EP0901810A2 - Method and apparatus for the continuous mixing of a droplet dispersion in a liquid - Google Patents

Method and apparatus for the continuous mixing of a droplet dispersion in a liquid Download PDF

Info

Publication number
EP0901810A2
EP0901810A2 EP98115928A EP98115928A EP0901810A2 EP 0901810 A2 EP0901810 A2 EP 0901810A2 EP 98115928 A EP98115928 A EP 98115928A EP 98115928 A EP98115928 A EP 98115928A EP 0901810 A2 EP0901810 A2 EP 0901810A2
Authority
EP
European Patent Office
Prior art keywords
container
flow
liquid
droplet dispersion
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98115928A
Other languages
German (de)
French (fr)
Other versions
EP0901810B1 (en
EP0901810A3 (en
Inventor
Christine Dr. Maul
Matthias Dr. Stenger
Jörg Tofahrn
Michael Van Teeffelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0901810A2 publication Critical patent/EP0901810A2/en
Publication of EP0901810A3 publication Critical patent/EP0901810A3/en
Application granted granted Critical
Publication of EP0901810B1 publication Critical patent/EP0901810B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit

Definitions

  • a variety of technical processes for the production of fine-particle spherical Polymers or microcapsules are based on the fact that initially a droplet dispersion or cores of finely divided, liquid or with a liquid shell solid material are generated, then by adding another Liquid, e.g. a hardener or an acid or base to change the pH the dispersion the droplets or the liquid surrounding the particles Shell is hardened or stabilized.
  • a hardener or an acid or base to change the pH the dispersion the droplets or the liquid surrounding the particles Shell is hardened or stabilized.
  • the problem is that the liquid is so gentle in the droplet dispersion to interfere that an agglomeration and coalescence of the droplets and thus a Disruption of the droplet size distribution is avoided.
  • the widely used microencapsulation process by coacervation or complex coacervation a droplet dispersion in one aqueous gelatin solution or an aqueous solution of gelatin and gum arabic generated at substantially neutral pH, the droplets with a Gelatin layer can be covered.
  • the encapsulation is carried out by adding a copolymer with the addition of an aqueous solution of an inorganic acid, if appropriate with subsequent lowering of the temperature of the dispersion.
  • Capsules are already so stable that they can be washed and, if necessary, added of formalin can be hardened with an increase in pH.
  • the suspension very sensitive to droplets coated with gelatin before acidification against mechanical stress. The mixture with the acid solution must therefore done very gently.
  • the object of the present invention is to provide a method and an apparatus for continuous mixing of a droplet dispersion with a liquid Introducing the liquid into a container through which the droplet dispersion flows to provide, in which the mixing of the liquid is gentle, i.e. if possible low mechanical stress is carried out.
  • the object is achieved in that the liquid in the form of a large number of fine liquid jets are injected into the droplet dispersion, taking the energy of the liquid jets a short distance behind the injection site is broken down, and the further mixing by one generated in the container Circulation flow occurs with shear rates below 20 / s.
  • the droplet dispersion is preferably introduced axially into a cylindrical container to excite the circulation flow, the introduction speed of the droplet dispersion being 15 to 100 times greater than the average speed determined on the basis of the throughput through the cylindrical container ( As a result, an axial forward flow and a peripheral backward flow with a corresponding flow deflection at a distance from the point of introduction for the droplet dispersion, which is repeated several times by the droplets, is generated in the cylindrical container.
  • the flow velocity through the cylindrical container can be in the range from 0. 1 to 0.5 cm / s, and the droplet dispersion is introduced into the cylindrical container at a rate of 3 to 15 cm / s.
  • the introduction point for the droplet dispersion preferably projects axially into the cylindrical one Containers so that the cylindrical container on the back to the discharge point has an annular space in which the return flow is deflected into a forward flow becomes.
  • the liquid to be mixed into the droplet dispersion is preferably by the jacket of the cylindrical container is injected into the backflow.
  • the cylindrical container jacket has a plane perpendicular to the container axis Large number of nozzles through which the liquid is introduced.
  • the introduction speed for the liquid it can typically be 1 to 5 m / s.
  • the liquid jets are preferably injected with a directional component against the peripheral backflow of the droplet dispersion, so that the Liquid jets in the area surrounding the introduction point for the droplet dispersion Annulus create a peripheral forward flow.
  • the Ring space surrounding the inlet point causes a particularly intensive mass transfer.
  • the impulse component introduced by the liquid jets parallel to the container axis can be of the order of magnitude of momentum input through the droplet dispersion lie, in particular about 1 to 10 times the momentum input by the Droplet dispersion.
  • the introduction takes place the droplet dispersion in the cylindrical container from the bottom up when the Droplets have a lower specific gravity than the continuous one Phase.
  • the droplets experience a buoyancy, which leads to the fact that in the droplet concentration in the annular space surrounding the point of introduction for the droplet dispersion impoverished. Accordingly, the existing in the annulus peripheral upward flow shows a reduced droplet concentration. This is particularly important if, for reasons of economy, droplet dispersions used with very high droplet concentrations of 40 to 60 vol% become.
  • the liquid is then injected into a droplet dispersion with significantly reduced droplet concentration, so the risk the agglomeration of droplets in the area of the injection is further reduced.
  • the flow direction through the cylindrical is preferred Container selected from top to bottom if the droplets have a greater density, than the continuous phase.
  • Fig. 1 shows in principle a container 1 in the form of a cylindrical column with a axially arranged inlet pipe 2 for the droplet dispersion.
  • the generation of the Droplet dispersion can be carried out by methods known per se. For example can the droplet dispersion by spraying the liquid forming the droplet be produced in an aqueous gelatin solution.
  • On a circumferential line perpendicular to Axis 3 of the cylindrical container 1 are a plurality of nozzles 4, for example provided with a diameter of 0.4 mm.
  • the number of nozzles can be, for example 12 to 120.
  • the nozzles are fed from an annular channel 5, in the the liquid is introduced through one or more supply lines 6.
  • the nozzles 4 obliquely upwards, so that the liquid injected is a Directional component in the flow direction of the container 1.
  • the cross-sectional area the inlet pipe 2 for the droplet dispersion can 1/12 to 1/45 of Cross-sectional area of the cylindrical container 1 amount.
  • the container 1 has a rotationally symmetrical flow distribution above the Drawing (not shown) an axial outlet with a conical transition to
  • the outlet cross-section according to the invention is intended to be that caused by the circulating flow Droplet dispersion shear rate below 20 / s, preferably below 10 / s.
  • the estimate of the shear rate is double Inflow velocity of the droplet dispersion through half the container radius divided.
  • the inlet pipe 2 for the droplet dispersion projects at least over one Length, which corresponds to the radius of the container 1, into this, so that the rear an annular space 7 is formed by the inlet point, in which the return flow 11 is deflected becomes.
  • the nozzles 4 are inclined upwards directed so that a peripheral forward flow 13 is excited in the annular space 7 becomes.
  • the backflow 11 in the annular space 7 into a axial and a peripheral forward flow divided, so that an intensive exchange takes place, and on the other hand an additional circulation flow in the annular space 7 generated due to the longer dwell time and the density differences of Droplets and continuous phase as well as dilution by the liquid supplied has a significantly reduced droplet concentration.
  • Fig. 2 shows an enlarged view of the flow conditions in the area of Annulus 7, the dashed lines 21 and 22 the boundaries between the Flow areas with a forward component on the one hand and a backflow component otherwise specify.

Abstract

Fluid is injected through fine nozzles (4) into a container through which the droplet dispersion flows. The energy of the jet streams is dissipated within a short distance from the injection point and mixing is enhanced by the circulating flow produced in the container at shear speeds below 20/second. An Independent claim is also included for the apparatus for the above process comprising a cylindrical container with a central inlet (2) for a droplet dispersion and small diameter nozzles (4) which enter the container perpendicular to the container axis and at the level of the dispersion inlet tube.

Description

Eine Vielzahl von technischen Prozessen zur Herstellung von feinteiligen kugelförmigen Polymeren oder Mikrokapseln beruht darauf, daß zunächst eine Tröpfchendispersion oder mit einer flüssigen Hülle umgebene Kerne aus feinteiligem, flüssigem oder festem Material erzeugt werden, wobei anschließend durch Zugabe einer weiteren Flüssigkeit, z.B. eines Härters oder einer Säure oder Base zur Anderung des pH-Wertes der Dispersion die Tröpfchen bzw. die die Teilchen umschließende flüssige Hülle gehärtet bzw. stabilisiert wird.A variety of technical processes for the production of fine-particle spherical Polymers or microcapsules are based on the fact that initially a droplet dispersion or cores of finely divided, liquid or with a liquid shell solid material are generated, then by adding another Liquid, e.g. a hardener or an acid or base to change the pH the dispersion the droplets or the liquid surrounding the particles Shell is hardened or stabilized.

Dabei besteht das Problem, die Flüssigkeit so schonend in die Tröpfchendispersion einzumischen, daß eine Agglomeration und Koaleszenz der Tröpfchen und damit eine Störung der Tröpfchengrößenverteilung vermieden wird.The problem is that the liquid is so gentle in the droplet dispersion to interfere that an agglomeration and coalescence of the droplets and thus a Disruption of the droplet size distribution is avoided.

Beispielsweise wird bei dem weit verbreiteten Verfahren zur Mikroverkapselung durch Koazervation bzw. Komplexkoazervation eine Tröpfchendispersion in einer wäßrigen Gelatinelösung bzw. einer wäßrigen Lösung von Gelatine und Gummiarabicum bei im wesentlichen neutralen pH-Wert erzeugt, wobei die Tröpfchen mit einer Gelatineschicht belegt werden. Die Verkapselung erfolgt durch Zugabe eines Copolymeren unter Zusatz einer wäßrigen Lösung einer anorganischen Säure, gegebenenfalls mit anschließender Absenkung der Temperatur der Dispersion. Die so erhaltenen Kapseln sind bereits so stabil, daß sie gewaschen und gegebenenfalls durch Zugabe von Formalin unter pH-Werterhöhung gehärtet werden können. Dagegen ist die Suspension von mit Gelatine belegten Tröpfchen vor der Ansäuerung sehr empfindlich gegen mechanische Beanspruchung. Die Vermischung mit der Säurelösung muß also sehr schonend erfolgen.For example, the widely used microencapsulation process by coacervation or complex coacervation a droplet dispersion in one aqueous gelatin solution or an aqueous solution of gelatin and gum arabic generated at substantially neutral pH, the droplets with a Gelatin layer can be covered. The encapsulation is carried out by adding a copolymer with the addition of an aqueous solution of an inorganic acid, if appropriate with subsequent lowering of the temperature of the dispersion. The so obtained Capsules are already so stable that they can be washed and, if necessary, added of formalin can be hardened with an increase in pH. In contrast is the suspension very sensitive to droplets coated with gelatin before acidification against mechanical stress. The mixture with the acid solution must therefore done very gently.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zur kontinuierlichen Vermischung einer Tröpfchendispersion mit einer Flüssigkeit durch Einleiten der Flüssigkeit in einen von der Tröpfchendispersion durchströmten Behälter bereitzustellen, bei dem die Einmischung der Flüssigkeit schonend, d.h. bei möglichst geringer mechanischer Beanspruchung durchgeführt wird. The object of the present invention is to provide a method and an apparatus for continuous mixing of a droplet dispersion with a liquid Introducing the liquid into a container through which the droplet dispersion flows to provide, in which the mixing of the liquid is gentle, i.e. if possible low mechanical stress is carried out.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die Flüssigkeit in Form von einer Vielzahl von feinen Flüssigkeitsstrahlen in die Tröpfchendispersion injiziert wird, wobei die Energie der Flüssigkeitsstrahlen in kurzer Entfernung hinter der Injektionsstelle abgebaut wird, und die weitere Vermischung durch eine in dem Behälter erzeugte Umwälzströmung mit Schergeschwindigkeiten unterhalb 20/s erfolgt.According to the invention the object is achieved in that the liquid in the form of a large number of fine liquid jets are injected into the droplet dispersion, taking the energy of the liquid jets a short distance behind the injection site is broken down, and the further mixing by one generated in the container Circulation flow occurs with shear rates below 20 / s.

Vorzugsweise wird die Tröpfchendispersion zur Anregung der Umwälzströmung axial in einen zylindrischen Behälter eingeleitet, wobei die Einleitgeschwindigkeit der Tröpfchendispersion 15- bis 100-mal größer ist als die aufgrund des Durchsatzes durch den zylindrischen Behälter ermittelte mittlere Geschwindigkeit (

Figure 00020001
Durchströmgeschwindigkeit"). Hierdurch wird in dem zylindrischen Behälter eine axiale Vorwärtsströmung und eine periphere Rückwärtsströmung mit entsprechender Strömungsumlenkung im Abstand zur Einleitstelle für die Tröpfchendispersion erzeugt, die von den Tröpfchen mehrfach durchlaufen wird. Dabei kann die Durchströmgeschwindigkeit durch den zylindrischen Behälter im Bereich von 0,1 bis 0,5 cm/s betragen. Entsprechend wird die Tröpfchendispersion mit einer Geschwindigkeit von 3 bis 15 cm/s in den zylindrischen Behälter eingeleitet.The droplet dispersion is preferably introduced axially into a cylindrical container to excite the circulation flow, the introduction speed of the droplet dispersion being 15 to 100 times greater than the average speed determined on the basis of the throughput through the cylindrical container (
Figure 00020001
As a result, an axial forward flow and a peripheral backward flow with a corresponding flow deflection at a distance from the point of introduction for the droplet dispersion, which is repeated several times by the droplets, is generated in the cylindrical container. The flow velocity through the cylindrical container can be in the range from 0. 1 to 0.5 cm / s, and the droplet dispersion is introduced into the cylindrical container at a rate of 3 to 15 cm / s.

Vorzugsweise ragt die Einleitstelle für die Tröpfchendispersion axial in den zylindrischen Behälter hinein, so daß der zylindrische Behälter rückseitig zur Einleitstelle einen Ringraum aufweist, in dem die Rückströmung in eine Vorwärtsströmung umgelenkt wird.The introduction point for the droplet dispersion preferably projects axially into the cylindrical one Containers so that the cylindrical container on the back to the discharge point has an annular space in which the return flow is deflected into a forward flow becomes.

Die in die Tröpfchendispersion einzumischende Flüssigkeit wird vorzugsweise durch den Mantel des zylindrischen Behälters in die Rückströmung eingedüst. Vorzugsweise weist der zylindrische Behältermantel in einer Ebene senkrecht zur Behälterachse eine Vielzahl von Düsen auf, durch die die Flüssigkeit eingeleitet wird. Die Einleitgeschwindigkeit für die Flüssigkeit kann typischerweise 1 bis 5 m/s betragen.The liquid to be mixed into the droplet dispersion is preferably by the jacket of the cylindrical container is injected into the backflow. Preferably the cylindrical container jacket has a plane perpendicular to the container axis Large number of nozzles through which the liquid is introduced. The introduction speed for the liquid it can typically be 1 to 5 m / s.

Vorzugsweise erfolgt die Eindüsung der Flüssigkeitsstrahlen mit einer Richtungskomponente entgegen der peripheren Rückströmung der Tröpfchendispersion, so daß die Flüssigkeitsstrahlen in dem die Einleitstelle für die Tröpfchendispersion umgebenden Ringraum eine periphere Vorwärtsströmung erzeugen. Hierdurch wird in dem die Einleitstelle umgebenden Ringraum ein besonders intensiver Stoffaustausch bewirkt. Die durch die Flüssigkeitsstrahlen eingebrachte Impulskomponente parallel zur Behälterachse, kann etwa in der Größenordnung des Impulseintrages durch die Tröpfchendispersion liegen, insbesondere etwa das 1- bis 10-fache des Impulseintrags durch die Tröpfchendispersion betragen.The liquid jets are preferably injected with a directional component against the peripheral backflow of the droplet dispersion, so that the Liquid jets in the area surrounding the introduction point for the droplet dispersion Annulus create a peripheral forward flow. As a result, the Ring space surrounding the inlet point causes a particularly intensive mass transfer. The impulse component introduced by the liquid jets parallel to the container axis, can be of the order of magnitude of momentum input through the droplet dispersion lie, in particular about 1 to 10 times the momentum input by the Droplet dispersion.

In einer weitere bevorzugten Ausführungsform der Erfindung erfolgt die Einleitung der Tröpfchendispersion in den zylindrischen Behälter von unten nach oben, wenn die Tröpfchen ein geringeres spezifisches Gewicht aufweisen als die kontinuierliche Phase. In diesem Falle erfahren die Tröpfchen einen Auftrieb, der dazu führt, daß in dem die Einleitstelle für die Tröpfchendispersion umgebenden Ringraum die Tröpfchenkonzentration verarmt. Entsprechend weist die in dem Ringraum vorhandene periphere Aufwärtsströmung eine reduzierte Tröpfchenkonzentration auf. Dies ist insbesondere dann von Bedeutung, wenn aus Gründen der Wirtschaftlichkeit Tröpfchendispersionen mit sehr hohen Tröpfchenkonzentrationen von 40 bis 60 Vol-% eingesetzt werden. Die Eindüsung der Flüssigkeit erfolgt dann nämlich in eine Tröpfchendispersion mit erheblich reduzierter Tröpfchenkonzentration, so daß das Risiko der Agglomeration von Tröpfchen im Bereich der Eindüsung weiter reduziert wird.In a further preferred embodiment of the invention, the introduction takes place the droplet dispersion in the cylindrical container from the bottom up when the Droplets have a lower specific gravity than the continuous one Phase. In this case, the droplets experience a buoyancy, which leads to the fact that in the droplet concentration in the annular space surrounding the point of introduction for the droplet dispersion impoverished. Accordingly, the existing in the annulus peripheral upward flow shows a reduced droplet concentration. This is This is particularly important if, for reasons of economy, droplet dispersions used with very high droplet concentrations of 40 to 60 vol% become. The liquid is then injected into a droplet dispersion with significantly reduced droplet concentration, so the risk the agglomeration of droplets in the area of the injection is further reduced.

Entsprechend wird vorzugsweise die Durchströmrichtung durch den zylindrischen Behälter von oben nach unten gewählt, wenn die Tröpfchen eine größere Dichte aufweisen, als die kontinuierliche Phase.Accordingly, the flow direction through the cylindrical is preferred Container selected from top to bottom if the droplets have a greater density, than the continuous phase.

Die Erfindung wird nachfolgend anhand der beigefügten Figuren näher erläutert.

Fig. 1
zeigt eine erfindungsgemäße Vorrichtung zur kontinuierlichen Vermischung einer Tröpfchendispersion mit einer Flüssigkeit.
Fig. 2
zeigt in vergrößerter Darstellung den Bereich der Einleitung von Tröpfchendispersion und Flüssigkeit mit den dort herrschenden Strömungsverhältnissen.
The invention is explained below with reference to the accompanying figures.
Fig. 1
shows an inventive device for the continuous mixing of a droplet dispersion with a liquid.
Fig. 2
shows in an enlarged view the area of the introduction of droplet dispersion and liquid with the prevailing flow conditions.

Fig. 1 zeigt prinzipiell einen Behälter 1 in Form einer zylindrischen Säule mit einem axial angeordneten Einleitrohr 2 für die Tröpfchendispersion. Die Erzeugung der Tröpfchendispersion kann nach an sich bekannten Verfahren erfolgen. Beispielsweise kann die Tröpfchendispersion durch Eindüsen der die Tröpfchen bildenden Flüssigkeit in eine wäßrige Gelatinelösung erzeugt sein. Auf einer Umfangslinie senkrecht zur Achse 3 des zylindrischen Behälters 1 sind eine Vielzahl von Düsen 4, beispielsweise mit einem Durchmesser von 0,4 mm vorgesehen. Die Zahl der Düsen kann beispielsweise 12 bis 120 betragen. Die Düsen werden aus einem Ringkanal 5 gespeist, in den die Flüssigkeit durch eine oder mehrere Zuleitungen 6 eingeleitet wird. Wie dargestellt, weisen die Düsen 4 schräg nach oben, so daß die eingedüste Flüssigkeit eine Richtungskomponente in Durchströmrichtung des Behälters 1 aufweist. Die Querschnittsfläche des Einleitrohres 2 für die Tröpfchendispersion kann 1/12 bis 1/45 der Querschnittsfläche des zylindrischen Behälters 1 betragen. Durch die einströmende Tröpfchendispersion wird der Behälterinhalt zu einer Umwälzströmung mit axialer Vorwärtsströmung 10 und peripherer Rückwärtsströmung 11 angeregt. Je nach Ausdehnung des zylindrischen Behälters 1 in axialer Richtung wird die Umwälzströmung in einer oder mehreren Ebenen 12 umgelenkt. Zur Gewährleistung einer möglichst rotationssymmetrischen Strömungsverteilung weist der Behälter 1 oberhalb der Zeichnung (nicht dargestellt) einen axialen Auslaß mit konischem Übergang zum Auslaßquerschnitt auf Erfindungsgemäß soll die durch die Umlaufströmung bewirkte Schergeschwindigkeit der Tröpfchendispersion unterhalb von 20/s, bevorzugt unterhalb 10/s, liegen. Dabei wird zur Abschätzung der Schergeschwindigkeit die doppelte Einströmgeschwindigkeit der Tröpfchendispersion durch den halben Behälterradius dividiert. Das Einleitrohr 2 für die Tröpfchendispersion ragt mindestens über eine Länge, die dem Radius des Behälters 1 entspricht, in diesen hinein, so daß rückwärtig von der Einleitstelle ein Ringraum 7 gebildet wird, in dem die Rückströmung 11 umgelenkt wird. Wie aus der Zeichnung ersichtlich, sind die Düsen 4 schräg nach oben gerichtet, so daß in dem Ringraum 7 eine periphere Vorwärtsströmung 13 angeregt wird. Hierdurch wird einerseits die Rückströmung 11 in dem Ringraum 7 in eine axiale und eine periphere Vorwärtsströmung geteilt, so daß ein intensiver Austausch stattfindet, und andererseits eine zusätzliche Zirkulationsströmung im Ringraum 7 erzeugt, die aufgrund der längeren Verweilzeit und der Dichteunterschiede von Tröpfchen und kontinuierlicher Phase sowie Verdünnung durch die zugeführte Flüssigkeit eine erheblich reduzierte Tröpfchenkonzentration aufweist.Fig. 1 shows in principle a container 1 in the form of a cylindrical column with a axially arranged inlet pipe 2 for the droplet dispersion. The generation of the Droplet dispersion can be carried out by methods known per se. For example can the droplet dispersion by spraying the liquid forming the droplet be produced in an aqueous gelatin solution. On a circumferential line perpendicular to Axis 3 of the cylindrical container 1 are a plurality of nozzles 4, for example provided with a diameter of 0.4 mm. The number of nozzles can be, for example 12 to 120. The nozzles are fed from an annular channel 5, in the the liquid is introduced through one or more supply lines 6. As shown, have the nozzles 4 obliquely upwards, so that the liquid injected is a Directional component in the flow direction of the container 1. The cross-sectional area the inlet pipe 2 for the droplet dispersion can 1/12 to 1/45 of Cross-sectional area of the cylindrical container 1 amount. By the inflowing Droplet dispersion turns the contents of the container into a circulating flow with axial Forward flow 10 and peripheral reverse flow 11 excited. Depending on the extent of the cylindrical container 1 in the axial direction becomes the circulating flow redirected in one or more levels 12. To ensure a possible The container 1 has a rotationally symmetrical flow distribution above the Drawing (not shown) an axial outlet with a conical transition to The outlet cross-section according to the invention is intended to be that caused by the circulating flow Droplet dispersion shear rate below 20 / s, preferably below 10 / s. The estimate of the shear rate is double Inflow velocity of the droplet dispersion through half the container radius divided. The inlet pipe 2 for the droplet dispersion projects at least over one Length, which corresponds to the radius of the container 1, into this, so that the rear an annular space 7 is formed by the inlet point, in which the return flow 11 is deflected becomes. As can be seen from the drawing, the nozzles 4 are inclined upwards directed so that a peripheral forward flow 13 is excited in the annular space 7 becomes. In this way, on the one hand, the backflow 11 in the annular space 7 into a axial and a peripheral forward flow divided, so that an intensive exchange takes place, and on the other hand an additional circulation flow in the annular space 7 generated due to the longer dwell time and the density differences of Droplets and continuous phase as well as dilution by the liquid supplied has a significantly reduced droplet concentration.

Fig. 2 zeigt eine vergrößerte Darstellung der Strömungsverhältnisse im Bereich des Ringraumes 7, wobei die strichlierten Linien 21 und 22 die Grenzen zwischen den Strömungsbereichen mit Vorwärtskomponente einerseits und Rückströmungskomponente andererseits angeben.Fig. 2 shows an enlarged view of the flow conditions in the area of Annulus 7, the dashed lines 21 and 22 the boundaries between the Flow areas with a forward component on the one hand and a backflow component otherwise specify.

Claims (10)

Verfahren zur kontinuierlichen Vermischung einer Tröpfchendispersion mit einer Flüssigkeit durch Einleiten der Flüssigkeit in einen von der Tröpfchendispersion durchströmten Behälter, dadurch gekennzeichnet, daß die Flüssigkeit in Form einer Vielzahl feiner Flüssigkeitsstrahlen in die Tröpfchendispersion injiziert wird, so daß die kinetische Energie der Flüssigkeitsstrahlen auf kurze Entfernung von der Injektionsstelle dissipiert und die weitere Vermischung durch eine in dem Behälter erzeugte Umwälzströmung mit Schergeschwindigkeiten unterhalb 20/s erfolgt.Process for the continuous mixing of a droplet dispersion with a liquid by introducing the liquid into one of the droplet dispersion flowed through container, characterized in that the liquid in the form of a multitude of fine liquid jets into the droplet dispersion is injected so that the kinetic energy of the liquid jets on short distance from the injection site dissipates and further mixing by a circulating flow generated in the container at shear rates below 20 / s. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Tröpfchendispersion axial mit einer Geschwindigkeit, die 15- bis 100-mal größer ist als die Durchströmgeschwindigkeit durch den Behälter, in diesen rückströmungsfrei eingeleitet wird.A method according to claim 1, characterized in that the droplet dispersion axially at a speed 15 to 100 times greater than that Flow rate through the container, in this backflow-free is initiated. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Flüssigkeitsstrahlen einen Durchmesser von 0,1 bis 0,8 mm aufweisen.Method according to claim 1 or 2, characterized in that the liquid jets have a diameter of 0.1 to 0.8 mm. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Maximalgeschwindigkeit der Umwälzströmung 5- bis 20-mal größer ist als die Durchströmgeschwindigkeit.Method according to one of claims 1 to 3, characterized in that the Maximum velocity of the circulating flow is 5 to 20 times greater than the flow rate. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Umwälzströmung aus einer axialen Strömung in Durchströmrichtung und einer peripheren Rückströmung besteht.Method according to one of claims 1 to 4, characterized in that the Circulation flow from an axial flow in the flow direction and a peripheral backflow exists. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Injektion der Flüssigkeit in einer Ebene, die in bezug auf die Durchströmrichtung etwa in Höhe der Einleitstelle für die Tröpfchendispersion liegt, mit einer Strömungskomponente in Durchströmrichtung erfolgt, so daß unterhalb der Ebene eine periphere Strömung in Durchströmrichtung erzeugt wird. Method according to one of claims 1 to 5, characterized in that the Inject the liquid in a plane that is related to the flow direction is approximately at the level of the point of introduction for the droplet dispersion, with a Flow component takes place in the flow direction, so that below the Level a peripheral flow in the flow direction is generated. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Durchströmrichtung nach oben gerichtet wird, wenn die Tröpfchen spezifisch leichter als das Dispergiermedium sind, bzw. nach unten, wenn die Tröpfchen spezifisch schwerer als das Dispergiermedium sind.Method according to one of claims 1 to 6, characterized in that the Flow direction is directed upward when the droplet is specific lighter than the dispersing medium, or down when the droplets are specifically heavier than the dispersing medium. Vorrichtung zur kontinuierlichen Vermischung einer Flüssigkeit mit einer Tröpfchendispersion enthaltend einen zylindrischen Behälter mit einem zentralen Einlaß für die Tröpfchendispersion und einer Vielzahl von Injektionsdüsen mit geringem Durchmesser, die in einer Schnittebene der Behälterwand senkrecht zur Achse und in Durchströmrichtung etwa in Höhe des Einlasses in den Behälter münden.Device for the continuous mixing of a liquid with a Droplet dispersion containing a cylindrical container with a central one Inlet for droplet dispersion and a variety of injection nozzles with a small diameter, which is perpendicular to a section plane of the container wall to the axis and in the direction of flow approximately at the level of the inlet in the Container open. Vorrichtung nach Anspruch 8, wobei die Injektionsdüsen eine Richtungskomponente in Durchströmrichtung aufweisen und der Einlaß als in den Behälter hineinragendes Einlaßrohr ausgebildet so daß der Behälter rückseitig zur Einlaßstelle einen das Einlaßrohr umgebenden Ringraum aufweist.The device of claim 8, wherein the injection nozzles are a directional component have in the flow direction and the inlet than in the container protruding inlet tube formed so that the back of the container Inlet point has an annular space surrounding the inlet pipe. Vorrichtung nach Anspruch 8 oder 9, wobei das Einlaßrohr eine Querschnittsfläche von 1/12 bis 1/45 der Behälterquerschrittsfläche aufweist.Apparatus according to claim 8 or 9, wherein the inlet tube has a cross-sectional area from 1/12 to 1/45 of the cross-sectional area of the container.
EP98115928A 1997-09-05 1998-08-24 Method and apparatus for the continuous mixing of a droplet dispersion in a liquid Expired - Lifetime EP0901810B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19738870A DE19738870A1 (en) 1997-09-05 1997-09-05 Method and device for continuously mixing a droplet dispersion with a liquid
DE19738870 1997-09-05

Publications (3)

Publication Number Publication Date
EP0901810A2 true EP0901810A2 (en) 1999-03-17
EP0901810A3 EP0901810A3 (en) 2001-02-07
EP0901810B1 EP0901810B1 (en) 2003-02-12

Family

ID=7841320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98115928A Expired - Lifetime EP0901810B1 (en) 1997-09-05 1998-08-24 Method and apparatus for the continuous mixing of a droplet dispersion in a liquid

Country Status (5)

Country Link
US (2) US6102309A (en)
EP (1) EP0901810B1 (en)
JP (1) JPH11137985A (en)
DE (2) DE19738870A1 (en)
HU (1) HUP9802004A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020222651A1 (en) * 2019-05-02 2020-11-05 Water Iq International B.V. Mixing device for mixing hydrogen peroxide and water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206103A1 (en) * 2002-02-13 2003-08-21 Basf Ag Device and method for producing molded articles from thermoplastic polymers
SE525983C2 (en) * 2003-10-13 2005-06-07 Metso Paper Inc Mixing device for mixing one liquid medium into another liquid medium
DE102005056723B4 (en) * 2005-11-29 2012-08-30 Roland Damann Device for mixing and reacting a gas and / or a liquid with a liquid medium
GB201604412D0 (en) * 2016-03-15 2016-04-27 King S College London Method and system pressure drop estimation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE658300A (en) * 1964-01-24
US3242051A (en) * 1958-12-22 1966-03-22 Ncr Co Coating by phase separation
GB1240756A (en) * 1968-04-11 1971-07-28 Inventa Ag Mixing apparatus
US4637905A (en) * 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
US5173007A (en) * 1989-10-23 1992-12-22 Serv-Tech, Inc. Method and apparatus for in-line blending of aqueous emulsion
WO1993019735A1 (en) * 1992-04-03 1993-10-14 Centre National De La Recherche Scientifique (Cnrs) Process for the preparation of microcapsules or liposomes with controlled sizes
DE4421352A1 (en) * 1994-06-17 1995-12-21 Specker Helmut Process and assembly dilute liq. polymer within laminar flow water pipe
US5637350A (en) * 1994-05-13 1997-06-10 A.P.I. Asphalt Prilling Inc. Encapsulation of asphalt prills

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189627086A (en) * 1896-05-30 1897-01-30 Stanislas Dominique Gillet A New or Improved Burner for Lighting by Acetylene or other Gases Rich in Carbon.
US3234307A (en) * 1962-10-03 1966-02-08 Dow Chemical Co Process for preparing pellets of substituted phenols
US3419082A (en) * 1967-03-16 1968-12-31 Bliss E W Co Portable foam nozzle
JPS5273202A (en) * 1975-12-13 1977-06-18 Mitsubishi Heavy Ind Ltd Suction type fluid mixing nozzle
DE3168828D1 (en) 1980-12-02 1985-03-21 Shell Int Research Filler gun suitable for cavity injection
US4411398A (en) * 1981-04-20 1983-10-25 General Dynamics, Pomona Division Double fabric retractable wing construction
NL8104179A (en) * 1981-09-10 1983-04-05 Talmer B V METHOD FOR SUPPLYING FIBER INSULATION MATERIAL, IN PARTICULAR GLASS WOOL FIBERS, IN THE CAVITY OF A SPOT WALL.
US4545157A (en) * 1983-10-18 1985-10-08 Mccartney Manufacturing Company Center feeding water jet/abrasive cutting nozzle assembly
US4738614A (en) * 1986-07-25 1988-04-19 Union Carbide Corporation Atomizer for post-mixed burner
US5126381A (en) * 1988-12-19 1992-06-30 Dow Corning Corporation Bead processor
US5645223A (en) * 1995-10-19 1997-07-08 Hull; Harold L. Liquid/foam/mixing/aeration adapter apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242051A (en) * 1958-12-22 1966-03-22 Ncr Co Coating by phase separation
BE658300A (en) * 1964-01-24
GB1240756A (en) * 1968-04-11 1971-07-28 Inventa Ag Mixing apparatus
US4637905A (en) * 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
US5173007A (en) * 1989-10-23 1992-12-22 Serv-Tech, Inc. Method and apparatus for in-line blending of aqueous emulsion
WO1993019735A1 (en) * 1992-04-03 1993-10-14 Centre National De La Recherche Scientifique (Cnrs) Process for the preparation of microcapsules or liposomes with controlled sizes
US5637350A (en) * 1994-05-13 1997-06-10 A.P.I. Asphalt Prilling Inc. Encapsulation of asphalt prills
DE4421352A1 (en) * 1994-06-17 1995-12-21 Specker Helmut Process and assembly dilute liq. polymer within laminar flow water pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020222651A1 (en) * 2019-05-02 2020-11-05 Water Iq International B.V. Mixing device for mixing hydrogen peroxide and water
NL2023054B1 (en) * 2019-05-02 2020-11-23 Water Iq Int B V Mixing device for mixing hydrogen peroxide and water

Also Published As

Publication number Publication date
EP0901810B1 (en) 2003-02-12
DE19738870A1 (en) 1999-03-18
HUP9802004A3 (en) 2000-06-28
US6102309A (en) 2000-08-15
US6170761B1 (en) 2001-01-09
EP0901810A3 (en) 2001-02-07
DE59807165D1 (en) 2003-03-20
JPH11137985A (en) 1999-05-25
HUP9802004A2 (en) 1999-04-28
HU9802004D0 (en) 1998-12-28

Similar Documents

Publication Publication Date Title
EP0819101B1 (en) Plant and process for oxidizing an aqueous medium
DE4223434C1 (en) Disc-shaped mixing tool
EP0644271A1 (en) Method and device for producing a free dispersion system
DE2900931A1 (en) METHOD AND DEVICE FOR MIXING FLOWABLE MATERIALS WITH SOLID BODIES
DE2722826A1 (en) DEVICE FOR INJECTION OF GAS INTO A LIQUID
DE4214272A1 (en) Method and device for producing microspheres
DE4424998C2 (en) Process for the production of particles from a liquid medium
DE69818695T2 (en) VORTEX RING MIXER WITH MODERATE BEHAVIOR OF THE VORTEX RINGS
DE3313382A1 (en) GAS LIQUID CONTACTING DEVICE
EP0901810B1 (en) Method and apparatus for the continuous mixing of a droplet dispersion in a liquid
DE4238971C2 (en) Method and arrangement for dissolving a quantity of gas in a flowing quantity of liquid
EP0044498B1 (en) Apparatus for the gasification of liquids or suspensions
DE1963919A1 (en) Method and device for producing suspensions or the like, in particular suspensions containing halosilver
EP1175255B1 (en) Method and device for processing a substance or substance mixture which is situated in a container and rotates about the container axis, notably because of a mixing or stirring action
EP1375738A1 (en) Method for removing impurities from an aqueous fibre suspension
EP0034739A2 (en) Method to influence the foaming at chemical or biochemical gas-liquid reactions in gasification reactors, and gasification reactor for carrying out the method
DE2120362A1 (en) Method and device for injecting gas into a liquid
DE2934483A1 (en) METHOD FOR SOLVING GASES IN LIQUIDS, AND DEVICE FOR CARRYING OUT THE METHOD
DE2740789A1 (en) METHOD AND DEVICE FOR CONTINUOUS MECHANICAL MIXING OF DIFFERENT SUBSTANCES
DE10394092T5 (en) Method and apparatus for producing fine particles
EP0060486A1 (en) Process for producing solutions of hardly soluble substances and for substances tending to agglomerate, and apparatus for carrying out said process
DE1667264A1 (en) Method and apparatus for producing small, spherical particles
EP3372308A1 (en) Focusing device, droplet generator and method for creating a multiplicity of droplets
DE4017446C2 (en) Flotation deinking device
DE8206204U1 (en) Device for the production of gel particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010807

AKX Designation fees paid

Free format text: BE DE ES FR GB IT NL

AXX Extension fees paid

Free format text: RO PAYMENT 20010807

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020628

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Extension state: RO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807165

Country of ref document: DE

Date of ref document: 20030320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030329

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031113

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070822

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807165

Country of ref document: DE

Owner name: LANXESS DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: LANXESS DEUTSCHLAND GMBH, 51373 LEVERKUSEN, DE

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170714

Year of fee payment: 20

Ref country code: IT

Payment date: 20170824

Year of fee payment: 20

Ref country code: DE

Payment date: 20170815

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59807165

Country of ref document: DE