EP0829649B1 - Micro valve with preloaded valve flap - Google Patents

Micro valve with preloaded valve flap Download PDF

Info

Publication number
EP0829649B1
EP0829649B1 EP97113980A EP97113980A EP0829649B1 EP 0829649 B1 EP0829649 B1 EP 0829649B1 EP 97113980 A EP97113980 A EP 97113980A EP 97113980 A EP97113980 A EP 97113980A EP 0829649 B1 EP0829649 B1 EP 0829649B1
Authority
EP
European Patent Office
Prior art keywords
valve
support structure
valve flap
micro
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97113980A
Other languages
German (de)
French (fr)
Other versions
EP0829649A2 (en
EP0829649A3 (en
Inventor
Martin Dipl.-Phys. Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0829649A2 publication Critical patent/EP0829649A2/en
Publication of EP0829649A3 publication Critical patent/EP0829649A3/en
Application granted granted Critical
Publication of EP0829649B1 publication Critical patent/EP0829649B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C3/00Circuit elements having moving parts
    • F15C3/08Circuit elements having moving parts using reeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits

Definitions

  • the present invention relates to valves and in particular on electrostatically driven silicon micro valves.
  • FIG. 4 shows schematically a section of this Microvalve 40 in cross section.
  • the micro valve 40 has a valve plate 41 with a valve opening 42 through which the fluid flows. Above the valve opening 42 in the valve plate 41 is a valve member fastened on one side 43 arranged.
  • the valve member 43 is on its fixed section with a support or frame structure 44 connected. Between the frame, the one-sided attached valve member 43 and the valve plate 41 an electrically insulating layer 45 is provided which Electrically isolates valve member 43 from valve plate 41, to a charge flow between the valve member 43 and the To prevent valve plate 41.
  • valve member 43 can be actuated by means of external actuating forces be moved with respect to the valve plate 41 such that the Valve opening 42 closed by valve member 43 or can be opened.
  • valve member 43 In operation, the inlet (see FIG. 4 under the valve plate 41) of the microvalve 40 with a pressurized one Connected source (not shown) for fluid flow ⁇ .
  • the pressure on the valve member attached on one side 43 is exerted, causes the valve member 43 bends upwards, as shown by the dashed line Valve member 43 is shown in Fig. 4.
  • the arrow in Fig. 4 represents the direction of fluid flow ⁇ through the microvalve 40 represents.
  • the dashed representation of the valve member 43 in Fig. 4 shows the fully open position of the Microvalve 40.
  • the microvalve 40 is operated by a voltage source 46 an electrical potential difference via lines 47 creates between the valve plate 41 and the valve member 43. As a result, charges flow to the opposite ones Sides of the two components 41, 43, creating the components poled differently. These charges pull against each other, causing the unattached end of the valve member 43 is moved to the valve plate 41.
  • the micro valve 40 with the valve member 43 closed is shown in FIG. 4 shown with solid lines.
  • a disadvantage of the known microvalve 40 is that that such a microvalve 40 only in one direction of fluid flow is operable.
  • US-A-5,176,358 relates to a microstructured gas valve with a valve structure with multiple openings.
  • the valve structure comprises a substrate in which the opening is formed is.
  • electrodes Inside the valve seat structure are electrodes provided which lead to a connection. Internally a further electrode is provided on the valve plate, which is led out to a terminal 104.
  • the article "A NEW BISTABLE MICROVALVE USING AN SIO 2 BEAM AS THE MOVEABLE PART" by JH Babaei and others relates to a bistable microvalve which comprises an SiO 2 component as a moving part.
  • the structure includes a valve plate, a lower electrode, a spacer, and a silicon wafer as a mechanical base.
  • the valve plate is made of chrome, which is coated with a silicon dioxide layer which is under longitudinal tension, so that it can be bent electrostatically upwards or downwards to open or close the valve.
  • a voltage of 68 volts is required to close the valve, whereas a voltage of 120 volts is required to open this valve.
  • DE 29603364 U1 relates to a microvalve in which both the valve flap as well as the valve seat from a bendable Material are made.
  • WO 92/22763 A1 relates a miniature actuator in which a membrane through an electric field between the membrane and one Carrier is moved.
  • EP 0469749 A1 relates to a control valve, through the mechanical bending of an element is controlled.
  • the present Invention the object of a micro valve and To create process for its manufacture, the microvalve without applied operating voltage and without that Pneumatic forces act on an open passage opening has and for actuation only a low actuation voltage is required.
  • the present invention provides a method of manufacturing of a microvalve, with the following steps: Form a passage opening in a support structure, forming one, attached at least on one side Valve flap in a valve seat that is in its unactuated Condition is bent away from the support structure and the Passage opening opens and in its actuated state the support structure rests and closes the passage opening, Arranging an electrically insulating coating, which puts the valve flap under a pretension the side of the valve flap facing the support structure, and assembling the ones provided with the passage opening Support structure and the valve seat, such that the valve flap can close the passage opening and the coating between the valve seat and the support structure is arranged and in the area of the fastening of the valve flap rests on the support structure.
  • a second exemplary embodiment of a microvalve 10 with a prestressed valve flap structure is shown in an enlarged, basic cross-sectional view in FIG. 2.
  • small spacing bumps 21 are attached either on the prestressed valve flap 11 or on the support structure 12 or on both.
  • the height of these spacer bumps 21 can be of the order of 0.1 ⁇ m to 1 ⁇ m, the cross-sectional dimensions of the spacer bumps 21 being of the order of 10 ⁇ 10 ⁇ m 2 to 100 ⁇ 100 ⁇ m 2 .
  • the distances between adjacent bumps 21 are in the order of 500 microns to 2000 microns.
  • FIG. 3a to 3c are three further embodiments mechanically preloaded valve flaps 11 in perspective shown.
  • Fig. 3a shows a bilateral on adjacent edges clamped, mechanically preloaded valve flap 11a.
  • Fig. 3b shows a two-sided on opposite edges clamped, mechanically preloaded valve flap 11b.
  • 3c shows a mechanically clamped on three sides preloaded valve flap 11c.

Description

Die vorliegende Erfindung bezieht sich auf Ventile und insbesondere auf elektrostatisch angetriebene Silizium-Mikroventile.The present invention relates to valves and in particular on electrostatically driven silicon micro valves.

Ein bekanntes Mikroventil ist in der US-A-4,585,209 beschrieben. Fig. 4 zeigt schematisch einen Ausschnitt dieses Mikroventils 40 in Querschnittsdarstellung. Das Mikroventil 40 weist eine Ventilplatte 41 mit einer Ventilöffnung 42 auf, durch welche das Fluid fließt. Über der Ventilöffnung 42 in der Ventilplatte 41 ist ein einseitig befestigtes Ventilbauglied 43 angeordnet. Das Ventilbauglied 43 ist an seinem befestigten Abschnitt mit einer Trage- oder Rahmenstruktur 44 verbunden. Zwischen dem Rahmen, dem einseitig befestigten Ventilbauglied 43 und der Ventilplatte 41 ist eine elektrisch isolierende Schicht 45 vorgesehen, die das Ventilbauglied 43 von der Ventilplatte 41 elektrisch trennt, um einen Ladungsfluß zwischen dem Ventilbauglied 43 und der Ventilplatte 41 zu verhindern.A known microvalve is described in US-A-4,585,209. Fig. 4 shows schematically a section of this Microvalve 40 in cross section. The micro valve 40 has a valve plate 41 with a valve opening 42 through which the fluid flows. Above the valve opening 42 in the valve plate 41 is a valve member fastened on one side 43 arranged. The valve member 43 is on its fixed section with a support or frame structure 44 connected. Between the frame, the one-sided attached valve member 43 and the valve plate 41 an electrically insulating layer 45 is provided which Electrically isolates valve member 43 from valve plate 41, to a charge flow between the valve member 43 and the To prevent valve plate 41.

Mittels äußerer Betätigungskräfte kann das Ventilbauglied 43 bezüglich der Ventilplatte 41 bewegt werden, derart, daß die Ventilöffnung 42 durch das Ventilbauglied 43 geschlossen bzw. geöffnet werden kann.The valve member 43 can be actuated by means of external actuating forces be moved with respect to the valve plate 41 such that the Valve opening 42 closed by valve member 43 or can be opened.

Im Betrieb ist der Einlaß (bzgl. Fig. 4 unter der Ventilplatte 41) des Mikroventils 40 mit einer unter Druck stehenden Quelle (nicht gezeigt) für einen Fluidfluß Φ verbunden. Der Druck, der auf das einseitig befestigte Ventilbauglied 43 ausgeübt wird, bewirkt, daß sich das Ventilbauglied 43 nach oben biegt, wie es durch das gestrichelt dargestellte Ventilbauglied 43 in Fig. 4 angezeigt ist. Der Pfeil in Fig. 4 stellt die Richtung des Fluidflusses Φ durch das Mikroventil 40 dar. Die gestrichelte Darstellung des Ventilbauglieds 43 in Fig. 4 zeigt die vollständig geöffnete Position des Mikroventils 40.In operation, the inlet (see FIG. 4 under the valve plate 41) of the microvalve 40 with a pressurized one Connected source (not shown) for fluid flow Φ. The pressure on the valve member attached on one side 43 is exerted, causes the valve member 43 bends upwards, as shown by the dashed line Valve member 43 is shown in Fig. 4. The arrow in Fig. 4 represents the direction of fluid flow Φ through the microvalve 40 represents. The dashed representation of the valve member 43 in Fig. 4 shows the fully open position of the Microvalve 40.

Das Mikroventil 40 wird betätigt, indem eine Spannungsquelle 46 über Leitungen 47 eine elektrische Potentialdifferenz zwischen der Ventilplatte 41 und dem Ventilbauglied 43 anlegt. Dadurch fließen Ladungen auf die sich gegenüberliegenden Seiten der beiden Bauteile 41,43, wodurch die Bauteile unterschiedlich gepolt werden. Diese Ladungen ziehen sich gegenseitig an, wodurch das nicht befestigte Ende des Ventilbauglieds 43 zu der Ventilplatte 41 bewegt wird. Das Mikroventil 40 mit geschlossenem Ventilbauglied 43 ist in Fig. 4 mit durchgezogenen Linien dargestellt.The microvalve 40 is operated by a voltage source 46 an electrical potential difference via lines 47 creates between the valve plate 41 and the valve member 43. As a result, charges flow to the opposite ones Sides of the two components 41, 43, creating the components poled differently. These charges pull against each other, causing the unattached end of the valve member 43 is moved to the valve plate 41. The micro valve 40 with the valve member 43 closed is shown in FIG. 4 shown with solid lines.

Da ein derartiges Mikroventil 40 durch den Druck des durchfließenden Fluidflusses Φ tendenziell geöffnet wird, bzw. der Fluß Φ des Fluids durch Schließen des Ventilbauglieds 43 unterbrochen wird, indem eine Potentialdifferenz zwischen dem Ventilbauglied 43 und der Ventilplatte 41 angelegt wird, besteht ein Nachteil des bekannten Mikroventils 40 darin, daß ein derartiges Mikroventil 40 nur in einer Fluidflußrichtung betreibbar ist.Since such a micro valve 40 by the pressure of the flowing Fluid flow Φ tends to be opened or the flow Φ of the fluid by closing the valve member 43 is interrupted by a potential difference between the valve member 43 and the valve plate 41 is applied, a disadvantage of the known microvalve 40 is that that such a microvalve 40 only in one direction of fluid flow is operable.

Die US-A-5,176,358 betrifft ein mikrostrukturiertes Gasventil mit einer Ventilstruktur mit mehreren Öffnungen. Jeder der Öffnungen ist eine Verschlußplatte zugeordnet. Die Ventilstruktur umfaßt ein Substrat, in dem die Öffnung gebildet ist. Ferner ist auf dem Substrat eine dielektrische Schicht angeordnet, aus der die Verschlußplatte und ein Ventilsitz gebildet ist. Durch den unteren Teil der Schicht ist der Ventilsitz gebildet, durch den sich die Öffnung erstreckt. Beabstandet von dem Ventilsitz durch einen Zwischenraum, welcher sich durch die Herstellung unter Verwendung einer Opferschicht aus Aluminium einstellt, befindet sich die Verschlußklappe, welche aus dem dielektrischen Material der Schicht besteh. Im Inneren der Ventilsitzstruktur sind Elektroden vorgesehen, welche zu einem Anschluß führen. Im Inneren der Ventilplatte ist eine weitere Elektrode vorgesehen, welche zu einem Anschluß 104 herausgeführt ist. Durch Bewegen der Platte derart, daß sie in Kontakt mit der dielektrischen Schicht ist, die die Ventilsitzstruktur definiert, wird das Ventil geschlossen. Dies wird dadurch erreicht, daß an die beiden Anschlüsse eine Spannung angelegt wird. Beim Anlegen gleicher Potentiale an den Anschlüssen kehrt die Platte aufgrund einer internen elastischen Rücksetzkraft in ihre offene Position zurück.US-A-5,176,358 relates to a microstructured gas valve with a valve structure with multiple openings. Everyone a closure plate is assigned to the openings. The valve structure comprises a substrate in which the opening is formed is. There is also a dielectric layer on the substrate arranged from which the closure plate and a valve seat is formed. Through the lower part of the layer is the Valve seat is formed through which the opening extends. Spaced from the valve seat by a gap, which is characterized by the production using a Sacrificial layer made of aluminum, there is the closure flap, which is made of the dielectric material of the Layer exists. Inside the valve seat structure are electrodes provided which lead to a connection. Internally a further electrode is provided on the valve plate, which is led out to a terminal 104. By Move the plate so that it is in contact with the dielectric Is layer that defines the valve seat structure the valve is closed. This is achieved that a voltage is applied to the two connections becomes. When applying equal potentials to the connections returns the plate due to an internal elastic resetting force back to their open position.

Der Artikel "A NEW BISTABLE MICROVALVE USING AN SIO2 BEAM AS THE MOVEABLE PART" von J.H. Babaei u.a. betrifft ein bistabiles Mikroventil, welches ein SiO2-Bauelement als bewegliches Teil umfaßt. Die Struktur umfaßt eine Ventilplatte, eine untere Elektrode, eine Beabstandung und einen Siliziumwafer als mechanische Basis. Die Ventilplatte besteht aus Chrom, welches mit einer Siliziumdioxidschicht beschichtet ist, die longitudinal unter Spannung steht, so daß diese elektrostatisch nach oben bzw. nach unten verbogen werden kann, um das Ventil zu öffnen bzw. zu schließen. Zur Betätigung des Ventils bedarf es einer Spannung von 68 Volt, um das Ventil zu schließen, wohingegen es einer Spannung von 120 Volt bedarf, um dieses Ventil zu öffnen.The article "A NEW BISTABLE MICROVALVE USING AN SIO 2 BEAM AS THE MOVEABLE PART" by JH Babaei and others relates to a bistable microvalve which comprises an SiO 2 component as a moving part. The structure includes a valve plate, a lower electrode, a spacer, and a silicon wafer as a mechanical base. The valve plate is made of chrome, which is coated with a silicon dioxide layer which is under longitudinal tension, so that it can be bent electrostatically upwards or downwards to open or close the valve. To operate the valve, a voltage of 68 volts is required to close the valve, whereas a voltage of 120 volts is required to open this valve.

Die DE 29603364 U1 betrifft ein Mikroventil, bei dem sowohl die Ventilklappe als auch der Ventilsitz aus einem verbiegbaren Material hergestellt sind. Die WO 92/22763 A1 betrifft ein Miniaturbetätigungselement, bei welchem eine Membran durch ein elektrisches Feld zwischen der Membran und einem Träger bewegt wird. Die EP 0469749 A1 betrifft ein Steuerungsventil, das durch die mechanische Verbiegung eines Elements gesteuert wird.DE 29603364 U1 relates to a microvalve in which both the valve flap as well as the valve seat from a bendable Material are made. WO 92/22763 A1 relates a miniature actuator in which a membrane through an electric field between the membrane and one Carrier is moved. EP 0469749 A1 relates to a control valve, through the mechanical bending of an element is controlled.

Ausgehend von diesem Stand der Technik der liegt vorliegenden Erfindung die Aufgabe zugrunde, ein Mikroventil und ein Verfahren zu dessen Herstellung zu schaffen, wobei das Mikroventil ohne angelegte Betätigungsspannung und ohne das Einwirken von pneumatischen Kräften eine geöffnete Durchlaßöffnung aufweist und zur Betätigung nur eine geringe Betätigungsspannung erforderlich ist.Based on this prior art, the present Invention, the object of a micro valve and To create process for its manufacture, the microvalve without applied operating voltage and without that Pneumatic forces act on an open passage opening has and for actuation only a low actuation voltage is required.

Diese Aufgabe wird durch ein Mikroventil gemäß dem Patentanspruch 1 sowie durch ein Verfahren gemäß dem Patentanspruch 7 gelöst.This object is achieved by a microvalve according to the patent claim 1 and by a method according to the claim 7 solved.

Die vorliegende Erfindung schafft ein Mikroventil mit einer Auflagestruktur, einer Durchlaßöffnung, die sich durch die Auflagestruktur erstreckt, einer mechanisch vorgespannten, zumindest einseitig befestigten Ventilklappe, die in ihrem unbetätigten Zustand von der Auflagestruktur weggebogen ist und die Durchlaßöffnung öffnet und in ihrem betätigten Zustand an der Auflagestruktur anliegt und die Durchlaßöffnung verschließt, und einer elektrisch isolierenden Beschichtung, die auf der der Auflagestruktur zugewandten Seite der Ventilklappe angeordnet ist und die Ventilklappe mechanisch vorspannt, wobei die Beschichtung im Bereich der Befestigung der Ventilkappe auf der Auflagestruktur aufliegt, um die Ventilklappe elektrisch von der Auflagestruktur zu isolieren.The present invention provides a microvalve with a Support structure, a passage opening that extends through the Support structure extends, a mechanically biased, valve flap attached at least on one side, which in its unactuated condition is bent away from the support structure and the passage opening opens and in its actuated state abuts the support structure and the passage opening closes, and an electrically insulating coating, the side of the valve flap facing the support structure is arranged and the valve flap mechanically prestressed, the coating in the area of the attachment the valve cap rests on the support structure to the Isolate the valve flap electrically from the support structure.

Die vorliegende Erfindung schafft ein Verfahren zum Herstellen eines Mikroventils, mit folgenden Schritten: Bilden einer Durchlaßöffnung in einer Auflagestruktur, Bilden einer, zumindest einseitig befestigten Ventilklappe in einem Ventilsitz, die in ihrem unbetätigten Zustand von der Auflagestruktur weggebogen ist und die Durchlaßöffnung öffnet und in ihrem betätigten Zustand an der Auflagestruktur anliegt und die Durchlaßöffnung verschließt, Anordnen einer elektrisch isolierenden Beschichtung, die die Ventilklappe unter eine Vorspannung setzt, auf der der Auflagestruktur zugewandten Seite der Ventilklappe, und Zusammenfügen der mit der Durchlaßöffnung versehenen Auflagestruktur und des Ventilsitzes, derart, daß die Ventilklappe die Durchlaßöffnung verschließen kann und die Beschichtung zwischen dem Ventilsitz und der Auflagestruktur angeordnet ist und im Bereich der Befestigung der Ventilklappe auf der Auflagestruktur aufliegt.The present invention provides a method of manufacturing of a microvalve, with the following steps: Form a passage opening in a support structure, forming one, attached at least on one side Valve flap in a valve seat that is in its unactuated Condition is bent away from the support structure and the Passage opening opens and in its actuated state the support structure rests and closes the passage opening, Arranging an electrically insulating coating, which puts the valve flap under a pretension the side of the valve flap facing the support structure, and assembling the ones provided with the passage opening Support structure and the valve seat, such that the valve flap can close the passage opening and the coating between the valve seat and the support structure is arranged and in the area of the fastening of the valve flap rests on the support structure.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detaillierter erläutert. Es zeigen:

Fig. 1a
eine prinzipielle Querschnittsansicht eines Mikroventils mit geöffneter Ventilklappe gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung.
Fig. 1b
eine prinzipielle Querschnittsansicht eines Mikroventils mit geschlossener Ventilklappe gemäß einem ersten Ausführungsbeispiel.
Fig. 2
eine prinzipielle vergrößerte Querschnittsansicht eines Mikroventils gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung.
Fig. 3a
eine perspektivische Ansicht einer an zwei benachbarten Kanten zweiseitig eingespannten Ventilklappe.
Fig. 3b
eine perspektivische Ansicht einer an zwei gegenüberliegenden Kanten zweiseitig eingespannten Ventilklappe.
Fig. 3c
eine perspektivische Ansicht einer dreiseitig eingespannten Ventilklappe.
Fig. 4
eine prinzipielle Querschnittsansicht eines Mikroventils gemäß dem Stand der Technik.
Preferred embodiments of the present invention are explained in more detail below with reference to the accompanying drawings. Show it:
Fig. 1a
a basic cross-sectional view of a microvalve with an open valve flap according to a first embodiment of the present invention.
Fig. 1b
a basic cross-sectional view of a microvalve with a closed valve flap according to a first embodiment.
Fig. 2
a schematic enlarged cross-sectional view of a microvalve according to a second embodiment of the present invention.
Fig. 3a
a perspective view of a valve flap clamped on two adjacent edges.
Fig. 3b
a perspective view of a valve flap clamped on two opposite edges.
Fig. 3c
a perspective view of a valve flap clamped on three sides.
Fig. 4
a basic cross-sectional view of a microvalve according to the prior art.

Fig. 1a stellt schematisch den Aufbau eines Mikroventils 10 mit einer geöffneten Ventilklappe 11 gemäß einem ersten Ausführungsbeispiel der Erfindung dar. Eine einseitig eingespannte, mechanisch vorgespannte Ventilklappe 11 ist über einer Auflagestruktur 12 angeordnet. Die Auflagestruktur 12 weist eine Durchlaßöffnung 13 auf, durch welche ein Fluidfluß Φ, dessen Richtung durch den in Fig. 1a gezeichneten Pfeil schematisch dargestellt ist, fließen kann. Über Zuleitungen 16 sind ein Ventilsitz 15, der mit der Ventilklappe 11 elektrisch und mechanisch verbunden ist, und die Auflagestruktur 12 mit einer Spannungsquelle 14 verbunden. Der Ventilsitz 15 besteht vorzugsweise aus Silizium, wobei derselbe auch aus anderen geeigneten Materialien hergestellt sein kann. Durch die Spannungsquelle 14 kann eine Potentialdifferenz zwischen dem Ventilsitz 15 bzw. der Ventilklappe 11 und der Auflagestruktur 12 angelegt werden, wodurch die Ventilklappe 11 geschlossen werden kann. Die Dicke des Siliziums der vorgespannten Ventilklappe 11 liegt z.B. in der Größenordnung von 5 µm bis 50 µm, wobei die lateralen Abmessungen derselben beispielsweise in der Größenordnung von 500 µm bis 5 mm liegen können.1a schematically shows the structure of a microvalve 10 with an open valve flap 11 according to a first embodiment of the invention. A cantilever, mechanically preloaded valve flap 11 is over a support structure 12 arranged. The support structure 12 has a passage opening 13 through which a fluid flow Φ, the direction of which by the drawn in Fig. 1a Arrow is shown schematically, can flow. Via supply lines 16 are a valve seat 15 with the valve flap 11 is electrically and mechanically connected, and the support structure 12 connected to a voltage source 14. The valve seat 15 is preferably made of silicon, the same also be made of other suitable materials can. A voltage difference can be caused by the voltage source 14 between the valve seat 15 and the valve flap 11 and the support structure 12 can be created, whereby the valve flap 11 can be closed. The thickness of the silicon the preloaded valve flap 11 is e.g. in the order of magnitude from 5 µm to 50 µm, with the lateral dimensions the same for example in the order of 500 microns to Can be 5 mm.

Die Ventilklappe 11 wird mittels einer geeigneten Beschichtung 17 auf Druck mechanisch vorgespannt, wobei die Beschichtung 17 sowohl als Maskierung für einen vorangegangenen Ätzschritt (z.B. beim KOH-Ätzen der Ventilklappe 11) als auch als elektrische Isolierung zwischen dem Ventilsitz 15 bzw. der Ventilklappe 11 und der Auflagestruktur 12 dienen kann. Ferner kann zusätzlich zu der mechanisch vorgespannten Ventilklappe 11 auch die Auflagestruktur 12 mit einer isolierenden Schicht (in den Fig. nicht gezeigt) bedeckt sein. Diese zusätzliche isolierende Schicht verbessert zusätzlich die elektrische Durchbruchfestigkeit beim Anlegen einer Betätigungsspannung.The valve flap 11 is by means of a suitable coating 17 mechanically biased to pressure, the coating 17 both as a mask for a previous one Etching step (e.g. when KOH-etching the valve flap 11) as also as electrical insulation between the valve seat 15 or the valve flap 11 and the support structure 12 are used can. Furthermore, in addition to the mechanically biased Valve flap 11 also the support structure 12 with an insulating Layer (not shown in the figures) may be covered. This additional insulating layer additionally improves the electrical breakdown strength when applying an actuation voltage.

Die Dicke der Beschichtung 17, die die mechanische Vorspannung erzeugt, liegt beispielsweise in der Größenordnung von 0,2 µm bis 1,5 µm. Die Beschichtung 17 kann aus Si3N4, SiC, Si-Oxid oder Kombinationen derselben bestehen. Durch diese mechanische Vorspannung (z.B. eine möglichst hohe Druckspannung von etwa -1500 MPa bei Si3N4) biegt sich die einseitig eingespannte Ventilklappe 11 nach einer Befestigung an der Auflagestruktur 12 von der Durchlaßöffnung 13 weg. The thickness of the coating 17 that generates the mechanical prestress is, for example, in the order of magnitude of 0.2 μm to 1.5 μm. The coating 17 can consist of Si 3 N 4 , SiC, Si oxide or combinations thereof. This mechanical prestress (for example the highest possible compressive stress of approximately -1500 MPa for Si 3 N 4 ) causes the valve flap 11, which is clamped on one side, to bend away from the passage opening 13 after attachment to the support structure 12.

Das Mikroventil 10 wird betrieben, um den Fluidfluß Φ zu steuern. Durch die Durchlaßöffnung 13 in der Auflagestruktur 12 kann, wenn ein Überdruck von oben (Fig. 1a) und eine elektrische Betätigungsspannung von U = 0 V an dem Mikroventil 10 anliegen, das Fluid um die durch die mechanische Vorspannung aufgebogene Ventilklappe 11 herum, durch die Durchlaßöffnung 13 fließen. Die durch die mechanische Vorspannung auf die Ventilklappe 11 wirkenden, tendenziell öffnenden Kräfte sind bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung so ausgelegt, daß diese Kräfte das Mikroventil 10 in einem geöffneten Zustand halten, solange der Druck des in Fig. 1a gezeichneten Fluidflusses Φ einen durch die mechanische Vorspannung eingestellten Nenndruck nicht überschreitet.The microvalve 10 is operated to increase the fluid flow Φ Taxes. Through the passage opening 13 in the support structure 12 can, if an overpressure from above (Fig. 1a) and a electrical actuation voltage of U = 0 V at the microvalve 10 apply to the fluid by the mechanical bias bent valve flap 11 around, through the passage opening 13 flow. Due to the mechanical preload acting on the valve flap 11, tend to open Forces are the preferred embodiment of the present invention designed so that these forces that Hold microvalve 10 in an open state as long as the pressure of the fluid flow gezeichnet drawn in FIG nominal pressure set by the mechanical preload does not exceed.

Liegen dagegen Drücke an, die größer als der Nenndruck sind, wird die Ventilklappe 11 geschlossen, auch wenn keine elektrische Betätigungsspannung (U = 0 V) anliegt. Das Mikroventil 10 gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist somit bei Fluiddrücken über dem Nenndruck selbstschließend.However, if there are pressures that are greater than the nominal pressure, the valve flap 11 is closed, even if no electrical Actuation voltage (U = 0 V) is present. The micro valve 10 according to a preferred embodiment of the present Invention is thus above the fluid pressures Nominal pressure self-closing.

Eine elektrische Betätigungsspannung (U ≠ 0 V), die zum Betätigen der Ventilklappe 11 in Schließrichtung notwendig ist, kann durch einen elektrostatischen Wanderkeil 18, d.h. durch die Konfiguration von elektrostatischen Kräften zwischen der Ventilklappe 11 und der Auflagestruktur 12, klein gehalten werden. Da die Ventilklappe 11 und die Auflagestruktur 12 in der Verbindungsregion derselben im wesentlichen nur durch die Dicke der Beschichtung 17 voneinander getrennt sind, treten zwischen der Ventilklappe 11 und der Auflagestruktur 12 in dieser Region auch bei kleinen Betätigungsspannungen hohe elektrische Feldstärken auf. Der Bereich der hohen Feldstärken wandert beim Schließen der Ventilklappe 11 mit der Region mit, in der die Ventilklappe 11 bereits im wesentlichen parallel zu der Auflagestruktur 12 angeordnet ist. Dadurch können sehr niedrige Betätigungsspannungen (U < 50 V) realisiert werden, da der elektrostatische Wanderkeil 18 den wesentlichen Anteil der Schließkräfte liefert. Bei herkömmlichen, aktiven, normalerweise offenen Mikroventilen mit elektrostatischen Schaltkräften existiert zwischen der Ventilklappe und der Auflagestruktur eine konstante Beabstandung von einigen Mikrometern, so daß eine relativ hohe Betätigungsspannung von ca. 180 Volt zum Schalten nötig ist, da hier kein elektrostatischer Wanderkeil vorhanden ist. Der Betriebszustand mit geschlossener Ventilklappe 11 ist in Fig. 1b in Form einer prinzipiellen Querschnittsansicht dargestellt.An electrical actuation voltage (U ≠ 0 V) that is used for actuation the valve flap 11 necessary in the closing direction by an electrostatic wedge 18, i.e. by configuring electrostatic forces between the valve flap 11 and the support structure 12, small being held. Because the valve flap 11 and the support structure 12 in the connection region thereof substantially only by the thickness of the coating 17 from each other are separated, occur between the valve flap 11 and the Support structure 12 in this region even with small actuation voltages high electric field strengths. The area the high field strengths migrate when the valve flap is closed 11 with the region in which the valve flap 11 already essentially parallel to the support structure 12 is arranged. This can result in very low actuation voltages (U <50 V) can be realized because of the electrostatic Walking wedge 18 the essential portion of the closing forces supplies. With conventional, active, usually open micro valves with electrostatic switching forces exists between the valve flap and the support structure a constant spacing of a few micrometers so that a relatively high actuation voltage of approx. 180 volts Switching is necessary since there is no electrostatic wedge is available. The operating state with closed Valve flap 11 is in the form of a principle in Fig. 1b Cross-sectional view shown.

Ein zweites Ausführungsbeispiel eines Mikroventils 10 mit vorgespannter Ventilklappenstruktur ist in einer vergrößerten, prinzipiellen Querschnittsansicht in Fig. 2 dargestellt. Bei diesem Ausführungsbeispiel sind kleine Abstandshöcker 21 entweder auf der vorgespannten Ventilklappe 11 oder auf der Auflagestruktur 12 oder auf beiden angebracht. Die Höhe dieser Abstandshöcker 21 kann in der Größenordnung von 0,1 µm bis 1 µm liegen, wobei die Querschnittsabmessungen der Abstandshöcker 21 in der Größenordnung von 10 x 10 µm2 bis 100 x 100 µm2 liegen können. Die Abstände zwischen benachbarten Abstandshöckern 21 liegen in der Größenordnung von 500 µm bis 2000 µm.A second exemplary embodiment of a microvalve 10 with a prestressed valve flap structure is shown in an enlarged, basic cross-sectional view in FIG. 2. In this exemplary embodiment, small spacing bumps 21 are attached either on the prestressed valve flap 11 or on the support structure 12 or on both. The height of these spacer bumps 21 can be of the order of 0.1 μm to 1 μm, the cross-sectional dimensions of the spacer bumps 21 being of the order of 10 × 10 μm 2 to 100 × 100 μm 2 . The distances between adjacent bumps 21 are in the order of 500 microns to 2000 microns.

Die Funktion der Abstandshöcker 21 besteht darin, bei einem geschlossenen Mikroventil 10, d.h. wenn eine elektrische Betätigungsspannung angelegt ist oder der Nenndruck überschritten ist, die direkte Kontaktfläche zwischen der vorgespannten Ventilklappe 11 und der Auflagestruktur 12 zu minimieren, um Anhafteffekte, die aufgrund des Eindringens von Ladungen in die Isolation bei großen Feldstärken auftreten können, zu minimieren. Die Abstandshöcker 21 werden entweder durch einen Abscheideprozeß (z.B. Sputtern) aufgebracht oder aus dem Siliziummaterial des Ventilsitzes 15 oder der Ventilklappe 11 herausgeätzt. Im Gegensatz zu der soeben beschriebenen Ausführungsform können die Abstandshöcker auch unterhalb der Basisschicht liegen. The function of the bumps 21 is one closed microvalve 10, i.e. if an electrical actuation voltage is applied or the nominal pressure is exceeded is the direct contact area between the biased To minimize the valve flap 11 and the support structure 12, to sticking effects that are due to the intrusion of Charges in the insulation occur with large field strengths can minimize. The spacer bumps 21 are either applied by a deposition process (e.g. sputtering) or from the silicon material of the valve seat 15 or the valve flap 11 etched out. In contrast to the one just described The spacer bumps can also be embodied lie below the base layer.

In den Fig. 3a bis 3c sind drei weitere Ausführungsformen mechanisch vorgespannter Ventilklappen 11 perspektivisch dargestellt. Fig. 3a zeigt eine an benachbarten Kanten zweiseitig eingespannte, mechanisch vorgespannte Ventilklappe 11a. Fig. 3b zeigt eine an gegenüberliegenden Kanten zweiseitig eingespannte, mechanisch vorgespannte Ventilklappe 11b. Fig. 3c zeigt eine dreiseitig eingespannte, mechanisch vorgespannte Ventilklappe 11c.3a to 3c are three further embodiments mechanically preloaded valve flaps 11 in perspective shown. Fig. 3a shows a bilateral on adjacent edges clamped, mechanically preloaded valve flap 11a. Fig. 3b shows a two-sided on opposite edges clamped, mechanically preloaded valve flap 11b. 3c shows a mechanically clamped on three sides preloaded valve flap 11c.

Durch die mechanische Vorspannung der Ventilklappen 11a-c ist jeweils eine Struktur realisiert, in der ein elektrostatischer Wanderkeil 18 wirken kann. Die Einspannung der Ventilklappen 11a-c kann an den Kanten ein- oder mehrmals unterbrochen sein, um die Ventilklappenstruktur flexibler zu gestalten. Der Vorteil einer an zwei oder drei Kanten eingespannten Ventilklappe 11 besteht darin, daß derartige Ventilklappen 11 gegenüber Druckstößen eine vergrößerte Robustheit aufweisen.Due to the mechanical pretensioning of the valve flaps 11a-c a structure is implemented in which an electrostatic Walking wedge 18 can act. The clamping of the valve flaps 11a-c can be interrupted at the edges one or more times be to make the valve structure more flexible shape. The advantage of being clamped on two or three edges Valve flap 11 is that such valve flaps 11 increased robustness compared to pressure surges exhibit.

Beschränkt man sich bei der Herstellung von Mikroventilen nicht auf ein anisotropes Ätzen von <100>-Silizium mit KOH, so sind beliebig geformte (runde, ovale, dreieckige, etc.) Ventilklappen 11 herstellbar, die jeweils an einigen Stellen nicht mit dem Ventilsitz 15 verbunden sind und sich dort durch die mechanische Vorspannung aufbiegen können. Die Ventilklappen 11a-c können wegen der Keilstruktur, d.h. aufgrund ihrer nicht überall parallelen Anordnung zu der Auflagestruktur 12, mit relativ kleine Betätigungsspannungen die Durchlaßöffnung 13 schließen.One restricts oneself in the production of micro valves not on anisotropic etching of <100> silicon with KOH, so are arbitrarily shaped (round, oval, triangular, etc.) Valve flaps 11 can be produced, each in some places are not connected to the valve seat 15 and there can bend up by the mechanical preload. The valve flaps 11a-c due to the wedge structure, i.e. by virtue of their arrangement, which is not everywhere parallel to the support structure 12, with relatively small actuation voltages close the passage opening 13.

Ein Vorteil der vorliegenden Erfindung gegenüber herkömmlichen Ventilvarianten besteht darin, daß die öffnenden Kräfte der Ventilklappe 11 und damit die normalerweise offene ("normally open") Stellung durch die mechanische Vorspannung einer Beschichtung 17 eingestellt wird, wobei bei anderen bekannten Ventilen die normalerweise offene Stellung durch die Aufhängung der Ventilklappenstruktur vorgenommen werden muß. Die Aufhängung der Ventilklappenstruktur begrenzt bei bekannten Mikroventilen eine weitere Miniaturisierung. Im Gegensatz dazu können Mikroventile gemäß der vorliegenden Erfindung mit sehr geringen Abmessungen (z.B. 3 mm x 3 mm) hergestellt werden, wodurch die Herstellungskosten gering gehalten werden.An advantage of the present invention over conventional ones Valve variants is that the opening Forces of the valve flap 11 and thus the normally open ("normally open") position due to the mechanical preload a coating 17 is set, with other known valves the normally open position made by the suspension of the valve flap structure must become. The suspension of the valve flap structure is limited a further miniaturization in known microvalves. In contrast, micro valves according to the present invention with very small dimensions (e.g. 3rd mm x 3 mm) can be produced, reducing the manufacturing costs be kept low.

Die öffnenden Kräfte bei der Ventilklappe 11 der vorliegenden Erfindung werden vor allem durch die mechanische Vorspannung in der Maskierungsschicht bestimmt, wodurch die öffnenden Kräfte von der Geometrie der Ventilklappenstruktur unabhängig sind.The opening forces in the valve flap 11 of the present Invention are primarily due to the mechanical preload determined in the masking layer, whereby the opening forces from the geometry of the valve flap structure are independent.

Ein oft auftretendes Problem sind die Leckraten des Mikroventils 10, z.B. wegen des Verkippens der Ventilklappenstruktur gegenüber der Auflagestruktur 12. Bei dem Mikroventil 10 der vorliegenden Erfindung ist eine Verkippung wesentlich unwahrscheinlicher, da zwei planpolierte Strukturen aneinander befestigt werden, wodurch sehr gute Abdichteigenschaften erreicht werden.The leakage rate of the microvalve is a common problem 10, e.g. because of the tilting of the valve flap structure compared to the support structure 12. With the micro valve 10 of the present invention, tilt is essential less likely because two plan polished structures can be attached to each other, creating very good sealing properties can be achieved.

Eventuell auftretende Anhafteffekte, die aufgrund des Eindringens von Ladungen in die Isolation bei hohen Feldstärken auftreten können, können beim Betrieb eines Mikroventils ein Problem darstellen. Diese Effekte können durch eine bipolare Ansteuerung des Mikroventils 10 sowie durch die Realisierung der Abstandshöcker 21, die vorher beschrieben wurden, verhindert werden.Any sticking effects that occur due to penetration of charges into the insulation at high field strengths can occur when operating a microvalve Pose problem. These effects can be caused by a bipolar Control of the microvalve 10 and by the implementation the spacer bump 21 previously described prevented become.

Der Durchfluß durch das Mikroventil 10 kann ausgehend von der mechanischen Vorspannung der vorgespannten Ventilklappe 11 durch ein Modell berechnet werden kann. Wichtige Optimierungsparameter für das erfindungsgemäße Mikroventil 10 sind: mechanische Vorspannung der Beschichtung 17, Dicke, Länge, Breite der Ventilklappe 11, Lage und Form der Durchlaßöffnungsfläche, Lage und Form des Fluidflusses Φ, Dicke der Beschichtung 17. Wichtige Betriebsparameter sind: Einlaß- und Auslaßdruck und Betätigungsspannung. Wichtige Stoffgrößen für das Modell sind: Adiabatenkoeffizient, Dichte und Viskosität des zu steuernden Fluids. Die elektrostatischen Schließkräfte können zunächst mit einfachen Modellen abgeschätzt werden, wobei Modelle für den elektrostatischen Pumpenbetrieb entsprechend modifiziert übernommen werden können.The flow through the microvalve 10 can start from the mechanical preload of the preloaded valve flap 11 can be calculated by a model. Important optimization parameters for the microvalve 10 according to the invention are: mechanical prestressing of the coating 17, thickness, length, Width of the valve flap 11, position and shape of the passage opening area, Location and shape of the fluid flow Φ, thickness of the coating 17. Important operating parameters are: inlet and Outlet pressure and actuation voltage. Important fabric sizes for the model are: adiabatic coefficient, density and viscosity of the fluid to be controlled. The electrostatic Closing forces can initially be estimated using simple models be, models for electrostatic pump operation modified accordingly.

Claims (11)

  1. A micro-valve (10), comprising
    a support structure (12);
    a passage opening (13) extending through the support structure (12);
    a mechanically biased valve flap (11) mounted at least on one side, bent away from the support structure (12) and opening the passage opening (13) in its non-actuated state and contacting the support structure (12) and closing the passage opening in its actuated state;
    an electrically insulating coating (17) arranged on the side of the valve flap (11) turned towards the support structure (12), wherein the coating (17) lies on the support structure in the mounting area of the valve flap (11) in order to electrically insulate the valve flap (11) from the support structure (12);
    characterized in that
    the electrically insulating coating (17) mechanically biases the valve flap (11).
  2. The micro-valve (10) according to claim 1, comprising
    a device for applying an actuating voltage between the valve flap (11) and the support structure (12).
  3. The micro-valve (10) according to claim 1 or 2, wherein
    two abutting sides of the valve flap (11) are mounted opposite the support structure.
  4. The micro-valve according to claim 1 or 2, wherein
    two opposite sides of the valve flap (11) are mounted opposite the support structure (12).
  5. The micro-valve (10) according to claim 1 or 2, wherein
    three sides of the valve flap (11) are mounted opposite the support structure (12).
  6. The micro-valve (10) according to one of claims 1 to 5, wherein
    spacing bumps (21) are provided between the valve flap (11) and the support structure (12).
  7. Method for producing a micro-valve (10), comprising:
    forming a passage opening (13) in a support structure (12);
    forming a valve flap (11) mounted at least on one side in a valve seat (15), bent away from the support structure (12) and opening the passage opening (13) in its non-actuated state and contacting the support structure (12) and closing the passage opening in its actuated state;
    arranging an electrically insulating coating (17) biasing the valve flap (11) on the side of the valve flap (11) turned towards the support structure (12); and
    joining the support structure (12) provided with the passage opening and the valve seat (15), such that the valve flap (11) may close the passage opening (13) and the coating (17) is arranged between the valve seat (15) and the support structure (12) and lies on the support structure in the mounting area of the valve flap (11).
  8. Method for producing a micro-valve (10) according to claim 7, wherein
    two abutting sides of the valve flap (11) are mounted opposite the support structure (12).
  9. Method for producing a micro-valve (10) according to claim 7, wherein
    two opposite sides of the valve flap (11) are mounted opposite the support structure (12).
  10. Method for producing a micro-valve (10) according to claim 7, wherein
    three sides of the valve flap (11) are mounted opposite the support structure (12).
  11. Method for producing a micro-valve (10) according to one of claims 7 to 10, wherein
    spacing bumps (21) are formed between the valve flap (11) and the support structure (12).
EP97113980A 1996-09-17 1997-08-13 Micro valve with preloaded valve flap Expired - Lifetime EP0829649B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19637878A DE19637878C2 (en) 1996-09-17 1996-09-17 Micro valve with preloaded valve flap structure
DE19637878 1996-09-17

Publications (3)

Publication Number Publication Date
EP0829649A2 EP0829649A2 (en) 1998-03-18
EP0829649A3 EP0829649A3 (en) 1998-11-04
EP0829649B1 true EP0829649B1 (en) 2002-10-09

Family

ID=7805898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97113980A Expired - Lifetime EP0829649B1 (en) 1996-09-17 1997-08-13 Micro valve with preloaded valve flap

Country Status (2)

Country Link
EP (1) EP0829649B1 (en)
DE (2) DE19637878C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590267B1 (en) 2000-09-14 2003-07-08 Mcnc Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods
US7753072B2 (en) 2004-07-23 2010-07-13 Afa Controls Llc Valve assemblies including at least three chambers and related methods
CN101292105B (en) * 2005-10-21 2010-09-22 阿尔德斯·阿罗利奎公司 Device for sealing a fluid circulation duct, such as an air duct or a ventilation opening

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887615B1 (en) 1999-07-30 2005-05-03 The Procter & Gamble Company Microvalve for controlling fluid flow
US6962170B1 (en) 1999-07-30 2005-11-08 The Procter & Gamble Company Microvalve for controlling fluid flow
WO2001009520A1 (en) * 1999-07-30 2001-02-08 The Board Of Trustees Of The University Of Illinois Microvalve for controlling fluid flow
FR2834324B1 (en) * 2001-12-31 2007-04-13 Bosch Gmbh Robert ELECTRICALLY CONTROLLED VALVE, MEMBRANE COMPRISING SUCH VALVES AND BRAKE ASSIST SERVOMOTOR COMPRISING SUCH A MEMBRANE
DE10243997B4 (en) * 2002-09-21 2005-05-25 Festo Ag & Co. Micro valve in multi-layer construction
US7195026B2 (en) * 2002-12-27 2007-03-27 American Air Liquide, Inc. Micro electromechanical systems for delivering high purity fluids in a chemical delivery system
EP1574724B1 (en) * 2004-03-10 2008-02-27 Festo AG & Co Pneumatic micro valve
DE102007034117B4 (en) * 2007-07-21 2011-03-10 Ab Skf lubricator
DE102007034116B4 (en) * 2007-07-21 2009-10-22 Ab Skf contraption

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231287A (en) * 1978-05-01 1980-11-04 Physics International Company Spring diaphragm
US4585209A (en) * 1983-10-27 1986-04-29 Harry E. Aine Miniature valve and method of making same
CH684209A5 (en) * 1990-11-20 1994-07-29 Westonbridge Int Ltd Integrated valve and micropump comprising such a valve
US5050838A (en) * 1990-07-31 1991-09-24 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
DE4119955C2 (en) * 1991-06-18 2000-05-31 Danfoss As Miniature actuator
US5176358A (en) * 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
DE29603364U1 (en) * 1996-02-27 1996-04-18 Karlsruhe Forschzent Microvalve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590267B1 (en) 2000-09-14 2003-07-08 Mcnc Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods
US7753072B2 (en) 2004-07-23 2010-07-13 Afa Controls Llc Valve assemblies including at least three chambers and related methods
US7946308B2 (en) 2004-07-23 2011-05-24 Afa Controls Llc Methods of packaging valve chips and related valve assemblies
CN101292105B (en) * 2005-10-21 2010-09-22 阿尔德斯·阿罗利奎公司 Device for sealing a fluid circulation duct, such as an air duct or a ventilation opening

Also Published As

Publication number Publication date
DE59708427D1 (en) 2002-11-14
EP0829649A2 (en) 1998-03-18
DE19637878A1 (en) 1998-04-02
EP0829649A3 (en) 1998-11-04
DE19637878C2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
DE19703415C2 (en) Piezo-electrically operated micro valve
EP0914563B1 (en) Piezo-electric operated microvalve
EP0521117B1 (en) Microvalve
EP0866919B1 (en) Microvalve
EP0517698B1 (en) Micro-miniaturised pump
EP0829649B1 (en) Micro valve with preloaded valve flap
EP2549161B1 (en) Controlled fluid valve
EP0613535B1 (en) Micromechanical valve for micromechanical dosing devices
EP0478565A1 (en) Microvalve.
EP0700485A1 (en) Microvalve
DE3621332C2 (en)
DE102008035990B4 (en) A microvalve and a method of making the same
DE102009002631A1 (en) Piezoelectric actuator and microvalve with such
EP3105770A1 (en) Microelectromechanical system and method for producing the same
DE19856583A1 (en) Micromechanical actuator structure and micro valve
WO1999015820A1 (en) Micro-valve
EP0836012B1 (en) Microvalve
DE10243997B4 (en) Micro valve in multi-layer construction
EP1574724B1 (en) Pneumatic micro valve
WO1998019086A1 (en) Piezo-electrically actuated fluid valve
DE19533184A1 (en) Semiconductor micro-valve
DE10239307A1 (en) Process for selective wafer bonding
DE102007020508A1 (en) Micromechanical valve component for dosage of medicines and anesthetics, has valve element that is implemented in form of diaphragm structure over layer of layer structure, and cavity is provided
DE10239306A1 (en) Process for the selective joining of substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19981217

AKX Designation fees paid

Free format text: DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020312

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20021009

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021009

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021009

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59708427

Country of ref document: DE

Date of ref document: 20021114

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20021009

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59708427

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301