EP0852616A1 - Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co 2?-containing gases - Google Patents

Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co 2?-containing gases

Info

Publication number
EP0852616A1
EP0852616A1 EP96932584A EP96932584A EP0852616A1 EP 0852616 A1 EP0852616 A1 EP 0852616A1 EP 96932584 A EP96932584 A EP 96932584A EP 96932584 A EP96932584 A EP 96932584A EP 0852616 A1 EP0852616 A1 EP 0852616A1
Authority
EP
European Patent Office
Prior art keywords
substrate
algae
rotating solar
algal
photobioreactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96932584A
Other languages
German (de)
French (fr)
Inventor
Michael Melkonian
Rainer Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE29623906U priority Critical patent/DE29623906U1/en
Publication of EP0852616A1 publication Critical patent/EP0852616A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Definitions

  • the invention relates to a rotating solar photobioreactor for the production of algal biomass from, in particular, gases containing carbon dioxide.
  • photobioreactors for the production of algal biomass range in different sizes from open systems to closed systems, from high-tech controlled systems to simple tanks.
  • the economic viability of such systems is mainly determined by the high-quality products that are obtained from the cultivated algae biomass or by their cleaning performance for polluted waters.
  • the previous photobioreactors are primarily not designed to purify exhaust gases and thereby use their carbon dioxide content.
  • a major problem with photobioreactors is the photoinhibition of the algae if they are exposed to light for too long a period. For constant photosynthesis, it is necessary that the algae are temporarily shadowed. This is z. B. achieved in that the algae circulate in a suspension and are thus darkened temporarily.
  • Such photobioreactors can only be operated with mechanically insensitive algae, since the algae are exposed to mechanical loads, in particular shear forces, during circulation and / or circulation.
  • a thick algae substrate therefore has a comparatively high proportion of algae which do not contribute to the production of algae biomass, which is why these photobioreactors have only a limited degree of efficiency.
  • the object of the invention is to increase the efficiency of solar bioreactors for the production of algal biomass.
  • the invention proposes a rotating solar photobioreactor which is provided with a frame, a substrate for algae which is rotatably mounted on the frame and on which the algae remain during their growth and the sunlight of different types ⁇ intensity can be used intermittently, a drive device for rotatingly driving the algal substrate and - a nutrient medium supply device for supplying a nutrient medium to the algal substrate.
  • the gas-permeable algal substrate is rotatably arranged on a frame.
  • the algae substrate is set in rotation about its axis of rotation by means of a drive device.
  • the drive device can be designed as a separate element of the rotating solar photoborector or, as it were, is an integral part of the algal substrate, which is then designed in such a way that it detects the wind and / or converts the gas flow and / or a medium or liquid supply to which it is exposed into rotational energy.
  • the algal substrate is supplied with a nutrient medium by means of the feed device.
  • Crucial to the invention is the fact that the algal substrate rotates.
  • the individual surface areas of the algal substrate are alternately exposed to the predominantly laterally incident sunlight of different intensities and, due to the construction, are shaded or exposed to diffuse sunlight (weak light).
  • the algae remain on the substrate throughout their growth. Continuous rewetting of the substrate with algae, which are kept in suspension in a circulation or circulation system, is therefore not planned until harvest. Only when harvesting are the algae z. B. detached from the substrate by a controllable desorption. So z. B.
  • Desorption liquid (via the nutrient medium supply device) are applied to the algal substrate; at this point in time, no nutrient medium reaches the substrate via the feed device.
  • a separate application or supply device can also be provided for the application of the desorption medium to the algal substrate.
  • the algae substrate is fanned out, that is to say it has an extremely large surface area, and is designed in particular in the manner of a paddle wheel with a zigzag-shaped course of the material of the web.
  • the individual lamellae of the algae substrate web material provide the necessary shading against one another or are temporarily exposed to sunlight of different intensities over the entire surface. This intermittent exposure to predominantly laterally incident sunlight is determined by the arrangement or type and rotation of the algal substrate.
  • the rotating solar photo-bioreactor is completely exposed to the sun, which applies in particular to the algal substrate.
  • algae substrates from 0.1 to 5 mm which are as thin as possible and on which the algae remain for the duration of their growth and thus for the duration of the production of algal biomass, that is to say until harvesting.
  • the photoinhibition of the algae on the thin algae substrate is prevented by the design, since the algae substrate is designed in such a way that it is intermittently exposed to sunlight of varying intensity by self-shadowing.
  • a circulating or continuously circulated algae suspension is therefore not provided for by the invention.
  • the selection of algae which can be used in the photobioreactor according to the invention is thus expanded insofar as algae which are sensitive to mechanical loads can also be used.
  • the photobioreactor according to the invention optimizes the use of gases containing carbon dioxide, in particular exhaust gases, in order to increase the production of algal biomass by utilizing the sunlight. This does not primarily occur for the production of high-quality, pure products, but in particular in order to use the biomass obtained as an energy source by burning it or using it to produce biodiesel or biogas.
  • the combustion of these products to usable energy provides exhaust gases which can be recycled in a cycle process for the production of algae biomass.
  • the algae substrate is in the form of a hollow cone. formed formed support structure. Regardless of the design of the supporting structure, it should be gas-permeable, so that the algae substrate held by the supporting structure, which is in particular thin web material (non-woven cloth or the like, for example with a thickness of 0.1 to 5 mm) is always flowable through the gas.
  • the supporting structure has a cage which has two end walls which are connected to one another via external and internal rods.
  • the web material then runs, in particular in a zigzag shape, between these outer and inner holding rods and is held by the cage in this way.
  • This construction in which the cage is particularly cylindrical, makes it possible to accommodate algae. Substrate web material while creating an extremely large surface area and minimal space requirements.
  • the nutrient supply device is designed as a unit which is fixed to the frame and on which the algal substrate moves. In this way, the entire surface of the algal substrate is wetted once with nutrient medium per revolution.
  • the nutrient supply device is a spray device for spraying nutrient medium onto the algal substrate.
  • the algae substrate is preferably gimbally suspended on the frame at its axis of rotation, so that it can oscillate freely when rotating, which is advantageous depending on the prevailing wind (the algae substrate is particularly exposed to sunlight and thus to the environment and is exposed on all sides).
  • the algal substrate reactor can be arranged freely without being surrounded by a housing or the like. If such a housing is used, it should have at least one section that is transparent to sunlight (opening or transparent Wall element, both in particular with optical elements for capturing light, such as. B. lenses, prisms or the like, provided), on which the algal substrate moves past. This also exposes the individual areas of the algal substrate to light of different intensities.
  • the algal substrate is surrounded by a housing, which is partially provided with at least one opening or a transparent wall section (both in particular provided with optical elements such as lenses, prisms or the like), it is also possible that the housing rotates (slowly) in order to track the time of day in the sun.
  • the axis of rotation around which the algal substrate rotates can be horizontal, vertical or inclined in space.
  • the planes in which the algal substrate extends are arranged parallel to the axis of rotation.
  • the algae substrate is in particular designed in the manner of a blade or impeller, the essentially radially extending blades or vanes of which are formed by the algae substrate or are covered with an algae substrate.
  • the photosynthesis of the algae enables the binding of carbon dioxide from exhaust gases from a wide variety of combustion processes.
  • the climate-threatening use of fossil fuels can be gradually replaced within the same existing technology by regenerative energy from biomass by gradually increasing the proportion of algae biomass in the fuels.
  • the area-related biomass yield is many times greater for algae than for higher plants and can be increased even further by these exhaust gases.
  • the residual heat from the exhaust gas is additionally used.
  • coal Optimally supply dioxide from, for example, exhaust gas to the algae, which at the same time receive sufficient photosynthetically active radiation (PhAR) from the sunlight.
  • PhAR photosynthetically active radiation
  • the biomass harvesting method is preferably integrated in the system.
  • the yield per base area is additionally increased by a partially vertical arrangement of the reaction surfaces. Direct and diffuse sunlight are used.
  • the system can be easily adapted to the time of day and season of the sun, the geographical width or the special location conditions.
  • the construction is suitable for open land and greenhouses and requires comparatively little capital investment.
  • a "scale-up" of the plant for the power plant area is possible.
  • An optional modular connection of several reactors can increase the operational safety of continuous use. The use of environmentally compatible consumables and the combined use of other regenerative energies is possible.
  • covering material is expediently used, which is selected depending on the algae to be used and the desired products.
  • the covering material forms the reactor surface, which is used as a substrate by the algae. It should therefore be translucent and gas permeable and have a certain roughness depth to enlarge the substrate surface. A certain absorbency is desirable in order to reduce the technical effort required for uniform moistening of the reactor surface.
  • a good liquid distribution is achieved by capillary forces in fleeces or fabrics. The size of the capillary spaces and the surface properties of the material must be adapted to the substrate requirements of the algae to be used in such a way that adhesion is achieved which prevents the algae from being rinsed out when the medium is added, but which nevertheless permits harvesting from this surface.
  • UV and weather resistance are further marginal conditions for cost-effective permanent use.
  • the energy balance of production and the natural degradability or recyclability of the materials are of interest for the ecological balance of the reactor.
  • Polyethylene (PE), polypropylene (PP), polyester (PES) and polyacrylic appear to be suitable as raw materials. With a suitable arrangement of the substrate surfaces, a high absorbency can further minimize the pumping processes required for liquid distribution and thus contribute to a more positive energy balance.
  • the main component should consist of energy-efficient and inexpensive PP or PE, to which PES or polyacrylic can be added as an absorbent component.
  • the commercially available natural fiber products appear interesting from the point of view of their biodegradability, but they have a relatively unfavorable energy and cost balance.
  • FIG. 1 is a schematic diagram of the structure of a solar photobio-reactor with a hollow cone-shaped algae substrate according to a first embodiment of the invention
  • FIG. 4 shows a plan view of a solar photobioreactor according to a third exemplary embodiment, in which the supporting structure for the algae substrate has a plurality of cassette holders for cassette inserts onto which an algae substrate Strat is stretched in the form of an endless belt, which is semi-cylindrical formed by cassette inserts, so that it can contribute to the use of wind energy or other currents to generate the rotation of the supporting structure.
  • the reactor 10 according to FIG. 1 has the shape of a rotating cone 11.
  • the cone jacket is covered with a material 12 which forms the exposed reaction surface and is moistened on both sides with nutrient medium (indicated at 13).
  • the material 12 is gas-permeable and light to transparent and represents the algal substrate on which the algae supplied with nutrient medium and CO 2 -containing gas grow.
  • the warm exhaust gas 14 is introduced into the hollow interior of the cone, which rises in the cone, partly flows past the algae through the substrate 12 and partly leaves the cone 11 through an opening 15 at the top.
  • the cone 11 is rotatably supported in an extension of its axis 16 on a frame 17 (only indicated). The rotation ensures an optimal distribution of light, carbon dioxide, nutrient medium and algae.
  • a circulation line 21 for nutrient medium opens into the sump 19, via which the excess nutrient medium together with nutrient medium from a storage container 22 connected to the circulation line 21 are fed to the upper end of the cone 11 in order to be applied to it.
  • a pump 24 draws in the excess nutrient medium and nutrient medium from the storage container 22.
  • the nutrient medium can C0 2 from z. B.
  • Exhaust gases are added.
  • An algae filter 23 is located in the circulation line 21 near the sump 19 in order to keep algae away from the nutrient medium circulation system.
  • the media feed may be provided to adjust the water and nutrient consumption so that it virtually completely ä constantly adsorbed on the reaction surface.
  • a collecting funnel and a circulating flow of nutrient medium are then not required.
  • the shape of the reactor can be determined by the distance and the circumference of two rings arranged at the ends of the hollow cone as well as transverse struts of the supporting structure 25 holding the film material, which form the framework for the reaction surfaces, which consist of the material mentioned above and which che are attached to these rings. This means that the alignment of the reaction surface with the angle of incidence of the sun or diffuse light can be optimized.
  • the biomass is harvested differently depending on the type of algae used:
  • the nutrient medium circulation system is used to supply pure desorption liquid to the algal substrate.
  • the circulation line 21 is shut off via a valve 26, which is connected between the line 27 coming from the nutrient medium reservoir 22 and the pump 24. Between the pump 24 and the valve 26, a line 27 'flows into the circulation line 21, which line can be shut off by a valve 28.
  • Netem valve 28 the circulation line 21 connected to a reservoir 29 for desorption liquid.
  • the pump 24 draws in desorption liquid from the storage container 29. This desorption liquid is applied to the algal substrate, whereby the algae are detached from the substrate 12 and together with the desorption liquid enter the sump 19 and can be removed from there via the outlet 20 and thus harvested.
  • the drive energy for the rotation of the reactor and for the pumping process can be obtained from the warm exhaust gas rising in the cone 11, from wind and solar energy or possible combinations. Because of the risk of faster drying out in the wind and because of the risk of photoinhibition if the solar radiation is too strong, the supply of the medium and the rotation of the reactor can be varied.
  • the structure of the cone shell can be changed in a derived form to increase the surface area and to increase the gas permeability so that it consists of many centripetal thin slats or cassettes, each of which leads from the upper fastening ring to the lower one. If their orientation to the cone axis is twisted so that they resemble the rotor blades of a Savonius rotor, such a reactor in the field is able to absorb its rotational energy from the wind.
  • the hanging gimbal construction allows the top of the reactor to be oriented in the wind direction when the wind is too strong, as a result of which the surface of the wind and the flow resistance of the reactor are minimized.
  • a second embodiment of a reactor 30 is shown.
  • the reactor 30 has a frame 32 which has a few evenly distributed vertical struts 34 and horizontal struts 36 connecting them to one another and in which an essentially cylindrical rotational body 38 is suspended and rotatably arranged.
  • the rotary body 38 has gas-permeable elements 40 at its front ends, between which outer holding rods 42 and inner holding rods 44 are arranged. Both the outer holding rods 42 and the inner holding rods 44 are each arranged uniformly distributed along circular lines.
  • an algae substrate 46 in the form of a thin, web-shaped non-woven material 48, which runs in a zigzag shape in the manner of a round filter, alternating around the outer and inner holding rods 42, 44, ie star-shaped or essentially similar to one Star shape is arranged.
  • Gas 50 is introduced into the frame 32 from below, so that when it rises through the frame 32 it flows along the vertical individual substrate surfaces 52 running in the gas flow direction.
  • a drive device 54 for rotatingly driving the rotary body 38 is arranged on the horizontal struts 36 of the frame 32.
  • the drive device 54 has a wind wheel 56.
  • the axis of rotation 58 of the drive device 54 has a universal joint 60 which is connected to the axis of rotation 62 of the rotary body 38. In this way, the rotating body 38 also rotates when it is caused to oscillate by lateral forces (for example wind forces).
  • One of the vertical struts 34 is provided with a nutrient supply device 64, which has individual nozzles 66, via which a nutrient medium that is pumped from a reservoir 68 is sprayed against the substrate moving past the nutrient supply device 64.
  • the reactor 30 according to FIGS. 2 and 3, as in the case of Fig. 1, can be added to supply the nutrient medium in the circuit. However, it is more advantageous to design the feed device such that a sufficient amount of nutrient medium is always sprayed onto the substrate without excess nutrient medium dripping off. As shown in FIG. 2, partial areas of the substrate 46 are always exposed to direct sunlight 70 when the rotating body 38 rotates in the direction of the arrow 72.
  • the lamellar successive individual substrate surfaces 52 shade each other in partial areas of the rotational movement of the substrate 46 or only allow exposure to diffuse sunlight (weak light). This alternating direct exposure, shadowing and diffuse exposure prevents the formation of photoinhibition of the algae anchored in the web material 64, so that they can regenerate again and again in order to have an optimal photosynthetic effect. A partial additional shade that is matched to the rotor speed can optimize this effect.
  • This reactor 80 has an upper plate 82 which is connected via an axis of rotation 84 to a lower congruent plate which cannot be seen in the plan view according to FIG. 4.
  • the upper plate 82 is mechanically reinforced by stiffening struts 86.
  • Drawers 88 which have a semicircular support arch 90, are located in the plate 82 between adjacent struts 86, which run essentially radially.
  • Identical semicircular support arches 90 are also located in the lower plate of the reactor 80; these brackets are also arranged on inserts of the lower plate.
  • the fleece-shaped algae substrate 92 is arranged between the semicircular holders of both plates.
  • Each insert 88 of the upper plate 82 also has two recesses 94, 96, of which the recess 94 is semicircular and is delimited by the mounting arch 90 and the strut 86 facing the inside of this mounting arch 90.
  • the second recess 96 is arranged between the apex of the mounting bracket 90 of an insert 88 and the strut 86 facing the outside of the mounting bracket 90.
  • there is a central feed channel system 98 for nutrient medium on the plate 86 which has an annular distribution channel and radial channels branching radially therefrom, which lead to the mounting bend 90 and guide the nutrient medium to the substrate 92.
  • the arc-shaped algae substrate films 96 are exposed between the plates connected to one another via the axis of rotation 84 (of which the upper plate 82 is shown in FIG. 4).
  • the semi-circularly stretched algae substrate foils 82 act like the rotor blades of a rotor which is set into rotation by the wind flowing past in accordance with arrow 100.
  • the incidence of sunlight occurs partly through the laterally open area of the reactor 80 and from above through the recesses 94 and 96 in the plate 82 of the reactor 80.

Abstract

The proposed solar photobioreactor for use in the production of algal biomass from gases, in particular CO2-containing gases, is provided with a frame (32) which carries a gas-permeable algal substrate (48) which can rotate about an axis (62) of rotation and can be exposed to predominantly laterally incident diffuse or direct sunlight. A drive unit (54) is provided for rotating the algal substrate (48) and a nutrient medium feed device (64) is provided for applying a nutrient medium to the algal substrate (48).

Description

Rotierender Solar-Photobioreaktor zur Produktion von Alαenbiomasse aus insbesondere kohlendioxid¬ haltigen Gasen Rotating solar photobioreactor for the production of alum biomass from gases containing carbon dioxide in particular
Die Erfindung betrifft einen rotierenden Solar-Photobioreaktor zur Produktion von Algenbiomasse aus insbesondere kohlendioxid- haltigen Gasen.The invention relates to a rotating solar photobioreactor for the production of algal biomass from, in particular, gases containing carbon dioxide.
Die verschiedensten Ausführungen von Photobioreaktoren zur Pro- duktion von Algenbiomasse reichen in unterschiedlichen Größen von offenen Systemen bis zu geschlossenen, von hochtechnisiert ge¬ steuerten Anlagen bis zu einfachen Becken. Die Wirtschaftlichkeit solcher Anlagen wird vorwiegend durch die hochwertigen Produkte bestimmt, die aus der kultivierten Algenbiomasse gewonnen werden oder durch ihre Reinigungsleistung für belastete Gewässer. Die bisherigen Photobioreaktoren sind primär nicht dafür ausgelegt, Abgase zu reinigen und dabei deren Gehalt an Kohlendioxid zu nut¬ zen.The most varied designs of photobioreactors for the production of algal biomass range in different sizes from open systems to closed systems, from high-tech controlled systems to simple tanks. The economic viability of such systems is mainly determined by the high-quality products that are obtained from the cultivated algae biomass or by their cleaning performance for polluted waters. The previous photobioreactors are primarily not designed to purify exhaust gases and thereby use their carbon dioxide content.
Ein wesentliches Problem bei Photobioreaktoren besteht in der Photoinhibition der Algen, wenn diese über eine zu lange Zeitdau¬ er Licht ausgesetzt sind. Für eine gleichbleibende Photosynthese ist es erforderlich, daß die Algen zeitweise abgeschattet werden. Dies wird im Stand der Technik z. B. dadurch erreicht, daß die Algen in einer Suspension zirkulieren und dadurch zeitweise abge¬ dunkelt sind. Derartige Photobioreaktoren können lediglich mit mechanisch unempfindlichen Algen betrieben werden, da die Algen beim Zirkulieren und/oder Umwälzen mechanischen Belastungen, ins¬ besondere Scherkräften ausgesetzt sind.A major problem with photobioreactors is the photoinhibition of the algae if they are exposed to light for too long a period. For constant photosynthesis, it is necessary that the algae are temporarily shadowed. This is z. B. achieved in that the algae circulate in a suspension and are thus darkened temporarily. Such photobioreactors can only be operated with mechanically insensitive algae, since the algae are exposed to mechanical loads, in particular shear forces, during circulation and / or circulation.
Wenn die Algen permanent Licht ausgesetzt sind, entsteht im Ober¬ flächenbereich eine Photoinhibition der Algen, so daß diese Algen zur Erzeugung von Algenbiomasse nur geringfügig beitragen. Ledig- lieh die Algen in den tiefer gelegenen Schichtenbereichen können noch effektiv wachsen und damit Algenbiomasse erzeugen. Ein dik- kes Algensubstrat weist also einen vergleichsweise hohen Anteil an nicht zur Algenbiomasseproduktion beitragenden Algen auf, wes¬ halb diese Photobioreaktoren lediglich über einen begrenzten Wir¬ kungsgrad verfügen.If the algae are permanently exposed to light, photoinhibition of the algae occurs in the surface area, so that these algae make only a minor contribution to the production of algae biomass. Single- Lent the algae in the lower layer areas can still grow effectively and thus generate algae biomass. A thick algae substrate therefore has a comparatively high proportion of algae which do not contribute to the production of algae biomass, which is why these photobioreactors have only a limited degree of efficiency.
Der Erfindung liegt die Aufgabe zugrunde, die Effizienz von So- lar-Bioreaktoren zur Produktion von Algenbiomasse zu erhöhen.The object of the invention is to increase the efficiency of solar bioreactors for the production of algal biomass.
Zur Lösung dieser Aufgabe wird mit der Erfindung ein rotierender Solar-Photobioreaktor vorgeschlagen, der versehen ist mit einem Gestell, einem um eine Drehachse drehbar an dem Gestell gelagerten Substrat für Algen, auf dem die Algen während ihres Wachs¬ tums verbleiben und das Sonnenlicht unterschiedlicher In¬ tensität intermittierend aussetzbar ist, einer Antriebsvorrichtung zum drehenden Antreiben des Al¬ gensubstrats und - einer Nährmedium-Zuführvorrichtung zum Zuführen eines Nähr¬ mediums zu dem Algensubstrat.To achieve this object, the invention proposes a rotating solar photobioreactor which is provided with a frame, a substrate for algae which is rotatably mounted on the frame and on which the algae remain during their growth and the sunlight of different types ¬ intensity can be used intermittently, a drive device for rotatingly driving the algal substrate and - a nutrient medium supply device for supplying a nutrient medium to the algal substrate.
Bei der erfindungsgemäßen Vorrichtung ist das gasdurchlässige Algensubstrat drehbar an einem Gestell angeordnet. Mittels einer Antriebsvorrichtung wird das Algensubstrat in Rotation um seine Drehachse versetzt. Dabei ist zu beachten, daß die Antriebsvor¬ richtung als separates Element des rotierenden Solar-Photobiore- aktors ausgebildet sein kann oder aber sozusagen integraler Be¬ standteil des Algensubstrats ist, das hierbei dann derart ausge- bildet ist, daß es den Wind und/oder die Gasströmung und/oder eine Medium- oder Flüssigkeitszufuhr, der es ausgesetzt ist, in Rotationsenergie umsetzt . Mittels der Zuführvorrichtung wird das Algensubstrat mit einem Nährmedium versorgt. Von entscheidender Bedeutung für die Erfindung ist die Tatsache, daß das Algensubstrat rotiert. Dadurch werden die einzelnen Ober¬ flächenbereiche des Algensubstrats abwechselnd dem vorwiegend seitlich einfallenden Sonnenlicht unterschiedlicher Intensität ausgesetzt und konstruktionsbedingt abgeschattet bzw. diffusem Sonnenlicht (Schwachlicht) ausgesetzt. Dies erhöht ganz entschei¬ dend die Effizienz der Algenproduktion, da sich die für die Son¬ nenlichtumsetzung verantwortlichen Photosynthesesysteme der Algen in den Abschattungszeitintervallen bzw. in den Intervallen, in denen sie diffusem Sonnenlicht ausgesetzt sind, wieder regenerie¬ ren können, um dann wieder für die SonnenlichtUmsetzung zur Ver¬ fügung zu stehen. Die Algen verbleiben während der gesamten Dauer ihres Wachstums an dem Substrat. Ein stetiges Wiederbenetzen des Substrats mit Algen, die in Suspension in einem Umwälz- oder Zir- kulationssystem gehalten sind, ist also bis zur Abernte nicht vorgesehen. Erst beim Abernten werden die Algen z. B. durch eine steuerbare Desorption von dem Substrat abgelöst. So kann z. B. Desorptionsflüssigkeit (über die Nährmedium-Zuführvorrichtung) auf das Algensubstrat aufgebracht werden; zu diesem Zeitpunkt gelangt dann kein Nährmedium über die Zuführvorrichtung auf das Substrat. Alternativ kann für die Aufbringung des Desorp- tionsmediums auf das Algensubstrat auch eine separate Aufbrin- gungs- bzw. Zuführvorrichtung vorgesehen sein.In the device according to the invention, the gas-permeable algal substrate is rotatably arranged on a frame. The algae substrate is set in rotation about its axis of rotation by means of a drive device. It should be noted here that the drive device can be designed as a separate element of the rotating solar photoborector or, as it were, is an integral part of the algal substrate, which is then designed in such a way that it detects the wind and / or converts the gas flow and / or a medium or liquid supply to which it is exposed into rotational energy. The algal substrate is supplied with a nutrient medium by means of the feed device. Crucial to the invention is the fact that the algal substrate rotates. As a result, the individual surface areas of the algal substrate are alternately exposed to the predominantly laterally incident sunlight of different intensities and, due to the construction, are shaded or exposed to diffuse sunlight (weak light). This significantly increases the efficiency of the algae production, since the photosynthesis systems of the algae responsible for the conversion of sunlight can regenerate again in the shading time intervals or in the intervals in which they are exposed to diffuse sunlight, and then again for the implementation of sunlight is available. The algae remain on the substrate throughout their growth. Continuous rewetting of the substrate with algae, which are kept in suspension in a circulation or circulation system, is therefore not planned until harvest. Only when harvesting are the algae z. B. detached from the substrate by a controllable desorption. So z. B. Desorption liquid (via the nutrient medium supply device) are applied to the algal substrate; at this point in time, no nutrient medium reaches the substrate via the feed device. Alternatively, a separate application or supply device can also be provided for the application of the desorption medium to the algal substrate.
Vorteilhafterweise ist das Algensubstrat aufgefächert ausgebil¬ det, weist also eine extrem große Oberfläche auf und ist insbe¬ sondere nach Art eines Schaufelrades mit Zickzack-förmigem Bahn¬ materialverlauf ausgebildet. Die einzelnen Lamellen des Algensub¬ strat-Bahnmaterials sorgen dabei gegeneinander für die erforder- liehe Abschattung bzw. sind vollflächig zeitweise dem Sonnenlicht unterschiedlicher Intensität ausgesetzt. Diese intermittierende Belichtung durch vorwiegend seitlich einfallendes Sonnenlicht ist dabei durch die Anordnung bzw. Bauart und Umdrehung des Algensub¬ strats bestimmt. An dieser Stelle sei angemerkt, daß der rotierende Solar-Photo- bioreaktor gänzlich der Sonne ausgesetzt ist, was insbesondere für das Algensubstrat gilt. Alternativ ist es möglich, das rotie¬ rende Algensubstrat in ein lichtdurchlässiges bzw. teilweise of- fenes Gehäuse einzubringen, so daß stets pro Umdrehung des Algen¬ substrats dieses sequentiell gänzlich mit Sonnenlicht belichtet und abgeschattet wird.Advantageously, the algae substrate is fanned out, that is to say it has an extremely large surface area, and is designed in particular in the manner of a paddle wheel with a zigzag-shaped course of the material of the web. The individual lamellae of the algae substrate web material provide the necessary shading against one another or are temporarily exposed to sunlight of different intensities over the entire surface. This intermittent exposure to predominantly laterally incident sunlight is determined by the arrangement or type and rotation of the algal substrate. At this point it should be noted that the rotating solar photo-bioreactor is completely exposed to the sun, which applies in particular to the algal substrate. Alternatively, it is possible to introduce the rotating algae substrate into a translucent or partially open housing so that the algae substrate is completely exposed to sunlight and shadowed sequentially per revolution.
Mit der Erfindung ist es also möglich, möglichst dünnschichtige Algensubstrate von 0,1 bis 5 mm einzusetzen, auf denen die Algen für die Dauer ihres Wachstums und damit für die Dauer der Produk¬ tion von Algenbiomasse, also bis zum Abernten verbleiben. Die Photoinhibition der Algen auf dem dünnen Algensubstrat wird kon¬ struktionsbedingt verhindert, da das Algensubstrat derart ausge- bildet ist, daß es intermittierend durch Selbstabschattung be¬ reichsweise Sonnenlicht unterschiedlicher Intensität ausgesetzt ist. Eine zirkulierende oder stetig umgewälzte Algensuspension ist also nach der Erfindung nicht vorgesehen. Die Auswahl an bei dem erfindungsgemäßen Photobioreaktor einsetzbaren Algen ist also insofern erweitert, als auch gegen mechanische Belastungen emp¬ findliche Algen eingesetzt werden können.With the invention it is therefore possible to use algae substrates from 0.1 to 5 mm which are as thin as possible and on which the algae remain for the duration of their growth and thus for the duration of the production of algal biomass, that is to say until harvesting. The photoinhibition of the algae on the thin algae substrate is prevented by the design, since the algae substrate is designed in such a way that it is intermittently exposed to sunlight of varying intensity by self-shadowing. A circulating or continuously circulated algae suspension is therefore not provided for by the invention. The selection of algae which can be used in the photobioreactor according to the invention is thus expanded insofar as algae which are sensitive to mechanical loads can also be used.
Der erfindungsgemäße Photobioreaktor optimiert die Nutzung von kohlendioxidhaltigen Gasen, insbesondere von Abgasen, zur Steige- rung der Produktion von Algenbiomasse unter Ausnutzung des Son¬ nenlichts. Dies geschieht nicht primär zur Erzeugung hochwerti¬ ger, reiner Produkte, sondern insbesondere deshalb, um die gewon¬ nene Biomasse als Energieträger zu nutzen, indem sie verbrannt oder zur Produktion von Biodiesel oder Biogas eingesetzt wird. Die Verbrennung dieser Produkte zu nutzbarer Energie liefert Ab¬ gase, die in einem Kreislaufprozeß zur Produktion von Algenbio¬ masse wiederverwertet werden können.The photobioreactor according to the invention optimizes the use of gases containing carbon dioxide, in particular exhaust gases, in order to increase the production of algal biomass by utilizing the sunlight. This does not primarily occur for the production of high-quality, pure products, but in particular in order to use the biomass obtained as an energy source by burning it or using it to produce biodiesel or biogas. The combustion of these products to usable energy provides exhaust gases which can be recycled in a cycle process for the production of algae biomass.
In vorteilhafter Weiterbildung der Erfindung ist ferner vorgese- hen, daß das Algensubstrat eine in Form eines Hohlkegels ausge- bildete Tragkonstruktion aufweist. Unabhängig von der Ausgestal¬ tung der Tragkonstruktion sollte diese gasdurchlässig sein, so daß das von der Tragkonstruktion gehaltene Algensubstrat, bei dem es sich insbesondere um dünnes Bahnmaterial (Vliestuch o.dgl., z. B. der Stärke 0,1 bis 5 mm) handelt, stets vom Gas durchströmbar ist .In an advantageous development of the invention, it is further provided that the algae substrate is in the form of a hollow cone. formed formed support structure. Regardless of the design of the supporting structure, it should be gas-permeable, so that the algae substrate held by the supporting structure, which is in particular thin web material (non-woven cloth or the like, for example with a thickness of 0.1 to 5 mm) is always flowable through the gas.
Insbesondere weist die Tragkonstruktion einen Käfig auf, der zwei stirnseitige Wände hat, die über außenliegende und innenliegende Stäbe miteinander verbunden sind. Zwischen diesen Außen- und In- nenhaltestäben verläuft dann das Bahnmaterial in insbesondere Zickzack-Form und wird auf diese Art und Weise vom Käfig gehal¬ ten. Diese Konstruktion, bei der der Käfig insbesondere zylin¬ drisch ausgebildet ist, ermöglicht die Unterbringung von Algen- Substrat-Bahnmaterial bei gleichzeitiger Schaffung einer extrem großen Oberfläche und minimalem Platzbedarf.In particular, the supporting structure has a cage which has two end walls which are connected to one another via external and internal rods. The web material then runs, in particular in a zigzag shape, between these outer and inner holding rods and is held by the cage in this way. This construction, in which the cage is particularly cylindrical, makes it possible to accommodate algae. Substrate web material while creating an extremely large surface area and minimal space requirements.
Ferner ist es zweckmäßig, wenn die Nährmittel-Zuführvorrichtung als am Gestell feststehende Einheit ausgebildet ist, an der vor- bei sich das Algensubstrat bewegt. Auf diese Weise wird pro Um¬ drehung die gesamte Oberfläche des Algensubstrats einmal mit Nährmedium benetzt. Insbesondere handelt es sich bei der Nährmit¬ tel-Zuführvorrichtung um eine Sprühvorrichtung zum Aufsprühen von Nährmedium auf das Algensubstrat.Furthermore, it is expedient if the nutrient supply device is designed as a unit which is fixed to the frame and on which the algal substrate moves. In this way, the entire surface of the algal substrate is wetted once with nutrient medium per revolution. In particular, the nutrient supply device is a spray device for spraying nutrient medium onto the algal substrate.
Vorzugsweise ist das Algensubstrat an seiner Drehachse kardanisch am Gestell aufgehängt, so daß es bei Rotation frei pendeln kann, was je nach herrschendem Wind (das Algensubstrat ist insbesondere dem Sonnenlicht und damit der Umgebung frei und allseitig ausge- setzt) von Vorteil ist.The algae substrate is preferably gimbally suspended on the frame at its axis of rotation, so that it can oscillate freely when rotating, which is advantageous depending on the prevailing wind (the algae substrate is particularly exposed to sunlight and thus to the environment and is exposed on all sides).
Der Algensubstrat-Reaktor kann frei angeordnet sein, ohne daß er also von einem Gehäuse oder dergleichen umgeben ist. Wird ein solches Gehäuse verwendet, sollte dieses mindestens einen für Sonnenlicht transparenten Abschnitt (Öffnung oder transparentes Wandelement, beide insbesondere mit optischen Elementen zum Ein¬ fangen von Licht, wie z. B. Linsen, Prismen oder dergleichen, versehen) aufweisen, an dem sich das Algensubstrat vorbeibewegt. Auch hierdurch sind die einzelnen Bereiche des Algensubstrats Licht unterschiedlicher Intensität ausgesetzt.The algal substrate reactor can be arranged freely without being surrounded by a housing or the like. If such a housing is used, it should have at least one section that is transparent to sunlight (opening or transparent Wall element, both in particular with optical elements for capturing light, such as. B. lenses, prisms or the like, provided), on which the algal substrate moves past. This also exposes the individual areas of the algal substrate to light of different intensities.
In dem obigen Fall, in dem das Algensubstrat von einem Gehäuse umgeben ist, welches bereichsweise mit mindestens einer Öffnung oder einem transparenten Wandabschnitt (beide insbesondere mit optischen Elementen wie z. B. Linsen, Prismen oder dergleichen versehen) versehen ist, ist es ebenso möglich, daß das Gehäuse (langsam) rotiert, um dem tageszeitlichen Sonnenstand nachgeführt zu werden.In the above case, in which the algal substrate is surrounded by a housing, which is partially provided with at least one opening or a transparent wall section (both in particular provided with optical elements such as lenses, prisms or the like), it is also possible that the housing rotates (slowly) in order to track the time of day in the sun.
Die Drehachse, um die das Algensubstrat rotiert, kann horizontal, vertikal oder im Raum geneigt verlaufen. Insbesondere sind die Ebenen, in denen sich das Algensubstrat erstreckt, parallel zur Drehachse angeordnet. Das Algensubstrat ist insbesondere nach Art eines Schaufel- oder Flügelrades ausgebildet, dessen im wesentli- chen radial verlaufende Schaufeln bzw. Flügel durch das Algensub¬ strat gebildet sind bzw. mit Algensubstrat bespannt sind.The axis of rotation around which the algal substrate rotates can be horizontal, vertical or inclined in space. In particular, the planes in which the algal substrate extends are arranged parallel to the axis of rotation. The algae substrate is in particular designed in the manner of a blade or impeller, the essentially radially extending blades or vanes of which are formed by the algae substrate or are covered with an algae substrate.
Die Photosynthese der Algen ermöglicht die Bindung von Kohlendi¬ oxid aus Abgasen der verschiedensten Verbrennungsprozesse. Die klimatisch bedenkliche Nutzung fossiler Brennstoffe kann inner¬ halb derselben bestehenden Technologie durch regenerative Energie aus Biomasse nach und nach ersetzt werden, indem sich der Anteil der Algenbiomasse in den Brennstoffen sukzessive erhöht. Der flä¬ chenbezogene Biomasseertrag ist bei Algen um ein Vielfaches grö- ßer als bei Höheren Pflanzen und kann durch diese Abgase noch weiter gesteigert werden. Die Restwärme auε dem Abgas wird zu¬ sätzlich genutzt.The photosynthesis of the algae enables the binding of carbon dioxide from exhaust gases from a wide variety of combustion processes. The climate-threatening use of fossil fuels can be gradually replaced within the same existing technology by regenerative energy from biomass by gradually increasing the proportion of algae biomass in the fuels. The area-related biomass yield is many times greater for algae than for higher plants and can be increased even further by these exhaust gases. The residual heat from the exhaust gas is additionally used.
Zur Steigerung der Produktivität im Vergleich zu herkömmlichen Photobioreaktoren läßt sich im hier vorgestellten Reaktor Kohlen- dioxid aus z.B. Abgas optimal den Algen zuführen, die gleichzei¬ tig genügend photosynthetisch aktive Strahlung (PhAR) aus dem Sonnenlicht erhalten. Gegenseitige dauerhafte Beschattung der einzelnen Algenzellen sowie zu starke Bestrahlung, Austrocknen oder Überhitzung werden weitestgehend vermieden. Die Erntemethode der Biomasse ist vorzugsweise im System integriert . Der Ertrag pro Grundfläche wird durch eine zum Teil vertikale Anordnung der Reaktionsoberflächen zusätzlich erhöht. Direktes und diffuses Sonnenlicht werden genutzt. Das System ist den tageszeitlichen und jahreszeitlichen Sonnenständen sowie der geographischen Brei¬ te oder den speziellen Standortbedingungen einfach anzupassen. Die Konstruktion ist für Freiland und Gewächshäuser geeignet und erfordert vergleichsweise geringen Kapitaleinsatz. Ein "Scale-Up" der Anlage für den Kraftwerksbereich ist möglich. Eine optionale modulare Verknüpfung mehrerer Reaktoren kann die Betriebssicher¬ heit des Dauereinsatzes erhöhen. Der Einsatz umweltverträglicher Verbrauchsmaterialien sowie die kombinierte Nutzung anderer re¬ generativer Energien ist möglich.To increase productivity compared to conventional photobioreactors, coal Optimally supply dioxide from, for example, exhaust gas to the algae, which at the same time receive sufficient photosynthetically active radiation (PhAR) from the sunlight. Mutual permanent shading of the individual algae cells as well as excessive radiation, drying out or overheating are largely avoided. The biomass harvesting method is preferably integrated in the system. The yield per base area is additionally increased by a partially vertical arrangement of the reaction surfaces. Direct and diffuse sunlight are used. The system can be easily adapted to the time of day and season of the sun, the geographical width or the special location conditions. The construction is suitable for open land and greenhouses and requires comparatively little capital investment. A "scale-up" of the plant for the power plant area is possible. An optional modular connection of several reactors can increase the operational safety of continuous use. The use of environmentally compatible consumables and the combined use of other regenerative energies is possible.
Als Substrat für die Algen wird zweckmäßigerweise Bespannungsma¬ terial eingesetzt, das in Abhängigkeit von den zu verwendenden Algen und den gewünschten Produkten ausgewählt wird. Das Bespan¬ nungsmaterial bildet die Reaktoroberfläche, die von den Algen als Substrat genutzt wird. Sie sollte demnach lichtdurchlässig und gasdurchlässig sein und zur Vergrößerung der Substratoberfläche eine gewisse Rauhtiefe besitzen. Um den technischen Aufwand zu reduzieren, der für eine gleichmäßige Befeuchtung der Reaktor¬ oberfläche nötig ist, ist eine gewisse Saugfähigkeit erwünscht. Eine gute Flüssigkeitsverteilung wird durch Kapillarkräfte in Vliesen oder Geweben erreicht. Die Größe der Kapillarräume und die Oberflächeneigenschaften des Materials müssen den Substratan¬ forderungen der einzusetzenden Algen so angepaßt werden, daß eine Adhäsion erreicht wird, die ein Herausspülen der Algen bei Medi¬ umzugabe verhindert, die aber dennoch eine Ernte von dieser Ober- fläche zuläßt. UV- und Witterungsbeständigkeit sind weitere Rand- bedingungen für einen kostengünstigen dauerhaften Einsatz. Dar¬ über hinaus ist die Energiebilanz der Produktion und die natürli¬ che Abbaubarkeit oder Recyclingfähigkeit der Materialien für die ökologische Bilanz des Reaktors von Interesse. Als Rohstoffe er- scheinen Polyethylen (PE) , Polypropylen (PP) , Polyester (PES) und Polyacryl geeignet. Eine hohe Saugfähigkeit kann bei geeigneter Anordnung der Substratflächen die zur Flüssigkeitsverteilung nö¬ tigen Pumpvorgänge noch weiter minimieren und somit zu einer po¬ sitiveren Energiebilanz beitragen. Bei der Verarbeitung von Vlie- sen zu Algensubstraten sollte die Hauptkomponente aus energetisch und preislich günstigem PP oder PE bestehen, zu der als saugfähi¬ gere Komponente PES oder Polyacryl zugeführt werden kann. Demge¬ genüber erscheinen zur Zeit die handelsüblichen Naturfaserproduk¬ te zwar von der biologischen Abbaubarkeit her als interessant, weisen jedoch eine relativ ungünstige Energie- und Kostenbilanz auf .As a substrate for the algae, covering material is expediently used, which is selected depending on the algae to be used and the desired products. The covering material forms the reactor surface, which is used as a substrate by the algae. It should therefore be translucent and gas permeable and have a certain roughness depth to enlarge the substrate surface. A certain absorbency is desirable in order to reduce the technical effort required for uniform moistening of the reactor surface. A good liquid distribution is achieved by capillary forces in fleeces or fabrics. The size of the capillary spaces and the surface properties of the material must be adapted to the substrate requirements of the algae to be used in such a way that adhesion is achieved which prevents the algae from being rinsed out when the medium is added, but which nevertheless permits harvesting from this surface. UV and weather resistance are further marginal conditions for cost-effective permanent use. In addition, the energy balance of production and the natural degradability or recyclability of the materials are of interest for the ecological balance of the reactor. Polyethylene (PE), polypropylene (PP), polyester (PES) and polyacrylic appear to be suitable as raw materials. With a suitable arrangement of the substrate surfaces, a high absorbency can further minimize the pumping processes required for liquid distribution and thus contribute to a more positive energy balance. When processing nonwovens into algae substrates, the main component should consist of energy-efficient and inexpensive PP or PE, to which PES or polyacrylic can be added as an absorbent component. In contrast, the commercially available natural fiber products appear interesting from the point of view of their biodegradability, but they have a relatively unfavorable energy and cost balance.
Optimierungen gegenüber dem Stand der Technik infolge des rotie¬ renden Solar-Photobioreaktor-Algensubstrats zur Produktion von Algenbiomasse sind:Optimizations compared to the prior art due to the rotating solar photobioreactor algae substrate for the production of algae biomass are:
1. hohe energetische Produktivität pro Fläche in Form von ver¬ wertbarer Biomasse1. high energetic productivity per area in the form of usable biomass
2. niedriger quantitativer Energieinput (für Betrieb, Ernte und Material)2. low quantitative energy input (for operation, harvest and material)
3. qualitativer Energieinput (integrierte Nutzung anderer re¬ generativer Energieträger)3. qualitative energy input (integrated use of other regenerative energy sources)
4. Integrationsfähigkeit in bestehende Technologien zur Nut¬ zung fossiler Energieträger4. Ability to integrate into existing technologies for the use of fossil fuels
5. niedrige Betriebs- und Investitionskosten integrierte Erntemethode, niedriger Personalaufwand, Auto¬ matisierbarkeit5. low operating and investment costs integrated harvesting method, low personnel costs, automation
Betriebssicherheit, regionale Anpassungsfähigkeit, einfa¬ ches Scale-Up.Operational reliability, regional adaptability, simple scale-up.
Optional: Schließung der Grünlücke durch geeignete Algenauswahl In Bezug auf Wirtschaftlichkeit, Ökologie, Betriebssicherheit und Anpassungsfähigkeit lassen sich für den erfindungsgemäßen Solar- Photobioreaktor folgende Eigenschaften festhalten:Optional: Closing the green space through a suitable selection of algae With regard to economy, ecology, operational safety and adaptability, the following properties can be recorded for the solar photobioreactor according to the invention:
- geringer Energiebedarf (quantitativer Energieinput) integrierte Nutzungsmöglichkeit regenerativer Energieträger (Wind, Wasser, Sonne, qualitativer Energieinput) geringe Flächenintensität durch Erhöhung des flächenbezogenen Wirkungsgrades der Photosynthese - integrierte Erntemöglichkeit durch Trocknen auf der Reak¬ toroberfläche, Desorption im Tauchbad- low energy requirement (quantitative energy input) integrated use of regenerative energy sources (wind, water, sun, qualitative energy input) low area intensity by increasing the area-related efficiency of photosynthesis - integrated harvesting possibility by drying on the reactor surface, desorption in the immersion bath
Betriebssicherheit, regionale Anpassungsfähigkeit, einfa¬ ches Scale-Up durch modularen Aufbau niedrige Investitionskosten durch geeignete Materialwahl - ökologische Unbedenklichkeit durch hohen Anteil regenerati¬ ver oder recyclingfähiger Materialien möglichOperational safety, regional adaptability, simple scale-up due to modular construction, low investment costs through suitable choice of materials - ecological harmlessness possible due to the high proportion of regenerative or recyclable materials
Nachfolgend werden anhand der Figuren Ausführungsbeispiele derExemplary embodiments of the
Erfindung näher erläutert. Im einzelnen zeigen:Invention explained in more detail. In detail show:
Fig. 1 eine Prinzipskizze des Aufbaus eines Solar-Photobio- reaktors mit hohlkegelförmig angeordnetem Algensubstrat gemäß einem ersten Ausführungsbeispiel der Erfindung,1 is a schematic diagram of the structure of a solar photobio-reactor with a hollow cone-shaped algae substrate according to a first embodiment of the invention,
Fign. 2 und 3Fig. 2 and 3
Längs- und Querschnittsansichten eines Solar-Photobio- reaktors gemäß einem zweiten Ausführungsbeispiel der Erfindung mit Zickzack-förmig bzw. sternförmig verlau¬ fendem Algensubstrat, das von einem Käfig gehalten ist, undLongitudinal and cross-sectional views of a solar photobio-reactor according to a second exemplary embodiment of the invention with a zigzag or star-shaped algae substrate which is held by a cage, and
Fig. 4 eine Draufsicht auf einen Solar-Photobioreaktor gemäß einem dritten Ausführungsbeispiel, bei dem die Tragkon¬ struktion für das Algensubstrat mehrere Kassettenhalter für Kassetteneinschübe aufweist, auf die ein Algensub- strat in Form eines Endlosbandes aufgespannt ist, wel¬ ches durch Kassetteneinschübe halbzylindrisch geformt wird, so daß es zur Ausnutzung von Windenergie oder von anderen Strömungen zur Erzeugung der Rotation der Trag- konstruktion beitragen kann.4 shows a plan view of a solar photobioreactor according to a third exemplary embodiment, in which the supporting structure for the algae substrate has a plurality of cassette holders for cassette inserts onto which an algae substrate Strat is stretched in the form of an endless belt, which is semi-cylindrical formed by cassette inserts, so that it can contribute to the use of wind energy or other currents to generate the rotation of the supporting structure.
Der Reaktor 10 gemäß Fig. 1 hat die Form eines rotierenden Kegels 11. In einfachster Ausführung ist der Kegelmantel mit einem Mate¬ rial 12 bespannt, welches die belichtete Reaktionsoberfläche bil- det und beidseitig mit Nährmedium befeuchtet wird (bei 13 ange¬ deutet) . Das Material 12 ist gasdurchlässig und hell bis trans¬ parent und stellt das Algensubstrat dar, auf dem die mit Nährme¬ dium und C02-haltigem Gas versorgten Algen wachsen. In das hohle Kegelinnere wird das warme Abgas 14 eingeleitet, welches im Kegel aufsteigt, zum einen Teil durch das Substrat 12 an den Algen vor¬ beiströmt und zum anderen durch eine Öffnung 15 an der Oberseite den Kegel 11 verläßt. Der Kegel 11 ist in Verlängerung seiner Achse 16 an einem (lediglich angedeuteten) Gerüst 17 drehbar ge¬ lagert. Durch die Rotation wird eine optimale Verteilung von Licht, Kohlendioxid, Nährmedium und Algen erreicht. Überschüs¬ siges Nährmedium und suspendierte Algen tropfen vom Substrat 12 in einen flachen Trichter 18, von wo aus sie zusammen mit dem Nährmedium in einen Sumpf 19 gelangen. Der Sumpf 19 weist einen Ablauf 20 auf, über den die suspendierten Algen abgeführt werden. Ferner mündet in den Sumpf 19 eine Zirkulationsleitung 21 für Nährmedium, über die das überschüssige Nährmedium zusammen mit Nährmedium aus einem an die Zirkulationsleitung 21 angeschlosse¬ nen Vorratsbehalter 22 dem oberen Ende des Kegels 11 zugeführt werden, um auf diese aufgebracht zu werden. Eine Pumpe 24 saugt das überschüssige Nährmedium und Nährmedium aus dem Vorratsbe¬ hältnis 22 an. Dem Nährmedium kann C02 aus z. B. Abgasen zuge¬ setzt sein. In der Zirkulationsleitung 21 befindet sich nahe dem Sumpf 19 ein Algenfilter 23, um Algen von dem Nährmedium-Zirkula¬ tionssystem fernzuhalten. Alternativ kann vorgesehen sein, die Medienzufuhr dem Wasser- und Nährstoffverbrauch so anzupassen, daß es nahezu vollständig an der Reaktionsfläche adsorbiert. Ein Auffangtrichter sowie ein zirkulierender Nährmedium-Strom sind dann nicht erforderlich.The reactor 10 according to FIG. 1 has the shape of a rotating cone 11. In the simplest embodiment, the cone jacket is covered with a material 12 which forms the exposed reaction surface and is moistened on both sides with nutrient medium (indicated at 13). The material 12 is gas-permeable and light to transparent and represents the algal substrate on which the algae supplied with nutrient medium and CO 2 -containing gas grow. The warm exhaust gas 14 is introduced into the hollow interior of the cone, which rises in the cone, partly flows past the algae through the substrate 12 and partly leaves the cone 11 through an opening 15 at the top. The cone 11 is rotatably supported in an extension of its axis 16 on a frame 17 (only indicated). The rotation ensures an optimal distribution of light, carbon dioxide, nutrient medium and algae. Excess nutrient medium and suspended algae drip from the substrate 12 into a flat funnel 18, from where they reach a sump 19 together with the nutrient medium. The sump 19 has an outlet 20 through which the suspended algae are removed. Furthermore, a circulation line 21 for nutrient medium opens into the sump 19, via which the excess nutrient medium together with nutrient medium from a storage container 22 connected to the circulation line 21 are fed to the upper end of the cone 11 in order to be applied to it. A pump 24 draws in the excess nutrient medium and nutrient medium from the storage container 22. The nutrient medium can C0 2 from z. B. Exhaust gases are added. An algae filter 23 is located in the circulation line 21 near the sump 19 in order to keep algae away from the nutrient medium circulation system. Alternatively, the media feed may be provided to adjust the water and nutrient consumption so that it virtually completely ä constantly adsorbed on the reaction surface. A collecting funnel and a circulating flow of nutrient medium are then not required.
Die Formgebung des Reaktors kann durch den Abstand und den Umfang zweier an den Enden des Hohlkegels angeordneter Ringe sowie Quer¬ verstrebungen der das Folienmaterial haltenden Tragkonstruktion 25 bestimmt werden, die das Gerüst für die Reaktionsoberflächen bilden, welche aus dem oben erwähnten Material bestehen und wel¬ che an diesen Ringen befestigt sind. Damit ist die Ausrichtung der Reaktionsoberfläche zum Einstrahlungswinkel der Sonne bzw. des diffusen Lichts zu optimieren.The shape of the reactor can be determined by the distance and the circumference of two rings arranged at the ends of the hollow cone as well as transverse struts of the supporting structure 25 holding the film material, which form the framework for the reaction surfaces, which consist of the material mentioned above and which che are attached to these rings. This means that the alignment of the reaction surface with the angle of incidence of the sun or diffuse light can be optimized.
Die Biomasse wird je nach eingesetzter Algenart verschieden ge¬ erntet :The biomass is harvested differently depending on the type of algae used:
1. Durch elektrische oder chemische Desorption der Algen,1. By electrical or chemical desorption of the algae,
2. durch Abstreifen der Algen von den (feuchten) Oberflächen, oder2. by stripping the algae from the (moist) surfaces, or
3. durch Abstreifen der Algen, Herauslösen zu verwertender Bestandteile oder durch Erneuerung der Oberfläche, nachdem der Reaktor eine Zeitlang ohne weitere Zufuhr von Nahrmedi- um trocken rotiert ist.3. by wiping off the algae, removing components to be recycled or by renewing the surface after the reactor has been rotated dry for a while without further supply of nutrient medium.
Bei der chemischen Desorption wird das Nahrmedium-Zirkulations- system ausgenutzt, um dem Algensubstrat reine Desorptionsflussig- keit zuzuführen. Zu diesem Zweck wird die Zirkulationsleitung 21 über ein Ventil 26 abgesperrt, das zwischen der von dem Nahrmedi- um-Vorratsbehälter 22 kommenden Leitung 27 und der Pumpe 24 ge¬ schaltet ist. Zwischen der Pumpe 24 und dem Ventil 26 mundet in die Zirkulationsleitung 21 eine Leitung 27' ein, die durch ein Ventil 28 absperrbar ist Über diese Leitung 27' ist bei geoff- netem Ventil 28 die Zirkulationsleitung 21 mit einem Vorratsbe¬ hältnis 29 für Desorptionsflüssigkeit verbunden. Bei geöffnetem Ventil 28 und geschlossenem Ventil 26 saugt die Pumpe 24 aus dem Vorratsbehältnis 29 Desorptionsflüssigkeit an. Diese Desorptions- flüssigkeit wird auf das Algensubstrat aufgebracht, wobei die Algen von dem Substrat 12 abgelöst und zusammen mit der Desorp¬ tionsflüssigkeit in den Sumpf 19 gelangen und von dort über den Ablauf 20 abgeführt und damit geerntet werden können.In chemical desorption, the nutrient medium circulation system is used to supply pure desorption liquid to the algal substrate. For this purpose, the circulation line 21 is shut off via a valve 26, which is connected between the line 27 coming from the nutrient medium reservoir 22 and the pump 24. Between the pump 24 and the valve 26, a line 27 'flows into the circulation line 21, which line can be shut off by a valve 28. Netem valve 28, the circulation line 21 connected to a reservoir 29 for desorption liquid. When the valve 28 is open and the valve 26 is closed, the pump 24 draws in desorption liquid from the storage container 29. This desorption liquid is applied to the algal substrate, whereby the algae are detached from the substrate 12 and together with the desorption liquid enter the sump 19 and can be removed from there via the outlet 20 and thus harvested.
Die Antriebsenergie zur Rotation des Reaktors und für den Pump¬ vorgang kann aus dem im Kegel 11 aufsteigenden warmen Abgas ge¬ wonnen werden, aus Wind- und Sonnenenergie oder möglichen Kombi¬ nationen. Aufgrund der Gefahr schnelleren Austrocknens bei Wind und wegen der Gefahr von Photoinhibition bei zu starker Sonnen- Strahlung können die Zufuhr des Mediums und die Rotation des Re¬ aktors variiert werden.The drive energy for the rotation of the reactor and for the pumping process can be obtained from the warm exhaust gas rising in the cone 11, from wind and solar energy or possible combinations. Because of the risk of faster drying out in the wind and because of the risk of photoinhibition if the solar radiation is too strong, the supply of the medium and the rotation of the reactor can be varied.
Die Struktur des Kegelmantels kann in einer abgeleiteten Form zur Oberflächenvergrößerung und zur Erhöhung der Gasdurchlässigkeit so verändert werden, daß sie aus vielen zentripetal angeordneten dünnen Lamellen oder Kassetten besteht, die jeweils von dem obe¬ ren Befestigungsring zum unteren führen. Wenn ihre Ausrichtung zur Kegelachse so verdreht ist, daß sie den Rotorblättern eines Savonius-Rotors ähneln, ist ein solcher Reaktor im Freiland in der Lage, seine Rotationsenergie aus dem Wind aufzunehmen. Die hängende kardanische Konstruktion erlaubt es, bei zu starkem Wind die Reaktoroberseite in Windrichtung auszurichten, wodurch die Angriffsfläche des Windes und der Strömungswiderstand des Reak¬ tors minimiert werden.The structure of the cone shell can be changed in a derived form to increase the surface area and to increase the gas permeability so that it consists of many centripetal thin slats or cassettes, each of which leads from the upper fastening ring to the lower one. If their orientation to the cone axis is twisted so that they resemble the rotor blades of a Savonius rotor, such a reactor in the field is able to absorb its rotational energy from the wind. The hanging gimbal construction allows the top of the reactor to be oriented in the wind direction when the wind is too strong, as a result of which the surface of the wind and the flow resistance of the reactor are minimized.
In den Fign. 2 und 3 ist ein zweites Ausführungsbeispiel eines Reaktors 30 dargestellt. Der Reaktor 30 weist ein Gestell 32 auf, das einige wenige gleichmäßig verteilt angeordnete Vertikalstre¬ ben 34 sowie diese untereinander verbindende Horizontalstreben 36 aufweist und in dem ein im wesentlichen zylindrischer Rotations- körper 38 pendelnd aufgehängt und drehbar angeordnet ist. Der Rotationskörper 38 weist an seinen stirnseitigen Enden gasdurch¬ lässige Elemente 40 auf, zwischen denen außenliegende Haltestäbe 42 und innenliegende Haltestäbe 44 angeordnet sind. Sowohl die Außenhaltestäbe 42 als auch die Innenhaltestäbe 44 sind jeweils entlang von Kreislinien gleichmäßig verteilt angeordnet. Zwischen den Haltestäben 42 und 44 verläuft ein Algensubstrat 46 in Form eines dünnen bahnförmigen Vliesmaterials 48, das Zickzack-förmig nach Art eines Rundfilters abwechselnd um die Außen- und Innen- haltestäbe 42,44 verlaufend, d.h. sternförmig bzw. im wesentli¬ chen ähnlich einer Sternform angeordnet ist. Gas 50 wird von un¬ ten in das Gestell 32 eingeleitet, so daß es beim Aufsteigen durch das Gestell 32 an den in Gasströmungsrichtung verlaufenden vertikalen einzelnen Substratoberflächen 52 entlangströmt.In Figs. 2 and 3, a second embodiment of a reactor 30 is shown. The reactor 30 has a frame 32 which has a few evenly distributed vertical struts 34 and horizontal struts 36 connecting them to one another and in which an essentially cylindrical rotational body 38 is suspended and rotatably arranged. The rotary body 38 has gas-permeable elements 40 at its front ends, between which outer holding rods 42 and inner holding rods 44 are arranged. Both the outer holding rods 42 and the inner holding rods 44 are each arranged uniformly distributed along circular lines. Between the holding rods 42 and 44 runs an algae substrate 46 in the form of a thin, web-shaped non-woven material 48, which runs in a zigzag shape in the manner of a round filter, alternating around the outer and inner holding rods 42, 44, ie star-shaped or essentially similar to one Star shape is arranged. Gas 50 is introduced into the frame 32 from below, so that when it rises through the frame 32 it flows along the vertical individual substrate surfaces 52 running in the gas flow direction.
An den Horizontalstreben 36 des Gestells 32 ist eine Antriebsvor¬ richtung 54 zum drehenden Antrieb des Rotationskörpers 38 ange¬ ordnet. Im in den Fign. 2 und 3 dargestellten Fall weist die An¬ triebsvorrichtung 54 ein Windrad 56 auf. Die Drehachse 58 der Antriebsvorrichtung 54 weist ein Kardangelenk 60 auf, das mit der Drehachse 62 des Rotationskörpers 38 verbunden ist. Auf diese Weise rotiert der Rotationskörper 38 auch dann, wenn er durch Seitenkräfte (beispielsweise Windkräfte) in Pendelbewegungen ver¬ setzt wird.A drive device 54 for rotatingly driving the rotary body 38 is arranged on the horizontal struts 36 of the frame 32. Im in Figs. 2 and 3, the drive device 54 has a wind wheel 56. The axis of rotation 58 of the drive device 54 has a universal joint 60 which is connected to the axis of rotation 62 of the rotary body 38. In this way, the rotating body 38 also rotates when it is caused to oscillate by lateral forces (for example wind forces).
Eine der Vertikalstreben 34 ist mit einer Nährmittel-Zuführvor¬ richtung 64 versehen, die einzelne Düsen 66 aufweist, über die ein Nährmedium, das aus einem Reservoir 68 gepumpt wird, gegen das sich an der Nährmittel-Zuführvorrichtung 64 vorbeibewegenden Substrat gesprüht wird. Der Reaktor 30 gemäß den Fign. 2 und 3 kann, wie im Falle von Fig. 1, ergänzt werden, um das Nährmedium im Kreislauf zuzuführen. Vorteilhafter ist es allerdings, die Zuführvorrichtung so auszulegen, daß stets eine ausreichende Menge an Nährmedium auf das Substrat aufgesprüht wird, ohne daß überschüssiges Nährmedium abtropft. Wie anhand der Fig. 2 gezeigt, sind stets Teilbereiche des Sub¬ strats 46 der direkten Sonneneinstrahlung 70 ausgesetzt, wenn sich der Rotationskörper 38 in Richtung des Pfeils 72 dreht. Die lamellenartig aufeinanderfolgenden einzelnen Substratoberflächen 52 schatten sich in Teilbereichen der Rotationsbewegung des Sub¬ strats 46 gegenseitig ab bzw. lassen lediglich eine Belichtung mit diffusem Sonnenlicht (Schwachlicht) zu. Diese abwechselnde Direktbelichtung, Abschattung und Diffusbelichtung verhindert das Entstehen von Photoinhibition der in dem Bahnmaterial 64 veran- kerten Algen, so daß diese sich immer wieder regenerieren können, um photosynthetisch optimal zu wirken. Eine auf die Rotorge¬ schwindigkeit abgestimmte partielle Zusatzabschattung kann diesen Effekt optimieren.One of the vertical struts 34 is provided with a nutrient supply device 64, which has individual nozzles 66, via which a nutrient medium that is pumped from a reservoir 68 is sprayed against the substrate moving past the nutrient supply device 64. The reactor 30 according to FIGS. 2 and 3, as in the case of Fig. 1, can be added to supply the nutrient medium in the circuit. However, it is more advantageous to design the feed device such that a sufficient amount of nutrient medium is always sprayed onto the substrate without excess nutrient medium dripping off. As shown in FIG. 2, partial areas of the substrate 46 are always exposed to direct sunlight 70 when the rotating body 38 rotates in the direction of the arrow 72. The lamellar successive individual substrate surfaces 52 shade each other in partial areas of the rotational movement of the substrate 46 or only allow exposure to diffuse sunlight (weak light). This alternating direct exposure, shadowing and diffuse exposure prevents the formation of photoinhibition of the algae anchored in the web material 64, so that they can regenerate again and again in order to have an optimal photosynthetic effect. A partial additional shade that is matched to the rotor speed can optimize this effect.
Durch bezogen auf die Strömung des Gases 40 schräg ausgerichteten Substratoberflächen 52 wäre es möglich, die Gasströmung zur Rota¬ tion des Rotationskörpers 38 auszunutzen. In dem Fall könnten dann also die Gasströmung und der Wind als Rotationsantrieb aus¬ genutzt werden.By means of substrate surfaces 52 oriented obliquely with respect to the flow of the gas 40, it would be possible to use the gas flow for the rotation of the rotary body 38. In this case, the gas flow and the wind could then be used as a rotary drive.
Anhand von Fig. 3 soll kurz der Aufbau eines Reaktors 80 gemäß einem weiteren Ausführungsbeispiel der Erfindung verdeutlicht werden. Dieser Reaktor 80 weist eine obere Platte 82 auf, die über eine Drehachse 84 mit einer unteren deckungsgleichen Platte verbunden ist, die in der Draufsicht gemäß Figur 4 nicht zu er¬ kennen ist. Die obere Platte 82 ist durch Versteifungsstreben 86 mechanisch verstärkt. Zwischen benachbarten Streben 86, die im wesentlichen radialförmig verlaufen, befinden sich in der Platte 82 herausziehbare Einschübe 88, die einen halbkreisförmigen Hal- terungsbogen 90 aufweisen. Identische halbkreisförmige Halte- rungsbögen 90 befinden sich auch in der unteren Platte des Reak¬ tors 80; auch diese Halterungen sind an Einschüben der unteren Platte angeordnet. Zwischen den halbkreisförmigen Halterungen beider Platten ist das vliesförmige Algensubstrat 92 angeordnet, das als Endlosband beidseitig beider halbkreisförmiger Halte- rungsbögen 90 um diese herum gespannt gehalten ist. Jeder Ein- schub 88 der oberen Platte 82 weist ferner zwei Ausparungen 94, 96 auf, von denen die Ausparung 94 halbkreisförmig ist und durch den Halterungsbogen 90 sowie die der Innenseite dieses Halte- rungsbogens 90 zugewandte Strebe 86 begrenzt ist. Die zweite Aus¬ parung 96 ist zwischen dem Scheitelpunkt des Halterungsbogens 90 eines Einschubes 88 und der der Außenseite des Halterungbogens 90 zugewandte Strebe 86 angeordnet. Zusätzlich befindet sich an der Platte 86 ein zentrales Zulaufkanalsystem 98 für Nährmedium, das einen Ringverteilerkanal und davon radial abzweigende Radialkanä¬ le aufweist, die zu den Halterungsbogen 90 führen und das Nähr¬ medium zum Substrat 92 leiten.The structure of a reactor 80 according to a further exemplary embodiment of the invention will be briefly illustrated with reference to FIG. 3. This reactor 80 has an upper plate 82 which is connected via an axis of rotation 84 to a lower congruent plate which cannot be seen in the plan view according to FIG. 4. The upper plate 82 is mechanically reinforced by stiffening struts 86. Drawers 88, which have a semicircular support arch 90, are located in the plate 82 between adjacent struts 86, which run essentially radially. Identical semicircular support arches 90 are also located in the lower plate of the reactor 80; these brackets are also arranged on inserts of the lower plate. The fleece-shaped algae substrate 92 is arranged between the semicircular holders of both plates. tion arches 90 is kept taut around them. Each insert 88 of the upper plate 82 also has two recesses 94, 96, of which the recess 94 is semicircular and is delimited by the mounting arch 90 and the strut 86 facing the inside of this mounting arch 90. The second recess 96 is arranged between the apex of the mounting bracket 90 of an insert 88 and the strut 86 facing the outside of the mounting bracket 90. In addition, there is a central feed channel system 98 for nutrient medium on the plate 86, which has an annular distribution channel and radial channels branching radially therefrom, which lead to the mounting bend 90 and guide the nutrient medium to the substrate 92.
Die bogenförmig gespannten Algensubstratfolien 96 liegen zwischen den über die Drehachse 84 miteinander verbundenen Platten (von denen die obere Platte 82 in Figur 4 gezeigt ist) frei. Die halb¬ kreisförmig gespannten Algensubstratfolien 82 fungieren dabei wie die Rotorblätter eines Rotors, der durch entsprechend dem Pfeil 100 vorbeiströmenden Wind in Rotation versetzt wird. Der Sonnen- lichteinfall erfolgt teilweise über den seitlich offenen Bereich des Reaktors 80 und von oben durch die Ausparungen 94 und 96 in der Platte 82 des Reaktors 80. The arc-shaped algae substrate films 96 are exposed between the plates connected to one another via the axis of rotation 84 (of which the upper plate 82 is shown in FIG. 4). The semi-circularly stretched algae substrate foils 82 act like the rotor blades of a rotor which is set into rotation by the wind flowing past in accordance with arrow 100. The incidence of sunlight occurs partly through the laterally open area of the reactor 80 and from above through the recesses 94 and 96 in the plate 82 of the reactor 80.

Claims

ANSPRUCHE EXPECTATIONS
1. Rotierender Solar-Photobioreaktor zur Produktion von Algen¬ biomasse aus insbesondere kohlendioxidhaltigen Gasen, mit einem Gestell (17;32) , einem um eine Drehachse (15;62;84) drehbar an dem Ge¬ stell (17,*32) gelagerten Algensubstrat (12;46;92) für Algen, auf dem die Algen während ihres Wachstums ver¬ bleiben, das Sonnenlicht unterschiedlicher Intensität intermittierend aussetzbar ist, einer Antriebsvorrichtung (54) zum drehenden Antreiben des Algensubstrats (12;46;92) und einer Nährmedium-Zuführvorrichtung zum Zuführen eines Nährmediums zu dem Algensubstrat .1. Rotating solar photobioreactor for the production of algae biomass from, in particular, carbon dioxide-containing gases, with a frame (17; 32), one rotatable about an axis of rotation (15; 62; 84) on the frame (17, * 32) Algae substrate (12; 46; 92) for algae, on which the algae remain during their growth, the sunlight of different intensities can be intermittently exposed, a drive device (54) for rotatingly driving the algae substrate (12; 46; 92) and a nutrient medium Feed device for feeding a nutrient medium to the algal substrate.
2. Rotierender Solar-Photobioreaktor nach Anspruch 1, dadurch gekennzeichnet, daß das Algensubstrat (12; 46;92) ein dün¬ nes Bahnmaterial ist, das von einer Tragkonstruktion (25; 42, 44;82) gehalten ist.2. Rotating solar photobioreactor according to claim 1, characterized in that the algal substrate (12; 46; 92) is a thin web material which is held by a supporting structure (25; 42, 44; 82).
3. Rotierender Solar-Photobioreaktor nach Anspruch 2, dadurch gekennzeichnet, daß die Tragkonstruktion (25) einen Hohlke¬ gel mit gasdurchlässiger Wandung aufweist, an der das Al¬ gensubstrat (12) gehalten ist.3. Rotating solar photobioreactor according to claim 2, characterized in that the supporting structure (25) has a Hohlke¬ gel with a gas-permeable wall on which the al¬ gene substrate (12) is held.
4. Rotierender Solar-Photobioreaktor nach Anspruch 2, dadurch gekennzeichnet, daß die Tragkonstruktion einen Käfig mit entlang einer Außenumfangslinie angeordneten parallelen Außenhaitestäben (42) und mit entlang einer Innenumfangs- linie angeordneten zu den Außenhaltestäben (42) parallelen Innenhaltestäben (44) aufweist, wobei das Bahnmaterial (48) zwischen den Innen- und Außenhaltestäben (42, 44) und um diese herum verlaufend von dem Käfig gehalten ist. 4. A rotating solar photobioreactor according to claim 2, characterized in that the supporting structure has a cage with parallel outer holding rods arranged along an outer circumferential line (42) and with inner holding rods (44) arranged parallel to the outer holding rods (42) along an inner circumferential line, whereby the web material (48) is held between and around the inner and outer support rods (42, 44) by the cage.
5. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Antriebsvorrich¬ tung (54) ein Windrad (56) aufweist.5. Rotating solar photobioreactor according to one of claims 1 to 4, characterized in that the Antriebsvorrich¬ device (54) has a wind turbine (56).
6. Rotierender Solar-Photobioreaktor nach Anspruch 5, dadurch gekennzeichnet, daß das Algensubstrat als Wind- bzw. Schau¬ felrad zum drehenden Antreiben durch Wind ausgebildet ist .6. Rotating solar photobioreactor according to claim 5, characterized in that the algae substrate is designed as a wind or rocking wheel for rotating driving by wind.
7. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Antriebsvorrich¬ tung eine Solar-Antriebsvorrichtung ist.7. Rotating solar photobioreactor according to one of claims 1 to 4, characterized in that the Antriebsvorrich¬ device is a solar drive device.
8. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Algensubstrat als Schaufelrad zur Rotation infolge von an dem Algensubstrat vorbeiströmendem Gas ausgebildet ist.8. Rotating solar photobioreactor according to one of claims 1 to 4, characterized in that the algae substrate is designed as a paddle wheel for rotation as a result of gas flowing past the algae substrate.
9. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Nährmedium-Zuführ¬ vorrichtung (13;64;98) mindestens einen Teil des Algen¬ substrats (12;46; 92) erfaßt, wobei bei Rotation des Algen¬ substrats (12;46,-92) pro Umdrehung die gesamte Oberfläche des Algensubstrats (12;46;92) mit Nährmedium benetzbar ist.9. Rotating solar photobioreactor according to one of claims 1 to 8, characterized in that the nutrient medium feed device (13; 64; 98) detects at least part of the algae substrate (12; 46; 92), with rotation of the algal substrate (12; 46, -92) the entire surface of the algal substrate (12; 46; 92) can be wetted with nutrient medium per revolution.
10. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Algensubstrat (46) an seiner Drehachse (62) kardanisch (60) am Gestell (36) aufgehängt ist .10. Rotating solar photobioreactor according to one of claims 1 to 9, characterized in that the algal substrate (46) on its axis of rotation (62) is gimbaled (60) on the frame (36).
11. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Algensubstrat (12,-46; 92) um eine vertikal verlaufende Drehachse (15; 62; 84) drehbar an dem Gestell (17,-32) gelagert ist. 11. Rotating solar photobioreactor according to one of claims 1 to 10, characterized in that the algal substrate (12, -46; 92) about a vertical axis of rotation (15; 62; 84) rotatable on the frame (17, -32) is stored.
12. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1, 2 oder 4 bis 11, dadurch gekennzeichnet, daß die Ober¬ fläche des Algensubstrats (12,*46;92) im wesentlichen paral¬ lel zur Drehachse (15,-62;84) verläuft.12. Rotating solar photobioreactor according to one of claims 1, 2 or 4 to 11, characterized in that the surface of the algal substrate (12, * 46; 92) is essentially parallel to the axis of rotation (15, -62; 84 ) runs.
13. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ein Abschattungsele- ment mit mindestens einem Fenster zum Hindurchlassen von Sonnenlicht auf das Algensubstrat (12;46; 92) vorgesehen ist .13. Rotating solar photobioreactor according to one of claims 1 to 12, characterized in that a shading element is provided with at least one window for letting sunlight onto the algal substrate (12; 46; 92).
14. Rotierender Solar-Photobioreaktor nach Anspruch 13, dadurch gekennzeichnet, daß das Abschattungselement dem tageszeit¬ lich abhängigen Sonnenlichteinfall entsprechend nachführbar ist.14. Rotating solar photobioreactor according to claim 13, characterized in that the shading element can be adjusted to suit the time of day dependent sunlight.
15. Rotierender Solar-Photobioreaktor nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß das Aschattungselement mehrere Fenster aufweist.15. Rotating solar photobioreactor according to claim 13 or 14, characterized in that the shading element has a plurality of windows.
16. Rotierender Solar-Photobioreaktor nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß für jedes Fenster mindestens ein optisches Element zum Konzentrieren des Son¬ nenlichteinfalls auf das Algensubstrat vorgesehen ist. 16. Rotating solar photobioreactor according to one of claims 13 to 15, characterized in that at least one optical element is provided for concentrating the incidence of sunlight on the algal substrate for each window.
EP96932584A 1995-09-23 1996-09-21 Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co 2?-containing gases Withdrawn EP0852616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29623906U DE29623906U1 (en) 1995-09-23 1996-09-21 Rotating solar photobioreactor for the production of algal biomass from gases containing carbon dioxide in particular

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19535406 1995-09-23
DE19535406 1995-09-23
DE19623711 1996-06-14
DE19623711 1996-06-14
PCT/EP1996/004135 WO1997011154A1 (en) 1995-09-23 1996-09-21 Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co2-containing gases

Publications (1)

Publication Number Publication Date
EP0852616A1 true EP0852616A1 (en) 1998-07-15

Family

ID=26018869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96932584A Withdrawn EP0852616A1 (en) 1995-09-23 1996-09-21 Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co 2?-containing gases

Country Status (7)

Country Link
EP (1) EP0852616A1 (en)
JP (1) JP2000504924A (en)
AU (1) AU704463B2 (en)
CA (1) CA2232707A1 (en)
IL (1) IL123630A0 (en)
NO (1) NO981082L (en)
WO (1) WO1997011154A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980024B2 (en) 2007-04-27 2011-07-19 Algae Systems, Inc. Photobioreactor systems positioned on bodies of water
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
CN107418875A (en) * 2017-08-15 2017-12-01 大连理工大学 Microdisk electrode shake platform and microalgae culture method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016554A1 (en) * 2000-04-03 2001-10-18 Rootec Ges Fuer Bioaktive Wirk Plant or animal tissue cultivation unit, comprises fermenter container, supply for liquid nutrients and gases, discharger for used nutrients, and carrier plates
CA2353307A1 (en) 2001-07-13 2003-01-13 Carmen Parent Device and procedure for processing gaseous effluents
AU2003234604A1 (en) * 2002-05-13 2003-11-11 Greenfuel Technologies Corporation Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
DE10225559A1 (en) * 2002-06-10 2003-12-24 Forschungszentrum Juelich Gmbh Compact bioreactor fuel cell system
EP1646710A1 (en) 2003-07-21 2006-04-19 Algenion GmbH & Co. KG Method and device for cultivating eucaryotic microorganisms or blue algae, and biosensor with cultivated eucaryotic microorganisms or blue algae
FR2874006A1 (en) * 2004-08-05 2006-02-10 Ecosite Du Pays De Thau Sa Biological treatment procedure for effluent uses oxygen supersaturation inside effluent to induce synthesis of reactive forms
US8076122B2 (en) 2007-07-25 2011-12-13 Chevron U.S.A. Inc. Process for integrating conversion of hydrocarbonaceous assets and photobiofuels production using an absorption tower
US7838272B2 (en) 2007-07-25 2010-11-23 Chevron U.S.A. Inc. Increased yield in gas-to-liquids processing via conversion of carbon dioxide to diesel via microalgae
AU2014250606B2 (en) * 2008-01-03 2016-06-02 Proterro, Inc. Photobioreactor for cultivating photosynthetic microorganisms
WO2009089185A1 (en) * 2008-01-03 2009-07-16 Proterro, Inc. Transgenic photosynthetic microorganisms and photobioreactor
WO2009129396A1 (en) * 2008-04-16 2009-10-22 Greenfuel Technologies Corporation Photobioreactor systems and methods incorporating cultivation matrices
WO2010013998A1 (en) 2008-08-01 2010-02-04 Algae-Tech Ltd Algae growth system
US8809037B2 (en) 2008-10-24 2014-08-19 Bioprocessh20 Llc Systems, apparatuses and methods for treating wastewater
DE102009015925A1 (en) 2009-04-01 2010-10-07 LINBEC UG (haftungsbeschränkt) Photobioreactor to cultivate and reproduce phototrophic organisms in liquid phase by reacting with gaseous, solid and/or liquid additive during illumination with sun- and/or artificial light, comprises controlling device and solar elements
CN101643699B (en) * 2009-06-22 2012-07-04 新奥科技发展有限公司 System for cultivating microalgae with waste water
MX351511B (en) * 2011-06-13 2017-10-17 Al G Tech Inc Method using immobilized algae for production and harvest of algal biomass and products.
GB201216661D0 (en) * 2012-09-18 2012-10-31 Spicer Consulting Ltd photobioreactor
CN104186301B (en) * 2014-09-15 2016-02-10 山东省海洋生物研究院 A kind of algae culturing equipment and algae culturing method
EP3757201A1 (en) 2019-06-27 2020-12-30 Phytolinc UG Bioreactor and method for treating at least one fluid and/or cultivating phototrophic organisms
CN113862224A (en) * 2020-06-30 2021-12-31 广州汉腾生物科技有限公司 Method for culturing cells by using circular rail shaking type bioreactor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715795A (en) * 1954-06-22 1955-08-23 Basic Res Corp Microorganism culture method and apparatus
NL7006931A (en) * 1969-05-23 1970-11-25
US4324068A (en) * 1980-03-03 1982-04-13 Sax Zzyzx, Ltd. Production of algae
US4446236A (en) * 1982-08-11 1984-05-01 Clyde Robert A Apparatus for a photochemical reaction
EP0228460A1 (en) * 1985-07-10 1987-07-15 CLYDE, Robert A. Process and apparatus for enhancing biological and chemical reactions from high area inorganic base silica on fibers
IL108321A (en) * 1994-01-12 1998-10-30 Yeda Res & Dev Bioreactor and system for improved productivity of photosynthetic algae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9711154A1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507253B2 (en) 2002-05-13 2013-08-13 Algae Systems, LLC Photobioreactor cell culture systems, methods for preconditioning photosynthetic organisms, and cultures of photosynthetic organisms produced thereby
US8110395B2 (en) 2006-07-10 2012-02-07 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8507264B2 (en) 2006-07-10 2013-08-13 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US8877488B2 (en) 2006-07-10 2014-11-04 Algae Systems, LLC Photobioreactor systems and methods for treating CO2-enriched gas and producing biomass
US7980024B2 (en) 2007-04-27 2011-07-19 Algae Systems, Inc. Photobioreactor systems positioned on bodies of water
US8859262B2 (en) 2007-04-27 2014-10-14 Algae Systems, LLC Photobioreactor systems positioned on bodies of water
CN107418875A (en) * 2017-08-15 2017-12-01 大连理工大学 Microdisk electrode shake platform and microalgae culture method
CN107418875B (en) * 2017-08-15 2020-08-14 大连理工大学 Shaking platform for microalgae culture and microalgae culture method

Also Published As

Publication number Publication date
CA2232707A1 (en) 1997-03-27
JP2000504924A (en) 2000-04-25
NO981082D0 (en) 1998-03-11
NO981082L (en) 1998-05-12
AU7131696A (en) 1997-04-09
IL123630A0 (en) 1998-10-30
WO1997011154A1 (en) 1997-03-27
AU704463B2 (en) 1999-04-22

Similar Documents

Publication Publication Date Title
EP0852616A1 (en) Rotating solar photobioreactor for use in the production of algal biomass from gases, in particular co 2?-containing gases
EP3534690B1 (en) Climatically sealed climate-controlled cell for indoor cultivation of plants
US20110059518A1 (en) Vertical garden panel
EP2446016B1 (en) Method for producing biomass and photobioreactor for cultivating phototrophic or mixotrophic organisms or cells
CN108668879B (en) Cultivation stand and vertical water planting equipment
WO2014026851A1 (en) Photobioreactor for cultivating phototrophic organisms
AT515854B1 (en) Process for a photochemical, such as photocatalytic and / or photosynthetic process
CN114014405A (en) Waste water treatment recovery system of smart glufosinate-ammonium solvent
DE102018123378A1 (en) Peat moss wall
DE19611855C1 (en) Photo-bio-reactor producing hydrogen, oxygen and biomass from sunlight
DE102013214470B4 (en) Photovoltaic module with photovoltaic elements on the front and an open-pored layer on the back and arrangement for power generation
DE4200446C2 (en) Cell carrier arrangement
CN105830792A (en) Solar plant planting box
EP2417242B1 (en) Device and method for removing co2, and uses therefor
WO1998045405A2 (en) Installation for carrying out photochemical and photocatalytic reactions and photoinduced processes
DE19546542C1 (en) Cell cultivation process and assembly incorporates spirally-wound substrate belt
DE1299164B (en) Plant for continuous algae extraction
DE4307236C2 (en) Solar powered plant
DE102012011408A1 (en) Operating plant purification system for water treatment or water purification using aquatic plants in photobioreactors, comprises passing wastewater into inlet tray, arranging aquatic plants in culture trays, and connecting inlet tray
DE29623906U1 (en) Rotating solar photobioreactor for the production of algal biomass from gases containing carbon dioxide in particular
CN213694956U (en) Outdoor artistic plant wall with adjustable
CN212786927U (en) Soilless culture equipment for corn seeds
DE2928969C2 (en) Device for concentrating sunlight
CH719074A2 (en) Hydroponic Drum.
DE102021110717A1 (en) ARRANGEMENT AND METHOD OF GROWING PLANTS IN AN ENCLOSED INDOOR SPACE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000401