentioned above:
    AgB
    = silver behenate;
    K7598
    = KOEPF™ Type 7598, a calcium-free gelatin;
    B79
    = BUTVAR™ B79 from MONSANTO;
    CR01
    = ethyl 3,4-dihydroxybensoate, a reducing agent according to the teaching of US-P 5,582,953;
    S01
    = adipic acid;
    S02
    = tetrachlorophthalic anhydride
    S03
    = benzotriazole
    T01
    = benzo[e][1,3]oxazine-2,4-dione;
    T02
    = 7- (ethylcarbonato)benzo[e][1,3]oxazine-2,4-dione;
    Oil
    = Baysilon™ MA, a silicone oil from BAYER AG.
    COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 Preparation of aqueous dispersion of silver behenate
    9000g of silver behenate were added with stirring to 9000g of a 10% aqueous solution of Surfactant Nr 5 diluted with 20,146g of deionized water and the mixture stirred for 30 minutes with a KOTTHOFF™ stirrer. The resulting dispersion was then passed four times through a MICROFLUIDICS™ high pressure homogenizer at a pressure of 400 bar to obtain a finely divided aqueous silver behenate dispersion.
    Preparation of a tone modifier dispersion
    The tone modifier dispersion was prepared by first dissolving 8.8g of K7598 in 71.4g of deionized water by first adding the gelatin, then allowing the gelatin to swell for 30 minutes and finally heating to 50°C. 20 g of T01 was added with ULTRA-TURRAX™ stirring to this gelatin solution at 50°C, and the stirring continued for a further 5 minutes. Finally the resulting dispersion was pumped through a DYNOMILL™ (a horizontal bead mill from BACKOFEN) for 2 hours to produce the final tone modifier dispersion containing: 20% of T01 and 8.8% of gelatin.
    Preparation of the silver behenate emulsion layers
    The coating dispersions for the thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 were prepared by first dissolving 1.927g of K7598 in deionized water at 38°C (for the quantity of water see table 1), then adding with stirring to the warm K7598 solution: first 19.0g of the silver behenate dispersion, then 5.9g of a 30% dispersion of polymer latex nr. 1 and 5.68g of the tone modifier dispersion as flakes followed by 5 minutes stirring, then the reducing agent (s) (for quantities and types see table 1) dissolved in 1.71g of ethanol and finally 1.310g of a 3.7% by weight solution of formaldehyde to produce the corresponding coating dispersions.
    Comparative example number Quantity of water [g] reducing agent(s)
    number weight [g]
    1 23.55 CR01 0.92
    Invention example number
    1 23.37 R02 1.10
    2 23.79 R03 0.68
    The resulting emulsions were then doctor blade-coated to a wet thickness of 60µm at a blade setting of 100µm onto a 175µm thick subbed polyethylene terephthalate support and dried for 10 minutes at 50°C, producing the thermosensitive elements of the thermographic recording materials of COMPARATIVE EXAMPLES 1 and INVENTION EXAMPLES 1 & 2 with the compositions given in table 2.
    Comparative Example Number AgB [g/m2] Surfactant Nr 5 [g/m2] reducing agent K7598 [g/m2] polymer latex nr 1 [g/m2] HCHO [g/m2] T02 [g/m2]
    nr. [g/m2]
    1 4.76 0.48 CR01 0.97 2.59 1.88 0.05 1.20
    Invention Example Nr
    1 4.68 0.47 R02 1.15 2.55 1.85 0.05 1.18
    2 4.65 0.47 R03 0.70 2.53 1.84 0.05 1.17
    Thermographic printing
    During printing of the recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 the print head was separated from the imaging layer by a thin intermediate material contacted with a slipping layer of a separable 5µm thick polyethylene terephthalate ribbon coated successively with a subbing layer, heat-resistant layer and the slipping layer (anti-friction layer) giving a ribbon with a total thickness of 6µm.
    The printer was equipped with a thin film thermal head with a resolution of 300 dpi and was operated with a line time of 19ms (the line time being the time needed for printing one line). During this line time the print head received constant power. The average printing power, being the total amount of electrical input energy during one line time divided by the line time and by the surface area of the heat-generating resistors was 1.6 mJ/dot being sufficient to obtain maximum optical density in each of the thermographic recording materials of COMPARATIVE EXAMPLES 1 and INVENTION EXAMPLES 1 & 2.
    Image evaluation
    The colour neutrality of the optical density (D) of these images was evaluated by measuring the optical densities through blue, green and red filters using a MacBeth™ TR924 densitometer. The lowest, next highest and highest optical densities were assigned to D1, D2 and D3 respectively and were used to obtain a numerical colour value (NCV) by substituting the corresponding values in the following equation : NCV = D1 x D2 (D3)2 The larger the NCV value the better the colour neutrality of the image obtained. Maximal colour neutrality corresponds to a NCV value of 1. NCV values were determined at optical densities (D) with a visual filter of 1, 2 and 3 for the fresh materials, the same materials after being heated at 35°C in a relative humidity of 80% for 3 days and the same materials after being exposed in the light box described below at 30°C in a relative humidity of 85% for 3 days for the materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2. The NCV-values obtained are summarized in table 3 below.
    Comparative Example Nr. reducing agent numerical colour value , NCV
    fresh print print after 3d at 35°C/80% RH print after 3d light box at 30°C/85% RH
    D=1 D=2 D=3 D=1 D=2 D=3 D=1 D=2 D=3
    1 CR01 0.65 0.65 0.73 0.82 0.86 0.83 0.72 0.73 0.76
    Invention Example Nr.
    1 R02 0.69 0.73 0.81 0.75 0.80 0.85 0.70 0.74 0.83
    2 R03 0.72 0.73 0.78 0.82 0.84 0.84 0.77 0.75 0.79
    The NCV-values in table 3 enable materials with different reducing agents to be compared on the basis of their colour neutrality, the dependence of their colour neutrality upon image optical density. The NCV values for fresh prints and prints of the thermographic recording materials of INVENTION EXAMPLES 1 & 2 exposed in the light box for 3 days at 30°C in 85% relative humidity are clearly superior to those of the thermographic recording material of COMPARATIVE EXAMPLE 1 with a reducing agent according to the teaching of US-P 5, 582, 953 and those for prints stored in the dark for 3 days at 35°C in 80% relative humidity are comparable therewith. It is therefore evident that prints made with the thermographic recording materials using the novel reducing agents of the present invention exhibit superior colour neutrality to prior art materials.
    The maximum and minimum densities of the prints measured through a visible or blue filter with a MACBETH™ TR924 densitometer in the grey scale step corresponding to data levels of 64 and 0 respectively are given in table 4.
    Archivability test
    The archivability of prints made with the thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 was evaluated on the basis of the observed changes in NCV-values and minimum density, ΔDmin, upon heating the prints at 35°C in a relative humidity of 80% for 3 days in the dark. The results of these tests are als given in table 4.
    Light box test
    The stability of the image background of the prints made with the thermographic recording materials of COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 was evaluated on the basis of the change in NCV-values and minimum (background) density and maximum density measured through a blue filter using a MacBeth™ TR924 densitometer upon exposure on top of the white PVC window of a specially constructed light-box placed for 3 days in a VOTSCH conditioning cupboard set at 30°C and a relative humidity of 85%. Only a central area of the window 550mm long by 500mm wide was used for mounting the test materials to ensure uniform exposure.
    The stainless steel light-box used was 650mm long, 600mm wide and 120mm high with an opening 610mm long and 560mm wide with a rim 10mm wide and 5mm deep round the opening, thereby forming a platform for a 5mm thick plate of white PVC 630mm long and 580mm wide, making the white PVC-plate flush with the top of the light-box and preventing light loss from the light-box other than through the white PVC-plate. This light-box was fitted with 9 PLANILUX™ TLD 36W/54 fluorescent lamps 27mm in diameter mounted length-wise equidistantly from the two sides, with the lamps positioned equidistantly to one another and the sides over the whole width of the light-box and with the tops of the fluorescent tubes 30mm below the bottom of the white PVC plate and 35mm below the materials being tested. The results are summarized in table 4.
    Comparative example number reducing agent fresh print Dmax/Dmin (vis) fresh print Dmax/Dmin (blue) Archivability ΔDmin (blue) after (3d at 35°C/80%RH) Light Box ΔDmin (blue) after (3d 30°C/85%RH)
    1 CR01 4.65/0.10 4.42/0.13 0.12 0.15
    Invention example nr
    1 R02 4.44/0.09 4.18/0.12 0.01 0.11
    2 R03 4.71/0.09 4.36/0.12 0.04 0.12
    The results of the thermographic evaluation of the thermographic recording materials of INVENTION EXAMPLES 1 & 2 incorporating novel reducing agents according to the present invention, clearly demonstrate the improved archivability and light box stability (reduced ΔDmin values) of their prints compared with prints made with the thermographic recording material of COMPARATIVE EXAMPLE 1 with a reducing agent according to the teaching of US-P 5,582,953.
    COMPARATIVE EXAMPLE 2 & INVENTION EXAMPLES 3 to 6 Preparation of a silver behenate dispersion
    2.5g of a 30% solution of B79 in 2-butanone, 10g of silver behenate and 37.5g of 2-butanone were mixed for 72 hours in a ball mill and then 30.83g of a 30% solution of B79 and 7.67g of 2-butanone were added to produce a 2-butanone dispersion containing 11.3% of silver behenate and 11.3% by weight of B79.
    Preparation of the thermosensitive element
    The subbed 175µm thick polyethylene terephthalate support was doctor blade-coated with a composition containing 2-butanone as solvent/dispersing medium so as to obtain thereon, after drying for 1 hour at 50°C, a thermosensitive element with the compositions summarized in tables 5 and 6 below for COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 respectively:
    Comparative example number AgB [g/m2] B79 [g/m2] Oil [g/m2] T01 [g/m2] T02 [g/m2] CR01 [g/m2] S01 [g/m2] S02 [g/m2] S03 [g/m2]
    2 4.91 19.62 0.045 0.27 0.14 0.989 0.35 0.16 0.13
    Invention Example nr AgB [g/m2] B79 [g/m2] Oil [g/m2] T01 [g/m2] T02 [g/m2] reducing agent S01 [g/m2] S02 [gm2] S03 [g/m2]
    nr. [g/m2]
    3 4.91 19.62 0.045 0.27 0.14 R01 1.436 0.35 0.16 0.13
    4 4.91 19.62 0.045 0.27 0.14 R03 0.728 0.35 0.16 0.13
    5 4.91 14.69 0.044 0.27 0.14 R01 1.436 0.30 0.15 0.13
    6 4.91 19.57 0.044 0.27 0.14 R01 1.436 0.30 0.15 0.13
    Thermographic evaluation
    The thermographic recording materials of COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 were evaluated as described above for COMPARATIVE EXAMPLE 1 and INVENTION EXAMPLES 1 & 2 except that the archivability tests were carried out for 3 days at 57°C in a relative humidity of 34% instead of 3 days at 35°C in a relative humidity of 80%. The NCV-values for the thermographic recording materials of COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 for fresh prints and prints exposed in the light box for 3 days at 30°C in a relative humidity of 85% are given in table 7 below.
    Comparative Example Nr. reducing agent NCV-values for fresh print ΔNCV-values for print after 3d light box at 30°C/85% RH
    D=1 D=2 D=3 D=1 D=2 D=3
    2 CR01 0.91 0.95 0.97 -0.10 -0.04 -0.03
    Invention Example Nr.
    3 R01 0.90 0.95 0.00 +0.01
    4 R03 0.89 0.96 -0.08 -0.02
    5 R01 0.84 0.91 0.97 +0.02 +0.06 0.00
    6 R01 0.90 0.95 0.97 -0.01 0.00 -0.03
    The NCV-values in table 7 enable materials with different reducing agents to be compared on the basis of their colour neutrality, the dependence of their colour neutrality upon image optical density, the higher the values the better the colour neutrality. The NCV values for fresh prints of the thermographic recording materials of INVENTION EXAMPLES 3 to 6 are comparable to those of the thermographic recording material of COMPARATIVE EXAMPLE 2. However, when the prints made with these thermographic recording materials are exposed in the light box for 3 days at 30°C in 85% relative humidity, the deterioration in colour neutrality of the thermographic recording material of COMPARATIVE EXAMPLE 2 with a reducing agent according to the teaching of US-P 5,582,953 is greater than that observed for the thermographic recording material of INVENTION EXAMPLE 4 and substantially greater than that observed for the thermographic recording materials of INVENTION EXAMPLES 3, 5 and 6 for which there is little discernible change in colour neutrality. The most critical NCV-value in terms of the visual perception of a viewer is that at a density of 1.0. The change in NCV-value, ΔNCV, at D=1 for prints made with the thermographic recording materials of INVENTION EXAMPLES 3 to 6 is significantly lower (-0.08 to +0.02) than that for the thermographic recording material of COMPARATIVE EXAMPLE 2 (-0.10).
    The Dmax, ΔDmax, Dmin and ΔDmin results for the archivability and light box tests for COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6 are summarized in table 8 below.
    Comparative Example number reducing agent fresh print Dmax/Dmin (vis) fresh print Dmax/Dmin (blue) Archivability ΔDmax/ΔDmin (blue) after 3d at 57°C/34%RH Light Box ΔDmax/ΔDmin (blue) after 3d at 30°C/85%RH
    2 CR01 3.72/0.07 3.38/0.09 0.50/0.00 0.15/0.02
    Invention Example number
    3 R01 2.87/0.07 2.53/0.08 0.07/0.01 0.04/0.01
    4 R03 2.83/0.07 2.59/0.08 0.14/0.00 0.10/0.03
    5 R01 3.31/0.07 3.06/0.07 -0.07/0.00 0.08/0.01
    6 R01 3.09/0.07 2.88/0.08 0.05/0.00 0.01/0.01
    The results of the thermographic evaluation of the thermographic recording materials of INVENTION EXAMPLES 3 to 6 incorporating novel reducing agents according to the present invention, clearly demonstrate the improved archivability and light box stability (reduced ΔDmax and ΔDmin values) of their prints compared with prints made with the thermographic recording material of COMPARATIVE EXAMPLE 2 with a reducing agent according to the teaching of US-P 5,582,953.
    However, these values do not do justice to the substantial improvement in light stability over the whole sensitometric range realized with the prints made with the thermographic recording materials of INVENTION EXAMPLES 3 to 6 compared with that with the prints made with the thermographic recording material of COMPARATIVE EXAMPLE 2. Table 9, therefore gives the density values and density changes for different pulse energies over the whole sensitometric range for prints made with the thermographic recording materials of COMPARATIVE EXAMPLE 2 and INVENTION EXAMPLES 3 to 6.
    energy /dot [µJ] comparative example 2 invention example 3 invention example 4 invention example 5 invention example 6
    fresh print Dvis light box ΔDvis fresh print Dvis light box ΔDvis fresh print Dvis light box ΔDvis fresh print Dvis light box ΔDvis fresh print Dvis light box ΔDvis
    7.5 0.07 0.00 0.07 0.00 0.07 0.02 0.07 0.00 0.07 0.00
    15 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00
    27.5 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00
    35 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00
    47.5 0.08 0.00 0.07 0.00 0.07 0.01 0.07 0.00 0.07 0.00
    55 0.09 0.00 0.07 0.00 0.08 0.01 0.07 0.00 0.07 0.01
    67.5 0.17 0.03 0.09 0.00 0.12 0.01 0.10 0.00 0.10 0.00
    75 0.28 0.07 0.13 0.00 0.19 0.01 0.16 0.00 0.16 0.00
    87.5 0.52 0.12 0.27 0.00 0.36 0.01 0.34 0.00 0.31 0.01
    95 0.74 0.18 0.40 0.00 0.52 0.01 0.53 0.01 0.50 0.00
    107.5 1.12 0.21 0.66 0.00 0.79 0.02 0.82 0.04 0.79 0.02
    115 1.50 0.21 0.89 0.02 1.07 0.02 1.15 0.02 1.13 0.00
    127.5 2.13 0.29 1.39 0.04 1.53 0.03 1.79 0.05 1.63 0.06
    135 2.64 0.25 1.80 0.05 1.95 0.03 2.19 0.09 2.06 0.09
    147.5 3.24 0.21 2.38 0.07 2.35 0.07 2.88 0.04 2.57 0.10
    155 3.66 0.19 2.41 0.04 2.77 0.04 3.20 0.07 3.02 0.10
    157.5 3.67 0.12 2.86 -0.08 2.80 -0.01 3.14 0.12 3.07 0.11
    160 3.72 0.21 2.87 0.00 2.83 -0.01 3.31 0.02 3.09 0.11
    It is evident from table 9 that the light stability over the whole sensitometric range of prints made with the thermographic recording materials of INVENTION EXAMPLES 3 to 6 is substantially improved over that obtained with prints made with the thermographic recording material of COMPARATIVE EXAMPLE 2 with a reducing agent according to the teaching of US-P 5,582,953.
    Having described in detail preferred embodiments of the current invention, it will now be apparent to those skilled in the art that numerous modifications can be made therein without departing from the scope of the invention as defined in the following claims.

    Claims (9)

    1. A substantially light-insensitive black and white monosheet thermographic recording material comprising a support and a thermosensitive element containing a substantially light-insensitive organic silver salt, a 1,2-dihydroxyphenyl-compound in thermal working relationship therewith and a binder, characterized in that said 1,2-dihydroxyphenyl-compound is represented by formula (I):
      Figure 00270001
      where R is -P(=O)R1R2, -SOxR3, -CN , -NO2 or -CR4=NR5 when n is 0; R is -P(=O)R 1 R 2 , -SOxR3, -CN, -NO2, -CR4=NR5 or -COR6 when n is an integer; R1 and R2 are independently an alkyl, a substituted alkyl, an aryl, a substituted aryl group, an alkoxy, a substituted alkoxy, an aryloxy, a substituted aryloxy, a hydroxy group, an amino group or a substituted amino group; R3 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an amino or a substituted amino group; R4 is an alkyl, a substituted alkyl, an aryl or a substituted aryl group or hydrogen; R5 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, a hydroxy, an alkoxy, an aryloxy, an acyl, an amino or a substituted amino group; R6 is an alkyl, a substituted alkyl, an aryl, a substituted aryl, an alkoxy, a substituted alkoxy, an aryloxy1 a substituted aryloxy, a hydroxy, an amino or a substituted amino group or hydrogen; x is 1, 2 or 3; and the benzene ring of said 1,2-dihydroxyphenyl-compound represented by said formula (I) may be further substituted.
    2. Substantially light-insensitive black and white monosheet thermographic recording material according to claim 1, wherein said reducing agent is selected from the group of compounds consisting of: aryl(3,4-dihydroxyphenyl)sulfinates, alkyl(3,4-dihydroxyphenyl)sulfinates, 3,4-dihydroxyphenyl-alkylsulfones, 3,4-dihydroxyphenyl-arylsulfones, aryl(3,4-dihydroxyphenyl)sulfonates, alkyl(3,4-dihydroxyphenyl)sulfonates and 3,4-dihydroxybenzonitrile compounds.
    3. Substantially light-insensitive black and white monosheet thermographic recording material according to claim 1 or 2, wherein said reducing agent is represented by the following formula:
      Figure 00280001
    4. Substantially light-insensitive black and white monosheet thermographic recording material according to claim 1 or 2, wherein said reducing agent is represented by the following formula:
      Figure 00280002
    5. Substantially light-insensitive black and white monosheet thermographic recording material according to claim 1 or 2, wherein said reducing agent is represented by the following formula:
      Figure 00280003
    6. Substantially light-insensitive black and white monosheet thermographic recording material according to any of the preceding claims, wherein said thermosensitive element further contains at least one polycarboxylic acid and/or anhydride thereof in a molar percentage of at least 15 with respect to said substantially light-insensitive organic silver salt and in thermal working relationship therewith.
    7. Substantially light-insensitive black and white monosheet thermographic recording material according to any of the preceding claims, wherein said thermosensitive element is provided with a protective layer.
    8. Substantially light-insensitive black and white monosheet thermographic recording material according to any of the preceding claims, wherein said substantially light-insensitive organic silver salt is a silver salt of an organic carboxylic acid.
    9. A process for producing a substantially light-insensitive black and white monosheet thermographic recording material, according to any of the preceding claims, comprising the steps of: producing one or more aqueous coating compositions containing together said substantially light-insensitive organic silver salt, said reducing agent and said binder; and applying said one or more aqueous coating compositions to the same side of said support as said subbing layer thereby forming after drying said thermosensitive element.
    EP19980202551 1997-09-17 1998-07-30 Thermographic recording materials Expired - Lifetime EP0903625B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP19980202551 EP0903625B1 (en) 1997-09-17 1998-07-30 Thermographic recording materials

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    EP97202872 1997-09-17
    EP97202872 1997-09-17
    EP19980202551 EP0903625B1 (en) 1997-09-17 1998-07-30 Thermographic recording materials

    Publications (2)

    Publication Number Publication Date
    EP0903625A1 true EP0903625A1 (en) 1999-03-24
    EP0903625B1 EP0903625B1 (en) 2003-05-14

    Family

    ID=26146877

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19980202551 Expired - Lifetime EP0903625B1 (en) 1997-09-17 1998-07-30 Thermographic recording materials

    Country Status (1)

    Country Link
    EP (1) EP0903625B1 (en)

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1059560A1 (en) * 1999-06-04 2000-12-13 Agfa-Gevaert N.V. Thermographic recording material with improved image tone
    US6211116B1 (en) 1998-06-08 2001-04-03 Agfa-Gevaert Substantially light-insensitive black and white thermographic recording material with improved image tone
    EP1245403A1 (en) * 2001-03-29 2002-10-02 Agfa-Gevaert Thermographic recording material with improved image tone.
    EP1270255A1 (en) * 2001-06-29 2003-01-02 Agfa-Gevaert Thermographic recording material with improved image tone
    US6693062B2 (en) 2001-06-29 2004-02-17 Agfa-Gevaert Thermographic recording material with improved image tone
    US6774084B2 (en) 2001-03-29 2004-08-10 Agfa-Gevaert Thermographic recording material with improved image tone
    US7097961B2 (en) 2004-05-17 2006-08-29 Agfa Gevaert Stabilizers for use in substantially light-insensitive thermographic recording materials
    US7175977B2 (en) 2003-12-18 2007-02-13 Agfa-Gevaert Stabilizers for use in thermographic recording materials
    US7179768B2 (en) 2004-11-05 2007-02-20 Agfa-Gevaert Toning agents for use in thermographic recording materials
    US7307041B2 (en) 2004-09-17 2007-12-11 Agfa Healthcare Stabilizers for use in substantially light-insensitive thermographic recording materials
    EP2199100A1 (en) 2008-12-22 2010-06-23 Agfa-Gevaert N.V. Security laminates for security documents.

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7294605B2 (en) 2003-12-18 2007-11-13 Agfa-Healthcare Thermographic recording materials containing a mesionic, 1,2,4-triazolium-3-thiolate compound
    US7282468B2 (en) 2005-07-18 2007-10-16 Carestream Health Inc. Direct thermographic materials with catechol borate reducing agents

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0248405A2 (en) * 1986-06-03 1987-12-09 Jujo Paper Co., Ltd. Heat-sensitive registration material
    EP0599580A1 (en) * 1992-11-20 1994-06-01 Nippon Paper Industries Co., Ltd. Thermal recording sheet

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0248405A2 (en) * 1986-06-03 1987-12-09 Jujo Paper Co., Ltd. Heat-sensitive registration material
    EP0599580A1 (en) * 1992-11-20 1994-06-01 Nippon Paper Industries Co., Ltd. Thermal recording sheet

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6211116B1 (en) 1998-06-08 2001-04-03 Agfa-Gevaert Substantially light-insensitive black and white thermographic recording material with improved image tone
    EP1059560A1 (en) * 1999-06-04 2000-12-13 Agfa-Gevaert N.V. Thermographic recording material with improved image tone
    EP1245403A1 (en) * 2001-03-29 2002-10-02 Agfa-Gevaert Thermographic recording material with improved image tone.
    US6774084B2 (en) 2001-03-29 2004-08-10 Agfa-Gevaert Thermographic recording material with improved image tone
    EP1270255A1 (en) * 2001-06-29 2003-01-02 Agfa-Gevaert Thermographic recording material with improved image tone
    US6693062B2 (en) 2001-06-29 2004-02-17 Agfa-Gevaert Thermographic recording material with improved image tone
    US7175977B2 (en) 2003-12-18 2007-02-13 Agfa-Gevaert Stabilizers for use in thermographic recording materials
    US7097961B2 (en) 2004-05-17 2006-08-29 Agfa Gevaert Stabilizers for use in substantially light-insensitive thermographic recording materials
    US7307041B2 (en) 2004-09-17 2007-12-11 Agfa Healthcare Stabilizers for use in substantially light-insensitive thermographic recording materials
    US7179768B2 (en) 2004-11-05 2007-02-20 Agfa-Gevaert Toning agents for use in thermographic recording materials
    EP2199100A1 (en) 2008-12-22 2010-06-23 Agfa-Gevaert N.V. Security laminates for security documents.

    Also Published As

    Publication number Publication date
    EP0903625B1 (en) 2003-05-14

    Similar Documents

    Publication Publication Date Title
    US5599647A (en) New toning agents for thermographic and photothermographic materials and process
    EP0903625B1 (en) Thermographic recording materials
    EP0848286B1 (en) Thermographic recording material with improved image tone and/or stability upon thermal development
    US6130033A (en) (Photo) thermographic material with improved transport performance
    EP0752616B1 (en) New toning agents for thermographic and photothermographic materials and process
    US6096486A (en) Thermographic recording material with improved image tone and/or stability upon thermal development
    EP0810467A1 (en) (Photo)thermographic material with improved transport performance
    EP0903628B1 (en) Thermographic recording material with improved stability
    EP0901040B1 (en) Substantially light-insensitive thermographic recording material with improved stability and image-tone
    US6093528A (en) Reducing agents for use in thermographic recording materials
    EP0978760B1 (en) Thermographic recording materials
    US6348308B1 (en) Substantially light-insensitive thermographic recording material with improved stability and image-tone
    US6063559A (en) Amino-triazine compounds for (photo)thermographic materials
    US5885765A (en) Thermographic recording material with improved tone reproduction
    US6037114A (en) Thermographic recording material with improved image density and/or image gradation upon thermal development
    EP0903624B1 (en) Binders for thermographic materials
    EP0782043B1 (en) Thermographic recording material which improved tone reproduction
    US6030765A (en) Thermographic recording material coatable with improved stability
    US6211115B1 (en) Reducing agents for use in thermographic recording materials
    US6306572B1 (en) Binders for thermographic materials
    US6284442B1 (en) Black and white thermographic recording material with improved diagnostic capability
    EP0903626B1 (en) Amino-triazine compounds for (photo)thermographic materials
    EP0903622B1 (en) (Photo)thermographic recording material
    US6300052B1 (en) Binders for thermographic materials
    EP0903623B1 (en) Binders for thermographic materials

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990924

    AKX Designation fees paid

    Free format text: BE DE FR GB

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: AGFA-GEVAERT

    RTI1 Title (correction)

    Free format text: THERMOGRAPHIC RECORDING MATERIALS

    17Q First examination report despatched

    Effective date: 20021220

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): BE DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 69814546

    Country of ref document: DE

    Date of ref document: 20030618

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040217

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    BECA Be: change of holder's address

    Owner name: *AGFA HEALTHCARE N.V.SEPTESTRAAT 27, B-2640 MORTSE

    Effective date: 20070321

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080731

    Year of fee payment: 11

    BERE Be: lapsed

    Owner name: *AGFA HEALTHCARE N.V.

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170620

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20170620

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170614

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69814546

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20180729

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20180816 AND 20180822

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20180729